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On non-commutative formal deformations of
coherent sheaves on an algebraic variety

Yujiro Kawamata

Abstract. We review the theory of non-commutative deformations of sheaves and describe a versal
deformation by using an A1-algebra and the change of differentials of an injective resolution. We
give some explicit non-trivial examples.

1. Introduction

We consider non-commutative deformations of sheaves on an algebraic variety in this
paper. We consider also multi-pointed deformations, and give some non-trivial examples.
The point is that such deformation theory is more natural than the commutative ones as
long as we consider infinitesimal deformations.

Let F be a coherent sheaf on an algebraic variety X defined over a field k such
that the support of F is proper. We can consider a moduli space M which parametrizes
flat deformations of F . The infinitesimal study of M is to investigate the completed
local ring yOM;ŒF � at a point corresponding to F . The tangent space of M at ŒF � is iso-
morphic to Ext1.F; F /, and the singularity at ŒF � is described by using the obstruction
space Ext2.F; F /. Thus, we can write

yOM;ŒF � D kJExt1.F; F /�K=
�

Ext2.F; F /�
�
;

where � denotes the dual vector space, kJExt1.F;F /�K is the completed symmetric tensor
algebra of Ext1.F;F /� and the denominator is a certain ideal determined by Ext2.F;F /�,
an ideal generated by power series on a basis of Ext1.F; F /� corresponding to the mem-
bers of a basis of Ext2.F; F /�.

But it is more natural to consider the completed (non-symmetric) tensor algebra. We
obtain the non-commutative (NC) deformation algebra, the parameter algebra of a versal
NC deformation

yR D k⟪Ext1.F; F /�⟫=�Ext2.F; F /�
�

where k⟪Ext1.F; F /�⟫ is the completed tensor algebra

yT �k Ext1.F; F /� D
1Y

iD0

�
Ext1.F; F /�

�˝i

D k � Ext1.F; F /� �
�

Ext1.F; F /� ˝ Ext1.F; F /�
�
� � � �

and the denominator is a certain two sided ideal determined by Ext2.F; F /�.
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The only difference of the NC deformations from the commutative ones is that the
parameter algebras are allowed to be not necessarily commutative. Therefore if the param-
eter algebra of the versal NC deformation is yR, then that of the versal commutative
deformation is its abelianization yRab WD yR=

�
Œ yR; yR�

�
.

The abstract existence of a versal (formal) NC deformation is proved in the same way
as in the case of commutative deformations ([12, 13]).

We can describe a versal deformation, as well as proving its existence, by using A1-
algebra formalism. Such a description is apparently well known to experts, e.g., [15, §4].
But we use injective resolutions instead of locally free resolutions. This has advantage
that our argument works not only for non-smooth non-projective varieties X but also for
objects in a k-linear abelian category with enough injectives. We also put emphasis on the
non-commutativity of the parameter algebras. We treat only formal deformations, but there
are results on the convergence (cf. Remarks 7.11 and 7.12). There is also an exposition
using injective resolutions in [3] based on [14] and [4].

The abstract description of the versal deformation using an A1-algebra does not
necessarily give solutions to explicit deformation problems because it involves injective
resolutions etc. So we consider simple but non-trivial examples where the versal deforma-
tions are explicitly calculated. We prove that the versal deformation of a structure sheaf of
a subvariety is described by a left ideal (Lemma 7.6). We apply this for lines in a projec-
tive space and prove that the relation ideal is generated by quadratic NC polynomials. We
also calculate the relation NC polynomials for deformations of conics and prove that they
have degree 3.

Structure of the paper. The contents of this paper is as follows. In Section 2, we give
a definition of non-commutative deformations of a coherent sheaf, and express NC defor-
mations as a change of differentials in an injective resolution. We describe them by using
Maurer–Cartan equation in a differential graded associative algebra.

We review the theory of A1-algebras in Section 3 in order to use it in later sections.
In Section 4, we describe a versal deformation and the deformation algebra, the parameter
algebra of a versal deformation, by using a minimal model A1-algebra of the DG-algebra
considered in Section 2. The advantage of the minimal model A1 formulation is that the
vector spaces are finite dimensional for fixed degrees, while the DG algebra is infinite
dimensional in each degree. In order to achieve this, we need to introduce infinitely many
multi-linear maps. We prove the versality of the deformation constructed by using the
injective resolution (Theorem 4.6). We extend the whole theory to its refined version of
multi-pointed NC deformations (Theorem 5.2) in Section 5. We make some remarks on
the relationship of NC deformations and iterated self extensions in Section 6.

We consider some explicit non-trivial examples in Section 7. In Example 7.8 on lines
in a projective space, we prove that the higher multiplications mi for i � 3 vanish, while
in Example 7.9 on conics in P4, we prove that m3 ¤ 0 but mi D 0 for i � 4.
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2. Non-commutative deformations and DG algebra

We consider 1-pointed non-commutative (NC) deformations of a coherent sheaf in this
section. The extension to multi-pointed case is treated in a later section.

Let X be an algebraic variety defined over a field k, and let F be a coherent sheaf
on X with proper support. We assume the properness of the support in order to guarantee
that the tangent space of the versal deformation is finite dimensional.

Let .Artk/ be the category of associative k-algebras R with a maximal two-sided
ideal M such that R is a finite dimensional k-module, R=M Š k, and that M nC1 D 0

for some n. It follows that R=M is the only simple R-module and any finitely generated
R-module is obtained as a successive extension of R=M .

Definition 2.1. Let X; F be as above, R 2 .Artk/, let FR be a left R ˝k OX -module
which is coherent as an OX -module, and let �WR=M ˝R FR Š F be an isomorphism.
Then a pair .FR; �/ is said to be a non-commutative deformation of F over R, if FR is
flat as a left R-module.

Unless M D 0 and R D k, we can define a two-sided ideal J DM n for the maximal
integer n such that M n ¤ 0. Then we have MJ D 0. If we put R0 D R=J , then we have
dimk R

0 < dimk R. We use this fact for the purpose of inductive argument on dimk R.
We will describe NC deformation by using injective resolutions.

Lemma 2.2. Let F be a coherent sheaf on X . Then there is an injectiveOX -homomorph-
ism i WF ! I to an injective OX -module which satisfies the following condition: for any
deformations FR of F over any R 2 .Artk/, there are injective R˝k OX -module homo-
morphisms iRWFR ! R˝k I such that R=M ˝R iR D i .

Proof. For any point x 2 X , we define stalks of I by Ix D Homk.OX;x ; Fx/. Then Ix

has an OX;x-module structure given by af .b/ D f .ab/ for a; b 2 OX;x and f 2 Ix . We
claim that Ix is an injective OX;x-module. Indeed, for any OX;x-module M , the map

hWHomk.M;Fx/! HomOx .M; Ix/

given by
h.f /.m/.a/ D f .am/

for f 2 Homk.M;Fx/, m 2M and a 2 OX;x , is bijective with inverse given by

h�1.g/.m/ D g.m/.1/

for g 2 HomOx .M; Ix/.
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There is a natural injectiveOX;x-homomorphism ix WFx!Ix defined by ix.c/.a/Dac
for c 2 Fx and a 2 OX;x . We define an OX -module I by

I.U / D
Y
x2U

Ix

for open subsets U � X . Then I is an injective OX -module with a natural injective OX -
homomorphism i WF ! I .

