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Analysis on quasidisks: A unified approach through
transmission and jump problems

Eric Schippers and Wolfgang Staubach

Abstract. We give an exposition of results from a crossroad between geometric function theory,
harmonic analysis, boundary value problems, and approximation theory, which characterize quasi-
circles. We will specifically expose the interplay between the jump decomposition, singular integral
operators, approximation by Faber series, and the Grunsky inequalities. Our unified point of view is
made possible by the concept of transmission.

1. Introduction

A quasiconformal map in the plane is a homeomorphism between planar domains which
maps small circles to small ellipses of bounded eccentricity. A quasicircle is by definition
the image of the circle S1 under a quasiconformal map and a quasidisk is the interior
of a quasicircle. In geometric function theory quasicircles play a fundamental role in the
description of the universal Teichmüller space. They also play an important role in com-
plex dynamical systems. The reader is referred to the book by F. Gehring and K. Hag [25]
for a nice introduction to various ramifications of this topic.

It is a familiar fact in the field that quasicircles have an unusually large number of
characterizations which are not obviously equivalent, and indeed are qualitatively quite
different. See e.g. [25, Chapters 8,9] for some of the classical and also some less well-
known ones. It is somewhat astonishing that these continue to be found. In this paper,
we will focus on the relatively recent ones due to A. Çavuş [16], Y. Y. Napalkov and
R. S. Yulmukhametov [41], Y. Shen [60], and the authors [53, 55]. Indeed, our purpose
here is to highlight a characterization based on an interplay between geometric function
theory, harmonic analysis, boundary value problems and approximation theory. This point
of view was investigated by the authors in a series of papers, and in these works, it emerged
that the key to a unified approach is the method of transmission of harmonic functions (or
forms).

The goal of this paper is to give an essentially self-contained exposition of this circle
of ideas and the method of transmission, not least because of its potential applications
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outside geometric function theory. In doing so we have also refined and improved many
of our theorems in previous papers.

To define the notion of transmission, let � be a Jordan curve separating the Riemann
sphere xC into two components �1 and �2. Given a harmonic function h on �1 which
extends continuously to � , there is a harmonic function on �2 with the same continuous
extension on � . We call the new function the transmission of h. We generalize the concept
of transmission to Dirichlet bounded harmonic functions. For such harmonic functions,
the transmission exists and is bounded with respect to the Dirichlet semi-norm if and only
if the curve � is a quasicircle.

Returning to the problem of characterization of quasicircles, it came to light that in
the setting of Dirichlet bounded harmonic functions, a number of perfect equivalences
arise. To begin with, given a Jordan curve � as above, the following three statements are
equivalent.

(1) � is a quasicircle.

(2) There is a transmission from the Dirichlet space of harmonic functions on �1 to
the Dirichlet space of harmonic functions on �2, which is bounded with respect
to Dirichlet energy and agrees with transmission of continuous functions.

(3) The linear operator taking the boundary values of a Dirichlet bounded harmonic
function to its Plemelj–Sokhotski decomposition is a bounded isomorphism.

We also show that the jump formula holds up to constants for quasicircles. These results
are due to the authors [53, 55].

The first three equivalent statements also are closely related to approximability by
Faber series, the Faber and Grunsky operators, and the Schiffer operator. We thus have the
following further equivalent statements. Attributions in brackets refers to the first proofs
of the equivalence with (1), unless clarified below.

(4) The Faber operator corresponding to �2 is an isomorphism (authors [55]).

(5) The sequential Faber operator is an isomorphism (Çavuş [16], Shen [60]).

(6) Every element of the holomorphic Dirichlet space of�2 is uniquely approximable
by a Faber series (Çavuş [16], Shen [60]).

(7) The Schiffer operator is an isomorphism (Napalkov and Yulmukhametov [41]).

The implications (1)) (5) and (1)) (6) are due to Çavuş [16], and later independently
by Shen [60], while the reverse implications are due to Shen.

The characterization (7) is due to Napalkov and Yulmukhametov [41]. It was proven
independently by the authors [55], using our characterization (4). Unfortunately we were
not aware of the results of Napalkov and Yulmukhametov. We made use instead of the
result of Shen. In some sense, transmission provides a bridge between the result (7) of
Napalkov and Yulmukhametov [41] and (5) of Çavuş [16] and Shen [60], by making it
possible to replace the sequential Faber operator with the Faber operator for non-rectifiable
curves. For the special case of rectifiable Jordan curves, the equivalence of (1) and (2) is
due to H. Y. Wei, M. L. Wang, and Y. Hu [69].
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Finally, all of these results are closely connected to the classical result that � is a
quasicircle if and only if:

(8) The norm of the Grunsky operator is strictly less than one.

The implication (1)) (8) is due to R. Kühnau [33] and (8)) (1) is due to C. Pommer-
enke [43]. In the literature, all proofs of the implication (k) ) (1) for k D 4; : : : ; 7

(including those due to the authors) rely on the result Pommerenke’s converse to the strict
Grunsky inequalities (8)) (1). We give alternate proofs in this paper which use transmis-
sion only. Our present proofs in the reverse direction (that (1) implies (2) through (7)) also
differ from previous ones given by the authors. We first applied this alternate approach
in [56] in the case of Jordan curves on Riemann surfaces.

In order to define the transmission in a sensible way, some notion of boundary values
is necessary. To this end we also include an exposition of a conformally invariant notion
of non-tangential boundary value, which we call conformally non-tangential (CNT for
short). This was developed by the authors for Jordan curves in Riemann surfaces [57]. The
existence of such boundary values for the Dirichlet space of a simply connected domain
is an automatic consequence of a well-known result of A. Beurling. On the other hand, it
is not true in general that the boundary values of a harmonic function in one connected
component of the complement of � are boundary values of a harmonic function in the
other component. Even potential-theoretically negligible sets are not obviously the same:
for example, sets of harmonic measure zero with respect to one side are not necessarily
harmonic measure zero with respect to the other, even for quasicircles. We resolve these
issues and give a general framework for the application of the CNT boundary values to
sewing and transmission. Aside from the bounded transmission theorem mentioned above,
the most important of these results are:

(i) for quasicircles, the potential-theoretically negligible sets on the boundary of �1
are also negligible for �2;

(ii) the operator (what we call the bounce operator) taking a Dirichlet-bounded har-
monic function on a doubly-connected region in �1, one of whose boundaries
is � , to the harmonic function on �1 with the same boundary values, is bounded
for any Jordan curve;

(iii) limiting integrals taken over level curves of Green’s function are the same for any
two Dirichlet bounded harmonic function in a collar near � which have the same
CNT boundary values (the anchor lemma).

The precise statements are given in Theorems 2.20, 4.6, and Theorem 4.10, respectively.
To conclude, we strive in this paper to show the clarifying power of the transmis-

sion theorem for understanding approximation by Faber series, the Grunsky operator, the
Plemelj–Sokhotski jump theorem, and Schiffer operators. The results should have many
applications in the investigation of the behaviour of function spaces, boundary value prob-
lems, and related operators under sewing. The results here are also the basis for a scattering
theory of harmonic functions and one-forms for general Riemann surfaces [58].
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The paper is organized as follows. In Section 2, we state necessary definitions and
results regarding conformally non-tangential boundary values of Dirichlet bounded func-
tions. After preliminaries on the Dirichlet and Bergman space, and quasisymmetric map-
pings in Sections 2.1 and 2.2, we define certain potential-theoretically negligible sets on
a Jordan curve � with respect to the enclosed domain in Section 2.3, which we call null
sets, and derive their basic properties. A particularly crucial fact is that, in the case that the
Jordan curve is a quasicircle, sets that are null with respect to one of the regions enclosed
by � are also null with respect to the other. In fact, for quasicircles not containing1, null
sets in � are precisely Borel sets of capacity zero. After reviewing some basic results on
boundary values of the Dirichlet space of the disk in Section 2.4, we give the definition
and basic properties of CNT boundary values in Section 2.5.

Section 3 contains the first of the main results, namely (1), (2): a Dirichlet-bounded
transmission exists on Dirichlet space if and only if � is a quasicircle. Section 3.1 reviews
some known theorems which characterize quasisymmetries in terms of their action on the
homogeneous Sobolev spaceH 1=2, and a reformulation in terms of CNT boundary values
up to null sets. This refinement is necessary because sets of harmonic measure zero on a
quasicircle with respect to one side of a curve – which are the images of sets of Lebesgue
measure zero on the circle under a conformal map – need not be of harmonic measure
zero with respect to the other side of the curve. Thus, null sets are necessary. Section 3.2
contains the transmission result.

In Section 4, we establish several useful results regarding boundary values and integ-
rals. We prove that the so-called bounce operator described in the introduction is bounded.
We also prove the “anchor lemma”, which shows that certain limiting integrals taken over
curves approaching the non-rectifiable Jordan curve depend only on the CNT boundary
values. Finally, we give a few useful dense subsets of Dirichlet spaces on simply- and
multiply-connected domains. These ultimately rely on density of polynomials.

Section 5 contains the main results on Plemelj–Sokhotski jump isomorphism and
Schiffer isomorphism, that is .1/, .3/, .7/. Section 5.1 defines the Schiffer oper-
ator and proves basic analytic results, Möbius invariance, and an identity of Schiffer.
Section 5.3 defines a Cauchy integral operator adapted to non-rectifiable curves using
limits of integrals over curves approaching the boundary. We show that for quasicircles
the value of this operator is the same up to constants for curves approaching � over either
side, in a certain sense involving transmission. We also prove basic identities relating the
Cauchy integral operator to the Schiffer operators, and the Möbius invariance of the oper-
ator. Section 5.3 contains the main results which show that the Plemelj–Sokhotski jump
decomposition exists when � is a quasicircle, and in a certain sense this decomposition is
an isomorphism if and only if � is a quasicircle. We also give a new proof of Napalkov and
Yulmukhametov’s result that the Schiffer operator is surjective (and hence an isomorph-
ism) if and only if � is a quasicircle.

In Section 6 we prove that the Faber operator is an isomorphism if and only if � is a
quasicircle, as well as the existence and uniqueness of Faber series; that is, (1), (4),
(5), (6). We also give a brief review of the equivalence with strict Grunsky inequalities.
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Finally, we would like to mention that, we make no claims to completeness in terms
of the inclusion of all the related literature, and indeed we merely indicate the tip of the
literary iceberg.

2. Function spaces and boundary values

2.1. Dirichlet and Bergman spaces

We denote the complex plane by C and the Riemann sphere by xC. We define

DC D ¹z 2 C W jzj < 1º

and also
D� D ¹z 2 C W jzj > 1º [ ¹1º:

The circle @DC D ¹z 2 C W jzj D 1º is denoted S1 and a standard annulus is defined by

Ar D ¹z 2 C W r < jzj < 1º:

In what follows, we shall sometimes write a . b as shorthand for a � Cb, where C
is a constant. In general, the value of C in the estimates may differ from line to line, but
in each instance could be estimated if necessary. Also if a . b and b . a then we write
a � b.

In this paper, a conformal map is always assumed to be one-to-one (not just locally
one-to-one). That is, a conformal map is a biholomorphism onto its image.

The Riemann sphere xC is endowed with the standard complex structure given by the
charts

 0WC ! C;  0.z/ D z;

 1W xCn¹0º ! C;  1.z/ D 1=z; z ¤1;  1.1/ D 0;

and holomorphicity or harmonicity is defined with respect to these charts. That is, let �
be an open connected set in xC. A function h is holomorphic on � if (1) it is holomorphic
on xCn¹1º and (2) if 1 2 �, then g.z/ D f .1=z/ is holomorphic in a neighbourhood
of 0. Anti-holomorphic and harmonic functions on � are defined similarly.

We will also consider smooth one-forms on subsets of xC, where these are defined in
the usual way in terms of the Riemann surface structure of xC. Any one-form ˛ is given
in local coordinates by h1.z/ dz C h2.z/ dxz for smooth functions h1.z/ and h2.z/. A
one-form ˛ on � is said to be holomorphic if it can be expressed in local coordinates z
as h.z/ dz where h.z/ is holomorphic. That is, ˛ D a.z/ dz on �n¹1º, and if1 2 �,
then b.w/ D �a.1=w/=w2 is holomorphic in an open set containing 0 (so that in a chart
at1, we may write ˛ D b.w/ dw). A one-form is anti-holomorphic if it is the complex
conjugate of a holomorphic one-form.
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We also define the �-operator as follows. If ˛D h1.z/dzC h2.z/dxz in local coordin-
ates we define

�˛ D �.h1.z/ dz C h2.z/ dxz/ D �ih1 dz C ih2 dxz:

It is easily checked that this is well-defined with respect to the change of coordinates
z D  0 ı  

�1
1 .w/ D 1=w.

Define

k˛k2� D
1

2�

“
�

˛ ^ �x̨; (2.1)

which might of course diverge. Since any smooth one-form ˛ on� can be written (unique-
ly) in z coordinates as

˛ D h1.z/ dz C h2.z/ dxz (2.2)

for smooth functions h1 and h2, then if in (2.2) z is the parameter in C (that is, in  0
coordinates), then (2.1) can be written as

k˛k2� D
1

�

“
�n¹1º

�
jh1.z/j

2
C jh2.z/j

2
�
dA; (2.3)

where dAD .dxz ^ dz/=2i is the Euclidean area element in C. This is justified as follows:
when1 2 �, if k˛k2� <1 then there is an R such that“

jzj>R

�
jh1.z/j

2
C jh2.z/j

2
�
dA <1:

Thus, the point at1 can be removed from the domain of integration without changing the
convergence properties or value of the integral.

Definition 2.1. A smooth one-form ˛ is said to be harmonic if d˛ D 0 and d � ˛ D 0;
equivalently, for any point p 2 �, ˛ D dh for some harmonic function h on some open
neighbourhood of p. Note that if 1 2 �, this restricts the behaviour of ˛ at 1 since
h.1=z/ must be harmonic at 0.

We then define the space of L2 harmonic one-forms Aharm.�/ to consist of those
harmonic one-forms ˛ on � such that k˛k� < 1. This is a Hilbert space with inner
product

.˛; ˇ/ D
1

2�

“
�

˛ ^ � x̌; (2.4)

which is also consistent with (2.1). The Bergman space of one-forms is

A.�/ D ¹˛ 2 Aharm.�/ W ˛ is holomorphicº;

and for ˛ D h1.z/ dz, ˇ D h2.z/ dz 2 A.�/, we have

.˛; ˇ/ D
1

�

“
�n¹1º

h1.z/ h2.z/ dA:
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The anti-holomorphic Bergman space A.�/ consists of complex conjugates of elements
of A.�/.

Observe that A.�/ and A.�/ are orthogonal with respect to the inner product. We
then obtain the decomposition

Aharm.�/ D A.�/˚A.�/;

which induces the projection operators

P.�/WAharm.�/! A.�/;

P.�/WAharm.�/! A.�/:
(2.5)

Definition 2.2. For an open connected set � and a smooth function hW�! C we define
the Dirichlet energy of h by

D�.h/ D kdhk
2
�: (2.6)

The harmonic Dirichlet space Dharm.�/ consists of those harmonic functions h on� such
that D�.h/ <1.

If z is the coordinate in C then (2.6) can be written as

D�.h/ D
1

�

“
�n¹1º

�ˇ̌̌@h
@z

ˇ̌̌2
C

ˇ̌̌@h
@xz

ˇ̌̌2�
dA: (2.7)

The holomorphic Dirichlet space D.�/ is the set of holomorphic functions in Dharm.�/,
and the anti-holomorphic Dirichlet space D.�/ is given by the set of complex conjugates
of elements of D.�/. The Dirichlet energy on D.�/ restricts to

D�.h/ D
1

�

“
�n¹1º

jh0.z/j2 dA;

and similarly for D.�/. Observe that Dharm.�/ does not decompose into a sum of ele-
ments of D.�/ and D.�/ unless � is simply connected (and even in that case, the
decomposition is not unique because constants belong to both spaces).

Note also that the Dirichlet energy is not a norm, since D.c/ D 0 for constants c. If
we define the homogeneous Dirichlet spaces

PDharm.�/ D Dharm.�/= �;

where we say that h1 � h2 if h1 � h2 is constant, then this is a normed space, with norm

khk PDharm.�/
D .D�.h//

1=2:

For simply-connected domains d W PDharm.�/! Aharm.�/ is an isometry.
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In general, if we mod out additive constants, we will denote the corresponding space
with a dot. If an operator LWDharm.�1/ ! Dharm.�1/ passes down to a well-defined
operator from PDharm.�1/ to PDharm.�2/, we will denote it by PL, and similarly for any
other dotted spaces.

To equip the harmonic Dirichlet space with a norm, one could proceed as follows.
Given h 2 Dharm.�/, for fixed p 2 � we define the pointed Dirichlet norm

khk2Dharm.�;p/
D kdhk2� C jh.p/j

2: (2.8)

One immediately sees that the pointed Dirichlet norm is conformally invariant in the
sense that if f is a holomorphic bijection onto its image and f .p/ D q then

kh ı f kDharm.�;p/ D khkDharm.f .�/;q/:

Furthermore, an elementary argument shows that for any p; q 2 D

khkDharm.DC;p/ � khkDharm.DC;q/:

For this reason, we will drop the point in the notation for the norm and simply write
k � kDharm.�/. From these two facts, it is easily deduced that (1) composition by a bijective
Möbius transformation T WD ! D is a bounded isomorphism of the pointed Dirichlet
space for any fixed p, and (2) if f W�! �0 is holomorphic, then

Cf WDharm.�
0/! Dharm.�/;

h 7! h ı f

is bounded, and if f is furthermore a bijection, then Cf is a bounded isomorphism.
If one restricts to normalized functions h.p/ D 0 for some p 2 �, then we use the

notation Dp.�/; in this case the D�.h/1=2 is a genuine norm.
Finally, for a domain G in the plane, with boundary � , we also define the Sobolev

spaces H 1.G/ and H 1=2.�/.

Definition 2.3. The Sobolev space H 1.G/ consists of functions in L2.G/ such that

khkH1.G/ WD
�
DG.h/C khk

2
L2.G/

�1=2
<1: (2.9)

For any p 2 DC and h 2 Dharm.DC/, it is known that

khkH1.DC/ � khkDharm.DC;p/; (2.10)

with the norm of the right-hand side defined as in (2.8). One can also show that the result
remains true for domains with sufficiently regular boundary. However, note that this is not
true for general Jordan domains.

