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Logarithmic Schrodinger equation and isothermal fluids
Rémi Carles

Abstract. We consider the large time behavior in two types of equations, posed on the whole
space R4: the Schrodinger equation with a logarithmic nonlinearity on the one hand; compressible,
isothermal, Euler, Korteweg and quantum Navier—Stokes equations on the other hand. We explain
some connections between the two families of equations, and show how these connections may help
having an insight in all cases. We insist on some specific aspects only, and refer to the cited articles
for more details, and more complete statements. We try to give a general picture of the results, and
present some heuristical arguments that can help the intuition, which are not necessarily found in
the mentioned articles.

1. Introduction

1.1. Linear equations

As a preliminary, and for future comparison with the logarithmic Schrédinger equation,
we recall some basic facts regarding the large time dynamics for the linear heat equation
and the linear Schrodinger equation, on R?.

1.1.1. Heat equation. Consider the Cauchy problem
1
oiu = EAu, x € R, Ujp=g = Ug € Ll(Rd).

The solution is given by the explicit formula:

1

u(t,x) = W

/ e P20 (y) dy.
R4

This formula is classical, and follows from Fourier analysis, see e.g. [70]. To fix ideas, we
normalize the Fourier transform as

_ _/ e f(0)dx,  f e SRY).
R4
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The Fourier transform of u at time ¢ is given by

0,6 = e3P a0E) = e3P 00) + e 3 (@o(E) — 120(0))

order t=4/2p) in LP @(léle—%lﬂz): order t—@+1D/@2p) in L P
Ifm:= fRd ug = (2m)4/214(0) # 0, we infer, by the Fourier inverse formula,

m 2
~ —IxI*/(20)
M0 S Gy ’

and we leave out the discussion on the norms involved above: the key message is that the
large time description involves a universal diffusive rate, and a universal Gaussian profile,
the initial data appears only through its mass m.

1.1.2. Schrodinger equation. For the Schrodinger equation, the initial datum naturally
belongs to L2,

1
i0;u + EAu =0, xe¢€ Rd, Ujp=o = Ug € Lz(Rd).

Again, the solution is given explicitly, now by an oscillatory integral:

1 G2
i Jo a1

We emphasize two consequences:

u(t,x) =

* Dispersion:
1
lu (@) Looray < MT/ZHMOHLl(]Rd)'
» Large time description:
u(t) — A(t)u ay —> 0,
he(@) = Aol L2 @ay 2
where

X .

_)ellx\z/Zt.
t
We now have a universal oscillation, but the profile depends on the initial data, through
its Fourier transform.

1
AWOuo(x) = o

To check the second point, expanding the argument of the exponential in the oscillatory
integral, we can write
u(t,x) = M;D;F Muy(x),

where ¥ stands for the Fourier transform, M, is the multiplication by eilx?/ @9 and D,
is the time dependent dilation

Devt) = zso(7)

Then A(t)ug = M; D; ¥ uy, and the approximation follows from the limit M, — 1in L2,
as t — 00, as granted by the dominated convergence theorem.



Logarithmic Schrodinger equation and isothermal fluids 101

Example 1.1 (Explicit computation in the Gaussian case). The evolution of Gaussian
initial data is given, for z € C such that Rez > 0, by:

¢it/28 (=212 — : 1 )d/ze—(z/(1+itz)>(|x|2/2)_
+itz

1.2. Nonlinear Schrodinger equation: The usual nonlinearity

We recall a few standard properties related to the nonlinear Schrédinger equation with
power-like nonlinearity. These properties can be found e.g. in [33]. For A € R and 0 <
o <2/(d —2)4, consider

1
idu+ EAM = Aul*u, xe R, Ujp=g = U € Hl(Rd). (1.1)

Under our assumption on o, the nonlinearity is H !-subcritical (the L2°*2-norm in the
energy below is controlled by the H!-norm, thanks to Sobolev embedding), and the
Cauchy problem (1.1) is locally well-posed in H'(R?). The standard proof relies on
Strichartz estimates, and a fixed point argument on Duhamel’s formula; the nonlinearity
is thus considered as a perturbation, the problem is semilinear. The situation is completely
different in the case of equations from (compressible) fluid mechanics, addressed in the
second part of this survey.

1.2.1. Invariants. Equation (1.1) is invariant under space and time translation, as well as
under the gauge transforms

u(t,x) — eiou(t,x), 0 € R.

The Galilean invariance reads as follows: if u(, x) solves (1.1), then for any v € R?, so
does
s
u(t, x — vi)e!VxTIM/2, (1.2)

(With a different initial datum.) This property is useful to construct multisolitons (with
different velocities), as in e.g. [68].
The following quantities are formally independent of time:

Mass: M(u(t)) = u()|7ga):

Momentum: J(u(t)) := Im/ u(t,x)Vu(t, x)dx,
R

1 A
Energy: E(u(t)) = §||Vu(t)||iz(Rd) + 0'—+1”u(t)| igcjfZ(Rd)'
According to the sign of A, the energy is or is not a positive functional.

1.2.2. Defocusing case. If A > 0, the local well-posedness in H 1 and the conservations
of mass and energy imply global existence (u € L®(R; H'(R?))), and if o > 2/d, the
solution behaves asymptotically like a linear solution,

Juy € H'RY),  [u() — "* up | g ga 0. (1.3)
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The (inverse of) the wave operator is not trivial: ¥y — u 4 is one-to-one. In view of the
description in the linear case, this means that the large time asymptotics involves a univer-
sal oscillation, a universal dispersion, and a somehow arbitrary profile.

If we assume in addition that x — |x|ug(x) belongs to L2(R?), then the same con-
clusion as above is known to remain valid for some smaller values of o, but not too small.
Typically, for ¢ < 1/d, if u solves (1.1), then its large time behavior cannot be directly
compared to the linear evolution, in the sense that if there exists v € L?(R?) such that

it/20
lu(t) — "2 u || L2 ga) =20

then necessarily ugp = uy = 0 (hence, u = 0), from [13]. This is due to the presence of
long range effects, and scattering theory must be modified, see e.g. [58] and references
therein. We will give reasons to consider that the limit 0 — 0 leads to the logarithmic
Schrodinger equation (see Section 7), and show that the dynamical properties related to
that model are very specific.

1.2.3. Focusing case. If A < 0, finite time blow-up is possible when ¢ = 2/d, as proved
typically by a virial computation (the second order derivative of the function ¢ —
||xu(t)||i2 (Rd)y MY be smaller than a negative constant, [48], see also [33]), and blow-
up is characterized by the existence of a finite 7* such that

lim ||Vu(t)||2 = oo
t—>T*

For 0 = 2/d, small initial data generate global solutions, which are moreover asymptoti-
cally linear in the sense of (1.3).
Finally, we evoke the existence of large standing waves, of the form

u(t,x) = ey (x).

