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Flow box decomposition for gradients of univariate
polynomials, billiards on the Riemann sphere, tree-like
configurations of vanishing cycles for A4, curve
singularities and geometric cluster monodromy

Norbert A’Campo

Abstract. The base space of the universal unfolding of Ay-curve singularities is equipped with
a stratification such that the geometric monodromy group is generated by wall-crossing mapping
classes.

To Dennis, with admiration

1. Introduction

In his expository address “Inside and Outside Manifolds”, Vancouver ICM 1974, Dennis
Sullivan [33] suggests to study geometrical objects inside one manifold rather than clas-
sifying manifolds. We dream of studying isolated complex hypersurface singularities via
such geometrical objects as proposed by Sullivan in the fibres of its universal unfolding as
introduced by René Thom [34]. More precisely, let the O-fibre of the polynomial mapping

f:crtt s ¢
have an isolated singularity at the origin, and let

H=Ff+rigi++Augu

be its universal unfolding with parameters A € C*. Here, the polynomial mappings g,
1 <k < u,induce a linear basis in the quotient vector space C[Xo, ..., X,]/J(f) of the
local C-algebra C[ Xy, ..., X,] by the Jacobian ideal

J(f) = (0f(X)/0Xo,....0f (X)/0Xn).

The fibres F; = { f1(p) = 0| p € C"*1} for A € C* are hypersurfaces in the space C"*!
with its canonical symplectic structure @ and complex structure J. So, the fibres equipped
with the induced structures wy , J; become a family of Kihler manifolds.
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Besides the inside structures w,, J; we propose as main inside geometrical object a
real valued function N { : F;, — R, which is defined as follows:

N (p) =0 if (Dfp), =0,

i.e., p is a singular point of Fj, and Nf(p) |dfs (u)], whereueT C™*1 s chosen such
that w(u, Ju) = 1 and w(u,v) = 0 forall v € T, F}. So, N (p) is the norm

I(Df)pll = max|dfa(u)l, u € T,C"* ', w(u, Ju) =1

of the differential (Df;), at p € F of the defining function f; of the hypersurface F}.
More simply, in coordinates we have

N (p)? = ‘ (p)’+ +’

0xy,

Let N/:C"+! — R be defined by N/ (¢) = |dfy|. So, N/ (p) = N/ (p), A =0,
holds for p on the central fibre { f(p) = 0}. The non-negative function N/ has an isolated
zero at 0 € C"*1 by assumption. Following the seminal methods of Milnor [23], we use
the curve selection lemma [13]. The function

(Nf)z ‘ ‘ ot ‘an

being real algebraic, the curve selection lemma implies that the differential d(N /)2 has
at 0 € C"*1 an isolated zero too. It follows for & > 0, and small enough, that the connected
component Bzfg of 0 of the set

{geC" | N (g) <26}

is a differentiable ball and neighbourhood of O in C"+1 (see [18]). Further, it follows
using the curve selection lemma again and after making & eventually smaller, that the
fibre Fy intersects transversely in Bzfg the t-levels, 0 < t < 2¢, of the function N I By
openness of the tranversality conditions, there exists § > 0 such that ﬁrstly the fibres F)
1ntersect transversely in Bzf; for ||A]| < 8 the t-levels, /2 <t < 2¢, of N and secondly
that N < N/ + ¢/2 holds on Bzfa

For the sequel we fix ¢ and § with the above properties. Moreover, for A < § we denote
by F { the subset

{pe N BL N (p) <e}.
Now we have constructed a family

(F{ .03, 43, N}) U={]]A] <8}

A€U’

of Kéhler manifolds with an extra inside geometric object N Af .
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The gradient of NOf : Fof — R provides a smooth retraction of Fof to {0}, the levels
of the function N /{ define a foliation with singularities on F' Af . Our project, still a dream,
is to stratify the base space U of the unfolding by cells, such that the monodromy is
given by wall crossing data. In the present situation, one could ask for instance that above
each stratum the datum (F Af N /{ ) be globally trivial as a family of differential manifolds
equipped with a singular foliation.

A seminal example of an inside geometric object is the spine =/ = Ty04,..q, intro-
duced by Frédéric Pham in the fibre

Xf:{ZGC"“lf(Z):ZgO—i—z‘l“ bz = 1)

(see [25]). The spine Xg4yq4,.-q, 1S a realisation of the simplicial complex consisting of
the join-product ftg, * flg, * -+ * [g, Of the finite sets pq; of a;-roots of unity in the
i th factor. The homological monodromy is induced by the cyclic permutations of roots of
unity; see [23].

The embedding in X/ is such that all n-simplices are Lagrangian submanifolds, so X/
is a Lagrangian spine for the Stein manifold X /. More concretely, the n-simplices are
labelled by systems (po, ..., pn) Of roots of unity, pi’ = 1, and points on it are non-
negative real linear combinations

bopo + -+ + bppn  with bg® + -+ + b2» = 1.

The spine =/ is related to the real function N/ restricted to X7 in case a; > 3, the
function N/ has exactly one critical point on each simplex 0 C £/ of index n — dim(o).
This is water on the mill of our dream. Moreover, more water comes from the construction
of the geometric monodromy as a téte-2-téte twist with centre the spine £/ . The téte-a-téte
property is realized by walking along broken geodesics on the spine over the distance &
with respect to the right angled corresponding spherical n-simplex

{66, o)

in the unit sphere S” C R™*1. If a walk hits the boundary of a n-simplex in the spine, one
continues on the next n-simplex with respect to the cyclic order of roots of unity: if one
hits a k-simplex, a, 0 < k < n, in its simplicial interior, the next n-simplex is obtained by
changing to the next root of unity all vertices that are not in the k-simplex «. The téte-a-
téte property is like the spherical cut locus property, saying that all such walks that start at
a point p € X/ meet again at their endpoints in a point p’ € =/; see [4, p. 2652].

The purpose of the present paper is to bring this dream to more reality for the A4,
singularities f = y2 4+ x"*!. Unfortunately at this point of our study, a modification of
the functions N Af was necessary. The unfolding

=y X" x4 dx + A = 7+ P(x)
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preserves the hyperelliptic symmetry (+y, x) — (—y, x). The modified function will be
the modulus of the univariate monic, Tchirnhausen reduced, polynomial

2
N (p) = %\%fm)\ = 1/3(p) = Y| = | P(x(p))]

for p € C? on the fibre f3(p) = 0. Our previous work on A, singularities [2] gets
upgraded from integral homological monodromy to geometric monodromy. Properties
concerning monic univariate polynomials and billiards on the Riemann sphere are studied
on the road.

