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Counterexamples in 4-manifold topology

Daniel Kasprowski, Mark Powell, and Arunima Ray

Abstract. We illustrate the rich landscape of 4-manifold topology through the lens of counter-
examples. We consider several of the most commonly studied equivalence relations on 4-manifolds
and how they are related to one another. We explain implications e.g. that h-cobordant manifolds
are stably homeomorphic, and we provide examples illustrating the failure of other potential implic-
ations. The information is conveniently organised in a flowchart and a table.

1. Introduction

The goal of this paper is to organise various equivalence relations in 4-manifold topo-
logy, and to understand the connections between them. We consider closed, connected
4-manifolds, unless otherwise specified, and we work in both the smooth and topological
settings. Much work on 4-manifolds focuses on exotic behaviour, e.g. 4-manifolds that
are homeomorphic but not diffeomorphic. We aim to illustrate, more broadly, the wealth
of 4-manifold topology that has been discovered. The flowchart in Figure 1 shows the
relationships between the equivalence relations we study. We will recall their definitions
in Section 2, and prove the nontrivial implications in Section 3.

We collect counterexamples to the converses of the majority of the implications shown.
Most of the results we discuss are known in the literature, although there are some original
observations and results.

The behaviour and study of 4-manifolds is qualitatively different from that in other
dimensions. In lower dimensions, much can be said using tools from geometry, perhaps
best exemplified by the geometrisation theorem [107–109,134]. Higher-dimensional man-
ifolds are studied via homotopy theoretic and algebraic methods, thanks to the Whitney
trick and the powerful tools of surgery theory [25, 83, 102, 130, 141] and the s-cobordism
theorem [17,83,95,122,126]. In dimension four, the Whitney trick does not directly apply,
and surgery and the s-cobordism theorem are only available under special circumstances.

The first major progress on the classification of 4-manifolds was due to Whitehead
and Milnor [97, 145], who classified simply connected 4-manifolds up to homotopy equi-
valence. The homotopy classification has since been completed for more fundamental
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Diffeomorphic Homeomorphic

Smoothly s-cobordant Topologically s-cobordant

Smoothly h-cobordant Topologically h-cobordant

Stably diffeomorphic Stably homeomorphic

CP2-stably diffeomorphic CP2-stably homeomorphic

Simple homotopy equivalent

Homotopy equivalent

�1 good

orientable

equal ks

Figure 1. Equivalence relations on 4-manifolds. The implications shown in green are immediate.
The black and blue implications are proven in Section 3. The blue implications hold when the cor-
responding condition is true, e.g. homotopy equivalent 4-manifolds are CP2-stably homeomorphic
if their Kirby–Siebenmann invariants coincide. Where necessary for an implication to make sense,
we assume that the manifolds are smooth. For example, the bottom arrow means that closed, smooth
CP2-stably homeomorphic 4-manifolds are CP2-stably diffeomorphic, since the latter notion is
only defined for smooth 4-manifolds.

groups, and remains a topic of active research [18, 58, 70, 72, 78, 132]. A diffeomorph-
ism classification was, and still remains, out of reach. Prior to the 1980s, progress on
purely topological 4-manifolds was impossible, in the absence of fundamental tools like
topological transversality. Instead, Wall [138, 139] and Cappell–Shaneson [26–28] stud-
ied 4-manifolds up to stable diffeomorphism, namely up to connected sum with copies
of S2 � S2. In particular, Wall gave the stable classification of simply connected 4-
manifolds. As with the homotopy classification, using Kreck’s ideas from [86] the stable
classification has since been completed for more fundamental groups, and remains a topic
of active research [31, 38, 61, 64, 69, 73, 74, 123, 132]. The following examples compare
the equivalence relations of homotopy equivalence and stable diffeomorphism.

Example 1.1. The pairs of manifolds presented in Sections 5.5, 5.6, and 5.12, due to
Kreck [85], Cappell–Shaneson [27, 28], and Akbulut [2–4] respectively, are smooth, non-
orientable 4-manifolds that are simple homotopy equivalent (in fact they are now known to
be homeomorphic [47, 63, 143]) but not stably diffeomorphic. By a result of Gompf [52]
(see Theorem 3.8) smooth, orientable 4-manifolds that are (stably) homeomorphic are
stably diffeomorphic, so it is inevitable that these examples are nonorientable.

Example 1.2. The examples of Teichner [133] from Section 5.11 provide smooth, ori-
entable 4-manifolds that are simple homotopy equivalent but not stably homeomorphic.
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These can be used to construct arbitrarily large collections which have these properties
pairwise. We show in Proposition 5.6 that every such collection is finite.

Example 1.3. In Section 5.9 we discuss two closed, orientable, simply connected topo-
logical 4-manifolds that are stably homeomorphic but not homotopy equivalent, because
they have inequivalent intersection pairings. Proposition 5.5 explains that such a phe-
nomenon cannot occur for smooth, simply connected, closed 4-manifolds.

Example 1.4. The examples of Kreck–Schafer [87] discussed in Section 5.10 are smooth,
orientable 4-manifolds (with nontrivial fundamental groups) that are stably diffeomorphic,
but not homotopy equivalent. They also have isometric intersection pairings.

The constructions of the manifolds mentioned in Examples 1.2 and 1.3 use Freed-
man’s work, which we discuss presently. First we highlight the following open question
comparing stable diffeomorphism and homotopy equivalence.

Question 1.5. Are there arbitrarily large families of smooth 4-manifolds that are all stably
diffeomorphic but pairwise homotopically inequivalent? Or even better, infinite sets with
this property?

The early 1980s saw Freedman’s work [47] showing that the Whitney trick can be
applied in ambient dimension four under certain conditions, establishing the exactness of
the surgery sequence and the s-cobordism theorem with some restrictions on the funda-
mental group [48]. See Sections 3 and 4 for further details. Combined with subsequent
work of Quinn [111], Freedman’s theorem made it possible to upgrade the homotopy
classification, the stable classification, or both, to homeomorphism classifications; see for
example [47, 48, 59, 61, 63, 64, 143].

It is straightforward to see that homeomorphism implies homotopy equivalence, for
general spaces. We now explain a sequence of counterexamples to the converse for 4-
manifolds, i.e. pairs of 4-manifolds that are homotopy equivalent but not homeomorphic.
Along the way we illustrate our approach to investigating counterexamples. Namely, while
investigating the failure of the converses of the implications in the flowchart, we will
progressively impose restrictions on the counterexamples, e.g. that they be smooth, or
orientable.

Example 1.6. The well-known pair CP2 and �CP2 [47] (see Section 5.3) are homo-
topy equivalent but not homeomorphic. The latter manifold, sometimes called the Chern
manifold, was constructed by Freedman and is homotopy equivalent to CP2, but not
homeomorphic to it. Indeed, CP2 and �CP2 have unequal Kirby–Siebenmann invari-
ants, implying that �CP2 is not smoothable.

The natural question then arises whether there exists a pair of smooth, closed 4-
manifolds that are homotopy equivalent but not homeomorphic. Freedman’s classification
result [47, 48] implies that there is no such pair of simply connected 4-manifolds.
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Example 1.7. A pair that satisfies our new demand consists of RP4 # CP2 and R #
�CP2 [63, 116, 117] (see Section 5.4), where R is a 4-manifold homotopy equivalent
to RP4 but with nontrivial Kirby–Siebenmann invariant. However, RP4 # CP2 and R #
�CP2 are nonorientable.

We can then escalate further to ask for a pair of smooth, closed, orientable 4-manifolds
that are homotopy equivalent but not homeomorphic.

Example 1.8. The simplest such example we know of comes from Turaev [136] (see Sec-
tion 5.7), who showed that for lens spaces L and L0 that are homotopy equivalent but not
homeomorphic, the same holds for the 4-manifolds L � S1 and L0 � S1.

Finally, one may ask for an infinite collection of closed, smooth, orientable 4-mani-
folds that are homotopy equivalent but not homeomorphic. To our knowledge, this is an
open question. However, the following example answers the question for topological 4-
manifolds.

Example 1.9. LetM WDL� S1, whereL is a lens spaceLp;q with p � 2, 1� q < p, and
.p; q/ D 1. Then Kwasik–Schultz [89, Theorem 1.2] constructed an infinite collection of
closed, orientable, topological 4-manifolds ¹Miº

1
iD1, that are all simple homotopy equi-

valent to M but pairwise not homeomorphic. The proof of Kwasik and Schultz relies on
higher �-invariants. In Section 5.13 we provide a different argument via the surgery exact
sequence that enables us to establish other properties of these manifolds. For example, one
can assume that they are all stably homeomorphic and are pairwise not h-cobordant.

We will also show (or give citations showing) that all of the pairs of 4-manifolds
discussed in Examples 1.6 to 1.8 are simple homotopy equivalent, and that the pairs from
Examples 1.7 and 1.8 are stably homeomorphic.

As part of surgery programmes to classify 4-manifolds, the relations of simply homo-
topy equivalence, h-cobordism, and s-cobordism are prominent. All are necessary condi-
tions for homeomorphism. The following theorem compares these three relations. It is the
main original result of the article.

Theorem 1.10. For every n � 1, there is a collection ¹NiºniD1 of closed, orientable, topo-
logical 4-manifolds, that are all simple homotopy equivalent and h-cobordant to one
another, but which are pairwise not s-cobordant.

Our proof makes use of a braid of exact sequences due to Hambleton–Kreck [62]
which enables one to estimate the size of the group of homotopy automorphisms of the
4-manifold Lp;q � S1, where Lp;q is a lens space. We combine this with the surgery exact
sequence for 4-manifolds with fundamental group Z=p � Z to construct our families of
examples.

Question 1.11. Is there a pair of smooth 4-manifolds that are simple homotopy equivalent
and h-cobordant, but not s-cobordant? If so, what is the largest possible cardinality of such
a collection of 4-manifolds?
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One should try to answer this question with the strongest possible assumptions on
categories for the h- and s-cobordisms.

Finally, at opposite ends of the flowchart in Figure 1, one can compare with dif-
feomorphism and with CP2-stable homeomorphism/diffeomorphism. The CP2-stable
classification is one of the most tractable [75, 76]. It is easy to see that it differs markedly
from the previously discussed classifications, as follows.

Example 1.12. The 4-manifolds S2 � S2 and S2 z� S2 are smooth, simply connected,
have equal Euler characteristic, and are CP2-stably diffeomorphic but are not stably hom-
eomorphic and not homotopy equivalent. See Section 5.2.

The diffeomorphism classification, by contrast, is extremely difficult, and in all known
cases varies drastically from the corresponding homeomorphism classifications.

Example 1.13. There are infinitely many smooth, orientable, simply connected 4-mani-
folds that are all smoothly s-cobordant and homeomorphic to one another, but not diffeo-
morphic (see e.g. [8, 55]). Since exotic behaviour of this sort is not our primary focus,
we only present the first pair of such manifolds discovered, due to Donaldson [40], in
Section 5.8. It follows that there is no smooth s-cobordism theorem in dimension 4.

There are three implications in Figure 1 for which we do not yet know whether the
converses hold.

Question 1.14. Does there exist a pair of closed 4-manifolds that are homotopy equivalent
but not simple homotopy equivalent?

It would be interesting if such examples could be found which are (i) smoothable, (ii)
orientable, (iii) topologically h-cobordant, or (iv) smoothly h-cobordant. The most well-
known examples in odd dimensions of homotopy equivalent, but not simple homotopy
equivalent, manifolds are lens spaces. The naïve construction of taking the products of
homotopy equivalent lens spaces with S1 does not work by the formula for Whitehead
torsion (5.3).

Question 1.15. Is there a pair of 4-manifolds that are (topologically) s-cobordant but not
homeomorphic?

Note that a positive answer to this question would contradict the conjecture that all
groups are good. For more details on this conjecture, see e.g. [80]. For more on the s-
cobordism theorem in dimension four, see Section 3.

Question 1.16. Is there a pair of smooth 4-manifolds that are smoothly h-cobordant but
not smoothly s-cobordant?

Theorem 1.10 provides topological examples of this phenomenon; since the construc-
tion uses the surgery sequence the examples are not obviously smoothable.
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Example 1.1 gives nonorientable examples for the following question, but in the ori-
entable case this is open. Note that smooth, simply connected 4-manifolds that are homo-
topy equivalent are smoothly h-cobordant by Wall’s theorem [139].

Question 1.17. Is there a pair of smooth, orientable 4-manifolds that are topologically
but not smoothly h-cobordant?

As mentioned before, we have restricted ourselves throughout this paper to closed 4-
manifolds. However, interesting phenomena also arise for 4-manifolds with nonempty
boundary and for noncompact 4-manifolds, e.g. the existence of corks [5] and exotic
smooth structures on R4 [51], respectively. Other work in these directions include [6,
9, 21, 22, 34, 35, 54, 103, 104, 127, 131, 137].

We hope that readers will be motivated by this article to answer the questions we
could not, or to follow the paradigm of progressively imposing restrictions to discover
new unanswered questions of their own.

Outline

In Section 2 we define the equivalence relations we consider. In Section 3 we justify the
implications shown in Figure 1. Section 4 provides a brief review of the surgery exact
sequence. In Section 5 we describe various constructions of 4-manifolds and present a
table summarising the properties of our examples.

Conventions

We write Z=2D ¹0; 1º for the integers modulo 2, a group under addition, and C2 D ¹˙1º
for the cyclic group of order 2, with multiplication as the group operation. The symbol '
denotes homotopy equivalence, while's denotes simple homotopy equivalence. Depend-
ing on the context the symbolŠ denotes either homeomorphism or diffeomorphism.

2. Equivalence relations on 4-manifolds

Recall that we implicitly assume throughout that 4-manifolds are closed and connected.
We assume that the reader is familiar with homotopy equivalence, homeomorphism, and
diffeomorphism of manifolds, and so we shall not define them. The classification of mani-
folds with respect to these three notions, and their comparison, is a central area of research.
For example, the Poincaré conjecture, which has occupied topologists for over a century,
asks for each n whether every homotopy equivalence from an n-manifold to the n-sphere
is homotopic to a homeomorphism, or even to a diffeomorphism.1 In dimensions at least
five, surgery theory provides a concrete, effective framework within which one can try

1The Poincaré conjecture is true in the topological category for all n, due to Perelman [107–109],
Freedman [47], and Newman [100]. It is true in the PL category for all n ¤ 4 due to Perelman [loc. cit.],
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to improve a classification of manifolds up to homotopy equivalence to a classification
up to homeomorphism or diffeomorphism. The programme can be applied to topological
4-manifolds under a restriction on the fundamental group; see Section 4 for an overview.

Next we discuss the various notions of stable equivalence.

Definition 2.1. The 4-manifoldsM andN are said to be stably homeomorphic if there are
integers s; t such that M# # s .S2 � S2/ and N# # t .S2 � S2/ are homeomorphic. They
are said to be CP2-stably homeomorphic if there are integers s; t such that M# # sCP2

and N # # tCP2 are homeomorphic, for some choices of connected sum.

Definition 2.2. The smooth 4-manifolds M and N are said to be stably diffeomorphic
if there are integers s; t such that M# # s .S2 � S2/ and N # # t .S2 � S2/ are diffeo-
morphic. They are said to be CP2-stably diffeomorphic if there are integers s; t such that
M# # sCP2 and N# # tCP2 are diffeomorphic, for some choices of connected sum.