When ¢ is a ground state (which is unique up to the invariants of the associated elliptic
equation), the above standing wave is orbitally stable if and only if ¢ < 2/d (instability
by blow-up occurs when o = 2/d, [15,80]: small —in H! — perturbations of the standing
wave may generate a solution which blows up in finite time). The right notion is indeed
orbital stability, as opposed to asymptotic stability of the standing wave, due to the invari-
ants of the equation: in view of the Galilean invariance (1.2), a small initial perturbation
¥ (x)e'* (|v] <« 1) will generate a standing wave whose “support” becomes distinct from
the support of u for sufficiently large time. Orbital stability consists in taking the invari-
ants of the equation into account: in the present case, this means that for any ¢ > 0, there
exists > 0 such that if
lito = ¥ llgr < 7.

then

sup inf inf [if(r) P — )l <e

teR 9€R yeR

where # is the solution to (1.1) with initial data #g. See e.g. [33].
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We will see that there are many differences in the case where the power-like non-
linearity is replaced by a logarithmic nonlinearity.
1.3. Logarithmic Schriodinger equation

We now consider the Cauchy problem
. 1 2
ioiu + EAM = Aln(|u| )u Ujp=0 = Uo, (1.4)

with x € R?,d > 1,and A € R. This model was introduced in [16] to satisfy the following
tensorization property: if the initial datum is a tensor product,

d
uo(x) = [ [ oy (x)).
j=1
then the solution to (1.4) is given by

d
u(t,x) = [T, %)),
j=1
where each u; solves a one-dimensional equation

id;uj + %ai},u, = An(ju;|®)u;,  uji=o0 = uo;.
The logarithmic nonlinearity turns out to be the only one satisfying such a property. This
nonlinearity has then been proposed to model various physical phenomena, e.g. quan-
tum optics [25, 63], nuclear physics [59], transport and diffusion phenomena [56, 69],
open quantum systems [61, 81], effective quantum gravity [82], theory of superfluidity
and Bose—FEinstein condensation [11]. This tensorization property is classical when the
linear Schrodinger equation is considered, and might suggest that nonlinear effects in (1.4)
are weak: we will see that on the contrary, the dynamical properties associated to (1.4) are
rather unique. This is due to the singularity of the logarithm at the origin.

Like above, (1.4) is invariant under space and time translations, gauge and Galilean
transforms. We still have conservation of mass, momentum and energy, but the expression
of the latter has changed:

M) = u(®)|]2gay-

Ju(t)) = Im/d u(t,x)Vu(t,x)dx,
R

E(u()) = %||Vu(t)||iz(Rd) + A/Rd |u(t,x)|2(ln|u(t,x)|2 — 1)dx.
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In view of the conservation of mass, we rather consider the energy

1
E(u(t)) := §||Vu(t)||iz(Rd) + AfRd lu(t, x)[* In |u(t, x)|* dx. (1.5)

The energy has no definite sign, and it is not completely clear to decide about the influence
of the sign of A on the dynamics. However, a formal argument suggests that when A < 0,
solutions cannot disperse: indeed, if u is dispersive, then it morally goes to zero pointwise,
and the argument of the logarithm in the energy going to zero, the factor of A goes to —oo:
if A <0, this contradicts the conservation of the energy, which would then become infinite.
On the other hand, if A > 0, this argument shows that if a solution is dispersive, then its
H'-norm becomes infinite in the large time regime.

Another unusual feature of (1.4) concerns the effect of the size of the initial data on
the dynamics: If u solves (1.4), then for all k € C, so does

ur(t,x) := ku(t,x)e_”“"lk‘z. (1.6)

This shows that the size of the initial data alters the dynamics only through a purely time
dependent oscillation, a feature which is fairly unusual for a nonlinear equation. For k > 0,
we readily compute

iuk(z,x) = (1 = 2it)u(t, x)e tAmlk?,

dk
The above quantity has no limit as k — 0 for ¢t > 0: the flow map uy — u(t) cannot
be C!, whichever function spaces are considered for ug and u(t), respectively; it is at
most Lipschitzean.

The next few sections are dedicated to the analysis of the logarithmic Schrédinger
equation (1.4). In Section 5, we will see a first connection with models from compressible
fluid mechanics, and from Section 6 to the end of the survey, we will focus our attention
on such models and some of their generalizations.

1.4. Schematic summary: Power vs. logarithmic nonlinearity

In the following tables, we give an overview of the results presented below, in order to
emphasize some differences due to the nature of the nonlinearity. To avoid unnecessary
technical details, we assume in all cases that the initial datum u( belongs to 3, defined by

S=H'nFH) ={f e H'RY), x> |x|f(x) € L2(RY)},

that the nonlinearity is H !'-subcritical, 0 < o < 2/(d — 2)+, and do not try to invoke
sharp results. (GWP stands for global well-posedness.)

In connection with the results recalled in Sections 1.1.2 and 1.2, v4 = 14, the Fourier
transform of the asymptotic state u, which may be any function in X.
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Case A > 0.
Equation (1.1) (1.4)
Nonlinearity AMu|*u A 1n(|u |2)u
GWPin H! yes yes
Dispersion: (8(¢))~%/2 8(t) =t (atleastif o = 2/d) 8(t) =2t/ Alnt

limy o0 (8(£))4/2u(t, x8(¢))| |vy|forany vy € = (ifo = 2/d)

luol L2 e_|x\2/2
Ld/4

Growth of H! norm never always
Case A < 0.

Equation (1.1) (1.4)
Nonlinearity AMu|*u A ln(|u |2)u
GWPin H! for sure, if 0 < 2/d yes
Finite time blow-up possible if 0 = 2/d never
Dispersion for small data, if 0 = 2/d never
Standing waves exist exist
Ground states are orbitally stable yes,iffo <2/d yes
Breathers ? exist
Multisolitons exist exist
Multibreathers ? exist

2. Cauchy problem

In view of the expression (1.5), the natural energy space is given by

W= {ue H'(R?), x > [u(x)*In|u(x)* e L'RY)}.

The Cauchy problem (1.4) is indeed solved in W, provided that A < 0.

Theorem 2.1 ([34]). Suppose A < 0 and uy € W: there exists a unique, global solution
u € C(R; W) to (1.4). The mass M(u) and the energy E(u) are independent of time.

The proof given in [34] relies on compactness arguments, using a regularization of
the nonlinearity. An alternative proof has been proposed more recently by Masayuki
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Hayashi [57], providing the strong convergence of a sequence of approximate solutions.
See also [51] for the local Cauchy problem in H? on bounded 3D domains. We emphasize
that the sign of A appears when seeking a priori estimates: if A < 0, we have

1
0< Ey(u()):= 5||vu(t)||§2(Rd) +A/|| 1|u(t,x)|21n|u(t,x)|2dx
ul<

< E(ug) =2 [u(t, x)|* Infu(t, x)|* dx.

Since the logarithm grows slowly,

/II 1|u(t,x)|21n|u(t,x)|2 dx < Cgf lu(t, x)|>+¢ dx
u|>

|u|>1
24+s—ed/2 d/2
< It P IVu I35 Ry

where we have used Gagliardo—Nirenberg inequalities for ¢ < 2d /(d — 2)+. Using the
conservation of mass, this implies

E(u(t)) < E(uo) + CoE4 (u(t))*4/*.

Therefore, picking ¢ > 0 sufficiently small yields £+ € L (R), hence (resuming the
above inequality) u € L®(R; W).

Remark 2.2. In the case A > 0, the same strategy would require the control of

1
[ lu(t, x)|* In ———dx < C8/ lu(t, x)|*¢ dx.
lul<1 |u([,x)| lul<1

The above Lebesgue norm involves an index below 2, and Sobolev embedding cannot
help: we will see that the finiteness of a momentum in L? saves the day.

Uniqueness follows from the algebraic property discovered in [34].
Lemma 2.3 ([34]). We have
|Im((zz In |22|2 —z1ln|z; |2)(Ez - 71))| < 4|z — g |2, Vzy1,z9 € C.

Formally, if 1 and u, are two solutions of (1.4), w := u, — u; solves
1
id;w + EAw = A(uzIn|uz® —uy Injuy)?).

Multiplying the above equation by w, integrating in space and considering the imaginary
part, Lemma 2.3 yields

1d
S w122 < 41w oI,
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and the Gronwall lemma provides uniqueness. One has to be cautious though, this argu-
ment is fully justified provided that we know u € C(R; L?), a property which is satisfied
for u € L*°(R; W), as shown by a careful examination of (1.4); see [34] for details.

