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Characterizations of circle homeomorphisms of different
regularities in the universal Teichmüller space

Jun Hu

Abstract. In this survey, we first give a summary of characterizations of circle homeomorphisms
of different regularities (quasisymmetric, symmetric, or C 1C˛) in terms of Beurling–Ahlfors exten-
sion, Douady–Earle extension, and Thurston’s earthquake representation of an orientation-preserv-
ing circle homeomorphism. Then we provide a brief account of characterizations of the elements
of the tangent spaces of these sub-Teichmüller spaces at the base point in the universal Teichmüller
space.

We also investigate the regularity of the Beurling–Ahlfors extension BA.h/ of a C 1CZygmund

orientation-preserving diffeomorphism h of the real line, and show that the Beltrami coefficient
�.BA.h//.x C iy/ vanishes as O.y/ uniformly on x near the boundary of the upper half plane
if and only if h is C 1CLipschitz. Finally, we show this criterion is indeed true when h is started
with any homeomorphism of the real line that is a lifting map of an orientation-preserving circle
homeomorphism.

1. Introduction

The 1992–93 academic year was the fourth year of my PhD study at Graduate Center of
CUNY. I recall on a sunny day in Fall 1992 and in his office facing Bryant Park at the
corner of 6th Avenue and 42nd Street in New York City, Dennis gave me a lecture of
one hour on why a C 1CZygmund diffeomorphism (see Definition 9) of the circle with an
irrational rotational number cannot have wandering intervals, and hence it is ergodic. At
the end, Dennis also explained why this smooth condition is not weaker than the Denjoy’s
C 1Cbounded variation criterion (also see Definition 9) for the ergodicity of the map ([7]). That
conversation and his work on the renormalization operator in [44] not only motivated our
joint result in [34], but also have kept me interested in exploring different methods to
develop Teichmüller theory of circle diffeomorphisms of different types.

In the following, I first give a very brief introduction to the universal Teichmüller
space. Then I describe what will be covered in this survey.
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Let D be the unit disk on the complex plane C centered at the origin. Two quasicon-
formal homeomorphisms F1 and F2 of D are said to be equivalent if F2 is equal to A ı F1
for some conformal homeomorphism A of D. The universal Teichmüller space T .D/
is defined to be the collection of the equivalence classes of the quasiconformal homeo-
morphisms of D under this equivalence relation. Through Bers’ embedding, this space is
equipped with a complex Banach manifold structure, which is an infinitely-dimensional
space. Furthermore, the Teichmüller space of any hyperbolic Riemann surface is a sub
Banach manifold of T .D/, which is the reason for T .D/ to be called the universal Teich-
müller space.

Given a holomorphic curve  in T .D/ through the base point (represented by the
identity map),  is expressed by a curve f t of quasiconformal mappings depending holo-
morphically on t , jt j < 1, and with f 0 D id. Denote by

V.z/ D
df t

dt
jtD0.z/; z 2 D: (1.1)

Then V is a (complex) tangent vector field on D with kx@V k1 <1 ([3]). The collection
of all such tangent vector fields on D constitute the tangent vector space of T .D/ at the
base point.

There is a real model to characterize the elements of T .D/ and correspondingly there
is a real model to describe the points of the tangent space of T .D/ at the base point. Let S1

be the boundary of D, which is the unit circle on C centered at the origin. An orientation-
preserving homeomorphism f of S1 is said to be quasisymmetric if there exists a constant
M > 0 such that for any s 2 R and 0 < t < 1

2
,

1

M
�
jf .e2�i.sCt// � f .e2�is/j

jf .e2�is/ � f .e2�i.s�t//j
�M: (1.2)

Let QS.S1/ be the collection of all quasisymmetric homeomorphisms f of S1 and let
Möb.S1/ be the collection of the Möbius transformations preserving D. Two elements
f1 and f2 of QS.S1/ are equivalent if there exists an element g 2 Möb.S1/ such that
f2 D g ı f1. The Beurling–Ahlfors extension ([4]) was the first method to affirm that
there is a one-to-one correspondence between the universal Teichmüller space T .D/ and
the quotient space Möb.S1/ n QS.S1/.

A continuous tangent vector field V along the unit circle S1 is said to be Zygmund
bounded ([47]) if there exists a positive constant C such that

j
V.e2�i.sCt// � 2V.e2�is/C V.e2�i.s�t//

t
j � C (1.3)

for all s 2 R and 0 < t < 1
2

. Aligned with the real model of the universal Teichmüller
space T .D/, there is a real model for the tangent space of T .D/ at the base point ([42]),
which is comprised of the Zygmund bounded tangent vector fields V along S1 vanishing
at the three points �1, �i and 1, and we denote by ƒ.S1/.
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For a textbook on the universal Teichmüller space, we refer to [2, 20, 35].
Based on what I have understood or studied, I give in this survey a summary of

the characterizations of circle homeomorphisms of different regularities (quasisymmetric,
symmetric, or C 1C˛) in terms of Beurling–Ahlfors extension, Douady–Earle extension,
and Thurston’s earthquake representation of an orientation-preserving circle homeomor-
phism, and a brief account of the characterizations of the tangent vector spaces of these
spaces at the base point through infinitesimal Beurling–Ahlfors extension, infinitesimal
conformally natural extension, and infinitesimal earthquake representation of a continu-
ous vector field along S1.

There are two ways to characterize a C 1C˛ circle diffeomorphism f in terms of
Beurling–Ahlfors extension, one uses the Beurling–Ahlfors extension of a lifting map
of f to the real line R and the other considers this type of extension of the conjugacy of f
by a Möbius transformation mapping S1 to R. The former is quite straightforward, but
the latter is not obvious and has not been found in the literature. So we include the work
for the latter in this survey. Furthermore, we investigate the regularity of the Beurling–
Ahlfors extension BA.h/ of a C 1CZygmund orientation-preserving diffeomorphism h of the
real line, and show that the Beltrami coefficient �.BA.h//.x C iy/ vanishes asO.y/ uni-
formly on x near the boundary of the upper half plane if and only if h is C 1CLipschitz.
Finally, we show this criterion is indeed true when h is started with any homeomorphism
of the real line that is a lifting map of an orientation-preserving circle homeomorphism.

2. Beurling–Ahlfors extension and infinitesimal Beurling–Ahlfors
extension

2.1. Background for Beurling–Ahlfors extension

The Beurling–Ahlfors extension ([4]) of an orientation-preserving homeomorphism h of
the real line R to the upper half plane U , denoted by BA.h/, is defined as follows. Given
a point z D x C iy 2 U , BA.h/.z/ D u.x; y/C iv.x; y/ is defined by

u.x;y/D
1

2y

Z xCy

x�y

h.t/dt and v.x;y/D
1

y

�Z xCy

x

h.t/dt �

Z x

x�y

h.t/dt

�
: (2.1)

The Beurling–Ahlfors extension BA.h/ provides the first method to affirm the real
model for T .D/, which has become a classical technique tool in Teichmüller theory. A
neat presentation of this topic is given in [2, Chapter IV], which we will not repeat in this
survey. But note that the expression of v given in (2.1) is twice of the expression of v given
in [2, Chapter IV]. This modification enables BA to extend the identity map on R to the
identity map on U . It is straightforward to check that the results stated in [2, Chapter IV]
continue to be valid for the Beurling–Ahlfors extension defined by (2.1). For example,
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(1) BA is compatible with affine maps in the sense that given any two affine mappings
A1, A2,

BA.A1 ı h ı A2/ D A1 ı BA.h/ ı A2I

(2) BA.h/ is a diffeomorphism of the upper half plane U if h is quasisymmetric;

(3) BA.h/ is quasiconformal if h is quasisymmetric. Here one may use symmetric
triples on R to define f to be quasisymmetric; that is, an orientation-preserving
homeomorphism h of R is quasisymmetric if there exists a constant M > 0 such
that for any x; t 2 R with t > 0,

1

M
�
h.x C t / � h.x/

h.x/ � h.x � t /
�M: (2.2)

In the following subsection, we show how to apply the Beurling–Ahlfors extension in
two different ways to confirm the real models for the universal Teichmüller space T .D/
and two sub-Teichmüller spaces of T .D/.