Note that S2 � S2 admits an orientation reversing self-diffeomorphism, so there is
essentially only one choice of connected sum. On the other hand CP2 does not admit any
such diffeomorphism (nor homeomorphism), so for oriented manifolds there are two pos-
sible connected sums up to diffeomorphism/homeomorphism, usually denoted M # CP2

and M # CP2. Therefore, the definitions above say that M and N are CP2-stably dif-
feomorphic (resp. homeomorphic) if there are integers s1; s2; t1; t2 such that M# # s1

CP2# # s2 CP2 and N # # t1 CP2# # t2 CP2 are diffeomorphic (resp. homeomorphic).
Note that for nonorientable manifolds, there is a unique connected sum N # CP2. We
remark that some authors require s D t in the definition of stable homeomorphism and
diffeomorphism. Manifolds M and N which are stably homeomorphic or diffeomorphic
have s D t in our definition exactly when �.M/ D �.N/.

We emphasise that “stably” refers by default to connected sum with copies of S2 �S2,
and only “CP2-stably” refers to connected sum with copies of CP2.

To motivate Definitions 2.1 and 2.2, consider an alternative strategy to classify mani-
folds, based on Kreck’s modified surgery [86] and realised by Hambleton–Kreck for e.g.
4-manifolds with finite cyclic fundamental group in [58–61]: first classify manifolds up to
stable homeomorphism, and then investigate the homeomorphism types within each stable
class. In the latter step one attempts to prove that S2 � S2 summands can be cancelled,
and this is what Hambleton and Kreck achieved for finite cyclic fundamental groups and
also for more general finite groups under some additional hypotheses. This strategy in
principle also applies to diffeomorphism classifications, but the cancellation step is much

Smale [120, 121], Stallings [124], and Zeeman [146]. In the smooth category it is known to hold in
dimensions 1; 2; 3; 5; 6; 12; 56; 61, due to Perelman [loc. cit.], Kervaire–Milnor [77], Isaksen [67], and
Wang–Xu [142]; is false in all odd dimensions other than 1; 3; 5; 61; and is false in all even dimensions
8 � n � 200 other than 12, 56, 142, 166, 176, 188. At the time of writing the smooth version is open in
dimensions 4, 142, 166, 176, 188, and for infinitely many even dimensions n > 200; see [19, 68] for the
published state of the art.
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harder. Similarly, another approach to classification is to first classify manifolds up to
CP2-stable equivalence, and then attempt to blow down extraneous CP2 summands.

Next we discuss h-cobordisms, simple homotopy equivalences, and s-cobordisms.

Definition 2.3. The 4-manifolds M and N are topologically h-cobordant if there is a 5-
dimensional compact topological cobordism .W IM; N/ where the inclusion maps
M ,! W and N ,! W are homotopy equivalences. The manifold W is called an h-
cobordism. If M and N are smooth, they are smoothly h-cobordant if they cobound a
smooth h-cobordism.

Associated with a homotopy equivalence f WX! Y between CW complexesX and Y
is an algebraic invariant called the Whitehead torsion �.f / 2Wh.�1.X//, with values in
the Whitehead group of �1.X/, which we define next. Let GL.ZŒ�1.X/�/ be the stable
general linear group, and let E.ZŒ�1.X/�/ be the subgroup of elementary matrices, i.e.
consisting of products of the matrices that produce row and column operations. By defin-
ition

K1
�
ZŒ�1.X/�

�
WD GL

�
ZŒ�1.X/�

�
=E
�
ZŒ�1.X/�

�
and

Wh.�1.X// WD K1
�
ZŒ�1.X/�

�
=¹˙.g/ j g 2 �1.X/º:

For example, Wh.¹eº/ D 0, essentially because of the Euclidean algorithm. See [33] for
an accessible introduction to simple homotopy theory, including more examples of White-
head groups and the definition of Whitehead torsion.

Definition 2.4. A homotopy equivalence f WX ! Y between CW complexes X and Y is
a simple homotopy equivalence if its Whitehead torsion �.f / vanishes.

By Chapman’s theorem [32] the Whitehead torsion �.f / only depends on the homeo-
morphism type of X and Y . Hence Whitehead torsion is well-defined for homotopy
equivalences between manifolds which are homeomorphic to CW complexes, e.g. smooth
manifolds or closed manifolds of dimension ¤ 4. It is an open question whether every
topological 4-manifold is homeomorphic to a 4-dimensional CW complex. However, we
can define the notion of simple homotopy equivalence of topological manifolds as follows.
Embed M in high-dimensional Euclidean space. By [83, Essay III, Section 4], there is a
normal disc bundleD.M/ admitting a triangulation. The inclusion map zM WM !D.M/

of the 0-section is a homotopy equivalence. Let z�1M denote the homotopy inverse of zM .

Definition 2.5. We say that a homotopy equivalence f WM ! N between topological
manifolds (not necessarily of the same dimension) is a simple homotopy equivalence if
the composition zN ı f ı z�1M WD.M/! D.N/ is a simple homotopy equivalence.

The Whitehead torsion �.W IM/ of an h-cobordism .W IM;N/ is by definition the
Whitehead torsion of the inclusion mapM ,!W . This also coincides with the Whitehead
torsion of the relative chain complexC�. zW ; zM/, where zW and zM are the universal covers.
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Definition 2.6. The 4-manifoldsM andN are topologically s-cobordant if they cobound
a topological h-cobordism W with trivial Whitehead torsion. The manifold W is called
an s-cobordism. If in addition M , N , and W are smooth, then M and N are smoothly
s-cobordant and W is called a smooth s-cobordism.

An h- or s-cobordism approximates a product, in the eyes of homotopy equival-
ence and simple homotopy equivalence respectively. One of the most spectacular res-
ults of the 20th century was Smale’s h-cobordism theorem [120, 121], which states that
smooth, simply connected h-cobordisms between n-manifolds with n � 5 are indeed
homeomorphic to products. This was later extended to other categories and to the case
of s-cobordisms [17, 83, 95, 122, 126]. Consequences include the high-dimensional Poin-
caré conjecture in the piecewise-linear category in dimension at least five.

In dimension four, the celebrated work of Freedman and Quinn [47,48] includes an s-
cobordism theorem, with a restriction on fundamental groups. This is the principal method
for establishing the existence of a homeomorphism between 4-manifolds. We state the
result in the next section as Theorem 3.5 and we outline the proof.

3. Justification of implications

The implications given in green in Figure 1 are immediate from the definitions. Now we
justify the other implications.

Proposition 3.1. Stably homeomorphic 4-manifolds are CP2-stably homeomorphic. Stab-
ly diffeomorphic 4-manifolds are CP2-stably diffeomorphic.

Proof. Both statements follow from the diffeomorphism

.S2 � S2/ # CP2 Š CP2 # CP2 # CP2:

To establish the relationship between homotopy equivalence and CP2-stable homeo-
morphism, we will use the following theorem of Kreck. Recall that an identification of
the fundamental group �1.M/ of a 4-manifold M with a group � determines a map
cM WM ! B� , up to homotopy, classifying the universal cover, where B� ' K.�; 1/

is the classifying space.

Theorem 3.2 (Kreck [86], see also [73, Theorem 1.2]).

(i) Two closed, smooth 4-manifolds M and N with fundamental group isomorphic
to � and orientation character wW� ! C2 are CP2-stably diffeomorphic if and
only if

cM�ŒM � D cN�ŒN � 2 H4.� IZ
w/=˙ Aut.�;w/:

(ii) Two closed, topological 4-manifolds M and N with fundamental group isomor-
phic to � and orientation character wW� ! C2 are CP2-stably homeomorphic if
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and only if their Kirby–Siebenmann invariants in Z=2 agree and

cM�ŒM � D cN�ŒN � 2 H4.� IZ
w/=˙ Aut.�;w/:

Here Aut.�; w/ denotes the set of automorphisms of � compatible with the map w.
We have to factor out by the action of ˙Aut.�; w/ in order to account for the choice of
identifications �1.M/ Š � and �1.N / Š � , and for the choice of (twisted) fundamental
classes in H4.�IZw/.

The Kirby–Siebenmann invariant ks.M/ 2Z=2 of a 4-manifoldM is by definition the
unique obstruction for the stable tangent microbundle of M to admit a lift to a piecewise
linear bundle. See [83, p. 318], [48, Section 10.2B], and [50, Section 8.2] for further details
on the definition. In general it will suffice for us to know that the Kirby–Siebenmann
invariant satisfies strong additivity properties, in particular under gluing and connected
sum, and that it vanishes for a 4-manifold M if and only if M � R admits a smooth
structure, if and only if M# #kS2 � S2 admits a smooth structure for some k.

Theorem 3.3. (1) Homotopy equivalent 4-manifolds with equal Kirby–Siebenmann
invariants are CP2-stably homeomorphic.

(2) Smooth 4-manifolds that are CP2-stably homeomorphic are also CP2-stably diff-
eomorphic.

Proof. For the first implication, let M and N be homotopy equivalent 4-manifolds with
equal Kirby–Siebenmann invariants. Fix a map cN WN ! B� as mentioned above the
statement of Theorem 3.2 and let f WM !N be the claimed homotopy equivalence. Then
define cM WD cN ı f . This ensures that cM�ŒM � D cN�ŒN � 2H4.� IZw/=˙Aut.�;w/,
and so by Theorem 3.2 (ii), we see that M and N are CP2-stably homeomorphic.

For the second implication, let M and N be CP2-stably homeomorphic and smooth.
By Theorem 3.2 (ii) we see that cM�ŒM � D cN�ŒN � 2 H4.� IZw/=˙ Aut.�; w/. Then
apply Theorem 3.2 (i) to see that M and N are CP2-stably diffeomorphic.

Next we show the relationship between h-cobordism and stable diffeomorphism. The
case of simply connected 4-manifolds was addressed by Wall in [139, Theorem 3]. A sim-
ilar argument also applies in the general setting as explained by Lawson [91, Proposition].
We sketch the proof.

Theorem 3.4 ([139, Theorem 3], [91, Proposition]). Smoothly h-cobordant 4-manifolds
are stably diffeomorphic. Similarly, topologically h-cobordant 4-manifolds are stably hom-
eomorphic.

Proof. The proof is the same in both cases, by using the fact that 5-dimensional topo-
logical cobordisms .W IM; N/ admit handle decompositions, i.e. W can be built by
attaching 5-dimensional handles toM � Œ0;1� along topological embeddings of the attach-
ing regions [111, Theorem 2.3.1], [48, Theorem 9.1]. In the case of a smooth h-cobordism,
we get a smooth handle decomposition relative to M by Morse theory.
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In either case, we can perform handle trading to ensure that the handle decomposition
has only 2- and 3-handles since the boundary inclusions M ,! W and N ,! W are 1-
connected. Consider the middle level M1=2 of the cobordism, obtained after attaching
2-handles to M . Since W is an h-cobordism, the 2-handles are attached along trivial
circles, and so

M1=2 ŠM# # t1S2 � S2# # t2S2 z� S2;

where t1C t2 is the number of 2-handles. Here S2 z� S2 is the twisted S2-bundle over S2.
If t2 D 0 we are done. In case t2 ¤ 0, then there is an embedded 2-sphere inM1=2 with

odd framing of its normal bundle. Via the homotopy equivalenceW !M , we see there is
a map of a sphere toM with odd framing of its normal bundle, implying that the universal
cover of M is nonspin. In this case we have that M # .S2 z� S2/ Š M # .S2 � S2/ (see
e.g. [55, Exercise 5.2.6 (b)]), and so we may assume t2 D 0 again.

We have now argued that M1=2 is a stabilisation of M . Applying the same argument
to the upside down handlebody, we see further that M1=2 is a stabilisation of N . Thus,
M and N are stably homeomorphic or diffeomorphic, depending on whether the handle
decomposition was smooth or merely topological to begin with.

Next we discuss the s-cobordism theorem in dimension four. Below, we say a group
is good if it satisfies the �1-null disc property [49] (see also [79]). We do not repeat the
definition here. In practice, it generally suffices to know that virtually solvable groups, and
more generally groups of subexponential growth are good, and the class of good groups
is closed under taking subgroups, quotients, extensions, and colimits [49, 88].

Theorem 3.5 (s-cobordism theorem). Let M be a topological 4-manifold with � WD
�1.M/ a good group.

(1) Let .W IM;M 0/ be an h-cobordism over M . Then W is trivial over M , i.e. W Š
M � Œ0; 1�, via a homeomorphism restricting to the identity on M , if and only if
its Whitehead torsion �.W IM/ 2Wh.�/ vanishes.

(2) For any & 2Wh.�/ there exists an h-cobordism .W IM;M 0/ with �.W IM/D & .

(3) The function assigning to an h-cobordism .W IM; M 0/ its Whitehead torsion
�.W IM/ yields a bijection from the homeomorphism classes relative to M of
h-cobordisms over M to the Whitehead group Wh.�/.

Remark 3.6. It was asserted in [115, p. 90] that Theorem 3.5 (2) holds in dimension 4
in the piecewise-linear category, and without the assumption on �1.M/. But the proof
there does not take into account the need for geometrically dual spheres to control the
fundamental group of M 0.

Proof of Theorem 3.5. The statement (1) is [48, Theorem 7.1A], and relies on Freedman’s
disc embedding theorem [47] (see also [20, 48]). We prove (2), which follows the high-
dimensional argument from [98, Theorem 11.1].
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LetA2GLk.Z�/ represent & . Attach k trivial 2-handles toM � ¹1º�M � Œ0;1�.This
yields a bordism W 0 from M to M# #kS2 � S2, where we assume that the ascending
spheres of the 2-handles are S2 � ¹s0º in each copy of S2 � S2. For every 1 � i � k, we
can realise the element�

0; .0; Aij /
k
jD1

�
2 �2.M/˚

kM
jD1

.Z�/2 Š �2.M# #kS2 � S2/

by an embedded framed sphere by tubing together parallel copies of the embedded framed
spheres ¹s0º � S2 in S2 � S2. Let ¹fiºkiD1 be the resulting collection of spheres. These
spheres admit pairwise disjoint algebraically dual spheres ¹giºkiD1, obtained by tubing
together parallel copies of the embedded framed spheres S2 � ¹s0º in order to realise
the rows of the matrix . xAT /�1. By the sphere embedding theorem ([48, Theorem 5.1B],
[110, Theorem B]) there is a collection ¹ xfiºkiD1 of topologically flat embedded spheres
with xfi homotopic to fi and such that the collection ¹ xfiºkiD1 admits a geometrically dual
collection of (immersed) spheres ¹giº

k
iD1.

Attach 3-handles to W 0 along neighbourhoods of the spheres ¹ xfiºkiD1 to obtain a bor-
dism W from M to M 0. Since we attached the handles of index 2 along trivial circles,
�1.M/ Š �1.W /. Since the ¹ xfiº have geometrically dual spheres, surgery along them
does not change the fundamental group and so we have �1.M 0/ Š �1.W /. The handle
chain complex C�. zW ; zN/ is

0! C3. zW ; zM/ Š ˚kZ�
A
�! C2. zW ; zM/ Š ˚kZ� ! 0:

SinceA is invertible,H�. zW ; zM/D 0, and then by dualityH�. zW ; zM 0/D 0 too. Therefore,
W is an h-cobordism. The torsion can be read off from the handle chain complex as
�.W IM/ D ŒA� D & .

Finally, (3) is a consequence of (1) and (2). Surjectivity is immediate from (2). The
proof of injectivity follows [98, Theorem 11.3] and uses (1) and (2). Let .W IM;M 0/ and
.W 0IM;M 00/ be h-cobordisms over M with torsion & . By (2), there is a 4-manifold N
and an h-cobordism .W 00IM 0; N / with torsion �& . By the additivity of Whitehead tor-
sion ([92]), .W [M 0 W 00; M; N / is an s-cobordism. Since � is good, W [M 0 W 00 is
homeomorphic to M � Œ0; 1� relative to M by (1). In particular, N is homeomorphic
to M . We can thus form .W 00 [M W 0IM 0; M 00/, which again is an s-cobordism and is
thus homeomorphic to M 0 � Œ0; 1�, relative to M 0 by (1). We obtain a homeomorphism

W Š W [M 0
�
M 0 � Œ0; 1�

�
Š W [M 0 W

00
[M W 0 Š

�
M � Œ0; 1�

�
[M 0 W

0
Š W 0;

relative to M , as claimed.