Since the stalk FR;x has an R˝k OX;x-module structure, the k-module

IR;x D Homk.OX;x ; FR;x/

has the induced R˝k OX;x-module structure given by raf .b/D rf .ab/ for a; b 2 OX;x ,
r 2 R and f 2 IR;x . We define IR by

IR.U / D
Y
x2U

IR;x :

Then IR is again an injective module as an OX -module, and there is a natural injective
R˝k OX -homomorphism iRWFR ! IR.

The natural surjective OX -homomorphism FR ! F induces a surjective R ˝k OX -
homomorphism IR! I . Since IR isOX -injective, there is a splittingOX -homomorphism
I ! IR. By scalar extension, we obtain an R ˝k OX -homomorphism R ˝k I ! IR,
which is bijective due to the flatness of FR over R. Therefore the lemma is proved.

The above lemma is non-trivial in some sense because R˝k I appears in the middle
of the flow of arrows in the following diagram:

FR �����! R˝k I??y ??y
F �����! I:

Corollary 2.3. There is an injective resolution

0! F ! I 0
! I 1

! I 2
! � � �

asOX -modules such that, for any deformation FR of F over R 2 .Artk/, there is an exact
sequence of R˝k OX -modules

0! FR ! R˝k I
0
! R˝k I

1
! R˝k I

2
! � � � ;

which is reduced to the first exact sequence when the functor R=M˝R is applied.

Proof. We apply the lemma to the cokernels.
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We describe NC deformations by using differential graded (DG) associative algebras.
Let F ! I � be an injective resolution as above, and let

A D Hom�.I �; I �/ D
M
i2Z

Homi .I �; I �/

be the associative DG algebra of graded homomorphisms, where

Homi .I �; I �/ D

1Y
mD0

Hom
�
Im; ImCi

�
is the i th graded piece, and the differential of A is given by

dAf D dIf � .�1/
ifdI

for f 2 Homi .I �; I �/, where dI denotes the differential of I .

Lemma 2.4. Let .R;M/ 2 .Artk/, and let y 2 M ˝ A1. Let dR;I C y be an endomor-
phism of degree 1 of a gradedR˝k OX -moduleR˝k I

�, where dR;I D 1R ˝ dI denotes
the scalar extension of dI . Then the following hold:

(1) .dR;I C y/
2 D 0 if and only if the Maurer–Cartan equation

dR;Ay C y
2
D 0

is satisfied, where dR;A D 1R ˝ dA is the scalar extension of dA.

(2) In this case,
H p.R˝k I

�; dR;I C y/ D 0

for p > 0, and
FR WD H 0.R˝k I

�; dR;I C y/

is flat over R.

Proof. (1) We have

.dR;I C y/.dR;I C y/ D dR;Iy C ydR;I C y
2
D dR;Ay C y

2:

(2) We proceed by induction on dimk R. We take a two-sided ideal J such that
MJ D 0, and let R0 D R=J . Then we have an exact sequence of complexes

0! J ˝ I � ! R˝ I � ! R0 ˝ I � ! 0:

The associated long exact sequence yields the result.

The existence of a versal deformation, or a hull, for NC deformations is proved in the
same way as in the case of commutative deformations ([12,13]). One can describe a versal
deformation using the formalism of A1-algebras as explained in subsequent sections.
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3. Review on A1-algebra

We recall the definition of A1-algebras (cf. [11]).

Definition 3.1. (1) Let A D
L

i2Z Ai be a graded k-module. An A1-algebra structure
consists of k-linear maps mi WA

˝i ! A of degree 2� i for i � 1 satisfying the following
relations: X

r;t�0; s�1;
rCsCtDi

.�1/rsCtmrC1Ct

�
1˝r
˝ms ˝ 1

˝t
�
D 0:

For example,

i D 1 W m1m1 D 0:

i D 2 W m1m2 Cm2.�m1 ˝ 1 � 1˝m1/ D 0:

i D 3 W m1m3 Cm2.�m2 ˝ 1C 1˝m2/

Cm3.m1 ˝ 1˝ 1C 1˝m1 ˝ 1C 1˝ 1˝m1/ D 0:

(2) Let A;B be A1-algebras. An A1-algebra homomorphism f WA! B consists of
k-linear maps fi WA

˝i ! B of degree 1 � i for i � 1 satisfying the following relations:X
r;t�0; s�1;
rCsCtDi

.�1/rsCtfrC1Ct

�
1˝r
˝mA

s ˝ 1
˝t
�

D

X
r�1;i1C���CirDi

.�1/
P

1�j <k�r ij .ikC1/mB
r .fi1 ˝ � � � ˝ fir /:

For example,

i D 1 W f1m
A
1 D m

B
1 f1:

i D 2 W f1m
A
2 C f2.�m

A
1 ˝ 1 � 1˝m

A
1 / D m

B
1 f2 Cm

B
2 .f1 ˝ f1/:

i D 3 W f1m
A
3 C f2.�m

A
2 ˝ 1C 1˝m

A
2 /

C f3.m
A
1 ˝ 1˝ 1C 1˝m

A
1 ˝ 1C 1˝ 1˝m

A
1 /

D mB
1 f3 Cm

B
2 .�f1 ˝ f2 C f2 ˝ f1/Cm

B
3 .f1 ˝ f1 ˝ f1/:

A DG (differential graded) associative algebra is a special case of an A1-algebra
where m1 is the differential, m2 is the associative algebra multiplication, and mi D 0

for i � 3.
Let A be a DG algebra. Then its cohomology group H.A/ D

L
i H

i .A/ is a graded
k-module.

Theorem 3.2 (Kadeishvili [8]). Let A be a DG associative algebra. Then there is an
A1-algebra structure on the cohomology group H.A/ such that m1 D 0, m2 is induced
from the algebra multiplication mA

2 of A, and that there is a morphism of A1-algebras
f WH.A/! A such that f1 lifts the identity of H.A/.
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Sketch of proof. We define k-linear maps mnWH.A/
˝n ! H.A/ of degree 2 � n and

fnWH.A/
˝n ! A of degree 1 � n by induction on n � 1, which satisfy the following

relations:

(1)
X

r;t�0; s�2;
rCsCtDn

.�1/rsCtmrC1Ct .1
˝r
˝ms ˝ 1

˝t / D 0;

(2)
X

r;t�0; s�2;
rCsCtDn

.�1/rsCtfrC1Ct .1
˝r
˝ms ˝ 1

˝t /

D mA
1 fn C

n�1X
iD1

.�1/i.n�iC1/mA
2 .fi ˝ fn�i /;

where mA
1 D dA and mA

2 is the associative multiplication.
First we setm1 D 0. Let us choose f1WH.A/! A to be any k-linear map which sends

cohomology classes to their representatives.
Now assume that mi and fi are already defined for i < n. Let UnWH.A/

˝n ! A be a
k-linear map of degree 2 � n defined by

UnD

n�1X
iD1

.�1/i.n�iC1/mA
2 .fi ˝fn�i /�

X
r;t�0; 2�s�n�1;

rCsCtDn

.�1/rsCtfrC1Ct .1
˝r
˝ms˝ 1

˝t /:

For example, U2 D m
A
2 .f1 ˝ f1/. Then the condition (2) becomes

mA
1 fn C Un D f1mn:

A complicated calculation shows thatmA
1Un D 0, where we need to be careful on the sign

changes.
We definemnD ŒUn�, where Œ � denotes the cohomology class inH.A/. Then it follows

that f1mn�Un 2 Im.mA
1 /. We choose any k-linear map fn such thatmA

1 fnD f1mn�Un,
then (2) is satisfied. Then we can check the relation (1) by a complicated calculation
again.