2.2. Characterizations of circle homeomorphisms of different regularities through
Beurling–Ahlfors extension

Let f be an orientation-preserving circle homeomorphism of the unit circle S1. There are
two different ways to apply the Beurling–Ahlfors extension of a homeomorphism of a real
line R to an extension of f to the closed unit disk xD. We describe them one by one. The
first one is to use a lifting map zf of f to R, from which one can easily see that a regularity
on f transfers to the same regularity on zf ; and vice versa. In the following, we let zf be
the lifting map of f fixing three points 0, 1 and 1. Clearly, zf .x C 1/ D zf .x/C 1 for
any x 2 R. From the first property of the Beurling–Ahlfors extension mentioned in the
previous subsection, one can see that BA. zf /.z C 1/ D BA. zf /.z/ C 1 for any z 2 U .
Then BA. zf / projects down to an extension map of f to xD under the projection

� WU ! DW z 7! e2�iz ;

which we denote by � ı BA. zf / ı ��1.
We consider in this survey the following three types of regularities imposed on f :

quasisymmetry, symmetry, and C 1C˛.0 < ˛ < 1/. The quasisymmetry of f is defined
by (1.2) and the symmetry of f is defined by further requiring that

jf .e2�i.sCt// � f .e2�is/j

jf .e2�is/ � f .e2�i.s�t//j
converges to 0 uniformly on s as t ! 0: (2.3)

By f 2 C 1C˛ for some 0 < ˛ < 1 we mean that f is a diffeomorphism and f 0 is ˛-
Hölder continuous. Applying the properties of Beurling–Ahlfors extension summarized
in [2, Chapter IV], one can characterize each type of f in terms of a condition on the
Beltrami coefficient of BA. zf /. We summarize the results in Table 1, but we skip detailed
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Properties Main references

� ı BA. zf / ı ��1 is quasiconformal iff
f is quasisymmetric

[4]

� ı BA. zf / ı ��1 is asymptotically conformal iff
f is symmetric

[16] or [21]

�
�ıBA. zf /ı��1

.z/ D O..1 � jzj/˛/ iff
f is a C 1C˛ diffeomorphism for each 0 < ˛ < 1

mean value theorem

Table 1. Relationships among various regularities of f and � ı BA. zf / ı ��1.

proofs since they follow from the work of [2, Chapter IV] in a relatively straightforward
way.

In this paper, we are more focused on another way, more natural in Teichmüller the-
ory, to apply the Beurling–Ahlfors extension to characterize a circle homeomorphism in
each of the three types. Let us first introduce a conformal invariant to characterize the qua-
sisymmetry or symmetry of an orientation-preserving circle homeomorphism f . Given a
quadruple Q D ¹a; b; c; dº consisting of four points a; b; c and d on the unit circle S1

arranged in counterclockwise order, we denote the cross ratio cr.Q/ of Q by

cr.Q/ D
.b � a/.d � c/

.c � b/.d � a/
:

Definition 1 (Quasisymmetry by cross ratio distortion). The cross ratio distortion norm
of f is defined as

kf kcr D sup
cr.Q/D1

j ln cr.f .Q//j; (2.4)

where f .Q/ be the image quadruple ¹f .a/; f .b/; f .c/; f .d/º. We say f is quasisym-
metric if khkcr is finite.

Clearly, the cross ratio distortion norm kf kcr of f is invariant under pre- or post-
composition by a conformal homeomorphism preserving D. Therefore, we may assume
that f fixes three points �1, i and �i on the circle S1. This definition of quasisymmetry
is equivalent to the one using the condition (1.2) on the symmetric triples on S1 ([12]).

Similarly, the symmetry of f can be defined by imposing an asymptotic condition on
the cross ratio distortion of f as follows. For any quadruple Q D ¹a; b; c; dº on S1, the
minimal scale s.Q/ is defined as

s.Q/ D min¹ja � bj; jb � cj; jc � d j; jd � ajº:

A sequence of quadruples

¹Qn D ¹an; bn; cn; dnºº
1
nD1

is said to be degenerating if cr.Qn/ D 1 for each n and limn!C1 s.Qn/ D 0.



J. Hu 326

Definition 2 (Symmetry by cross ratio distortion). A quasisymmetric homeomorphism f

of S1 is said to be symmetric if

sup
¹Qnº

lim sup
n!1

jcr.h.Qn//j D 0; (2.5)

where the supremum is taken over all degenerating sequences ¹Qnº1nD1 of quadruples.

See [12] for the equivalence of this definition for symmetry with the one using the
asymptotic vanishing condition of the ratio distortion (1.2) of f on symmetric triples.

Now we are ready to introduce the second way to apply Beurling–Ahlfors extension
to construct an extension of f to xD. After post composition by a Möbius transformation,
we may assume that f fixes i , �1 and �i . We have this assumption for f through the
remaining part of this subsection. Let w.z/ D 1

i
zCi
z�i

. Then w maps the circle S1 onto the
real line R and the unit disk D to the upper half plane U with 0 mapped to i . Note also
that w fixes �1 and 1. Now let h D w ı f ı w�1. By associating with any symmetric
triple ¹x � t; x; x C tº to a quadruple ¹x � t; x; x C t;1º, one can see that kf kcr <1

implies that h is a quasisymmetric homeomorphism of R defined by (2.2). Therefore,
the Beurling–Ahlfors extension BA.h/ is a quasiconformal homeomorphism of the upper
plane U (see [4]). It follows that w�1 ı BA.h/ ı w is a quasiconformal extension of f
to the closure of the unit disk D, which we call the Beurling–Ahlfors extension of f and
denote by BA.f /; that is,

BA.f / D w�1 ı BA.w ı f ı w�1/ ı w: (2.6)

In summary, BA.f / is quasiconformal if f is quasisymmetric (using Definition 1).
Now let us show why BA.f / is asymptotically conformal if f is symmetric (by Def-

inition 2). At first, h D w ı f ıw�1 is a symmetric homeomorphism of the real line R in
the sense that

h.x C t / � h.x/

h.x/ � h.x � t /
converges to 0 uniformly on x 2 R as t ! 0. (2.7)

With the above condition on h, one can see that the Beurling–Ahlfors extension BA.h/
of h has its Beltrami coefficient �BA.h/.x C iy/ converge to 0 uniformly on x 2 R as
y ! 0C. But in order to show that the Beltrami coefficient �BA.f /.z/ converges to 0
uniformly as jzj ! 1, one needs to obtain first that

�BA.h/.x C iy/ D o

�
1p

x2 C y2

�
as
p
x2 C y2 !1:

This goal can be achieved by using the condition that jh.�x/
h.x/
j converges to 1 as x goes to

1. We obtain the following theorem.

Theorem 1. If f is an orientation-preserving symmetric homeomorphism of S1 fixing
three points i , �1 and �i , then the Beurling–Ahlfors extension BA.f / of f defined
by (2.6) is asymptotically conformal.



Characterizations of homeomorphisms of different regularities 327

In the remaining part of this subsection, we show the following theorem.

Theorem 2. If f is an orientation-preserving C 1C˛ diffeomorphism of S1 fixing three
points i , �1 and �i , where 0 < ˛ < 1, then the Beurling–Ahlfors extension BA.f / of f
defined by (2.6) has its Beltrami coefficient �BA.f / satisfying

�BA.f /.z/ D O
�
.1 � jzj/˛

�
: (2.8)

Proof. Let w.z/ be the Möbius transformation defined as the above. Given a point z 2 D,
let w D w.z/ D x C iy, where y > 0. We use the same notation that h D w ı f ı w�1.
Since f is a C 1C˛ diffeomorphism of S1, where 0 < ˛ < 1, it follows that h is a C 1C˛

diffeomorphism of R and furthermore for x 2 R,

h0.x/ D 1CO
� 1

jxj˛

�
: (2.9)

Denote by BA.h/.w/ D BA.h/.x C iy/ D u.x; y/ C iv.x; y/. Then the Beltrami
coefficient �BA.h/.w/ is expressed by

�BA.h/.w/ D �BA.h/.x C iy/ D
.ux � vy/C i.vx C uy/

.ux C vy/C i.vx � uy/
; (2.10)

where

ux D
1

2y

�
h.x C y/ � h.x � y/

�
;

uy D
1

y

�
�
1

2y

Z xCy

x�y

h.t/ dt C
1

2

�
.h.x C y/C h.x � y/

��
;

vx D
1

y

�
h.x C y/ � 2h.x/C h.x � y/

�
;

vy D�
1

y2

�Z xCy

x

h.t/ dt �

Z x

x�y

h.t/ dt

�
C
1

y

�
.h.x C y/ � h.x � y/

�
:

Since h is a C 1C˛ diffeomorphism of R, it follows from the mean value theorem that

ux D vy D f
0.x/CO.y˛/ and uy D vx D O.y

˛/:

Thus, when x is bounded and y is small,

�BA.h/.w/ D O.y
˛/:

It remains to verify that

�BA.h/.w/ D O
� 1

jwj˛

�
when jwj is large, which can be achieved by considering two cases.
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Case 1: Assume that jxj
y
� 2. Using the estimate (2.9) for h0 and applying the mean value

theorem, we obtain

ux D vy D 1CO
�
.jxj � y/�˛

�
and uy D vx D O

�
.jxj � y/�˛

�
;

which implies that
�BA.h/.w/ D O

�
.jxj � y/�˛

�
:

Let s D jxj
y

. Then s � 2. Now we rewrite

jxj � yp
x2 C y2

D
s � 1
p
s2 C 1

:

Since
p
5
5
�

s�1p
s2C1

� 1 when s � 2, it follows that
p
5
5
�

jxj�yp
x2Cy2

� 1. Therefore,

�BA.h/.w/ D O.jwj
�˛/:

Case 2: Assume that jxj
y
� 2. We continue to use the estimate (2.9) for h0, but we use an

integral of h0 to estimate h.x C y/ � h.0/ and h.x � y/ � h.0/. So we obtain

h.x C y/ � h.0/ D

Z xCy

0

h0.t/ dt D

Z xCy

0

Œ1CO.jt j�˛/� dt

D x C y CO.jx � yj1�˛ C jx C yj1�˛/

D x C y CO.jx � yj1�˛/CO.jx C yj1�˛/:

Similarly,

h.x � y/ � h.0/ D x � y CO.jx � yj1�˛/CO.jx C yj1�˛/:

Thus,

ux D vy D 1C
1

y

�
O
�
.jx � yj/1�˛

�
CO

�
.jx C yj/1�˛

��
D 1C

1

y˛

h
O
��ˇ̌̌x

y
� 1

ˇ̌̌�1�˛�
CO

��ˇ̌̌x
y
C 1

ˇ̌̌�1�˛�i
and

uy D vx D
1

y˛

h
O
��ˇ̌̌x

y
� 1

ˇ̌̌�1�˛�
CO

��ˇ̌̌x
y
C 1

ˇ̌̌�1�˛�i
:

Clearly,

O
��ˇ̌̌x

y
� 1

ˇ̌̌�1�˛�
CO

��ˇ̌̌x
y
C 1

ˇ̌̌�1�˛�
D O

��ˇ̌̌
jxj

y
� 1

ˇ̌̌�1�˛�
CO

��
jxj

y
C 1

�1�˛�
;

which shows that this expression is less than or equal toO.1/CO.31�˛/ by using jxj
y
� 2.

Therefore, we obtain

ux D vy D 1CO
� 1
y˛

�
and uy D vx D O

� 1
y˛

�
:
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Properties Main references

BA.f / is quasiconformal iff f is quasisymmetric [4]

BA.f / is asymptotically conformal iff f is symmetric Theorem 1

�BA.f /.z/ D O..1 � jzj/
˛/ iff

f is a C 1C˛ diffeomorphism for each 0 < ˛ < 1
Theorem 2

Table 2. Relationships among various regularities of f and BA.f /.

We also know jwj D
p
x2 C y2 �

p
5y since jxj

y
� 2. Then 1

y
�

p
5
jwj

. So we obtain

ux D vy D 1CO
� 1

jwj˛

�
and uy D vx D O

� 1

jwj˛

�
:

Thus,
�BA.h/.w/ D O.jwj

�˛/:

The proof of this theorem is complete.

Finally, we summarize the results on the relationships among various regularities of f
and BA.f / in Table 2.

2.3. Characterizations of vector fields of different regularities through infinitesimal
Beurling–Ahlfors extension

As we have mentioned in the introduction, the real model ƒ.S1/ for the tangent space of
T .D/ at the base point ([42]) consists of all Zygmund bounded tangent vector fields V
along S1 vanishing at the three points �1, �i and 1.

From the expressions of u.x; y/ and v.x; y/ given by (2.6), one can see that the
Beurling–Ahlfors extension is a linear operator that extends a continuous map from R
to R to a continuous map from xU to xU , which is differentiable on U . Thus, the Beurling–
Ahlfors extension is a linear operator on the space of continuous vector fields on R.
This implies that the infinitesimal Beurling–Ahlfors extension of a continuous vector field
along R is defined in the same way as the Beurling–Ahlfors extension of a homeomor-
phism of R.

As in the previous subsection, we are more interested in using D as the hyperbolic
plane and viewing S1 as the boundary of the hyperbolic plane. Analogously, there is a
conformal invariant to characterize a Zygmund bounded tangent vector field V along S1,
which is defined as follows.

Definition 3. The cross ratio distortion norm of V is defined as

kV kcr D sup
cr.Q/D1

jV ŒQ�j < C1;
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where

V ŒQ� D
V.b/ � V.a/

b � a
�
V.c/ � V.b/

c � b
C
V.d/ � V.c/

d � c
�
V.a/ � V.d/

a � d
:

It is shown in [25] that

(i) V is Zygmund bounded if and only if kV kcr < C1, and

(ii) kV kcr is a conformal invariant in the sense that for any Möbius transformation g
from D to D or U ,

kg�V kcr D kV kcr;

where g�V is the pushforward of V by g; that is

g�V D
V ı g�1

.g�1/0
D g0 ı g�1 � V ı g�1:

By V 2ƒ0.S1/ we mean that the ratio in the expression (1.3) approaches 0 uniformly
on s as t ! 0, which is equivalent to the following definition.

Definition 4. A Zygmund bounded vector field V along S1 belongs to ƒ0.S1/ if

sup
¹Qnº

lim sup
n!1

jV ŒQn�j D 0;

where the supremum is taken over all degenerating sequences ¹Qnº1nD1 of quadruples.

We continue to use the mapw.z/D 1
i
zCi
z�i

. According to [42], k@BA.w�V /k1 is finite
if V is Zygmund bounded, and furthermore if V 2 ƒ0.S1/, then @BA.w�V /.x C iy/
vanishes uniformly on x as y ! 0 and vanishes as jx C iyj ! 1.

Now we define BA.V / D .w�1/�.BA.w�V //. Then

x@.BA.V //.z/ D x@

�
BA.w�V /.w.z//

w0.z/

�
D .@BA.w�V //.w.z//

w0.z/

w0.z/
:

Thus,
kx@.BA.V //k1 D kx@BA.w�V /k1;

and x@.BA.V //.z/ vanishes uniformly as z approaches the boundary of D if V 2 ƒ0.S1/.
In analogy with Theorem 2, one can obtain the following theorem.

Theorem 3. If V is a C 1C˛ smooth vector field along S1 for some 0 < ˛ < 1, then

x@BA.V /.z/ D O
�
.1 � jzj/˛

�
:

We summarize the characterizations of three types of V in terms of x@.BA.V // in
Table 3.
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Properties Main references

kx@BA.V /k1 <1 iff V is Zygmund bounded [42]
x@BA.V / vanishes uniformly near S1 iff V 2 ƒ0.S1/ [42]
x@BA.V /.z/ D O..1 � jzj/˛/ iff
V is a C 1C˛ smooth for each 0 < ˛ < 1

Theorem 3

Table 3. Relationships among various regularities of V and BA.V /.

3. Douady–Earle extension and infinitesimal conformally natural
extension

3.1. Background for Douady–Earle extension

We first introduce the conformal barycenter of a probability measure � supported on S1.
A point w of D is called a conformal barycenter of �, denoted by B.�/, ifZ

S1

� � w

1 � xw�
d�.�/ D 0:

We call � an admissible measure if it has no atom of measure� 1
2

. Douady and Earle ([8])
pointed out that B.�/ exists uniquely for any admissible measure �, although they proved
the existence and uniqueness of B.�/ for the case when � has no atom. In the following,
we outline the proof, given in [31], of the existence and uniqueness of B.�/ under the
admissible condition on �.

To see the existence and uniqueness of B.�/, the following smooth vector field ��
on D is considered in [8]:

��.w/ D .1 � jwj
2/

Z
S1

� � w

1 � xw�
d�.�/; w 2 D: (3.1)

It is found in [28] that the vector field ��.w/ becomes relatively easy to handle if the scalar
factor 1 � jwj2 is dropped. So let

z��.w/ D
1

1 � jwj2
��.w/: (3.2)

The work to reach the existence and uniqueness of B.�/ is comprised of two steps. One
can see first that if � is admissible, then ��.w/ (and hence z��.w/) points inside the circle
centered at the origin and passing through w when w is sufficiently close to the bound-
ary S1. (In fact, if � has no atom, then z��.w/ extends to a continuous vector field on
the closed disk xD and points inside at every point on S1.) This implies the existence of a
singular point of the vector field, which is a conformal barycenter of �. Secondly, in order
to have the uniqueness of B.�/, it suffices to know that the Jacobian of the vector field is
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positive at every point of D. Now one can find that it is quite easy to achieve this property
by using z��.w/ since it satisfies

z��.w/ D z�.gw /�.�/.0/; (3.3)

where gw.�/ D
��w
1� xw�

and .gw/�.�/ is the pushforward measure of � under the map gw
(see the following expression (3.7)), and hence the values of z�� at two points z andw in D
are related by

z��.z/ D z�.gw /�.�/.gw.z//: (3.4)

Then the Jacobian of z�� at w is the product of the Jacobian of z�.gw /�.�/ at 0 and the
Jacobian of gw at w. Therefore, it is sufficient to show that the Jacobian of z�� is positive
at 0, which is

Jac.z��/.0/ D
1

2

Z Z
S1�S1

j�2 � �2j2 d�.�/ d�.�/ > 0: (3.5)

Now by the Poincaré–Hopf index theorem, we know that the singular point of �� in D is
unique. The details for the first step can be found in [31].

