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Area in real K3-surfaces

Ilia Itenberg and Grigory Mikhalkin

Abstract. For a real K3-surface X , one can introduce areas of connected components of the real
point set RX of X using a holomorphic symplectic form of X . These areas are defined up to
simultaneous multiplication by a positive real number, so the areas of different components can
be compared. In particular, it turns out that the area of a non-spherical component of RX is always
greater than the area of any spherical component.

In this paper we explore further comparative restrictions on the area for real K3-surfaces admit-
ting a suitable polarization of degree 2g � 2 (where g is a positive integer) and such that RX has one
non-spherical component and at least g spherical components. For this purpose we introduce and
study the notion of simple Harnack curves in real K3-surfaces, generalizing planar simple Harnack
curves from [8].

1. Introduction

A K3-surface X is a smooth simply connected complex surface admitting a holomorphic
symplectic form, that is, a holomorphic 2-form � such that � ^ x� is a volume form. A
K3-surface X is called real if it comes with an anti-holomorphic involution � WX ! X .
The fixed point set of � is denoted with RX and called the real locus of X . If non-empty,
RX is an orientable surface. All K3-surfaces are diffeomorphic, but their real loci may
have different topological types, see [2, 10] for details.

There are finitely many possibilities for the topological type of RX . For example, the
surface RX may be diffeomorphic to the disjoint union of two tori. In this case, we call X
a hyperbolic real K3-surface. The two components of the real locus of a hyperbolic K3-
surface are homologous. If X is not hyperbolic, then RX has at most one non-spherical
component. Denote by a the number of connected components of RX , and denote by b the
half of the first Betti number of RX . As a corollary of the Smith–Thom inequality [13,14],
one obtains aC b � 12. There are further restrictions on a and b, namely we have

a � b � 0 .mod 8/ if aC b D 12;

and a � b � ˙1 .mod 8/ if aC b D 11;

according to the congruences on the Euler characteristic of the real locus of maximal (in
the sense of the Smith–Thom inequality) and submaximal real algebraic surfaces (see [5,7,
11]). The deformation classification of real K3-surfaces is, essentially, due to Nikulin [10].
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Multiplying the holomorphic 2-form� by a non-zero complex number we may assume
that the closed real 2-form ˛ D Re� is invariant with respect to the involution � while
ˇ D Im� is anti-invariant. The form ˛ is non-vanishing, and thus defines an orientation
on RX . Hence, ˛ may be viewed as an area form on RX , well-defined up to a real mul-
tiple. Thus, we may compare total areas of different components of RX . If K � RX is
a component, then we denote with Area.K/ > 0 the absolute value of

R
K
� D

R
K
˛. For

instance, if RX is hyperbolic, i.e., consists of two components T1 and T2, each diffeomor-
phic to the 2-torus, then

Area.T1/ D Area.T2/

since in this case the components T1 and T2 are homologous.
Suppose that there exists a smooth real curve C � X , that is, a smooth curve invariant

with respect to the involution � . All (not necessarily smooth) real curves in X linearly
equivalent to C form a linear system. By the adjunction formula, all such curves constitute
the real projective space RPg , where g is the genus of C . Such linear system is called
polarization if g > 0 (we extend the standard terminology to the case gD 1). Accordingly,
we say that the real K3-surfaceX is genus g polarized if such a linear system is fixed. The
square of the homology class ŒC � 2 H2.X/ is equal to 2g � 2 by the adjunction formula,
so we also say that such a polarization is of degree 2g � 2.

The real locus RC D C \ RX is a smooth 1-dimensional manifold and therefore
diffeomorphic to the disjoint union of l circles. By the Harnack inequality [6], we have

l � g C 1:

Clearly, the homology class ŒRC � 2 H1.RX IZ2/ does not depend on the choice of the
curveC in the polarization. We say that the polarization is non-contractible if ŒRC �¤ 0. In
such case, RX must contain a non-spherical component, which we denote withN � RX .
UnlessX is hyperbolic, all other components of RX are spheres. We denote them with†j ,
j D 1; : : : ; a � 1.

The principal result of this paper is the following theorem.

Theorem 1. Suppose thatX is a real K3-surface admitting a non-contractible genus g>0
polarization and such that RX has a � 1 � g spherical components. Then, we have

Area.N / >
a�gX
jD1

Area.†j /;

whereN is the non-spherical component of RX and†j , jD1; : : : ;a� 1, are its spherical
components.

2. Area inequalities from linear algebra

Consider a real K3-surface X (in this section, we do not assume that X is algebraic).
Denote with ŒA� 2H2.X IR/ the homology class dual to the real 2-form ˛. By the Hodge–
Riemann relations we have

ŒA�:ŒA� > 0:
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Proposition 2.1. If N � RX is a component of genus b > 1, and †1; : : : ; †k � RX are
the spherical components, then

Area2.N / � .b � 1/
� kX
iD1

Area2.†i /C 2ŒA�:ŒA�
�
:

Proof. We have the decomposition

H2.X IR/ D H
C
2 .X IR/˚H

�
2 .X IR/;

where HC2 .X I R/ stands for the � -invariant part of the vector space H2.X I R/ and
H�2 .X IR/ for its anti-invariant part. The decomposition is orthogonal with respect to
the intersection form on H2.X IR/. We have ŒA� 2 HC2 .X IR/, while the class dual to ˇ
belongs to H�2 .X IR/. In addition, a Kähler form on X can be chosen in such a way
that the class of this form belongs to H�2 .X IR/. Thus, the intersection form restricted
to HC2 .X IR/ has one positive square.