The composition of A1-morphisms f WA! B and gWB ! C is defined as follows:

.g ı f /n D
X

r�1;
P

ijDn

.�1/
P

j <k ij .ikC1/gr ı .fi1 ˝ � � � ˝ fir /:

The identity morphism f D 1WA! A is defined by f1 D 1 and fn D 0 for n � 2.

Proposition 3.3. Let A be a DG algebra, and let f WH.A/! A be the A1-morphism
obtained in the previous theorem. Then there is an A1-algebra morphism gWA! H.A/

such that g ı f D 1H.A/.
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Proof. We will define the gn inductively. The conditions areX
r;t�0;

rC1CtDn

.�1/rCtgrC1Ct .1
˝r
˝mA

1 ˝ 1
˝t /C

X
r;t�0;

rC2CtDn

.�1/tgrC1Ct .1
˝r
˝mA

2 ˝ 1
˝t /

D

X
r�2;

P
ijDn

.�1/
P

j <k ij .ikC1/mH.A/
r .gi1 ˝ � � � ˝ gir /;

g1f1 D 1, and X
r�1;

P
ijDn

.�1/
P

j <k ij .ikC1/gr ı .fi1 ˝ fir / D 0

for n � 2.
If the gi for i < n are already determined, then gn is chosen such that it has given

values on f1.A/
˝n and the k-subspace V of A˝n generated by elements of the form

x1 ˝ � � � ˝ xr ˝ dxrC1 ˝ xrC2 ˝ � � � ˝ xn:

Such a gn exists because f1.A/
˝n \ V D 0.

4. Description using A1-structure

Let F be a coherent sheaf on an algebraic variety X with proper support, and let A D
Hom�.I �; I �/ be the DG algebra considered in §2. We know that Hp.A/ D Extp.F; F /.
The cohomology space H.A/ has an A1-structure, and there are A1-morphisms

f WH.A/! A and gWA! H.A/:

We will describe versal NC deformation of F using these A1-algebras and morphisms.
In general, for R 2 .Artk/, we define

mR;nWR˝k H
1.A/˝n

! R˝k H
2.A/;

fR;nWR˝k H
1.A/˝n

! R˝k H
1.A/;

and so on by the extensions of scalars.
We consider the Maurer–Cartan equation in A1-algebras using the following propo-

sition:

Proposition 4.1. Let .R;M/ 2 .Artk/, and let f WA! B be an A1-morphism. Let x 2
M ˝A1 and y D

P
i�1 fR;i .x

˝i / 2M ˝B1. If x satisfies the Maurer–Cartan equationX
i�1

mA
R;i .x

˝i / D 0 2 R˝ A2;

then so does y: X
i�1

mB
R;i .y

˝i / D 0 2 R˝ B2:

We note that the sums are finite because M is nilpotent.
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Proof. We haveX
n�1

mB
n .y

˝n/ D
X

n;i1;:::;in�1

mB
n

�
fi1.x

˝i1/˝ � � � ˝ fin.x
˝in/

�
D

X
n;i1;:::;in�1

.�1/
P

j <k ij .1�ik/mB
n .fi1 ˝ � � � ˝ fin/

�
x˝.

Pn
jD1 ij /

�
D

X
r;t�0; s�1

.�1/rsCtfrC1Ct .1
˝r
˝mA

s ˝ 1
˝t /
�
x˝.rCsCt/

�
D

X
r;t�0; s�1

.�1/tfrC1Ct

�
x˝r
˝mA

s .x
˝s/˝ x˝t

�
D 0;

where we dropped the subscripts R for simplicity.

In the above argument, we followed the Koszul rule of the signs:

.x ˝ y/.z ˝ w/ D .�1/deg.y/deg.z/xz ˝ yw:

For example, the signs in the third line of the equations come from the interchanges of
the fij and x, because deg.x/ D 1 and deg.fij / D 1 � ij , so that xfij D .�1/

1�ij fij x.

Lemma 4.2. Let A be a DG algebra, and let

f WH.A/! A and gWA! H.A/

be A1-morphisms such that g ı f D 1H.A/. Let .R;M/ 2 .Artk/, let x 2M ˝H 1.A/,
and let y D

P
i�1 fR;i .x

˝i / 2M ˝ A1. Then,

x D
X
i�1

gR;i .y
˝i /:

Proof. We haveX
n�1

gn.y
˝n/ D

X
n;i1;:::;in�1

gn

�
fi1.x

˝i1/˝ � � � ˝ fin.x
˝in/

�
D

X
n;i1;:::;in�1

.�1/
P

j <k ij .1�ik/gn.fi1 ˝ � � � ˝ fin/
�
x˝.

Pn
jD1 ij /

�
D

X
n�1

.g ı f /n.x
˝n/

D x:

Corollary 4.3. x 2M ˝H 1.A/ satisfies the MC equation if and only if

y D
X
i�1

fR;i .x
˝i / 2M ˝ A1

satisfies the MC equation.
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Now we construct a versal deformation over its parameter algebra, called the defor-
mation ring. Let ¹viº be a basis ofH 1.A/. Let x 2 H 1.A/� ˝H 1.A/ be the tautological
element corresponding to the identity of H 1.A/. Then we can write

x D
X

i

v�i ˝ vi

for the dual basis ¹v�i º of H 1.A/�.
Let

mnWT
nH 1.A/ D .H 1.A//˝n

! H 2.A/

be the A1-multiplication, let

mŒ2;n� D

nX
iD2

mi W

nM
iD0

T iH 1.A/! H 2.A/;

and let

m�Œ2;n�WH
2.A/� !

nM
iD0

T iH 1.A/�

be the dual map. We define

Rn D

nM
iD0

T iH 1.A/�=m�Œ2;n�H
2.A/�;

where R0 D k, R1 D k ˚ H 1.A/�, and the product of total degree more than n is set
to be zero. There are natural surjective ring homomorphisms Rn ! Rn0 for n > n0. Let
Mn D Ker.Rn ! R0 D k/. Then we have M nC1

n D 0. We define the formal completion

yR D lim
 �

Rn D yT
�H 1.A/�=m�H 2.A/�

as a quotient algebra of the completed tensor algebra

yT �H 1.A/� D

1Y
mD0

�
H 1.A/�

�˝m
;

where we set formally m D
P1

iD2mi .
Let

mRn;i WRn ˝ T
iH 1.A/! Rn ˝H

2.A/

be the map obtained from mi by scalar extension.

Lemma 4.4. Rn is the largest quotient ring of
Ln

iD0 T
iH 1.A/� such that

nX
iD2

mRn;i .x
˝i / D 0

in Rn ˝H
2.A/.
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Proof. Let ¹wj º be a basis ofH 2.A/, and let ¹w�i º be the dual basis ofH 2.A/�. We write

mk.vi1 ˝ � � � ˝ vik / D
X

j

ai1;:::;ik ;jwj :

Then
nX

kD2

m�k.w
�
j / D

X
k;i1;:::;ik

ai1;:::;ik ;j v
�
i1
˝ � � � ˝ v�ik :

We have
nX

kD2

mR;k.x
˝k/ D

X
k;i1;:::;ik

mR;k.v
�
i1
˝ � � � ˝ v�ik ˝ vi1 ˝ � � � ˝ vik /

D

X
k;i1;:::;ik ;j

ai1;:::;ik ;j v
�
i1
˝ � � � ˝ v�ik ˝ wj :

Therefore,
Pn

kD2mR;k.x
˝k/ D 0 in R˝H 2.A/ if and only if

Pn
kD2m

�
k
.w�j / D 0 in R

for all j .