The geometric picture of a univariate monic polynomial P, as introduced in [3, 8], is
enriched with flow lines of the vector field

Xp = —grad(log(|P])):

see Section 2.
The probability of hitting of a root r of P when starting at or near infinity is computed.
A simultaneous flow box decomposition for the vector fields Xp and

Yp = i grad(log(| P|))

is constructed; see Sections 3 and 4.

A combinatorial description of the Morse function |P| on the complement of the
roots for generic polynomials P is studied. A question related to Lagrangian Skeleta
and Arboreal Singularities (see [14, 15, 24]), by email and his Zoom talk in Moscow,
of Roger Casals was our motivation to use this description and to discover rooted planar
trees attached to generic monic polynomials. These trees can be realized up to isotopy by
slalom polynomials and give tree-like configurations of vanishing cycles for the curve A4,
singularities defined by y2 4+ x"T1. Perhaps a more geometric understanding of quiver
and mutation theory for the A, singularity comes in reach. Combinatorial and conformal
problems appear; see Sections 5-9.

Our main ingredient is the pair of orthogonal foliations on C* given by concentric
circles and real rays. The inverse image of this pair of foliations by a polynomial is still
orthogonal, but with equiangular singularities. This observation is not at all new. It was
used in [5-7,16,17,22,29-31] leading to results partially overlapping or close to ours.

2. Flow box decomposition

Let P(z) = z¢ + ag_1z%~' + --- + ag be a complex monic polynomial of degree d > 0.
In a previous paper [3], we have introduced the picture Pic(P) of P which is a special
graph in the Gaussian plane C. More precisely, the picture is the union of the zero set of
the real part, drawn blue, and the zero set of the imaginary part of P, drawn green. See
Figure 1 for the Lehmer polynomial.



Flow box, billiards, and mondromy 393

N (7
"1 ..-/

TN

Figure 1. Flow box decomposition for the Lehmer polynomial P = z10 4 2% — 27 — 26 — 25 _

z% — 23 4 z + 1. The blue and green part is the picture Pic(P) of P.
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The main result of [3] is the construction of a cell decomposition of the space of com-
plex monic polynomials of degree d. More precisely, the equivalence relation P ~ Q on
monic polynomials of degree d defined by requiring that the pictures Pic(P) and Pic(Q)
are isotopic relative to the asymptotic 4d rays induces a stratification ¥; on the mani-
fold Pol; of monic polynomials of degree d by smooth real semi-algebraic contractible
strata. The number of top-dimensional strata is ﬁ (4;1 ), which is a Fuss-Catalan num-
ber. Moreover, the restriction of this stratification to the complement of the discriminant
locus Ay is invariant by the action of the braid group on d strands. We propose, fol-
lowing [33], the stratification £; as an example of an inside geometrical object in the
manifold pair (Poly, A;) with braid group action.

Let (S, J) be a surface and let X be a vector field with isolated singularities on S. A

weak flow box for X is a subset R that is the image of an embedding
¢:[0,1] x[0,1] = S

such that the images ¢ (]0, 1] x {s}), s € [0, 1], are oriented re-parametrizations of traject-
ories of X. So, the image ¢ (]0, 1] x [0, 1]) contains no singularities of X . If, moreover,

¢pob, 0(t,s)=(s1)

is a parametrization for a weak flow box for the vector field Y = J(X) = i X, then we
call R a conformal flow box for X or the pair (X, Y).

The weak flow box decomposition for the field Xp = — grad(log(| P|)) of this paper
is given by the complementary regions of the graph FlowBox(P), which is the union of
the preceding blue and green graphs together with a yellow one. The yellow one consists
of the critical levels of the function | P |. More precisely, the zeros of P which we think as
infinitesimal circles of radius 0, for each zero s of P’ the level |P(z)| = |P(s)|, and an
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infinitesimal circle at co in the compactification C U {oo} of C. One could avoid the use of
circles of radius 0 by doing a real oriented blow-up of the zeros of P and co € C U {oo}.
The space C U {oo} transforms to a surface with yellow boundary.

The mapping P: C — C being holomorphic, constraints for the planar graphs follow.
The three graphs of the different colours intersect in such a way that the sectors that appear
at an intersection point are equiangular. In particular, this means that the intersection is
orthogonal precisely if only two smooth branches meet. Moreover, we remark that the
smooth edges of the union of the green and the blue graph are trajectories of the field Xp.

See Figure 1 for the Lehmer polynomial. The infinitesimal circles are not drawn! The
flow boxes are the connected components of the complement of FlowBox(P) in C U {oco}.

Each connected component of the complement of FlowBox(P) is the interior of a
polygon. We define a side of such a polygon a monochromatic connected component of
its boundary and call the polygon a combinatorial quadrilateral with two opposite yellow
sides. Moreover, each quadrilateral has one green and one blue side. The yellow sides
are eventually infinitesimal (except if one does above real blow-ups) and correspond to
different levels of | P|. The vector field X p pushes the yellow sides from high level to low
level and is tangent to the sides of blue and green colour. Combinatorially one observes,
also using [3], the following theorem.

Theorem 2.1. The complement of FlowBox(P) in C U {co} is a union of combinatorial
quadrilateral with two opposite yellow sides, one blue side and one green side, that are
gradient trajectories. ]

Gradient lines are in general not real semi-algebraic. The blue and green graphs are
real semi-algebraic since they are levels of the real or imaginary parts of P. The yellow
one is also real semi-algebraic, so we have the following.

Theorem 2.2. The graph FlowBox(P) is real semi-algebraic. Its complexity (say the
number of vertices plus the number of edges) is bounded up to a factor (< 16) by the
square of the degree d of P. The number of flow boxes of FlowBox(P) is bounded
by 4d?. This bound is reached for generic P, i.e., in the present context polynomials P
such that | P| takes d — 1 distinct positive values on the zeros of P’. |

One can reduce the number of boxes drastically, by joining boxes that share a smooth
yellow edge, that is perpendicular to a green and a blue edge at its ends.

For a general polynomial P of degree d one expects d — 1 (visible) yellow levels
in FlowBox(P). Only one yellow level appears for polynomials P = z" —z, n > 2. As
an example, for P = z4
joining flow boxes according to the above rule 12 flow boxes remain. The polynomial

— z with 4 roots one yellow level and 18 boxes appear. After

P = z* — z — 3i of degree 4 is generic enough: the real function | P| takes 3 distinct
positive values on the zeros of P’. The bound 4d? = 64 is reached; see Figure 2.
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Figure 2. Flow box decomposition for P = z* —zand P = z* — z — 3i.

