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Random walks on mapping class groups
Hyungryul Baik and Inhyeok Choi

Abstract. This survey is concerned with random walks on mapping class groups. We illustrate how
the actions of mapping class groups on Teichmiiller spaces or curve complexes reveal the nature of
random walks and vice versa. Our emphasis is on the analogues of classical theorems such as laws
of large numbers and central limit theorems and the properties of harmonic measures under optimal
moment conditions. We also explain the geometric analogy between Gromov hyperbolic spaces and
Teichmiiller spaces that has been used to copy the properties of random walks from one to the other.

Dedicated to Dennis Sullivan on the occasion of his 80th birthday

1. Introduction

A random walk is an example of a Markov chain or more generally a stochastic process.
Various models of random walks have been suggested for applications to physics, eco-
nomics, finance, biology, ecology, and many other fields. Among them are random walks
on groups that deal with products of random group elements chosen with the same proba-
bility distribution. Since Kesten’s pioneering work [55], the connection between the group
structure (e.g., solvability, amenability, etc.) and the asymptotic behavior of random walks
on the group has been studied in depth (see also [33]). This turned out to be fruitful from
the perspective of both probability theory and group theory, and even geometry, following
the development of the relatively new field of geometric group theory.

In this survey, we study random walks on mapping class groups via their actions on
Teichmiiller spaces equipped with the Teichmiiller metric. These actions are generaliza-
tions of the action of SL(2,Z) on H?. Here, SL(2, Z) can be viewed from two important
perspectives in the study of non-commutative random walks: one as a discrete group act-
ing on a negatively curved space, and the other one as a lattice in a Lie group acting on
a homogeneous space. Kaimanovich and Masur relate random walks on mapping class
groups with both perspectives, as we explain in Section 3.

The prototypes from the first perspective are random walks on free groups. In this
case, random walks escape to infinity and reveal the harmonic properties of the group.
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Explicit computations regarding this escape led to the analogues of classical limit laws,
e.g., laws of large numbers, central limit theorems, and local limit theorems. For these
computations, we refer the readers to [62,91] and the references therein.

Appropriate notions that generalize free groups are hyperbolic groups introduced by
M. Gromov. The corresponding geometric property is 6-hyperbolicity: hyperbolic groups
admit a geometric action on a proper §-hyperbolic space. Thanks to recent developments,
one can deal with not only random walks on hyperbolic groups but also those on weakly
hyperbolic groups acting on non-proper §-hyperbolic spaces. We discuss Kaimanovich’s
theory of random walks on hyperbolic groups and Maher-Tiozzo’s theory of random
walks on weakly hyperbolic groups in Section 4.

However, Teichmiiller spaces are not §-hyperbolic and mapping class groups are not
lattices in semi-simple Lie groups of higher rank. Hence, neither viewpoint applies directly
to mapping class groups (as Kaimanovich and Masur explain). Despite this contrast, we
will first pursue the former perspective and make a due modification. Namely, Masur—
Minsky’s theory guided the usage of curve complexes, non-proper §-hyperbolic spaces, in
the study of mapping class groups. We explain how to compare the actions of mapping
class groups on Teichmiiller spaces and curve complexes in Section 5.

Having established the relevant theories, Section 6 and Section 7 deal with limit the-
orems for random walks on mapping class groups. We finish this survey by explaining a
counting problem in mapping class groups and suggesting future directions.

Our survey is certainly not exhaustive at all. Especially, we regret not to explain the
ideas of Sisto [85], Arzhantseva—Cashen—Tao [3], and Yang [92, 93] that make use of
contracting elements. This idea naturally covers the case of hyperbolic groups, CAT(0)-
groups, mapping class groups and right-angled Artin groups. We also lack an explanation
of the Martin boundary and its comparison with other boundaries. This topic dates back to
Martin’s paper [69] and Doob’s paper [24], and is still being actively researched, e.g., [39].