Consider the subspace V �HC2 .X IR/ generated by ŒA�, ŒN �, Œ†1�; : : : ; Œ†k �, whereN ,
†1; : : : ; †k are oriented by ˛. The determinant of the intersection matrix of these vectors
is

D D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
ŒA�:ŒA� Area.N / Area.†1/ Area.†2/ : : : Area.†k/

Area.N / 2.b � 1/ 0 0 : : : 0

Area.†1/ 0 �2 0 : : : 0

: : : : : : : : : : : : : : : : : :

Area.†k/ 0 0 : : : 0 �2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ ;

since the self-intersection of a component of RX in X is minus the Euler characteristic of
the component. We get

.�1/kC1D D 2k
�

Area2.N / � .b � 1/
kX
iD1

Area2.†i / � 2.b � 1/ŒA�:ŒA�
�
� 0;

since a diagonalization of the intersection form on V � HC2 .X IR/ contains exactly one
positive square.

Corollary 2.2. If N � RX is a component of genus b > 1, and †1; : : : ; †k � RX are
spherical components, where k � b � 1, then

Area.N / >
kX
iD1

Area.†i /:

Proof. The statement is an immediate corollary of Proposition 2.1 and the inequality

n.x21 C � � � C x
2
n/ � .x1 C � � � C xn/

2

valid for any integer n � 1 and any real numbers x1; : : : ; xn.
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Remark 2.3. In the first version of our paper, the main result was a weaker version of
Theorem 1, namely, only the inequality Area.N / >Area.S1/ under similar hypotheses. In
view of Corollary 2.2 this inequality is only non-trivial if the genus ofN is 1. However, the
referee of our paper suggested an elegant simple proof of this inequality based on so-called
Donaldson’s trick (which consists in changing the complex structure on a K3-surface so
that an anti-holomorphic involution becomes holomorphic; see [3] or [2]) and applicable
even for non-projective real K3-surfaces with a torus component. We are strongly indebted
to the referee for this remark which has pushed us to find a stronger version of Theorem 1
considered in this paper. This stronger version still comes as an application of simple
Harnack curves in a K3-surface that are studied in this paper.

The referee’s suggestion mentioned in the previous remark can be generalized in the
following way strengthening Corollary 2.2.

Proposition 2.4. If N � RX is a component of genus b � 1, and †1; : : : ; †k � RX are
spherical components, where k � b, then

Area.N / >
kX
iD1

Area.†i /:

Proof. Let ! be a � -anti-invariant Kähler form on X such that

Œ!�2 D Œ˛�2 D Œˇ2� > 0:

Consider the hyperkähler rotation that cyclically exchange the triple ˛;ˇ;! (in such a way
that ˛ becomes a new Kähler form), and denote the resulting K3-surface with X 0. Since
the new holomorphic 2-form on X 0 is � -anti-invariant, the involution � is holomorphic
on X 0 and RX becomes a holomorphic curve in X 0 (for details, see [3] or [2]).

The component N is a holomorphic curve in X 0 and defines a polarisation of genus b
of X 0. Choose a point pi 2 †i for every i D 1; : : : ; k. Since k � b, there exists a holo-
morphic curveN 0 from the polarisation such thatN 0 passes through ¹piºkiD1. For any i D
1; : : : ; k, the class ŒN 0� D ŒN � 2 H2.X/ is orthogonal to Œ†i �. Thus, †i is an irreducible
component of N 0. It remains to notice that

R
C 0
˛ > 0 for any holomorphic curve C 0�X 0.

3. Curves in X and their deformations

We take a closer look at the polarization (i.e., the linear system jC j � Pg ) defined by a
smooth real curve C � X . Denote by M � jC j the space of all smooth curves linearly
equivalent toC . It is well known that M is a smooth manifold of dimension g. The tangent
space TCM consists of holomorphic normal vector fields to C in X . The non-degenerate
holomorphic 2-form � provides an identification between TCM and the space of holo-
morphic 1-forms on C (through plugging into � the normal vector field corresponding to
a vector from TCM).
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Let zM!M be the universal covering consisting of pairs zC 0D .C 0; /, where C 0 2M

and  is a homotopy class of a path connecting C and C 0 in M. ForZ 2H1.C / we define
the map IZ W zM! C by

IZ. zC
0/ D

Z
Z

�: (1)

Here Z is the surface spanned by a cycle from Z under the monodromy from  . Since
the closed 2-form � vanishes on any holomorphic curve (including C and C 0), the value
IZ. zC

0/ 2 C is well-defined.
Let a1; : : : ; ag 2 H1.C / be a maximal collection of a-cycles, i.e., a collection of

linearly independent primitive elements with trivial pairwise intersection numbers.

Lemma 3.1. The map
I D .Ia1 ; : : : ; Iag /W

zM! Cg (2)

is a local diffeomorphism.

Proof. Since I is a map between manifolds of the same dimension, it suffices to prove
that its differential is injective. The kernel of dI at zC 0 2 zM consists of holomorphic
forms on C 0 2M with zero periods along a1; : : : ; ag . By the Riemann theorem, any such
holomorphic form on C 0 must vanish.

Remark 3.2. Lemma 3.1 is a shadow of the so-called Beauville–Mukai integrable system
(see [1]) on the universal Jacobian over zM. The maps IZ are the integrals of this system.

The system .a1; : : : ; ag/ of a-cycles can be represented with a system a of g pairwise
disjoint simple loops on C . Their complement in C is a sphere with 2g holes. Let zMa

be the space consisting of pairs
�
C 0; Œ�

�
, such that C 0 2 jC j, is (at worst) a nodal curve,

and Œ� is a homotopy class of a path

 W Œ0; 1�! jC j

such that .0/ D C , .1/ D C 0, and for all t 2 Œ0; 1� the curve .t/ is at worst a nodal
curve whose vanishing cycles under the monodromy are represented by simple loops on C
disjoint with the family a. Note that the forgetting map

zMa
! jC j;

�
C 0; Œ�

�
7! C 0

is a local diffeomorphism. The definition of the map (2) naturally extends to the map

I aW zMa
! Cg : (3)

Lemma 3.1 extends to the following proposition.