If the boundary � is regular enough then one can also take the restriction (trace) of
an H 1.G/-function to � , which yields a function hj� 2 H 1=2.�/ where H 1=2.�/ is the
space of functions in L2.�/ for which

kf kH1=2.�/ WD

�Z
�

Z
�

jf .z/ � f .�/j2

jz � �j2
jdzj jd�j C kf k2

L2.�/

�1=2
<1; (2.11)
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see [65, Chapter 4] for all the details regarding Sobolev spaces. We will reserve the use of
Sobolev spaces for DC, so that � D S1 and the above boundary trace is defined.

The homogeneous Sobolev space PH 1=2.S1/ is defined as the space of measurable
functions f WS1 ! R such that the seminorm

kf k PH1=2.S1/ D

�Z
S1

Z
S1

jf .z/ � f .�/j2

jz � �j2
jdzj jd�j

�1=2
;

is finite.
By a Jordan curve � in xC, we mean the image of S1 under a continuous map into xC

which is a homeomorphism onto its image. Equivalently, it is the image of a Jordan curve
in the plane under a Möbius transformation. Now given a Jordan domain � � xC, let
g�.z; w/ denote Green’s function of �, that is, the harmonic function in z on �n¹wº
such that g�.z; w/C log jz � wj is harmonic near w and whose limit as z ! z0 is zero
for any point z0 on the boundary of �.

Definition 2.4. Let � be a Jordan curve bounding a Jordan domain � in xC. A collar
neighbourhood of � in � is a set of the form

Ap;r D f .Ar /;

where f WDC ! � is a biholomorphism such that f .0/ D p.

Setting A D Ap;r , we define a norm on Dharm.A/ as follows. Let g� be Green’s func-
tion of � with singularity at f .0/. Let n be the outward unit normal, and ds denote the
integral with respect to arc length, and set

yh.0/ D � lim
r%1

1

2�

Z
f .jzjDr/

h.�/
@g�

@n
.�/ ds: (2.12)

We can also write the integrand as h.�/ � dg�.�/. Then we define

khk2Dharm.A/
D kdhk2A C j

yh.0/j2: (2.13)

Note that the norm depends on the choice of curve � towards which we take the limit.
This is a norm, since it is easily seen that

khC gkDharm.A/ � khkDharm.A/ C kgkDharm.A/;

kc hkDharm.A/ D jcjkhkDharm.A/

for any constant c, and if khkDharm.A/D 0 then dhD 0 and yh.0/D 0, from which it follows
that h D 0. Moreover, one has that

khk2Dharm.A/
D kh ı f k2Dharm.Ar /

� kh ı f k2
H1.Ar /

� khk2
H1.A/

: (2.14)

Occasionally, we will say that a linear map L of Dirichlet spaces is “bounded with
respect to Dirichlet energy”, which means that we have an estimate of the formD.Lf / �
CD.f /; this is of course not a norm estimate. When we say that a linear map is bounded,
we always mean that it is bounded with respect to the corresponding norm.
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2.2. Quasisymmetries and quasiconformal maps

In this section we review definitions and results about quasisymmetries and quasicon-
formal maps.

Definition 2.5. Let A and B be open connected subsets of the complex plane. An orien-
tation-preserving homeomorphism ˆWA! B is a k-quasiconformal mapping if:

(1) for every rectangle Œa; b� � Œc; d � � A, ˆ.x; �/ is absolutely continuous on Œc; d �
for almost every x 2 Œa; b�;

(2) for every rectangle Œa; b� � Œc; d � � A, ˆ.�; y/ is absolutely continuous on Œa; b�
for almost every y 2 Œc; d �;

(3) there is a k 2 .0; 1/ such that jˆxzj � kjˆzj almost everywhere in A.

We say that a map is quasiconformal if it is k-quasiconformal for some k 2 .0; 1/.

Define

�WCn¹0º ! Cn¹0º;

z 7! 1=z:

Let A and B be open connected subsets of xC. We say that a homeomorphism ˆWA! B

is a k-quasiconformal mapping if

ˆ; � ıˆ; ˆ ı �; and � ıˆ ı �

are all k-quasiconformal on their maximal domains of definition; as above, we say that ˆ
is quasiconformal if it is k-quasiconformal for some k. If A;B ¨ xC then ˆ is quasicon-
formal if, given Möbius transformations S and T such that S.A/ � C and T .B/ � C,
T ıˆ ı S�1 is quasiconformal from S.A/ to T .B/.

Similarly, for open connected setsA;B � xC we say that a map f WA!B is conformal
if

f; � ı f; f ı �; and � ı f ı �

are all conformal on their maximal domains of definition. Conformal maps are 0-quasicon-
formal onto their image, and it can be shown that 0-quasiconformal maps are conformal
(see e.g. [2]). Furthermore, if ˆWA! B is quasiconformal and gWA0 ! A is conformal
then ˆ ı gWA0 ! B is quasiconformal, and if f WB ! B 0 is conformal, then f ı ˆ is
quasiconformal. If C is any open connected subset of A, then the restriction of ˆ to C is
a quasiconformal map onto ˆ.C/.

Remark 2.6. Any quasiconformal map ˆW C ! C extends to a quasiconformal map
from xC to xC, which takes1 to1 [36, Theorem I.8.1].

Definition 2.7. An orientation-preserving homeomorphism h of S1 is called a quasisym-
metric mapping, iff there is a constant k > 0, such that for every ˛, and every ˇ not equal
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to a multiple of 2� , the inequality

1

k
�

ˇ̌̌̌
h.ei.˛Cˇ// � h.ei˛/

h.ei˛/ � h.ei.˛�ˇ//

ˇ̌̌̌
� k

holds.

Let QS.S1/ denote the set of quasisymmetric maps from S1 to S1. Then QS.S1/ con-
sists precisely of boundary values of quasiconformal maps, as the following two theorems
show.

Theorem 2.8. Let ˆWDC ! DC be a quasiconformal map. Then ˆ has a continuous
extension to S1 [DC, and the restriction of this extension to S1 is a quasisymmetry. Con-
versely, if �WS1! S1 is a quasisymmetry, then � is the restriction to S1 of the continuous
extension of a quasiconformal map ˆWDC ! DC. In the above, one may replace DC

everywhere by D� and the result still holds.

Proof. By reduction of the problem to the upper-half plane using the conformal equival-
ence of the unit disk and the former, this is just Ahlfors–Beurling’s result in [13].

Definition 2.9. A Jordan curve � in xC is a quasicircle if and only if it is the image of S1

under a quasiconformal map ˆW xC ! xC. We say that a Jordan domain is a quasidisk if its
boundary is a quasicircle.

Example 2.1. It is known that quasicircles can arise as the Julia sets of rational maps.
Another well-known example is von Koch’s snowflake. See [25] for more information
regarding quasidisks and quasicircles.

Quasidisks have the following important property [25, Corollary 2.1.5].

Theorem 2.10. Let� be a quasidisk. If f WD˙!� is a biholomorphism, then f extends
to a quasiconformal map of xC.

One of the main tools in this paper is the conformal welding theorem.

Theorem 2.11 (Conformal welding theorem). For any quasisymmetry �WS1! S1, there
are conformal maps f WDC ! C and gWD� ! xC, with the following properties:

(1) f and g are quasiconformally extendible to xC (so that, in particular,�CDf .DC/
and �� D g.D�/ are quasidisks);

(2) @f .DC/ D @g.D�/, where @ denotes the boundary; and

(3) � D .g�1 ı f /jS1 .

If we specify the normalization f .0/ D 0, g.1/ D1, and g0.1/ D 1, then f and g are
uniquely determined.

The normalization above can be replaced with any three normalizations in the interior
of the domains of f or g if desired.
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2.3. Null sets

In this section, we define null sets, which are potential-theoretically negligible sets on
the boundary of a Jordan domain. That is, in specifying a harmonic function of bounded
Dirichlet energy on a Jordan domain by its boundary values, changes to (or non-existence
of) the boundary values on null sets have no effect. We will see that in the special case
that the Jordan domain is bounded by a quasicircle, null sets are those sets of logarithmic
capacity zero.

We first recall the definition of logarithmic capacity [3, 47]; we follow [47].

Definition 2.12. Let � be a finite Borel measure in C with compact support. The potential
of � is the function

p�.z/ D

“
C

log jz � wj d�.w/:

The energy of � is then defined to be

I.�/ D

“
p�.z/ d�.z/:

The equilibrium measure of a compact set K is the measure � such that

I.�/ D sup
�2P .K/

I.�/;

where P .K/ is the set of Borel probability measures on K. Every compact set possesses
an equilibrium measure [47, Theorem 3.3.2]. Now the logarithmic capacity of a setE �C
is defined as

c.E/ D sup
�2P .K/

K�E compact

eI.�/:

For compact sets K, we have

c.K/ D eI.�/;

where � is the equilibrium measure of K.
We say a property holds quasi-everywhere if it holds except possibly on a set of log-

arithmic capacity zero.

Remark 2.13. If a property holds quasi-everywhere, it holds almost everywhere, but the
converse is not true.

In what follows we will often drop the word “logarithmic” and use simply the word
“capacity”.

The outer logarithmic capacity of a set E � C [21] is defined as

c�.E/ D inf
E�U�C
U open

c.U /:

By Choquet’s theorem [17, 47], for any bounded Borel set E, c.E/ D c�.E/.
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Lemma 2.14. Every bounded set of outer capacity zero in C is contained in a Borel set
of capacity zero.

Proof. Let F be a set of outer capacity zero. Thus, there are open sets Un, n 2 N, con-
taining F such that c.Un/ < 1=n. We can choose these sets such that UnC1 � Un for
all n, by replacing Un with U 0n D \

n
kD1

Uk if necessary, and observing that by [47, The-
orem 5.1.2 (a)], c.U 0n/ � c.Un/ < 1=n since U 0n � Un.

The set V D \1nD1Un is a Borel set containing F . Since V � Un for all n 2 N, again
applying [47, Theorem 5.1.2 (a)] we see that c.V / < 1=n for all n 2 C, so c.V / D 0.

Quasiconformal maps preserve compact sets of logarithmic capacity zero. We are
grateful to M. Younsi for suggesting the proof below.

Lemma 2.15. LetK �C be compact. Let U be an open set containingK and f WU ! V

be a homeomorphism onto the open set V � C, which is Hölder continuous of exponent
˛ > 0. If K has capacity zero, then f .K/ also has capacity zero.

Proof. Let � be a probability measure with support in f .K/. If we define the Borel prob-
ability measure � D f �.�/ by �.A/ D �.f .A//, then

I.�/ D

“
V

“
V

log jz � wj d�.z/ d�.w/ D
“
U

“
U

log jf .z/ � f .w/j d�.z/ d�.w/

D

“
U

“
U

log
jf .z/ � f .w/j

jz � wj˛
d�.z/ d�.w/C ˛I.�/:

Since the capacity ofK is zero, I.�/D�1. Moreover, the Hölder-continuity of f means
that jf .z/� f .w/j �M jz �wj˛ , which yields I.�/ D �1. Now since � was arbitrary,
f .K/ has capacity zero.

From this, we obtain the following lemma.

Lemma 2.16. Let E � C be a bounded Borel set. Let f WC ! C be a homeomorphism
which is Hölder continuous of exponent ˛ > 0. If E has capacity zero, then f .E/ has
capacity zero.

Proof. By [47, Theorem 5.1.2(b)], we have

c.f .E// D sup
K�f .E/
K compact

c.K/ (2.15)

(indeed, this follows directly from the definition of capacity). Thus, if f .E/ does not have
capacity zero, there is a compact set K � f .E/ such that c.K/ > 0. Since f is a homeo-
morphism, f �1.K/ is a compact subset of E, so by the previous lemma c.f �1.K// > 0.
Applying (2.15) again with E in place of f .E/ we see that c.E/ > 0, a contradiction.
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In particular, quasiconformal maps preserve bounded Borel sets of capacity zero, since
they are uniformly Hölder on every compact subset [36, p. 71].

Corollary 2.17. Let �W S1 ! S1 be a quasisymmetry. Then I � S1 is a Borel set of
logarithmic capacity zero if and only if �.I / is a Borel set of logarithmic capacity zero.

Proof. By the Beurling–Ahlfors extension theorem (Theorem 2.8), � has a quasicon-
formal extension ‰WD ! D. In fact, this extends to a quasiconformal map of the plane
via

ˆ.z/ D

´
‰.z/ z 2 cl D;

1=‰.1=xz/ z 2 Cncl D:

Since a quasiconformal map is uniformly Hölder-continuous on every compact subset, the
claim follows from Lemma 2.16. See also [13] for further details.

Remark 2.18. In [6], N. Arcozzi and R. Rochberg gave a combinatorial proof that if
�W S1 ! S1 is a quasisymmetry and I is a closed subset of S1, then there is a constant
K > 0 depending only on � such that 1

K
c.I / � c.�.I // � Kc.I /. This of course implies

Corollary 2.17.

We now define null sets. Note that in the sphere, the boundary of a domain is taken
with respect to the sphere topology. So it might include1.

Definition 2.19. Let � be a Jordan domain in xC with boundary � . Let I � � . We
say that I is null with respect to � if I is a Borel set, and there is a biholomorphism
f WDC ! � such that f �1.I / has logarithmic capacity zero.

The meaning of f �1.I / requires an application of Carathéodory’s theorem, which
says that since � is a Jordan domain, any biholomorphism f has a continuous extension
which takes S1 homeomorphically to � . This is true even if � contains the point at 1,
as can be seen by composing f by a Möbius transformation taking � onto a bounded
curve and applying Carathéodory’s theorem there, and then using the fact that T is a
homeomorphism of the sphere. Thus, f �1.I / is defined using the extension of f . Note
that I is a Borel set if and only if f �1.I / is Borel.

If there is one biholomorphism f such that f �1.I / has capacity zero, then g�1.I /
has capacity zero for all biholomorphisms gWDC! �. This is because the Möbius trans-
formation T D g�1 ı f preserves Borel sets of capacity zero in S1, for example by
Corollary 2.17. Also, it is easily seen that one may replace DC with D� in the above
definition.

If � is a Jordan curve, bordering domains �1 and �2, then I might be null with
respect to �1 but not with respect to �2, or vice versa. However, for quasicircles, the
concept of null set is independent of the choice of “side” of the curve. This is a key fact.

Theorem 2.20. Let � be a quasicircle in xC, and let �1 and �2 be the connected com-
ponents of xCn� . Then I � � is null with respect to�1 if and only if it is null with respect
to �2.
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Proof. Choose a Möbius transformation T so that T .�/ is a quasicircle in C (and in
particular bounded). Clearly T .I / is null in T .�/ with respect to T .�i / if and only if
it is null in � with respect to �i , for i D 1; 2. Thus, it suffices to prove the claim for a
quasicircle � in C.

Let �C and �� be the bounded and unbounded components of the complement of �
respectively. Let f˙WD˙ ! �˙ be conformal maps. These have quasiconformal exten-
sions to C. Thus, � D f �1� ı fC has a quasiconformal extension to C, and in particular is
a quasisymmetry.

By definition I is null with respect to �C if and only if f �1C .I / is a Borel set of
logarithmic capacity zero in S1. By Corollary 2.17, this holds if and only if f �1� .I / D

�.f �1C .I // is a Borel set of logarithmic capacity zero in S1, that is if and only if I is null
with respect to ��.

We are grateful to M. Younsi for pointing out that the converse to Theorem 2.20
is false by a result of J. Becker and C. Pommerenke [9]. They show that there is a
non-quasiconformal Jordan curve such that the corresponding Riemann maps onto its
complements are Hölder continuous.

Remark 2.21. The proof can be modified to show that if � is a Jordan domain bounded
by a quasicircle, and I � � is null with respect to �, then there is a Möbius trans-
formation T such that T .I / is a bounded Borel set of capacity zero (in fact, for any
Möbius transformation such that T .I / is bounded, it is a set of capacity zero). Similarly,
E. Villamor [67, Theorem 3] showed that if gWD� ! C is a one-to-one holomorphic
�-quasiconformally extendible map satisfying g.z/ D z C � � � near 1, then there is a �
depending only on the quasiconformal constant such that for any closed I � S1, we have
c.I /1C� � c.g.A// � c.I /1�� . In light of what we have discussed, this implies The-
orem 2.20.

2.4. Dirichlet space of the disk and boundary values

If we write f .z/ D
P1
nD0 anz

n as a power series and set z D rei� , one can use polar
coordinates to see that

DDC.f / D

1X
nD1

njanj
2: (2.16)

Another important fact about the Dirichlet space is that if f 2 D.DC/ then f has
radial boundary values, i.e. for almost every z 2 S1, the limit limr!1� f .rz/ DW zf .z/

exists; see e.g. [21]. Moreover, by a result of J. Douglas [19], one has that

DDC.f / D

Z 2�

0

Z 2�

0

j zf .z/ � zf .�/j2

jz � �j2
jdzj jd�j: (2.17)

Now for � 2 S1, let

K.�/ D
1

j1 � �j1=2
; (2.18)
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and define the convolution of two functions f; g defined on the unit circle via

.f � g/.z/ WD

Z 2�

0

f .zx�/ g.�/ jd�j: (2.19)

If z 2 DC and � 2 S1, then

Pz.�/ D
1 � jzj2

jz � �j2
; (2.20)

denotes the Poisson kernel of the disk, and we set

P.u/.z/ D

Z 2�

0

Pz.�/u.�/ jd�j: (2.21)

Regarding boundary values of harmonic functions with bounded Dirichlet energy, we
will use the following result.

Theorem 2.22. Let f D P.K � '/ for some ' 2 L2.S1/. For fixed � 2 Œ0; 2�/, consider
the following four limits:

(1) limr!1� f .rz/ (the radial limit of f );

(2) limN!1

PN
nD�N

2.K � '/.n/ein� (the limit of the partial sums of the Fourier
series for K � ');

(3) limh!0C
1
2h

R �Ch
��h

.K � '/.eit / dt (the boundary trace of f ).

If one of them exists and is finite, they all do and they are equal. The equivalence of (1)
and (2) is Abel’s theorem and a result of E. Landau [34, pp. 65–66]. The equivalence of (2)
and (3) is from Beurling in [12].

The boundary behaviour of elements of Dirichlet space is better than this result indic-
ates in two ways. Firstly, the limit exists not just radially but non-tangentially. Secondly,
the limit exists not just almost everywhere, but up to a set of outer capacity zero.

We now define non-tangential limit. A non-tangential wedge in D with vertex at p2S1

is a set of the form

W.p;M/ D ¹z 2 D W jp � zj < M.1 � jzj/º (2.22)

for M 2 .1;1/.

Definition 2.23. We say that a function hWD ! C has a non-tangential limit of � at p
in S1 if

lim
z!p

z2W.p;M/

h.z/ D �

for all M 2 .1;1/.