Given a point z 2 D, let �z be the normalized harmonic measure on S1 as viewed
from z; that is, for any Borel set E � S1,

�z.E/ D
1

2�

Z
E

jdgz.�/j D
1

2�

Z
E

1 � jzj2

jz � �j2
jd�j: (3.6)

If I is an arc on S1 and �z.I / is the radian of the angle of I as viewed from z (in the
hyperbolic metric on D), then �z.I / is the ratio of �z.I / to 2� . Let f be an orientation-
preserving homeomorphism on the unit circle S1 and f�.�z/ be the pushforward of �z
under f . That is, for any Borel set E � S1,

f�.�z/.E/ D �z.f
�1.E//: (3.7)

Now we denote the conformal barycenter of the measure f�.�z/ by w; that is, w D
B.f�.�z//. Then w and z satisfy the following equation:

1

2�

Z
� � w

1 � xw�
df�.�z/.�/ D 0: (3.8)

The Douady–Earle extension DE.f / of f is defined as: DE.f /.z/ D B.f�.�z// for
each z 2 D and DE.f /.z/ D f .z/ for each z 2 S1.

In summary, given a point z 2 D, DE.f /.z/ is defined to be the unique point w 2 D
such that

F.z;w/ D 0;

where

F.z;w/ D
1

2�

Z
S1

f .�/ � w

1 � xwf .�/
�
1 � jzj2

jz � �j2
jd�j: (3.9)
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The extension DE.f / has the following two important features:

(1) DE.f / is an orientation-preserving homeomorphism of the closed disk xD and a
real analytic diffeomorphism of D.

(2) DE.f / is conformally natural in the sense that for any two orientation-preserving
conformal homeomorphisms A and B of D,

DE.f /.A ı f ı B/ D A ıDE.f / ı B:

For their proofs, we refer to [8]. Similar work has been developed in [1] for confor-
mal barycentric extensions of monotone circle maps (not necessarily continuous) and in
[28] for circle endomorphisms. Finally, conformally natural extensions are introduced and
studied in [31] for arbitrary continuous maps from the circle to itself. The continuity of
such an extension is proved by two different methods in [31] and [27].

3.2. Characterizations of circle diffeomorphisms of different regularities through
Douady–Earle extension

In the previous subsection, we have provided a brief account on how the Douady–Earle
extension is defined and the basic properties such as conformal naturality and being a
diffeomorphism of D. The most important feature of Douady–Earle extension is its con-
formal naturality. As a compensation to this valuable property, the Douady–Earle exten-
sion is defined by a quite implicit process through the equation F.z; w/ D 0, where
w D DE.f /.z/ and F.z; w/ is given by the expression (3.9). Thus, one has to apply
the implicit function theorem to estimate the Jacobian, Beltrami coefficient or maximal
dilatation of DE.f / at any point z 2 D. This is a complicated process. In order to use
relatively simple expressions for partial derivatives of F , we may pre-compose f by a
conformal homeomorphism A of D mapping 0 to z and post-compose f by a conformal
homeomorphism B mapping w to 0. Then by the conformal naturality,

DE.B ı f ı A/.0/ D B.DE.f /.A.0/// D B.DE.f /.z// D B.w/ D 0:

Instead of considering the Beltrami coefficient ofDE.f / at z, one works with the Beltrami
coefficient of DE.B ı f ı A/ as 0.

We say that the Douady–Earle extensionDE.f / is normalized ifDE.f /.0/D 0. Let
DE.f / be such a normalized extension. In the following, we give the expressions for the
Jacobian and the Beltrami coefficient of DE.f / at 0. Let

c1 D
@F

@z
.0; 0/ D

1

2�

Z
S1
x�f .�/ jd�j; c�1 D

@F

@xz
.0; 0/ D

1

2�

Z
S1
�f .�/ jd�j (3.10)

and

d1 D
@F

@w
.0; 0/ D �1; d�1 D

@F

@ xw
.0; 0/ D

1

2�

Z
S1
f .�/2 jd�j: (3.11)

Then
@w

@xz
.0/ D �

@F
@w
.0; 0/ @F

@xz
.0; 0/ � @F

@ xw
.0; 0/ @F

@z
.0; 0/

j
@F
@w
.0; 0/j2 � j @F

@ xw
.0; 0/j2

(3.12)
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and
@w

@z
.0/ D �

@F
@w
.0; 0/ @F

@z
.0; 0/ � @F

@ xw
.0; 0/ @F

@xz
.0; 0/

j
@F
@w
.0; 0/j2 � j @F

@ xw
.0; 0/j2

: (3.13)

The Jacobian of DE.f / at 0 is equal toˇ̌̌@w
@z
.0/
ˇ̌̌2
�

ˇ̌̌@w
@xz
.0/
ˇ̌̌2
D
j
@F
@z
.0; 0/j2 � j @F

@xz
.0; 0/j2

j
@F
@w
.0; 0/j2 � j @F

@ xw
.0; 0/j2

D
jc1j

2 � jc�1j
2

jd1j2 � jd�1j2
: (3.14)

Let us present here how it is shown in [8] that the Jacobian is positive. Take hWR! R be
a lifting of f to the real line R; that is, f .eis/D eih.s/ for any s 2 R, where h.sC 2�/D
h.s/C 2� . Then

jd�1j
2
D

� 1
2�

�2 Z
S1

Z
S1
f .z/2f .�/

2
jdzj jd�j

D

� 1
2�

�2 Z 2�

0

Z 2�

0

e2ih.s/e�2ih.t/ ds dt

D

� 1
2�

�2 Z 2�

0

Z 2�

0

cos 2.h.s/ � h.t// ds dt;

and hence one can rewrite

jd1j
2
� jd�1j

2
D 2

� 1
2�

�2 Z 2�

0

Z 2�

0

sin2.h.s/ � h.t// ds dt: (3.15)

It follows that jd1j2 � jd�1j2 > 0.
In [8], Douady and Earle expressed jc1j2 � jc�1j2 as

jc1j
2
� jc�1j

2
D

� 1
2�

�2 Z �

sD0

sin s
Z 2�

tD0

H.t; s/ dt ds (3.16)

with

H.t; s/ D sin.h.t C s/ � h.t//C sin.h.t C 2�/ � h.t C s C �//

C sin.h.t C � C s/ � h.t C �//C sin.h.t C �/ � h.t C s//:

Let

˛1 D h.t C s/ � h.t/; ˛2 D h.t C 2�/ � h.t C s C �/;

˛3 D h.t C � C s/ � h.t C �/; ˛4 D h.t C �/ � h.t C s/:

Clearly, all j̨ ’s are non-negative and their sum isX
j̨ D h.t C 2�/ � h.t/ D 2�:
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Properties References

DE.g2 ı f ı g1/ D g2 ıDE.f / ı g1 [8]

DE.f / is quasiconformal if
f admits a quasiconformal extension

[8]

DE.f / is quasiconformal iff f is quasisymmetric [8] and [4] or [29]

lnK.DE.f // � Ckf kcr for a universal constant C [29]

DE.f / is asymptotically conformal if
f admits an asymptotically conformal extension

[10]

DE.f / is asymptotically conformal iff f is symmetric [10] and [21] or [30]

�DE.f /.z/ D O..1 � jzj/
˛/ iff

f is a C 1C˛ diffeomorphism for each 0 < ˛ < 1
[37]

Table 4. Relationships among various regularities of f and DE.f /.

By applying the summation formula in trigonometry, it is obtained in [1] that

4X
jD1

sin j̨ D 4 sin
˛1 C ˛2

2
sin

˛1 C ˛3

2
sin

˛2 C ˛3

2
: (3.17)

Now we can see jc1j2 � jc�1j2 > 0 since H.t; s/ � 0 for all t and s and is not identically
equal to 0. Therefore, the Jacobian of DE.f / at the origin is positive. By the conformal
naturality, the Jacobian of DE.f / is positive at every point z 2 D, which implies that
DE.f / is an orientation-preserving homeomorphism of D ([8]).