Remark 3.7. Every 5-dimensional s-cobordism .W IM;N/, with no restriction on funda-
mental groups, becomes homeomorphic to a product, relative toM , after sufficiently many
connected sums with S2 � S2 � Œ0; 1� along arcs joining M and N [112, Theorem 1.1].
This gives another proof of the special case of Theorem 3.4 that s-cobordant 4-manifolds
are stably diffeomorphic/homeomorphic.
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The last remaining implication in Figure 1 is given by the following result of Gompf.

Theorem 3.8 ([52]). Smooth, orientable 4-manifolds that are stably homeomorphic are
also stably diffeomorphic.

In the same paper Gompf also showed that smoothings of a nonorientable 4-manifold
become diffeomorphic after connected sum with sufficiently many copies of S2 z� S2.

4. Review of surgery exact sequences

In the next section we will appeal on several occasions to surgery exact sequences. We
refer to [105] for an account of the 4-dimensional case, and e.g. [141] and [36] for detailed
treatments of general surgery theory in dimensions at least 5.

The surgery exact sequences are centred on the structure sets. For the remainder of
this section, let M be a closed, connected, topological 4-manifold.

Definition 4.1. The homotopy structure set ofM , denoted �h.M/, is by definition the set
of pairs .N;f WN

'
�!M/, whereN is a closed topological 4-manifold and f is a homotopy

equivalence, considered up to h-cobordism overM . That is, Œ.N;f /�D Œ.N;f 0/�2 �h.M/

if and only if there is an h-cobordism .W IN;N 0/, with inclusion maps i WN ! W and
i 0WN 0 ! W , together with a map F WW !M such that F ı i D f and F ı i 0 D f 0.

Note that F is necessarily also a homotopy equivalence in the definition above.

Definition 4.2. The simple structure set of M , denoted �s.M/, is by definition the set of
pairs .N; f WN

's
��! M/, where N is a closed topological 4-manifold and f is a simple

homotopy equivalence, considered up to s-cobordism over M . That is,

Œ.N; f /� D Œ.N 0; f 0/� 2 �s.M/

if and only if there is an s-cobordism .W IN; N 0/, with inclusion maps i WN ! W and
i 0WN 0 ! W , together with a map F WW !M such that F ı i D f and F ı i 0 D f 0.

Note that F is necessarily a simple homotopy equivalence. Suppose that �1.M/ is
a good group. Then every s-cobordism is a product, and we can alternatively describe
the equivalence relation in the definition of the simple structure set without reference to
s-cobordisms, by instead requiring a homeomorphism GWN ! N 0 such that there is a
homotopy f 0 ıG � f WN !M .

Continuing with the assumption that �1.M/ is good, it follows that one approach to
the classification of manifolds simple homotopy equivalent to M , up to homeomorphism,
is to first compute the simple structure set of M , and then to compute the set of orbits of
the post-composition action on it by the group hAuts.M/ of homotopy classes of simple
self-homotopy equivalences of M . The set of orbits is then the set of homeomorphism
classes M.M/ of manifolds simple homotopy equivalent to M .
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Similarly, the set Mh.M/ of h-cobordism classes of closed 4-manifolds homotopy
equivalent to M is in bijective correspondence with the orbits of �h.M/ under the action
of the group hAut.M/ of homotopy classes of self-homotopy equivalences of M .

When �1.M/ is good, the surgery sequences are exact sequences of abelian groups,
whose underlying sets are given as follows; the group structures arise via the theory of
spectra and are hard to define geometrically [101, Chapter 5]. The identity element of the
structure sets is given by the identity map M !M . We will explain the terms other than
the structure sets after stating the sequences. Let � WD �1.M/ and let wW� ! C2 be the
orientation character of M . Assume that � is a good group. For the homotopy structure
set, we have an exact sequence:

N
�
M � Œ0; 1�;M � ¹0; 1º

� �
�! Lh5.Z�;w/

W
�! �h.M/

�
�! N .M/

�
�! Lh4.Z�;w/;

while for the simple structure set we have an exact sequence:

N
�
M � Œ0; 1�;M � ¹0; 1º

� �
�! Ls5.Z�;w/

W
�! �s.M/

�
�! N .M/

�
�! Ls4.Z�;w/;

The degree one normal maps, the terms involving N , are independent of the h and s
decorations. For .X; @X/ equal to either .M; ;/ or .M � Œ0; 1�; M � ¹0; 1º/, the set
N .X; @X/ consists of the set of manifolds .N; @N / with a degree one map N ! X that
restricts to a homeomorphism on @N ! @X , together with some normal bundle data that
we will not define here, up to an analogous notion of degree one normal bordism. Details
can be found in the references provided at the start of this section. It will suffice for us to
know that

N .M/ Š ŒM;G=TOP�

and
N
�
M � Œ0; 1�;M � ¹0; 1º

�
Š
��
M � Œ0; 1�;M � ¹0; 1º

�
; .G=TOP;�/

�
:

For us the only relevant property of the space G=TOP will be the existence of a 5-
connected map G=TOP! K.Z; 4/ �K.Z=2; 2/ ([94], [84, p. 397]), so in particular

N .M/ Š H 4.M IZ/˚H 2.M IZ=2/: (4.1)

Similarly, for Y a closed 3-manifold, we have ŒY;G=TOP� Š H 2.Y IZ=2/. As before the
identity element in the set of normal maps is given by the identity map.

TheL-groupsLh5.Z�;w/,L
s
5.Z�;w/,L

h
4.Z�;w/, andLs4.Z�;w/ have purely algeb-

raic definitions, in terms of � , w, and the decoration h or s. We will also not go into the
details of the definitions here, but will give a brief overview.

Roughly speaking, Lh4.Z�; w/ is defined in terms of nonsingular, sesquilinear, her-
mitian forms on free Z�-modules. For Ls4.Z�; w/ the Z�-modules must be based, and
certain isomorphisms between based modules are required to be simple, meaning that they
represent the trivial element of the Whitehead group Wh.�/. The identity element in the
L4 groups corresponds to the hyperbolic form, i.e.

Lk� 0 1
1 0

�
on˚2kZ� for some k. There
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is also a version Lp4 .Z�; w/, where the underlying Z�-modules are only required to be
projective.

Elements of theL5 groups consist of a hyperbolic form on a free Z�-module equipped
with a choice of a half rank summand of the base module, called a lagrangian, on which
the form vanishes. For the s decorations, we need the module to be based and a cer-
tain short exact sequence related to the lagrangian to have trivial Whitehead torsion. The
identity element of the L5-groups consists of a hyperbolic form where the lagrangian is
standard. When the orientation character w is trivial, we often suppress w from the nota-
tion of L-groups.

The homomorphisms � in the surgery sequences from degree one normal maps to
the L-groups are called the surgery obstruction maps. Given a degree one normal map
f WN ! M , performing surgery on circles produces a map f 0, still with target M , that
induces an isomorphism on fundamental groups. The element �.f / is given by the kernel
of the map induced by f 0 on second homotopy groups, called the surgery kernel. Exact-
ness at N .M/ requires that �1.M/ is good and relies on [47, 48].

Note that L4.Z/ Š Z, given by the signature of the form divided by 8. Hence,
� WN .S4/! L4.Z/ sends ŒN; f � to sign.N /=8. Using the naturality of the surgery exact
sequence and thatL4.Z�/ containsL4.Z/ as a direct summand, we see that the summand
H 4.M IZ/ Š Z in N .M/ is detected by the signature difference

ŒN; f � 7! .�.N / � �.M//=8

and maps injectively to L4.Z�/. The preceding argument applies to L4.Z�/ with both h
and s decorations.

The maps markedW in the surgery sequences are given by the Wall realisation actions
of the L5 groups on the structure sets, which we sketch next. Let hWN !M be a (simple)
homotopy equivalence and let ˛ be an element of the relevant L5 group. Stabilising gives
a map N # #kS2 � S2 !M , for some k, whose surgery kernel gives a hyperbolic form.
We then represent the generators of the lagrangian in ˛ by framed, disjointly embedded
2-spheres in N# #kS2 � S2, on which we perform surgery. The resulting 4-manifold N 0

comes equipped with a (simple) homotopy equivalence h0WN 0 ! M and .N 0; h0/ is by
definition the element ˛ � h of the structure set. By construction N and N 0 are stably
homeomorphic. It is highly nontrivial to represent the lagrangian by disjointly embedded
spheres, and requires the work of [47,48] and the restriction to good fundamental groups.

5. Counterexamples

Figure 2 shows what we know about the converses of the implications in Figure 1. In this
section we collect the counterexamples indicated in Figure 2, explaining their construction
and properties. The properties are also collected in Table 1 at the end of the paper.
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Diffeomorphism Homeomorphism

Smooth s-cobordism Topological s-cobordism

Smooth h-cobordism Topological h-cobordism

Stable diffeomorphism Stable homeomorphism

CP2-stable diffeomorphism CP2-stable homeomorphism

Simple

homotopy equivalence

Homotopy equivalence

§5.8

?

§5.(4,7,10)

§5.(2,5,6,12)

?

§5.14

§5.(4,7,9,10,13)

§5.(2,11)

?

§5.(5,6,8,12)

§5.(5,6,12)

§5.(5,6,12)

§5.(5,6,12)

§5.(3,4,7,11,13,14)

§5.(3,4,7,11,13)

§5.(1,2,9,10)

Figure 2. What is known about the converses of the implications in Figure 1. The symbol » denotes
the cases where we know an implication does not hold, indicating which subsections contain cor-
responding counterexamples. The

‹
H) symbol denotes the three cases where it is unknown whether

an implication holds.

5.1. S 2 � S 2 and S 4

• Both manifolds are smooth, orientable, and simply connected.

• As S2 � S2 Š S4 # .S2 � S2/, they are stably diffeomorphic, and therefore stably
homeomorphic and CP2-stably diffeomorphic.

• �.S2 � S2/ D 4 ¤ 2 D �.S4/. Therefore, they are neither (simple) homotopy equi-
valent, s- nor h-cobordant (in either category), homeomorphic, nor diffeomorphic.

This straightforward example shows that to meaningfully ask for homotopically inequi-
valent 4-manifolds that are stably diffeomorphic, one should also require that the Euler
characteristics coincide. Equivalently, one should require that the number of copies of
S2 � S2 added is the same for both manifolds, that is s D t in Definition 2.2.

5.2. S 2 � S 2 and S 2 z� S 2

As before S2 z� S2 denotes the nontrivial S2-bundle over S2. It can be constructed by
gluing two copies of D2 � S2 together using the Gluck twist on their common boundary
S1 � S2. Alternatively, recall that oriented 3-plane bundles over S2 are classified up to
isomorphism by homotopy classes of maps ŒS2; BSO.3/� Š ŒS1; SO.3/�, and there are
two such homotopy classes. The nontrivial map gives a 3-plane bundle whose sphere
bundle is S2z�S2.

• Both S2 � S2 and S2 z� S2 are smooth, orientable, and simply connected.
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• �.S2 � S2/ D 4 D �.S2 z� S2/.

• By the diffeomorphisms .S2 � S2/ # CP2ŠCP2 # CP
2

# CP2Š .S2 z� S2/ # CP2,
the manifolds are CP2-stably diffeomorphic and CP2-stably homeomorphic.

• The second Stiefel–Whitney classes are distinct, since S2 � S2 is spin but S2 z� S2

is not. So they are neither (stably) diffeomorphic, nor (stably) homeomorphic, nor
(simple) homotopy equivalent, s- nor h-cobordant (in either category).

This example shows that it is easy to find manifolds that are CP2-stably homeo-
morphic or CP2-stably diffeomorphic but do not satisfy any of the other equivalence
relations.

5.3. CP 2 and Freedman’s �CP 2

Freedman [47, p. 370] constructed the manifold �CP2, which he called the Chern man-
ifold, as follows. Attach a 2-handle to D4 along a C1-framed trefoil K, to obtain the
1-trace of the trefoil. The boundary is a homology sphere †, which bounds a compact,
contractible manifold C ([47, Theorem 1.40], [48, Corollary 9.3C]). Cap off the 1-trace
with C . The resulting closed 4-manifold is �CP2. The same construction with any knotK
with Arf.K/ D 1 gives rise to a homeomorphic manifold.

• The manifolds CP2 and �CP2 are orientable and simply connected.

• CP2 is smooth. The Kirby–Siebenmann invariant ks.�CP2/ D ks.C / D �.†/ D

Arf.K/ D 1, where �.†/ is the Rochlin invariant of †, by [48, p. 165] and [56].
Therefore, �CP2 is not smoothable, even stably.

• Since the manifolds have isometric intersection forms, they are homotopy equival-
ent [97,145] and have equal Euler characteristic �.CP2/ D 3 D �.�CP2/. Since the
Whitehead group of the trivial group is trivial, the manifolds are also simple homotopy
equivalent.

• Since the Kirby–Siebenmann invariants are different, they are not CP2-stably homeo-
morphic and therefore not homeomorphic, not s- or h-cobordant, and not stably hom-
eomorphic.

• The smooth questions are not applicable to this pair.

This example shows that one must restrict to manifolds with the same Kirby–Sieben-
mann invariant, and moreover ideally smooth manifolds, to find really interesting examples
of homotopy equivalent but not homeomorphic manifolds.

5.4. RP 4 # CP 2 and R # �CP 2

Here �CP2 is the Chern manifold from Section 5.3. The manifold R was first construc-
ted by Ruberman [116], as follows. By [47, Theorem 1.40] and [48, Corollary 9.3C], the
Brieskorn sphere †.5; 9; 13/ bounds a compact, contractible, topological 4-manifold U.
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As a Seifert fibred manifold, †.5; 9; 13/ admits an orientation preserving order two self-
diffeomorphism t given by the antipodal map on the generic fibres. Since the parameters 5,
9, and 13 are all odd, t is also the antipodal map on the exceptional fibres and t has no
fixed points. The manifold R is then defined as

R WD U=x � t .x/ for x 2 @U:

A similar construction was previously used by Fintushel–Stern [42] to construct a mani-
fold homeomorphic, but not diffeomorphic to RP4, as we describe in Section 5.6. Ruber-
man’s proof that R is not homeomorphic to RP4 utilises Rochlin’s theorem [114] (see
also [46], [82, Chapter XI]) and the fact that the Rochlin invariant �.†.5; 9; 13// D 1.
That R is a homotopy RP4 follows from the same principle as in [42]. Namely, write S4

as U [t U, and observe that R is the quotient under a free involution. The same con-
struction can be applied to any integer homology sphere † admitting a free orientation
preserving involution and with �.†/D 1. While it is a priori not clear that the outcome is
unique up to homeomorphism, this follows from the classification of closed, nonorientable
4-manifolds with order two fundamental group [63, Theorem 3].

In the literature R is sometimes denoted �RP4. We prefer not to use this notation to
avoid confusion with the star construction defined in Section 5.11. The manifold R also
arises via a surgery construction, which we outline after the following list.

• The manifolds RP4 # CP2 and R # �CP2 are nonorientable with nontrivial funda-
mental group isomorphic to Z=2.