Proposition 3.3. The map I a is a local diffeomorphism.
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Proof. For a nodal curveC 0 2 jC j the holomorphic 2-form gives an identification between
TC 0 jC j and the space of meromorphic forms on the normalization of C 0 with at worst sim-
ple poles over the nodes such that the residues at the two preimages of the same node are
opposite. The space of such forms is g-dimensional. The kernel of dI a over C 0 consists
of the forms with zero periods over aj , j D 1; : : : ; g, and thus trivial.

4. Simple Harnack curves and their degenerations

Simple Harnack curves in toric surfaces were introduced and studied in [8]. A toric sur-
face Y � .C�/2 may be considered as a log K3-surface, or a K3-surface relative to its
toric divisor D D Y X .C�/2. Indeed, D is the pole divisor for the meromorphic exten-
sion of the holomorphic form dz1 ^ dz2 on .C�/2. In this section, we define and study
counterparts of these curves in (closed) K3-surfaces.

Recall that a smooth (and irreducible over C) real curve C is called an M-curve (or a
maximal curve), if the number of its real components is equal to one plus its genus (i.e.,
if it has the maximal number of real components allowed by the Harnack inequality). An
M-curve C is dividing, i.e., C X RC consists of two components interchanged by the
involution of complex conjugation.

An orientation on the real locus RC of a dividing curve C is called the complex ori-
entation if it comes as the boundary orientation of a component of C X RC , see [12].
Clearly there are two complex orientations on RC and they are opposite.

Definition 4.1. A smooth real M-curve C � X is called simple Harnack if for any com-
ponent K � RX X RC and any two distinct components L; L0 � RC adjacent to K a
complex orientation of L and L0 can be extended to an orientation of K.

Note that this definition allows for two types of components K � RX X RC . Either
we have @K D @ xK for the closure xK � RX , or the closure xK is the entire connected
component † � RX . In the first case, the complex orientations of the components of RC
must alternate as in Figure 1.

Figure 1. Orientations imposed by Definition 4.1.
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In the second case, the component † � RX contains a single component L � RX
and ŒL� ¤ 0 2 H1.RX IZ2/.

Definition 4.2. A component L � RC is said to be modifiable or an m-component if
ŒL� ¤ 0 2 H1.RX IZ2/ and the component of RX containing L does not contain any
other component of RC .

Unless X is a hyperbolic K3-surface, RX has not more than one non-spherical com-
ponent and thus RC may have not more than one m-component.

Remark 4.3. Simple Harnack curves in toric surfaces from [8] can be defined through
a relative version of Definition 4.1. Namely, a real M-curve C in a real toric surface Y
is simple Harnack if C X .C�/2 D RC X .C�/2 (i.e., all intersection points of C and
the toric divisor are real) and the orientation of @K � .RC \ .C�/2/ induced from K �

.R�/2 XRC agrees with an orientation of a component of C XRC .

Remark 4.4. It seems that Definition 4.1 also might be meaningful for the case when X
is a surface different from a K3-surface. In a more general setting we add an assumption
that each component of RX XRC is orientable (the condition that holds automatically in
the case of K3-surfaces thanks to the non-vanishing 2-form �).

We say that a curve C0 � X is a degeneration of simple Harnack curves if there
exists a continuous family Ct � X , t 2 Œ0; 1�, such that Ct is a simple Harnack curve
for every t 2 .0; 1�/. Clearly, C0 is a real curve which may develop some singularities.
Also, the degeneration C0 does not have to be irreducible, or even reduced. It consists
of several components while some of these components may be taken with multiplicity
greater than 1 (multiple components). We refer to components of C0 whose multiplicity
is equal to 1 as simple components of C0.

Proposition 4.5. Let C0 � X be a degeneration of simple Harnack curves. Then, a sin-
gular point of C0 either belongs to a multiple component, or is an ordinary double point,
i.e. a node.

Furthermore, if a node of C0 is non-real, then it corresponds to a transverse inter-
section point of two different simple components of C0. If a node p of C0 is real, then p
is either a solitary node (given in local analytic coordinates by x2 C y2 D 0), or corre-
sponds to a transverse intersection of two different real simple components of C0. In the
latter case, C0 is a union of two real curves intersecting only at p; the two real branches
of RC0 at p come from the same connected component of RCt , t >0, under degeneration.

Corollary 4.6. IfC0�X is a reduced irreducible degeneration of simple Harnack curves,
then all singular points of C0 are solitary nodes.

Proof of Proposition 4.5. Away from multiple components, each singular point p 2 C0
is isolated and (as a hypersurface singularity) can be described through vanishing cycles
on a curve Ct , t >0, which is a simple Harnack curve. Each vanishing cycle Zt�Ct
corresponds to a critical point of a morsification of p (i.e., a holomorphic function with
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non-degenerate critical points which approximates the local equation of C0 near p). Def-
inition and properties of vanishing cycles can be found in [9]. To find an appropriate
collection of conjugation-invariant vanishing cycles we follow the procedure below.

Near a real singular point p of C0 the family of curves Ct can be given as the zero set
of a family of holomorphic functions ft WU ! C on a small neighbourhood p 2 U � X .
Here U can be chosen to be � -invariant with the contractible real part RU D U \ RX ,
while ft can be chosen to be real (i.e., conj ıft D ft ı � , where conjWC ! C is the
complex conjugation). Multiplying by (non-vanishing on U ) holomorphic functions if
needed, we may assume that ft , t > 0, is a complex Morse function (i.e., its critical points
are isolated and have non-degenerate Hessians). Similarly, we may also assume for ft that
the images of different critical points are different and that the image of a non-real critical
point is not real.

The multiplication trick also allows us to assume that the restriction ft jRU is a generic
Morse function, i.e., that the stable and unstable manifolds for different critical points are
transverse. Suppose that there exist two critical points with positive critical values, with
indices different by 1, and such that these points are connected with a gradient trajectory.
Then, such a gradient trajectory must be unique. Indeed, since the index of one of the
critical points must be one, there could be not more than two such trajectories. However,
existence of two trajectories would imply a non-trivial mod 2 homology cycle in RU
which is impossible. If two critical points with positive values are connected with a single
trajectory, then these critical points are removable. Multiplying ft by an appropriate non-
vanishing real function we can make such a pair of critical points into a complex conjugate
pair. Thus, inductively, we may assume that no pair of critical points with positive critical
values can be connected with a gradient trajectory. (Note that the points of indices 0 and 2
cannot be connected in this way, since in the absence of trajectories to index 1 points it
would imply an S2-component for RU .)