Corollary 4.5. Let yn D
Pn

iD1 fRn;i .x
˝i / 2 Rn ˝ A

1. Then

.dRn;I C yn/
2
D 0

as an endomorphism of Rn ˝ I
�, where we denote dRn;I D 1Rn ˝ dI .

By Lemma 2.4, we define an NC deformation

Fn D Ker.dRn;I C ynWRn ˝ I
0
! Rn ˝ I

1/

of F over Rn.
A versal NC deformation yG of F over yS is defined in a similar way as in the case of

commutative deformations.
. yS; yM/ D lim

 �
.Sn;Mn/

is an inverse limit of objects .Sn;Mn/ 2 .Artk/, and

yG D lim
 �

Gn

is an inverse limit of NC deformations Gn of F over Sn which satisfy the following
conditions:

(1) For arbitrary NC deformation FR of F over .R;M/ 2 .Artk/, there is an algebra
homomorphism �W yS ! R such that FR Š R˝ yS

yG.

(2) The cotangent map ��W yM= yM 2 !M=M 2 is uniquely determined by FR.

The following theorem is apparently well known to experts (cf. [15]):

Theorem 4.6. Let yF D lim
 �

Fn be the inverse limit. Then the formal deformation yF over yR
is a versal non-commutative deformation of F .
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Proof. We have to prove the following statement:

Let R be a quotient algebra of
Ln

iD0 T
iH 1.A/� such that Rn is its quotient

algebra. Assume that there is an element y 2 R˝ A1 which satisfies the Maurer–
Cartan equation and induces yn on Rn ˝ A

1. Then R D Rn.

Indeed, since the tangent space of NC deformations, i.e., the set of NC deformations
over kŒt �=.t2/, is a vector spaceH 1.A/, the parameter algebra yS of the versal deformation
is a quotient algebra of the completed tensor algebra

1Y
mD0

�
H 1.A/�

�˝m

by the condition (2). By the condition (1), there is an algebra homomorphism �nW yS ! Rn

which is automatically surjective, since Rn is a quotient algebra of
nY

mD0

�
H 1.A/�

�˝m
:

Let R D yS=M n. Since there is an NC deformation over R inducing Fn by �n, there is y
as above. If R D Rn, then it follows that yS D yR.

We will derive a contradiction assuming thatR¤Rn. We may assume that the images
of R and Rn to quotient algebras of

n�1M
iD0

T iH 1.A/�

coincide. Let

yR D

nX
iD1

fR;i .x
˝i / 2 R˝ A1 for x D

X
v�i ˝ vi 2 H

1.A/� ˝H 1.A/:

We set z D y � yR 2M
n ˝A1. We note that y satisfies the MC equation over R, but yR

does not because neither does x over R.
We have y˝i D .yR C z/

˝i D y˝i
R for i � 2, and we have

x D

nX
iD1

gR;i .y
˝i
R /:

Let

x0 D

nX
iD1

gR;i .y
˝i /:

Then we have x0 D x C gR;1.z/. It follows that x˝i D x0˝i for i � 2. Since y satisfies
the MC equation over R, so does x0. But since mH.A/

1 D 0, we deduce that x satisfies the
MC equation over R, a contradiction.

The parameter algebra yR of the versal deformation is called a deformation algebra
of F .
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5. 1-pointed versus r-pointed deformations

Now we consider r-pointed deformations for a positive integer r � 1. If r D 1, then they
are NC deformations in the previous sections. It is a refined version in the case where the
coherent sheaf F has a direct sum decomposition to r ordered factors

F D

rM
iD1

Fi :

We consider the base ring kr , the product ring of r copies of k, instead of k. F has
a structure of a left kr -module, where the orthogonal idempotents ei (1 � i � r) of kr

correspond to the projections F ! Fi D eiF .
Let .Artrk/ be the category of pairs .R;M/ such that R is an associative kr -algebra

with an augmentation R! kr andM is a two-sided ideal satisfying the conditions that R
is a finite dimensional k-module, R=M Š kr , and that M nC1 D 0 for some n. We have

R=M Š

rM
iD1

R=Mi

for maximal two-sided idealsMi . It follows that theR=Mi are the only simpleR-modules
and any finitely generated R-module is obtained as a successive extension of the R=Mi

(cf. [10]).

Definition 5.1. LetFD
Lr

iD1Fi be a direct sum of coherent sheaves with proper supports
on an algebraic variety X and R 2 .Artrk/. Let FR be a left R ˝k OX -module which is
coherent as an OX -module. Then a pair .FR;�/ is said to be an r-pointed non-commutative
deformation of F over R, if FR is flat as a left R-module and �W kr ˝R FR ! F is an
isomorphism.

The injective resolution F ! I � are kr -equivariant in the sense that I � D
Lr

iD1 I
�
i ,

where the Fi ! I �i are injective resolutions. The graded ring A D Hom�.I �; I �/ has a
structure of kr -bimodules; we have a direct sum decomposition

Hom�.I �; I �/ D
rM

i;jD1

Hom�.I �i ; I
�

j /:

It is convenient to write A in a matrix form Aij D Hom�.I �i ; I
�

j /, because we have
AijAkl D 0 if j ¤ k.

The constructions of the deformation ring and the versal deformation are generalized
from the 1-pointed case to the r-pointed case in the following way. The cohomology
groups Hp.A/ D Extp.F;F / have also kr -bimodule structures. H.A/ D

L
i H

i .A/ has
an A1-structure with a kr -bimodule structure. If n > 0, then there is an injective homo-
morphism from a direct summand

T n
krH

1.A/! T n
k H

1.A/
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between tensor products. For example,

T 2
krH

1.A/ D
M
i;j;k

H 1.A/ij ˝H
1.A/jk � T

2
kH

1.A/:

The A1-multiplications
mr

nWT
n
krH

1.A/! H 2.A/

for n � 2 are induced from the 1-pointed case mn D m
1
n. We define

Rr
n D

nM
iD0

T i
krH

1.A/�=
�
mr

Œ2;n�

��
H 2.A/�

for mr
Œ2;n�
D
Pn

iD2m
r
i , and

yRr
D lim
 �

Rr
n

as before.
In order to define yF r , we take the tautological element

x D
X

i

v�i ˝ vi 2 H
1.A/� ˝kr H 1.A/

again, where each vi belongs to aH 1.A/st for some s; t so that v�i belongs to .H 1.A/�/ts .
Let

yr
n D

nX
iD1

f r
Rr

n;i .x
˝i / 2 Rr

n ˝ A
1;

where f r
Rr

n;i
is induced from fi . Then we define

F r
n D Ker

�
dRr

n;I C ynWR
r
n ˝kr I 0

! Rr
n ˝kr I 1

�
and yF r

D lim
 �

F r
n :

We compare deformation rings

yR1
D lim
 �

R1
n;

yRr
D lim
 �

Rr
n

of 1-pointed and r-pointed deformations. Their Zariski cotangent spaces are the same,

H 1.A/� D
�

Ext1.F; F /
��
:

The truncated deformation ring Rr
n of r-pointed deformations is a quotient algebra of the

tensor algebra over kr :

T �krH
1.A/� D

1Y
iD0

T i
krH

1.A/� D kr
�H 1.A/� �

�
H 1.A/� ˝kr H 1.A/�

�
� � � � ;

where the tensor products are taken over the base ring kr .
There is a split surjective ring homomorphism

kr
� T �kH

1.A/� ! T �krH
1.A/�:
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We have
T �krH

1.A/� D
�
kr
� T �kH

1.A/�
�
=J

where the ideal J is generated by relations

rX
iD1

ei D 1 and H 1.A/�ijH
1.A/�kl D 0 for j ¤ k:

The degree 0 part of T �
krH

1.A/� is kr , which is larger than k, but positive degree parts are
quotients of the usual tensor products T i

k
H 1.A/�. Therefore, the r-pointed deformation

ring yRr is not exactly a quotient of the 1-pointed deformation ring yR1, but almost is. In
particular, r-pointed deformations are derived from a special case of 1-pointed deforma-
tions.