This strategy was adapted in [52] to consider the case A > 0, under the extra assump-
tion |x|"/2ug € L2(R%) ford = 3.

In [31], another compactness method was proposed, consisting in neutralizing the sin-
gularity of the logarithm at the origin: for ¢ > 0, consider the u? solution to

1
i0,uf + EAus = Aln(e + [u®P)u’,  uf_y = uo. 2.1)

For fixed ¢ > 0, the above nonlinearity is smooth and L2-subcritical, and there exists a
unique solution at the L2-level [75]. Assuming ug € H', we have |x|*uo € L? for some
0 < @ < 1, we can prove a priori estimates on bounded time intervals, which are uniform
in ¢ €]0, 1], and infer the following theorem.

Theorem 2.4 ([31]). Let A € R, ug € H' N F(H%) for some 0 < o < 1: (1.4) has a
unique, global solutionu € LX(R; H' N ¥ (H®)). The mass M (u) and the energy E (1)
are independent of time.

loc

Heuristically, the assumption |x|*uq € L? for some 0 < @ < 1 seems rather natural in
view of Remark 2.2. Indeed, considering 0 < n < 4a/(d + 2«), we have

/ D e T e TRTC i 2.2)
R4

This estimate is readily established by using Holder estimate: let p = 2/(2 — 1), so its
dual exponent is p’ = 2/#n. Fix R > 0, and write

_ ! 2
/H R|u|2 1< |BO, RV )PP 0 < R )2,
x|I<

L2(R4) ~ LZ(R“’)

For large x, write

0o .d—1 1/
= [t s () e
Ix|>R x|> R ~“\Jr r?B L2R7)

We now choose § so that /(2 — ) = « and that the first integral on the right-hand side
is finite, p’8 > d. This means 0 < n < 4a/(d + 2w), and optimizing in R,

re = MxFullL2

d d
R ull sy = RYP P N1x1P P 50 Tl

L2 (]Rd)

we obtain (2.2). Therefore, choosing 0 <7< 1, we guess that any solution in H 1 NF (H#%)
is global.

The complete argument to prove Theorem 2.4 consists in differentiating (2.1) in space,
and using the same L2-estimate as for uniqueness (multiply by Viz, integrate in space, and
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take the imaginary part), to get

1d
S IV O < 2RIV 012,

hence a control on bounded time intervals, which is uniform in €. To get compactness in
space, we compute

d 8
Oy = 20t [ £

< 20 (x)?*” 1us(l)“LZ(Rd)||Vus(t)||L2(Rd)
< 20| () ue(®) | L2way I Vite () L2 (a)y

since o < 1, hence a closed system of estimate, uniformly in e. We refer to [31] for the
remaining arguments.

We recall the notation
T=H'nFH") ={f e H'RY), x> |x|f(x) € L2(R9)},

and keep in mind that if uy € X, then (1.4) has a unique solution ¥ € L (R; X).

loc
Remark 2.5 (Higher regularity). As the nonlinearity z +— z In |z|? has limited regularity,
it is not obvious to propagate higher H* regularity in (1.4). Typically,

Inu Inu
0F (uln |uf?) = ofulnul® + == (8;u)* + 4= |3
u u
+ szu Inu + 5lnu 8]2~L7— L_l—Z(ajﬁ)Z Inu,

and it is not clear to propagate the H? regularity by differentiating the equation twice in
space. On the other hand, a specificity of Schrodinger equations is that H? regularity in
space can be read from the L? regularity of d,u, see e.g. [33, Section 5.3]. Replacing the
space derivatives with time derivative in the above estimates, and noticing that if 1y €
H? N ¥ (H%) for some o > 0, we have

1
i0:Uji—0 = _EAMO + An(juol?)uo € L2(RY),
we infer d,u € L2 (R; L2(R?)). Theorem 2.4 implies u In [u|? € L (R; L2(R¥)), and

then from (1.4), Au € L2 (R; L2(R%)), hence u € LY (R; H?2(R%)). However, propa-
gating H 3 regularity (and higher) is still an open question.

3. Explicit Gaussian solutions

An important feature of (1.4), noticed already in [16], is that Gaussian initial data prop-
agate as Gaussian solutions. Plugging Gaussian solutions into (1.4), this property is sug-
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gested by the property that in the presence of a quadratic, possibly time dependent poten-
tial in (linear) Schrédinger equations,

d
1
idsu + EAu = Z Qj(t)x]?u; Ujp=0 = Uo,
j=1

Gaussian initial data propagate as Gaussian solutions; see e.g. [53, 54, 60].

3.1. General computation

—a(t)x2/2 —a(t)x2/2

Suppose d = 1, and plug u(¢, x) = b(t)e
we get

into (1.4): simplifying by e

x?2 ab

o x?
ib— m;b - + a27b = A(ln(|b|2) - (Rea)xz)b,

hence b
id —a®> =2ARea; ib— a? = AbIn(|b[?).

We can express b as a function of a:
. t
b(t) = by exp(—ikt In(|bo|?) — %A(t) - iAIm/ A(s)s ds), (3.1)
0

where we have set A(?) := fé a(s) ds. So we focus on
iad —a®> =2ARea, ajr=o = ap = oo + iPo.

We seek a of the form a = —i % This yields @ = 2Aw Im %
Introducing a polar decomposition w = re'?, we find

V- (é)zr =2Arf; 6r +26F = 0.

é\t:O = o, <;)

We decide r(0) = 1, so 9(0) = Reag = @ and 7(0) = —Imag = —Py. Note

Notice that

= —Po.

[t=0

d ) . .
—@%0) =r@2r0 +rf) =0,
dt

and we can express the problem in terms of r only:

a0
“re2 re TR

a(t) +2x?, r(0) = 1, 7(0) = —Bo. (3.2)

Multiply by 7 and integrate:

2
(7 = B2 + 03 — 20 4 4dag In|r]. (3.3)
r
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The Cauchy—Lipschitz theorem yields the existence of a unique local solution. The obstruc-
tion to the existence of a global solution is the possibility of r going to zero. Supposing
r — 0 leads to a contradiction in (3.3), so there exists

rt)=8>0, t=0,

and the solution is global in time, and smooth.

Remark 3.1 (Decay rate). In the above computations, the formula (3.1) shows that the
decay rate is given by

|bol

Jry

Ib(0)| = |bo|exp(% ImA(t)) =

where the last identity follows from (3.2).

Remark 3.2 (Linear Schrédinger equation). In the case A = 0 (linear case), the equation
for r reads

,zﬁ r(0) =1, #0)=-po.
p

The solution is given by

F(6) = \/1+ 203 + B2) — 21p.

which is a rather indirect way to recover the formula presented in Example 1.1.

3.2. Nondispersive case: A < 0

Suppose A < 0: in view of (3.3), r is bounded. Standard techniques in the study of ordi-
nary differential equations show that every solution is periodic in time. The relation (3.3)
defines the potential energy (see e.g. [8])

1, o 1 1, o 1
Ur) =583 - 2 (1= ) ~ 2o nlrl = =583 = 2 (1= 5 ) + 2l Inrl.

We check that U is decreasing on (0, \/a¢/2|A|], and increasing on [/co/2|A|, 00). The
minimum is given by

[P 0‘%
Uminz——ﬁo—i-—(x—l—xlnx)‘ <0,
2 2 x

—2Al
L0
in view of the property
x—1—xInx <0, Vx>0.

We have Uy, < 0 unless o = 7(0) = 0 and o9 = 2|A|, the only case where Uy, = 0.
See Figure 1. Note that the case B9 = 0 and «p = 2|A| is degenerate, in the sense that we
then have r(¢) = 1.
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U(r)

Figure 1. Potential U in the case ag = 1 and A = —1.