Let us briefly observe the connection between the theory of random walks and the
Patterson—Sullivan theory. Given a negatively curved manifold X = X / T and its universal
cover X, both theories construct measures on 9X using the deck transformation of X.
First, consider a random walk on I' generated by the transition probability w. By applying
this random walk to a point x € X, one obtains a J-harmonic measure v, on 3X as the
weak limit of the orbit distribution at step 7. In the Patterson—Sullivan theory, each orbit
point gx is assigned the mass e ~5¢-8%) where s > 0 is a parameter that determines how
far the mass is spread toward infinity. When normalized, this assignment gives rise to a
probability measure v; ;. As s approaches the growth exponent § of G, the measure v; ¢
escapes any bounded region. By taking the weak limit at s = §, we obtain the Patterson—
Sullivan measure v’, on X that is ['-conformal with dimension &. These measures entail
rich information about the geometry of X (e.g., number of loops) and the dynamics on X
(e.g., mixing geodesic flow). Furthermore, in certain circumstances, X is symmetric if and
only if vy and v/, are proportional.

Given these observations, the next goal is to build a parallel theory for Teichmiiller
spaces. Harmonic measures and conformal densities will shed light on the geometry of
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the moduli space, and it matters to clarify which measure serves which role. In particular,
given the non-homogeneity of Teichmiiller spaces, one can ask whether two measures on
PMF differ or not.

Another important goal is to implement the Patterson—Sullivan theory on groups,
which dates back to Coornaert’s work [19]. In [40], Gekhtman—Taylor-Tiozzo utilized
the automatic structure of the group to decompose the Patterson—Sullivan measure into
countably many harmonic measures. This approach is intimately related to the following
counting problem. Given a desirable property P of a group element or an orbit point (e.g.,
being loxodromic, two norms having a bounded ratio, and so on), we count the number of
the elements satisfying P and compare it with the number of the entire elements. When
we are discussing infinite groups such as mapping class groups, we truncate the group at a
fixed word metric radius and see the asymptotic proportion of the elements satisfying P.
One famous problem is Farb’s question asking whether pseudo-Anosovs are generic in
the sense of a counting problem. The Patterson—Sullivan theory on mapping class groups
seems not developed enough to answer this question.

2. Preliminary

From the viewpoint of probability theory, Furstenberg writes that random walks on groups
are non-commuting generalizations of random walks on R” [33]. We are particularly inter-
ested in random walks on an infinite group with an interesting group-theoretic structure
and actions on geometric spaces, mapping class groups being notable examples. Moreover,
from the viewpoint of geometric group theory, random walks on mapping class groups
arise as a natural way to depict typical mapping classes. Moreover, not only do random
walks lead to rigidity theorems for mapping class groups, but they also give rise to bound-
ary structures of Teichmiiller spaces that fit into Thurston’s theory. We briefly review the
notion of random walks, mapping class groups, and the spaces related to mapping class
groups.

Unless stated otherwise, G denotes a finitely generated group that acts on a metric
space X by isometries. S denotes a finite generating set of G. All measures are probability
measures, and p always denotes a non-elementary measure on G. ‘Almost every’ and
‘almost surely’ are abbreviated to ‘a.e.” and ‘a.s.’, respectively.

Given 1, we can consider the step space (GZ, u%), the product space of G equipped
with the product measure of . Each element (g5),ez of the step space is called a step
path. Each step path (g,,), is associated with the sample path (w,), defined by

g1 8&n, n >0,
Wy = % id, n =0,

—1 -1
80 " &ny1r N <0

We also define the Bernoulli shift 7: GZ — GZ by T: (gn)n = (gnt1)n-
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Remark. It is worth making a distinction between left and right random walks. The
above definition deals with right random walks: w, 4+, grows from w, by the multipli-
cation of g,4; on the right. Random walks on the ambient space X are then modeled by
applying these random walks to a reference point 0 € X. One advantage of this model is
that a.e. orbit path converges to a boundary point.

Meanwhile, left random walks naturally arise when random isometries are succes-
sively applied to an object (see [51] and [7]). Although the asymptotic behavior of orbit
paths differs in the right random walks and left random walks, the limit theorems for dis-
placement and translation length can be copied from one setting to the other one via the
inversion

On = g1 gn > Wy =gy gy
and the identity d (0, w,0) = d (0, w}0).

We now move on to discussing groups and spaces. Fixing a closed orientable sur-
face ¥ with genus at least 2, we define its mapping class group Mod(X) as the group
of self-homeomorphisms (or self-diffeomorphisms) of ¥ modulo homotopy. This group
has been studied for decades due to its rich group-theoretic properties and connections to
other topics in geometry and topology. Among such connection is Royden’s theorem [82],
which states that Mod(X) is an index-2 subgroup of the isometry group of the Teichmiiller
space 7 (X) of X. Here, 7 (X) is the space of marked complex structures (or equivalently,
marked hyperbolic structures) on X and plays a significant role in the theory of Riemann
surfaces and 3-manifolds.