We note that the deformation FRr
n

over Rr
n is different from the one induced from the

deformation FR1
n

by the natural ring homomorphism R1
n ! Rr

n. For example, FRr
n

is flat
over Rr

n and kr ˝Rr
n
FRr

n
D F , but k ˝R1

n
FR1

n
D F . We have

FRr
n
D
�
Rr

n ˝R1
n
FR1

n

�
=N;

where N is a submodule consisting of irrelevant factors of FR1
n

that are attached in the
extension process; we have to attach Fi ’s instead of F (cf. Example 7.3).

The following theorem is a consequence of Theorem 4.6:

Theorem 5.2. The formal deformation yF r of F over yRr is a versal r-pointed non-comm-
utative deformation of F in the following sense. If .F r

R; �
r
0/ is any r-pointed non-commut-

ative deformation over .R;M/ 2 .Artrk/ such that �r
0 Wk

r ˝R FR! F is an isomorphism,
then there exist an integer n and a kr -algebra homomorphism r WRr

n!R such that there
is an isomorphism �r WR˝Rr

n
F r

n ! FR, which induces �r
0 over kr .

6. Remark on universal extensions

We consider iterated self extensions of F D
Lr

iD1 Fi in this section. NC deformations
of F are iterated self extensions of F . Conversely, any iterated self extensions of F are
expected to be expressed as NC deformations of F , and the versal deformation is given by
a tower of universal extensions. Indeed if F is a simple collection, i.e., if End.F / Š kr ,
then it is the case ([10, Theorem 4.8]). The point is that the parameter algebra in this case
is naturally given as the endomorphism ring of the iterated non-trivial self extensions.

We define inductively a tower of universal extensions by Er
0 D F and

0! Ext1.Er
n; F /

�
˝kr F ! Er

nC1 ! Er
n ! 0 (6.1)

for n � 0, or equivalently

0!
M

j

Ext1.Er
n;i ; Fj /

�
˝k Fj ! Er

nC1;i ! Er
n;i ! 0;
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where we note that Er
n D

Lr
iD1 E

r
n;i is a left kr -module and Ext1.Er

n; F / is a kr -
bimodule. The above exact sequence corresponds to a natural morphism

Ext1.Er
n; F /Œ�1�˝kr Er

n D

M
i;j

Ext1.Er
n;i ; Fj /Œ�1�˝k E

r
n;i ! F D

M
j

Fj

in the derived category.
On the other hand, in the notation of the previous sections, from an exact sequence

0! .M r
nC1/

nC1
! Rr

nC1 ! Rr
n ! 0

we obtain an exact sequence

0! .M r
nC1/

nC1
˝kr F ! F r

nC1 ! F r
n ! 0; (6.2)

where we note that .M r
nC1/

nC1 ˝Rr
nC1

F Š .M r
nC1/

nC1 ˝kr F .
We expect that (6.1) and (6.2) are isomorphic as exact sequences of OX -modules. For

example, we have M1 ŠM
r
1 Š Ext1.F; F /�, and this is the case for n D 0.

In the case n D 1, from an exact sequence

M �1 ˝ Hom.F; F /! Ext1.F; F /! Ext1.F1; F /

!M �1 ˝ Ext1.F; F /! Ext2.F; F /;

we deduce that

Ext1.F1; F / D Ker
�
M �1 ˝ Ext1.F; F /! Ext2.F; F /

�
:

Thus,

Ext1.F1; F /
�
D Coker

�
m2WExt2.F; F /� !

�
Ext1.F; F /�

�˝2�
DM 2

2 :

Thus each of the corresponding terms in (6.1) and (6.2) coincide for n D 1.

We compare universal extensions corresponding to 1-pointed and r-pointed deforma-
tions:

Lemma 6.1. There are natural split surjective homomorphisms E1
n ! Er

n.

Proof. For n D 0, we have E1
0 D E

r
0 D F .

Assume that there is a split surjective homomorphism E1
n ! Er

n. Then there is an
induced split surjective homomorphism

Ext1.E1
n ; F /

�
! Ext1.Er

n; F /
�:

Since

Ext1.Er
n; F /

�
˝k F D

X
i;j

Ext1.Er
n; Fi /

�
˝k Fj ;

Ext1.Er
n; F /

�
˝kr F D

X
i

Ext1.Er
n; Fi /

�
˝k Fi ;
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we have a split surjective homomorphism

Ext1.Er
n; F /

�
˝k F ! Ext1.Er

n; F /
�
˝kr F;

hence there is also a split surjective homomorphism E1
nC1 ! Er

nC1.

7. Examples

We consider some examples of versal NC deformations in this section. We start with a
trivial example:

Example 7.1. LetF DOx be the structure sheaf of a point x 2X . We claim that the versal
deformation yF of F is isomorphic to the deformation algebra yR, which is commutative
and isomorphic to the formal completion of the local ring OOX;x .

F is a simple collection with r D 1, i.e., a simple sheaf in this case, hence the versal
deformation is given by the tower of universal extensions ([10, Theorem 4.8]). Therefore
it is sufficient to prove that any NC deformation FR of F over some R 2 .Artk/ obtained
by successive non-trivial extensions is of the form FR Š OX=J for an ideal J such that
Supp.FR/ D ¹xº. We proceed by induction on dimR. Let

0! Ox ! E ! OX=J ! 0

be a non-trivial extension. Since Ext1.OX ;Ox/D 0, the natural surjective homomorphism
OX ! OX=J lifts to a homomorphism OX ! E. Let J 0 be the kernel. Then there are
homomorphisms

OX=J
0
! E ! OX=J

whose combination is surjective and the first homomorphism is injective. There are two
cases:

length.OX=J
0/ � length.OX=J / D 0 or 1:

In the first case, we have J D J 0 and the homomorphism E ! OX=J splits, a contra-
diction to the hypothesis that the extension is non-trivial. In the second case, we have
E D OX=J

0, and the claim is proved after taking the inverse limit.

Remark 7.2. Let F D Ox for a smooth point x 2 X . Then we have

Extp.Ox ;Ox/ Š ^
pkn for n D dimX:

The deformation algebra is isomorphic to the formal power series ring kJx1; : : : ; xnK.
There are no obstructions for commutative deformations of F , but the non-commutative
deformations are highly obstructed.