• RP4 # CP2 is smooth by construction. Ruberman–Stern [117] showed that R # �CP2

is also smoothable, as follows. First they showed that there exists a knotK with S31 .K/D
@X1.K/ D †.5; 9; 13/ a Brieskorn sphere, via an explicit Kirby calculus argument. Let t
be a free orientation preserving involution of †.5; 9; 13/ as described at the beginning of
this section. Construct the smooth 4-manifold

X WD X1.K/=x � t .x/ for x 2 @X1.K/:

To see that X is homeomorphic to R # �CP2, let UK be the compact, contractible, topo-
logical 4-manifold with boundary †.5; 9; 13/ provided by [47, Theorem 1.40] and [48,
Corollary 9.3C]. By Freedman [47] and Boyer [21], there is a homeomorphism

�CP2 # UK Š .X1.K/ [†.5;9;13/ UK/ # UK Š X1.K/;

since they are both compact, simply connected 4-manifolds with the same intersection
form and the same integer homology sphere boundary. This homeomorphism descends to
a homeomorphism �CP2 # R Š X when quotienting the boundaries by the involution.
Alternatively, one can apply the classification theorem of [63] to show that X is homeo-
morphic to R # �CP2. Different choices of K, and thereby the Brieskorn sphere, might
give rise to different smooth structures on R # �CP2, but this is currently an open ques-
tion.
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• The manifolds RP4 # CP2 and R # �CP2 are homotopy equivalent, and therefore have
equal Euler characteristic �.RP4 # CP2/ D 2 D �.R # �CP2/. Since the Whitehead
group of Z=2 is trivial, they are also simple homotopy equivalent.

• Since they are homotopy equivalent and smoothable, they are CP2-stably homeomor-
phic and CP2-stably diffeomorphic.

• Hambleton–Kreck–Teichner [63] showed that they are stably homeomorphic, but not
homeomorphic.

• The manifolds are stably diffeomorphic by [50, Theorem 12.3] which states that smooth,
nonorientable, compact 4-manifolds with universal cover nonspin, that are stably homeo-
morphic, are stably diffeomorphic.

• They are not s-cobordant, in either category, since if they were they would be homeo-
morphic by the topological s-cobordism theorem (Theorem 3.5). Since the Whitehead
group of Z=2 is trivial, they are also not h-cobordant in either category.

We end this section by giving an alternative construction of the manifold R following
Hambleton–Kreck–Teichner [63, pp. 650–1]. There is a degree one normal map, namely
the collapse map E8 ! S4, with domain the E8 manifold constructed by Freedman [47,
Theorem 1.7]. Connect sum with RP4 in both domain and codomain to obtain a degree
one normal map

F WRP4 #E8 ! RP4:

The surgery kernel is the image of the E8 form under the map L4.Z/! L4.ZŒZ=2�; w/,
wherewWZ=2!C2 is the nontrivial character. But this is the zero map [141, Chapter 13A,
bottom of p. 173]. By the definition of L4.ZŒZ=2�; w/, this means that, perhaps after
stabilising with copies of S2 � S2, the surgery kernel is a hyperbolic form. Applying [110,
Corollary 1.4] to the surgery kernel, there is a homeomorphism

RP4 #E8# #k .S2 � S2/ Š X# #4Ck .S2 � S2/ (5.1)

for some integer k and for some 4-manifold X . By additivity of the Kirby–Siebenmann
invariant (see e.g. [50, Theorem 8.2]),

ks.X/ D ks
�
X# #4Ck .S2 � S2/

�
D ks

�
RP4 #E8# #4Ck .S2 � S2/

�
D ks.E8/ D 1;

whereas RP4 is smooth and so ks.RP4/ D 0. We can then define

R WD X:

By [63, Theorem 3] the manifold X is determined up to homeomorphism by the existence
of the homeomorphism (5.1), and in particular coincides with Ruberman’s construction.
Since we built R by killing the surgery kernel of a degree one normal map, we have
constructed an element of the structure set, ŒR ! RP4� 2 �.RP4/, and in particular
R ' RP4.
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5.5. Kreck’s examples K3 # RP 4 and #11
.S 2 � S 2/ # RP 4

This is a pair of relatively easy to understand exotic 4-manifolds discovered by Kreck [85].
Indeed this was the first known exotic pair of closed 4-manifolds; the examples of Cappell–
Shaneson discussed in Section 5.6 were constructed earlier, but they were not shown to
be homeomorphic until much later [63]. The K3 surface is a well-known smooth, simply
connected 4-manifold. One way to construct it is to first considerE.1/ WD CP2# #9CP2,
which comes with an elliptic fibration F WE.1/! S2 (be warned that this is not a Serre
or Hurewicz fibration). Generically the point inverse images are tori with trivial normal
bundles T 2 �D2. The fibre sum of two copies of E.1/ is the K3 surface:

K3 WD E.2/ WD E.1/ #T 2 E.1/ D
�
E.1/ n T 2 � VD2

�
[T 2�S1

�
E.1/ n T 2 � VD2

�
:

We can then construct the manifolds K3 # RP4 and #11 .S2 � S2/ # RP4.

• The manifolds K3 # RP4 and #11 .S2 � S2/ # RP4 are smooth, nonorientable, and
have nontrivial fundamental group isomorphic to Z=2. They have equal Euler charac-
teristics �.K3 # RP4/ D 23 D �.#11 .S2 � S2/ # RP4/.

• As we will explain below, Kreck showed that K3 # RP4 and #11 .S2 � S2/ # RP4

are homeomorphic but not stably diffeomorphic.

• Since they are homeomorphic, they are stably homeomorphic, CP2-stably homeo-
morphic, homotopy equivalent, simple homotopy equivalent, and topologically h- and
s-cobordant.

• Since they are not stably diffeomorphic, the two 4-manifolds are not diffeomorphic,
and neither smoothly h-cobordant nor smoothly s-cobordant.

Remark 5.1. More generally, Kreck [85, Theorem 1] showed that there is at least one
such example of a pair of homeomorphic but not stably diffeomorphic smooth 4-manifolds
for each 1-type .�; wW � ! C2/ with � a finitely presented group and w nontrivial. By
Gompf’s result (Theorem 3.8), orientable (stably) homeomorphic 4-manifolds are stably
diffeomorphic, so this phenomenon only arises for nonorientable manifolds.

Now we argue why K3 # RP4 and #11 .S2 � S2/ # RP4 are homeomorphic. The
intersection form of K3 is isometric to the orthogonal sum of two E8 forms and a rank 6
hyperbolic form. By the classification of closed, simply connected 4-manifolds up to
homeomorphism [47,48], it follows thatK3 is homeomorphic to E8 #E8# #3.S2 � S2/,
where E8 as before denotes the E8 manifold constructed by Freedman [47, Theorem 1.7].
Next, observe that there is a unique connected sum of an orientable manifold with a
nonorientable manifold such as RP4, because any two embeddings of D4 in RP4 are
isotopic. Using this we have homeomorphisms

RP4 #K3 Š RP4 #E8 #E8# #3 .S2 � S2/
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Š RP4 # xE8 #E8# #3 .S2 � S2/
Š RP4# #11 .S2 � S2/:

The last homeomorphism uses the classification of closed, simply connected 4-manifolds
again. Here the 4-manifolds xE8 # E8# #3 .S2 � S2/ and #11 .S2 � S2/ have isometric
intersection forms, since they are indefinite and have the same rank, parity, and signa-
ture [99, Theorem 5.3].

Next we explain the obstruction to stable diffeomorphism. Heuristically, the construc-
tion of a homeomorphism above does not work smoothly, because one cannot split theK3
surface smoothly, because of Rochlin’s theorem that smooth, spin, closed, 4-manifolds
have signature divisible by 16 [114] (see also [46] and [82, Chapter XI]). When necessary
we use RP1 ' BZ=2DK.Z=2; 1/ as a model for the Eilenberg–Maclane space. Define

B WD BZ=2 � BSpin

and let �WB ! BO be the composition

B D BZ=2 � BSpin
?�p
����! BO � BO

˚
�! BO;

where ? is the orthogonal complement to the tautological line bundle  over BZ=2 '
RP1, pW BSpin ! BO is the standard projection, and ˚ is the map corresponding to
the Whitney sum of stable bundles. Replace � by a fibration, and by an abuse of notation
denote the resulting homotopy equivalent domain by the same letter B and the new map
to BO again by �.

Let �4.B; �/ denote the group of bordism classes of closed, smooth 4-manifolds,
equipped with a lift to B of the classifying map �M WM ! BO of the stable normal
bundle. In other words, �4.B; �/ has elements represented by pairs .M; z�M /, where M
is a closed, smooth 4-manifold and �M classifies its stable normal bundle, such that the
following diagram commutes.

B

M BO:

�
z�M

�M

A .B;�/-bordism between .M;z�M / and .N;z�N / is a compact, smooth 5-manifold .W;z�W /
with a corresponding lift of the stable normal bundle �W WW ! BO to B , and a diffeo-
morphism

iM t iN WM tN
Š
�! @W

such that z�W ı iM D z�M and z�W ı iN D z�N .
For M 2 ¹K3 # RP4; #11 .S2 � S2/ # RP4º, Kreck showed that M admits a 2-

connected lift z�M WM ! B . Roughly speaking, this is because .B; �/ was chosen to be
compatible with the Stiefel–Whitney classes w1.�M / and w2.�M /, and also with the fun-
damental group �1.M/. The following theorem is a special case of [86, Theorem C].
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Theorem 5.2 (Kreck [85]). Let .M; z�M /; .N; z�N / 2 �4.B; �/ with z�M and z�N 2-conn-
ected. Then M and N are stably diffeomorphic if and only if

Œ.M; z�M /� D Œ.N; z�N /� 2 �4.B; �/= hAut.B; �/;

where hAut.B; �/ denotes the group of fibre homotopy classes of fibre homotopy equival-
ences of the fibration �WB ! BO .

Kreck showed [85, Proposition 2] that there is an isomorphism

˛W�4.B; �/
Š
�! Z=16; (5.2)

with ˛.#11.S2 � S2/; s/D 0 and ˛.K3; s/D 8. Here these are simply connected 4-mani-
folds, and the maps s factor through ¹�º � BSpin, and correspond to the unique spin
structures on the respective 4-manifolds. The automorphism group hAut.B; �/ acts by
isomorphisms of �4.B; �/ Š Z=16 and so preserves these two elements. Since ˛ is a
homomorphism and the connected sum is .B; �/-bordant to the disjoint union, it fol-
lows that K3 # RP4 and #11 .S2 � S2/ # RP4 are distinct in �4.B; �/= hAut.B; �/ and
are therefore not stably diffeomorphic. Next we proceed to explain the computation of
�4.B; �/ and the isomorphism ˛ in a little more detail.

Represent an element of�4.B; �/ by a map f WM !RP4 �BSpin, using the cellular
approximation theorem and the fact that BZ=2 Š RP1. Let pr1WRP4 � BSpin! RP4

be the projection, and make pr1 ıf transverse to RP3 � RP4. Let F �M be the inverse
image f �1.RP3 � BSpin/, which is a closed 3-manifold. The restriction of f to F
determines, with a little work, an induced spin structure on F and a map

F ! RP3 � RP1 Š BZ=2:

So F determines an element of �Spin
3 .BZ=2/.

Every element .F;f / of�Spin
3 .BZ=2/ bounds some spin 4-manifoldW which admits

a branched double covering yW !W restricting to the double cover yF !F corresponding
to f with branching set a 2-dimensional submanifold† ofW . We will show the existence
of such a null-bordism in the next paragraph. Note that @.�F / Š yF , where �F is the
normal bundle of F in M and that MF WDM n �F is spin. Thus, we can form the closed
oriented spin 4-manifold MW WD MF [ yF �

yW , where the orientation on MF is induced
from the .B; �/-structure onM . Then we define a precursor of the invariant from (5.2), as

x̨.M; f / WD sign.MW / �† �† 2 Z=32;

where † �† denotes the homological self-intersection number of † � yW . Kreck showed
that x̨ is a well-defined invariant of�4.B; �/, namely it is unaffected by cobordism overB
and is independent of the choice ofW and the branching set. This uses the Atiyah–Singer
G-signature theorem [12, Section 6] (see also [57]) and Rochlin’s theorem [114] (see
also [46] and [82, Chapter XI]). Thus as alluded to above the exotic behaviour can be
ultimately be traced back to Rochlin’s theorem.
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Now we show the existence of a null-bordism W , as promised. Kreck showed in [85,
Proposition 3] that �Spin

3 .BZ=2/ Š Z=8, generated by the pair consisting of�
RP3; inc�sWRP3 ! RP1 � BSpin

�
;

where inc is the inclusion and s is some choice of spin structure. The 3-manifold RP3

bounds the 4-manifold V obtained by adding a 2-handle to D4 along an unknot with
framing coefficient 2. A generator of �2.V / is represented by an embedded 2-sphere. Tak-
ing the 2-fold cover of V branched along such an embedding yields a branched covering
yV ! V restricting to the standard nontrivial double cover

S3 Š @ yV ! RP3 Š @V

on the boundary. By taking boundary connected sums of V , we see that kRP3 bounds a
4-manifold Wk D \kV with a branched double cover as claimed. For any element .F; f /
of �Spin

3 .BZ=2/ we can now construct W WD Wk [kRP3 W
0, where W 0 is a spin bordism

from .F; f / to kRP3 over BZ=2. The null-bordism W admits a branched double cover
as required in the definition of x̨. This completes the description of x̨.

Kreck showed [85, p. 256] that

Im x̨ D 2Z=32 Š Z=16;

generated by x̨.RP4; z�RP4/ for some normal smoothing z�RP4 WRP4 ! B . In this case
F DRP3,W D V from above, sign.MF /D sign.D4/D 0 and bW D bV , so sign.bW /D 1
and † �† D 1. Therefore,

sign.MW / D �1;

and so x̨.RP4; f /D�2. Kreck also showed by analysing the Atiyah–Hirzebruch spectral
sequence for �4.B; �/ that j�4.B; �/j � 16. It follows that x̨ is an isomorphism onto
2Z=32 � Z=32. Finally, x̨.K3; s/ D 16 since F D ;, and so MF D K3. Since Im x̨ D
2Z=32 we may define

˛ WD x̨=2W�4.B; �/ �! Z=16;

which gives the isomorphism ˛ that we have been trying to explain.

5.6. RP 4 and the Cappell–Shaneson exotic RP 4

Cappell and Shaneson [27, 28] constructed a smooth manifold R which they showed is
homotopy equivalent, but not stably diffeomorphic, to RP4; later work [63] showed thatR
is homeomorphic to RP4. Fintushel and Stern [41] constructed a smooth manifold RFS
with the same properties as a quotient of S4 by an exotic free action of Z=2 on S4.
See [1, Theorem 5.1] for the relationship between the two constructions.

The Fintushel–Stern construction is easier to describe, so we start with that. Start
with two copies of a compact, contractible, smooth 4-manifold U with boundary the
Brieskorn homology sphere @U Š †.3; 5; 19/. This homology sphere is a Seifert-fibred
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3-manifold. The antipodal map on the S1 fibres induces a fixed-point free, order-two self-
diffeomorphism t W @U ! @U , as in Section 5.4. Fintushel–Stern showed that there is a
diffeomorphism S4 Š U [t U . Switching the two U factors of the union gives rise to a
smooth free involution zt WS4 ! S4. Define

RFS WD S
4=zt � U=x � t .x/ for x 2 @U :

This inspired the construction of R in [116] given in Section 5.4.
Next we recall the construction of the Cappell–Shaneson R. Let

A WD

0@ 0 1 0

0 0 1

�1 1 0

1A :
The matrixA induces a diffeomorphism 'AWT

3! T 3. Consider the punctured 3-torus T 30
and the corresponding mapping torus forA, denotedMA;0. Take RP4 and remove a neigh-
bourhood S1 z�D3 of an embedded circle representing the generator of �1.RP4/Š Z=2.
Then

R WD
�
RP4 n S1 z�D3

�
[@MA;0:

• The manifolds R and RP4 are smooth and nonorientable. They have nontrivial funda-
mental group isomorphic to Z=2.

• They have equal Euler characteristics �.R/ D 1 D �.RP4/.