For every energy E > Uy, the equation U(r) = E has two distinct solutions. We
infer (see e.g. [8]) that all the solutions to (3.2) are periodic, and the half-period is given
by

T /‘ r dr

2 Jn JE=UQ@)
where r, < r* are the two above solutions. Therefore, the amplitude of the correspond-
ing (Gaussian) solution u is time-periodic, and we naturally call such solutions breathers;
see [41] for more details. Note however that only the amplitude is periodic, not the solu-
tion u itself: in view of (3.1), |b ()| is periodic, but not b(¢), unless |bg| =1 and Im A = —0.

As pointed out above, the relations 8¢ = 0, g = —2A imply r = 1. This provides a

stationary solution,

u(t, x) = e e .

In view of the remarkable scaling property (1.6), and of the tensorization property dis-
cussed in the introduction, we infer the existence of infinitely many standing waves in R¢
(we had assumed d = 1 so far), parametrized by w € R (related to k € R in (1.6) through
the relation o = —A In(k?)),

i _ 2

uw(l, x) — ezwted/Z w/ZAeAIxI )

These standing waves, discovered in [16] (see also [17]), are known as Gaussons. Given
o € R is arbitrary, for each prescribed mass M, there exists a (unique) Gausson whose
mass is equal to M.
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3.3. Dispersive case: L > 0

In this case, r is strictly (but not uniformly) convex. We can prove the following: there
exists T = O such that fort = T, # > 0, and r(t) — oo as t — oo. Therefore, the dynamics
is expected to be well approximated by

2A(¥0

Teff

Fetf = (co > 0).

Multiply by Fesr and integrate: since (at least) for ¢ > 1, Fer > 0, we find

Feit = v/ Co + 4Aag In reg.

Separate variables:
Teff dZ
[
VCo + 4AagInz
Set y = «/Cy + 4Aag In z. The left-hand side becomes

1 2_¢ 400
/ e(y 0)/( 0) d)y.
2/\0[0

The asymptotics of Dawson function (see e.g. [1]) yields, for any x¢ € R,

x
1
/ e’ a’nyoo 2—6)‘2 = Lett ~ 1.
Xo - X A/ C() + 41(1() In Toff 100

Since Feff —> OQ, reff/\/ 4/\0{0 In Tetf ~ I, hence
—>00

Fegr(?) P 2t/ AagInt.

We note that Cy has disappeared, at leading order. Thus, all the Gaussian solutions have
the same asymptotic profile, with a nonstandard dispersion (enhanced compared to the
standard one, by a logarithmic factor). Up to scaling the solution and changing initial
data, we can simply consider T = %, with t(0) = 1 and 7(0) = 0. This yields a uni-
form dispersion in the case of Gaussian data. We will see that this dispersion is actually
completely general, in the case A > 0.

—T.

4. Solitons

In this section, we always assume A < 0. The formal discussion presented in Section 1.3
suggests that when A < 0, dispersion is impossible. This has been proven rigorously by
variational arguments by Thierry Cazenave.

Lemma 4.1 ([32]). Let A < 0 and k < oo such that
Li:={ueW, |lull2ga) =1, E(u) <k} #0.

Then infyer,, 1<p<oo ||”||Lp(Rd) > 0.
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In view of the conservation of the mass and the energy, this implies that no solution is
dispersive in the case A < 0 (otherwise an L?-norm would go to zero for some p > 2).

4.1. Gaussons

As we have seen above, we have explicit standing waves, called Gaussons, given by the
formula
U (t,X) = eia)ted/z—w/z)te)tlxlz.

Due to the Galilean invariance (1.2), such solutions are not asymptotically stable: multi-
plying 14 (0, x) by e’¥*, for some small v, is a small perturbation in A !, but the drift in
space, given by vz, shows that the corresponding solution does not remain close to u, for
all time. Even in the radial case (where Galilean invariance is absent), it is necessary to
take phase shifts into account, as noticed in [32] by an explicit example on Gaussian data,
which is related to (1.6): for |@ — ®’| <K 1, Uy (0, ) and u (0, -) are initial data which
are close to each other in H'(R?), but of course the corresponding solutions ¢, and
present a non-negligible phase shift e.g. for (w — w’)t = 7. On the other hand, Gaussons
are orbitally stable: this was proven in [32] for the radial case, and in [6] for the general
case (the key variational step there is based on the logarithmic Sobolev inequality).

Theorem 4.2 ([6,32]). Let A < 0 and w € R. Set

¢w(x) — ed/2—a)/2/\e/l\x\2.

For any € > 0, there exists n > 0 such that if ug € W satisfies ||uo — ¢o |w < n, then the
solution u to (1.4) exists for allt € R, and

sup inf inf [u(r) — eChu(-— y)|w <e.
teR 0€R yeR4

4.2. Superposition

Numerical experiments reported in [12] reveal dynamical properties which are fairly dif-
ferent from the phenomena observed in the case of a power-like nonlinearity, when soli-
tons interact. In particular, two Gaussons centered far apart seem motionless over a long
time of simulation. Each Gausson solves (1.4) exactly, but the equation being nonlinear,
the sum of two Gaussons does not solve (1.4): there seems to be a rather strong superposi-
tion principle however. This was proven rigorously in [41], in a more general framework:
starting from finitely many initial Gaussians (not necessarily Gaussons) with pairwise dis-
tances of order at least 1/¢ (for 0 < ¢ < 1), the solution of (1.4) is well approximated by
the sum of the corresponding solutions (computed in Section 3), over a time o(¢~2). More
precisely, the error is of order e€0!=¢1/ ¢? for some constants co,c1 > 0 expressed explicitly
in [41].

At this stage, we emphasize an aspect which is crucial in the next section too: the
logarithmic nonlinearity is not Lipschitz continuous at the origin, and in particular any
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linearization process becomes very delicate. To overcome this difficulty, the strategy em-
ployed in [41] consists in establishing fine properties of the logarithmic nonlinearity.
Typically, the nonlinearity F(z) := z In|z|? satisfies, for |z|, |z'| < 1,z # 0,

|F(z) — F(Z)| < |z —Z/|(6 — In|z|?). 4.1

The interest of this estimate lies in the fact that it is not symmetric in (z, z’). This is crucial
in order to estimate the source term in the equation solved by the difference between the
exact solution and the sum of individual Gaussian solutions, which is of the form

N

ulnjul? — ng In|g;[*
j=1

4.3. Multigaussons

Again, we do not make complete statements here, and try to give a flavor of the corre-
sponding result. Using the Galilean invariance, for some k > 1, introduce

k k
Ge =) Tj(t.x), Br=)Y Bj(t.x),

Jj=1 Jj=1

where the I';’s are Gaussons associated with pairwise different velocities v;, and the B;’s
are (more general) breathers associated with pairwise different velocities v;. Unlike in [38],
it is not assumed that the relative velocities v; — vg, j # k, are large. As evoked above,
linearization is a delicate process here, and so, even though the following statement is rem-
iniscent of [68] or [72] (for the modified KdV equation, an equation which is integrable),
the approach must be adapted.

Theorem 4.3 ([43]). Letd = 1 and A < O.
Multibreathers: there exists a unique solution u € Cp,(R; W) to (1.4), and ¢, C > 0 such
that

() = B ()l 2 ey < Ce™, 1= 0.