Example 7.3. Let X D ¹xy D 0º � P2 be the union of two distinct lines, and let

F D OX=.x/˚OX=.y/ WD Fx ˚ Fy

be the sum of structure sheaves of these lines. We compare 1-pointed and 2-pointed defor-
mations of F .
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The 2-pointed deformation ring is calculated in [10, Example 5.5]:

yR2
D

�
k kt

kt k

�
mod .t2/

and dim yR2 D 4. On the other hand, the 1-pointed deformation ring is

yR1
D kJx; yK=.xy/ D k⟪x; y⟫=.xy; yx/

and dim yR1 D1.
The corresponding deformations are as follows. There are non-trivial extensions

0! OX=.y/! F 2
1;x ! OX=.x/! 0;

0! OX=.x/! F 2
1;y ! OX=.y/! 0;

where F 2
1;x (resp. F 2

1;y) are invertible sheaves on X whose degrees on the irreducible
components Lx D ¹y D 0º and Ly D ¹x D 0º of X are .0; 1/ (resp. .1; 0/). We have

yF 2
D F 2

1 D F
2
1;x ˚ F

2
1;y :

On the other hand, we have

F 1
n Š .F

2
1;x/
˚n
˚OX=.x/˚ .F

2
1;y/
˚n
˚OX=.y/:

Example 7.4. Let X D ¹x2 C y2 C y3 D 0º � P2 be a rational curve with one node, and
let F be the structure sheaf of the normalization of X .

X has a singularity which is analytically isomorphic to the singularity of the variety
considered in the previous example. We have again yR D kJx; yK=.xy/, and yF becomes
an invertible sheaf on an infinite chain of rational curves.

We have EndX .F / D k, but EndDsg .F / D kŒt �=.t
2 C 1/ (see [9]).

Example 7.5 ([10, Example 5.8]). LetX D P.1; 2; 3/ be a weighted projective plane, and
let F D OX .1/ be a reflexive sheaf of rank 1 corresponding to a line on X connecting its
two singular points.

Then the deformation ring for NC deformations is an infinite dimensional algebra

yR D k⟪x; y⟫=.x2; y3/;

where the generators x; y, respectively correspond to local extensions of F near the sin-
gularities of types 1

2
.1; 1/ and 1

3
.1; 2/. But

yRab
D kJx; yK=.x2; y3/

is finite dimensional for commutative deformations.
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Lemma 7.6. Let X be a proper variety and let Y be a closed subvariety. Let F D OY D

OX=J be the structure sheaf of Y regarded as an OX -module. Assume that

H 0.X;OX / Š H
0.X;OY / Š k and H 1.X;OY / D 0:

Then the versal deformation yF of F is of the form

yF D lim
 �
.Rn ˝OX /=Jn

for left Rn ˝ OX -ideals Jn. Moreover, if J ˝ OX .1/ is generated by global sections hi

(i D 1; : : : ; r) for a very ample invertible sheaf OX .1/ onX and ifH 1.X;J ˝OX .1//D 0,
then there are global sections yhi of lim

 �
.Jn ˝ OX .1// which generate lim

 �
.Jn ˝ OX .1//

and induce hi 2 J ˝OX .1/.

Proof. Since F is a simple sheaf, a versal NC deformation is obtained by a sequence
of universal extensions. We prove that a deformation FR over R 2 .Artk/ is of the form
.R˝OX /=JR for a left R˝OX -ideal JR by induction on dimk R D i . Let

0! OY ! E ! .R0 ˝OX /=JR0 ! 0

be a non-trivial extension of NC deformations over an extension

0! R=M ! R! R0 ! 0

of parameter algebras. Since Ext1.OX ;OY / D 0, the natural homomorphism R˝OX !

.R0 ˝OX /=JR0 lifts to an OX -homomorphism R˝OX ! E. Thus, there is a commuta-
tive diagram

0 �����! OX �����! O˚i
X �����! O

˚.i�1/
X �����! 0??y ??y ??y

0 �����! OY �����! E �����! .R0 ˝OX /=J
0
R �����! 0

of OX -modules. Since the vertical arrows at both ends are surjective, so is the middle
vertical arrow.

Since H 0.X;OX / Š H
0.X;OY / Š k, the natural homomorphism

H 0.O˚i
X /! H 0.E/ Š R:

is an isomorphism. Using this isomorphism, we define a left R-module structure on O˚i
X .

Then the middle vertical arrow becomes a homomorphism of left R ˝ OX -modules, and
we have E Š .R˝OX /=JR for a left R˝OX -ideal JR.

We prove that the generating sections of J ˝ OX .1/ extend to generating sections
of JR ˝OX .1/ by induction again. From an exact sequence of kernels

0! J ˝OX .1/! JR ˝OX .1/! JR0 ˝OX .1/! 0
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we deduce that the homomorphism

H 0.X; JR ˝OX .1//! H 0.X; JR0 ˝OX .1//

is surjective, hence the global sections are liftable. By Nakayama’s lemma, they are gen-
erating.

The following lemma says that the NC deformations of a Cartier divisor is not inter-
esting:

Lemma 7.7. Let F D OD be the structure sheaf of a Cartier divisorD � X . Assume that

H 2.OD/ D H
1.OD.D// D 0:

Then the NC deformations of F are unobstructed, i.e., the deformation ring is isomorphic
to a non-commutative formal power series ring k⟪x1; : : : ; xm⟫ for m D dim Ext1.F; F /.

Proof. We have an exact sequence 0! OX .�D/! OX ! OD ! 0. Then there is an
exact sequence

Ext1
�
OX .�D/; F

�
! Ext2.F; F /! Ext2.OX ; F /:

Hence, Ext2.F; F / Š 0.

Therefore, we consider NC deformations of higher codimensional subvarieties:

Example 7.8. Let X D Pn be a projective space with homogeneous coordinates

Œx1; : : : ; xnC1�;

and let
F D OL D kŒx1; : : : ; xnC1�=.x1; : : : ; xn�1/z

be the structure sheaf of a line L, where z denotes a coherent sheaf on X associated to a
graded module.

We claim that the deformation algebra is given by

yR D k⟪a1; b1; : : : ; an�1; bn�1⟫=.aiaj � ajai ; bibj � bj bi ; aibj � bjai � aj bi C biaj /

and the versal deformation is given as a quotient by a left ideal:

yF D yRŒx1; : : : ; xnC1�=.x1 C a1xn C b1xnC1; : : : ; xn�1 C an�1xn C bn�1xnC1/z;

where z denotes a coherent yR˝OX -module associated to a graded module.
We use Lemma 7.6. The sheaf J ˝OX .1/ for the ideal sheaf J of L� X is generated

by global sections x1; : : : ; xn�1 and H 1.X; J ˝ OX .1// D 0. Hence FR should be of
the form .R ˝ OX /=JR for an ideal sheaf JR such that JR ˝ OX .1/ is generated by the
following global sections which are linear forms on the xi :

x1 C a1xn C b1xnC1; : : : ; xn�1 C an�1xn C bn�1xnC1;

where we note that elements of the form 1 C r with r 2 M are invertible, so that the
coefficients can be reduced to the above form.
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Let yRab be the maximal abelian quotient of yR. Then it is the completed local ring of a
Grassmann variety G.2; nC 1/ at a point. Since yR and yRab have the same Zariski cotan-
gent spaces, the variables of yR are the ai ; bi as in the above expression of yF . Since yRab is
a smooth commutative ring, the relations for yR are contained in the commutator ideal of
the variables.