We note that 7 (X) comes equipped with several metrics, the Teichmiiller metric
and the Weil-Petersson metric. These metrics arise from natural optimization problems
among Riemann surfaces (i.e., maximal dilatation, energy, etc.) and induces a Mod(X)-
equivariant geodesic flow on the tangent bundle of 7 (X). Hence, it is worth studying the
action of Mod(X) on 7 (X) in terms of these metrics.

In addition to the metric structures, 7 (%) is linked to several bordifications. We will be
interested in Thurston’s compactification among them. We first regard each point in 7 (X)
as a projectivized functional of simple closed curves on X. In this setting, limit points
of 7 (X) include the (projectivized) intersection number with a fixed curve y, which is
approximated by first fixing a point x in 7 (X) and then shrinking y or applying powers
of Dehn twist about y on x. In general, limit points are projectivized measured folia-
tions on ¥ and we denote their collection (called the Thurston boundary) by PMF ().
T (¥) U PMF (¥) is homeomorphic to a (6g — 6)-dimensional closed ball and has been
used to reveal the dynamical properties of mapping classes, e.g., the Nielsen—Thurston
classification. Our aim is to observe that this bordification also naturally arises in the study
of random walks on Mod(X). For more details on measured foliations and Thurston’s
compactification, consult [30].

One obstacle to this plan is that the geometry of 7 (X) is not exactly the same with,
say, negatively curved manifolds. 7 (%) does have an analogy with a simply-connected
hyperbolic space and its quotient 7 (X)/ Mod(X) resembles a cusped negatively curved
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manifold. Nevertheless, 7 (X) equipped with the Teichmiiller metric is not Gromov hyper-
bolic ([52, 74]), which means that geodesic triangles in 7 (X) are not uniformly thin.
Hence, it is tempting to invent a new Gromov hyperbolic space by collapsing all ‘fat’
regions of T (X).

This was furnished by Harvey’s construction of the curve complex € (X) of ¥, whose
vertices are simple closed curves on X and edges are drawn between disjoint simple closed
curves. €(X) is Gromov hyperbolic, and two spaces are related by the projection map
: T (X) — €(X) that picks the shortest curve on the surface. Moreover, this projection
induces a quasi-isometry between € (%) and a modification of 7 (X). Here, the modifica-
tion is as follows: for each simple closed curve y on X, we collapse all points of 7 (%)
with short y. Hence, it is impossible to escape to infinity by shrinking a curve in this
modified space. This implies that the boundary structure of € (X) does not include simple
closed curves.

Nonetheless, 7 (o) and €(X) partially share the boundary structure. Let MIN (X) C
PMF (X) be the set of projective measured foliations that correspond to minimal foli-
ations, the foliations that do not have closed leaves. Let MIN (X) be its quotient by
the equivalence relation of having trivial intersection. Finally, U& (X) denotes the set of
uniquely ergodic foliations on X, which can be regarded as a subset of both MIN (¥) and
MIN (2). Klarreich’s theorem in [59] states that the Gromov boundary of €(X) is the set
of minimal foliations MIN (X2). For details on the Gromov products, Gromov hyperbolic
spaces and the Gromov boundary, see [13,23,42, 88].

One dynamical quantity of an isometry g of X is the (asymptotic) translation length
of g defined by

7(g) := lim ld(o, g"o).
n—oo p
Recall that an isometry g of a Gromov hyperbolic space X falls into exactly one of the
following categories (see [20,45] for instance):
* g has a bounded orbit (elliptic);
* g isnot elliptic and has a unique fixed point in X (parabolic);
* g has two fixed points, an attractor and a repeller, in dX (loxodromic).

In particular, g is loxodromic if and only if n + g"x is a quasi-isometry for one (hence
all) x € X, if and only if 7(g) > 0.