The Beltrami coefficient of DE.f / at 0 is expressed by

�DE.f /.0/ D

@F
@w
.0; 0/ @F

@xz
.0; 0/ � @F

@ xw
.0; 0/ @F

@z
.0; 0/

@F
@w
.0; 0/ @F

@z
.0; 0/ � @F

@ xw
.0; 0/ @F

@xz
.0; 0/

: (3.18)

This expression is used in [29,30,32,36,37] to estimate the Beltrami coefficient ofDE.f /
in several different situations. Though the above expression of �DE.f /.0/ and the expres-
sions of involved partial derivatives of F at .0; 0/, one may have some sense on the
complexity in such processes. In the following, we summarize the features of the Douady–
Earle extensionDE.f / that characterize a circle homeomorphism in three different types
of regularities. We refer the proofs to the corresponding references.

Let f be an orientation preserving homeomorphism of S1 and let g1 and g2 be two
Möbius transformations preserving D. Denote by kf kcr the cross-ratio distortion of f ,
K.DE.f // the maximal dilatation of DE.f / on D, and �DE.f / the Beltrami coefficient
ofDE.f /. Let 0< ˛ < 1. Relationships among the features ofDE.f / and the regularities
of f in the three different types are given in Table 4.
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Remark 1. Douady–Earle extension DE.f / of an orientation-preserving homeomor-
phism f of S1 has also been applied to study the contraction property of other sub-Teich-
müller spaces of the universal Teichmüller space, such as the universal Weil–Petersson
Teichmüller space, the universal Lp (p � 2) Teichmüller space, and the so-called VMOA
Teichmüller space (for examples, see [5, 14, 45]).

3.3. Background for infinitesimal conformally natural extension

Infinitesimal conformally natural extension introduces a linear operator that extends con-
tinuous tangent vector fields along the unit circle S1 to continuous tangent vector fields on
the closed unit disk xD in a conformally natural way. Earle studied whether or not such a
linear operator is unique in [9]. Later, an integral operator that extends continuous vector
fields along S1 to continuous vector fields on xD was studied in [41]. A few years ago, I
started a project to develop the properties of infinitesimal conformally natural extensions
that are analogous to those already found for Douady–Earle extensions. My collaborator
Jinhua Fan directed our attention to an integral operator studied in [41]. Results obtained in
our collaboration on this project have just been published in [15], which is quite detailed.
So I just introduce here a very brief background on this infinitesimal extension.

Let C 0.S1; C/ be the collection of all continuous maps from S1 to the complex
plane C. Given an element V 2 C 0.S1;C/ and any z 2 D, L0.V /.z/ is defined as

L0.V /.z/ D
.1 � jzj2/3

2�i

Z
S1

V.�/

.1 � xz�/3.� � z/
d�: (3.19)

It is proved in [15] that the operator L0 is conformally natural in the following sense:

(1) If V 2 C 0.S1;C/ has a continuous extension H to xD that is holomorphic in D,
then

L0.V / D H:

(2) For any element g in Möb.S1/ and any V 2 C 0.S1;C/,

L0.g�V / D g�.L0.V //: (3.20)

As a consequence of the main result of [9], any linear operator fromC 0.S1;C/ toC 0.D;C/
satisfying the above condition (2) is equal to L0 up to multiplication by a constant. Fur-
thermore, if such a linear operator is required to either satisfy the above condition (1) or
extend the elements of C 0.S1;C/ to the elements of C 0.xD;C/ with the given boundary
maps, then it is equal to L0. In the following, we recapitulate how it is explained in [9]
that this extension operator L0 is viewed as an infinitesimal version of the Douady–Earle
extension operator.

Let ft be a smooth curve of diffeomorphisms of S1 with

ft .�/ D � C tV .�/C o.t/; (3.21)
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Properties References

L0.g�.V // D g�.L0.V // [15]

Uniqueness of the operator L0 [9]

kx@L0.V /k1 is finite iff V is Zygmund bounded [41]
1
C
kV kcr � kx@L0.V /k1 � CkV kcr for a universal constant C [15]
x@L0.V / is uniformly vanishing near boundary iff
V satisfies the little Zygmund bounded condition

[15]

x@L0.V /.z/ D O..1 � jzj/
˛/ iff

V is C 1C˛-smooth for each 0 < ˛ < 1
[15]

Table 5. Relationships among various regularities of V and L0.V /.

where � 2 S1, t is a real parameter, and V is a smooth tangent vector field along S1. It is
proved in [9, Theorem 2] that

dDE.ft /

dt
jtD0 D L0.V /: (3.22)

This means that acting on the smooth tangent vector fields V along S1, the operator L0
is the derivative of the Douady–Earle extension operator at the identity map. Therefore,
L0 is called the infinitesimal version of the Douady–Earle extension operator. Here an
interesting question arises. Suppose V is a continuous tangent vector field along S1 and
a smooth curve ft of homeomorphisms of S1 satisfies (3.21). What regularities (weaker
than smoothness) on V are sufficient for the equality (3.22) to hold?

Let us finish this subsection by pointing out that a conformally natural extension oper-
ator L0 defined for vector fields in higher-dimensional spaces is studied by McMullen
in [38, Appendix B], where L0.V / is called the visual extension of a vector field V .

3.4. Characterizations of vector fields of different regularities through infinitesimal
Douady–Earle extension

Let V be a continuous tangent vector field along the unit circle S1 and L0.V / be the
infinitesimal conformally natural extension of V . Denote by kV kcr the cross-ratio distor-
tion norm of V and by kx@L0.V /k1 the L1-norm of the x@-derivative of L0.V / on D. The
characterizations of the tangent vector fields V along S1 in the three different classes of
regularities in terms of conditions on x@L0.V / are summarized in Table 5.
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4. Thurston’s earthquake map and infinitesimal earthquake
representation

4.1. Background for Thurston’s earthquake map

Consider the open unit disk D as a model for the hyperbolic plane. A geodesic lami-
nation L in the hyperbolic plane D is a collection of geodesics which foliate a closed
subset L of D. The set L is called the locus of L, the geodesics are called the leaves of L,
the connected components of D n L are called the gaps, and the gaps and the leaves of L

are called the strata of the lamination.

Definition 5. Let L be a geodesic lamination in D. By an L-left earthquake map E we
mean that E is an injective and surjective (and often discontinuous) map from D to D
satisfying:

(i) for any stratum A, the restriction of E on A is the restriction on A of a Möbius
transformation that maps D onto D;

(ii) for any two strata A and B , the comparison map

comp.A;B/ D .EjA/�1 ıEjB WD ! D

is a hyperbolic transformation whose axis weakly separates A and B and which translates
to the left as viewed from A. Here EjA and EjB denote the Möbius transformations rep-
resenting E on A and B , and we say that a line l weakly separates two sets A and B if
any path connecting a point a 2 A to a point b 2 B intersects l .

Thurston [46] showed that each left earthquake map .E;L/ extends uniquely to a
map zE defined on D [ S1. The extension is continuous at each point x 2 S1, and the
restriction of zE to S1 is a homeomorphism. Conversely, every circle homeomorphism h

can be realized in this way.

Theorem 4 (Thurston’s earthquake theorem). Let f be an orientation preserving homeo-
morphism of the unit circle S1. There exists a left earthquake map .E;L/ such that
zEjS1 D f , and the lamination is uniquely determined by f . Moreover, f determines the

isometries of E on all gaps, and for any leaf l 2 L, two possibly different isometries on l
only differ by a hyperbolic isometry with axis l and translation length between 0 and the
limit value of the translation lengths of the comparison maps for E on the two sides of l .

We call .E;L/ a left earthquake representation of f . In brief, we call it an earthquake
map of f and denote it by Ef .

Each earthquake map naturally introduces a transversal shearing measure supported
on the lamination associated with the earthquake map, which quantifies the amount of
shearing along the geodesics in the lamination. Given an earthquake map .E;L/ and two
geodesic lines l� and l� in L, let ˇ be a closed geodesic segment which is transversal
to both l� and l� and intersects them at its endpoints. Note that each geodesic line in L
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either intersects ˇ once or not at all. Thus ˇ is transversal to the lamination L. The amount
�.ˇ/ of relative transversal shearing of the earthquake map .E;L/ along ˇ is defined as
follows. Let P D ¹IiºniD1 be a partition of ˇ into small geodesic segments, and Ti the
comparison map between the strata containing the endpoints of the segment Ii . The trans-
lation length, denoted by �.Ti /, of each hyperbolic Möbius transformation Ti WH! H
can be defined as the logarithm of the derivative of Ti at its expanding fixed point. Let
�.P / D

Pn
iD1 �.Ti /. Now we define

�.ˇ/ D inf
P
�.P /: (4.1)

Note that � is an intermediate quantity that can be conveniently defined for any closed
geodesic segment ˇ transversal to the lamination L, but it does not suffice to define a Borel
measure on L yet. In the following, we first use � to define the earthquake measure �.ˇ/
of ˇ; then we show how �.ˇ/ can be well approximated by the sum of the translation
lengths of comparison maps; and finally we show that � and � have norms commensurable
to each other.