Equivalently, in the above definition one may replace non-tangential wedges with Stolz
angles

�.p; ˛; �/ D ¹z W j arg.1 � xpz/j < ˛ and jz � pj < �º;

where ˛ 2 .0; �=2/ and � 2 .0; 2 cos˛/.
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The following theorem of Beurling [21, Theorem 3.2.1] improves our understanding
of the boundary behaviour, as promised.

Theorem 2.24. Let h 2Dharm.D/. Then there is a set I � S1 of outer capacity zero such
that the non-tangential limit of h exists on S1nI .

Remark 2.25. By Lemma 2.14, we may take I to be a Borel set of capacity zero.

Since a wedge at p contains a radial segment terminating at p 2S1, it is immediate that
if the non-tangential limit exists, then the radial limit exists and equals the non-tangential
limit. Using Theorems 2.24 and 2.22, one then has the following theorem.

Theorem 2.26. Let h 2Dharm.D/. LetH be the non-tangential boundary values of h. The
Fourier series of H converges, except possibly on a set of outer capacity zero, to H .

Finally, we have the following.

Theorem 2.27. Let h1; h2 2Dharm.D/. If the non-tangential limits of h1 and h2 are equal
except on a Borel set of capacity zero, then h1 D h2.

To see this, it is enough to see that if the non-tangential limit of h 2 Dharm.D/ is zero,
then h is zero. This follows essentially from the equality of the radial and non-tangential
limits and (2.17).

2.5. Conformally non-tangential boundary values

We now extend the notion of non-tangential limits to arbitrary Jordan domains. This exten-
sion is an immediate consequence of the Riemann mapping theorem, and is uniquely
determined by the requirement that the definition be conformally invariant. Although this
extension is by itself trivial, substantial results arise when one considers boundary values
from two sides of the curve, as we will see in Section 3.

Definition 2.28. Let � be a Jordan domain in xC with boundary � . Let hW�! C be a
function. We say that the conformally non-tangential (CNT) limit of h is � at p 2 � if, for
a biholomorphism f WDC ! �, the non-tangential limit of h ı f is � at f �1.p/.

The existence of the limit does not depend on the choice of biholomorphism, as the
following lemma shows.

Lemma 2.29. Let hWD ! C, and let T WD ! D be a disk automorphism. Then h has a
non-tangential limit at p 2 @D if and only if h ı T has a non-tangential limit at T �1.p/,
and these are equal.

Proof. The claim follows from the easily verified fact that every Stolz angle at p is con-
tained in the image under T of a Stolz angle at T �1.p/, and every Stolz angle at T �1.p/
is contained in the image under T �1 of a Stolz angle at p.
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If h ı f has non-tangential limit � at f �1.p/ for a biholomorphism f WDC ! �,
then h ı g has non-tangential limit � at g�1.p/ for any biholomorphism gWDC ! �, by
applying the lemma above to T D g�1 ı f .

Remark 2.30. This notion of CNT limit is conformally invariant, in the following sense.
If �1 and �2 are Jordan domains and f W�1 ! �2 is a biholomorphism, then the CNT
limit of hW�2 ! C exists and equals � at p 2 @�2 if and only if the CNT limit of h ı f
exists and equals � at f �1.p/ 2 �1. The only role that the regularity of the boundary
curves plays in the definition, is that we use Carathéodory’s theorem implicitly to uniquely
associate points on the boundary of @�1 with points on @�2. Therefore, the boundary is
required to be a Jordan curve. However, even this condition can be removed, by replacing
the boundary of the domain in xC with the ideal boundary [58].

Remark 2.31. An obviously equivalent definition is as follows. The CNT limit of hW�!
C is � at p 2 @� if, given a conformal map f WDC ! �, defining

V.p;M/ D f .W.f �1.p/;M//;

one has that
lim
z!p

z2V.p;M/

h.z/ D �:

Note that, treating the ideal boundary of� as a border of� [4] (which can be done since�
is biholomorphic to a disk), the angle of the wedge V.p; M/ has a sensible geometric
meaning. That is, let � be a border chart taking a neighbourhoodU of p in� to a half-disk
which takes a segment of the ideal boundary containing p to a segment of the real axis.
In this neighbourhood, �.V.p;M/ \ U/ is a wedge in the ordinary sense. The boundary
of �.V.p;M/\U/meets the real axis at two angles which are independent of the choice
of chart.

Using CNT limits, we can formulate a conformally invariant version of Beurling’s
theorem on non-tangential limits.

Theorem 2.32. Let� be a Jordan domain with boundary � . For h 2Dharm.�/, the CNT
boundary values of h exist at every point in � except possibly on a null set I � � with
respect to �. If h1 and h2 are CNT boundary values of some element of H1 and H2 in
Dharm.�/, respectively, and h1 D h2 except possibly on a null set, then H1 D H2.

This follows directly from Theorem 2.24, Theorem 2.27, Lemma 2.14, and the con-
formal invariance of CNT limits (Remark 2.30).

In [53,55] we used limits along hyperbolic geodesics (equivalently, orthogonal curves
to level curves of Green’s function) in place of CNT limits, following H. Osborn [42]. If
the CNT limit exists, then the radial limit exists. Besides being a stronger property, the
CNT limits we later defined [56, 57] seem to be more convenient.

We now define a particular class of boundary values. Let � be a Jordan domain in xC
with boundary � . We say that two functions h1 and h2 on � are equivalent if h1 D h2
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except possibly on a null set I with respect to �. Denote the set of such functions up to
equivalence by B.�;�/. We say that h1 D h2 if they are equivalent.

Definition 2.33. The Osborn space of � with respect to �, denoted H .�; �/, is the set
of functions h 2 B.�;�/ which arise as boundary values of elements of Dharm.�/.

We then define the trace operator

b�;� WDharm.�/! H .�;�/

and the extension operator

e�;�WH .�;�/! Dharm.�/

accordingly.

Example 2.2. In the case that � D S1 and� D DC, these maps have simple expressions
in terms of the Fourier series:

bDC;S1

� 1X
nD0

anz
n
C

1X
nD1

a�nxz
n

�
D

1X
nD�1

ane
in� ;

eS1;DC

� 1X
nD�1

ane
in�

�
D

1X
nD0

anz
n
C

1X
nD1

a�nxz
n:

Similar expressions can be obtained for D�.

We shall also need a result about the agreement of Sobolev and Osborn spaces.

Theorem 2.34. Given a function f 2 H 1=2.S1/ there exits a unique harmonic function
F 2 Dharm.D/ whose CNT boundary values agree almost everywhere with values of f
on S1.

Proof. By the existence and uniqueness of the solution to the Dirichlet problem (see
e.g. [65, Proposition 4.5, p. 334]), f has a unique harmonic extension F 2 H 1.D/, and
the CNT boundary values of F are equal to f almost everywhere.

In particular, this shows that every H 1=2.S1/ (which is defined up to a measure zero
set) has a unique extension to an element of H .S1;DC/ (which is defined up to a set of
capacity zero).

Finally, we pose the following question. Given a Jordan curve � in xC, and let �1
and �2 be the components of its complement. For which Jordan curves � is H .�;�1/ D

H .�;�2/? We answer this question in the next section.



E. Schippers and W. Staubach 50

3. Transmission of harmonic functions in quasicircles

3.1. Vodop’yanov–Nag–Sullivan theorem

First we recall a result due to K. Vodop’yanov [68] regarding the boundedness of com-
position operators on fractional Sobolev spaces which will be useful in proving a charac-
terization result for quasisymmetric homeomorphisms of S1. However, the original result
is formulated for Sobolev spaces on the real line. To this end, one defines the homogen-
eous Sobolev (or Besov) space PH 1=2.R/ as the closure of C1c .R/ (smooth compactly
supported functions) in the seminorm

kf k PH1=2.R/ D

�Z
R

Z
R

jf .x/ � f .y/j2

jx � yj2
dx dy

�1=2
: (3.1)

Theorem 3.1. The composition map C�.h/WDh ı� is bounded from PH 1=2.R/ to PH 1=2.R/
if and only if � is a quasisymmetric homeomorphism of R to R.

See [68, Theorem 2.2].

Remark 3.2. As is customary in Sobolev space theory, the constructions of compositions,
traces and so on, are done using dense subsets of Sobolev spaces, e.g. the set of smooth
compactly supported functions, where for example the composition C�.h/ is well-defined
(i.e. for h 2 C1c .R//. Thereafter, one seeks boundedness estimates with bounds that are
independent of h and extends the results by density to the desired Sobolev space.

In [39], S. Nag and D. Sullivan showed that quasisymmetries of S1 are characterized
by the fact that they are bounded maps of the Sobolev spaceH 1=2.S1/=R and in doing so
reproved Theorem 3.1. In what follows we give a presentation of their result adding also
some more references for the sake of completeness.

Theorem 3.3. Let �WS1 ! S1 be a homeomorphism. Then the following are equivalent.

(1) � is a quasisymmetry;

(2) � has the following three properties:

(a) � takes Borel sets of capacity zero to Borel sets of capacity zero;

(b) for every h 2 H .S1/, C�.h/ 2 H .S1/;

(c) the map h 7! h ı � obtained in (b) is bounded with respect to Dirichlet energy,
i.e. there is a C such that

DDC.eS1;DC .h ı �// � CDDC.eS1;DC h/: (3.2)

Proof. That (1) implies 2 (a) is Corollary 2.17.
That (1) implies 2 (b) are equivalent can be shown by transferring the problem to the

real line. As a consequence of a much more general result for divergence-type elliptic
operators due to A. Barton and S. Mayboroda [8, Theorem 7.18], if H denotes the upper
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half-plane, then there exists a solution to the Dirichlet problem´
�u D 0 on H;

uj@H D f 2 PH
1=2.R/;

(3.3)

which is unique (up to additive constants) and the estimate

kuk PH1.H/ . kf k PH1=2.R/; (3.4)

holds.
Now the fact that for every h 2 H .R/, the composition C�h 2 H .R/, is then a con-

sequence of Theorem 3.1.
That (1) implies 2(c) can be shown as follows. Let H 2 Dharm.DC/ be the func-

tion whose CNT boundary values equal h quasi-everywhere. Let ˆW DC ! DC be a
quasiconformal map whose boundary values equal � (which exists by the aforemen-
tioned Beurling–Ahlfors extension theorem). By quasi-invariance of Dirichlet energy (see
e.g. [1]), we have

DDC.CˆH/ � CDDC.H/ D CDDC.eS1;DCh/;

where C is of course independent of H . Let F WD CˆH � eS1;DC .C�h/ 2 H 1.DC/.
Then using F jS1 D 0, the harmonicity of eS1;DC .C�h/ and the Sobolev space divergence
theorem (see e.g. [22, Theorem 4.3.1, p. 133]), one can show thatZ

DC
@.eS1;DC .C�h// @F dA D 0:

This yields that

DDC.eS1;DC .C�h// � DDC.eS1;DC .C�h//CDDC.F /

D DDC.eS1;DC .C�h//C 2
Z

DC
@.eS1;DC .C�h// @F dACDDC.F /

D DDC.CˆH/: (3.5)

Now assume (2) holds. If (3.2) is valid for any homeomorphism �, then transference of
Douglas’s result to the real line in equation (2.17) yields that kC�uk PH1=2.R/ . kuk PH1=2.R/,
which by Theorem 3.1 yields that � is a quasisymmetric homeomorphism of the real line.
This completes the proof.

In the remainder of the paper, we will say that an operator between Dirichlet spaces
is bounded with respect to Dirichlet energy if it satisfies an estimate of the form given by
equation (3.2).

Conditions (2) (a) and (2) (b) of Theorem 3.3 are not easy to verify, but of course the
direction (2) ! (1) can be stated in the following way. Let PC.S1/ denote the space of
continuous functions on S1 modulo additive constants.
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Theorem 3.4. Let �W S1 ! S1 be a homeomorphism. Assume that there is a dense set
L � PH 1=2.S1/ such that L � PC.S1/ and there is an M such that

kC�hk PH1=2.S1/ �Mkhk PH1=2.S1/:

Then � is a quasisymmetry.

Proof. The proof of this result is embedded in the proof of Theorem 3.1. See also [39,
Corollary 3.2] and [15, Theorem 1.3].

3.2. Transmission (overfare)

We are now able to prove the transmission theorem in the simplest case.

Theorem 3.5. Let � be a Jordan curve in xC, and let�1 and�2 be the components of the
complement. The statements (1) and (2) below are equivalent.

(1) � is a quasicircle.

(2) (a) If I � � is null with respect to �1 then it is null with respect to �2,

(b) H .�;�1/ � H .�;�2/, and

(c) the map e�;�2b�;�1 WDharm.�1/ ! Dharm.�2/ is bounded with respect to
Dirichlet energy.

Needless to say, the roles of 1 and 2 can be switched, so that if transmission from �1
to �2 is possible, it is then possible from �2 to �1.

Proof. We show that (2) implies (1). The truth of either (1) or (2) is unaffected by applying
a global Möbius transformation, so we can assume that � is bounded. Let �˙ be the
connected components of the complement in xC; assume for definiteness that �1 D �C

(this can be arranged by composing by 1=z).
Now let f˙WD˙ ! �˙ be conformal maps. By Carathéodory’s theorem, f˙ each

extend to homeomorphisms from S1 to �; denote the extensions also by f˙. The function

� D f �1C ı f�jS1 WS
1
! S1

is thus a homeomorphism. We will show that � is a quasisymmetry. Once this is shown, it
follows from the conformal welding theorem that � is a quasicircle.

To do this, we show that � has properties 2 (a), 2 (b), and 2 (c) of Theorem 3.3. Let I
be a Borel set of capacity zero in S1. Then f�.I / is by definition null with respect to��.
So by 2 (a) of the present theorem, f�.I / is null with respect to�C. By definition �.I /D
f �1C .f�.I // is a Borel set of capacity zero in S1. This shows that � has the property 2 (a)
of Theorem 3.3.

Given h 2 H .S1/, there is an H 2 Dharm.DC/ with CNT boundary values equal to h
except possibly on a null set I . Also,H ı f �1C 2Dharm.�

C/. By definition,H ı f �1C has
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CNT boundary values except on the null set fC.I /. By assumption 2 (b) of the present
theorem, there is a function

u D e�;��b�;�C.H ı f �1C / 2 Dharm.�
�/

whose CNT boundary values agree with those ofH ı f �1C except on a null setK contain-
ing fC.I /. Set I 0 D f �1C .K/, which is a null set containing I .

By definition, u ı f� 2 Dharm.D�/ has CNT boundary values except on the null set
f �1� .K/ D ��1.I 0/, which contains ��1.I /. These CNT boundary values agree with

h ı f �1C ı f� D h ı �

except on ��1.I 0/. Thus, the function u ı f�.1=xz/ has CNT boundary values equal to h
except on ��1.I 0/. That is,

u ı f�.1=xz/ D eS1;DC.h ı �/;

which shows that C�h 2 H .S1/. Since h is arbitrary, this shows that property 2(b) of
Theorem 3.3 holds.

To show that 2 (c) of Theorem 3.3 holds, by 2 (c) of the present theorem and conformal
invariance of the Dirichlet norm, there is a constant C > 0 such that

D�C.e�;�Cb�;��v/ � CD��.v/

for all v 2 Dharm.�
�/. Then for arbitrary h 2 H .S1/, using the notation above we have

DDC.eS1;DC.h ı �// D DDC.u ı f�.1=xz// D DD�.u ı f�/

D D��.u/ � CD�C.H ı f
�1
C /

D CDDC.H/ D CDDC.eS1;DCh/:

Thus, � is a quasisymmetry, completing the proof that (2) implies (1).
So we need only show that (1) implies (2). Again, we can assume that � is bounded

and denote the bounded and unbounded components of the complement by �C and ��

respectively. Let f˙WD˙ ! �˙ be conformal maps, which have quasiconformal exten-
sions to C. Thus, � D f �1C ı f� is a quasisymmetry of S1, and properties (2) (a)–(c) of
Theorem 3.3 hold.

Given a Borel set I � � which is null with respect to �C, by definition f �1C .I / is
a Borel set of capacity zero in S1. Thus, since ��1 is a quasisymmetry, by Theorem 3.3,
��1.f �1C .I // D f �1� .I / is a Borel set of capacity zero. Thus, by definition I is null with
respect to ��. This shows that 2 (a) of the present theorem holds.

Denoting R.z/ D 1=xz, a proof similar to that given above for the reverse implication
shows that (2) (b) of the present theorem holds with the extension to �� given by

e�;��b�;�CH D
�
eS1;DC.bS1;DC.H ı fC/ ı �/

�
ıR ı f �1� ;

where H 2 Dharm.�
C/.
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To show that (2) (c) of the present theorem holds, let C be the constant in Theorem 3.3
part (2) (c). Then we have

D��.e�;��b�;�CH/ D DDC.eS1;DC.bS1;DC.H ı fC/ ı �//

� CDDC.H ı fC/ D CD�C.H/;

which completes the proof.

Again, conditions (2) (a) and (2) (b) are difficult to verify in practice. So we give a
more practical version of the (2)! (1) implication. First, we observe that harmonic func-
tions which extend continuously to the boundary have a transmission. That is, let � be a
Jordan curve separating xC into two components �1 and �2, and denote the set of func-
tions continuous on the closure of �j by C.cl�j / and the set of functions in C.cl�j /
which are additionally harmonic in �j by Charm.�j /. Then by the existence and unique-
ness of solutions to the Dirichlet problem, given any h1 2 Charm.�1/ there is an h2 2
Charm.�2/ whose boundary values agree with those of h1 everywhere. We thus have the
well-defined maps

O�1;�2 WCharm.�1/! Charm.�2/;

O�2;�1 WCharm.�2/! Charm.�1/:

It follows immediately from the definition of CNT boundary values that if h extends con-
tinuously to a boundary point p 2 � then the CNT boundary value exists and equals its
CNT limit. This motivates the definition of a transmission operator O�1;�2 by restricting
O�1;�2 to Dharm.�1/ \ Charm.�1/, which we shall define momentarily. Before doing that
we gather our observations in the following theorem.

Theorem 3.6. Let � be a Jordan curve in xC, and let �1 and �2 be the connected
components of the complement of � . If there is a dense set L � Dharm.�2/, such that
L � C.cl�2/, and the continuous transmission on L is bounded with respect to Dirichlet
energy on L, then � is a quasicircle.

Here, by dense set, we mean that for any h 2 Dharm.�2/, for all " > 0 there is an
element u 2 L such that D�2.u � h/ < ". Equivalently, PL is dense in PDharm.�2/.

Proof. Let f WDC!�1 and gWD�!�2 be biholomorphisms. Then by Carathéodory’s
theorem � WD g�1 ı f is a well-defined homeomorphism of S1.