3. Flow box decomposition with separatrices

In order to have a conformal combinatorial flow box decomposition, one needs to add the
flow lines of Xp through the singular points of the yellow part of FlowBox(P). Such a
singular point is by construction a zero s of the derivative P’ of P with P(s) # 0. Define
Rp(s) C C to be the ray

Rp(s) = {x + yi | xIm(P(s)) — yRe(P(s)) = 0}.

The flow lines through s are a subset in the inverse image P~ !(R P(s))- Unfortunately, our
pictures show the whole inverse image P~!(R P(s))- Those flow lines that run to a root
of P, and not having a root of P’ in their closure should have been deleted (see Figure 7).
Define the graph FlowBox**P(P) by adding to FlowBox(P), in red, the flow lines
belonging to P~!(Rp(s)) that have a root s of P’ with P(s) # 0 in their closure. The
complement of FlowBox**?(P) in C U {oo} is a union of open flow boxes for the field Xp.
Again Xp pushes yellow sides to yellow sides and the green, blue or red sides are flow
lines. All points of the same open flow box flow by Xp to the same root of P. More gen-
erally, the graph FlowBox**®(P) defines a stratification of C by contractible open strata,
such that all points of the same stratum flow by Xp to the same root of P or of P’.
Moreover, the graph FlowBox*?(P) is real semi-algebraic. The graph

FlowBox*?(P) N C

has no terminal vertices, i.e., vertices of valency one, and its non-bounded edges are
near oo asymptotic to real radial rays in C through 0.

Maximal subintervals of the smooth part of a level of the function | P| are flow lines
of the field Yp = —i X p; see Figure 3. We obtain the following theorem.
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Figure 3. FlowBox*P(P) for P = z3 — z — 1 4 i with two red separatrices C (s) trough the zeros

of P’ located at the double points of the yellow levels. In this picture twelve red flow lines having
zeros of P in their closure should be deleted.

Theorem 3.1. The real semi-algebraic graph FlowBox**?(P) gives a conformal flow box

decomposition for the field Xp = — grad(log(| P|)) that determines the combinatorics of
its flow lines. The decomposition FlowBox**?(P) is also a conformal flow box decompos-
ition for the field Yp. ]

Let u = % be the rotationally invariant probability measure on circles centred at
0 € C. The pull back measure v = P * defines a probability measure on the level curves
of | P| that is invariant by the flow of Xp. In particular, to each yellow side of a flow box
of FlowBox*?(P) is assigned a probability such that opposite sides of a flow box share
equal probabilities. Also to each zero r of P is assigned a probability vp (r).

Let R, p, be the ring domain

{zeC|p<lz| < p2}

with its Euclidean measure |dx A dy| and let vp ,, ,, (1) be the probability that a point
from Ry, ,, flows by Xp to the root r of P. Flow lines of Xp are asymptotic to radial
ones near oo, which implies

. ,})izlgoo VP,p1,02(r) = VP ().

Let P be a monic polynomial of degree d > 1 and let P, = x4 —a(P —x%),a €0,1],
be the family of monic polynomials that connects the polynomial P to the polynomial x¢.
Note P; = x4 and Py = P. First choose pgy big enough such that every circle S,, p > po
intersects all flow lines of all polynomials P, transversely. Let 6 be a flow line of Xp, that
starts at a point of Sy, .
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We want to find and study the flow line for Xp that is at infinity asymptotic to the
ray 0. Consider the image R = P;(6) which is a ray. The inverse image P, !(R) is a
disjoint family of d flow lines for Xp,. So there exists a unique continuous family of flow
lines (6,), where 6, is a flow line for Xp, and 8; = 0 holds. The flow line 8y of Xp is
asymptotic to 6.

Let a,, b, be the intersection points of & and 8y with S,. One checks that |a, — b,|,
P = po, is bounded. So, the probability measure of the circular segment [a,, b,] decays
like 0(%). For a balanced polynomial P, i.e., having roots that sum up to 0, this decay is

stronger, in fact 0(%). Hence, we have the following theorem.

Theorem 3.2. The probability vp , ,+1(r) that a flow line starting at a random point
z € R, p+1 ends at the root r of P satisfies |vp p p+1(r) —vp(r)| < 0(%)forp —00. H

Note thatthe value of the probability vp (r) depends a priori on the combinatorics of
FlowBox*®(P) and the slopes of the rays Rps). But, surprisingly, we have the following.

Theorem 3.3. Let P be a polynomial of degree d with d distinct roots. The probability

vp () is independent from the chosen root r of P, so vp(r) = %. For polynomials P of
. e - . _ mp(r)

degree d with a root r of multiplicity mp (r) > 1 the probability vp (r) is vp(r) = =&,

Proof. Call in this proof a polynomial P of degree d P’-generic if it has d roots and if at
each zero s of P’ exactly two flow lines F;(s), F>(s) of Xp exist, that start at infinity and
have s in their closure and do not contain a root of P. So P’ has d — 1 zeros and the rays
Rp(s) are pairwise distinct.

Firstly, we assume that P belongs to the dense set of P’-generic polynomials with d
distinct roots. Let C(s) for a zero s of P’ be the union

Fi(s) U Fa(s) U {s}.

The curve C(s) is near infinity asymptotic to radial rays. The image P(C(s)) is the half
ray [P (s), 00] C Rp(s) that does not contain the origin. There exists a parametrization

t eR > y(t) € C(s)

such that P(ys(¢)) = P(ys(—t)) holds. It follows that all d — 1 path integrals
/ dP
cs) P

The d — 1 curves C(s) are disjoint and show near infinity 2(d — 1) different asymp-
totic directions. The curves C(s) divide the Gaussian plane in d regions. Let R be such a
region. The Cauchy integral

vanish.

] dp
R=2%i s P
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does not vanish, since the arcs at infinity contribute d times their angular measure v =
ﬁ %, and since the contribution along the curves C(s) vanishes. The integral counts the
number of roots of P in R, so Ig > 1. From ZR Ir = d follows Ig = 1 for each of the d
regions. Hence, the total angular measure at infinity of a region is
1
Ir/d = —.

/ d

The flow lines of Xp do not cross the curves C(s). Only 2d — 2 flow lines end at a

zero of P’. It follows that for a root r of P lying in a region R the equality

vr(r) = Infd =

holds.