Definition 6 (Earthquake measure induced by earthquake map). The earthquake measure
�.ˇ/ of ˇ, induced by the earthquake map .E;L/, is defined to be

�.ˇ/ D inf
ˇ 0
�.ˇ0/; (4.2)

where ˇ0 is a closed geodesic segment containing ˇ in its interior. Then � naturally extends
to a Borel measure on the space X with support consisting of all pairs of the endpoints
of the leaves in L, where X denotes the space S1 � S1 n ¹the diagonalº factorized by the
equivalence relation .a; b/ � .b; a/. We call � the earthquake measure induced by .E;L/
and denote it by �.E/.

As pointed out by Thurston in [46], �.ˇ/ can be well approximated by the sum of the
translation lengths of comparison maps. In fact, the notion of earthquake measure can be
introduced more generally as follows.

Definition 7 (Earthquake measure). Let X denote the space S1 � S1 n ¹the diagonalº fac-
torized by the equivalence relation .a;b/� .b;a/. Let L be a lamination on the hyperbolic
plane. By an earthquake measure supported on L we mean a Borel measure on X sup-
ported on the set of the pairs consisting of two endpoints of geodesics in L.

A nice example that helps to understand an earthquake map .E;L/ and its induced
earthquake measure �.E/ is the so-called finite earthquake theorem.

Theorem 5 (Finite earthquake theorem). Assume that S D ¹p1; : : : ; pnC3º and S 0 D
¹p01; : : : ; p

0
nC3º are two sets consisting of same number of points on S1 arranged in

counter-clockwise cyclic order, and f is a bijection from S to S 0 with f .pj / D p0j . Then
there exists a unique allowable lamination L consisting of finitely many non-intersecting
hyperbolic geodesics connecting points in S and a unique measure � supported on L such



J. Hu 340

that, up to post-composition by a conformal homeomorphism of D; the left earthquake
map E� maps pj to p0j : The measure � and its corresponding lamination are uniquely
determined by the locations of the points of S and S 0.

There are at least two methods to prove the finite earthquake theorem. A proof by
induction is developed in [20], in which a recursive process is developed to find the lami-
nation and the weights that are assigned to its lines. Another straightforward proof is given
in [26] by applying Thurston’s original idea in [46] to search for extremal left homeomor-
phisms in the coset PSL.2;R/ ı f , where PSL.2;R/ represents the group of all hyperbolic
isometries of the hyperbolic plane.

The following concept of an earthquake measure plays an analogous role for earth-
quake maps as the L1-norm of a Beltrami coefficient does for quasiconformal mappings.

Definition 8. The Thurston norm of an earthquake measure .�;L/ is defined to be

k�kTh D sup
l.ˇ/�1

�.ˇ/ D sup
l.ˇ/D1

�.ˇ/;

where ˇ is a closed geodesic segment transversal to the lamination L and l.ˇ/ denotes
the hyperbolic length of ˇ. If k�kTh is finite, then we say that .�;L/ is Thurston bounded.

Theorem 6 (Thurston). If an earthquake measure .�;L/ is Thurston bounded, then there
exists an earthquake map .E;L/ such that � is the induced earthquake measure by E.
Moreover, up to post-composition by a Möbius transformation, � determines the isome-
tries of E on all gaps, and for any leaf l 2 L, two possibly different isometries on l only
differ by a hyperbolic isometry with axis l and translation length between 0 and the mea-
sure �.l/ of l .

Remark 2. In [33], a sufficient condition is introduced for a type of Thurston unbounded
earthquake measures to be induced by earthquake maps, which is an analogue of David’s
theorem ([6]) for solutions of Beltrami differential equation ([3]) in earthquake theory.

The first reference for background on earthquake maps is the paper [46] by Thurston.
For a self-contained introduction on earthquake maps and interplay between earthquake
maps and earthquake measures through approximations by finite earthquake maps, we
refer to [19] or [26].

4.2. Characterizations of circle homeomorphisms of different regularities through
earthquake measure

Let f be an orientation preserving homeomorphism of S1 and let g1 and g2 be two
Möbius transformations preserving D. Denote by kf kcr the cross-ratio distortion of f ,
k�.Ef /kTh the Thurston norm of the earthquake measure �.Ef / induced by an earthquake
map Ef of f . Let D be a disk on the hyperbolic plane of diameter 1 in the hyperbolic
metric and ı.D/ be the Euclidean distance from D to the boundary circle of the hyper-
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Properties References

Eg2ıf ıg1 D g2 ıEf ı g1 [46]

�.Ef / is Thurston bounded iff f is quasisymmetric [46]
1
C
kf kcr � k�.Ef /kTh � Ckf kcr for a universal constant C > 0 [23]

�.Ef / is asymptotically vanishing iff f is symmetric [19] or [23]

�.Ef / D O.ı.D/
˛/ iff f is a C 1C˛ diffeomorphism for each 0 < ˛ < 1 [19] or [23]

Table 6. Relationships among various regularities of f and �.Ef /.

bolic plane. Finally, we let �.D/ denote the measure of the leaves in the lamination of Ef
that intersect D.

Relationships among various regularities of f and �.Ef / have been studied in [19,
23, 25, 46], and other papers. The characterization of the Teichmüller topology on T .D/
in terms of a topology on the space MLb.D/ of Thurston bounded measured geodesic
laminations on D is developed in [40]. Furthermore, the Teichmüller topology on the
asymptotic Teichmüller space AT .D/D T .D/=T0.D/ is characterized in [13] by a topol-
ogy on a quotient space AMLb.D/ of MLb.D/ under an equivalence relation. The
relevant results to this paper are summarized in Table 6.

4.3. Background for infinitesimal earthquake representation

Let .�;L/ be a Thurston bounded earthquake measure. For each t � 0, there exists an
earthquake map Et inducing t� . Take a stratum S and normalize Et by requiring Et to
be the identity map on S . Then the restriction ft of Et on the boundary circle gives a
continuous curve of homeomorphisms of the circle, which is called an earthquake curve
determined by � or t� . The curve ft .x/; t � 0; is differentiable in t for each point x on the
boundary circle and satisfies a non-autonomous ordinary differential equation ([19]). The
holomorphic dependence of ft .x/ on t for each fixed x is developed in [43], and complex
earthquakes and applications to Teichmüller theory and to the deformation theory of the
unit disk can be found in [39] and [11]. In this survey we focus on the real theory of
earthquakes. The following theorem is proved in [19].

Theorem 7 ([19]). Let .�;L/ be a Thurston bounded earthquake measure and ft , t � 0,
be an earthquake curve determined by � . Then for each x 2 S1, ft .x/ is differentiable
in t for all t � 0. Moreover, let us take the upper-half plane model of the hyperbolic plane
and assume that the upper-half imaginary axis is contained in a stratum determined by L,
then

d

dt
ft .x/ D Vt .ft .x//; (4.3)
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where Vt is the vector field given by

Vt .x/ D

Z Z
Eft .a/ft .b/.x/ d�.a; b/C a quadratic polynomial; (4.4)

where Eab.x/ D
.x�a/.x�b/

a�b
if x 2 Œa; b�, and otherwise Eab.x/ D 0; and in particular,

V0.x/ D

Z Z
Eab.x/ d�.a; b/C a quadratic polynomial: (4.5)

Furthermore, if the upper-half imaginary axis happens to be contained in the stratum
which normalizes the earthquake curve ft , then

Vt .x/ D

Z Z
Eft .a/ft .b/.x/ d�.a; b/I (4.6)

and in particular,

V0.x/ D

Z Z
Eab.x/ d�.a; b/: (4.7)

The above expression (4.7) reflects the idea for infinitesimal earthquake theory, which
is developed in [17].

Theorem 8 ([17]). For any Zygmund bounded function V WS1!C, there exists a Thurston
bounded earthquake measure .�;L/ such that

V.x/ D �

Z Z
L

Eab.x/ d�.a; b/ modulo a quadratic polynomialI (4.8)

and furthermore, if two functions V differ by a quadratic polynomial then the correspond-
ing measures � are the same.

We simply call .�;L/ the infinitesimal earthquake representation of V and denote it
by �.V /.

The strategy, used in [17], to prove Theorem 8 is to develop first a finite version of this
theorem and then take the limit of a sequence of finite approximations. Included in [18],
one may find an example that shows how to find the leaves and weights of .�;L/ used in
the integral expression (4.8) for a vector field V defined on a finite subset A of S1.