A similar classification of mapping classes, called the Nielsen—Thurston classification,
was proven by referring to the mapping class group action on Teichmiiller space and its
boundary. Thurston observed that each g € Mod(X) acts on 7 () U PMF (X) ~ B68—°
as a self-homeomorphism and has a fixed point. We have (not mutually exclusive) four

cases:
(1) if g has a fixed point in 7 (%), then g is of finite order (periodic);

(2) if g fixes the projective class of a rational foliation, then g fixes a multicurve
(reducible);
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(3) if g fixes an arational measured foliation without scaling, then g is of finite order
(periodic);

(4) if g scales up an arational measured foliation (hence fixes its projective class),
then g is pseudo-Anosov.

Here, the last case and the other cases are mutually exclusive. In view of their actions
on €(X), periodic and reducible mapping classes are elliptic and pseudo-Anosov mapping
classes are loxodromic [73].

When X is a Gromov hyperbolic space or 7 (X) and G is its isometry group, we say
that a subgroup or a subsemigroup H is non-elementary if it contains two loxodromics that
do not share fixed points at infinity. We say that a probability measure u is non-elementary
if the subsemigroup generated by its support is non-elementary. In this case, we also say
that the random walk @ generated by p is also non-elementary. We say that a probability
measure ji is non-arithmetic if some convolution (supp 1)V of the support of & contains
two loxodromics with different translation lengths.

A standing assumption of this paper is that

X is either a Gromov hyperbolic space or the Teichmiiller space T (%) of a closed
orientable surface ¥ of genus at least 2. The isometry group G is a countable
group acting on X as isometries, |4 is a non-elementary probability measure on G
and w is the random walk generated by L.

3. Early works and ergodic theorems

We can apply ergodic theory to random walks by using the ergodicity of the step shift
map. This strategy is observed in, for example, the pioneering work by Furstenberg and
Kesten [36] of the product of random matrices. This is generalized to the so-called King-
man’s subadditive ergodic theorem [56-58]. We present one version of this theorem as
follows.

Theorem 3.1 ([91, Theorem 8.10]). Let (2, P) be a probability space and U: Q2 — Q
be a measure-preserving transformation. If W, is a non-negative real-valued random
variables on Q satisfying the subadditivity Wy, < Wy, + Wy, o U™ for all m,n € N,
and Wy has finite first moment, then there is a U -invariant random variable W, such that

1
Iim —W, = Wy

n—oo n
almost surely and in LY (2, P). If U is ergodic in addition, then W, is constant a.e.

The subadditive ergodic theorem is particularly useful in non-commutative settings,
where one cannot directly bring the results about Euclidean random walks. For example,
let us consider a random walk w = (wy,) on G. After fixing a reference point 0 € X,
the displacement d (o, w,0) becomes subadditive. Then the existence of the escape rate
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follows from the subadditive ergodic theorem. Additional properties of G and its action
on X, such as the non-amenability of G and the properness of the action, guarantee that
the escape rate is strictly positive and the random walk escapes to infinity. Hence, one
can discuss the hitting measure induced on a suitable boundary of X, which is useful to
investigate the asymptotics of the random walk.

In fact, such a boundary can be constructed without referring to the action of G on X.
This program was initiated by Furstenberg in [32]. Furstenberg considered the set - of all
functions on G x €2 of the form

F(g. o) := nli)rgof(g-wn)

for some left uniformly continuous function f such that the above limit exists almost
surely. Furstenberg then showed that

(1) o has a 1-1 correspondence with the set of p-harmonic functions, and

(2) A corresponds to the space of all continuous functions on a compact space I1 by
using the Gelfand representation.

Then every left uniformly continuous, p-harmonic function on G admits a Poisson rep-
resentation regarding a continuous function on IT. More generally, the space of bounded
p-harmonic functions on G and the space of bounded measurable functions on IT has
1-1 correspondence via the Poisson representation. This space IT is called a Poisson space
by Furstenberg.

The construction of Poisson spaces is purely measure-theoretical, but Furstenberg also
proved that Poisson spaces for a semi-simple Lie group are always finite covers of a max-
imal boundary of G endowed with a stationary measure. Here, a boundary of G refers to
a compact homogeneous (or minimal, in general) G-space whose points can be approxi-
mated by elements of G when probed with measures. More precisely, for every probability
measure v on M, there exists a sequence {g,} in G such that g,, * v — §;, forsome 7 € M.
Using this observation, Furstenberg deduced the following rigidity result.