Secondly, the numbers vp (r) for P’-generic polynomials depend continuously upon
the coefficients of P. Hence, by approximation of a general polynomial P with roots of
multiplicity one by P’-generic polynomials one obtains the equality vp (r) = 5.

The last statement vp (r) = mPT(r) is obtained by additivity. A small deformation will
separate a root of multiplicity m in m roots that lie close to each other. So, the polyno-
mial P is deformed to a polynomial Q with distinct roots. A further small deformation
separates, if necessary, the roots of Q. Each root of multiplicity m,m > 1, will correspond
to a subtree with m — 1 edges in the tree Eg. The corresponding separatrices separate the
regions of the m roots. Now by additivity of the Cauchy integral the result follows. ]

4. Billiards on the Riemann sphere

Let S be a finite subset of P! (C) with d + 1 > 2 elements and lett € P1(C), t ¢ S, be
any point. For p € § let S, be the degree 0 divisor

and let fg , the meromorphic function with (fs,,) = S, and fs, ,(¢) = 1. The restriction
of fs,p to P1(C) \ {p} is a polynomial with d distinct roots at S \ {p}. The foliation on
P1(C) \ S given by the levels of | fs, »| does not depend upon the choice of the point 7.
The following defines a billiard Bg by its trajectories. A trajectory of Bg is a C!
smooth curve y:] — 0o, +00[ — P(C) with y(0) € S, y(t) # 0, that hits infinitely often
the set S at times
<ty <t 1 <0=t<thh<tp<---

such that the restriction of y to Jtx, tx+1[, k = ... —2,—1,0,1,2,...,is orthogonal to the
foliation given by the levels of the function | fs ,(;,)|. The cushions of this billiard are the
disjoint union of d + 1 circles, each one being the circle of non-zero tangent vectors to X
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at s € S up to positive stretching. The rules of reflection are unusual: if one hits a cushion
at 8, one continues at 0 + 7.

Equivalently, one can construct the surface with boundary that underlies the billiard Bs
doing a real-oriented blow-up of P!(C) centred at all points of S. In this description the
cushions are the “exceptional divisors” with points that represent non-zero tangent vectors
at points p € S up to positive stretching. We denote by E, the exceptional divisor above
the point p. Again, instead of bouncing back, a trajectory continues through the antipodal
point. In fact, one has a whole circle of billiards Bg(«): one continues at 6 + «. The
billiard B (0) works with reflections and Bg = Bg (7).

Up to re-parametrization, a trajectory y is determined by its initial velocity

7(0) = —grad(|fs,p)). p €S,

at ¢ ¢ S. Not every non-zero tangent vector v to P!(C) at g ¢ S determines a trajectory
as above: the vector v determines a continuous, piecewise smooth, curve y: [0, T] — X
that hits the set S only k, k > 1, times at

o<t <l <+ <lp_q

and is as before, putting 7 = T, on intervals |¢y, ;41| orthogonal to the foliation of the
levels of | fs,y(;,)|, 0 < h < k, and moreover terminates at T in a zero of the derivative
of the function fg ,,_,)- Also, a trajectory may not hit the set S, if it runs to a critical
point of | fs, ,|. Again such a trajectory is determined by its initial velocity v and we call
it a stopped trajectory. Similarly, there are stopped trajectories in backward time. The set
of initial velocities of stopped forward or backward trajectories is countable, hence of
measure 0.
Let W(S) be the set of words on the alphabet S. A trajectory y that visits S at times

<t o<t 1 <0=tf<thh<tp<---

produces the infinite word w, = (y(#;))iez. A stopped trajectory produces a word that is
finite in forward or backward time.

The grammar of those words has a first obvious rule that is very non-Dutch: repetitions
of letters - - pp - - are not allowed. From Theorem 3.3 it follows that the probability of
finding - - pq - -, p # ¢, in average equals 1/(—1 + #S).

Let W°(S) be the set of words of infinite trajectories. The natural probability measure
on it is generated by assigning to the cylinder

C@i,p) = {w CZ —e W™(S) | w@) = p}

the measure 1/#S. The shift operator T: W°(S) — W(S) is an interesting measure
preserving dynamical system.

To a monic polynomial P of degree d > 0 with distinct roots one associates the
divisor (P), the set Sp = supp((P)) C P!(C) with d + 1 > 2 elements and the cor-
responding billiard Bg, and dynamical system W (Sp). How much information about
the polynomial P can be retrieved from W (Sp)?
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Figure 4. Rooted tree I'p, in black, for P = z> — z + i + 1. The subtree Ep C Fp having as
vertices the roots of P is the extended Dynkin diagram Dgy.

Let p(w) for a finite word (w(7))o<; <k be the measure of the set of infinite words W

with W(i) = w(i), i =0, ..., k. How many finite words w are necessary for a given
monic polynomial P, such that the measures u(w) determine P up to substitutions of z
by z —1¢?

The group PGL(2, C) acts 3-transitively on P1(C), so the systems W (Sp) for poly-
nomials of degree 1, or of degree 2, are isomorphic. A first question is how to read off the
cross-ratio of the support of the divisor (P) for a polynomial of degree 3?

5. The rooted planar tree I'p

First we repeat and strengthen a little the definition of generic polynomials that was used
in the proof of Theorem 3.3.

A monic polynomial P of degree n + 1 is called very generic if the following three
open conditions are fulfilled:

(1) P has n + 1 distinct roots, P’ has n distinct roots,

(2) at each root s of P’ exactly two flow lines Fy(s), Fa2(s) of Xp exist, that start at
infinity and have s in their closure and so do not contain a root of P,

(3) the positive part of the real axis is asymptotic at infinity to one of the flow lines
that flows to a root of P.

Let P be a very generic polynomial of degree n + 1. The (mountain) pass path at a
root s of P’ is the closure Ep (s) of the union E1(s) U E5(s), where E(s), E>(s) are flow
lines that have s in their closure and run down to roots of P.

The union Ep = | s.P'(s)=0 EP(s) is a planar graph having the roots of P as vertices
and n edges Ep(s). This graph is a forest. Indeed, a cycle Z would bound a compact
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planar region on which the function |P| is unbounded from above since at each root s
of P’ one of the unbounded flow lines Fj(s), F,(s) lies in that region. In fact, this graph
is a tree since it is a forest with n + 1 vertices and n edges.

The tree Ep is called by Alexis Marin in [22] the Shub—Smale tree of the polyno-
mial P. Marin answers a question of Smale by proving that all isotopy classes of finite
planar trees occur. His proof is based on monodromy: the isotopy class of the tree Ep and
the monodromy of the branched covering P: C — C determine each other.