Multigaussons: there exists a unique solution u € Cp(R; X) to (1.4), ¢, C > 0 such that
lu(t) = G5 < Ce™, 120,

We emphasize a few aspects, and refer to [43] for details:

* The construction is based on compactness techniques, as introduced in [68].

e The linearized operator around the Gausson seems to be nice, as it is a harmonic oscil-
lator, whose eigenproperties are very well known. However, the logarithm is singular

at zero, and so linearizing becomes a delicate matter. Like in the previous section, a
clever use of (4.1) saves the day.

* The proof uses localized energy functionals involving a linearized functional, which
is not the linearized energy.
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5. Dispersive case

We now assume A > 0, and focus on the following result.
Theorem 5.1 ([31]). Let A > 0. Introduce the solution T € C*°(R) to

%:%, 1(0)=1, #(0)=0. (5.1)

Then, ast — oo, t(t) ~ 2t~/ Alnt and t(t) ~ 2~/ Alnt. For ug € £\ {0}, (1.4) has a
unique solution u € L) (R; X)). Introduce y(x) := e /2 and rescale the solution to

v =v(t,y) by setting

x ) ol L2y ( (1) |x|2)

ut.n) = (T Wiows SV 2 )

(5.2)

Then we have

1
Sup(/ (L4 Iyl? + [In @ »)P) @y dy + —2||Vyv(f)||§z) < oo, (5.3)
t=20 \JRY (1)
1 1
/ y |l »Pdy — y | v2()dy. (5.4)
Ry IR |y

and
|v(t,-)|2t—\ y?  weakly in L' (R?).
—00

The last bound in (5.3) shows that the phase introduced in (5.2) incorporates the main
oscillations in the large time limit: since (¢)/t(¢) ~ 1/t as t — oo, we recover the same
oscillation (at leading order) as for the linear Schrodinger equation, see Section 1.1.2.
On the other hand, the dispersive rate is different: the boundedness of the momentum
of v shows that v is not dispersive, and the factor ¢ present in the expression of A(t)
in Section 1.1.2 has been replaced by z(¢). The dispersion of u is thus enhanced by a
logarithmic factor, compared to the standard dispersion. Finally, |v(z, -)|? has a universal
limit, which is reminiscent of the heat equation rather than of the Schrédinger equation.

As a consequence, the Sobolev norms of every nontrivial solutions are unbounded,
providing a precise answer to a question asked in [18] regarding the growth of Sobolev
norms for Hamiltonian nonlinear dispersive equations (see also e.g. [37,44,45,50,55,73]):

Corollary 5.2. Letug € 2\ {0} and0 <s < 1. Ast — oo,
(lnt)s/z < ||u(t)||1'1s(Rd) < (n t)S/Z»

where H*(R?) denotes the standard homogeneous Sobolev space.
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Proof in the case s = 1. Differentiate (5.2) with respect to x:
) x|
(t

1 X l%%
VM(I,X): T([)—d/zvx v [,m er
1 1 voolt X ,%@ Lt 1 x ; X ,-772
= ————=Vyult,— e @ itT———=—vlt,— |e ,
(1) ()42 7 10 T(1)4/2 ¢ (1)

Il 2=L1Voll2=0q). 2 =tlyvll 2 ~lyyl 2~/

where we have used (5.3) to control the first term, and (5.4) to show that the last factor is
indeed of order 7. ]

Remark 5.3. For the case 0 < s < 1, we refer to [31]. Essentially, the proof relies on [2,
Lemma 5.1], which states the following (we simplify the original statement, which incor-
porates a semiclassical parameter): there exists a constant K such that for all s € [0, 1],
ally € HY(R?) and all w € W1H°(RY),

Hwlullz < [1DxPullzz + 1V = iw)ullzz lull 2" + K (1 + | Vwllzeo) llull 2.

We then apply this inequality with w the gradient of the quadratic oscillation in (5.3),

_ 0

= r(t)x'

w(t, x)

Remark 5.4. As pointed out by the editorial board, the function t, its asymptotic behav-
ior, and the rescaling (5.2) were already present in [36], a reference we were not aware of.

Remark 5.5. In the case of a defocusing power nonlinearity, (1.1) with A > 0, the conser-
vation of the energy implies that the H !-norm of u is uniformly bounded in time, unlike
in Corollary 5.2. Moreover, when ¢ = 2/d is an integer, and u € § (Rd), all the Sobolev
norms ||u(¢)| gs are bounded. This result is natural, since in that case, u is asymptotically
linear and the linear flow e’?/2 A preserves the Sobolev norms H* (see e.g. [26]).

Remark 5.6. These results remain valid when the logarithmic nonlinearity is perturbed
by an energy-subcritical, defocusing powerlike nonlinearity,

1
id;u + EAM = Aln(jul*)u + plul*u, up=o = uo,

with u > 0and 0 < 0 < 2/(d — 2)4. Surprisingly enough, the logarithmic nonlinearity
is thus the stronger in the above equation.

5.1. Elements of proof

5.1.1. A priori estimates. The key step is to change the unknown function in order to get
coercivity. The change of unknown function is motivated by the explicit computations in
the Gaussian case: at leading order, all the Gaussian solutions have the same dispersion,
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the same oscillations, and the same asymptotic profile. Theorem 5.1 states that these three
properties are shared by all solutions.
Direct computations show that v = v(¢, y), given by (5.2), solves

2 u
=)w1nH2H —)Ldvlnr+2)wln(”0”ﬂ),
14

latv + —
171l 22ra)

2t ( )2
where we recall that y(y) = e */2and the initial datum for v is

171l L2y

Vjt=0 = Vo = Ugp.

ol L2way
Replacing v with ve¢® for
t
0(t) = Ad / Int(s)ds — 2At 1n(||u0||L2/||)/||L2),
0

a change of unknown function which does not affect the conclusions of Theorem 5.1, we
may assume that the last two terms are absent, and we focus our attention on

v 112
i0;v + —— =kv1n‘ ,
14

77 ( )2 Ayv Vjs=0 = Vo. (5.5)

The above equation is still Hamiltonian: introduce

&(1) = Im /R B ) dy = Eynl0) + A1)

where

Exin(1) = IVyo(0)]72

1
27(1)2
is the (modified) kinetic energy and

N0 :=f v P ] e y)H

= [ Pl dy + [ 5P P ay
R4 R
is a relative entropy. Direct computations yield
. T
é = 2 gy (5.6)
T

Remark 5.7. The Csiszar—Kullback inequality reads (see e.g. [3, Theorem 8.2.7]), for
fig=0with [ f = [g,

17 el < 2o [ 10m( L5 )
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Since |v|? and y? have the same L!-norm, &y = 0: we will not actually use this piece

of information, but this shows that if we could prove E.(t) — 0 as ¢ — oo (which is
established in the case of Gaussian initial data), then the weak convergence in the last
point of Theorem 5.1 would become a strong convergence.

The following lemma resumes (5.3), and contains an extra integrability property:

Lemma 5.8. Under the assumptions of Theorem 5.1, we have
ﬂm(/1(1+|ﬂ2+“nWUJOFDWUJOFdY+’ ZHVvanuqR@) 00
t=0 \JR4 (1)

and

00 (¢
/(; ;3(_([))”Vyv(t)||iz(Rd) dt < 0. (57)

Proof. Write the pseudo-energy & as & = &4 + &_, where & gathers the positive terms
of &,

€4(1) = Mvam;+x/ ol Ino]? +x/ PP

2t ( 2t(1)?
and

E_(1) = x[ [v|?1n|v|* < 0.
lv|<1

Since & is nonincreasing,

€.(t) < 6(0) — E_(1) < €(0) + Csf

lv|<1

|Wﬁs&®+@/|ﬁf
Rd

for any 0 < ¢ < 2. Recalling (2.2) (with & = 1), and noting that ||v(?)||z2 = ||[v(0)||z2(=
l¥1l2), we obtain a control of the form

€+(t) < €(0) + CEL ()2,

hence &+ € L*°(R4) by picking ¢ > 0 sufficiently small. Then &_ € L°°(R), hence
& € L*®(R4), and (5.7) by just saying that & is integrable. ]

5.1.2. Center of mass. Adapting the computation of [39], introduce

ho=tn [ 560000 dy. B0 = [ il ay.