Theorem 3.2 ([34, Theorem 1]). For d > 2 and n > 3, no countable group can become
a cocompact lattice of Isom(H¢) and SL(n,R) simultaneously.

We now return to the case that G is a countable group acting on X. Recall the above
definition of boundaries. A pair (B, v) of a G-space B and a u-stationary measure v on B
is called a p-boundary if for a.e. sample path w = (wy),, W, * v converges to an atom
on B. With this a.e. convergence, we can attach B to G and say that (B, v) captures the
eventual fate of a.e. path arising from the random walk @ on G. From a measure-theoretic
viewpoint, all u-boundaries arise as quotients of a maximal p-boundary, which we call the
Poisson boundary of (G, ). While Furstenberg constructed it using the Gelfand represen-
tation, one can instead define it as the space of ergodic components of the Bernoulli shift
(see [35, Theorem 3.1] and [54]). Moreover, this is the Poisson space described before:
the Poisson formula gives a 1-1 correspondence between p-harmonic functions on G and
bounded measurable functions on the Poisson boundary of (G, ).
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After this measure-theoretic discussion, one can ask whether a Poisson boundary
of a group G can be modeled on the boundary 0X of the space X that G is acting
on. Kaimanovich and Masur brought this perspective to mapping class groups in their
work [54]. Kaimanovich and Masur asked whether PMF (X) is the correct boundary
of 7(X) in the measure-theoretical viewpoint, that means, it hosts a pu-stationary mea-
sure v such that (PMF, v) becomes the Poisson boundary of (Mod, i). We present
Kaimanovich—Masur’s result below.

Theorem 3.3 ([54, Theorems 2.2.4, 2.3.1]). Let G be the mapping class group Mod(X)
acting on X = T(X) and | be a non-elementary measure on G. Then there exists a
unique ji-stationary v on PMEF (X), which is purely non-atomic and concentrated on
UE C PMF, and (US,v) is a -boundary. In fact, v is the hitting measure of jL on PMF ;
for any x € T(X) and P-a.e. sample path w = (wy), wyx converges in PMF to a limit
F = F(w) € UE, and the distribution of the limits F(w) is given by v.

If | has a finite entropy and finite first logarithmic moment with respect to the Teich-
miiller metric in addition, then (PMF , v) is the Poisson boundary of (Mod, w).

The proof relies on the geometry of 7 (X) and the structure of PMF , which we briefly
sketch now. As the escape to infinity is not established a priori, the p-stationary measure v
is not constructed as the hitting measure of p; rather, v is first defined as a p-stationary
measure on a compact space, and the escape to infinity follows from the property of v. The
existence of v relies on the fact that PMF (X) is a compact sphere. Using the structure
of PMF , namely, that PMF \ MIN admits a countably infinite partition that respects
Mod(X)-action, one can deduce that v is concentrated on MIN .

Let us now consider the quotient measure ¥ of v on MIN , the set of equivalence
classes of minimal foliations. Then a.e. path (@,) has the limit point F(w,) € MIN in
the sense that @,V — 8 (,) wWeakly ([54, Lemma 2.2.3]). This map F:w MIN pushes
the measure P = % on G% forward to ¥, which is non-atomic, so the Poisson boundary
of (Mod(X), i) becomes non-trivial. This implies that the random walk escapes to infinity
almost surely. The final technical step is to show that actually v is concentrated on UE so
that v coincides with v. This relies on Masur’s divergence result [71, Theorem 1.1] that
Teichmiiller geodesics heading to & ¢ UE escapes every thick part of 7 (X¥) (and hence
the mapping class group orbit). The uniqueness of v now follows from the integral rep-
resentation: F actually pushes P forward to v. Now the orbit convergence w,0 — F(®)
for a.e. w follows from the properties of uniquely ergodic foliations and universally con-
vergent sequences.