Let Ep(+00) be the flow line that at infinity is asymptotic to the positive part of the
real axis. It has a root of P in its closure, since by assumption P is very generic. Define

I'p = Ep U Ep(+00).

It is a planar tree, rooted at +o0o with n + 1 vertices and a root +o0o of valency 1; see
Figure 4. The number of such planar rooted trees up to isotopy fixing +oo is the Catalan

number
Cat(n) 1 2n
at(n) = —— .
n+1\n

For a general monic polynomial P the definition of I'p is as follows. First consider all
flow lines y: I — C of — grad(log(| P|)) that satisfy:

e P’ and P do not vanish on the image of y,

e yismaximal, i.e., y is not the restriction of a flow line defined on an interval J # I,
1 ClJ,

» the image of y is bounded in C, except if the image of y is at +o00 asymptotic to the
positive real half-line.

Define I'p as the closure of the union of all flow lines satisfying the three properties
above. Define Ep as the closure of the union of all bounded flow lines satisfying the three
properties above.

Again, the subset I'p is a rooted planar tree. At a zero s of P’ with P(s) # 0 of
multiplicity m the germ of the graph I'p is homeomorphic to the germ at its centre of a
star-shaped tree with m + 1 legs, except if the flow line from + o0 hits s too. Instead of
being connected by edges, in the more general trees I'p the roots of P are connected by
subtrees with m + 1 terminal edges.

6. Unfolding of the A, curve singularity

This section is inspired by the work of Roger Casals, as presented in his Zoom talk, broad-
casted from California into the Moscow seminar of Sabir Gusein-Zade and received in
Switzerland.

The space Pol,,+; of monic polynomials of degree n 4+ 1 can be considered as the
universal parameter space for the unfolding of the plane curve singularity A4,.
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Let p be a positive real number. For P very generic, i.e., P satisfying the above three
open conditions, consider the Riemann surface

Fp={(y.x) € C2|y*4+P(x)=0, x € Dp},
where Dp is the subset

Dp={xeC||P(x)|<p+ max [P(s)|}
s,P’'(s)=0

of the Gaussian plane. The projection 7: (y, x) € Fp — x € Dp is a branched covering of
the disc Dp of degree 2 with branching points the roots of P. The actual positive value
of p is of no importance. The value p = 5 was used in Figure 4.
The inverse image
Ap =n""(Ep)

is a union of vanishing cycles. Indeed, 7 ~! (Ep (s)) is an embedded copy of the circle v(s)
in Fp, to which correspond two oriented integral cycles +v(s) that add up to O in the
homology of Fp. The cycles +v(s), £v(s’) intersect in one point with intersection num-
ber £1 if and only if the corresponding edges Ep(s), Ep(s’) are incident in a vertex
of Ep. So the cycles are primitive elements in the integral homology of Hy(Fp, Z).
Moreover, the cycles v(s) are quadratic vanishing cycles. Indeed, consider the family P,
of monic polynomials having the same roots as P except for the two roots of P at the
ends of the edge Ep(s) and two roots of Py, that travel with a parameter ¢ € [0, 1] from
the ends of Ep(s) and meet at the midpoint of Ep(s). The corresponding path in the
unfolding contracts the cycle v(s) and ends at a smooth point of the discriminant.

The inverse image Ap C Fp is a generic configuration of embedded circles in the
surface Fp on which the surface Fp retracts. In other words, Ap is a spine for the sur-
face Fp.

The construction above can be adapted for generic polynomials P, i.e., polynomials
such that P and P’ have no common roots. Indeed, define a cluster in Ep to be a connec-
ted component of Ep \ {s € Ep | P(s) = 0}. In the case of a very generic polynomial P
the clusters of Ep are precisely the edges of Ep. The tree Ep for the Lehmer polynomial,
which is not very generic, contains one cluster of multiplicity 2 with two distinct roots
of P’; see Figure 5.

Let C C Ep be a cluster. The frontier C \ C of C in Ep is a subset of roots of P.
Observe that m(C) = —1 + #C \ C equals the number of roots counted with multiplicity
of P’in C. So, we call m(C) the multiplicity of the cluster. The inverse image

v(C)=n"YC) C Fp

is a graph which can be obtained as the union of m(C) embedded circles in Fp. More
precisely, the m(C) + 1 terminal vertices So, S1, . .., Sm(C)+1 Of C are cyclically ordered
by the orientation of C. The oriented shortest path in C from s; to S; 1 lifts to an oriented
cycle v;(C)on Fp,i =0,...,m(C) + 1. Those m(C) + 1 cycles on Fp that pairwise
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Figure 5. Region for the Lehmer polynomial P with black boundary. The dominating real zero, in
fact Lehmer’s number A = 1.17628.. .., of P is the limit point of the flow line that comes from +ooc.
The tree Ep has 7 clusters of multiplicity 1 and one cluster of multiplicity 2. The cluster of mul-
tiplicity 2 has its frontier located at the real root % of P and the two roots of P with minimal real
part.

intersect with intersection number 41 or 0 add up to 0 as a chain, so also in homology.
More precisely, v; (C), v i (C), j #i +1,i — 1, are disjoint or intersect along the inverse
image by 7 of an internal edge of C. In both cases, the homological intersection number
vanishes. In fact, in the latter case both cycles become disjoint by an isotopy. If m(C) > 1,
then v; (C), v;+1(C) intersect along the inverse image by 7 of the terminal edge running
to s;4+1 with homological intersection number + 1. So the Dynkin diagram of the cycles
belonging to a cluster C is the extended diagram ffm(c). The surface Fp retracts to the
union of all v(C), C being a cluster in Ep. The mapping cone D(C) of the restriction

m:v(C) —>C

is a union of m(C) disc that are attached to Fp. The union of the surface Fp and all D(C),
C clusterin Ep is a skeleton Sk p, with Lagrangian pieces D(C ) and symplectic piece Fp,
for the ambient space C2. This construction leads to a stratification of Pol,+1 \Ay+1.
First define an equivalence relation on the set Poly,_ ; of generic polynomials: P ~ Q if
the planar rooted trees I'p, I'g are equal up to an isotopy that fixes the +oo asymptotic
direction. Top-dimensional strata are the equivalence classes of this relation. Closures
of top-dimensional strata are cells with real semi-algebraic boundary. Define the lower-
dimensional strata inductively as maximal non-singular connected components of highest

dimension.
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Figure 6. Rooted bi-coloured tree having one edge asymptotic to +oo with slalom curve and marked
with critical values at double points.