In order to determine the quadratic terms in the relations, we calculate

m2WExt1.F; F / � Ext1.F; F /! Ext2.F; F /

explicitly. We have

Ext1.F; F / Š k2.n�1/
Š H 0.NL=X /;

Ext2.F; F / Š k3.n�1/.n�2/=2
¤ H 1.NL=X / D 0;

where NL=X is the normal bundle of L in X . Let t1; t2 be the homogeneous coordinates
on L, and let �1; : : : ; �n�1 be the normal directions of L. Then Ext1.F; F / has a basis

vij D t
i
1t

1�i
2 �j .i D 0; 1; 1 � j � n � 1/;

and Ext2.F; F / has a basis

wijk D t
i
1t

2�i
2 �j ^ �k .i D 0; 1; 2; 1 � j < k � n � 1/:

Therefore, m2 is surjective and its kernel has a basis

v0j v0j ; v0j v1j ; v1j v0j ; v1j v1j ; v0j v0k C v0kv0j ;

v0j v1k C v1kv0j ; v1j v0k C v0kv1j ; v1j v1k C v1kv1j ; v0j v1k � v1j v0k ;

where 1 � j � n � 1 for the first 4 terms, and 1 � j < k � n � 1 for the rest. The dual
basis of Im.m�2/ D Ker.m2/

? � .Ext1.F; F /�/˝2 is given by

aiaj � ajai ; bibj � bj bi ; aibj � bjai � aj bi C biaj

for 1 � i < j � n� 1, where ¹ai ; bj ºi;j � Ext1.F; F /� is the dual basis of ¹v0i ; v1j ºi;j .
They are the leading terms of the relations for yR.

Now we prove that there are no higher order terms in the relations, i.e., we prove that
there is no higher Massey products. We use the fact that the variables x1; : : : ; xnC1 in yF
are commutative. We have in yF ,

0 D xixj � xjxi

D .aiaj � ajai /x
2
n C .bibj � bj bi /x

2
nC1 C .aibj � bjai � aj bi C biaj /xnxnC1:

Therefore, we have

aiaj � ajai D bibj � bj bi D aibj � bjai � aj bi C biaj D 0

in yF . If there were higher order terms in the relations of yR on top of the quadratic relations
above, then there were more relations of order � 3, a contradiction to the fact that the
relations are given by m� Ext2.F; F /, and their number is 3.n � 1/.n � 2/=2. Thus, the
claim is proved.
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In particular, if n � 3, then the NC deformations of F are obstructed, because there
are non-trivial relations for yR, but there are more NC deformations than commutative
deformations.

For example, if nD 3, then lines on P3 are parametrized byG.2;4/ under commutative
deformations, but the deformation ring for NC deformations is

yR D k⟪a; b; c; d⟫=.ab � ba; cd � dc; ad � da � bc C cb/:

We note that this kind of examples are not artificial. For example, if we consider a
Calabi–Yau manifold Y such that L � Y � Pn, then the deformation ring of OL on Y ,
which is an important invariant of an analytic neighborhood of L in Y , is a quotient ring
of yR (cf. [2]). In this sense, it is interesting to calculate versal deformations of rational
normal curves of higher degrees.

Example 7.9. LetX D P4 with homogeneous coordinates Œx; y; z;w�, and let F DOL D

kŒx; y; z; w; t �=.x; y; zt � w2/z for a conic L in X .
We claim that the deformation ring yR of F is given by

yR D k⟪a0; a1; a2; b0; b1; b2; c0; : : : ; c4⟫=
�
a0b0 � b0a0 C .a1b1 � b1a1/c0;

a0b1 � b1a0 C a1b0 � b0a1 C .a1b1 � b1a1/c1;

a0b2 � b2a0 C a1b1 � b1a1 C a2b0 � b0a2 C .a1b1 � b1a1/c2;

a1b2 � b2a1 C a2b1 � b1a2 C .a1b1 � b1a1/c3;

a2b2 � b2a2 C .a1b1 � b1a1/c4;

a0c0 � c0a0 C .a1c1 � c1a1/c0;

a0c1 � c1a0 C a1c0 � c0a1 C .a1c1 � c1a1/c1;

a0c2 � c2a0 C a1c1 � c1a1 C a2c0 � c0a2 C .a1c1 � c1a1/c2 C .a1c3 � c3a1/c0;

a0c3 � c3a0 C a1c2 � c2a1 C a2c1 � c1a2 C .a1c1 � c1a1/c3 C .a1c3 � c3a1/c1;

a0c4 � c4a0 C a1c3 � c3a1 C a2c2 � c2a2 C .a1c1 � c1a1/c4 C .a1c3 � c3a1/c2;

a1c4 � c4a1 C a2c3 � c3a2 C .a1c3 � c3a1/c3;

a2c4 � c4a2 C .a1c3 � c3a1/c4;

b0c0 � c0b0 C .b1c1 � c1b1/c0;

b0c1 � c1b0 C b1c0 � c0b1 C .b1c1 � c1b1/c1;

b0c2 � c2b0 C b1c1 � c1b1 C b2c0 � c0b2 C .b1c1 � c1b1/c2 C .b1c3 � c3b1/c0;

b0c3 � c3b0 C b1c2 � c2b1 C b2c1 � c1b2 C .b1c1 � c1b1/c3 C .b1c3 � c3b1/c1;

b0c4 � c4b0 C b1c3 � c3b1 C b2c2 � c2b2 C .b1c1 � c1b1/c4 C .b1c3 � c3b1/c2;

b1c4 � c4b1 C b2c3 � c3b2 C .b1c3 � c3b1/c3;

b2c4 � c4b2 C .b1c3 � c3b1/c4

�
;
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and the versal deformation yF is given by

yF D RŒx; y; z; w; t �=
�
x C a0z C a1w C a2t; y C b0z C b1w C b2t;

zt � w2
C c0z

2
C c1zw C c2zt C c3wt C c4t

2
�
:

We note that there are order 3 terms in the relations of yR, i.e.,m3¤ 0, butmi D 0 for i � 4.
In order to prove the claim, we argue similarly to the previous example. We have

NL=P4 Š O.2/2 ˚O.4/ and

0! OX .�4/! OX .�3/
2
˚OX .�2/! OX .�1/

2
˚OX .�2/! OX ! OL ! 0:

Hence,

Ext1.F; F / D H 0.P1;O.2/2 ˚O.4// Š k11;

Ext2.F; F / D H 0.P1;O.4/˚O.6/2/ Š k19:

yF is written in the above form by Lemma 7.6. We will determine the relations among
variables ai ; bj ; ck in yR.

The quadratic terms of the relations are determined by the multiplication

m2WExt1.OL;OL/˝ Ext1.OL;OL/! Ext2.OL;OL/:

We take the dual basis

a�0 ; a
�
1 ; a
�
2 ; b
�
0 ; b
�
1 ; b
�
2 ; c
�
0 ; c
�
1 ; c
�
2 ; c
�
3 ; c
�
4

of Ext1.OL;OL/, and a basis

d�0 ; d
�
1 ; d

�
2 ; d

�
3 ; d

�
4 ; e
�
0 ; e
�
1 ; e
�
2 ; e
�
3 ; e
�
4 ; e
�
5 ; e
�
6 ; f

�
0 ; f

�
1 ; f

�
2 ; f

�
3 ; f

�
4 ; f

�
5 ; f

�
6

of Ext2.OL;OL/, so that the multiplication map satisfies the following:

m2.a
�
i ; a
�
j / D m2.b

�
i ; b
�
j / D m2.c

�
i ; c
�
j / D 0;

m2.a
�
i ; b
�
j / D �m2.b

�
j ; a

�
i / D d

�
iCj ;

m2.a
�
i ; c
�
j / D �m2.c

�
j ; a

�
i / D e

�
iCj ;

m2.b
�
i ; c
�
j / D �m2.c

�
j ; b

�
i / D f

�
iCj :

Therefore, the image of the map m�2 WExt2.OL;OL/
� !