We compute:
. 1
I, = =2)\1 L, =——1.
1 2, Iz )2 1
Set 72 =1l5: 72 = 0, hence
(1) (1(0) + T2(0)) = ! (1 (0)t + I>(0)) = (9( ! )
. ‘()2 RO AW
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In particular,
[ wenray — 0= [ sym2a.
R4 t—>00 R4
If 1;(0) # 0, we also have
Li(t) ~ ¢

t—00 Inz

while if 11(0) =0 ;ﬁ 12(0),
Ii(t) ~ ¢+lInt.
t—>00

Remark 5.9. In view of Cauchy—Schwarz inequality,
1] < vll2IVyvliez = Iyl [ Vyvll 2.
So unless the initial data are centered in zero in phase space (/1(0) = I5(0) = 0),
1950(0) 22 —> oo,

suggesting that v is rapidly oscillatory: in general, (5.2) filters out the leading order
oscillations only, in the limit # — co. A careful examination of the computations in the
Gaussian case leads to the same conclusion. This explains why, in Theorem 5.1, the main
results concern the modulus of v, and no other quantity (that would involve the argument
of v).

5.1.3. Second order momentum. Introduce A =Im [ vy - V, 0. The estimate (5.3) and
Cauchy-Schwarz inequality yield

Al < lyvll2lIVvliz2 < ().

Use the conservation of the energy of u, and rewrite the energy in terms of v, via (5.2):

d )2 T
(B + G- [Pl = 24+ 3 [P impop

di\ 222" 2
=0(1 ha'ad N ——— ——
o o0 o
—Adlnr/ w2+ 2472, 1n(”“°”“)) =0,
Iy liz
=0(1)

where we have used (5.3) for the a priori estimates. We infer
T 2
% / ly|?|v]® — Ad lnt/ [v]? = O().
But multiplying (5.1) by 7 and integrating, we find

. 2
(1> =4rlnt and |vl7. = Iylz. = gllwlliz,

so we conclude

1
Iyv@)|2 = llyyl3. = @(m)'
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5.1.4. Universal profile. The proof of the weak convergence of |v(z,-)|? to y? relies on
a hydrodynamical formulation of (5.5), based on the Madelung transform, which relates
(nonlinear) Schrodinger equations to some equations from compressible fluid mechanics
(see for instance the survey [30]). Formally, this amounts to a polar factorization of v,

v = /pe'?.

The fluid velocity is then given by V¢. However, such a decomposition is obviously
delicate when v (or, equivalently, p) becomes zero. The rigorous approach consists in
introducing

p=1v]®%, J=ImvVu.

From a fluid mechanical perspective, we consider the momentum J instead of the velocity:
this is standard in compressible fluid mechanics. Plugging this decomposition into (5.5)
and separating real and imaginary parts, we find

1
T
1 1
;] + AVp+21lyp = —AVp— —=V -Re(Vv ® VD).
472 72
To guess the result, consider the baby model
1
dep + ﬁv -J =0,
9:J +AVp+2iyp = 0.
We can write an equation involving p only, by just writing 9,V - J = V - 9,J:
0;(t20,p) = AV - (V +2y)p =: ALp,

where L is the Fokker—Planck operator associated to the harmonic potential. Note that
12 K (i7)?: define s such that 5F0; = Oy, that is

A T 1
s:/__ = [ X = i,

1T 2t 2

Notice that |
s~ —Inlnt, t— oc.
4
Then again discarding formally lower order terms we find
dsp = Lp.

Remark 5.10. Recall that p(z, y) = |v(t, y)|?: the previous computations have shown

1 1
/Rd y | ot y)dy = /Rd y J/Z(J’)dy‘l'@(
Ly Iy

1
)
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We have just derived formally:
dsp=Lp, L=V-(V+2y).
For such Fokker—Planck equations, convergence to equilibrium is known thanks to (5.3)
(see [7]),
lp(s) = ¥? Il S e llpo = ¥ ler

The constant C stems from a spectral gap, which is, in the present case of a Fokker—Planck
operator associated to the harmonic potential, C = 2. Both aspects coincide, since

1
\/lnt'

This is a hint that the new time variable s is well adapted. Back to the complete hydrody-
namical system, introduce the time variable s, p(s, y) := p(t, y):

- 2X A 1

1
2~ o~ 2~ —

1 —2s
S~Zln1nt, t — 00, hence e ~

For s € [—1,2] and an arbitrary sequence s, — 00, set

,5,,(5',))) = ﬁ(S +Sn9y)'

By the De la Vallée—Poussin and Dunford—Pettis theorems, we have some weak compact-
ness in L1, hence, up to a subsequence,

Pn — Poo in LP(—1,2:L}), Vp €[l,00).
Passing to the limit in the equation for p (see [31] for details),
dsPoo = Lo in D'((—1,2) x RY).

Since J = ImvVyv, (5.7) yields
T elL2L), hence ZV-J, — 0in L2(—1,2, W11
T T n—o00
Therefore, d5p0 = 0.
On the other hand, as evoked above, it is known from [7] that any solution to
as;aoo = Lﬁoo
satisfying the a priori estimates of Lemma 5.8 converges for large time
Tim o (s) = 211 ey = 0.

Since we have seen that d55,, = 0, we infer pn, = 2. Thus, the limit is unique, and no
extraction is needed:
p(s) — y? weaklyin L' (]Rd).
S—>00
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Remark 5.11. Some information is lost when approximating the original hydrodynamical
system by a Fokker—Planck equation: this is the reason why only a weak convergence is
obtained. This should not be too surprising, as the Fokker—Planck equation is parabolic,
while we started from a Hamiltonian equation. On the other hand, in [42], by changing the
strategy of proof, the convergence is improved: Denoting by W, the Wasserstein distance,
there exists C such that

v(t)|? 2 C

Wl (| (d)| k) ‘}; ) S bl t Z e.
72 T 7dl2 ) " /nt

We recall that for v; and v, probability measures, the Wasserstein distance is defined by

1/p
Wp(vl,m=inf{(/ Ix—yl”d/x(x,y)) ;(n,-w:vj},
R4 xR4

where p varies among all probability measures on R4 x R?, and 7 R x R? — R
denotes the canonical projection onto the j-th factor. See e.g. [78]. In the case p = 1,
the Wasserstein distance, corresponding to the Kantorovich—Rubinstein metric, is also
characterized by

Wi(v1, 1) = sup{/ ®d(u1 — pu2). ® € C(RY;R), Lip(d) < 1},
]Rd

and it is this point of view which is adopted in [42]. The question of the strong conver-
gence, in L', of |v|? toward y2 remains open for non-Gaussian initial data.

6. From NLS to compressible fluids

We have seen that the end of the proof of Theorem 5.1 relies on a hydrodynamical point
of view. This suggests that we might consider models from fluid mechanics from the very
start (instead of (1.4)), and see how what has been understood on the Schrédinger side can
be exported to the fluid mechanical side. Essentially, Theorem 5.1 has an exact counterpart
in fluid mechanics, up to two important remarks:

* The direct analogue of (1.4) in fluid mechanics is the Korteweg equation (via Madelung
transform): we may have or not have the capillary term (Korteweg or Euler), and we
may add a quantum Navier—Stokes term.