• Cappell–Shaneson [28] showed thatR and RP4 are homotopy equivalent, and therefore
simple homotopy equivalent.

• After Freedman’s work it was later shown [63] that these manifolds are furthermore
homeomorphic.

• By combining with their earlier work on 4-dimensional surgery [26, Theorem 2.4],
Cappell–Shaneson [28, p. 61] showed that, in addition to not being diffeomorphic, R
and RP4 are not stably diffeomorphic. Alternatively, this can be seen using the ˛ invariant,
defined below, which turns out to be a stable diffeomorphism invariant, via the reduction
of stable diffeomorphism to bordism over the normal 1-type. We refer to Section 5.12,
where we explain this in more detail in the case of Akbulut’s examples.

• Since they are homeomorphic they are stably homeomorphic, simple homotopy equi-
valent, topologically h- and s-cobordant, CP2-stably homeomorphic and CP2-stably
diffeomorphic.

• Since they are not stably diffeomorphic they are not diffeomorphic. They are not smooth-
ly h- or s-cobordant because they are not stably diffeomorphic.

• As mentioned above, the Fintushel–Stern 4-manifold RFS has exactly the same proper-
ties.

We now describe the diffeomorphism obstruction from [28] used to show that R is not
diffeomorphic to RP4. Consider the nonorientable linear S3-bundle over S1, which we
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denote by S1 z� S3. Cappell–Shaneson defined an invariant

˛WN .S1 z� S3/! Z=32

from the set of smooth degree one normal maps with target S1 z� S3. Let f WR! S1 z� S3

represent an element of N .S1 z� S3/. Define †R to be a framed 3-manifold f �1.S3/
obtained by making f transverse to a fibre S3 in S1 z� S3, taking the inverse image,
and pulling back the framing. Let �.†R/ 2 Z=16 be the Rochlin invariant of †R, by
definition the signature mod 16 of a framed 4-manifold with boundary †R. In addition,
writeW WD R n �†R, and let �.W / 2 Z be its signature. Then Cappell–Shaneson defined

˛.R; f / WD 2�.†R/ � �.W / mod 32:

In [28, Proposition 2.1] they showed that ˛ is a well-defined map ˛WN .S1 z� S3/!Z=32
as claimed. This invariant will be used again in Section 5.12; see also Kreck’s invariant in
Section 5.5, which was inspired by the Cappell–Shaneson invariant.

Let MA be the mapping torus for the diffeomorphism 'AW T
3 ! T 3 used in the con-

struction of R. In [28, Propositions 2.1 and 2.2] it was shown that there is a degree one
normal map f WMA ! S1 z� S3 and that ˛.MA; f / is nonzero. As such, just as in Sec-
tion 5.5, the exotic behaviour is due to Rochlin’s theorem. In [28, Theorem 3.1], Cappell
and Shaneson use the nontriviality of ˛.MA; f / to show that R is not diffeomorphic
to RP4. This theorem shows that there is a homotopy equivalence hWR ! RP4 that is
not homotopic to a diffeomorphism. Then since every homotopy equivalence of RP4 is
homotopic to the identity (cf. Proposition 5.3), it follows that there is no diffeomorphism
between R and RP4. It was shown in [53] that the double cover of R is diffeomorphic
to S4.

The Cappell–Shaneson construction can be varied by making different choices for
the matrix A, giving rise to an exotic RP4 denoted RA. The precise conditions are that
A 2 GL.3;Z/ with det.A/ D �1 and det.I � A2/ D ˙1; call such a matrix a Cappell–
Shaneson matrix. It can be seen from the construction that ifA andA0 are similar Cappell–
Shaneson matrices then RA and RA0 are diffeomorphic. The universal cover of RA is
a smooth homotopy 4-sphere. Many of these have been shown to be diffeomorphic to
S4 – we refer to the introduction of [81] for a detailed survey. The most general result
in this vein is that the universal cover of RA arising from a Cappell–Shaneson mat-
rix A with trace n where �64 � n � 69 is diffeomorphic to S4 [ibid.]. However, this
corresponds to only finitely many similarity classes, and so there are infinitely many
Cappell–Shaneson homotopy 4-spheres which remain as potential counterexamples to the
smooth 4-dimensional Poincaré conjecture.

5.7. L � S 1 and L0 � S 1

Let L and L0 be 3-dimensional lens spaces with the same fundamental group that are
homotopy equivalent but not homeomorphic. These are of the form Lp;q1 and Lp;q2 with
gcd.p; qi / D 1, and 1 � qi < p for i D 1; 2, such that for some n, q1q2 � ˙n2 mod p
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(for homotopy equivalent), and qi 6� ˙q˙1j mod p (for nonhomeomorphic) [113]. See
also [23, 33, 37].

• The manifolds L � S1 and L0 � S1 are smooth and orientable. They have fundamental
group isomorphic to Z=p � Z, for some p.

• They are homotopy equivalent because L and L0 are, and since they are smooth they are
therefore CP2-stably homeomorphic and CP2-stably diffeomorphic.

• The formula for the Whitehead torsion of a product of homotopy equivalences [90,
Corollary 1.3], [92] implies that L � S1 and L0 � S1 are simple homotopy equivalent.
Indeed, let f WL! L0 be a homotopy equivalence. Let i WZ! Z=p � Z and j WZ=p !
Z=p � Z be the standard inclusions. Then

�.f � Id/ D j�.�.f // � �.S1/C �.L/ � i�.�.Id// D 0; (5.3)

since �.S1/ D 0 D �.L/, where i� and j� are the induced maps on Whitehead groups.

• In the late 1960s it was proven that L � S1 and L0 � S1 are not diffeomorphic. If they
were, then L and L0 would be smoothly h-cobordant, which can be seen by embedding L
in the infinite cyclic coverL0 �R. Atiyah–Bott [11, Theorem 7.27] and Milnor [98, Corol-
lary 12.12] showed that smoothly h-cobordant lens spaces are homeomorphic. There-
fore L � S1 and L0 � S1 are not diffeomorphic.

• In the late 1980s, Turaev [136] showed that moreover L � S1 and L0 � S1 are not
homeomorphic. He showed that for any 3-manifolds M and M 0 that do not fibre over S1

with periodic monodromy, the product M � S1 and M 0 � S1 are homeomorphic if and
only if M and M 0 are homeomorphic [136, Theorem 1.5]. To show this he proved that
such M and M 0 are topologically h-cobordant if and only if M and M 0 are homeo-
morphic. It follows that L � S1 and L0 � S1 are not homeomorphic. Of course this also
reproves that they are not diffeomorphic.

• The manifolds L � S1 and L0 � S1 are stably diffeomorphic, and therefore stably
homeomorphic. We prove this in Proposition 5.3 below, by adapting a proof of Cappell–
Shaneson [29]. That this is possible was stated in [144].

• By the topological s-cobordism theorem (Theorem 3.5), L � S1 and L0 � S1 are not
topologically s-cobordant and are therefore not smoothly s-cobordant. Here we use that
Z=p � Z is a good group.

• They are not topologically h-cobordant, as we explain in Proposition 5.4 using [89]. It
follows that they are not smoothly h-cobordant.

• By choosing a large enough value of p, one may use the classification of lens spaces
to find arbitrarily large, finite sets ¹Li � S1ºi , such that the elements pairwise satisfy the
above properties.
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Proposition 5.3. Let L and L0 be 3-dimensional lens spaces that are homotopy equi-
valent but not homeomorphic. Then the 4-manifolds L � S1 and L0 � S1 are stably
diffeomorphic.

Proof. The strategy is as follows. Let �1.L/ Š �1.L
0/ Š Z=p and let hWL! L0 be a

homotopy equivalence. Let �h.L0/ be the homotopy structure set of L0 and consider the
map in the surgery sequence

�W �h.L0/! N .L0/ Š ŒL0;G=TOP�

with target the normal invariants of L0. This map is defined for 3-manifolds, even though
there is no analogue of the entire surgery sequence for 3-manifolds (but see [84, The-
orem 4] for a version with a homology structure set). We will show that the homotopy
equivalences hWL! L0 and IdWL0! L0 determine equal elements �.h/D �.Id/ 2N .L0/

i.e. normally bordant degree one normal maps. Crossing with S1 we see that

�.h � Id/ D �.Id� Id/ 2 N .L0 � S1/:

Since Z=p � Z is a good group, the surgery sequence is exact. Therefore,

Œh � IdWL � S1 ! L0 � S1� and ŒId� IdWL0 � S1 ! L0 � S1�

are in the same orbit of the action of Lh5.ZŒZ=p � Z�/ on �h.L0 � S1/. Then, by the
definition of the Wall realisation Lh5 action, it follows that L � S1 and L0 � S1 are stably
homeomorphic. Then since these 4-manifolds are smooth and orientable, they are in fact
stably diffeomorphic by Theorem 3.8.

We therefore have to show that �.h/ D �.Id/ 2 N .L0/. For this we adapt the proof
of [29, Proposition 2.1], where the corresponding fact for lens spaces with even order
fundamental group was proven in all dimensions, under an additional hypothesis that the
double covers are homeomorphic. We will show that in dimension 3 the extra hypotheses
are not needed.

First recall that there is a 4-connected map kWG=TOP! K.Z=2; 2/, corresponding
to a universal cohomology class k 2 H 2.G=TOPIZ=2/ [84, 94]. This induces a homo-
morphism

k�W ŒL
0;G=TOP�! ŒL0; K.Z=2; 2/� Š H 2.L0IZ=2/:

Consider �.h/ and �.Id/ as elements of ŒL0;G=TOP�. Since �.Id/ D 0, also k�.�.Id// D
0 2 H 2.L0IZ=2/. So we have to show that k�.�.h// D 0, and then we will have shown
that both maps L0 ! G=TOP are null-homotopic, and hence that the two lens spaces are
normally bordant. If p is odd, then H 2.L0IZ=2/ Š H1.L0IZ=2/ D 0, so we are done.
We therefore assume that p is even, in which case H 2.L0IZ=2/ D Z=2, and we have
something to check. So let p D 2r , for some r � 1.

Now we diverge from the proof of [29]. Let f W zL! L and f 0W zL0 ! L0 be the r-fold
covers so that

�1.zL/ Š Z=2 Š �1.zL
0/:
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Note that zL and zL0 are again lens spaces, so zL Š zL0 Š RP3 D L2;1. We claim that

.f 0/�WH 2.L0IZ=2/! H 2.RP3IZ=2/

is an isomorphism. Note that f 0�WH1.RP3IZ/! H1.L
0IZ/ is given by multiplication

with r . Hence, on the cellular Z-chain complexes, f 01 is given by multiplication with r , and
thus f 02 is the identity as can be seen by considering the following commutative diagram
of the cellular chain complexes over Z.

Z Z Z Z

Z Z Z Z:

0

f 03

�2

�1f 02

0

�rf 01 �1f 00

0 �2r 0

The claim that .f 0/�WH 2.L0IZ=2/! H 2.RP3IZ=2/ is an isomorphism immediately
follows from this. By the commutative square

ŒL0;G=TOP� ŒRP3;G=TOP�

H 2.L0IZ=2/ H 2.RP3IZ=2/

.f 0/�

k� k�

.f 0/�

Š

in order to prove k�.�.h// D 0, it suffices to show that

.f 0/�.�.h// D 0:

Since .f 0/�WN .L0/! N .RP3/ is given by pulling back along f 0, we have

.f 0/�.�.h// D �.zh/;

where zhWRP3 ! RP3 is obtained from lifting h ı f WRP3 ! L0 to RP3 along f 0 as in
the diagram

RP3 RP3

L L0:

zh

f f 0

h

We assert that every orientation-preserving homotopy self-equivalence of RP3, and so in
particular zh, is homotopic to the identity. It then follows that zh is trivial in the structure set
of RP3, and so �.zh/ D �.IdRP3/ D 0, as desired.

It remains to prove the assertion that every orientation-preserving homotopy self-
equivalence of RP3 is homotopic to the identity. This can be proven via obstruction
theory, by iteratively extending a map defined on RP3 � ¹0; 1º to RP3 � Œ0; 1�. Since
the target RP3 is path connected, there is no obstruction to extending over the relative
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1-cells of RP3 � Œ0; 1�, i.e. to defining the homotopy on the 0-cells of RP3. For k � 2,
the obstruction to extending over the relative k-cells of RP3 � Œ0; 1� lies in

H k
�
RP3 � Œ0; 1�;RP3 � ¹0; 1ºI�k�1.RP3/

�
:

For k D 2, the obstruction vanishes because both maps induce the identity on �1.RP3/Š
Z=2. Since �2.RP3/ D �2.S3/ D 0, the remaining obstruction lies in

H 4
�
RP3 � Œ0; 1�;RP3 � ¹0; 1ºI�3.RP3/

�
Š H0

�
RP3 � Œ0; 1�IZ

�
Š Z:

The obstruction measures the difference in the degrees of the two maps. Since both are
degree 1, the obstruction vanishes and the assertion is proved.

Proposition 5.4. Let L and L0 be homotopy equivalent lens spaces that are not homeo-
morphic. The manifolds L � S1 and L0 � S1 are not topologically h-cobordant.

Proof. Assume that there is a topological h-cobordism W from L � S1 to L0 � S1. As
in (5.3) above, taking a product with S1 kills the Whitehead torsion, i.e. W � S1 is an
s-cobordism from L� S1 � S1 to L0 � S1 � S1. The high-dimensional s-cobordism the-
orem then implies thatL�S1 �S1 andL0 �S1 �S1 are homeomorphic. But this implies
that L and L0 are homeomorphic by the toral stability property for lens spaces [89] which
can be seen using higher �-invariants [144]. This is a contradiction to our assumption onL
and L0.

Indeed if L and L0 are not homeomorphic, then even L � R2 and L0 � R2 are not
homeomorphic [89, Theorem 1.4].

5.8. Donaldson’s examples E.1/ and the Dolgachev surface E.1/2;3

As mentioned before, Kreck (Section 5.5) and Cappell–Shaneson (Section 5.6) construc-
ted the first examples of exotic 4-manifolds. These were nonorientable, and the obstruc-
tions used arose from Rochlin’s theorem.

New examples of exotic pairs, including simply connected examples, were provided
by Donaldson [40], and many others after him (see e.g. [8,55]). Donaldson’s first examples
consisted ofE.1/DCP2# #9CP

2
and the Dolgachev surfaceE.1/2;3, which is obtained

from E.1/ via two log transforms. Let us recall the construction. The 4-manifold E.1/
admits the structure of an elliptic fibration f WE.1/! S2. Let T 2 � E.1/ be a generic
fibre. Its normal bundle is a copy of T 2 �D2 embedded in E.1/.

In general, a log transform is a surgery operation on a 4-manifoldX with a smoothly em-
bedded torus T 2�X with trivial normal bundle which cuts out a neighbourhood T 2 �D2

of T 2, and glues it back via a diffeomorphism of @.T 2 �D2/ D T 3. Let ¹˛; ˇ; Œ@D2�º be
a basis for H1.T 3/. Then by definition we reglue to form

X 0 WD X n .T 2 �D2/ [' .T
2
�D2/
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using a diffeomorphism 'pWT
3 ! T 3 for some p 2 Z, corresponding to an element0@1 0 0

0 0 1

0 �1 p

1A
of GL.3;Z/. Perform two of these log transform operations on E.1/, on disjoint generic
fibres of the elliptic fibration, one with pD 2 and one with pD 3. The resulting 4-manifold
is the Dolgachev surface E.1/2;3. One can also construct E.1/2;3 by a single knot surgery
operation ([43], [44], [55, Section 10.3], [8, Section 6.5]) on a generic fibre ofE.1/, using
a trefoil knot ([106, p. 7], [45, Lecture 6, Section 2]). Akbulut used this in [7] to obtain a
description of the Dolgachev surface without 1- or 3-handles.