The critical points of ft for small t > 0 can be thought of as the result of perturbation
of the singular point p for f0. In particular, the number of critical points of ft coincides
with the Milnor number �p of the singularity p. The set…t � C of critical values of ft is
conj-invariant and close to zero. Let us connect the points of…t with 0 by a conj-invariant
collection �p of �p smooth embedded paths (the paths connecting real points of …t to 0
may contain each other).

Let t be one of these paths. Its inverse image f �1t .t / � U is a hypersurface. A
� -anti-invariant Kähler symplectic form on X has a 1-dimensional radical in the tangent
space to f �1t .t /. With its help a tangent vector field to t , oriented towards the critical
value, canonically lifts to a vector field in f �1t .t / vanishing at a critical point of ft .
We define the membrane Mt � X as the stable manifold of this point. Since the critical
points of ft are Morse, and no trajectories over our paths may connect critical points,
Mt is an embedded disk. The corresponding vanishing cycle Zt � Ct is the boundary
of this disk Mt . We have Mt \ Ct D Zt , while the membrane Mt is never tangent to
the curve Ct along Zt . It is an embedded disk in X of self-intersection �1 (to define the
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self-intersection of a membrane we use a normal vector field to Zt in Ct as the boundary
framing).

For non-real singular points p 2 C0 the construction of the cycles Zt and the mem-
branes Mt is similar but locally we do not have to worry about the complex conjugation
invariance. Instead we use �.Zt / and �.Mt / for the singular point �.p/ 2 C0.

For a given singular point p 2 C0, denote with At � Ct the union of all vanishing
cycles in Ct , and with Bt � X the union of all their membranes. Both spaces At and Bt
are connected. Their union over all singular points of C0 is � -invariant. The vanishing
cycles from At intersect transversely. Two cycles are either disjoint or intersect in a single
point. The dual graph of the vanishing cycles from At cannot have cycles, see [9].

Suppose that p … RC0. Then At � Ct XRCt , but each component of Ct XRCt is of
genus 0 since Ct is an M-curve. Thus, At consists of a single vanishing cycle, and p is a
Morse point. Furthermore, At [ �.At / separates Ct into several connected components,
so p must be a transverse intersection point of distinct components from C0.

Suppose that p 2 RC0. Then, the tree of vanishing cycles of At is � -invariant, so
it must have an invariant vertex or an invariant edge. However, an invariant edge would
correspond to a transverse intersection of vanishing cycles. If these cycles are not real,
then they intersect RCt transversely in a single point which is impossible since Ct XRCt
is disconnected. Thus, At possesses at least one � -invariant vanishing cycle Zr whose
membrane M r is also � -invariant.

Suppose that � acts on Zr non-trivially. Then Zr \RCt consists of two points, while
 DM r \RX is a path connecting these points and transversal to RCt at the endpoints.
Let M 0 � X , @M 0 � Ct , be a small perturbation of the membrane M r such that @M 0

and @M r are disjoint. Let  0 DM 0 \RX . The parity of the self-intersection of M r coin-
cides with the intersection number of  and  0 since all other points of M r \M 0 come in
pairs. This parity in its turn is determined by the displacement of @ 0 � RCt with respect
to @ � RCt . Let us enhance RCt with the boundary orientation of one of the halves
of Ct X RCt . Since @M r \ @M 0 D ;, one of the points of @ must move in the direc-
tion of this orientation, while the other one moves contrary to this direction. Definition 4.1
implies that the intersection number of  and  0 is even whenever  connects two different
components of RCt . However, this is incompatible with the odd self-intersection of M r .

If  connects a component L � RCt with itself, then Ct XZr is disconnected. Thus,
C0 is a union of two real curves intersecting only at p. Furthermore,At DZr , since other-
wise there must be another cycle Z0 � At intersecting Zr transversally at a single point.
In this case p is an ordinary double point with two real branches which is a transverse
intersection point of two distinct components of C0.

Any other real vanishing cycle Zr � Ct must be point-wise preserved by � . Suppose
that Zr intersects another cycle Z0 in At . The cycle Z0 cannot be point-wise preserved
since it intersectsZr at a single point. Thus,Z0 is imaginary. Then, sinceZ0 and �.Z0/ are
transverse and Ct XRCt is disconnected,Z0 \ �.Z0/ consists at least of two points which
is impossible. Therefore, any solitary real singular point p 2 C0 has a unique vanishing
cycle corresponding to an oval of RCt , which implies that p is a solitary node.
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Remark 4.7. The proof of Proposition 4.5 is based on concordance, ensured by a real
vanishing cycle, of complex orientations of a dividing real curve. This concordance is a
well-known phenomenon in real algebraic geometry, responsible, in particular, for Field-
ler’s orientation alternation, see [4].

5. Deformations of simple Harnack curves in K3-surfaces

Assume that the surface X is not hyperbolic. For a simple Harnack curve C � X we
choose an order on the components L0; : : : ; Lg � RC , as well as their orientations
compatible with a half of C X RC . Real curves in X linearly equivalent to C form
the real part RjC j � RPg of the projective space jC j � Pg . The homology classes
aj D ŒLj � 2 H1.C /, j D 1; : : : ; g, form a maximal collection of a-cycles making the
map (3) well-defined. We denote with ARMa the fixed locus of the involution induced
by � on zMa, the source of map (3).

Consider the subspace
ARMi

C �
ARMa

consisting of pairs .C 0; Œ�/,  W Œ0;1�!RjC j, .0/DC , .1/DC 0, where, for any t2 Œ0;1�,
the real curve .t/ is at worst nodal and any non-singular real curve belonging to RjC j
and sufficiently close to .t/ is simple Harnack.