7. Slalom polynomials

Our next goal is the construction of preferred representatives in the different strata of
very generic polynomials. Shabat polynomials [10, 28], are generalizations of Chebyshev
polynomials, a forerunner for Belyi maps and the Grothendieck interpretation, now called
Dessins d’Enfants [19]. A Shabat polynomial Sh(z) is a polynomial which has only 0
and 1 as critical values. The inverse image Sh~' ([0, 1]) C C is a bi-coloured planar tree
with vertices Sh™1 ({0, 1}) coloured by the value of the Shabat polynomial Sh. The theorem
of Shabat affirms that every isotopy class I' of finite bi-coloured planar trees is obtained
as inverse image Sh~ ' ({0, 1}) of a Shabat polynomial Sh. The polynomial is unique up to
holomorphic automorphisms of source and target.

We start from the rooted planar tree I' with n + 1 edges in which one vertex is connec-
ted to +o0o by an unbounded edge. Let SI(I") be the slalom curve of T". It is an immersed
copy SI(T"): S — C of the circle:

(1) with n transversal double points at the midpoints of the bounded edges of T,

(2) the curve SI(I") intersects I' only and transversely twice at the midpoints of the
bounded edges and once the unbounded edge such that each bounded comple-
mentary region contains one vertex.

A slalom polynomial SI Pr(z) for T is a generic monic polynomial P of degree n + 1
with | P(s)| = 1 for each zero s of P’ such that the coloured trees I'p and I" are isotopic
relative to 400.

A slalom polynomial is a generic monic polynomial P that is a slalom polynomial for
the tree I'p.

Slalom polynomials P share properties with Shabat and Chebyshev polynomials: P’
has n = degree(P) — 1 distinct roots and all critical values of P are of absolute value 1.
So, the roots of P’ are the double points of the curve | P(z)| = 1, which is a slalom curve
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Figure 7. Regionfor P = z* —z3 4+ 22 —z 42+ 1
with black boundary. The lines C(s) are marked with arrows.

for the tree I'p. The following is a strengthening of the above result of Marin for planar
trees. Our proof is based on the Riemann uniformization theorem.

Theorem 7.1. Given a rooted planar tree T with n + 1 edges as above, there exists a
slalom polynomial P for the isotopy class of T

Proof. There exists a continuous map ¢: C — C that is smooth except at the midpoints
of I" such that:

(1) the restriction of ¢ to the unbounded component of the complement of SI(I") is a
degree n + 1 covering map of the complement of the closed unit disc in C,

(2) the restriction of ¢ to a bounded region of the complement of S(I") is a diffeo-
morphism to the open unit disc in C that sends the vertex to 0 and half edges to
radial rays,

(3) ¢ is holomorphic near co.

Let J be the unique conformal structure on C such that ¢: (C, J) — C is holomorphic.
The conformal structure J extends to the one point compactification of C using proper-
ties (1) and (3) of ¢, hence C and (C, J) are bi-holomorphic. Let U:C — (C, J) be a
uniformization of the structure J. The composition

P=¢oU:C—>C

is holomorphic and takes with finitely many exceptions every value n + 1 times, so is a
degree n + 1 polynomial. The polynomial P has n + 1 roots, the derivative has n roots
at the points s with U(s) being a midpoint of an edge. By stretching the uniformization
map U one achieves that P is monic and generic.
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The flow line from +o00 ends at a root of P that we colour red and becomes the root
of Ep. This red root can be changed by the transformation

P(z) > Pi(z) = )L”“P(%),
which preserves monic and balanced polynomials. The roots of P, are obtained by mul-
tiplying the roots of P by A, so, Ep, = AEp and this substitution turns the picture of Ep
by the argument of A and gives 2n combinatorial possibilities for attaching the unbounded
edge of Fp, to aroot of P,. Colour the vertices of the tree I' in a bi-coloured way with
colours red and blue (I am writing this in the days after 3 November 2020). Choose a
disc D g with centre O that contains I".

It follows that I" and T'p are isotopic relative to 4oco, showing that all the Cat(n)
combinatorial data consisting of a rooted planar tree as above are realized. The polynomial
P = Pr is a slalom polynomial for the tree I". ]

As an example, see Figure 2. The polynomial z* — z is the slalom polynomial of the
tree D4. The Chebyshev polynomials are up to a real translation precisely the slalom
polynomials with the critical values among +1.

The slalom polynomial Pr is not unique up to holomorphic changes of coordinates
in range and target. Uniqueness can be forced for trees with greatest valency < k if one
imposes moreover that the critical values are roots of unity of order depending on k; see
Figure 6. For k = 3 order four works.

As in [3], one obtains a decomposition of the space of monic polynomials Pol; of
degree d and of the complement of the discriminant Pol; \ A. We expect that this decom-
position is a cell decomposition of Pol; \ A, but state here only a weaker result concerning
the top-dimensional strata.

Theorem 7.2. The equivalence relation I'p ~ I'g induces a stratification with Cat(d — 1)
top-dimensional strata on the spaces Poly and Polg \A. Moreover, the top-dimensional
strata are cells and have a representative by a slalom polynomial. ]

Remark. The tree of vanishing cycles Ap that is constructed in the Milnor fibre of
y2 + z#*1 is in general not a Dynkin diagram of a morsification, since no product of
the positive Dehn twist of length w computes the monodromy except if Ap is the dia-
gram A,; see [1].

8. Slalom skeleton

Let SPol; denote the subset of all polynomials with d distinct roots such that 1 is the
only positive critical value of the function |P|: C — Rx¢. So SPoly is a subset of the
complement of the discriminant A; C Pol,. The space SPol; is semi-algebraic of real
dimension d. The following result states that the subspace SPol, is a deformation retract,
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i.e., a skeleton, of the space of monic polynomials of degree d that have only roots of
multiplicity 1.

Theorem 8.1. The space Poly \ Ay retracts by deformation to SPoly.
Proof. The idea is to shrink the conformal height of all flow boxes in between two critical
levels of | P| by the factor 1 — ¢, ¢ € [0, 1], then to use Riemann’s uniformization theorem

to create a family of polynomials P; with P = P and P; € SPoly.
Let us give more details. Define

a =Minp(5)=0 |P(2)|. A =Maxp:(z)=o |P(2)|.