Given a L satisfying the hypotheses, observe that CgL is dense in Dharm.�2/ by
conformal invariance of Dirichlet energy, and by Carathéodory’s theorem CgL � C.S1/.
Also bD�;S1CgL is dense. Now for h 2 bD�;S1CgL, define

yC�h D bDC;S1Cf O�2;�1Cg�1eS1;D�h

and note that
yC�h D C�h:
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By conformal invariance of the Dirichlet spaces and the hypothesis, this is a bounded
operator on PH 1=2.S1/. Thus, applying Theorem 3.4 we see that � is a quasisymmetry
which in turn yields that � is a quasicircle.

Remark 3.7. We have shown that a bounded transmission exists for quasicircles separ-
ating a compact Riemann surface into two components in [57]. The results of that paper
develop a foundation for applying quasisymmetric sewing techniques to boundary value
problems for general Riemann surfaces, and ultimately to a “scattering theory” viewpoint
of Teichmüller theory [58].

Theorem 3.5 shows that if � is a quasicircle and�1,�2 are the connected components
of the complement, then H .�;�1/ D H .�;�2/. We thus define

H .�/ D H .�;�1/ D H .�;�2/

in this special case. Now we are ready to define the transmission operators.

Definition 3.8. We have well-defined maps

O�1;�2 D e�;�2b�;�1 WDharm.�1/! Dharm.�2/;

O�2;�1 D e�;�1b�;�2 WDharm.�2/! Dharm.�1/;

which are bounded with respect to Dirichlet energy.

We will also use the simplified notation

O1;2 D O�1;�2 ; O2;1 D O�2;�1 ;

wherever it can be done without ambiguity.

Remark 3.9. The symbol “O” stands for old English “oferferian” meaning “to transmit”,
which could be rendered as “overfare” in modern English.

The overfare operators are inverses of each other by definition:

IdDharm.�1/ D O1;2O2;1;

IdDharm.�2/ D O2;1O1;2;

where Id stands of course for the identity on the space indicated by the subscript.

Example 3.1. The overfare operators have a simple form in the case that � D S1:

ŒODC;D�h
C�.z/ D hC.1=xz/; ŒOD�;DCh

��.z/ D h�.1=xz/

for h˙ 2 Dharm.D˙/.

The formulation of CNT boundary values and limits is entirely conformally invariant.
However, in the context of transmission, the existence of the overfare depends on the
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relative geometry of the domain � and the sphere. That is, it depends on the regularity
of the boundary. It is remarkable that complete symmetry between the boundary value
problems for the inside and outside domains occurs precisely for quasicircles.

Finally, we record the following result.

Corollary 3.10. Let � be a Jordan curve in xC and �1 and �2 be the connected com-
ponents of the complement, and assume that f WDC ! �1 and gWD� ! �2 are biho-
lomorphisms. If there is a dense set L � Dharm.�2/ such that L � C.cl�2/, on which
Cf O2;1 is bounded with respect to Dirichlet energy, then � is a quasicircle. Conversely,
if � is a quasicircle, then Cf O2;1 is bounded with respect to Dirichlet energy.

Proof. If � is a quasicircle, then O2;1 is bounded by Theorem 3.5, and Cf is an isometry.
Conversely, assume that there is a dense subset L with the stated properties. Then CgL

is dense in Dharm.D�/ since Cg preserves the Dirichlet energy, and furthermore CgL �
C.clD�/. By assumption ODC;D�Cf O2;1Cg�1 is bounded on Dharm.D�/. Hence, Cg�1ıf
is bounded on PH 1=2.S1/, and therefore by Theorem 3.4 � D g�1 ı f is a quasisymmetry.
Thus, � is a quasicircle.

All of the previous theorems involves boundedness with respect to Dirichlet energy,
which is not a norm. Transmission is bounded if one mods out the constants. We define

PH .�/ D H .�/= �

in the same way as for the Dirichlet space. For quasicircles we then have a well-defined
bounded map

PO1;2 D
Pb�;�1 Pe�;�2 WDharm.�1/! Dharm.�2/

and for general Jordan curves a continuous transmission

PO1;2W PC.�1/! PC.�2/;

where the dotted maps are all defined in the obvious way. We also immediately have the
following reformulation of the results above.

Theorem 3.11. Let � be a Jordan curve in xC. There is a bounded map

PO1;2W
PDharm.�1/! PDharm.�2/;

which agrees with PO1;2 on a dense subset of PCharm.�1/ if and only if � is a quasicircle.

As in Theorem 3.6, it is enough that the map agrees with PO1;2 on a dense subset of
PCharm.�1/. We also observe that there is a transmission on Bergman space. Namely, if �

is a quasicircle we define

O01;2WAharm.�1/! Aharm.�2/
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to be the unique operator satisfying

O01;2d D dO1;2; (3.6)

and similarly for O02;1. It is easily checked that this is well-defined using the fact that the
transmission of a constant is (the same) constant. Similarly, for arbitrary Jordan curves � ,
continuous transmission induces the transmission on harmonic one-forms

O01;2W dCharm.�1/! dCharm.�2/:

Boundedness of O0 is obviously equivalent to boundedness of PO since d W PDharm.�k/!

Aharm.�k/ is a well-defined isometry.
The question of boundedness of O1;2 on inhomogeneous spaces (such as the pointed

Dirichlet space) is rather problematic. Indeed, let f WDC ! �1 and gWD� ! �2 be the
corresponding welding maps; if we like, we can choose the points in the pointed norms
to be 0, f .0/, g.1/, and1 in DC, �1, �2, and D�, respectively. If transmission were
bounded on the pointed Dirichlet space, then

Cf �1O2;1Cg

would be bounded with respect to the pointed norms on Dharm.D˙/, and thus with respect
toH 1.D˙/. Thus, for a general quasisymmetry � D g�1 ı f , we would obtain a bounded
map

C� WH 1=2.S1/! H 1=2.S1/:

Conversely, if the above map is bounded, then O2;1 D Cf C�Cg�1 is bounded. However,
this boundedness of C� is currently unknown. In [52], the authors made an attempt to
prove this, based on an extension result of Z. Ibragimov, see [28, Theorem 3.1 (5)], which
enables one to extend the quasisymmetry � to a quasi-isometry ˆ on D. But the prob-
lem arises in connection to showing that composition maps with such quasi-isometries are
bounded on the Sobolev spaceH 1.D/, which to our knowledge, is also unknown. Regard-
ing optimal results concerning boundedness of C� on a wide range of Sobolev (and in fact
even Besov) spaces on the real line, the reader is referred to G. Bourdaud [14].

We end this section with the following interesting question.

Open problem. Characterize the class of quasicircles for which transmission is norm-
bounded on Dirichlet space.

4. The bounce operator and density theorems

The bounce operator. In what follows we will introduce a particular operator

Dharm.A/! Dharm.�/;
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which is defined for any collar neighbourhood A of the boundary � of a Jordan domain,
which shall enable us to approximate functions in Dharm.�/ with respect to the Dirich-
let semi-norm. In connection to the interpretation of the collar neighbourhood, note that
in [56, 57] we used the term collar neighbourhood referred for more general domains, but
here in what follows, the special case of Definition 2.4 is enough for our purposes. We
will show that functions in the Dirichlet space of a collar neighbourhood of � have CNT
boundary values. To prove this, we need a lemma.

Lemma 4.1. Let

A D ¹z 2 C W r < jzj < Rº;

B1 D ¹z 2 C W jzj < Rº;

B2 D ¹z 2 C W r < jzjº [ ¹1º:

For any h 2Dharm.A/, there is a constant c 2C and functions hi 2Dharm.Bi / for i D 1;2,
such that

h D h1 C h2 C c log
�
jzj=R

�
for all z 2 A. If h is real, it is possible to choose h1, h2, and c real.

Proof. We prove the claim for h real; the general case follows by separating h into real
and imaginary parts.

Choose s 2 .r; R/ and let  be the curve jzj D s traced once counterclockwise. Set

c D
1

2�

Z


�dh:

Since Z


�d log
�
jzj
�
D 2�

we then have that Z


�d
�
h � c log

�
jzj
��
D 0:

Set H D h � c log jzj. Since �dH is exact, H has a single-valued harmonic anti-deriv-
ativeG inA, which is the harmonic conjugate ofH . Thus, F DH C iG is a holomorphic
function in A. Now define

F1.z/ D lim
s%R

1

2�i

Z


F.�/

� � z
d�; z 2 B1;

and define F2 by

F2.z/ D lim
s&r

1

2�i

Z


F.�/

� � z
d�; z 2 B2n¹1º

and F2.1/ D 0. Observe that F1 is holomorphic on B1 and F2 is holomorphic on B2.
Furthermore, for z 2 A clearly F.z/ D F1.z/ � F2.z/. Now, setting h1 D Re.F1/ and
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h2DRe.F2/we obtain the desired decomposition, where h1, h2, and c are real. It remains
to show that hi 2 Dharm.Bi / for i D 1; 2.

To show that h1 2 Dharm.B1/, it is enough to show that there is an annulus

A0 D ¹z 2 C W r 0 < jzj < Rº

for r 0 2 .r; R/ such that h1 is in Dharm.A
0/, since h1 is holomorphic on an open neigh-

bourhood of the closure of jzj < r 0.
Given any such r 0 2 .r; R/, the closure of A0 is in B2, and thus the restriction of h2

to A0 is in Dharm.A
0/. Furthermore, the restriction of h to A0 is in Dharm.A

0/, and a direct
computation shows that log .jzj/ is in Dharm.A/, and in particular in Dharm.A

0/. Since
h1 D h � h2 � c log .jzj/, this proves that h1 2 Dharm.A

0/, and hence in Dharm.B1/.
The same argument shows that h2 2 Dharm.B2/.

Remark 4.2. It is easy to adapt this argument to any doubly-connected domain bordered
by non-intersecting Jordan curves, even on Riemann surfaces [57]. It can be shown that
the decomposition is unique, up to the additive constant which can be transferred between
h1 and h2.

Theorem 4.3. Let � be a Jordan curve bounding a Jordan domain � in xC. Let A be a
collar neighbourhood of � in�. If h 2Dharm.A/ then h has CNT boundary values except
possibly on a null set with respect to �. Furthermore, there is an H 2 Dharm.�/ whose
CNT boundary values agree with those of h except possibly on a null set.

Proof. By definition of collar neighbourhood, for some p 2 � and r 2 .0; 1/, we have
A D Ap;r D f .Ar /, where Ar D ¹z 2 C W r < jzj < 1º. By conformal invariance of
Dirichlet spaces and CNT boundary values, it suffices to show this for � D S1, � D DC,
and A D Ar .

Let h 2 Dharm.Ar /. By Lemma 4.1, h D h1 C h2 C c log jzj for some functions
hi 2 Dharm.Bi /, i D 1; 2 where B1 D DC and B2 D ¹z W jzj > rº [ ¹1º. Now c log jzj
extends continuously to 0 on S1, and thus the non-tangential boundary values exist and
are zero everywhere on S1. Since h1 2 D.DC/, it has non-tangential boundary values
except possibly on a null set by a direct application of Beurling’s theorem (Theorem 2.24).
Now h2 is continuous on an annular neighbourhood of S1 and thus the non-tangential
boundary values exist with respect to DC everywhere. Thus, the non-tangential boundary
values of h exist except possibly on a null set.

Furthermore, u.z/ D h2.1=xz/ 2 Dharm.DC/ is continuous on an open neighbourhood
of DC, and its non-tangential boundary values exist everywhere with respect to DC and
equal those of h2 with respect to DC. Thus, the function H D h1 C u is in Dharm.DC/
has non-tangential boundary values equal to h except possibly on a null set.

Remark 4.4. The proof actually shows a slightly stronger statement: there is an H 2
Dharm.�/ whose CNT boundary values exist and equal those of h, precisely where those
of h exist.
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Definition 4.5. Since the function H 2 Dharm.�/ is uniquely determined by its CNT
boundary values on � , Theorem 4.3 induces a well-defined operator

GA;�WDharm.A/! Dharm.�/

for any collar neighbourhood A of the boundary � of a Jordan domain. We call this the
“bounce” operator.

It follows immediately from the conformal invariance of the Dirichlet space and CNT
limits that the bounce operator is conformally invariant. That is, if f W�0 ! � is a biho-
lomorphism and A0 is the domain such that f .A0/ D A, then

GA0;�0.h ı f / D .GA;� h/ ı f: (4.1)

We now prove boundedness of the bounce operator.

Theorem 4.6. Let � be a Jordan domain in xC bounded by a Jordan curve � . For any
collar neighbourhood A of � in �, GA;� is bounded with respect to the Dirichlet energy;
equivalently, PGA;� is bounded. Furthermore, GA;� is bounded.

Proof. By conformal invariance of the Dirichlet norm, Dirichlet energy, and CNT limits,
it suffices to prove this for A D Ar D ¹z W r < jzj < 1º and � D DC.

Let h 2Dharm.A/. Then by [38, Proposition 1.25.2], h is inH 1.A/. By Theorem 2.34,
GA;DCh is the unique Sobolev extension of the Sobolev trace of h in H 1=2.S1/. Further-
more, by the result on the unique Sobolev extension, see e.g. [65, Proposition 4.5, p. 334],
and the fact that S1 ¨ @A, we have

khj�kH1=2.S1/ � khj@�kH1=2.@A/ . khkH1.A/:

Also, by the existence of the unique solution to the Dirichlet problem with bound-
ary data in Sobolev spaces (see e.g. [65, Proposition 1.7, p. 360]), the harmonic Sobolev
extension H of hjS1 satisfies

kHkH1.DC/ . khjS1kH1=2.S1/:

This together with the estimate for khj�kH1=2.S1/ above yields that

kGA;DChkH1.DC/ . khkH1.A/: (4.2)

From this, (2.10) and (2.14), one can easily deduce the boundedness of GA;�. Now if one
applies (4.2) to the harmonic function h � hA, where hA is the average of h given by
1
jAj

R
A
h, then one has that

kGA;DCh �GA;DChAkH1.DC/ . kh � hAkH1.A/:

Moreover, we know that

DDC.GA;DCh/1=2 D DDC.GA;DCh �GA;DChA/1=2

� kGA;DCh �GA;DChAkH1.DC/
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and that

kh � hAkH1.A/ D DA.h � hA/
1=2
C kh � hAkL2.A/

� DA.h/
1=2
C CDA.h/

1=2 . DA.h/
1=2;

where the inequality kh � hAkL2.�/ . DA.h/
1=2 is the well-known Poincaré–Wirtinger

inequality. Thus, DDC.GA;DCh/ . DA.h/, as desired.

Theorem 4.7. Let � be a Jordan domain in xC bounded by � and let A be a collar
neighbourhood of � in �. The set PGA;�.D.A// is dense in PDharm.�/, and GA;�.D.A//

is dense in Dharm.�/ with respect to the pointed norm.

Proof. By conformal invariance of the Dirichlet semi-norm and (4.1), we may assume
that A D Ar and � D DC as above.

First, observe that the polynomials CŒz; z�1� are contained in D.Ar /. But for any
integer n > 0, we have

GAr ;DCz
n
D zn and GAr ;DCz

�n
D xzn;

so GAr ;DCCŒz; z�1� D CŒz; xz�. Since CŒz; xz� is a dense subset of Dharm.DC/ this proves
the claim.

In the next theorem, the norm on D.A/ is taken to be the restriction of the norm on
Dharm.A/, choosing � to be the outer curve (see (2.12) and (2.13)).

Theorem 4.8. Let A be any domain in xC bounded by two non-intersecting Jordan curves,
such that 0 and1 are in distinct components of the complement of the closure of A. Then
Laurent polynomials CŒz; z�1� are dense in D.A/ and PCŒz; z�1� is dense in PD.A/.

Proof. Without loss of generality assume that the component of the complement of �2
containing A also contains1, and let B2 denote this component. Let B1 then denote the
component of the complement of �1 containing A; it must also contain 0. We have that
A D B1 \ B2.

Now let fi WDC ! Bi be biholomorphisms for i D 1; 2. Let  ri D fi .jzj D r/ for
r 2 .0; 1/, endowed with positive orientations with respect to 0. For any h 2D.A/, setting

hi .z/ D lim
r%1

1

2�i

Z
ri

h.�/

� � z
d� z 2 Bi ; i D 1; 2

we have that hi are holomorphic on Bi , and h D h1 � h2.
We will show that hi are in D.Bi / for i D 1; 2. Let C1 denote the open domain in B1

bounded by �1 and f1. s2/ for s chosen close enough to 1 that it is entirely in A. This
can be done, because the function z 7! jf �11 .z/j is continuous on B1, and is strictly less
than one on B1. This function has a maximum R < 1 on �2 since �2 is compact, so we
can choose s 2 .R; 1/. To show that h1 2 D.B1/ it suffices to show that h1 2 D.C1/,
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since h1 is holomorphic on an open neighbourhood of f .jzj � s/. Now h 2 D.C1/ since
C1 � A, and h2 2D.C1/, since the closure of C1 is contained in B2. Since h1 D hC h2,
this proves the claim. A similar argument shows that h2 2 D.B2/.

Now we prove the density claims. It clearly suffices to prove the first claim. For the
purposes of this proof, by a “homogeneous” polynomial p in CŒz� or CŒ1=z� we mean
one satisfying yp.0/ D 0. This can be arranged by adding a constant; in the former case,
these are just the polynomials with zero constant term.

Fix h 2 Dharm.A/ and let the decomposition h D h1 � h2 be as above. Now B1 is a
Jordan domain, and hence a Carathéodory domain, so polynomial one-forms CŒz� dz are
dense in A.B1/ [37, Vol. 3, Section 16, Theorem 3.20]. Similarly, CŒz� dz is dense in
A.1=B2/, so z�2CŒ1=z� dz is dense in A.B2/. Therefore, given any " > 0 there exists
p1 2 CŒz� and p2 2 CŒ1=z� such that

kdhi � dpikA � kdhi � dpikBi < "=2:

We may choose these polynomials to be homogeneous, without altering the estimate. Set
c D yh.0/ and let p D p1 � p2 C c. Using h D h1 � h2 we see that

kh � pkDharm.A/ D
�
kdh1 � dh2 � dp1 C dp2k

2
A C jc �

yh.0/j2
�1=2

< ":

This proves the claim.

Corollary 4.9. Let � be a Jordan curve in xC and let �1 and �2 be the connected com-
ponents of the complement. Let A1 and A2 be collar neighbourhoods of � in �1 and �2
respectively, and letU DA1 [A2 [� . Let Ri WD.U /!D.Ai / denote restriction fromU
toAi for i D 1;2. Then for i D 1;2Ri .D.U // is dense in D.Ai / with respect to the norms
and PRi .D.U // is dense in PD.Ai /.