Remark 5.1. If .C 0; Œ�/ 2 ARMi
C , then, for any t 2 Œ0; 1�, the curve .t/ does not have

real solitary nodes.

Proposition 5.2. Suppose that Lj �RC is not an m-component. Then, during the defor-
mation  , the component Lj remains non-singular, i.e., we may consistently distinguish a
smooth real component in .t/, t 2 Œ0; 1�, coinciding with Lj for t D 0.

Proof. Let us, first, show the statement assuming that .t/ is a non-singular curve for any
t 2 Œ0; 1/. If p 2 .1/ is a real singular point, then by Proposition 4.5, the point p cor-
responds to a transversal intersection of two different real irreducible components of the
reducible curve .1/, and p is a unique intersection point of these components. Further-
more, the vanishing cycle of p connects a real component L.1 � "/ of .1 � "/, " > 0,
with itself. Thus,

ŒL.1 � "/� ¤ 0 2 H1.RX IZ2/;

and Definition 4.1 implies that the non-spherical componentN�RX containingL.1 � "/
does not contain any other component of the real part of the curve .1 � "/, that is,
L.1 � "/ is an m-component. This implies the statement of the proposition in the case
considered. Moreover, g connected components of the real part of .1 � "/ are contained
in the union of spherical components of RX .

Consider now the general case. For any t 2 Œ0; 1�, the curve .t/ is a degeneration
of simple Harnack curves. Thus, the particular case above implies that all singular points
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of .t/ belong to N , and g connected components of the real part of .t/ are contained in
the union of spherical components of RX . This implies the statement.

We may reorder the components of RC so that all components except possibly for L0
are not m-components. Thus, for any oriented component Lj � RC , j D 1; : : : ; g, the
map (3) restricted to ARMi

C induces the map

RILj W
ARMi

C ! R: (4)

We define
IRC D .RIL1 ; : : : ;RILg /W

ARMi
C ! Rg : (5)

A component Lj � RC , j D 0; : : : ; g, is either non-contractible (i.e., ŒLj � ¤ 0 2

H1.RX IZ2/) or such that †j X Lj D †Cj [ †
�
j consists of two components. Here, †j

is the component of RX containing the component Lj . This component is oriented by the
2-form �. We denote with †Cj the component of †j X Lj whose boundary orientation
agrees with the chosen complex orientation of RC and with †�j the other one. Put

sCj D

Z
†Cj

� D Area.†Cj /; s�j D �

Z
†�j

� D �Area.†�j /:

Clearly, sCj � s
�
j D Area.†j /. If Lj is non-contractible, we put sCj D1, s�j D �1. Let

� D

²
.x1; : : : ; xg/ j s

�
0 < �

gX
jD1

xj < s
C
0 ; s

�
j < xj < s

C

j

³
� Rg :

Proposition 5.3. The map

IRC W
ARMi

C ! Rg

is a local diffeomorphism whose image is contained in �.

Proof. The map IRC is a local diffeomorphism by Proposition 3.3. Note that for a holo-
morphic curve C 0 � X the area of a membrane whose boundary is contained in C [ C 0

depends only on the class of the membrane in H2.X; C [ C 0/. In particular, to com-
pute IRC we may use the membranes contained in RX . We have s�j < RILj .C

0; / < sCj
since the corresponding oval of RC 0 bounds two membranes of areas sCj � RILj .C

0; /

and RILj .C
0; /� s�j , so these differences must be positive. If ŒL0� D 0 2 H1.RX IZ2/,

then the corresponding ovals of the real curves from the deformation  cannot develop sin-
gularities by Proposition 5.2. Since ŒL0�C � � � C ŒLg � D 0 2 H1.C /, the corresponding
oval of C bounds the membranes of area

sC0 C

gX
jD1

RILj .C
0; / and �

gX
jD1

RILj .C
0; / � s�0 ;

so these quantities are also positive.
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6. Proof of Theorem 1

For any algebraic curve D (not necessarily irreducible or reduced), the multiplicity of D
is the minimum among the multiplicities of irreducible components of D.

Lemma 6.1. Let D � X be a real algebraic curve. Assume that D is either connected
or consists of two connected non-real conjugated curves. Put d D ŒD� 2 H2.X IZ/, and
denote by k the multiplicity of D. Then, the number of connected components of the real
part RD of D is at most 2C d2=2k2.

In particular, 2C d2=2k2 � 0 under the hypotheses of the lemma.

Proof. Assume, first, that D is irreducible over R (but not necessarily reduced). Let D0

be the reduced curve having the same set of points as D. The curve D0 is real and
ŒD� D kŒD0�. The required inequalities are equivalent for D and D0. If D0 is irreducible
over C, the required inequality for D0 is a corollary of the Harnack inequality and the
fact that the number of solitary real points of D0 is bounded from above by the difference
between the arithmetic and geometric genera of D0. Suppose that D0 has two irreducible
components over C (exchanged by the anti-holomorphic involution of X ), and denote
these components byD01 andD02. Put d 01 D ŒD

0
1� 2H2.X IZ/ and d 02 D ŒD

0
2� 2H2.X IZ/.

We have
ŒD0�2

2
C 2 D

.d 01/
2

2
C
.d 02/

2

2
C 2C d 01d

0
2 � d

0
1d
0
2;

since .d 0i /
2 � �2, i D 1, 2. The number of real points of D0 is bounded from above

by d 01d
0
2. This implies the required inequality for D0, and thus, for D.