In order to show that (£MF , v) is maximal, we invoke the strip approximation cri-
terion introduced in [53]. Namely, given that the entropy is finite, the maximality of
(PMF , v) follows once we construct a measurable Mod(X)-equivariant ‘strips’

S:(F_,Fy) € UE x UE — S(F_, Fy) € Mod(X)
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such that forall g € G and v— ® vi-ae. (F_, F+) € UE x UE, we have
1
—log#(S(F_, Fy)g N B(id, |w,])) > 0 asn — oo
n

in probability, where |w,| denotes the word metric norm of w, with respect to a finite
generating set of Mod(X) and B(id, |w,|) denotes the ball of radius |w; | about the identity
element id. In this argument, we take

S(F_,Fy) ={h e Mod(X) : d(ho,[F_, Fy]) < M}

for some suitable M. As Mod(X) acts on 7 (X) properly discontinuously, balls of radius M
(with respect to the Teichmiiller metric) in 7 (X) contain finitely many translates #o of o
and #(S(F_, Fy+)g N B(e, k)) grows at most linearly along k. Given this, the bottleneck
of the growth of #(S(F_, F4+)g N B(e, |w,|)) becomes the growth rate of |w,| in proba-
bility. It turns out that finite logarithmic moment condition controls the overall growth in
a subexponential manner.

Recall now Theorem 3.2 of Furstenberg: there, the dichotomy between two types of
lattices is as given as follows. If G is a lattice in a semi-simple Lie group of rank at least 2,
then there exists a measure p with supp # = G and a number ¢ > 0 such that the following
holds. If p-harmonic functions fi, f> on G satisfy that

(1) 0< f1, f<1onG,and

() f1(d), f2(id) = 0.5 — ¢,
then (3) min[ f1(g), f2(g)] does not tend to zero as g — oo. In contrast, if G is a lattice
in Isom(H%), then for any y and ¢ > 0 we can construct z-harmonic functions fi, f>
that satisfy (1) and (2), but not (3). Kaimanovich and Masur similarly constructed such -
harmonic functions on Mod(X) and deduced that Mod(X) is not a lattice in semi-simple
Lie groups.

The storyline so far already shows the interplay between phenomena inside 7 (%) and
limiting phenomena on PMF (). More specifically, (a) the escape to infinity and (b) the
finite growth rate of strips are intimately related to (c) the characterization of the Poisson
boundary. Here, a part of (c) helped establish (a), while (b) contributed to establishing
another part of (c). Later we will see opposite situations, where (a) directly leads to a part
of (c) and (c) helps establish a variant of (b).

A final remark is on the usage of Teichmiiller geometry. Kaimanovich—-Masur’s work
was motivated by the Gromov boundary of Gromov hyperbolic spaces that possess the
visual measure and the Patterson—Sullivan measure [78, 86] of negatively curved mani-
folds. It is expected that the harmonic measure and these measures are mutually singular
in compact manifolds with non-constant negative curvature [60, 61]. Since the action
of Mod(X) on 7 (X) has co-finite volume and 7 (X) has variable curvature in some sense,
we can also expect the mutual singularity of those measures. We will revisit this topic
later.
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The main obstacle to this problem was that both Mod(X) and 7 (X) are not Gromov
hyperbolic. Nevertheless, Kaimanovich and Masur exploited partial hyperbolicity of the
Teichmiiller space in order to establish the escape to infinity (see [54, Section 1.5], for
example). This alludes to a unified storyline for random walks on mapping class groups
and hyperbolic groups, which we will see in the subsequent sections.

4. Curve complex

Another space on which Mod(X) acts is the curve complex €(X). Introduced by Harvey
in [48] as an analogy for the Tits building, this complex became a central object in the
study of mapping class groups thanks to Masur—Minsky’s theory ([72,73]). In particular,
Masur and Minsky proved that

(1) The shortest curve projection 7: 7 (X) — € (X) sends geodesics to unparametrized
quasi-geodesics (of uniform quality),

(2) €(X) is 8-hyperbolic for some § = §(X), and
(3) 7(X) and Mod(X) are weakly relatively hyperbolic in the sense of Farb [29].

In fact, the constant §(X) can be taken as 17 for any surface X ([49]; see also [2, 12, 18]).
We warn that mapping class groups are not relatively hyperbolic in general. Note also
that 77 (X) and €(X) are not quasi-isometric, nor are Mod(X) and €(X). Furthermore,
the orbit map g — go from Mod(X) to T (X) is not a quasi-isometric embedding (but
see [28]).

As T (X) does, €(X) also captures the dynamics of each mapping class of Mod(X).
In particular, pseudo-Anosov mapping classes have positive translation lengths on € (%)
and 7 (X). Comparing these two translation lengths is an interesting question.