• E.1/ and E.1/2;3 are smooth, closed, orientable, and simply connected.

• They have isometric intersection forms hC1i ˚ 9h�1i and so are homeomorphic [47,
48], and therefore (simple) homotopy equivalent, stably homeomorphic, topologically
h- and s-cobordant, and CP2-stably homeomorphic.

• They are homeomorphic and orientable and therefore stably diffeomorphic and CP2-
stably diffeomorphic (Theorem 3.8).

• They are smoothly h-cobordant by [139, Theorem 2], and are therefore smoothly
s-cobordant since the Whitehead group of the trivial group is trivial.

• They are not diffeomorphic [40], via tools of Yang–Mills gauge theory.

While Rochlin’s theorem suffices to construct exotic pairs of nonorientable 4-mani-
folds (see Sections 5.5 and 5.6) it seems that one requires the full force of gauge theory to
detect orientable exotic pairs. After Donaldson’s work, Seiberg–Witten theory provided an
easier, but nonetheless still highly nontrivial, way to distinguish manifolds such as E.1/
andE.1/2;3 which are related by log transforms or knot surgery. There is a large literature
on generalisations of Donaldson’s example, as described in [8,55]. As stated before, since
this is not our focus we restrict ourselves to recalling the first known example.

5.9. #3
E8 and the Leech manifold

Next we present 4-manifolds that are stably homeomorphic but not homotopy equivalent.
Freedman [47] showed that every nonsingular, symmetric, integral bilinear form can be
realised as the intersection pairing of a closed, simply connected, topological 4-manifold.
The forms ˚3E8 and the Leech lattice are even, symmetric, positive definite bilinear
forms of rank and signature 24, so they are realised by closed 4-manifolds that we denote
by #3E8 and Le, respectively.

• The manifolds #3E8 and Le are simply connected and orientable with �.#3E8/ D
26 D �.Le/.
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• Since they are spin with signature 24, Rochlin’s theorem implies that the manifolds both
have nontrivial Kirby–Siebenmann invariant, and are therefore not smoothable.

• The manifolds have inequivalent intersection pairings and are therefore not homotopy
equivalent. As a result they are neither simple homotopy equivalent, homeomorphic, topo-
logically h-cobordant, nor topologically s-cobordant.

• Since they are spin and the Euler characteristics and the signatures coincide, #3E8
and Le are stably homeomorphic and therefore also CP2-stably homeomorphic, as fol-
lows. The stable classification of closed, simply connected, spin topological 4-manifolds is
essentially due to Wall [139, Theorems 2 and 3]: two such 4-manifolds are stably homeo-
morphic if and only if there are choices of orientations with respect to which the manifolds
are equivalent in the topological spin bordism group�TOPSpin

4 Š Z, with the isomorphism
given by ŒM � 7! �.M/=8. Wall worked in the smooth category, but the analogous topolo-
gical category result is straightforward to deduce [73, Section 2.2].

• The smooth questions are not applicable to this pair.

The downside of this example is that the manifolds are not smoothable. It turns out
that this is inevitable when considering simply connected 4-manifolds, as shown by the
next proposition.

Proposition 5.5. Closed, smooth, simply connected 4-manifolds M and N with equal
Euler characteristics are stably diffeomorphic if and only if they are homotopy equivalent.

Proof. Let M and N be closed, smooth, and simply connected 4-manifolds. Assume
that M and N are homotopy equivalent. Then they have isometric intersection forms,
for some choice of orientation, so by [139, Theorem 2] they are smoothly h-cobordant,
and by [139, Theorem 3] (see also Proposition 5.3) they are stably diffeomorphic.

For the other direction, assumeM andN are stably diffeomorphic and �.M/D �.N/.
Then modulo changing orientations, �.M/ D �.N /. Since �.M/ D �.N/ and �.M/ D

�.N /, the intersection forms of M and N are either both definite or both indefinite. In
the definite case, the intersection forms must be diagonal by Donaldson’s theorem [39],
and so the intersection forms are isometric, and therefore the manifolds are homotopy
equivalent [97, 145]. For the indefinite case, note that since the hyperbolic form is even,
and the intersection forms of M and N become isometric after stabilising, they are either
both odd or both even. Indefinite forms are determined up to isometry by the rank, parity,
and signature [99, Theorem 5.3] and so again M and N are homotopy equivalent.

Finally, we note that any pair of even, inequivalent, nonsingular, symmetric, integ-
ral, bilinear forms with equal rank and signature could have been used in this section to
produce a pair of stably homeomorphic but not homotopy equivalent manifolds.
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5.10. Kreck–Schafer manifolds

Kreck and Schafer [87] constructed smooth 4-manifolds that are stably diffeomorphic but
not homotopy equivalent. As observed in Proposition 5.5, their examples are necessarily
not simply connected.

They used the following general construction. Start with a finite presentation of a
group. Form the corresponding presentation 2-complex X . Thicken it to a 5-dimensional
manifold N.X/, e.g. by embedding X in R5 and letting N.X/ denote a smooth regular
neighbourhood [140]. Then consider the 4-manifold @N.X/. One can use this to find a
4-manifold with any given finitely presented fundamental group.

For any two finite 2-complexes X and X 0 with the same fundamental group, there are
integers m;n such that X _m S2 ' X 0 _n S2 [66, (40)]. It follows that the boundaries of
the 5-dimensional thickenings @N.X/ and @N.X 0/ are stably diffeomorphic.

Kreck and Schafer used finite 2-complexes X and X 0 with the same fundamental
group, as above, that have the same Euler characteristic but are not homotopy equival-
ent. Finding examples of 2-complexes with this property is rather difficult, but examples
are known [93, 96, 119]. Kreck and Schafer’s obstruction applies for many nontrivial fun-
damental groups, the smallest of which is Z=5 � Z=5 � Z=5. Kreck and Schafer then
showed that for their particular choices of X and X 0, the 4-manifolds @N.X/ and @N.X 0/
are not homotopy equivalent. These manifolds have the additional interesting property that
their intersection forms, and indeed their equivariant intersection forms, are hyperbolic.

• The manifolds @N.X/ and @N.X 0/ are smooth, nonsimply-connected, oriented man-
ifolds with the same Euler characteristic that are stably diffeomorphic but not homo-
topy equivalent.

• Since they are not homotopy equivalent, they are also not simple homotopy equivalent,
nor homeomorphic, nor diffeomorphic, nor h- or s-cobordant in either category.

• Since they are stably diffeomorphic they are stably homeomorphic, CP2-stably dif-
feomorphic, and CP2-stably homeomorphic.

Kreck and Schafer found pairs of 4-manifolds with the properties listed. Are there
stable diffeomorphism classes of smooth, oriented 4-manifolds containing infinitely many
homotopy equivalence classes, all with the same Euler characteristic? Or even arbitrarily
many?

5.11. Teichner’s E # E and �E # �E

A star partner of a 4-manifoldM is a manifold �M such that there exists a homeomorph-
ism M # �CP2 Š �M # CP2 preserving the decomposition on �2, where �CP2 is the
Chern manifold whose construction we recalled in Section 5.3. Let E denote the unique
fibre bundle over RP2 with fibre S2, that has orientable but not spin total space. We give
a Kirby diagram in Figure 3. This is a smooth, closed, orientable 4-manifold with funda-
mental group Z=2. Teichner [133] showed that E has a star partner �E which is simple
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0

1

Figure 3. A Kirby diagram for the manifold E, the unique fibre bundle over RP2 with fibre S2,
that has orientable but not spin total space.

homotopy equivalent to E but has opposite Kirby–Siebenmann invariant. This will also
follow from the more general Lemma 5.7 and Proposition 5.11 below. By the surgery
exact sequence, if �1.M/ Š Z=2, then �M is unique up to homeomorphism if it exists
(see also [133, Theorem 1]). In particular, this means that �E is the unique star partner
for E.

• The manifolds E # E and �E # �E are orientable, with nontrivial fundamental group
isomorphic to Z=2 � Z=2.

• The manifold E is smooth by construction, and therefore so is E # E. The mani-
fold �E is not smoothable, but it is currently open whether �E # �E is smoothable.
Indeed �E # �E has vanishing Kirby–Siebenmann invariant and so is stably smoothable,
i.e. there exists a k such that �E # �E# #k .S2 � S2/ is a smooth manifold.

• Teichner [133, Proposition 3] showed that E # E and �E # �E are not stably homeo-
morphic, and therefore they are not homeomorphic and not s- or h- cobordant.

• They are simple homotopy equivalent, sinceE and �E are simple homotopy equivalent.
This will also follow from Lemma 5.7 later, since we will show that they are both star
partners of E # �E. Recall also that the Whitehead group of the infinite dihedral group is
trivial [125], and so it also suffices to know that they are homotopy equivalent.

• Since they are homotopy equivalent and have trivial Kirby–Siebenmann invariant they
are CP2-stably homeomorphic. The homeomorphism from (5.4) below gives an alternat-
ive argument, and shows that only one CP2-factor is required.

• For smooth examples with the same properties, consider the pair E #E# #k .S2 � S2/
and �E # �E# #k .S2 � S2/. As mentioned above, there exists k for which these are
smooth since ks.E #E/D ks.�E # �E/D 0. These two manifolds are still simple homo-
topy equivalent, CP2-stably homeomorphic and therefore CP2-stably diffeomorphic, but
not stably homeomorphic, and therefore not stably diffeomorphic, neither smoothly s- nor
h-cobordant, and not diffeomorphic.
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Taking connected sums of E # E and �E # �E, as well as sufficiently many copies
of S2 � S2, one can construct homotopy equivalence classes containing arbitrarily many
stable homeomorphism classes of smooth, orientable 4-manifolds using the techniques
of [133]. We omit the details. In [132, Example 5.2.4], Teichner also constructed similar
examples for finite fundamental groups with quaternionic 2-Sylow subgroup.

As a counterpoint to these examples we show that it is impossible to find infinite famil-
ies of 4-manifolds that are all homotopy equivalent but pairwise not stably homeomorphic.
For this proof, we will need the following terminology. The normal 1-type of a smooth
4-manifold M is a fibration �WB ! BO , inducing an injection �2.B/! �2.BO/ and
an isomorphism on �i .B/! �i .BO/ for i > 2, which further admits a lift z�M WM ! B

of the stable normal bundle �M WM ! BO , inducing an isomorphism �1.B/! �1.BO/

and a surjection �2.B/! �2.BO/. A choice of a lift z�M is called a normal 1-smoothing
of M . For a normal 1-type .B; �/, let �4.B; �/ denote the group of bordism classes of
normal 1-smoothings. For topological 4-manifolds, we have parallel notions of a topolo-
gical normal 1-type B ! BTOP and topological normal 1-smoothings lifting the stable
topological normal bundle. For a topological normal 1-type .B; �/, let �TOP

4 .B; �/ denote
the group of topological bordism classes of topological normal 1-smoothings.

Proposition 5.6. The set of stable homeomorphism types of closed 4-manifolds in a fixed
homotopy type is finite. Moreover, the set of stable diffeomorphism types of closed, smooth
4-manifolds in a fixed homotopy type is finite.

Proof. Let M be a closed 4-manifold with � WD �1.M/ and orientation character w. We
will use that the composition

�h.M/
�
�! N .M/

�
�! Lh4.Z�;w/

in the surgery sequence is trivial, in both the smooth and topological categories, and with
no restriction on fundamental groups.

First we give the proof in the topological category. We claim that the map �W�h.M/!

N .M/ has finite image. Recall from Section 4 that

N .M/ Š H 4.M IZ/˚H 2.M IZ=2/:

Here we see thatH 2.M IZ=2/ is finite and by Poincaré dualityH 4.M IZ/ŠH0.M IZw/.
So when M is orientable, we have that

H0.M IZ
w/ Š H0.M IZ/ Š Z;

which maps injectively into Ls4.Z�; w/ under the surgery obstruction map � . Consider
the degree one normal map f WM# #kE8 !M given by the collapse map, where as
before E8 denotes the manifold constructed by Freedman [47, Theorem 1.7]. Then under
the augmentation map Lh4.Z�/! Lh4.Z/, �.ŒM# #kE8; f �/maps to k 2 ZŠ L4.Z/. It
follows that the image of � is infinite and therefore since � is a homomorphism, the kernel
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of � is finite. When M is nonorientable, H0.M IZw/ Š Z=2, and so N .M/ is already
finite. This completes the proof of the claim.

To complete the proof in the topological category we show that two elements .N; f /,
.N 0; f 0/ 2 �h.M/ with equal image in N .M/ are stably homeomorphic. Let .B; �/
denote the topological normal 1-type of M and let z�M be a topological normal 1-smooth-
ing. Then z�M ı f and z�M ı f 0 are normal 1-smoothings for N and N 0 respectively, and
moreover .N; z�M ı f / and .N 0; z�M ı f 0/ are equal in �TOP

4 .B; �/ by hypothesis. By [86,
Theorem C], the manifoldsN andN 0 are stably homeomorphic. This completes the proof
of the first statement.

Now assume that M is a smooth, closed 4-manifold. If M is orientable, then by [52]
(see also [50, Theorems 12.13]) every pair of stably homeomorphic smooth 4-manifolds
is stably diffeomorphic, and so we are done. Suppose that M is nonorientable. As in the
topological case, it suffices to show that the set N Diff.M/ of smooth normal invariants is
finite. Since PL=O is 6-connected,

N Diff.M/ Š ŒM;G=O� Š ŒM;G=PL� Š N PL.M/;

and so it suffices to show that N PL.M/ is finite. The fibre sequence

TOP=PL! G=PL! G=TOP

induces an exact sequence of sets

ŒM;TOP=PL�! ŒM;G=PL�! ŒM;G=TOP�;

which translates to
H 3.M IZ=2/! N PL.M/! N .M/:

The first and last terms are finite sets, and therefore so is N PL.M/ŠN Diff.M/, as desired.

Next we take the opportunity to prove some basic facts about the star construction,
some of which were used in the discussion at the start of the section. We show that star
partners are simple homotopy equivalent and that the star partnership relation is symmet-
ric. Then we discuss uniqueness of star partners, and we give a criterion that guarantees
star partners exist.

Lemma 5.7. LetM be a 4-manifold with a star partner �M . ThenM and �M are simple
homotopy equivalent.

Proof. We use an argument due to Stong [129, Section 2]. For a 4-manifold M and
ˇ 2 �2.M/, let cap.M; ˇ/ be the result M [ˇ D3 of adding a 3-cell to M along ˇ.
Let

hW �M # CP2 !M # �CP2
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be a homeomorphism preserving the decomposition of �2. Let ˛ 2 �2.CP2/ Š Z be a
generator. Then h�.˛/ generates �2.�CP2/. Further,

cap.CP2; ˛/ 's S
4 and cap.�CP2; h�.˛// 's S

4:

Therefore,

M ŠM # S4 's M # cap.�CP2; h�.˛//

Š cap.M # �CP2; h�.˛// Š cap.�M # CP2; h�1� ı h�.˛//

Š cap.�M # CP2; ˛/ Š �M # cap.CP2; ˛/ 's �M # S4 Š �M;

as desired.

Note that �M andM have opposite Kirby–Siebenmann invariants, by additivity of the
Kirby–Siebenmann invariant under connected sum [50, Theorem 8.2].

In the next proof we will need the following fact. If the universal cover zM is nonspin
and the fundamental group ofM is good, then �M is unique up to homeomorphism [129,
Corollary 1.2].

Proposition 5.8. Let M be a 4-manifold with a star partner �M . Suppose that �1.M/

is good. Then the relation of being a star partner is symmetric, i.e. M is a star partner
of �M .

Proof. We must show that there is a homeomorphism M # CP2 Š �M # �CP2, pre-
serving the decomposition on �2.