Choose, for 0 < ¢ < 1, the function y;: R>9 — R to be smooth with y(s) > 0 and
xi(s) =s,5s <a, y.(s) =s—(1—1t)(A—a), A <s.Define

x| P(2)]

2O ="pe)

P(z).

There exists a complex structure J; on C such that Q;: (C, J;) — C is holomorphic.
There exists a unique uniformization u,: C — (C, J;) such that

I u(2)
im —=

|z]| 200  Z
is real and positive, and moreover P; = Q; o u, is a monic polynomial with
Minp;(z)=o | P:(z)| = 1.

By construction Py = P and the trees I'p, are isotopic. Moreover, the limiting polyno-
mial P; is monic and slalom. Indeed slalom since

Minp,(;)=o [P1(2)| = 1 = Maxp;(;)=0 | P1(2)|. n

9. Geometric cluster monodromy

Combinatorial or pictorial properties of a monic polynomial mapping P: C — C do not
change by Tschirnhausen substitutions, i.e., by substituting z — ¢ for z. By Tschirnhausen
substitutions, the space Pol, retracts by deformation to the space Pol’; of balanced poly-
nomials P having roots that sum up to 0.

Denote for a subset X C Poly by X* the intersection of the set of polynomials X with
the space of balanced polynomials. As before the space Pol}; \ A retracts to the space

SPol’; \A4 N SPol; .
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o0
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Figure 8. If the polynomial P lies on a generic cluster-branching stratum, three flow lines from co
run to the blue saddle points of | P| that bound an edge e of Ep. The edge e disconnects Ep. By a
small deformation the half edge f of e will join the root b;c or b; leading to very generic polynomials
P4, P_. The polynomial is P if the half edge f connects to b; leaving the half edge g on its left.
The polynomial is P if f connects to b} .

The family y2 + P(x) | P € Pol;'; 41 of functions on C? is a model for the universal
unfolding of the plane curve singularity A4,,. In this section, we relate the above stratifica-
tion of the space of generic (balanced) polynomials Polz 11 \AZ 41 to the monodromy of
the family of Riemann surfaces

Fp={y>+P(x)=0|P¢ Pol’ | \A;+1}.

The open top-dimensional strata are the sets of very generic polynomials with given
tree I'p. We need a description of the strata of real codimension one. For a polynomial P
there are two elementary ways to stay generic, without staying very generic:

(1) the tree I'p has only one cluster C with m(C) = 2 and P’ has u distinct roots,

(2) all clusters in I'p are of multiplicity one, but the gradient line of Xp that starts
at +o0 ends at a root of P’.

So we have two types of walls of real codimension one in Polz +1- The first we call cluster-
branching (see Figure 8), the second one root-branching. The Lehmer polynomial (see
Figure 5) lies on a cluster-branching wall. The polynomial x? + 1 lies on a root-branching
wall.

A smooth oriented loop A in Pol;'; +1 \A is called transverse if it lies in the union of all
strata of real codimension < 1 and is transverse to the walls of cluster- and root-branching
type. The following is a description of the monodromy in the universal unfolding induced
by transverse loops. The description goes in several steps; see Figure 9.

Step 1. A very generic monic polynomial P of degree u + 1 gives us the tree I'p. Let T'p
be a (narrow) closed regular tubular neighbourhood of I'p in C. The flow line of Xp
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=da2

Figure 9. The tree I'p in black, 6 roots of P(x) in blue, u = 5, images of cycles c1,¢2,...,¢5,¢C6
in grey, cycles ¢1, ¢2, . . ., c5 form the Dynkin diagram As in the fibre y2 + P(x) = 0.

coming from +oo intersects the oriented boundary aTp ina point b;. Walk along aTp
and mark points by, b3, ... on that boundary each time one passes near a root of P. We
get a word of length 241. Let b be the root near by and let r; be a piece of the X p-flow
line from by to b,/( . Each root appears in the word Wp = (b, b5, ..., b} u) according to
its valency in the tree Ep.

Step 2. Lift the path (—ry) * [b1,b,] * r2 to Fp. Itis acycle c; realized by a simple closed
curve on Fp.

Let bJ be among b3, by, . . ., be the first point not close to by, b,. Here not close means
(b;)/ 75 bl,bz. Say, b] =da, b2 =dj, b; = das.

Now start from a3 along 8f‘p and stop at the first point a4 among b4, bs, . .., that is
not close to by, by, bs.

Repeat u times and get a sequence a1, as, ..., d,+1, all points on aTp close to roots
ay.ay,....a,., of P.Letr; be the piece of Xp-flow line from ay to a; .

Lift the path (—r;) * [ag, axs1] * r,’chl to the cycle cg, again a simply closed curve
on Fp. Also lift (_”;/L+1) * [ay,41,a1] * r] to the cycle ¢ 41.

The oriented curve 81:1: lifts to an oriented curve ¢ on Fp. Orient the cycles cy, ...,
¢u+1 such that the orientations agree along ¢ N c.

If © > 1, the homological intersection numbers cg, cx4+1 equal +1 and all other
equal 0. The cycles cg, cx+1 intersect along a sub-interval, so by a small isotopy they
will intersect transversally in one point.

If .« = 1 the cycles ¢y, ¢, intersect along two disjoint sub-intervals with local opposite
intersection numbers. So the homological intersection number equals 0.
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Step 3. Consider the system of oriented cycles A w =C1,C2,...,Cu+1 as part of a mark-
ing Mp on Fp. The labelling is part of the marking. The complete marking M p is obtained
by adding the oriented lift co, on Fp of the flow line that starts at 4+-oco. Orient the relative
arc Ccoo such that the intersection number with any cycle in A w 18 +1. The first p cycles
in 4, « span freely the integral homology of Fp.

Observe that two such markings on an oriented surface are related by orientation-
preserving diffeomorphism of Fp which is unique up to isotopy.

Step 4. If the loop A crosses at P a wall of cluster- or root-branching type connecting
open strata, due to the above observation one gets a diffeomorphism from Fp_ to Fp,,
where both polynomials P_, P4 € A just before and after P are very generic. The mono-
dromy induced by A is the composition of these wall crossing diffeomorphisms. The
trees I'p_, I'p, differ by elementary moves. In fact, by planar Whitehead moves. Also
the labelling of the roots changes at a wall crossing. A similar change occurs at a root-
branching. The flow line coming from +oo will have different roots in its closure.