* The existence theory is much easier in the Schrédinger case, (1.4), than for fluids.
Consider the solution u to (1.1), and resume the Madelung transform, now directly

for u:

p=ul®>, j=ImuVu.

The unknown (p, j) solves the Korteweg system:

dip+ V- j. = 0
i +9(E2L) v = 509 (S0).
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provided that we require
-1
i=t o=
y—1 2
The capillarity term (right-hand side of the second equation), involving the term %(%’6),
also known as quantum pressure or Bohm potential in quantum mechanics, can be written

in several fashions, e.g.

pv(%

) =5V 6V Inp) =V (VoY V5~ V58 T Vp)

%VAp —2V - (V/p® V.p).
See for instance [4,30]. Either of these formulas may be used, typically when constructing
solutions to the Korteweg equation, according to the level of regularity considered, and the
presence or absence of vacuum.

When y > 1, the pressure law P(p) = pY corresponds to polytropic fluids, while for
y = 1, the fluid is isothermal. We note that to get a correspondence with fluid mechan-
ics, the nonlinearity in Schrodinger equations comes with some coupling constant A > 0
(defocusing case).

7. The limit y — 1

From the above identification between o and y, passing to the limit y — 1 is clear, at least
formally, in the equations from fluid mechanics. On the other hand, it is not obvious to
determine the “natural” limit for equation (1.1) when 0 — 0. Madelung transform, as we

have seen before, suggests that the “good” limit is
[ul**u — In(|lu|)u aso — 0.

We mention [79], where it is shown that the ground state of

1 20
—3A¢ +0g = [¢¢

converges, as 0 — 0, to the ground state of

1
—380 +0p = glnlgl.

that is, the Gausson (up to invariants). This case, corresponding to the assumption A < 0,
gives more credit to the above discussion.

Apart from this very specific case, it is difficult to give a rigorous meaning to the limit
y — 1, or even construct solutions the case y = 1. In the case of (1.1), we have seen that
the (nonlinear) potential energy is

f 20+2d,
5 [ weopr ax
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and, in the case of (1.4), becomes

/\/ (e, x) 2 (In Ju(t, x)|* = 1) dx.
R4

It has no longer a definite sign. In the fluid case, using the conservation of mass, the
standard entropy in the isothermal case reads

/ p(t,x)Inp(t, x)dx,
R4

and we naturally face the same issue. There is however a major difference regarding the
Cauchy problem: (1.1) is semilinear (for ¢ < 2/(d —2)4, itis solved in H'(R¢) by using
a fixed point argument, and the nonlinearity is viewed as a perturbation, see e.g. [33]),
while the above Korteweg equation is quasilinear (nonlinear terms cannot be viewed as
perturbations, unless one works with analytic regularity). The Cauchy problem is in gen-
eral still a major issue for the equations of compressible fluid mechanics which we now
discuss, in the sense that the optimal assumptions to construct weak solutions are not
always known; see e.g. [71] and references therein. For this reason, we distinguish rigid-
ity results (“if theorem™) and the construction of weak solutions.

On the other hand, the presence of a pressure term of isothermal form in the large time
limit can be guessed as follows. Consider more generally a barotropic (convex) pressure
law P(p), not necessarily equal to p¥. Since the gradient of the pressure is involved, the
value of P(0) is irrelevant from a mathematical point of view, and we assume P (0) = 0.
If the density p is dispersive in the large time limit, then the Taylor expansion of P at zero
determines the large time behavior:

1
P(p) ~ P'(0)p+ =P"(0)p” +---.
p—0 2

If P/(0) > 0, then isothermal effects are present at leading order, while if P’(0) = 0, the
dynamics corresponds to polytropic fluids. This is another way, probably more natural, to
interpret Remark 5.6; see Remark 9.2.

8. Isothermal fluids: setting

From now on, we no longer write any Schrodinger equation, and u denotes the fluid veloc-
ity, whose rigorous definition requires some care (as we have slightly evoked before), and
which corresponds to the momentum divided by the density,

u ==,
I
outside of vacuum, that is for p > 0 (p = 0 in general). We consider
dep+ V- (pu) =0,

2 A 8.1
8,(pu)+V-(pu®u)+V,o=%pV(%)#—vV-(pDu), @.1)
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with a capillarity ¢ = 0, a viscosity v = 0, and where Du = %(Vu + VuT) denotes the
symmetric part of Vu. The first term of the right-hand side corresponds to capillarity
(Korteweg term), and the second is a quantum Navier—Stokes correction, see [24]: contrary
to the Newtonian case involving vAu (see e.g. [40, 66]), the viscosity can be thought of
as linear in p; see [22,23] for more general models and their analysis.

We shall not detail here the notion of solution adopted in [27,29], and present the main
results or ideas in a rather superficial way.

Formally, the mass is conserved in (8.1),

d
E/Rd p(t,x)dx =0,

and the energy

1 2
E@) = —/ olu|*dx + 8—/ |V./p|? dx +/ plnpdx, (8.2)
2 R4 2 R4

satisfies
E@t) = —vf o|Dul|? dx. (8.3)
]Rd

We do not write the dependence of the integrated functions upon (z, x) to shorten nota-
tions.

Remark 8.1 (Explicit solutions). If pg, the initial datum for p, is Gaussian, and if u¢ (ini-
tial velocity) is affine (think of u¢ as the gradient of the argument of a complex Gaussian),
then we have explicit solutions: p(?, -) is Gaussian for all # = 0, u(¢, -) is affine, and their
time-dependent coefficients are given by explicit ordinary differential equations. Surpris-
ingly enough, at leading order, the large time behavior of the solutions to these ordinary
differential equations is independent of ¢, v = 0, and the analysis presented in Section 3 is
generalized in [27].

9. Rigidity in isothermal fluids

The end of the proof of Theorem 5.1 relies on a hydrodynamical approach, suggesting
that some results remain valid if we start from the isothermal Korteweg equation. The
argument presented in Section 5.1.4 suggests that the capillary term has no influence in
the large time behavior at leading order: assuming € > 0 or ¢ = 0 in (8.1) is not expected to
change the large time description. More surprisingly, the presence of the quantum Navier—
Stokes correction has no influence either: we may suppose v = 0 or v > 0.

In view of (5.2) and Madelung transform, we change the unknown functions (p, u)
to (R, U) through the relations

o NS AN
o0 = g R e w0 = 5 gg) + 1% O
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where we denote by y the spatial variable for R and U. The function 7 is the same as in
Theorem 5.1, given by (5.1). The function T is defined by I'(y) = ¢~¥; in other words,
I' = y? as defined in Theorem 5.1. The system (8.1) becomes, in terms of these new
unknowns,

1
T
1
0:(RU) + V- (RU ®U) + 2yR + VR ©9.2)

g2 A~VR v T
= —RV|(—— —V .- (RDU —VR.
272 <«/R)+r2 ( )+vt

We define the pseudo-energy & of the system (9.2) by

1 &2
€t):=— | RIU?+ — VRZ/R2R1R, 9.3
0= 5 [ RUP+ 35 [IVVRP+ [ (R + RIR). ©03)
which formally satisfies

(1)

E(t) = —D(1) —v R(t.y)V-U(t.y) dy. 9.4)
(1)}
where the dissipation D (7) is defined by
D(1) = i3/R|U|2 +ezi3/|vﬁ|2+ %/RUDUF. 9.5)
T T T

Mimicking the proof of Lemma 5.8, it is natural to expect that each term in & is bounded
(recall that & is not signed, because of the logarithm), and that € is integrable. This is
formally a natural assumption, but as the Cauchy problem is a delicate issue, the following
result remains an “if theorem” in most cases.