Assume now that D D D1 [D2, where D1 and D2 are two real curves without com-
mon components. Assume, in addition, that each of these two curves is either connected or
consists of two connected non-real conjugated curves, and that the required inequality is
true forD1 andD2. Put di D ŒDi � 2H2.X IZ/, i D 1, 2, and denote by ki the multiplicity
of Di , i D 1, 2. Denote by n the number of intersection points of D1 and D2. Suppose
that k1 � k2. In this case, k D k1. We have

d2

2k2
C 2 �

d21
2k21
C
d22
2k22
C
d1d2

k21
C 2 �

d21
2k21
C
d22
2k22
C
nk2

k1
C 2: (6)

If n � 2, then

d21
2k21
C
d22
2k22
C
nk2

k1
C 2 �

�
d21
2k21
C 2

�
C

�
d22
2k22
C 2

�
;

and the number of connected components of RD is at most d2=2k2 C 2. If n D 1, then

d21
2k21
C
d22
2k22
C
nk2

k1
C 2 �

�
d21
2k21
C 2

�
C

�
d22
2k22
C 2

�
� 1:
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In this case, the only intersection point ofD1 andD2 is real, and the number of connected
components of RD is at most�

d21
2k21
C 2

�
C

�
d22
2k22
C 2

�
� 1 �

d2

2k2
C 2:

We say that a real algebraic curve D � X is r-maximal if D is either connected or
consists of two connected non-real conjugated curves, and the number of connected com-
ponents of the real part RD of D is equal to d2=2k2 C 2, where d D ŒD� 2 H2.X IZ/
and k is the multiplicity of D.

Lemma 6.2. Let D D D1 [D2 � X be an r-maximal real algebraic curve, where D1
and D2 are real curves such that each of them is either connected or consists of two
connected non-real conjugated curves. Then, the curves D1 and D2 are r-maximal and
have the same multiplicity.

Proof. Put di D ŒDi � 2 H2.X IZ/, i D 1; 2, and denote by ki the multiplicity of Di , i D
1; 2. Denote by n the number of intersection points ofD1 andD2. The r-maximality ofD
and the inequalities (6) imply that k1 D k2 and the curves D1 and D2 are r-maximal.

Recall that in the linear system of genus g polarizing the K3-surfaceX we may choose
a curve passing through arbitrary g points. Let C be the real curve passing through g
points on g distinct spherical components †1; : : : ; †g of RX . Thus, RC contains at
least g components L1; : : : ; Lg at these spherical components. Slightly perturbing the
curve C if needed we may assume that C is smooth. Since the polarization is non-
contractible, the real locus RC must also contain a non-contractible componentL0 �RC
at the non-contractible component N � RX . Thus, C is a simple Harnack curve.

Lemma 6.3. Let C 0 2RjC j be a connected curve intersecting each connected component
†1; : : : ; †g . If g � 2, the curve C 0 is reduced.

Proof. Note that C 0 necessarily intersects N . In addition, ŒC 0�2 D ŒC �2 D 2g � 2 > 0

(since g � 2). Thus, C 0 is r-maximal and of multiplicity 1. Lemma 6.2 implies that all
irreducible components of C 0 are of multiplicity 1, that is, C 0 is reduced.

Assume that g � 2. Choose a complex orientation of RC . For every j D 1; : : : ; g,
the connected component †j is oriented by the 2-form � and is divided by the oval Lj
in two disks †Cj and †�j , where †Cj is the disk whose boundary orientation agrees with
the chosen complex orientation of RC . Denote by sCj and �s�j the areas of the disks †Cj
and †�j .

Lemma 6.3 and Propositions 4.5, 5.3 imply that the inverse image of the line²�
sC1 C s

�
1

2
; : : : ;

sCg�1 C s
�
g�1

2
; u

� ˇ̌̌
u 2 R

³
� Rg

under the map

IRC W
ARMi

C ! Rg
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is a segment � � ARMi
C whose closure in ARMa has two extremal points corresponding

to nodal curves CC and C�; each of the curves CC and C� has a solitary double point
in †g . Furthermore, according to Proposition 5.2, the curves CC and C� do not have
other singular points in RX X N , and any curve corresponding to a point of � does not
have singular points in RX X N . Let D0 and D00 be any two curves corresponding to
distinct points of � . The ovals of D0 and D00 at the spherical components †1; : : : ; †g�1
divide the corresponding spheres into disks of equal areas, so they intersect in at least
2.g � 1/ points at these components. By the Bézout theorem,

D0 \D00 \ .N [†g/ D ;:

Thus, .CC \N/ [ .C� \N/ bounds a proper compact subsurface of N of area

sCg � s
�
g D Area.†g/:

Similarly, for every connected component † � RX different from †1; : : : ; †g�1, N ,
there is a proper compact subsurface R � N whose area is equal to the area of †. The
Bézout theorem implies that all these subsurfaces R are pairwise disjoint. This proves the
statement of the theorem in the case g � 2.

Assume now that g D 1. In this case, the linear system jC j is 1-dimensional, RjC j '
RP1, and the previous arguments can be easily adapted. Through any point of X one can
trace a unique curve belonging to jC j. This defines a projection �RWRX!RP1. Note that
�R.N / coincides with RP1. The image under �R of any spherical component †j of RX
is a closed segment, and all such segments are pairwise disjoint. Each segment �R.†j /

gives rise to a proper compact subsurface in N (the intersection of N with the inverse
image under �R of the segment) whose area is equal to the area of †j , and all these
subsurfaces are pairwise disjoint.

7. Simple Harnack curves in K3 surfaces: further directions and
questions

For the proof of Theorem 1 we have used simple Harnack curves C � X of rather special
type: each component of RX contained not more than one component of the curve RC .
Under this assumption a real curve is a simple Harnack whenever it is an M-curve.

We finish the paper by taking a look at more general simple Harnack curves. Namely,
we assume that C � X is a simple Harnack curve, andX is a real K3-surface which is not
hyperbolic. Then the locus of the M-curve RC has not more than one m-component. We
order the components Lj , j D 0; : : : ; g of RC so that all of them, except possibly L0, are
not m-components. Thus the map IRC from Proposition 5.3 is well-defined.