Proof. Observe that U is open, so the statement of the theorem makes sense.
Now A1 and A2 are each bounded by two non-intersecting Jordan curves in xC. By

applying a Möbius transformation and conformal invariance of the Dirichlet spaces and
Dirichlet semi-norm, we can assume that1 and 0 are each contained in the interior of one
of the connected components of the complement of U , and not both in the same one. In
that case, the same holds for A1 and A2. Thus, CŒz; z�1� is dense in D.A1/ and D.A2/

by Theorem 4.8. Since CŒz; z�1� � D.U /, the theorem is proven.

It is an indispensable fact that the limiting integral of harmonic functions against L2

one-forms is unaffected by application of the bounce operator.

Lemma 4.10 (Anchor lemma). Let � be a Jordan curve in xC bounding a Jordan do-
main �. Let A be a collar neighbourhood of � in � and let �" D f .jzj D e�"/ for a
biholomorphism f WDC ! � and " > 0. For any h 2 Dharm.A/ and ˛ 2 A.A/, we have

lim
"&0

Z
�"

˛.w/h.w/ D lim
"&0

Z
�"

˛.w/GA;�h.w/: (4.3)
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In particular, if h has CNT boundary values equal to zero except possibly on a null set,
then for any ˛ 2 A.A/, we have

lim
"&0

Z
�"

˛.w/h.w/ D 0:

Proof. We assume that �" are positively oriented with respect to 0. The fact that the left
integral in (4.3) is finite follows from the fact that ˛ and dh are L2 on A, since fixing "0
such that �"0 is in A, we have by Stokes’ theorem that

lim
"&0

Z
�"

˛.w/h.w/ D

Z
�"0

˛.w/h.w/C

“
A0
˛ ^ dh;

where A0 � A is the region bounded by �"0 and � .
Setting z̨.w/D˛.f .w//f 0.w/ and zh.w/Dh.f .w//, and denoting the circle jzjDe�"

traced counterclockwise by C", we haveZ
�"

˛.w/h.w/ D

Z
C"

z̨.w/zh.w/;

so it suffices to prove the claim for ADAD ¹z W e�"0 < jzj < 1º,�D DC, and �" D C".
We first show (4.3) for ˛.w/ D wndw for some integer n. By Lemma 4.1 we can

write h D h1 C h2 C c log jzj, where h1 2 Dharm.DC/ and h2 2 Dharm.B/, where B D
¹z W jzj > e�"0º [ ¹1º. Now ˛ and h2 extend continuously to S1; thus so does GA;DCh2,
and so trivially

lim
"&0

Z
C"

˛.w/h2.w/ D lim
"&0

Z
C"

˛.w/GA;DCh2.w/:

Similarly,

lim
"&0

Z
C"

˛.w/ log jwj D lim
"&0

Z
C"

˛.w/GA;DC log jwjI

in fact, both sides are zero. Finally, since GA;DCh1 D h1, the claim follows.
Thus, the claim holds for any ˛.w/ D p.w/ dw for p.w/ 2 CŒz; 1=z�. Now the set of

such ˛ is dense in A.A/. This follows from the density of CŒz; 1=z� in D.A/ (which is a
special case of Theorem 4.8), and the fact that for some constant k, ˛ � k=z is exact. So
the proof of the claim will be complete if it can be shown that for h fixed,

˛ 7! lim
"&0

Z
C"

˛.w/h.w/

is a continuous functional on A.A/.
With "0 andA0 the region bounded by �"0 and S1, letM D supw2�"0 jh.w/j. Since �"0

is a compact subset of A, by a standard result for Bergman spaces there is a constant C
independent of ˛.w/ D a.w/dw such that

sup
w2�"0

ja.w/j . k˛kA.A/:



E. Schippers and W. Staubach 64

Therefore, Stokes’ theorem and Cauchy–Schwarz’s inequality yield thatˇ̌̌
lim
"&0

Z
�"

˛.w/h.w/
ˇ̌̌
D

ˇ̌̌Z
�"0

˛.w/h.w/C

“
A0
˛ ^ dh

ˇ̌̌
� 2�e�"0M sup

w2�"0

j˛.w/j C k˛kA.A0/khkDharm.A0/

.
�
2�e�"0M C khkDharm.A0/

�
k˛kA.A/;

which completes the proof of (4.3).
The proof of the second claim follows immediately from the observation that if h has

CNT boundary values zero except possibly on a null set, then GA;DCh D 0.

5. Schiffer and Cauchy operators

5.1. Schiffer operators

We will define certain operators on the Bergman space of anti-holomorphic one-forms
which we call “Schiffer operators”. We require an identity to facilitate the definition.

Now let g� be the Green function of � from Section 2.1. Schiffer considered the
following kernel function:

L�.z; w/ dz dw D
1

�i

@2g�

@z@w
.z;w/ dz dw:

Note that L� is a meromorphic function in z on � with a pole of order two at z D w and
no other poles. In fact, it is symmetric, so it is also holomorphic in w except for a pole at
w D z.

Example 5.1. For � D DC, one has

gDC.z; w/ D � log
jz � wj

j1 � xwzj
;

and so
LDC.z; w/ D

�1

2�i

1

.w � z/2
:

Moreover, by the conformal invariance of the Green function, if ' is a conformal map
of � onto a domain �0, then

L�0 .'.z/; '.w// '
0.z/'0.w/ D L�.z; w/; (5.1)

which using Riemann’s mapping theorem can be used to calculate the Schiffer kernels of
simply connected domains in the plane.
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Theorem 5.1. Let � be a Jordan curve, and let � be one of the connected components
of the complement of � in xC. Let g�.z; w/ denote Green’s function of �. Then for any
one-form x̨ D h.z/ dxz 2 A.�/, we have�“

�

L�.z; w/ h.w/ d xw ^ dw

�
� dz D 0 (5.2)

as a principal value integral.

Proof. Let f WDC ! � be a biholomorphism, chosen so that f .0/ D z and � be such
that f .�/ D w. Let �" be the image of the circle with centre at the origin and radius e�"

under the biholomorphic map f , with positive orientation with respect to w. By Stokes’
theorem, if we denote by Cr the circle of radius r centred at w with winding number one
with respect to w, then“

�

L�.z; w/h.w/ d xw ^ dw � dz

D lim
r&0

“
�nB.wIr/

L�.z; w/h.w/ d xw ^ dw � dz

D lim
"&0

1

�i

Z
�"

@g�

@z
.z; w/h.w/ d xw dz � lim

r&0

1

�i

Z
Cr

@g�

@z
.z; w/h.w/ d xw dz:

Note that all integrals take place over thew variable while z is fixed. To say that the output
of the integral on the left-hand side is zero as a form, is equivalent to demanding that for
fixed z the coefficient of dz of the output is zero. Therefore, it is enough to show that

lim
"&0

1

�i

Z
�"

@g�

@z
.z; w/h.w/ d xw D 0; (5.3)

lim
r&0

1

�i

Z
Cr

@g�

@z
.z; w/h.w/ d xw D 0: (5.4)

Now Green’s function of the disk is given by

gDC.�; �/ D � log
ˇ̌̌ � � �
1 � x��

ˇ̌̌
;

so by conformal invariance of Green’s function g�.f .�/;f .�//D gDC.�;�/, we have that

@g�

@z
.z; f .�// D

1

f 0.0/

@

@�

ˇ̌̌̌
�D0

gDC.�; �/ D
1

2f 0.0/

�1
�
� x�

�
: (5.5)

Now let Ar D¹z W r < jzj<1º for any r 2 .0;1/ and setAD f .Ar /. One can see explicitly
from (5.5) that for fixed z, the function

K.�/ WD
@g�

@z
.z; f .�//
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is in Dharm.Ar /, so by conformal invariance of the Dirichlet space

k.w/ D K.f �1.w// D
@g�

@z
.z; w/

is in Dharm.A/. Thus, we can apply the Anchor lemma (Lemma 4.10) to xk and ˛.w/ D
h.w/ dw to conclude that the integral in (5.3) is zero. On the other hand, for w in an open
neighbourhood of z, by (5.5) (or directly from the definition of Green’s function) we can
write

@g�

@z
.z; w/ D

1

2.w � z/
CH.w/;

where H.w/ is harmonic in w. Inserting this into the left-hand side of (5.4), we obtain
that the integral is indeed zero.

We may now define the Schiffer operator.

Definition 5.2. Let � be a Jordan curve in xC, and let �1 and �2 denote the connected
components of the complement of � . For h.w/d xw 2 A.�1/, we define for j D 1; 2:

T�1;�j h.w/d xw D
1

�

“
�1

h.w/

.w � z/2
d xw ^ dw

2i
� dz; z 2 �j : (5.6)

Note that the output is a one-form on �j . In the case that j D 1, we interpret (5.6) as a
principal value integral. We will see that this is in general a bounded map into A.�j /, and
in that role we refer to T�1;�j as Schiffer operators.

As in the case of the overfare operator O, we will use the notation Tj;k in place of
T�k ;�k wherever possible.

The operators Tj;k were first defined by Schiffer [49]. Schiffer investigated these
operators extensively with others; see e.g. Bergman and Schiffer [11], Schiffer and Spen-
cer [51], and Schiffer [18].

The terminology surrounding the Schiffer operators is not entirely consistent. As a
Calderón–Zygmund singular integral operator acting on functions in the plane, the Schif-
fer operator is bounded on L2 (more generally on Lp , 1 < p <1). The integral operator
on general functions in L2.C/ is called the Beurling transform. It is also sometimes called
the Hilbert transform, a term used more widely (in the harmonic analysis and integral
equations context) for a principal value integral along the real line (the explicit formula
is (5.22) ahead, if one chooses there � D R). Napalkov and Yulmukhametov use the term
Hilbert transform to refer specifically to T1;2. Of course these integral operators are all
closely related. We reserve the term “Schiffer operator” for the restriction of the singular
integral operator to anti-holomorphic functions on a subset of xC.

The “nesting” – that the kernel function is derived from the Green’s function of a
larger domain than the domain of integration – is a central feature of the Schiffer oper-
ators, which he explored at length in [18]. The Schiffer kernel is closely related to the
so-called fundamental differential. On general domains and Riemann surfaces, there is
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also a related operator derived from integrating against the Bergman kernel obtained from
a larger domain. (This does not appear in the present paper, because the Bergman ker-
nel of the sphere is zero). Adding to the terminological confusion described above, some
authors refer to the fundamental bi-differential as the Bergman kernel. On the double of a
Riemann surface, certain identities relate the Schiffer and Bergman kernels [51].

As a first step, we establish the existence of this integral. Assume for the moment
that �1 is bounded, that is, 1 2 �2. For fixed z 2 �j , the integrand 1=.w � z/2 is
obviously inL2.�1/, so this is immediate. If z 2�1, for a biholomorphism f WDC!�1,
let �" be the image of the curve jzj D e�" under f with the same orientation, and let Cr
be the circle centred on z traced counterclockwise. Then

1

�

“
�1

h.w/

.w � z/2
d xw ^ dw

2i
� dz

D lim
"&0

1

2�i

Z
�"

h.w/ d xw

.w � z/
dz � lim

r&0

1

2�i

Z
Cr

h.w/ d xw

.w � z/
dz: (5.7)

Let As D ¹z W s < jzj < 1º where s is fixed so that z is not in the closure of Bs D f .As/.
The first limit exists, by the fact that h.w/ dw and dw=.w � z/2 are in A.Bs/ and

lim
"&0

1

2�i

Z
�"

h.w/ d xw

.w � z/
dz

D
1

2�i

Z
�� log s

h.w/ d xw

.w � z/
dz C

1

�

“
Bs

h.w/

.w � z/2
d xw ^ dw

2i
� dz:

The limit of the second term in (5.7) can be shown to be zero by an explicit computation.
Theorem 5.1 can now be applied to de-singularize the kernel function. For ˛.w/ D

h.w/ dw 2 A.�1/, we have

T�1;�1 x̨.z/ D
“
�1

�
1

2�i

1

.w � z/2
� L�1.z; w/

�
h.w/ d xw ^ dw � dz (5.8)

since this new term does not have an effect on the existence or value of the integral.
We can deal with the general case that �1 might be unbounded by establishing the

invariance of the integrals under Möbius transformations, which is interesting on its own.
To this end, define the pull-back of x̨ under w DM.z/ by

M � x̨.z/ D h.M.z//M 0.z/ dxz;

and similarly define the pull-back of ˇ.w/ D g.w/ dw by

M �ˇ.z/ D g.M.z//M 0.z/ dz:

Theorem 5.3. If M W xC ! xC is a Möbius transformation taking �j bijectively to z�j for

j D 1; 2, then for all x̨ D h.w/ d xw 2 A. z�1/, we have

ŒT�1;�j M
�
x̨� DM �ŒTz�1;z�j x̨�: (5.9)
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Proof. Assume first that j D 2. Setting w DM.z/, �DM.�/, ˛.�/D h.�/dx� and using
the identity

M 0.�/M 0.z/

.M.�/ �M.z//2
D

1

.� � z/2
; (5.10)

which holds for arbitrary Möbius transformations, yields that

M �ŒTz�1;z�2 x̨�.z/ D
1

�

“
z�1

h.�/

.� �M.z//2
dx� ^ d�

2i
�M 0.z/ dz

D
1

�

“
�1

h.M.�//

.M.�/ �M.z//2
M 0.�/M 0.�/

dx� ^ d�

2i
�M 0.z/ dz

D
1

�

“
�1

h.M.�//M 0.�/

.� � z/2
dx� ^ d�

2i
� dz

D ŒT�1;�2M
�
x̨�.z/:

In the case that j D 1, we use (5.1) with ' D M . When combined with (5.10), the
argument above may be repeated using the expression (5.8).

Note that the de-singularization of the integral allowed the application of change of
variables in the proof above. As a consequence, we see that the Möbius transformation
preserves the original principal value integral. This can also be shown directly.

Remark 5.4. If one views the Schiffer operators as acting on a Bergman space of func-
tions h.z/ rather than on the L2 space of one-forms h.z/ dxz, their Möbius invariance is
obscured.

As promised, Theorem 5.3 implies the existence of the integrals defining the Schiffer
operator, since we may apply a Möbius transformation to reduce the general case to the
case that �1 is bounded, which we dealt with above.

Remark 5.5. If z 2 �j , the meaning of this one-form at z D 1 is obtained by applying
the change of coordinates z D 1=�, dz D �d�=�2 to express it in coordinates at1:

1

�

“
�1

h.w/

.1 � w�/2
d xw ^ dw

2i
� d�; � 2 1=�j :

Alternatively, one may transform both the input and output simultaneously using The-
orem 5.3 with M.z/ D 1=z.

Finally, we have the following.

Theorem 5.6. Let � be a Jordan curve in xC, and let�1 and�2 be the components of the
complement of � in xC. The Schiffer operators T�1;�j are bounded from A.�1/ to A.�j /

for j D 1; 2.
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Proof. By Theorem 5.3, we may assume that1 2 �2, so that �1 is bounded. The integ-
rands in the definitions of T�1;�2 and T�1;�1 given in (5.6), and (5.8) respectively are
non-singular and holomorphic in z for each w 2 �2 and w 2 �1 (in each case), and fur-
thermore both integrals are locally bounded in z. Therefore, the holomorphicity of T�1;�j
follows by moving the x@ inside (5.6) and (5.8), and using the holomorphicity of the integ-
rands in each case.

TheLp-boundedness of these operators for 1<p <1, considered as singular integral
operators, is a consequence of the boundedness of singular integral operators of Calderón–
Zygmund type, see e.g. [35, p. 26].

5.2. Cauchy operator

As usual, consider a Jordan curve � in xC. For now we assume that1 is not in � . Let �1
and �2 denote the components of the complement.

Definition 5.7. For h 2 D.�1/ we will consider a kind of Cauchy integral obtained as
follows. Let f WD ! �1 be a biholomorphism. If we let �" be the image of the closed
curve jzj D e�" under f , with the same orientation, and q … � , then we define

Jq�1h.z/ D
1

2�i
lim
"&0

Z
�"

h.w/

�
1

w � z
�

1

w � q

�
dw

D
1

2�i
lim
"&0

Z
�"

h.w/
z � q

.w � z/.w � q/
dw z 2 xCn�: (5.11)

The term involving q amounts to an arbitrary choice of normalization. In the case that
q D1, this reduces to

Jq�1h.z/ D
1

2�i
lim
"&0

Z
�"

h.w/

w � z
dw z 2 xCn�:

This is almost a Cauchy integral, of course. We will motivate the definition of Jq�1
after first establishing some of its properties.

First, we observe that Jq is Möbius invariant in a certain sense. The invariance follows
from the identity

M 0.w/.M.z/ �M.q//

.M.w/ �M.z//.M.w/ �M.q//
D

z � q

.w � z/.w � q/
; (5.12)

which holds for any Möbius transformation M . Observe that the usual normalization
q D1 obscures the Möbius invariance of the Cauchy kernel. Using this identity, together
with a change of variables and conformal invariance of the Dirichlet space, we obtain the
following.

Theorem 5.8. Let � be a curve in xC and �1, �2 be the connected components of the
complement. Let M be a Möbius transformation. Then for any h 2 D.M.�1//, we have

ŒJM.q/
M.�1/

h� ıM D Jq�1.h ıM/:
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Observe that Theorem 5.8 extends the definition of the integral to the case that12 � .
For the moment, this says only that if the limit exists on one side, then it exists on both,
and the two sides are equal. We will show that the limit exists whenever h 2 Dharm.�1/.

In the remainder of the section we will: (1) provide identities relating Jq to the Schiffer
operators; (2) show that the output is in Dharm.�1 t �2/; and (3) show that for quasi-
circles, the limiting integral is, up to constants, independent of which side of � you choose
to take the limit in.

Let @ and x@ denote the Wirtinger operators on the Riemann sphere.