4.4. Characterizations of vector fields of different regularities through infinitesimal
earthquake representation

Let V be a continuous vector field along the unit circle S1 and .�.V /;L.V // be the
infinitesimal earthquake representation of V . Denote by kV kcr the cross-ratio distortion
norm of V and k�.V /kTh the Thurston norm of �.V /. Let D be a disk on the hyperbolic
plane of diameter 1 in the hyperbolic metric and ı.D/ be the Euclidean distance from D

to the boundary circle of the hyperbolic plane. Finally, we let �.D/ denote the measure
of the leaves in the lamination of L.V / that intersect D. The characterizations of vector
fields V along S1 with different types of regularities in terms of �.V / are summarized in
Table 7.
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Properties References

�.g�.V // D g�.�.V // [20]

Uniqueness of .�.V /;L.V // [17]

�.V / is Thurston bounded iff V is Zygmund bounded [17]
1
C
kV kcr � k�.V /kTh � CkV kcr for a universal constant C > 0 [24] or [25]

�.V / is uniformly vanishing near boundary iff
V satisfies the little Zygmund bounded condition

[19]

�.D/ D O.ı.D/˛/ iff V is C 1C˛-smooth for each 0 < ˛ < 1 [19]

Table 7. Relationships among various regularities of V and �.V /.

5. Open problems on characterizing a C 1CZygmund circle
homeomorphism through three extensions

Let us first define three types of diffeomorphisms.

Definition 9. Let f be an orientation-preserving diffeomorphism of the unit circle S1 or
the real line R. We define three types of smoothness on f as follows:

(1) f 2 C 1CZygmund if f 0 is Zygmund bounded in the sense of (1.3);

(2) f 2 C 1Cbounded variation if f 0 is of bounded variation;

(3) f 2 C 1CLipschitz if f 0 satisfies the Lipschitz condition.

In this last section, we first investigate the regularity, near the boundary of the upper
half plane, of the Beurling–Ahlfors extension BA.h/ of a C 1CZygmund orientation-preserv-
ing diffeomorphism h of the real line. We first show the following theorem.

Theorem 9. Assume that h is a C 1CZygmund orientation-preserving diffeomorphism of the
real line R with 1

M
< h0.x/ < M for all x 2 R and some positive constant M . Then

the Beltrami coefficient �.BA.h//.x C iy/ vanishes as O.y/ uniformly on x near the
boundary of the upper half plane if and only if h is C 1CLipschitz.

Then we show that the criterion given in Theorem 9 can also be achieved when h is
started with any homeomorphism of the real line that is a lifting map of an orientation-
preserving circle homeomorphism. See Theorem 10. Finally, we raise three open questions
on how to characterize a C 1CZygmund circle diffeomorphism in terms of vanishing condi-
tion on the Beltrami coefficient of the Beurling–Ahlfors or Douady–Earle extension or on
the earthquake measure of Thurston’s earthquake representation.

Before we prove Theorem 9, let us recall a proposition given by Sullivan.
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Proposition 1 ([44, p. 427]). If a real-valued function � on an interval J is Zygmund
bounded, then the average of � on J differs from the average of the values of � at the
endpoints of J by O.jJ j/, where jJ j represents the length of J .

Proof of Theorem 9. Given a point z D x C iy 2 U , BA.h/.z/ D u.x; y/C iv.x; y/ is
defined by (2.6). Then the Beltrami coefficient �BA.h/.z/ of BA.h/.z/ is expressed by

�BA.h/.z/ D
.ux � vy/C i.vx C uy/

.ux C vy/C i.vx � uy/
; (5.1)

where

ux D
1

2y

�
h.x C y/ � h.x � y/

�
; (5.2)

uy D
1

y

�
�
1

2y

Z xCy

x�y

h.t/ dt C
1

2

�
h.x C y/C h.x � y/

��
; (5.3)

vx D
1

y

�
h.x C y/ � 2h.x/C h.x � y/

�
; (5.4)

vy D �
1

y2

�Z xCy

x

h.t/ dt �

Z x

x�y

h.t/ dt

�
C
1

y

�
h.x C y/ � h.x � y/

�
: (5.5)

Since h0 is Zygmund bounded, it follows from Proposition 1 that

h.x C t / � h.x/

t
�
h0.x C t /C h0.x/

2
D O.t/:

Then

h.x C t / D h.x/C
h0.x C t /C h0.x/

2
t CO.t2/:

Thus, Z y

0

h.x C t / dt D h.x/y C

Z y

0

h0.x C t /C h0.x/

2
t dt CO.y3/

D h.x/y C
h0.x/

4
y2 C

1

2

Z y

0

h0.x C t /t dt CO.y3/:

Clearly,Z y

0

h0.x C t /t dt D

Z y

0

t dh.x C t / D th.x C t /j
y
tD0 �

Z y

0

h.x C t / dt

D yh.x C y/ �

Z y

0

h.x C t / dt:

Thus,Z y

0

h.x C t / dt D h.x/y C
h0.x/

4
y2 C

1

2
yh.x C y/ �

1

2

Z y

0

h.x C t / dt CO.y3/:
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Therefore, Z y

0

h.x C t / dt D
2

3
h.x/y C

h0.x/

6
y2 C

1

3
yh.x C y/CO.y3/: (5.6)

Similarly, we obtainZ y

0

h.x � t / dt D
2

3
h.x/y �

h0.x/

6
y2 C

1

3
yh.x � y/CO.y3/: (5.7)

From (5.6) and (5.7), we obtainZ xCy

x�y

h.t/ dt D

Z y

0

h.x C t / dt C

Z y

0

h.x � t / dt

D
4

3
h.x/y C

1

3
y
�
h.x � y/C h.x C y/

�
CO.y3/

andZ xCy

x

h.t/ dt �

Z x

x�y

h.t/ dt D

Z y

0

h.x C t / dt �

Z y

0

h.x � t / dt

D
h0.x/

3
y2 C

1

3
y
�
h.x C y/ � h.x � y/

�
CO.y3/:

Then from the expressions of the partial derivatives of u and v in (5.3)–(5.5), we first
obtain

uy D
2

3y

�
h.x C y/C h.x � y/

2
� h.x/

�
CO.y/

and

vy D �
h0.x/

3
C

2

3y

�
h.x C y/ � h.x � y/

�
CO.y/:

Thus,

ux � vy D
h0.x/

3
�
1

6y

�
h.x C y/ � h.x � y/

�
CO.y/

D
h0.x/

3
�
1

6y

Z y

�y

h0.x C t / dt CO.y/

D
h0.x/

3
�
1

6y

Z y

0

h0.x C t /C h0.x � t / dt CO.y/

D �
1

3y

Z y

0

�
h0.x C t /C h0.x � t /

2
� h0.x/

�
dt CO.y/ D O.y/;

vx C uy D
5

3y

�
h.x C y/C h.x � y/

2
� h.x/

�
CO.y/;
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ux C vy D �
h0.x/

3
C

7

6y

�
h.x C y/ � h.x � y/

�
CO.y/

D �
h0.x/

3
C

7

3y

Z y

0

h0.x C t /C h0.x � t /

2
dt CO.y/

D 2h0.x/C
7

3y

Z y

0

�
h0.x C t /C h0.x � t /

2
� h0.x/

�
dt CO.y/

D 2h0.x/CO.y/;

vx � uy D �
1

3y

�
h.x C y/C h.x � y/

2
� h.x/

�
CO.y/:

Now using the expression (5.1) for the Beltrami coefficient �BA.h/.z/, we can see that
�BA.h/.x C iy/ D O.y/ if and only if

h.x C y/C h.x � y/

2
� h.x/ D O.y2/

uniformly on x. It suffices to prove that h.xCy/Ch.x�y/
2

� h.x/DO.y2/ uniformly on x if
and only if h0 is Lipschitz. Clearly, if h0 is Lipschitz, then h.xCy/Ch.x�y/

2
� h.x/ D O.y2/

uniformly on x. It remains to show that h.xCy/Ch.x�y/
2

� h.x/ D O.y2/ uniformly on x
implies h0 is Lipschitz.

Since h0 is Zygmund bounded, it follows from Proposition 1 that

1

y

Z y

x

h0.t/ dt �
h0.x/C h0.x C y/

2
D O.y/;

which means

h.x C y/ � h.x/ D
h0.x/C h0.x C y/

2
CO.y/:

Similarly,

h.x/ � h.x � y/ D
h0.x � y/C h0.x/

2
CO.y/:

Then

h.x C y/C h.x � y/ � 2h.x/ D
h0.x C y/ � h0.x � y/

2
CO.y/:

Thus,
h0.x C y/ � h0.x � y/

2
D O.y/CO.y2/;

which implies that h0 is Lipschitz. We complete the proof.

Corollary 1. Let f be a C 1CZygmund orientation-preserving diffeomorphism of the unit
circle S1 and let zf be a lifting map of f to the universal covering space R. Then the Bel-
trami coefficient �.BA. zf //.x C iy/ vanishes as O.y/ uniformly on x near the boundary
of the upper half plane if and only if f is C 1CLipschitz.
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Now we are ready to prove the following statement.