Note that for a degeneration Ct , t 2 Œ0; 1�, of simple Harnack curves such that C1 DC ,
any curve Ct , t > 0, is naturally identified with a point in ARMi

C .
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Definition 7.1. A simple Harnack curve C � X is called minimal if for any degenera-
tion Ct , t 2 Œ0; 1�, of simple Harnack curves such that C1 D C and lim

t!0
IRC .Ct / 2 �, the

curve C0 is reduced and irreducible.

Example 7.2. If X does not contain embedded curves of genus less than g � 2 (in par-
ticular, it does not contain .�2/-curves), then any simple Harnack curve of genus g is a
minimal simple Harnack curve.

Proposition 7.3. If C is a minimal simple Harnack curve, then the map

IRC W
ARMi

C ! � (7)

from Proposition 5.3 is a diffeomorphism.

Proof. Since � is simply connected and IRC is a local diffeomorphism by Proposi-
tion 5.3, it suffices to prove that (7) is proper. The space ARMi

C is an open manifold
covering a subset of jC j. By Proposition 4.5, for any degeneration Ct , t 2 Œ0; 1�, of simple
Harnack curves such that C1 D C and lim

t!0
IRC .Ct / 2�, the limit curve C0 is smooth.

We say that the components Lj� ; Lj0 ; LjC nest if they are contractible (i.e., ŒLj� � D
ŒLj0 � D ŒLjC � D 0 2 H1.RX IZ2/), belong to the same component †j � RX , and one
component of †j X Lj0 contains Lj� while the other one contains LjC , see Figure 2.

Figure 2. Three nesting ovals in a spherical component of RX .

Proposition 7.4. No three components of a minimal simple Harnack curve C can nest.

Proof. Passing to different nesting components if needed we may assume thatLjC andLj0
(resp. LjC and Lj0 ) are adjacent to the same component KjC � RX X RC (resp. Kj� �
RX X RC ). Then Definition 4.1 implies that the complex orientations of Lj� ; Lj0 ; LjC
alternate. Renumbering the components of RC if needed we may assume that LCj D Lg
and L�j D Lg�1. Also, we may assume that the boundary orientation of @KjC induced
by � agree with the complex orientation of RC .
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Consider the inverse image of the interval®
.0; : : : ; 0;�u; u/ 2 � j 0 � u < sCg

¯
� �

under the diffeomorphism (7). It corresponds to the elements of ARMi
C such that the area

of KjC becomes smaller by u. For

u > Area.KjC/C Area.Kj�/ < s
C

j

we get self-contradicting conditions for the resulting smooth curve in †j .

Proposition 7.5. If a minimal simple Harnack curve C has an m-component, then each
component † � RX contains not more than one component of RC .

Proof. Let L0 be the m-component. Then, the component N � RX containing L0 is
disjoint from the other components of RC by the definition of them-component. SinceL0
is not contractible, we have s�0 D �1, sC0 D C1, thus � is a cube. Suppose that a
component K � RX X RC is adjacent to L1 and L2. Considering the inverse image of
the line ¹.0; u; 0; : : : ; 0/ j u 2 Rº � Rg under (7) we get a contradiction at the value
u D ˙Area.K/ as in the proof of Proposition 7.4.

Proposition 7.6. If a minimal simple Harnack curve C does not have an m-component,
but has a non-contractible component L contained in the component N � RX , then N
contain another non-contractible component L0 � RC homologous to L. Furthermore,
in this case we have RC \N D L [ L0.

Proof. If .N \RC/ X L consists of contractible components, then we have a contradic-
tion with Definition 4.1. Thus, there must be another non-contractible componentL0�RC
on N . Without loss of generality, we may assume that L D L0, L0 D L1. If there exists
yet another component L00 � RC on N (contractible or not), then considering the inverse
image of the ray ¹.u; 0; : : : ; 0/ j u � 0º � Rg under (7) we get a contradiction as in the
proofs of Propositions 7.4 and 7.5. If L and L0 are the only components on N , then they
must be homologous by Definition 4.1.

The following example shows that a simple Harnack curve can have two homologous
non-contractible components.

Example 7.7. Recall that a real K3-surface X polarized by genus 2 admits a double cov-
ering � WX!P2 branching along a real curveB �P2 of degree 6. Denote with �WX!X

the involution of deck transformation of � . Since � is a real map, the holomorphic involu-
tions � and the anti-holomorphic involution � commute. Therefore, the composition � ı �
is an antiholomorphic involution on X . Denote with RX 0 its fixed locus.

Let X be the K3-surface obtained as the double covering � WX ! P2 branched along
a real sextic B � P2 whose real locus is depicted at Figure 3 (more precisely, the figure
shows the isotopy type of the real locus and the position of ovals of the curve with respect
to two auxiliary straight lines). The involution of complex conjugation on P2 can be lifted
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L1

L2

Figure 3. Two hyperplane sections in a genus 2 polarized K3-surface.

to X in two ways differing by the deck transformation �. We may assume that RX covers
the non-orientable half of RP2 X RB . Then, RX is homeomorphic to the disjoint union
of a torus and four spheres, while RX 0 is homeomorphic to a surface of genus 4.

The equation z2 D f .x0; x1; x2/, where f is a homogeneous polynomial defining the
curveB , gives an embedding ofX into the weighted projective space P .1;1;1;3/. Accord-
ingly, the inverse imageALD ��1.L/ of a real lineL� P2 sits in the weighted projective
plane P .1; 1; 3/ embedded in P .1; 1; 1; 3/. Suppose that L intersects B in 6 distinct real
points. Then, RAL D AL \RX is an M-curve. Its three ovals in the real part of P .1; 1; 3/
have alternate complex orientations (with respect to the pencil of lines passing through
the singular point of P .1; 1; 3/) by Fiedler’s orientation alternation, cf. Remark 4.7. Fur-
thermore, RA0L D AL \ RX 0 is also an M-curve, while complex orientations of RAL
and RA0L agree over any point of B \ AL after multiplication by i .