Theorem 9.1 ([27]). Lete,v = 0, and let (R, U) be a global weak solution of (9.2).
(1) If [;° D(1)dt < oo, then

/ YR(t,y)dy — 0 and ‘/ (RU)(t,y)dy‘ — 00,
R4 {00 R4 t—00

unless
/ VR0, y) dy = / (RU)(0. y)dy =0,

a case where

/ YR(t.y) dy =f (RU)(t.y) dy = 0.
]Rd ]Rd

(2) Ifsup,>o €(t) + fooo D(1)dt < oo, then R(t,-) — T weakly in L*(R?) as t — oo.

(3) Ifsup,5¢ €(t) < oo and the energy E defined by (8.2) satisfies E(t) = o(Int) as
t — oo, then

/ IyIZR(t,y)dy—>/ |y[*T'(y) dy.
Rd t—>00 R4
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Essentially, the proof is based on arguments similar to those sketched in Section 5.1.
As evoked above, it is a bit of a surprise that the Navier—Stokes term goes through the
arguments, and we refer to [27] for details.

Remark 9.2. In the same spirit as the discussion at the end of Section 7, the pressure
law considered in [27] is more general than exactly isothermal: we assume that P €
C1([0,00[;R4) N C?(]0,00[; R4 ), and P is convex, with P’(0) > 0.

10. On the existence of weak solutions

As already evoked, constructing solutions in compressible fluid mechanics is a difficult
question. In the polytropic Euler equation (y > 1), a suitable change of unknown function
(consider p"~1/2 instead of p) makes the system hyperbolic symmetric, so the Cauchy
problem can be solved in Sobolev spaces with sufficiently high regularity, but finite time
blow-up occurs, typically when starting from smooth, compactly supported data, [35,67].
Global, smooth solutions are constructed for suitable affine velocities: [49,74]. In the case
of Korteweg equation, the link with nonlinear Schrédinger equations has been exploited
in [14], leading to further developments, e.g. [4,5, 9, 10]. In the presence of the quan-
tum Navier—Stokes correction, many results are available, regarding the existence of weak
solutions, still for y > 1; see e.g. [20,46,47,62,64,76], and [71] for a survey. However,
in the isothermal case y = 1, far less is known: we refer to [65] for the one-dimensional
Euler equation, [62] for the quantum Navier—Stokes on T4 ford < 2.

In [29], we construct weak solutions to (8.1) in the presence of viscosity, v > 0. We
emphasize two aspects in this construction, which seem to be the most important contri-
butions of this work:

«  We consider solutions on the whole space R?, while most of the previous references
assume a periodic setting, x € T¢ (x € R in [65]).

*  We gain positivity properties by working on the intermediary system (9.2).

Both points are intimately connected, as the change of unknown functions (9.1) involves
a time-dependent rescaling. The reasons why most of the references consider the peri-
odic setting x € T? seem to be mostly that compactness in space then comes from free,
and integrations by parts can be performed freely. The periodic case is also rather conve-
nient for approximating, among others in Lebesgue spaces, the initial density by a density
bounded away from zero, a step which would require some modification on R¥. Note also
that this property is classically propagated by the flow in a suitable regularized continuity
equation (see e.g. [40,62]), and such a property is needed in the presence of cold pressure
and regularizing terms (see e.g. [47,77]).

For these reasons, to construct a solution (R, U) to (9.2) on Rd, we first replace R4
with a periodic box T Lfi of size £ > 0, where £ is aimed at going to infinity at the last step
of the proof.
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We refer to [29] for the details, and conclude this section by pointing out another
important tool, which has proven very useful in the context of compressible Navier—
Stokes equations with a density-dependent velocity, known as BD-entropy, after [19,21].
It involves an effective velocity, which reads U + vV In R in the case of (9.2):

1
En(R.U) = 5 /W(RW +vViog RI> + e2|[VVR?) + /Rd(R|y|2 + RlogR).

The evolution of this BD-entropy is given formally, for ¢ = 0, by

Ean(R.U)(0) + / Dun(R. U)(s) ds
0

t2d t
= Egp(Ro, Up) +v | — R+v | — RV-U, (10.1)
0o T2 Jrd o 13 Jra

where the above dissipation is defined by

Dep(R.U) = %/(R|U|2+82|V«/R|2) + 14/ RIAUP
T T R4
10.2
ve? ) , v ) (10.2)
T T

with AU := %(VU — VUT) the skew-symmetric part of VU . Hence, putting together the
energy and the BD-entropy equalities, it holds that

8(r>+8w(r)+/0(:o(s)u)BD(s))ds=8(0)+8BD(0>+V/0 i—f/RR (30,

Thanks to the conservation of mass and the fact that f0°° 772(t) dt < oo, the last term is
uniformly bounded.

Theorem 10.1 ([29]). Assume v>0, =0. Let (v/Ro, Ao = (v/RU)o) € L2 (R%)x L>(R¢)
satisfy &(0) < oo, Egp(0) < 0o, as well as the compatibility conditions

VRo =0ae onR?, (VRU)y=0a.e on{y/Ro=0)}.

There exists at least one global weak solution to (9.2), which satisfies moreover the energy
and BD-entropy inequalities: There exist absolute constants C, C' such that, for almost
allt = 0, there holds

8(1) + /Ol D(s)ds < C(E(0)), (10.3)

t
Esp(t) + /0 Dan(s)ds < C'(E(0), Ean(0)). (10.4)

with &, D, Egp, Dpp defined as in (9.3), (9.4), (10.1), (10.2).

This result implies existence results for (8.1), see [29]. Note however that this approach
does not seem to provide any relevant information regarding the energy (8.2).
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11. From isothermal to polytropic

The method of proof developed to study (1.4) and (8.1) turns out to bring some information
in the case of (1.1) and polytropic fluids, as shown in [28]. Replace (5.1) with

o .

TZW, T(O)Z 1, T(O)ZO (111)

We note that this ordinary differential equation was already considered in [36], in a context

very similar to the Schrodinger equation considered in [28], for a different study. The large
time behavior of t turns out to be independent of o > 0.

Lemma 11.1. Let o > 0. The ordinary differential equation (11.1) has a unique, global,
smooth solution t € C*°(R;R4). In addition, its large time behavior is given by

t(t) — 1, hencet(t) ~ t.
t—00 t—>00

We see that the value of the parameter « > 0 does not influence the large time behav-
ior, at leading order. And in view of Theorem 5.1, the behavior changes for o« = 0 (if the
numerator in (11.1) is not canceled!), by a logarithmic factor (which turns out to be the
key of e.g. Corollary 5.2). All the algebra presented so far can then be resumed: we change
unknown functions as in (5.2) and (9.1), and obtain equations analogous to (5.5) and (9.2).
The choice of « is suggested by the value of o (or, equivalently, y). Informally, the main
result for fluid dynamics in [28] is again an “if theorem”, as in [27]: every solution to the
analogue of (9.2), where, among others, VR is replaced by V R?, satisfying suitable con-
ditions, has an asymptotic profile, that is, there exists Roo € P(R¥) the set of probability
measures on Rd, with two finite momenta, such that

R(t,) =~ Rs in P(Rd) ast — o0.

We have in addition R € L'(R?) (at least) in the following cases:
e g=v=0andl<y<1+4+2/d,

e ¢>0,v=0andy > 1,

e g=20,v>0andl <y <1+1/d.

The results of [49, 74] in the case of the Euler equation (¢ = v = 0) and the scattering
results for the nonlinear Schrodinger equation (for the Korteweg equation ¢ > 0 = v)
show that unlike what has been established in the isothermal case, the profile R, is not
universal.
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