The cycles ¢;,i = 1,..., u, are quadratic vanishing cycles that intersect geometrically
to build the A,, diagram inside the fibre Fp, so Fp retracts on their union. So the cycles ¢;,
i,..., |, form a Z—basis of the homology H'!(Fp,Z). Since each cycle ¢; is a sum

of some cycles +v(s), it follows that the cycles v(s) (see above) span the first integral
homology of Fp. Also it follows that in general the Milnor monodromy is a product of
length > p of Dehn twists with core the cycles v(s).

The relations between the wall crossing monodromy as above, the téte-a-téte mono-
dromy (see [4]), and the classical Picard—Lefschetz monodromy of a morsification need
more investigation.

Recently, Pablo Portilla Cuadrado and Nick Salter have equipped the Milnor fibre of
an isolated plane curve singularity with a preferred framing, relative to the boundary, as
inside geometric object [26]. Very interestingly, the geometric monodromy group consists
precisely of those mapping classes (relative to the boundary) that preserve this relative
framing. Also the quadratic vanishing cycles are characterized in terms of this framing.
The relative framing on the Milnor fibre depends upon a symplectic tubular neighbour-
hood together with a normal direction, as the above function N / that we want to use
depends upon a normal vector X with iydf = 1. Again, more investigation is needed.

10. Problems

The signature of a monic polynomial P is defined as the relative isotopy class of its pic-
ture. Relative means here with respect to ends at infinity. In [3] the set ¥, of realized
signatures is combinatorially characterized as a set of isotopy classes of coloured graphs
in the Gaussian plane. The characterisation is by six local properties and one global prop-
erty. Moreover, the space of monic polynomials of a given signature is a contractible set
of polynomials.
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It would be interesting to give similar results for relative isotopy classes of flow box
graphs of polynomials. One main problem is to characterize, if possible combinatorially,
the flow box decompositions FlowBox(P) or FlowBox**?(P) that can be realized.

In the decomposition FlowBox*P(P) of a generic polynomial appear curved rect-
angles with four right angles and rectangles with three right and one acute angle 7.
Following Herbert Grotzsch [20], a curved rectangle with four right angles can be mapped
conformally to a unique up to stretching Euclidean rectangle. Thinking of the yellow
sides as base and roof, one gets a conformal invariant, namely the height 27 = % of the
Euclidean image. The Grotzsch map is explicit, the function log(P) maps each rect-
angle to an Euclidean rectangle in C. For the rectangles in FlowBox*®(P) the number b
equals the measure of the yellow base, and, if the yellow sides are not infinitesimal,
a = log(|P(s)|/|P(s")|), where s, s’ are the zeros of P’ on the level of the base and
top.

Following the method of Grotzsch again, a rectangle with three right and one acute
angle 7 can be mapped conformally to a unique Khayyam-Saccheri hyperbolic quadri-
lateral with acute angle 7. Again thinking the yellow sides as base and roof, one gets a
conformal invariant 7 = %

The problem is to study the conformal moduli /2 p. Study means for instance to provide
sharp estimates in terms of the coefficients of P.

The region D p in the Gaussian plane that is bounded by the level | P|=5+max | P (s)|,
P’(s) = 0, is decomposed by FlowBox**P(P) in curved combinatorial rectangles; see
Figures 4 and 7. The region D p is homeomorphic to a disc and contains the yellow part of
the flow box decomposition. The Euclidean length of flow lines of Xp that stay inside D p
is estimated in geometric terms from above by Damien Roy [27].

One can add to the rectangles in a consistent way diagonals and obtain a triangulation
of Dp. Following the proof of Walter Brigger of the circle packing theorem of Andreev,
each triangle is subdivided in 6 rectangular triangles and each one becomes the base of an
ideal hyperbolic tetrahedron in hyperbolic three space [11]; see also [12]. The hyperbolic
volumes of these tetrahedra provide more conformal invariants of Brigger type bp that
we inscribe to the sectors of the triangulation of FlowBox*?(P).

The next problem is to study and estimate the Bréigger invariants bp.

The most enriched data set for a polynomial P is (FlowBox*?(P), vp, hp,bp) in
which are inscribed the measures of the yellow edges together with all the numbers % p
and bp.

The final problem, which is part of the initial motivation for this work, is to estimate in
terms of the above data set the Mahler measure from below for the minimal polynomials P
of Salem or Pisot numbers and to achieve progress on Lehmer’s problem [21]. For a survey
on Mabhler’s measure and the Lehmer problem, see [9,32]. In particular, how the dynamical
system W (Sp) for the Lehmer polynomial P differs from the systems W°(Sg) for
products Q of cyclotomic polynomials?
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The unfolding space C* with coordinates A of an isolated singularity with real equa-
tion has a real basis by monomials such that the discriminant function A is with real
coefficients. Now we can enrich the discriminant like in [3] by asking that the real func-
tions ReP, and Im P, are regular above 0. Is the germ at 0 of the complement of the
enriched discriminant a union of cells?

11. Sage + Pari

The pictures are drawn by using SAGEMATH and PARI in the following SAGE-cell.

import matplotlib;p=Graphics(); S=1.3
pari(‘f=z"10+z"9-z"7-2"6-2"5-2"4-2z"3+z+1’)
pari(‘g=deriv(f)’); pari(‘s=polroots(g)’)
c=pari(‘vector(length(s),j,subst(f,z,s[j1))?)
cf=pari(‘vector(poldegree(f)+1,n,polcoef (f,n-1,2))’)
cc=c.sage(); cff=cf.sage()

M=max ([abs(cc[n])~2 for n in range(0,len(cc))])
var(‘x’‘y’,domain=RR)

ff=sum([cff [n]*(x+i*xy)"n for n in range(0,len(cff))])
ff=expand (ff)

u=(ff+conjugate(£f))/2; v=-i*(ff-u)

w=u"2+v"2; w=expand(w)
pl=implicit_plot (u==0, (x,-S,S), (y,-S,S),
color=rainbow(7) [4])
p2=implicit_plot(v==0, (x,-8,8), (y,-S,S),
color=rainbow(7) [3])

bdry=implicit_plot (w==5+M, (x,-S,S), (y,-S,S),color="‘black’)
pp=[p1,p2,bdry]

qg=[implicit_plot (w==abs(cc[n])"2, (x,-S,8),(y,-S,9),
color=rainbow(7) [1]) for n in range(0,len(cc))]
sep=[u*cc[n] .imag()-v*cc[n] .real )

for n in range(0,len(cc))]
ss=[implicit_plot(sep[n]==0, (x,-S,8),(y,-S,S),
color=rainbow(7) [6]) for n in range(0,len(cc))]
p=sum(pp+qqg+ss); p.show()
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