Consider the lines L1 and L2 from Figure 3. The intersection AL1 \ AL2 consists of
two points from RX 0. The complement .AL1 [ AL2/ X .RAL1 [ RAL2/ consists of two
connected components each obtained as a bouquet of two planar domains. Accordingly,
the real curve C obtained by a small perturbation ofAL1 [AL2 is an M-curve. Its real part
RC D C \RX has two non-contractible ovals at the torus component of RX and an oval
at each spherical component of RX . The complex orientation of RC is determined by the
complex orientations of RALj , j D 1; 2, chosen so that the corresponding orientations
at RA0Lj are associated to the intersecting halves of ALj X RALj . Thus, the complex
orientations of the non-contractible ovals of RC are opposite, and C is a simple Harnack
curve.

For other polarizations of X , existence of simple Harnack curves with two homolo-
gous non-contractible components remains unknown to us.
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In the end, we formulate some open (to the best of our knowledge) questions concern-
ing simple Harnack curves.

Question 7.8. Does there exist a non-minimal simple Harnack curve?

Question 7.9. Does there exist a K3-surface containing simple Harnack curves of arbi-
trary large genus?

Question 7.10. Which K3-surfaces contain simple Harnack curves?

Funding. Research is supported in part by the SNSF-grants 178828, 182111 and NCCR
SwissMAP (G.M.), and by the ANR grant ANR-18-CE40-0009 ENUMGEOM (I.I.).

References

[1] A. Beauville, Systèmes hamiltoniens complètement intégrables associés aux surfaces K3. In
Problems in the theory of surfaces and their classification (Cortona, 1988), pp. 25–31, Sym-
pos. Math. XXXII, Academic Press, London, 1991 Zbl 0827.58022 MR 1273370

[2] A. Degtyarev, I. Itenberg, and V. Kharlamov, Real Enriques surfaces. Lecture Notes in Math.
1746, Springer, Berlin, 2000 Zbl 0963.14033 MR 1795406

[3] S. K. Donaldson, Yang-Mills invariants of four-manifolds. In Geometry of low-dimensional
manifolds, 1 (Durham, 1989), pp. 5–40, London Math. Soc. Lecture Note Ser. 150, Cambridge
Univ. Press, Cambridge, 1990 Zbl 0836.57012 MR 1171888

[4] T. Fiedler, Pencils of lines and the topology of real algebraic curves. Izv. Akad. Nauk SSSR Ser.
Mat. 46 (1982), no. 4, 853–863 MR 670168

[5] D. A. Gudkov and A. D. Krahnov, The periodicity of the Euler characteristic of real algebraic
.M � 1/-manifolds. Funkcional. Anal. i Priložen. 7 (1973), no. 2, 15–19 Zbl 0285.14011
MR 0331402

[6] A. Harnack, Ueber die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann. 10 (1876),
no. 2, 189–198 Zbl 08.0438.01 MR 1509883

[7] V. M. Kharlamov, New congruences for the Euler characteristic of real algebraic manifolds.
Funkcional. Anal. i Priložen. 7 (1973), no. 2, 74–78 MR 0331403

[8] G. Mikhalkin, Real algebraic curves, the moment map and amoebas. Ann. of Math. (2) 151
(2000), no. 1, 309–326 Zbl 1073.14555 MR 1745011

[9] J. Milnor, Singular points of complex hypersurfaces. Ann. of Math. Stud. 61, Princeton Univ.
Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1968 Zbl 0184.48405 MR 0239612

[10] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications. Izv.
Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 Zbl 0408.10011 MR 525944

[11] V. A. Rokhlin, Congruences modulo 16 in Hilbert’s sixteenth problem. Funkcional. Anal. i
Priložen. 6 (1972), no. 4, 58–64 MR 0311670

[12] V. A. Rokhlin, Complex orientation of real algebraic curves. Funkcional. Anal. i Priložen. 8
(1974), no. 4, 71–75 Zbl 0317.14028 MR 0368044

[13] P. A. Smith, Transformations of finite period. Ann. of Math. (2) 39 (1938), no. 1, 127–164
Zbl 0018.33204 MR 1503393

[14] R. Thom, Sur l’homologie des variétés algébriques réelles. In Differential and Combinatorial
Topology (A Symposium in Honor of Marston Morse), pp. 255–265, Princeton Univ. Press,
Princeton, N.J., 1965 Zbl 0137.42503 MR 0200942

https://zbmath.org/?q=an:0827.58022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1273370
https://zbmath.org/?q=an:0963.14033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1795406
https://zbmath.org/?q=an:0836.57012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1171888
https://mathscinet.ams.org/mathscinet-getitem?mr=670168
https://zbmath.org/?q=an:0285.14011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0331402
https://zbmath.org/?q=an:08.0438.01&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1509883
https://mathscinet.ams.org/mathscinet-getitem?mr=0331403
https://zbmath.org/?q=an:1073.14555&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1745011
https://zbmath.org/?q=an:0184.48405&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0239612
https://zbmath.org/?q=an:0408.10011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=525944
https://mathscinet.ams.org/mathscinet-getitem?mr=0311670
https://zbmath.org/?q=an:0317.14028&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0368044
https://zbmath.org/?q=an:0018.33204&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1503393
https://zbmath.org/?q=an:0137.42503&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0200942


Area in real K3-surfaces 235

Received 22 April 2021.

Ilia Itenberg
IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 5, France;
ilia.itenberg@imj-prg.fr

Grigory Mikhalkin
Section de Mathématiques, Université de Genève, rue du Conseil-Général 7-9, 1205 Geneva,
Switzerland; grigory.mikhalkin@unige.ch

mailto:ilia.itenberg@imj-prg.fr
mailto:grigory.mikhalkin@unige.ch

	1. Introduction
	2. Area inequalities from linear algebra
	3. Curves in X and their deformations
	4. Simple Harnack curves and their degenerations
	5. Deformations of simple Harnack curves in K3-surfaces
	6. Proof of Theorem 1
	7. Simple Harnack curves in K3 surfaces: further directions and questions
	References