Theorem 5.9. Let � be a Jordan curve separating xC into connected components �1
and �2. Assume that q … � . Then

@Jq�1h.z/ D T�1;�2x@h.z/; z 2 �2; (5.13)

@Jq�1h.z/ D @h.z/C T�1;�1x@h.z/; z 2 �1; (5.14)
x@Jq�1h.z/ D 0; z 2 �1 [�2: (5.15)

Proof. If q 2 †2, then the first claim follows by applying Stokes’ theorem and bring-
ing @ under the integral sign, as does the third in the case that z 2 �2. Denote the circle
jz � qj D r traced counter-clockwise by Cr . Using the fact that

lim
r&0

1

�i

Z
Cr

@g�1
@w

.wI z/h.w/ D h.q/;

by Stokes’ theorem, we have for q 2 �1 and z 2 �2 that

Jq�1h.z/ D lim
"&0

Z
�"

�
1

2�i

�
1

w � z
�

1

w � q

�
�
1

�i

@g�1
@w

.w; q/

�
h.w/ dw C h.q/

D

“
�1

�
1

2�i

�
1

w � z
�

1

w � q

�
�
1

�i

@g�1
@w

.w; q/

�
x@h.w/ d xw ^ dw C h.q/:

(5.16)

Noting that the integrand is non-singular, applying @z to both sides using Theorem 5.1)
proves the first claim. Applying x@z proves the third claim in the case that q 2 �1 and
z 2 �2.

If z 2 �1 and q 2 �2, we have similarly that

Jq�1h.z/ D
“
�1

�
1

2�i

�
1

w � z
�

1

w � q

�
C

1

�i

@g�1
@w

.w; z/

�
x@h.w/ d xw ^ dw C h.z/:

(5.17)
Applying x@z completes the proof of the third claim, and applying @z using (5.8) proves
the second claim in the case that q 2 �2. To prove the second claim in the case that
q 2 �1, we add a further term to (5.17) which removes the singularity at q as in (5.16)
and apply @z .
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For j D 1; 2 we denote
Jq�1;�j h D Jq�1h

ˇ̌
�j
:

Theorem 5.9 immediately implies that these are bounded with respect to the Dirichlet
energy.

Corollary 5.10. Let � be a Jordan curve in xC and choose q … � . Then

Jq�1 WDharm.�1/! Dharm.�1 [�2/q;

Jq�1;�j WD.�1/! D.�j /; j D 1; 2:

If q 2 �j , then the image of Jq�1;�j is Dq.�j /. Furthermore, each of the operators above
are norm-bounded and bounded with respect to Dirichlet energy.

Proof. The characterization of the images and boundedness with respect to the Dirichlet
energy follow immediately from Theorems 5.6 and 5.9, together with the fact that the
integral kernel of Jq�1 vanishes for z D q.

It remains to show that Jq is norm-bounded. Assume first that q 2 �2. If we use q as
the fixed point in the definition of the norm on �2, we then have that

kJq1;2hk�2 D D�2.J
q
1;2h/

1=2

since Jq1;2h.q/ D 0. Thus, Jq1;2 is norm-bounded.
By composing with a Möbius transformation and applying Theorem 5.8, we can as-

sume that q D 1 and 0 2 �1. Since we have already shown boundedness with respect
to Dirichlet energy, it remains only to show that jJq1;1h.0/j is controlled by the norm
of h. Now let f WDC ! �1 be a conformal map such that f .0/ D 0. Using g�1.z; 0/ D
� log jf �1.z/j and arguing as in (5.16) and (5.17), we see that

Jq�1h.0/ D lim
"&0

Z
�"

�
1

2�i

1

w
C

1

�i

@g�1
@w

.w; 0/

�
h.w/ dw C h.0/

D lim
"&0

1

2�i

Z
�"

�
1

w
�
.f �1/0.w/

f �1.w/

�
h.w/ dw C h.0/

D lim
r%1

1

2�i

Z
jzjDr

�
f 0.�/

f .�/
�
1

�

�
h.f .�// d� C h.0/

D

“
DC

�
f 0.�/

f .�/
�
1

�

�
x@.h ı f /.�/

dx� ^ d�

2i
C h.0/: (5.18)

It is clear that if we choose the point in the definition of the norm on Dharm.�1/ to be 0,
then it suffices to estimate the first integral. Since f is one-to-one, the integrand is non-
singular. Now let R D infj� jDr jf .�/j. Since R > 0, we have“

r<j� j<1

ˇ̌̌f 0.�/
f .�/

ˇ̌̌2
dA� D

“
f .Ar /

ˇ̌̌1
�

ˇ̌̌2
dA� <1:
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Obviously, “
Ar

ˇ̌̌1
�

ˇ̌̌2
dA� <1;

so by Minkowski’s inequality applied to the domain Ar , we have“
Ar

ˇ̌̌f 0.�/
f .�/

�
1

�

ˇ̌̌2
dA� <1;

and therefore we obtain that k log .f .z/=z/k�1 <1. Inserting this in (5.18) and applying
Cauchy–Schwarz’s inequality, we obtain

jJq1;1h.0/j � jh.0/j CD�1.log .f .z/=z//1=2D�1.h ı f /
1=2;

which (using the conformal invariance of the Dirichlet energy) proves the boundedness
of Jq1;1.

In the case that q 2 �1, once again one trivially obtains that Jq1;1 is norm-bounded by
choosing q to be point in the norm on Dharm.�1/. Then Jq1;2 is shown to be bounded by
choosing the point in the norm on Dharm.�2/ to be1, and estimating

Jq1;2h.1/ D lim
"&0

1

2�i

Z
�"

�h.w/

w � q
dw

as above.

Observing that Jq�1c is constant in �1 and �2 for any constant c, we also obtain
well-defined operators

PJ�1 W PDharm.�1/! PDharm.�1 [�2/;

PJ�1;�k W PDharm.�1/! PDharm.�k/; k D 1; 2:

These are obviously bounded by Corollary 5.10, and it is easily verified that these are
independent of q.

As in the case of the overfare and Schiffer operators, we will use the notation Jq
k

in
place of Jq�k and Jq

j;k
in place of Jq�j ;�k wherever possible.

The operator Jq1 is motivated as follows. Setting aside the normalization at q, we would
like to define the Cauchy integral

1

2�i

Z
�

h.w/

w � z
dw

of a function h 2H .�;�1/, but there are two obstacles: the curve � is not rectifiable, and
functions in h are not particularly regular. This problem is solved by considering instead
Jq�1e�;�1h.

The question immediately arises: if one considers instead Jq�2e�;�2h, is the result the
same? Of course, this requires that H .�;�1/�H .�;�2/ at least, which we know is true
for quasicircles. In fact, up to constants, it is indeed sufficient that � is a quasicircle.
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Theorem 5.11. Let � be a quasicircle in xC, and let �1 and �2 be the connected com-
ponents of the complement. Fix q … � , then for any h 2 Dharm.�1/, we have

PJ1h D �PJ2 PO1;2h:

The same results hold with the roles of �1 and �2 switched.

Proof. Let B1 and B2 be collar neighbourhoods of � in �1 and �2, respectively. Let
U D B1 [ B2 [ � . This is an open set bordered by two analytic curves. By Corol-
lary 4.9, the class PR1D.U / of elements of D.U / is dense in PD.B1/. Furthermore, by
Theorem 4.7, PGA1;�1D.B1/ is dense in PDharm.�1/. Thus, since PGB1;�1 is bounded by
Theorem 4.6, PGB1;�1 PR1D.U / is dense in PDharm.�1/. By Theorem 3.11, PO1;2 is bounded,
so it is enough to prove the theorem for such functions.

Let h 2 D.U /. Since h extends continuously to � , the CNT boundary values of R1h
and R2h with respect to �1 and �2 both equal the continuous extension, and hence each
other. Thus,

O1;2GB1;�1R1h D GB2;�2R2h (5.19)

from which we conclude that the formula holds in the homogeneous sense; that is, with
dots.

Fix z 2 xCn� . Since Bi are collar domains, by definition there are biholomorphisms
fi WDC ! �i so that fi .Ari / D Bi for annuli Ari D ¹z W ri < jzj < 1º for i D 1; 2.
Let � i" denote the limiting curves fi .jzj D e�"/ with orientations induced by fi . By
Carathéodory’s theorem, the maps fi extend homeomorphically to maps from S1 to � ,
so for any fixed ", the curves � i" are each homotopic to � , and hence to each other. Thus,
since z and q are eventually not in the domain bounded by �1" and �2" , we have

lim
"&0

1

2�i

Z
�1"

h.w/

�
1

w � z
�

1

w � q

�
dw

D � lim
"&0

1

2�i

Z
�2"

h.w/

�
1

w � z
�

1

w � q

�
dw; (5.20)

where the negative sign arises from the change of orientation between the integrals.
Finally, applying the anchor lemma 4.10 for fixed z with

˛.w/ D

�
1

w � z
�

1

w � q

�
dw;

we have for i D 1; 2 that

Jqi GBi ;�iRih.z/ D lim
"&0

1

2�i

Z
� i"

h.w/

�
1

w � z
�

1

w � q

�
dw: (5.21)

Here, we may have to shrink the domain Bj so that neither z nor q are in the closure,
to ensure that ˛ 2 L2.Bj /. This does not affect the validity of the argument, since given
nested collar neighbourhoods B 0j � Bj , by definition

GB 0j ;�j hjB 0j D GBj ;�j hjBj :
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Thus, combining (5.19), (5.20), and (5.21), we have

Jq1GB1;�1R1h D �Jq2O1;2GB1;�1R1h:

The equation also holds in the homogeneous sense. Using density and boundedness com-
pletes the proof.

Remark 5.12. The negative sign is an artifact of the change of orientation induced by
the switch from the domain �1 to �2. In previous publications [53, 56] we chose the
orientations in such a way that the sign did not change.

Remark 5.13. Our proof of Theorem 5.11 given in [53] contains a gap, which is not hard
to fill in a couple of ways, but only if one mods out by constants. Here it is filled by the
proof of the anchor lemma, which we stated and proved for the first time in [56].

Finally, we record the following obvious fact.

Theorem 5.14. Let � be a Jordan curve in xC and let �1 and �2 be the components of
the complement. Fix q … � , and let h 2 D.�j /.

If q 2 �j , then

Jqj h.z/ D

´
h.z/ � h.q/ z 2 �j ;

�h.q/ z … �j [ �;

whereas if q … �j , then

Jqj h.z/ D

´
h.z/ z 2 �j ;

0 z … �j [ �:

Proof. This follows from the ordinary Cauchy integral formula.

5.3. The Schiffer isomorphisms and the Plemelj–Sokhotski isomorphisms

The classical Plemelj–Sokhotski jump formula can be expressed using a principle value
integral on the curve. That is, if u is a smooth function and � is a smooth Jordan curve
in C, for z0 2 � , define

Hu.z0/ D P.V.
1

2�i

Z
�

u.�/

� � z0
d�: (5.22)

Of course, one could weaken the analytic assumptions. We have [10]

lim
z!z˙0

1

2�i

Z
�

u.�/

� � z
d� D ˙

1

2
u.z0/CHu.z0/; (5.23)

where limz!z˙0
respectively denotes the limits taken in the bounded and unbounded com-

ponents �C and �� of the complement of � .
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Thus, defining the functions

hk.z/ D
1

2�i

Z
�

u.�/

� � z
d�; z 2 �k ; k D 1; 2;

for any point z0 2 � , it follows that

lim
z!z0

h2.z/ � lim
z!z0

h1.z/ D u.z0/;

which is referred to as the Plemelj–Sokhotski jump formula. When the map that takes u
to .h1; h2/ is an isomorphism, we will refer to it as the Plemelj–Sokhotski isomorphism.

Of course, this decomposition has been studied extensively, for various curves � and
various boundary values. Since quasicircles are not in general rectifiable, this hinders the
formulation of the jump decomposition. B. Kats studied Riemann–Hilbert problems (i.e.
more general versions of the Plemelj–Sokhotski jump problems) on non-rectifiable curves,
see e.g. [32] for the case of Hölder continuous boundary values, and the survey article [31]
and references therein. Also, the jump decomposition was shown to hold for a range of
Besov spaces of boundary values by the authors, for d -regular quasidisks [54], which are
not necessarily rectifiable.

In this paper, we do not integrate over the curve directly, but use limiting curves as
in previous sections. Thus, rectifiability is not necessary. We show that the map u 7!
.h1; h2/ is an isomorphism precisely for quasicircles, and that the jump formula holds up
to constants. Here, we circumvent the need for a principal value integral along the curve.
Nevertheless, we have the following problem.

Open problem. Can a meaningful principal value integral Hu be defined when � is a
quasicircle and u 2 H .�/, and a corresponding formula (5.23) found?

We will show the result of Napalkov and Yulmukhametov, that PJ1;2, Jq1;2, and the
Schiffer operator T1;2 are isomorphisms precisely for quasicircles. To do this, we first
require a lemma. This lemma says that the jump formula holds for functions which are
boundary values of holomorphic maps in a collar neighbourhood of � .

Lemma 5.15. Let � be a Jordan curve in xC and let�1 and�2 be the connected compon-
ents of the complement. Let B be a collar neighbourhood of � in�1. Assume that q is not
in the closure of B . If H 2 D.B/, then Jq1;2GB;�1H extends to a holomorphic function
H2 on �2 [ � [ B , which satisfies

H2.z/ D Jq1;1GB;�1H.z/ �H.z/; z 2 B:

Furthermore, Jq1;2GB;�1H has a transmission in Dharm.�1/, given explicitly by

O2;1Jq1;2GB;�1H D GB;�1H2 D Jq1;1GB;�1H �GB;�1H:

Recall that O2;1 is the solution of the Dirichlet problem on�1 with continuous bound-
ary values H2j� .
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Proof. Assume that q 2 �2; by Theorem 5.8 and conformal invariance of the bounce
operator and CNT boundary values, we can assume that q D1. The first claim is just the
ordinary Cauchy integral formula combined with the anchor lemma. Let f WDC ! �1
be the biholomorphism such that f .A/ D B for an annulus A D ¹z W r < jzj < 1º, and
let �"1 be the corresponding images under f of circles jzj D e�" as usual, with orientation
induced by f . Let  be the analytic curve which is the inner boundary of B; that is, the
image of jzj D r under f .

Define

H2.z/ D
1

2�i

Z


H.w/

w � z
dw;

which is holomorphic in the open set �2 [ � [ B . By the Anchor lemma (Lemma 4.10)
and the fact that H is holomorphic, for all z 2 �2, we have

Jq1;2GB;�1H.z/ D lim
"&0

1

2�i

Z
�1"

H.w/

w � z
dw D H2.z/: (5.24)

By the ordinary Cauchy integral formula, for all z 2 B , we have

H.z/ D lim
"&0

1

2�i

Z
�1"

H.w/

w � z
dw �H2.z/:

Applying the Anchor lemma (Lemma 4.10) again, we see that

H.z/ D Jq1;1GB;�1H.z/ �H2.z/ (5.25)

for all z 2 B .
We now prove the second claim. SinceH2 extends continuously to � , its CNT bound-

ary values with respect to �1 equal its CNT boundary values with respect to �2, which
are equal to those of Jq1;2GB;�1H by (5.25). Of course the CNT boundary values are all
continuous extensions. Thus,

GB;�1H2 D O2;1Jq1;2GB;�1H: (5.26)

To see that GB;�1H2 2 Dharm.�2/, let B1 D f .A0/ be a collar neighbourhood of �
in �1 where A0 is chosen so that its inner boundary is contained in A. Since H2 is holo-
morphic on an open neighbourhood of the closure of B1, its restriction to B1 is in D.B1/.
Since GB;�1 is bounded by Theorem 4.6, the transmission GB;�1H2 DGB1;�1H2 (where
H2 is restricted to B1) is in Dharm.�1/ as claimed.

Finally, applying GB;�1 to both sides of (5.25), which leaves the first term of the
right-hand side unchanged, and using (5.26), we obtain

GB;�1H D Jq1;1GB;�1H.z/ �O2;1Jq1;2GB;�1H

on �1. This completes the proof of the case that q 2 �2.
When q 2 �1, the proof above can be repeated with the Cauchy kernel replaced by

1=.w � z/ � 1=.w � q/ in each step, with no other changes.
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Theorem 5.16 (Transmitted jump formula for quasicircles). Let � be a quasicircle in xC
and let�1 and�2 be the connected components of the complement. For all h2 PDharm.�1/,
we have

h D PJ1;1h � PO2;1
PJ1;2h:

Proof. By Lemma 5.15, the claim holds for all h of the form GB;�1H for H 2 D.B/.
By Theorem 4.7, PGB;�1D.B/ is dense in PDharm.�1/. Thus, the theorem follows from the
fact that PJ is bounded by Corollary 5.10.

Remark 5.17. This can be thought of as the classical jump formula modulo constants
expressed in terms of the transmission.

Lemma 5.15 generates a large class of functions in the Dirichlet space for which there
is a continuous transmission, which will be useful in proving injectivity of the jump and
Schiffer operators ahead. Recall that the overfare operator for one-forms O0 used below
was defined by equation (3.6).

Lemma 5.18. Let � be a Jordan curve separating xC into components �1 and �2.

(1) For all xh 2 GB;�1D.B/ \ D.�1/, Jq1;2xh has a continuous transmission in
Dharm.�1/ given by

O2;1Jq1;2xh D Jq1;1xh � xh:

(2) For all x̨ 2 x@ŒGB;�1D.B/ \ D.�1/�, T1;2xh has a continuous transmission in
Aharm.�1/ given by

O02;1T1;2 x̨ D �x̨ C T1;1 x̨:

Proof. The first claim follows directly from Lemma 5.15. Now let x̨ D x@xh. Applying now
Theorem 5.9 to the right-hand side of (1), we see that

P.�1/O02;1T1;2 x̨ D T1;1 x̨;

P.�1/O02;1T1;2 x̨ D �x̨:

Applying @ to the left-hand side of (1) and using Theorem 5.9 again proves the claim.

We can now prove that T1;2 is one-to-one.

Theorem 5.19. Let � be a Jordan curve separating xC into components �1 and �2.

(1) T1;2 is injective (Napalkov and Yulmukhametov [41]).

(2) For any collar neighbourhood B of � in �1, T1;2 restricted to

x@ŒGB;�1D.B/ \D.�1/�

has left inverse �P.�1/O02;1, where P.�1/ is the projection defined in (2.5).
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Proof. The second claim follows immediately from Lemma 5.18 (2).
LetBD f .A/ be a collar neighbourhood of � in�1 induced by some biholomorphism

f WDC ! �1 and annulus A. Now for any n > 0, by conformal invariance of the bounce
operator (4.1), we have

GB;�1Cf �1w�n D Cf �1GA;DCw
�n
D Cf �1 xwn;

and so
x@Cf �1CŒxz� � x@ŒGB;�1D.B/ \D.�1/�:

Furthermore, x@Cf �1CŒxz� is dense in A.�1/.
By the second claim, for any x̨ 2 x@Cf �1CŒxz� if T1;2 x̨ D 0, then x̨ D 0. On the other

hand, for z 2 �2 fixed, dw=.w � z/2 2 A.�1/, and for any x̨ 2 A.�1/, we have

T1;2 x̨.z/ D
�
˛.w/;

dw

.w � z/2

�
:

This proves the first claim since, by Lemma 1 in [41], the system°
w 2 �1I

1

.w � z/2
; z 2 �2

±
is complete in A.�1/, and therefore if .˛.w/; dw=.w � z/2/ D 0, then ˛ D 0.