First we show that M # CP2 is a star partner for M # �CP2. By the classification of
closed, simply connected 4-manifolds [47, 48], there is a homeomorphism

�CP2 # �CP2 Š CP2 # CP2

preserving the decomposition on �2. Therefore,

.M # CP2/ # CP2 Š .M # �CP2/ # �CP2;

preserving the decomposition on �2. This shows that M # CP2 is a star partner for
M # �CP2.

Since �M is a star partner of M , we see that �M # CP2 Š M # �CP2, preserving
the decomposition on �2. By taking a connected sum on both sides with �CP2, we see
that �M # �CP2 is a star partner of M # �CP2.

Thus bothM # CP2 and �M # �CP2 are star partners forM # �CP2. Next we apply
the uniqueness of star partners for manifolds with nonspin universal covers and good fun-
damental group mentioned above. More precisely, we apply [129, Theorem 1.1 (b)], using
CP2 as the closed 1-connected 4-manifold,W1 DM # CP2 andW2 D �M # �CP2. By
the previous two paragraphs we have homeomorphisms

CP2 # .M # CP2/ Š �CP2 # .M # �CP2/ Š CP2 # .�M # �CP2/;
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and Stong’s theorem gives us the desired homeomorphismM # CP2
Š
�!�M # �CP2 that

preserves the decomposition on �2.

Example 5.9. Teichner showed in [133] that uniqueness of star partners does not hold for
nonspin manifolds with spin universal covers. In particular, there are homeomorphisms

E # .E # CP2/ Š E # .�E # �CP2/ D �E # .E # �CP2/ Š �E # .�E # CP2/; (5.4)

where we have used thatE # CP2Š�E # �CP2 by Proposition 5.8, and thatE # �CP2Š
�E # CP2, by the definition of �E. This shows that both E # E and �E # �E are star
partners of E # �E.

Next we give a general criterion for when star partners exist. For example, this can be
used to establish the existence of �E. The proof will use the following notion.

Definition 5.10. LetM be a 4-manifold. An immersion of a 2-sphere ˛WS2 #M is said
to be RP2-characteristic if for every immersion RWRP2 #M such that R�w1.M/D 0,
we have ˛ �R � R �R 2 Z=2.

The following consequence of work of Stong [128] is probably well known to the
experts, but has not appeared in print before.

Proposition 5.11. Let M be a 4-manifold with good fundamental group and containing
an immersion RWRP2 # M such that R �R � 1 mod 2 and R�w1.M/ D 0. Then a star
partner �M exists.

Proof. The manifold �M can be constructed as follows. Start with M # �CP2 and let ˛
be an immersed sphere in �CP2 with trivial self-intersection number, �.˛/ D 0, repres-
enting a generator of �2.�CP2/. Note that ˛ is self-dual. In the construction of �CP2

from Section 5.3, one can find such an ˛ by gluing together the track of a null-homotopy
for the trefoil in D4 with the core of the attached 2-handle, and then adjusting the self-
intersection number by adding small cusps. Since the mod 2 intersection numbers are
such that ˛ � R D 0 ¤ R � R 2 Z=2, ˛ is not RP2-characteristic. Stong [128, p. 1310]
proved that in this setting, where �1.M/ is good, and ˛ admits an algebraically dual
immersed sphere but is not RP2-characteristic, then ˛ is homotopic to an embedding ˛0.
Since �.˛0; ˛0/ D 1, it follows that ˛0 has a regular neighbourhood with boundary S3.
Consequently, M # �CP2 Š N # CP2, where N is obtained from M # �CP2 by repla-
cing a regular neighbourhood of ˛0 by D4. By construction, N is a star partner for M ,
which we denote by �M .

5.12. Akbulut’s exotic .S 1 z� S 3/ # .S 2 � S 2/

In [3, §3] and [4] (see also [8, Section 9.5]), Akbulut constructed a smooth, closed 4-mani-
fold P that is homotopy equivalent toQ WD .S1 z� S3/ # .S2 � S2/, but not diffeomorphic
to Q. We give the construction presently. A manifold with similar properties was first
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(a) (b)

�1 �1
0

0

Figure 4. (a) A Kirby diagram for the product † � Œ0; 1�, where † denotes the .2; 3; 7/-Brieskorn
sphere. The handle decomposition has a 3-handle that is not pictured. The dotted circle indicates
the complement in D3 � Œ0; 1� of the product concordance from the figure eight knot to itself. A
�1-framed 2-handle is then attached along this concordance. The resulting handlebody has bound-
ary † # �†. The 3-handle is attached along the connected sum sphere to finish the construction.
Here we have used that † is the result of �1-framed Dehn surgery on the figure eight knot. (b)
A nonorientable 1-handle is attached, along with two 2-handles. The attaching sphere of the new
1-handle is shown using the notation of [2], [8, Section 1.5]: they are identified via the orientation
preserving diffeomorphism .x; y; z/ 7! .x;�y;�z/, with respect to coordinates based at the centre.
One of the new 2-handles is shown in grey to help the reader distinguish between the two 2-handles.
It is required, but can be checked, that the 2-handles are attached along curves disjoint from the
attaching 2-sphere of the 3-handle from (a). The manifold P is formed by gluing on D4.

constructed by Akbulut in [2]. We say more about that and other alternative constructions
at the end of the section.

Let † denote the .2; 3; 7/-Brieskorn sphere. Recall that the Rochlin invariant of †,
denoted by �.†/, is by definition the signature mod 16 of a smooth, spin 4-manifold
with boundary †. In this case �.†/ � 8 mod 16. Attach a nonorientable 1-handle to
† � Œ0; 1�, joining the two boundary components, followed by a pair of 2-handles, as
shown in Figure 4. One then checks that the boundary of this new handlebody is S3, so it
can be capped off with D4, yielding the desired manifold P .

• The manifolds P and Q are smooth, closed, and nonorientable. They have nontrivial
fundamental group Z.

• The Euler characteristics are equal: �.P / D 2 D �.Q/.

• The equivariant intersection form of P can be computed from its handle description.
Wang’s classification [143] of nonorientable 4-manifolds with fundamental group Z up to
homeomorphism then shows thatP andQ are homeomorphic, since they have isomorphic
equivariant intersection forms and equal Kirby–Siebenmann invariant. HereP andQ both
have trivial Kirby–Siebenmann invariant since they are smooth.

• Since they are homeomorphic, P and Q are topologically h-cobordant, and conse-
quently s-cobordant since the Whitehead group of Z is trivial.
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• They are not stably diffeomorphic, which implies that they are not smoothly h-cobord-
ant; the latter fact was shown by Akbulut [3, Theorem 3]. His proof can be adapted to
show the stronger fact that P and Q are not stably diffeomorphic, as we explain next.

Let cWQ# #k.S2 �S2/! S1 z�S3 be the map collapsing all S2 �S2 factors. Akbulut
constructed a homotopy equivalence

f WP # #k .S2 � S2/! Q# #k .S2 � S2/ for all k;

such that the Brieskorn sphere † is the inverse image under

g WD c ı f WP # #k .S2 � S2/! S1 z� S3

of a copy of S3 in S1 z� S3 and such that

�
�
.P # #k .S2 � S2// n �†

�
D �

�
S3 � Œ0; 1�# #kC1 .S2 � S2/

�
D 0:

We can consider .P # #k .S2 � S2/; g/ as a degree one normal map in N .S1 z� S3/, as
usual modulo smooth normal bordism.

We compute the Cappell–Shaneson ˛-invariant ˛WN .S1 z� S3/! Z=32, described in
Section 5.6:

˛
�
P # #k.S2 �S2/;g

�
D 2�.†/� �

�
.P # #k.S2 �S2// n �†

�
� 2 � 8� 0� 16 mod 32:

If P and Q were stably diffeomorphic, then we can use a diffeomorphism

hWQ# #k .S2 � S2/! P # #k .S2 � S2/

to obtain an degree one normal map .Q# #k.S2 �S2/;g ı h/. Since h is a diffeomorphism
we would have

˛
�
Q# #k .S2 � S2/; g ı h

�
D ˛

�
P # #k .S2 � S2/; g

�
D 16:

However, Akbulut also computed that ˛.Q# #k .S2 � S2/; `/ D 0 for every degree one
normal map `WQ# #k .S2 � S2/ ! S1 z� S3. It follows that P and Q are not stably
diffeomorphic.

• Since P and Q are not smoothly h-cobordant, they not smoothly s-cobordant, nor dif-
feomorphic.

• They are CP2-stably diffeomorphic and CP2-stably homeomorphic, because they are
homotopy equivalent and both have vanishing Kirby–Siebenmann invariant. Moreover,
via explicit handle manipulation [3, Theorem 1], [4], [8, Exercise 9.3], one sees that P is
the result of a Gluck twist on an embedded 2-sphere in Q. This shows that not only are P
and Q CP2-stably diffeomorphic, but in fact P # CP2 Š Q # CP2 [3, Corollary 2].

Notably the pair P and Q comprise the first example where the Gluck twist operation
on a 2-sphere changes the smooth structure of a 4-manifold. Whether this is possible
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in the orientable setting remains open. Other examples of the operation changing the
smooth structure on nonorientable 4-manifolds are given in [135], [71, Proposition 1.6].
See also [10] for a condition that implies the Gluck twist operation does not change the
diffeomorphism type.

As mentioned above, another manifold with similar properties as P was constructed
by Akbulut in [2]. That manifold, which we callP 0, also has an explicit handle decomposi-
tion [2, Figure 4.6] consisting of one 0-handle, one 1-handle, two 2-handles, one 3-handle,
and one 4-handle. Since P 0 is nonorientable, the 1-handle is necessarily nonorientable. In
other words, P 0 is obtained by attaching two 2-handles to S1 z� D3 and then capping
off with another copy of S1 z�D3. Akbulut showed using explicit moves on the handle
decompositions that

P 00 [@ .RP2 z�D2/ Š R # .S2 � S2/;

where P 00 WD P 0 n Int S1 z�D3 and R is the Cappell–Shaneson exotic RP4 from Sec-
tion 5.6. The double cover of P 0 is the standard .S1 � S3/# #2S2 � S2, as shown in [135,
Proposition 9], using the fact that the double cover ofR is diffeomorphic to S4 [53]. Akbu-
lut’s construction from [2] can be modified to use other Cappell–Shaneson RP4s, some
of which are not known to have standard double covers. Akbulut showed that P 0 is homo-
topy equivalent to Q. As with P , the classification result of Wang [143] shows that P 0

is homeomorphic to Q. Akbulut used explicit moves on the handle decompositions to
show that P 0 is not diffeomorphic toQ, reducing the problem to the fact that the Cappell–
Shaneson exotic RP4 from Section 5.6 is not diffeomorphic to RP4. In has been claimed
(see [3, Theorem 1] and [4]) that P and P 0 are diffeomorphic, but a proof has so far not
appeared.

Another construction of a manifold homeomorphic but not diffeomorphic to Q was
given by Fintushel–Stern in [42], using the technology of [41]. By surgering an excep-
tional fibre of the .3; 5; 19/-Brieskorn sphere, they constructed K, a homology S2 � S1.
They then formed X , the mapping cylinder of the quotient map K ! K=t where t is
the free involution contained in the S1-action on K, as in Sections 5.4 and 5.6. To fin-
ish the construction Fintushel and Stern showed that K is the boundary of a homotopy
.S1 �D3/ # .S2 � S2/, whose union withX is the desired manifoldM . Using the invari-
ant defined in [41], they showed that M is not smoothly s-cobordant to Q. They also
showed using the handle decomposition, and the fact that t is isotopic to the identity, that
the double cover of M is diffeomorphic to the standard .S1 � S3/# #2S2 � S2. It is not
known whether Akbulut’s P is diffeomorphic to M .

5.13. Kwasik–Schultz manifolds homotopy equivalent to L � S 1

The existence of these manifolds is the content of Example 1.9 from the introduction,
which was first proven in [89, Theorem 1.2]. We restate the theorem and give an original
proof below.

Theorem 5.12. Let M WD L � S1, where L is a lens space Lp;q with p � 2, 1 � q < p,
and .p; q/ D 1. Then there is an infinite collection of closed, orientable, topological
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4-manifolds ¹Miº
1
iD1, that are all simple homotopy equivalent to M but pairwise not

homeomorphic.

Proof. The proof will use the simple surgery exact sequence. The simpleL-group satisfies

Ls5
�
ZŒZ=p � Z�

�
Š Zr ˚ .torsion/;

where

r D

´
.p C 1/=2 p odd

.p C 2/=2 p even:

In both cases r > 1 since p � 2. To compute these L-groups, first use Shaneson split-
ting [118] to obtain

Ls5.ZŒZ=p � Z�/ Š Ls5.ZŒZ=p�/˚ L
h
4.ZŒZ=p�/:

Then Lh4.ZŒZ=p�/ Š Zr ˚ T , where T is a torsion group and the free part is detected by
a multi-signature invariant: see [13, 16] for p odd, [15, Theorem 2] for p D 2k , and [65,
p. 227 and Proposition 12.1] for the deduction of the general case. On the other hand,
Ls5.ZŒZ=p�/D 0 as shown in [13,14] and [65, Theorem 10.1] for p odd, [15, Theorem 7]
for p D 2k , and again [65, p. 227 and Proposition 12.1] for general p.

Since Z=p � Z is a good group, the simple surgery sequence is exact. The normal
maps N .M � Œ0; 1�;M � ¹0; 1º/ are given by the direct sum of

H 2
�
M � Œ0; 1�;M � ¹0; 1ºIZ=2

�
and

H 4
�
M � Œ0; 1�;M � ¹0; 1ºIZ/ Š H1.M � Œ0; 1�IZ

�
Š Z˚ Z=p;

as in (4.1). In particular, the normal maps have rank 1. Hence, the quotient

Ls5
�
ZŒZ=p � Z�

�
=�
�
N
�
M � Œ0; 1�;M � ¹0; 1º

��
is infinite. By exactness this quotient acts freely on the structure set �s.M/, and so the
structure set of M is also infinite. In order to complete the proof, we need to consider the
manifold set:

M.M/ WD ¹N a closed 4-manifold j N 's M º=homeomorphism.

This set is isomorphic to the simple structure set �s.M/ modulo the action of the simple
homotopy self-equivalences of M . We will show that the group hAut.M/ of homotopy
classes of homotopy self-equivalences ofM is finite in Lemma 5.13 below. It follows that
the group of simple homotopy self-equivalences hAuts.M/ is also finite. Then M.M/ is
the quotient of an infinite set �s.M/ by a finite group, so is again infinite. The elements
of M.M/ comprise the manifolds ¹Miº

1
iD1 in the theorem statement.
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• The elements of M.M/ are orientable and have nontrivial fundamental group iso-
morphic to Z=p � Z.

• They are in general not known to be smoothable, but their Kirby–Siebenmann invariants
vanish because they are all bordant to the smooth manifold M . For L0 homotopy equi-
valent, but not homeomorphic, to L, the smooth 4-manifold L0 � S1 lies in M.M/. In
particular, we know that L0 � S1 is simple homotopy equivalent to M by (5.3). However,
such examples account for at most finitely many of the elements of M.M/. Therefore the
smooth equivalence relations are not applicable in general.

• As they lie in the same simple structure set, they are all homotopy equivalent and simple
homotopy equivalent to one another, and therefore in particular all have equal (vanishing)
Euler characteristics.

• Since they are obtained from the action of Ls5.ZŒZ=p �Z�/, the elements of M.M/ are
stably homeomorphic and CP2-stably homeomorphic.

• The elements of M.M/ are by definition pairwise nonhomeomorphic. The cardinality
of M.M/ was first shown to be infinite in [89, Theorem 1.2]. As a result, since Z=p � Z
is a good group, they are also not topologically s-cobordant, by the s-cobordism theorem
(Theorem 3.5).