Theorem 10. Let f be an orientation-preserving homeomorphism of the unit circle S1

and let zf be a lifting map to the universal covering space R. Then the Beltrami coefficient
�.BA. zf //.x C iy/ vanishes asO.y/ uniformly on x near the boundary of the upper half
plane if and only if zf is C 1CLipschitz.

Proof. In order to use the same notation as in the proof of Theorem 9, we let hD zf . Then

h.x C 1/ D h.x/C 1

for any x 2 R. Applying the mean value theorem, it is straightforward to prove that if
such a homeomorphism h of R is C 1CLipschitz, then �.BA.h/.x C iy/ vanishes as O.y/
uniformly on x near the boundary of the upper half plane U . It remains to prove the
converse.

Assume that �.BA.h/.x C iy/ vanishes as O.y/ uniformly on x near the boundary
of U . Then

�.BA.h/.x C iy/ D O.y˛/

for any 0 < ˛ < 1 and any 0 < y < 1, where the big O does not depend on x and ˛.
By the third property listed in Table 1, we know that h is C 1C˛ and then f is a C 1C˛

diffeomorphism of S1. Thus, there exists a constant M > 0 such that

1

M
� h0.x/ �M

for any x 2 R. In the following, we first apply the condition �.BA.h/.x C iy/ D O.y/
to show that h0 is Zygmund bounded.

Denote by BA.h/.x C iy/ D u.x; y/ C iv.x; y/. Using the partial derivatives of u
and v given by (5.2)–(5.5), we first obtain

ux � vy D
1

y2

Z y

0

�
h.x C t / � h.x � y C t /

�
dt �

1

2y

�
h.x C y/ � h.x � y/

�
(5.8)

and

vx C uy D �
1

2y2

Z y

0

�
h.x C t /C h.x � y C t /

�
dt

C
1

2y

�
3h.x C y/ � 4h.x/C 3h.x � y/

�
: (5.9)

We further apply the estimate h.x C t / D h.x/C h0.x/t CO.jt j1C˛/ with 0 < ˛ < 1 to
obtain

ux C vy D 2h
0.x/CO.y˛/ and vx � uy D O.y

˛/: (5.10)

Now from the expression (5.1) for�.BA.h/.z// and the estimate (5.10) for the denom-
inator of�.BA.h/.z//, we can see that�.BA.h/.z//DO.y/ implies that ux � vyDO.y/
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and vx C uy D O.y/. From the expressions (5.8) and (5.9), we obtain

1

y2

Z y

0

�
h.x C t / � h.x � y C t /

�
dt �

1

2y

�
h.x C y/ � h.x � y/

�
D O.y/ (5.11)

and

�
1

y2

Z y

0

�
h.xC t /C h.x � yC t /

�
dt C

2

2y

�
3h.xC y/� 4h.x/C 3h.x � y/

�
DO.y/:

(5.12)
The summation and subtraction of the above two expressions (5.11) and (5.12) show

�
2

y2

Z y

0

h.x � y C t / dt C
1

2y

�
5h.x C y/ � 8h.x/C 7h.x � y/

�
D O.y/ (5.13)

and

2

y2

Z y

0

h.x C t / dt �
1

2y

�
7h.x C y/ � 8h.x/C 5h.x � y/

�
D O.y/: (5.14)

Replacing x by x C y in the expression (5.13), we obtain

�
2

y2

Z y

0

h.x C t / dt C
1

2y

�
5h.x C 2y/ � 8h.x C y/C 7h.x/

�
D O.y/: (5.15)

Adding (5.14) and (5.15), we see

1

2y

�
5h.x C 2y/ � 15h.x C y/C 15h.x/ � 5h.x � y/

�
D O.y/;

that is,
h.x C 2y/ � 3h.x C y/C 3h.x/ � h.x � y/ D O.y2/: (5.16)

From the estimate (5.16), we conclude that h is C 1CZygmund from the following Propo-
sition 2. Finally, the previous Theorem 9 implies that h is C 1CLipschitz. We complete the
proof.

Proposition 2. Let h be a continuous function from R to R. Then h is C 1CZygmund if and
only if for any x 2 R and any t > 0,

h.x C 2t/ � 3h.x C t /C 3h.x/ � h.x � t / D O.t2/: (5.17)

This is a known result. A sketch of the proof follows.

Proof. It is relatively straightforward to see that if h is C 1CZygmund, then h satisfies the
condition (5.17). In the following, we outline the proof of the converse.

We first explain why the condition (5.17) implies that h is differentiable. We rewrite
the condition (5.17) as

h.aC 2t/ � h.a � t /

3t
�
h.aC t / � h.a/

t
D O.t/:



Characterizations of homeomorphisms of different regularities 349

This means that the difference quotient on the middle third interval Œa; aC t � differs from
the difference quotient on the interval Œa � t; a C 2t� by O.t/. Repeating the estimate of
the difference quotient on the middle third interval of the middle third interval inductively,
one can see that the difference quotient on the smaller and smaller middle third interval has
a limit as the middle third interval shrinks to a point b, which shows that h is differentiable
at b. By setting up an arbitrary point x of R as the intersection of a sequence of the nested
intervals with next one being the middle third of the one obtained already, we can see a
strategy to show that h is differentiable at x. Furthermore, rewrite the condition (5.16) as�

h.x C 2t/ � h.x C t /

t
�
h.x C t / � h.x/

t

�
�

�
h.x C t / � h.x/

t
�
h.x/ � h.x � t /

t

�
D O.t/: (5.18)

Using the same method to prove that any Zygmund bounded function � is ˛-Hölder con-
tinuous for any 0 < ˛ < 1 (see [34]), one can obtain

h.x C t / � h.x/

t
�
h.x/ � h.x � t /

t
D O.t˛/: (5.19)

Then one can use the condition (5.19) to show that h is differentiable and h0 is ˛-Hölder
continuous.

It remains to show that given a differentiable function h from R to itself, h0 is Zygmund
bounded if and only if the condition (5.17) holds.

Rewrite

h.aC 2t/ � 3h.aC t /C 3h.a/ � h.a � t /

D h.aC 2t/ � h.aC t / � 2.h.aC t / � h.a//C h.a/ � h.a � t /

D

Z aC2t

aCt

h0.s/ ds � 2

Z aCt

a

h0.s/ ds C

Z a

a�t

h0.s/ ds

D

Z t

0

�
h0.aC t C s/ � 2h0.aC s/C h0.a � t C s/

�
ds

D t
�
h0.aC t C �t .a// � 2h

0.aC �t .a//C h
0.a � t C �t .a//

�
;

where 0� �t .a/� t . Thus, if h0 is Zygmund bounded, then the condition (5.17) is satisfied.
Conversely, if the condition (5.17) is satisfied, then we obtain

h0.aC t C �t .a// � 2h
0.aC �t .a//C h

0.a � t C �t .a// D O.t/: (5.20)

By fixing t , we only need to understand why �t .a/ can chosen to be a continuous function
of a. This is indeed true by letting �t .a/ be the smallest input s on the interval Œ0; t � at
which the value of

h0.aC t C s/ � 2h0.aC s/C h0.a � t C s/
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is equal to its average on Œ0; t �. Then the function a 7! a C �t .a/ is continuous from R
onto R since 0� �t .a/� t . This implies that every real number x is a value of the function
a 7! a C �t .a/ at some real number a. Therefore, the condition (5.20) shows that h0 is
Zygmund bounded. We complete the proof.

From the above Theorem 10, one can see that �.BA. zf //.x C iy/ vanishes as O.y/
uniformly on x near the boundary of U is stronger than the condition that f isC 1CZygmund.
As we mentioned in the introduction, a C 1CZygmund circle diffeomorphism with an irra-
tional rotation number is rigid in terms of topological conjugacy. So it is interesting to
characterize a C 1CZygmund circle diffeomorphism f in term the Beltrami coefficient of the
Beurling–Ahlfors extension of a lifting map zf of f or the Douady–Earle extension of f ,
or the earthquake measure of Thurston’s earthquake representation of f .

Let f be an orientation-preserving homeomorphism of S1 and zf a lifting map to R.
We finish this paper by raising the following three questions.

Question 1. What type of vanishing condition on �
BA. zf /

near the boundary of U is
necessary and sufficient for f to be C 1CZygmund?

Question 2. What type of vanishing condition on �DE.f / near the boundary of D is
necessary and sufficient for f to be C 1CZygmund?

Question 3. What type of vanishing condition on �.Ef / near the boundary of D is nec-
essary and sufficient for f to be C 1CZygmund?

Some work related to Question 3 appears in [22].
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