This implies that the Cauchy-type operator Jq1;2 is injective. It is convenient to record
the two cases q 2 �1; �2.

Corollary 5.20. Let � be a Jordan curve � in xC.

(1) (a) PJ1;2 is injective.

(b) For any collar neighbourhood B of � in �1, on PD.�1/ \ PGB;�1D.B/, the

left inverse is given by �PP.�1/ PO2;1.

(2) Fix q 2 �2. For any p 2 �1, Jq1;2 is injective from Dp.�1/ to Dq.�2/.

(3) Fix q 2 �1. Then Jq1;2 is injective from D.�1/ to D.�2/.

Proof. (1) (a) follows immediately from Theorems 5.9 and 5.19. To see (1) (b), observe
that Lemma 5.15 tells us, for any xh 2 GB;�1D.�1/, that

�O2;1Jq1;2xh D �Jq1;1xhC xh:

Thus, the same formula holds for the homogeneous spaces, and the claim follows.
To prove (2), by Theorem 5.19 (1) and Theorem 5.9, if Jq1;2xhD 0, then xh is a constant c.

If xh2Dp.�/, then cD h.p/D 0, so hD 0. On the other hand, if q2�1, then cDh.q/D0.
This proves (3).

The left inverses in (2) and (3) are easily obtained by keeping track of constants appro-
priately.
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Theorem 5.21 (Napalkov and Yulmukhametov [40, 41]). Let � be a Jordan curve separ-
ating xC into components �1 and �2. If any of the following four conditions hold, then �
is a quasicircle.

(1) T1;2 is surjective.

(2) The restriction of PJ1;2 to PD.�1/ is surjective onto PD.�2/.

(3) The restriction of Jq1;2 to Dp.�1/ is surjective onto Dq.�2/ for some q 2�2 and
p 2 �1.

(4) The restriction of Jq1;2 to D.�1/ is surjective onto D.�2/ for q 2 �1.

Proof. The first and second claim are equivalent by Theorem 5.9. If (3) or (4) holds,
then (2) clearly holds. Thus, it suffices to show that (2) implies that � is a quasicircle.

Assume that (2) holds. Let

KWD.�2/! D.�1/

be the right inverse of PJ1;2 on PD.�1/. Choose a collar neighbourhood B D f .Ar / of �
in �1, where f W DC ! �1 is a biholomorphism. As in the proof of Theorem 5.19,
PGB;�1 PCf �1 PCŒ1=z� is dense in PD.�1/, since

PGB;�1 PCf �1 PCŒ1=z� D PCf �1 PGA;DC
PCŒ1=z� D PCf �1 PCŒz�

and polynomials are dense in PD.DC/. Since PJ1;2 is bounded and surjective, the set

L D PJ1;2 PGB;�1 PCf �1 PCŒ1=z�

is dense in PD.�1/. Furthermore, Lemma 5.15 guarantees that L � PC.cl�2/, and by
Lemma 5.18 for every element xh 2 L, we have

PO2;1xh D PO2;1 PJ1;2Kxh D .PJ1;1K �K/xh:

We can also conjugate to get transmission of elements h 2 L � PD.�1/, that is

PO2;1h D .PJ1;1K �K/h:

Since PJ1;1K � K is bounded, Theorem 3.11 applies, and we can conclude that � is a
quasicircle. This proves (2).

Theorem 5.22 (Napalkov and Yulmukhametov [40, 41]). Let � be a Jordan curve separ-
ating xC into components �1 and �2. The following are equivalent.

(1) � is a quasicircle.

(2) PJ1;2 is a bounded isomorphism from PD.�1/ onto PD.�2/.

(3) T1;2 is a bounded isomorphism.
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(4) For q 2 �2 and p 2 �1, Jq1;2 is a bounded isomorphism from Dp.�1/ into
Dq.�2/.

(5) For q 2 �1, Jq1;2 is a bounded isomorphism from D.�1/ into D.�2/.

If any of these hold, then the inverse of PJ1;2 is �PP.�1/ PO2;1, and the inverse of T1;2
is �P.�1/O02;1.

Proof. If (2), (3), (4), or (5) holds, then by Theorem 5.21 � is a quasicircle.
Conversely, assume that � is a quasicircle. By Theorem 5.19 and Corollary 5.20, we

have that the maps in (2)–(5) are injective.
By the inverse mapping theorem it is enough to show that the maps in (2)–(5) are

surjective. For q 2 �2, surjectivity of Jq1;2 follows immediately from surjectivity of PJ1;2,
as does surjectivity of T1;2 by applying Theorem 5.9. For q 2 �1, surjectivity of Jq1;2
follows from that of PJ1;2 after observing that in this case Jq1;2c D �c for any constant c,
and thus the constants can be adjusted as needed. Thus, it suffices to prove surjectivity
of PJ1;2.

Assume that q 2 �2. To see that PJ1;2 is surjective from PD.�1/ to PD.�2/, let h 2
PD.�2/. Let H D � PO2;1h, where the bounded transmission PO2;1 exists by Theorem 3.5.

Now H D H1 CH2, where H1 2 PD.�1/ and H2 2 PD.�1/. For all z 2 �2, we have

PJ1;2H2.z/ D PJ1;2H.z/ D PJ2;2h.z/ D h.z/;

where the first equality is by part one of Theorem 5.14 with j D 2 (one can choose there
q 2�2), the second equality is by Theorem 5.11, and the third equality is by Theorem 5.14
part two with j D 2. This completes the proof.

Again, the inverse of Jq1;2 can be obtained by adjusting constants.

Remark 5.23. As far as we know, the fact that T1;2 is an isomorphism was not known
to Schiffer even for stronger assumptions on the curve. We have generalized this and the
jump isomorphism to various settings (taking into account topological obstacles); namely
to compact Riemann surfaces separated by a quasicircle [56]; and with M. Shirazi, to com-
pact Riemann surfaces with n quasicircles enclosing simply connected domains in [44].
The converse, that T1;2 is an isomorphism then � is a quasicircle, only exists in genus
zero. It is an open question whether a suitably formulated converse holds in genus g > 0,
though it seems plausible once the topological differences are taken into account.

We now prove that the Plemelj–Sokhotski jump decomposition is an isomorphism
precisely for quasicircles. For q 2 �2, define

Mq.�1/WDharm.�1/! D.�1/˚Dq.�2/;

h 7! .Jq1;1h; J
q
1;2h/;

and for q 2 �1, define

Mq.�1/WDharm.�1/! Dq.�1/˚D.�2/:
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Similarly, we have the following operator on harmonic Bergman space:

M0.�1/WAharm.�1/! A.�1/˚A.�2/;

˛ C x̌ 7! .˛CT1;1 x̌;T1;2 x̌/;
(5.27)

where ˛ 2 A.�1/ and x̌ 2 A.�1/.
With this notation, we have the following theorem.

Theorem 5.24. Let � be a Jordan curve separating xC into components �1 and �2. The
following are equivalent.

(1) � is a quasicircle.

(2) For any q 2 xCn� , Mq.�1/ is an isomorphism.

(3) M0.�1/ is an isomorphism.

(4) PM.�1/ is an isomorphism.

It is enough that (2) holds for a single q.

Proof. We first prove that (1) is equivalent to (3). Assuming that � is a quasicircle, by
Theorem 5.22, T1;2 is an isomorphism. Given � D ˛ C x̌ 2 Aharm.�1/, assume that
M0.�1/� D 0. Then T1;2 x̌ D 0, so x̌ D 0. Since ˛ D ˛CT1;1 x̌ D 0, we see that � D 0,
so M0.�1/ is injective. Given any .�;�/2A.�1/˚A.�2/, choose x̌ such that T1;2 x̌D� .
Setting ˛ D ��T1;1 x̌, we have

M0.�1/.˛ C x̌/ D .�; �/:

Conversely, if M0.�1/ is an isomorphism, in particular T1;2 is surjective, so by The-
orem 5.21 � is a quasicircle.

(4) is obviously equivalent to (3), after observing that dMq.�1/ DM0.�1/d by The-
orem 5.9. It remains to show that (2) and (1) are equivalent. If (2) holds, then Jq1;2 is an
isomorphism and in particular surjective, so � is a quasicircle by Theorem 5.21. Assume
that � is a quasicircle. We have already shown that PM.�1/ is an isomorphism, so in par-
ticular PM.�1/ is surjective. The fact that Mq.�1/ is surjective follows from observing,
for any constant function c, that

Mq.�1/c D

´
.0;�c/ q 2 �1;

.c; 0/ q 2 �2;
(5.28)

so the constant can be adjusted as needed. Also, if Mq.�1/h D 0, then M0.�1/dh D 0
Since we have already shown that M0.�1/ is injective, we have that h D c for some
constant c. By (5.28), h D 0.

In the case that � is a quasicircle, we call Mq.�1/ the Plemelj–Sokhotski jump
isomorphism. This establishes that the jump decomposition holds up to constants on quasi-
circles, with data in PH .�/.
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Theorem 5.25. Let � be a quasicircle separating xC into components�1 and�2. For any
u 2 PH .�/, there exist hj 2 PD.�j / such that the CNT boundary values uj of hj satisfy

u D u1 � u2

except possibly on a null set. The h1 and h2 are unique and are given explicitly by

.h1; h2/ D PM.�1/ Pe�;�1 u:

Proof. Fix q 2 xCn� . Given u 2 H .�/, denote h D e�;�1u, so that .h1; h2/ D Mqh. To
show that u1 � u2 D u it suffices to show that

h D h1 � PO2;1h2:

But this is precisely Theorem 5.16.
To see that the decomposition is unique, let Hj be another pair of functions such that

u D Pb�;�1H1 � Pb�;�2H2. In that case, h D H1 � PO2;1H2, so

h1 �H1 C PO2;1.H2 � h2/ D 0: (5.29)

By Theorem 5.22, PP.�1/ PO2;1 is one-to-one on D.�2/. Applying this to (5.29), we obtain
that H2 � h2 D 0. Inserting this back into (5.29) yields h1 �H1 D 0.

Interestingly, the jump formula holds for u 2 H .�/ for arbitrary quasicircles, for
those u which are boundary values of the set GB;�1D.B/, which is dense in Dharm.�1/.
Although Mq.�1/ is bounded, this does not obviously imply that the jump formula holds
on H .�/ for arbitrary quasicircles. We thus have the following open question.

Open question. For which quasicircles � does the jump formula hold on H .�/?

This is clearly closely related to the open problem on boundedness of transmission.

Remark 5.26. The operator P.�1/O2;1 also appears in conformal field theory (usually
with stronger analytic assumptions). Theorem 6.5 generalizes to higher genus, that is, this
operator is inverse to a kind of Faber operator. This fact can be exploited to give an explicit
description of the determinant line bundle of this operator; see [44] for the case of genus g
surfaces with one boundary curve. The general case of genus g with n boundary curves is
work in progress with D. Radnell.

Remark 5.27. The connection of the jump problem to Schiffer operators Tj;k , was expli-
cit from the beginning in the work of Bergman and Schiffer [11]. The survey [50] focusses
in particular on the real jump problem and its relation to boundary layer potentials. The
connection to the complex jump theorem which we give here is more direct. The paper of
H. Royden [48] connects the Schiffer kernel functions to the jump problem on Riemann
surfaces. His results are phrased somewhat differently, in terms of topological condi-
tions for extensions of holomorphic and harmonic extensions on domains; indeed, the
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Plemelj–Sokhotski jump formula is not mentioned explicitly. However, it can be derived
as a special case of his results, but with more restrictive analytic assumptions on the func-
tion on the curve; namely, that it extend holomorphically to a neighbourhood of the curve.
Our paper [56] considers jump decompositions and Schiffer kernels on Riemann surfaces,
in the setting of Dirichlet spaces and quasicircles, extending some of the results given here
to higher genus.

6. Faber and Grunsky operators

6.1. The Faber operator and Faber series

The Faber operator, see e.g. [63], arises in the theory of approximation by Faber series
in domains in the plane or sphere, and has its origin in the work of G. Faber [23]. The
Faber operator is typically defined as follows. Let � be a rectifiable Jordan curve separ-
ating xC into components �1 and �2. Assume for the moment that �1 is bounded, that
is1 2 �2, and that 0 2 �1. Let f WDC ! �1 be a conformal map, such that f .0/ D 0.
Let h be a holomorphic function on D� and assume that h ı f �1 extends to an integ-
rable function on �; that is, h has boundary values in some sense (e.g. non-tangential) and
h ı f �1 2 L1.�/. Then the Faber operator is defined by

F h.z/ D �
1

2�i

Z
�

h ı f �1.w/

w � z
dw:

For various choices of the regularity of � and the space of holomorphic functions
on DC, this is called the Faber operator. The Faber operator is closely related to the
approximation by Faber polynomials of a holomorphic function on �2 in general. The
nth Faber polynomial corresponding to the domain �2 is defined by

Fn.z/ D F ..�/�n/.z/ D �
1

2�i

Z
�

.f �1.w//�n

w � z
dw:

The Faber operator produces a Faber series as follows. Let h.z/ be a holomorphic
function in cl.D�/ which vanishes at the origin. Assume that � is an analytic Jordan
curve, so that we may focus on the heuristic idea. If h.z/ D h1z�1 C h2z�2 C � � �, then
it is easily verified that the function H.z/ D F h.z/ is holomorphic on the closure of �2
and vanishes at1. Furthermore, one has the polynomial series

H.z/ D F h.z/ D

1X
nD1

hnF ..�/�n/ D

1X
nD1

hnFn.z/

called the Faber series ofH . This series converges uniformly on the closure of�2. One of
the advantages of Faber series over power series, is that for sufficiently regular functions it
converges uniformly on compact subsets of the domain. That is, unlike power series, they
are adapted to the geometry of the domain.
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If one refines the analytic setting, as we do below, then one can investigate different
kinds of convergence of the series. Existence and uniqueness of a Faber series correspond
to surjectivity and injectivity of the Faber operator respectively. Since h is defined on �2
and f �1 on �1, the composition h ı f �1 is not necessarily defined anywhere except
on � . Thus, the boundary behaviour of h and f �1 play a central role in the study of the
Faber operator.

There is a vast literature on the Faber operator, Faber series, and their approximation
properties. Moreover, the analytic properties of the Faber operator as they relate to the reg-
ularity of the curve and the function space, and approximability in various senses by series
of Faber polynomials has been extensively studied. See the books of J. M. Anderson [5]
and P. K. Suetin [63] (note that the 1998 English translation of the 1984 original has an
extensively updated bibliography). Some more recent papers are H. Y. Wei, M. L. Wang
and Y. Hu [69], D. Gaier [24], Y. E. Yıldırır and R. Çetintaş [70].

Here we define a Faber operator with domain D.D�/ for arbitrary Jordan curves using
transmission on the circle. Since the boundary behaviour of a holomorphic function h.z/
on DC is identical in every sense to that of OD�;DCh.z/ D h.1=xz/, we will replace the
domain D.D�/ of the operator by D.DC/.

Definition 6.1. For q 2 �2, we define a Faber operator by setting

Iq
f
D �Jq1;2Cf �1 WD0.DC/! Dq.�2/: (6.1)

It follows immediately from Corollary 5.10 and conformal invariance of Dirichlet
space that Iq

f
is a bounded operator. The choice q D 1 and p D f .0/ corresponds to

the operator F described above. From here on, we refer to (6.1) as the Faber operator, and
use the new notation to distinguish it from the heuristic discussion above.

Denote the set of polynomials vanishing at q by CqŒz�. Assume that f .0/ D p 2 xC,
and let � 0 be a fixed simple closed analytic curve in �1 with winding number zero with
respect to p. By Lemma 4.10, for any xh 2 C0Œxz�, we have

Iq
f
xh D Iq

f
OD�;DCu D �

1

2�i

Z
� 0
u ı f �1.w/

�
1

w � z
�

1

w � q

�
dw;

where u.z/ D xh.1=xz/. It is easily shown that the output is a polynomial in .z � p/�1. In
particular, we define the Faber polynomials as follows.

Definition 6.2. Let � be a Jordan curve separating xC into�1 and�2. Assume that q 2�2
and let p D f .0/. Let f WDC ! �1 be a conformal map. The nth Faber polynomial with
respect to f is

ˆn.z/ D Iq
f
.z�n/ 2 CqŒ1=.z � p/�:

If q D 1 and p D 0, we have ˆn.z/ 2 C1Œ1=z�. It is easily checked that ˆn has
degree �n in .z � p/.
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Remark 6.3. For a bounded domainD bounded by a Jordan curve, polynomials are dense
in A.D/ [37], so polynomials vanishing at a fixed point q are dense in Dq.D/. So for
p 2 �1, settingM.z/D 1=.z � p/ andD DM.�1/, we see that CqŒ1=.z � p/� is dense
in Dq.�1/. Thus, since ˆn has degree �n in .z � p/ for each n, we see that the image
of Iq

f
is dense in Dq.�2/.

Example 6.1. Consider the elliptic domain

E D

²
x C iy 2 CI

x2

.5=4/2
C

y2

.3=4/2
< 1

³
:

The function g.z/ D z C 1
4z

is a one-to-one, holomorphic mapping of D� onto Cncl.E/:
Substituting z C 1

4z
for g.z/ in ˆn D I0g.zn/, a rather lengthy calculation yields that the

Faber polynomials ¹ˆn.z/º1nD0 associated with E are the monic Chebyshev polynomials,
given by

ˆ0.z/ D 1;

ˆn.z/ D 2
�n
®
Œz C
p

z2 � 1�n C Œz �
p

z2 � 1�n
¯
; n D 1; 2; : : : :

By a Faber series we mean a series of the form

1X
nD1

�nˆn.z/;

whether or not it converges in any sense. With notation as in Definition 6.2, we also define
what we call the sequential Faber operator

Iseq
f
W `2 ! D.�2/q;

.�1; �2; : : :/ 7!

1X
kD1

�k
p
k
ˆk :

It commonly appears in this form in univalent function theory [20, 43].

Theorem 6.4. Let � be a Jordan curve separating xC into components �1 and �2. Let
q 2 �2 and fix a conformal map f WDC ! �1. The following are equivalent.

(1) � is a quasicircle.

(2) The Faber operator Iq
f

is a bounded isomorphism.

(3) The sequential Faber operator is a bounded isomorphism (Shen [60]).