�
Ext1.OL;OL/

�
�˝2 is spanned

by the following:

a0b0 � b0a0; a0b1 � b1a0 C a1b0 � b0a1;

a0b2 � b2a0 C a1b1 � b1a1 C a2b0 � b0a2;

a1b2 � b2a1 C a2b1 � b1a2; a2b2 � b2a2;

a0c0 � c0a0; a0c1 � c1a0 C a1c0 � c0a1;
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a0c2 � c2a0 C a1c1 � c1a1 C a2c0 � b0c2;

a0c3 � c3a0 C a1c2 � c2a1 C a2c1 � c1a2;

a0c4 � c4a0 C a1c3 � c3a1 C a2c2 � c2a2;

a1c4 � c4a1 C a2c3 � c3a2; a2c4 � c4a2;

b0c0 � c0b0; b0c1 � c1b0 C b1c0 � c0b1;

b0c2 � c2b0 C b1c1 � c1b1 C b2c0 � c0b2;

b0c3 � c3b0 C b1c2 � c2b1 C b2c1 � c1b2;

b0c4 � c4b0 C b1c3 � c3b1 C b2c2 � c2b2;

b1c4 � c4b1 C b2c3 � c3b2; b2c4 � c4b2:

These terms give the relations in degree 2.
The higher order terms are determined by the following argument. We have

0 D xy � yx

D .a0z C a1w C a2t /.b0z C b1w C b2t / � .b0z C b1w C b2t /.a0z C a1w C a2t /

D .a0b0 � b0a0/z
2
C .a0b1 � b1a0 C a1b0 � b0a1/zw

C
®
.a0b2 � b2a0 C a2b0 � b0a2/zt C .a1b1 � b1a1/w

2
¯

C .a1b2 � b2a1 C a2b1 � b1a2/wt C .a2b2 � b2a2/t
2 (7.1)

and

0 D x.zt � w2/ � .zt � w2/x

D .a0z C a1w C a2t /.zt � w
2
C c0z

2
C c1zw C c2zt C c3wt C c4t

2/

� .zt � w2
C c0z

2
C c1zw C c2zt C c3wt C c4t

2/.x C a0z C a1w C a2t /

D .a0c0 � c0a0/z
3
C .a0c1 � c1a0 C a1c0 � c0a1/z

2w

C
®
.a0c2 � c2a0 C a2c0 � c0a2/z

2t C .a1c1 � c1a1/zw
2
¯

C .a0c3 � c3a0 C a1c2 � c2a1 C a2c1 � c1a2/zwt

C
®
.a0c4 � c4a0 C a2c2 � c2a2/zt

2
C .a1c3 � c3a1/w

2t
¯

C .a1c4 � c4a1 C a2c3 � c3a2/wt
2
C .a2c4 � c4a2/t

3: (7.2)

Since

.a1b1 � b1a1/w
2
� .a1b1 � b1a1/.zt C c0z

2
C c1zw C c2zt C c3wt C c4t

2/;

.a1c1 � c1a1/zw
2
� .a1c1 � c1a1/.z

2t C c0z
3
C c1z

2w C c2z
2t C c3zwt C c4zt

2/;

.a1c3 � c3a1/w
2t � .a1c3 � c3a1/.zt

2
C c0z

2t C c1zwt C c2zt
2
C c3wt

2
C c4t

3/

modulo .zt � w2 C c0z
2 C c1zw C c2zt C c3wt C c4t

2/, (7.1) and (7.2) become�
a0b0 � b0a0 C .a1b1 � b1a1/c0

�
z2

C
�
a0b1 � b1a0 C a1b0 � b0a1 C .a1b1 � b1a1/c1

�
zw
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C
�
a0b2 � b2a0 C a1b1 � b1a1 C a2b0 � b0a2 C .a1b1 � b1a1/c2

�
zt

C
�
a1b2 � b2a1 C a2b1 � b1a2 C .a1b1 � b1a1/c3

�
wt

C
�
a2b2 � b2a2 C .a1b1 � b1a1/c4

�
t2

and�
a0c0 � c0a0 C .a1c1 � c1a1/c0

�
z3

C
�
a0c1 � c1a0 C a1c0 � c0a1 C .a1c1 � c1a1/c1

�
z2w

C
�
a0c2 � c2a0 C a1c1 � c1a1 C a2c0 � c0a2

C .a1c1 � c1a1/c2 C .a1c3 � c3a1/c0

�
z2t

C
�
a0c3 � c3a0 C a1c2 � c2a1 C a2c1 � c1a2

C .a1c1 � c1a1/c3 C .a1c3 � c3a1/c1

�
zwt

C
�
a0c4 � c4a0 C a1c3 � c3a1 C a2c2 � c2a2

C .a1c1 � c1a1/c4 C .a1c3 � c3a1/c2

�
zt2

C
�
a1c4 � c4a1 C a2c3 � c3a2 C .a1c3 � c3a1/c3

�
wt2

C
�
a2c4 � c4a2 C .a1c3 � c3a1/c4

�
t3:

Therefore, we have our claim.

Remark 7.10. Let C be a smooth rational curve on a Calabi–Yau 3-fold. If C is con-
tractible to a point by a bimeromorphic morphism X ! xX whose exceptional locus
coincides with C , then the NC deformation ring of OC is finite dimensional. It is interest-
ing to know whether the converse is true.

By [1], there is an example where C is not contractible but the abelianization of the
deformation ring is finite dimensional. In this example, the normal bundle of C is iso-
morphic to O.2/˚O.�4/ (hence not contractible). The deformation ring is a quotient of
a non-commutative formal power series ring with 3 variables by an ideal generated by 3
relations. By [5] and [16], it is known that such a ring is finite dimensional if the 3 rela-
tions are generic quadratic forms (this information, opposite to author’s naive expectation,
was given to the author by Professor Spela Spenko through Professors Michel Van den
Bergh and Keiji Oguiso).

Remark 7.11. By [15, Lemma 4.1], the versal formal NC deformation is convergent in
the sense that kmnk < C

n and kfnk < C
n for suitable norms and a constant C > 0 which

is independent of n.

Remark 7.12. Zheng Hua informed the author that, if the bounded derived category of
coherent sheaves Db.coh.X// has a strong exceptional collection consisting of line bun-
dles, e.g., X Š Pn, then the NC deformation algebra of any coherent sheaf F on X is
algebraic in the following sense; the A1-algebra Ext�.F; F / is quasi-isomorphic to a
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finite dimensional A1-algebra B such that mB
n D 0 for all n � n0 with a fixed n0 (cf. [7,

Theorem 4.4], [6]). We note that B is not necessarily minimal, i.e., mB
1 may not vanish.

It is also interesting to know whether there is a bound of the degrees of equations of the
NC deformation algebra in the case of a rational curve in a projective space with respect
to the degree of the curve.

Acknowledgments. The author would like to thank Professors Keiji Oguiso, Spela Spenko
and Michel Van den Bergh for information on the references [5] and [16] in Remark 7.10.
The author would also like to thank Professors Yukinobu Toda and Zheng Hua for useful
discussions (cf. Remarks 7.11 and 7.12).
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