• An infinite subset of the manifolds in M.M/ are in addition not topologically h-cobord-
ant to one another. To see this we argue as follows. Infinitely many of the elements of Ls5
that we used, namely those in the Zr summand detected by multisignatures, are nontrivial
under the forgetful map

Ls5
�
ZŒZ=p � Z�

�
! Lh5

�
ZŒZ=p � Z�

�
Š ˚

rZ:

This can be seen directly from the definition of multisignatures or by observing that
the Rothenberg exact sequence [118, Proposition 4.1] implies that the kernel of the map
Lsn.R/! Lhn.R/ is 2-torsion for every ring with involution R and every n 2 Z. It follows
that the quotient of these elements by the image of the Z factor in the normal invariants,

Lh5
�
ZŒZ=p � Z�

�
=�
�
N
�
M � Œ0; 1�;M � ¹0; 1º

��
Š ˚

r�1Z;

also act nontrivially on the homotopy structure set �h.M/. As above r � 2 so this is
infinite. Recall that the equivalence relation defining this set is topological h-cobordism
over M . The quotient of �h.M/ by the group of homotopy self-equivalences of M is the
manifold h-cobordism set:

Mh.M/ WD ¹N a closed 4-manifold j N 'M º=h-cobordism:

As before, the homotopy self-equivalences form a finite group, so can only identify finitely
many of the manifolds. It follows that there is an infinite subset of M.M/ represented by
manifolds that determine distinct elements of Mh.M/, and are therefore pairwise not
topologically h-cobordant.
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These examples contrast with Teichner’s examples in Section 5.4 in that we have infin-
itely many, and the stable homeomorphism statuses are different. A similar phenomenon
to the manifolds in M.M/ arises for manifolds homotopy equivalent to RP4 # RP4 [24],
except that these manifolds are of course nonorientable.

We next prove the following lemma, which was used in the proof of Theorem 5.12.

Lemma 5.13. The group of homotopy self-equivalences hAut.M/ of M is a finite group.

Sketch of proof. For this we will use the braid of exact sequences from Hambleton–Kreck
[62, p. 148], which applies sinceM is spin. This braid in particular fits the group of homo-
topy self-equivalences hAut.M/ into an exact sequence [62, Corollary 2.13],

y�
Spin
5 .B;M/ hAut.M/ hAut.B/ (5.5)

sandwiched between the homotopy automorphisms hAut.B/ of the Postnikov 2-type B ,
and a spin bordism group y�Spin

5 .B;M/ that we shall define below.
Since �2.M/ D 0, the Postnikov 2-type of M is B WD B.Z=p � Z/. The homotopy

classes of homotopy equivalences of B are therefore isomorphic to the automorphisms of
the group Z=p � Z. This group of automorphisms is a finite group.

Let y�Spin
4 .M/ � �

Spin
4 .M/ denote the subset of bordism classes .X; f / where the

reference map f WX ! M has degree 0, let @W�Spin
5 .B;M/! �

Spin
4 .M/ be the bound-

ary map in the long exact sequence of the pair, and let y�Spin
5 .B;M/ � �

Spin
5 .B;M/ be

@�1. y�
Spin
4 .M//. By [62, Lemma 2.2], there is a long exact sequence

�
Spin
5 .M/ �

Spin
5 .B/ y�

Spin
5 .B;M/ y�

Spin
4 .M/ �

Spin
4 .B/:

The four nonrelative spin bordism groups, and the first and last maps in the sequence, can
be computed using the (natural) Atiyah–Hirzebruch spectral sequence for the generalised
homology theory of spin bordism. We omit the details, because very similar details will
appear below in the proof of Lemma 5.14. There we will restrict to p a power of 2, but the
computation that both the cokernel of the map�Spin

5 .M/!�
Spin
5 .B/ and the kernel of the

map y�Spin
4 .M/! �

Spin
4 .B/ are finite groups is similar for all p � 2. To avoid essentially

repeating ourselves, we only give the details in the proof in Section 5.14 below, since in
that case the result is new, and more precise upper bounds are required. It follows that
y�

Spin
5 .B;M/ is finite. Therefore (5.5) shows that hAut.M/ is finite, as desired.

5.14. Simple homotopy equivalent, h-cobordant 4-manifolds that are not
s-cobordant

We construct arbitrarily large collections of closed, orientable, topological 4-manifolds
that are simple homotopy equivalent and h-cobordant but not topologically s-cobordant.
This will prove Theorem 1.10, which we restate below. We will employ the same scheme
as in the previous subsection. The manifolds in each collection will be simple homotopy
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equivalent and h-cobordant to a fixed 4-manifold L2r ;1 � S1, for some r . We will show
that by making r large enough we can obtain a collection of 4-manifolds of any given size,
with the following properties.

• They are orientable and have nontrivial fundamental group isomorphic to Z=2r � Z
for some r � 8.

• They are all simple homotopy equivalent and topologically h-cobordant to one another.
As a result, they are homotopy equivalent, stably homeomorphic, and CP2-stably
homeomorphic. They are pairwise not topologically s-cobordant and therefore not
homeomorphic.

• Since they are homotopy equivalent they all have vanishing Euler characteristic, the
same as L2r ;1 � S1.

• They are all stably homeomorphic and CP2-stably homeomorphic.

• We do not know whether they are smoothable, and therefore the smooth questions are
not applicable.

Theorem 1.10. For every n � 1, there is a collection ¹NiºniD1 of closed, orientable,
topological 4-manifolds, that are all simple homotopy equivalent and h-cobordant to one
another, but which are pairwise not s-cobordant.

Proof. Let Mr WD L2r ;1 � S
1, for r � 1. Let �r WD Z=2r � Z, and let Gr WD Z=2r . The

proof will again use the surgery sequence, both with the h and s decorations. We begin by
investigating the individual terms. Shaneson splitting [118] shows that

Ls5.Z�r / Š L
s
5.ZGr /˚ L

h
4.ZGr / and Lh5.Z�r / Š L

h
5.ZGr /˚ L

p
4 .ZGr /:

Then by [15, Theorem 7], we know

Ls5.ZGr / D 0 D L
h
5.ZGr /:

Here we use that s D 0, in the notation of that theorem (this is a different s to the s-dec-
oration of the L-groups). By [15, Theorem 1], we have that

L
p
4 .ZGr / D Zm.r/;

where m.r/ WD 2r�1 C 1. By [15, Theorem 2] and [30, Theorem B],

Lh4.ZGr / D Zm.r/ ˚ .Z=2/n.r/;

where
n.r/ WD b2.2r�2 C 2/=3c � br=2c � 1:

Putting this all together, we have

Ls5.Z�r / Š Zm.r/ ˚ .Z=2/n.r/ and Lh5.Z�r / Š Zm.r/:



Counterexamples in 4-manifold topology 237

The kernel of the forgetful map Ls5.Z�r /! Lh5.Z�r / is the torsion summand

K WD ker.Ls5.Z�r /! Lh5.Z�r // Š .Z=2/
n.r/;

since Lh5.Z�r / is torsion free and the kernel of the map Lsn.R/! Lhn.R/ is 2-torsion,
for every ring with involution R and every n 2 Z by the Rothenberg exact sequence [118,
Proposition 4.1]. The elements inK act on the simple structure set ofMr , producing topo-
logical manifolds that are stably homeomorphic and simple homotopy equivalent to Mr .
We can compute the normal maps as

N
�
Mr � Œ0; 1�;Mr � ¹0; 1º

�
Š H 4

�
Mr � Œ0; 1�;Mr � ¹0; 1ºIZ

�
˚H 2

�
Mr � Œ0; 1�;Mr � ¹0; 1ºIZ=2

�
Š Z˚ Z=2r ˚ Z=2:

We have a direct sum because there is a 5-connected map ([84])

G=TOP! K.Z; 4/ �K.Z=2; 2/:

The Z summand is detected by the ordinary signature, and in particular it maps to one of
the multisignature summands in Zm.r/ � Ls5.Z�r /, under the surgery obstruction map.
The torsion summand Z=2r ˚ Z=2 could map to the torsion elements in Ls5.Z�r /. But
at least a summand of Ls5.Z�r /, one isomorphic to .Z=2/n.r/�2, acts nontrivially on the
simple structure set. Note that

j.Z=2/n.r/�2j D 2n.r/�2:

Still, it might be the case that some of the elements of the simple structure set �s.Mr /

obtained by this action of Ls5 are identified by the action of the simple homotopy self-
equivalences hAuts.Mr /. Note that j hAuts.Mr /j � j hAut.Mr /j. We will show the fol-
lowing lemma.

Lemma 5.14. Let r � 8. Then

2n.r/�2=j hAut.Mr /j > 1:

Moreover, for any k there exists an r with 2n.r/�2=j hAut.Mr /j > k:

Every element Mr .�/ WD � � ŒIdWMr ! Mr � 2 �s.Mr / arising from the action of an
element � 2 K maps trivially to the homotopy structure set �h.Mr /, by the diagram

Ls5.Z�r / �s.Mr /

Lh5.Z�r / �h.Mr /:

W

W
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The Mr .�/ are all therefore h-cobordant to Mr . Since they arise from the action of the
simple L-group Ls5.Z�r /, they are all simple homotopy equivalent and stably homeo-
morphic to one another. By Lemma 5.14, there is more than one orbit of ¹Mr .�/º�2K=

hAuts.Mr /, and these are not s-cobordant and therefore not homeomorphic manifolds.
Moreover, for a given k we can choose r so that there are at least k orbits, and therefore
we find arbitrarily large collections.

Now we prove Lemma 5.14.

Proof of Lemma 5.14. As in Section 5.13, we use the braid from [62]. There we claimed
that hAut.Lp;q � S1/ is finite for any lens space Lp;q with p odd. Now we claim the
same when p D 2r , and moreover in this case we compute an explicit upper bound, in
terms of r , for the order of hAut.Lp;q � S1/. The braid includes the exact sequence [62,
Corollary 2.13]

y�
Spin
5 .Br ;Mr /! hAut.Mr /! hAut.Br /; (5.6)

so we need upper bounds for the cardinalities of y�Spin
5 .Br ; Mr / and hAut.Br /, where

hAut.Br / denotes the set of homotopy self-equivalences of the Postnikov 2-type Br up
to homotopy. The spin bordism group y�Spin

5 .Br ;Mr / also appeared in the proof of Lem-
ma 5.13, and we refer the reader there for the definition.

First we compute hAut.Br /. Since �2.Mr / D 0, the Postnikov 2-type Br is given
by B�r . Therefore,

hAut.Br / Š Aut.Z=2r � Z/:

We will now show that j hAut.Br /j D 22r . An arbitrary endomorphism of Z=2r �Z maps
.1; 0/ to .a; 0/ and .0; 1/ to .b; z/, for some a; b 2 Z=2r and z 2 Z. For an automorphism,
we must have that z D ˙1 and a must be a generator of Z=2r . Hence, there are 22r D
2 � 2r�1 � 2r allowed choices for z; a and b.

To find an upper bound for j y�Spin
5 .Br ;Mr /j we use the following exact sequence ([62,

Lemma 2.2]):

�
Spin
5 .Mr /! �

Spin
5 .Br /! y�

Spin
5 .Br ;Mr /! y�

Spin
4 .Mr /! �

Spin
4 .Br /: (5.7)

We investigate the bordism groups using the Atiyah–Hirzebruch spectral sequence. The
sequence we need, for X 2 ¹Mr ; Brº, is

E2p;q D Hp.X I�
Spin
q /) �

Spin
pCq.X/:

In the range of interest 0 � q � 5, we have

�Spin
q Š

8̂̂<̂
:̂

Z for q D 0; 4;

Z=2 for q D 1; 2;

0 for q D 3; 5:
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We also need the homology of Mr , which by the Künneth theorem with Z=2-coefficients
is as follows:

Hk.Mr IZ=2/ Š

8̂̂<̂
:̂

Z=2 for k D 0; 4;

.Z=2/2 for k D 1; 2; 3;

0 otherwise.

Additionally, H1.Mr IZ/ Š Z=2r ˚Z. Since Br D B�r can be constructed from Mr by
adding cells of dimension four and higher, for A 2 ¹Z=2;Zº the induced map

Hk.Mr IA/! Hk.Br IA/

is an isomorphism for k D 0; 1; 2 and a surjection for k D 3. Finally, we will need that
H5.Br IZ/ Š Z=2r .

Now we use this homology information together with the spectral sequences to obtain
an upper bound for the cardinality of the cokernel of the map �Spin

5 .Mr /! �
Spin
5 .Br /

from (5.7). The mapMr ! Br induces maps between each page of the spectral sequences
computing�Spin

5 .Mr / and�Spin
5 .Br /. The nonzero termsE2p;q on theE2 page with p C q

D 5 are as follows:

H1.�IZ/; H3.�IZ=2/; H4.�IZ=2/; H5.�IZ/:

The maps H1.Mr I Z/ ! H1.Br I Z/ and H3.Mr I Z=2/ ! H3.Mr I Z=2/ are onto as
explained above, so by naturality of the spectral sequence these terms do not contribute to
the cokernel. The mod 2 fundamental class in H4.Mr IZ=2/ Š Z=2 maps nontrivially to
H4.Br IZ=2/ Š .Z=2/2, so possibly one Z=2 could contribute to the cokernel (whether
or not it does so depends on differentials which we shall not take into account). The only
other contribution to the cokernel comes from the term H5.Br IZ/ Š Z=2r . As a result
the cokernel of �Spin

5 .Mr /! �
Spin
5 .Br / has at most 2rC1 elements.

Next we find an upper bound on the size of ker. y�Spin
4 .Mr /! �

Spin
4 .Br //. We do this

by considering the composition

y�
Spin
4 .Mr /! �

Spin
4 .Mr /! �

Spin
4 .Br /:

Consider the Atiyah–Hirzebruch spectral sequence computing �Spin
4 .Mr /. The nonzero

terms E2p;q on the E2 page with p C q D 4 are

H0.Mr IZ/; H2.Mr IZ=2/; H3.Mr IZ=2/; H4.Mr IZ/:

The map H0.Mr I�
Spin
4 / Š Z ! H0.Br I�

Spin
4 / Š Z is an isomorphism, as explained

above. The image of the inclusion y�Spin
4 .Mr / ! �

Spin
4 .Mr / consists of elements with

trivial image under the edge homomorphism �
Spin
4 .Mr /! H4.Mr IZ/ Š E2p;0 term on

the E2 page, since the latter map is given by the mapping degree times the fundamental
class ŒMr �.
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It follows that the kernel of y�Spin
4 .Mr /! �

Spin
4 .Br / is generated by elements coming

from the terms

H2.Mr IZ=2/ Š .Z=2/
2 and H3.Mr IZ=2/ Š .Z=2/

2;

and so the kernel has at most 24 elements. Thus, by (5.7), we see that

j y�
Spin
5 .Br ;Mr /j � 2

rC1
� 24 D 2rC5:

It now follows from the sequence (5.6) that

j hAut.Mr /j � j hAut.Br /j � j y�
Spin
5 .Br ;Mr /j � 2

2r
� 2rC5 D 23rC5:

An elementary calculation, recalling that n.r/ D b2.2r�2 C 2/=3c � br=2c � 1, shows
that for r � 8, we have

n.r/ � 2 � 3r � 5 > 0:

This implies that

2n.r/�2=j hAut.Mr /j � 2
n.r/�2=23r�5 D 2n.r/�2�3r�5 > 1;

as desired. In addition, note that n.r/ � 2 � 3r � 5!1 as r !1. It follows that for a
given k, there exists an r such that

2n.r/�2=j hAut.Mr /j � 2
n.r/�2�3r�5 > k:
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