(4) Every element of Dq.�2/ is approximable in norm by a unique Faber seriesP1
nD1 hnˆn satisfying .h1; h2=

p
2; h3=

p
3; : : :/ 2 `2 (Shen [60]).

If any of conditions (2)–(4) hold for a single q and single choice of f WDC ! �1, then
they hold for every q 2 �2 and every choice of f .
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Proof. The equivalence of (1) and (2) follows immediately from Theorem 5.22 together
with the fact that Cf �1 WD0.DC/!Dp.�1/ is a bounded isomorphism, where p D f .0/.
The equivalence of (2) and (3) follows from the fact that

.�1; �2; �3; : : :/ 7!

1X
kD1

�k
p
k
xzk (6.2)

is a bounded isomorphism from `2 to D0.DC/.
To show that (2) and (4) are equivalent, first observe that for any Jordan curve Iq

f

is injective, since Cf �1 WD0.DC/! Dp.�1/ is an isomorphism and Jq1;2 is injective by
Corollary 5.20 (1). Now assume that (2) holds. Given any H.z/ 2 Dq.�2/, let H D Iq

f
xh.

This function h has a power series expression

xh.z/ D h1xz C h2xz
2
C � � � ;

which converges in D0.DC/ to xh. Since Iq
f

is bounded, applying it to both sides we see
that

H.z/ D

1X
nD1

hnˆn.z/

is convergent in the norm. Uniqueness follows from injectivity of Iq
f

.
To see that (4) implies (2), observe that (4) implies that the sequential Faber operator is

surjective. Since (6.2) is an isomorphism, Iq
f

is surjective, and hence an isomorphism.

The result that (1) implies (3) and (4) was obtained earlier by Çavuş [16]. Note that
Çavuş and Shen work with the conformal map on the outside of the disk. Another differ-
ence of convention is that they phrase their results in terms of Bergman spaces, which is
equivalent under the isometry h 7! h0 between Dirichlet and Bergman spaces. We altered
both conventions in order to harmonize our presentation.

Wei, Wang, and Hu [69] showed that for a rectifiable Jordan curve, the Faber operator
is an isomorphism if and only if the curve is a rectifiable quasicircle. Our results rely on
transmission and the limiting integral, which enable us to remove the assumption of rec-
tifiability. A key result in our approach is the equality of limiting integrals up to constants
from either side (Theorem 5.11), which was originally proven in [53].

The proofs given here that (2)–(4) imply (1) are also new in that they do not use
Pommerenke’s result that the strict Grunsky inequalities imply that � is a quasicircle (see
Theorem 6.13 ahead).

The inverse can be given explicitly. Denote by P0.DC/ the projection onto D0.DC/.

Theorem 6.5. Let � be a quasicircle separating xC into components �1 and �2. Let
q 2 �2, and fix f WDC ! �1. The inverse of Iq

f
is P0.DC/Cf O2;1.
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Proof. Let p D f .0/. Observe that P0.DC/Cf D Cf Pp.�1/. Thus, by Theorem 5.22,
we have

�P0.DC/Cf O2;1Jq1;2Cf �1 xh D �Cf Pp.�1/O2;1Jq1;2Cf �1 xh

D xh

for all xh 2 D0.DC/. So this is a left inverse, which must also be the right inverse by
Theorem 6.4.

Remark 6.6. In Theorem 6.4, the result of Shen that (3)) (1) is stronger in comparison
to our result (2) ) (1); on the other hand, (1) ) (2) is stronger than (1) ) (3). Also,
Shen’s result is still stronger in that it does not require assuming that the domain is a
Jordan curve. It is not immediately clear what the meaning of transmission would be when
the complement of f .DC/ is not the closure of a Jordan domain. We did not pursue this
issue. It seems to be of interest, in light of the fact that Faber polynomials have meaning
for degenerate domains, among other reasons.

6.2. Grunsky inequalities

The Grunsky inequalities originally stem from H. Grunsky’s studies in the context of
univalent function theory [26]. The operator (or matrix) involved in those studies, which
is referred to as Grunsky operator, have grown to become a powerful tool in many areas
of mathematics.

The Grunsky operator (in various shapes) has been explored by many authors, for
example A. Baranov and H. Hedenmalm [7] and G. Jones [30]. L. A. Takhtajan and
L.-P. Teo showed that it provides an analogue of the classical period mapping of com-
pact surfaces for the universal Teichmüller space [64]. See also V. L. Vasyunin and N. K.
Nikol’skiı̆ for an exposition of its appearance in de Branges’ work on complementary
spaces [66]. There are many interesting results relating the analytic properties of the Grun-
sky matrix Grf to the geometric or analytic properties of the conformal map f and/or its
image f .DC/; see for example Jones [30], Shen [59], or Takhtajan and Teo [64].

The treatment as an integral operator goes at least as far back as Bergman and Schif-
fer’s classic paper [11], as described in the explanation following Theorem 6.17 ahead.

We shall first define the Grunsky operators acting on polynomials, and later extend
them by Theorem 6.9 to Dirichlet spaces. In Theorem 6.11 we will define the Grunsky
operators in the more general setting of quasicircles.

Definition 6.7. Given a Jordan curve � separating xC into �1 and �2 as above, let
f WDC ! �1 be a conformal map with f .0/ D p and fix q 2 �2. The Grunsky oper-
ator on polynomials is defined by

Grf D P0.DC/Cf O02;1 Iq
f
WC0Œxz�! D0.D

C/: (6.3)
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As we saw in the previous section, Iq
f

takes polynomials to polynomials in
CqŒ1=.z � p/�, which have continuous transmission. It follows from Lemma 5.15 that
the output of Grf on polynomials is in D0.DC/. Since for any xh 2D0.DC/, we have that

Iq
f
xh � Iq1

f
xh D ŒJq11;2 � Jq1;2�Cf �1 xh

is constant, and the transmission and pull-back of constants are also constant, the Grunsky
operator is independent of q.

Remark 6.8. By the Anchor lemma (Lemma 4.10), this agrees with the classical defini-
tion of the Grunsky coefficients. We choose q D1 2�1 and p D 0 to be consistent with
the usual conventions, though the reasoning works for arbitrary q and p. The classical
definition (in fact, one of several) is that the Grunsky coefficients bnk of a univalent map
of the disk are given by

ˆn.f .z// D z
�n
C

1X
kD1

bnkz
k ; (6.4)

whereˆn is the nth Faber polynomial. Recalling that I0
f
.z�n/Dˆn, the fact thatˆn.f .z//

has this form follows from a simple contour integration argument (or from Corollary 5.20).
By the Anchor lemma (Lemma 4.10) applied to ˆn, together with the fact that

P0.DC/Cf D Cf P0.�C/;

we have

Grf .zn/ D
1X
kD1

bnkz
k :

Thus, we see that the Grunsky coefficients are just the coefficients of the matrix repres-
entation of Grf .

The Grunsky operator and Faber polynomials are often formulated for conformal maps
gWD�!�1, of the form g.z/D zC b0C b1=zC � � �, where�1 contains the point at1.
Choosing qD 0, the Faber polynomials are then defined byˆnD I0g.zn/, and the Grunsky
coefficients by

ˆn.g.z// D z
�n
C

�1X
nD�1

bnkz
k :

The convention that g takes D� onto a domain containing1 seems to provide an advant-
age in some proofs [20, 43], in that the area of the complement of g.D�/ is finite; this
appears to be the motivation for the choice. However, the advantage is illusory: the import-
ant fact is that the functions to which the Grunsky operator is applied have finite Dirichlet
energy. The following identity shows that either choice is as good as the other. Setting
f .z/ D 1=g.1=z/, then it is easily checked, for n > 0 and m > 0, that

p
nmb�n;�m.g/ D

p
nmbnm.f /: (6.5)
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Another approach to the definition of the Grunsky coefficients is through generating func-
tions, e.g.

log
g.z/ � g.w/

z � w
� logg0.1/ D

�1X
nD�1;mD�1

bn;mz
nwm;

where g0.1/ D limz!1 g.z/=z for suitably chosen branches of logarithm. One can
recognize immediately the relation to the integral kernel in Theorem 6.17. This also visibly
demonstrates (6.5). The Faber polynomials can also be defined using generating functions
related to the integral kernel of the Faber operator, see e.g. [20, 29, 63].

We now extend Grf to the full Dirichlet space.

Theorem 6.9. Let � be a Jordan curve separating xC into components �1 and �2. Fix
q 2 �2. Let f WDC ! �1 be a conformal map. Grf extends to a bounded operator

Grf WD0.DC/! D0.D
C/

of norm less than or equal to one. For all xh 2 D0.DC/, the extended operator satisfies

kIq
f
xhk2Dq.�1/

� kxhk2
D0.DC/

� kGrf xhk2D0.DC/
: (6.6)

If � has measure zero, then equality holds.

Proof. First observe that the Grunsky operator satisfies the following invariance property
when restricted to polynomials. For any Möbius transformation M , we have

GrMıf D Grf : (6.7)

This follows from the fact that CM O0
M.�2/;M.�1/

D O02;1 CM and, by Theorem 5.8,

CMJM.q/
M.�1/;M.�2/

D Jq1;2 CM :

We will first show the inequality (6.6) for polynomials. By the above observation, it
is enough to prove it when �2 contains 1, and p D 0 2 �1. We can also assume that
q D1.

For r 2 .0; 1/, let Cr be the positively oriented curve jzj D r . For xh D h1xz C � � � C
hmxz

m 2 C0Œxz�, we set

H.w/ D Iq
f
xh D

mX
nD1

hnˆn:

Observe that since H.w/ vanishes at1, we have

lim
R%1

Z
jzjDR

H.w/H 0.w/ dw D 0:
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Thus, by (6.4) and using the fact that xz D r2=z on Cr , we have

kIq
f
xhk2Dq.�1/

� � lim
r%1

1

2�i

Z
f .Cr /

xh.w/H 0.w/ dw

D � lim
r%1

1

2�i

Z
Cr

H.f .z//.H ı f /0.z/ dz

D lim
r%1

1

2�i

Z
Cr

� mX
nD1

hnxz
�n
C

mX
nD1

1X
kD1

bnkxz
k

�
�

� mX
nD1

nhnz
�n�1

�

mX
nD1

1X
kD1

kbnkz
k�1

�
dz

D lim
r%1

1

2�i

Z
Cr

� mX
nD1

hnr
2zn C

mX
nD1

1X
kD1

bnkr
2z�k

�
�

� mX
nD1

nhnz
�n�1

�

mX
nD1

1X
kD1

kbnkz
k�1

�
dz

D khk2
D0.DC/

�

 1X
kD1

mX
nD1

bnkhn

2
D0.DC/

:

If � has measure zero, equality holds. The theorem now follow from density of C0Œxz�
in D0.DC/.

From now on, Grf refers to this extended operator.

Corollary 6.10. For any Möbius transformation M , GrMıf D Grf .

Proof. This follows from (6.7), since the extended operator must also satisfy this identity.

Usually normalizations are imposed on the function classes, especially the derivative
at the origin or at 1. These normalizations obscure the Möbius invariance of various
objects, such as the Grunsky operator and Cauchy integral operator, and furthermore limit
the applicability of the stated theorems unnecessarily. So we have removed them as much
as possible throughout the paper.

Theorem 6.11. If � is a quasicircle dividing xC into �C and ��, and f WDC ! �C is a
biholomorphism, then

Grf D Ph0.D
C/Cf O2;1 Iq

f
:

Proof. The expression is a bounded extension of (6.3) by Theorem 3.5.

Remark 6.12. As is well known, using the identity in Remark 6.8, one can show that only
injectivity of f is necessary in order to define the bounded Grunsky operator on Dirichlet
space. This is usually formulated as an extension to sequences in `2.
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Theorem 6.13 (Kühnau [33], Pommerenke [43]). Let � be a Jordan curve in xC. The
following are equivalent.

(1) � is a quasicircle.

(2) The Grunsky operator has norm strictly less than one.

(3) The Grunsky operator has norm strictly less than one on polynomials.

(4) There is a � such that or all xh 2 D0.DC/,

RehODC;D�
xh;Grf xhi � �khk2: (6.8)

(5) The inequality (6.8) holds for polynomials.

Before the proof of the theorem, let us recall the classical Grunsky inequalities in
geometric function theory and their connection to Theorem 6.13. Setting

xh.z/ D �1z C � � ��nz
n;

(3) says that there is some � < 1 such that for all choices of parameters �1; : : : ; �n 2 C,
we have

nX
kD1

k
ˇ̌̌ nX
mD1

bmk�k

ˇ̌̌2
� �

nX
kD1

kj�kj
2: (6.9)

Item (5) says that there is some � < 1 such that for all such choices of parameters, we
have ˇ̌̌ nX

kD1

nX
mD1

bmk�k�m

ˇ̌̌
� �

nX
kD1

kj�kj
2: (6.10)

Proof. Since the Grunsky operator has a bounded extension to the whole space by The-
orem 6.9 and polynomials are dense in the Dirichlet space, claims (2) and (3) are equi-
valent. Similarly, claims (4) and (5) are equivalent. By the Cauchy–Schwarz inequality,
applied to

Rehxh;OD�;DCGrf xhi D RehODC;D�
xh;Grf xhi;

(2) implies (4), using the fact that OD�;DC is norm-preserving. Thus, it is enough to show
(1)) (2) and (5)) (1).

(1)) (2). If � is a quasicircle, then by Theorem 6.4 Iq
f

is an isomorphism, so there is
a c > 0 such that

kIq
f
xhkDq.�1/ � ck

xhk
D0.DC/

for all xh. Inserting this in (6.6), we see that

kGrf xhkD0.DC/ �
p

1 � c2kxhk
D0.DC/

:

(5)) (1). This is [43, Theorem 9.12] applied to (6.8), applied to g.z/ D 1=f .1=z/.
The different convention for the mapping function does not alter the result; see (6.5) ahead.
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Remark 6.14. A simple functional analytic proof that any of (2)–(5) implies (1) can be
given, if we assume in addition that � is a measure zero Jordan curve. Assuming that
kGrf k � k < 1 say, and applying the equality case of (6.6), we obtain

kIq
f
xhkDq.�1/ �

p

1 � k2kxhk
D0.DC/

:

So the image of Iq
f

is closed, and by Remark 6.3 it is Dq.�2/. Hence, by the open map-
ping theorem Iq

f
is a bounded isomorphism, and therefore Theorem 6.4 yields that � is a

quasicircle. The proof that (2) implies (1) that we give here is adapted from Shen [60].

Remark 6.15. In order to define the Faber polynomials and the Grunsky coefficients bnk
in (6.6), it is only required that f is defined in a neighbourhood of 0 and has non-vanishing
derivative there. It is classical that (6.9) and (6.8) each hold for � D 1 if and only if f
extends to a one-to-one holomorphic function on DC [20]. Equation (6.9) (with � D 1)
is usually called the strong Grunsky inequalities, while (6.8) is usually called the weak
Grunsky inequalities [20]. The computation in the proof of Theorem 6.9 is the usual proof
of the strong Grunsky inequalities.

Remark 6.16. The proof of Theorem 6.9 is easily modified to show that for any one-to-
one holomorphic function f on D, the Grunsky operator (expressed as a function of the
parameters ˛k D �k=

p
k) extends to a bounded operator on `2, see e.g. [20, 43].

The Grunsky inequalities have been generalized in many ways. J. A. Hummel [27]
generalized the inequalities to pairs of non-overlapping maps. The authors have extended
this to arbitrary numbers of non-overlapping maps in genus zero [46]; Grunsky inequalit-
ies were proven for the case of n non-overlapping maps into a compact surface of genus g
by M. Shirazi [61, 62]. This has applications to Teichmüller theory and is related to gen-
eralizations of the classical period mapping to the infinite-dimensional Teichmüller space
of bordered surfaces of arbitrary genus and number of boundary curves [45]. For an early
overview of Faber–Grunsky matters with a tidy description of the algebraic identities and
relations involved, see E. Jabotinsky [29]. The thesis of Shirazi [61] also contains a his-
torical survey of the Faber and Grunsky operator.

Finally, we include an integral expression for the Grunsky operator, due to Bergman
and Schiffer [11]. It is most conveniently expressed in terms of the Bergman space of
one-forms.

If � is simply connected, then

d WD.�/! A.�/

is norm-preserving and, in fact, if � is simply connected it becomes an isometry when
restricted to D.�/q for any q 2 �. We then define

Gr0f WA.DC/! A.DC/

by
@Grf D Gr0f x@:
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With this definition, we have the following theorem.

Theorem 6.17. For any Jordan curve � and conformal map f WDC ! �1, we have

Gr0f x̨ D f
�T1;1.f �1/� x̨

D

“
DC

1

2�i

�
f 0.w/f 0.z/

.f .w/ � f .z//2
�

1

.w � z/2

�
˛.w/ ^ dw � dz:

Proof. Set p D f .0/. Assume for the moment that � is a quasicircle. Then, fixing some
q 2 �2, we have

Gr0f x̨ D �@Ph0.D
C/Cf O2;1Jq1;2Cf �1x@�1 x̨

D �@Cf Php.�1/O2;1Jq1;2x@
�1.f �1/� x̨

D �f �P.�1/@O2;1Jq1;2x@
�1.f �1/� x̨:

Here, it is understood that x@�1 is a choice of inverse of x@WD0.DC/ ! A.DC/. Now
applying Theorems 5.16 and 5.14, we see that

Gr0f x̨ D �f
�P.�1/@.Jq1;1 � Id/x@�1.f �1/� x̨

D f �P.�1/T1;1.f �1/� x̨;

which proves the first claim. The integral formula is obtained by substituting (5.8) into the
right-hand side and changing variables, using the fact that

L�1.w; z/ D
1

2�i

.f �1/0.w/.f �1/0.z/

.f �1.w/ � f �1.z//2
dw � dz:

If � is a Jordan curve but not a quasicircle, we apply the same argument to polynomi-
als xh 2 C0Œxz�, using Lemma 5.18 in place of Theorem 5.16. The result is then extended
to D0.DC/ using Theorem 6.9.

Bergman and Schiffer directly defined an operator using this integral formula, and
observed that it recovers the Grunsky operator when applied to polynomials, see [11,
pp. 239–240]. In particular, their integral formulation agrees with the unique operator
extension of the Grunsky matrix to `2, if we identify sequences with elements of A.DC/
as in Theorem 6.4.

Remark 6.18. It can be shown that the integral formula in Theorem 6.17 is a bounded
operator for arbitrary one-to-one f WD ! C, and this agrees with the extension of the
Grunsky operator of Theorem 6.9. Although Bergman and Schiffer [11] assume that the
boundaries are analytic Jordan curves, they were certainly aware of this fact.
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