To investigate random walks on €(X), let us recall the work of Kaimanovich on the
Poisson boundary of hyperbolic groups [53]. Note that hyperbolic groups are finitely gen-
erated groups whose Cayley graph is Gromov hyperbolic with respect to a finite generating
set. Consequently, the given Cayley graph X is locally finite and the Gromov boundary dX
is a compact metrizable space.

Given a non-elementary measure i on a hyperbolic group G, one can first obtain a
J-stationary measure v on dX by considering a limit point of the Cesaro mean

1
e e R 2

where such a limit point always exists by the compactness of X (cf. [54, Lemma 2.2.1]).
One can show that v is non-atomic, and for almost every sample path @ = (w,), the
sequence of measures (w,v) has a weak-* limit v, on 0X. Meanwhile, since u is non-
elementary, the random walk is transient and almost every orbit path (w,0), has limit
points on dX. Lemma 2.2 of [53] asserts that the Dirac measures on such limit points are
limit points of the sequence (w,V),. It follows that the orbit path (w,0), also converges
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to a unique limit &, € dX and v is indeed the hitting measure, i.e.,
v(A) =P{w: &, € A}.

Kaimanovich then suggests two criteria for Poisson boundaries: the strip approxima-
tion criterion mentioned before and the ray approximation criterion. As in the previous
discussion, balls of radius M in the Cayley graph X of G contain a uniformly bounded
number of orbit points. The strip approximation criterion then implies that (dG, v) is max-
imal when p has finite entropy and finite logarithmic moment.

The above argument works for locally compact Gromov hyperbolic spaces in general,
where X U dX becomes a compact space. This compactness is critical as it guarantees
the p-stationary measure v and the a.e. convergence of w, v to a Dirac measure. Unfortu-
nately, €(X) is not locally compact since every vertex has infinite valency.

Let us now investigate the ray approximation (also known as geodesic tracking) crite-
rion. This asserts that if there exist nice rays (71 (§), 72(§),...) on G for each £ € G of
a u-boundary (3G, v), then (9G, v) is the Poisson boundary of (G, ). Here the niceness
condition is that the ray projections are measurable and that for a.e. = (wy), if @ heads
to £ € 0G, then m,(§) and w, deviate from each other sublinearly with respect to some
gauge function §.

When G is properly discontinuously acting on a proper space X, then |g|g := d (o0, go)
serves as a gauge. In this situation, if the progress dx (0, w,0) of the random walk is sublin-
ear, then the trivial p-boundary becomes the Poisson boundary and G becomes amenable.
Conversely, random walks on non-amenable groups show positive escape rate. Nonethe-
less, the strategy does not apply to Mod(X) acting on €(X), as €(X) is not proper and
each a € €(X) has infinite stabilizer. These limitations necessitated a radically different
approach for €(X).

Maher and Tiozzo made the breakthrough in [67]. They considered weakly hyperbolic
groups, the case where X is a separable geodesic Gromov hyperbolic space and G is a non-
elementary subgroup of Isom(X). In this setting, they constructed the Poisson boundary
for (G, n) on the Gromov boundary of X . Before delving into their work, let us explore
preceding observations by Maher.

Maher first deduced in [65] the following: when supp @ generates a non-elementary
subgroup of Mod(X), the probability that w, is not pseudo-Anosov converges to zero
as n — oo. Maher mixes the probabilistic feature of harmonic measure and the group-
theoretical structure of Mod(X) to achieve this. The first ingredient is the relative con-
jugacy bounds of non-pseudo-Anosovs [65, Lemma 5.5]. Given this, it would suffice to
show the transience of the set R of elements whose relative conjugacy length is bounded
by some constant (this is proved in [65, Section 5.2] and it would lead to an even stronger
result in the almost sure sense).

One possible approach is to use the fact that the harmonic measure v(9dR) of the limit
set of R dominates the probability of recurrence of R. Unfortunately, the limit set of R
is the entire PMF so this strategy fails. Instead, we consider a subset Ry of R that is
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contained in the union of centralizers of elements with word norm 1, . . ., k. We now claim
that
each of these centralizers has infinite copies in {(supp ()). (%)

Given this claim, a similar argument to [54, Lemma 2.2.2] shows that the centralizers have
harmonic measure 0. It is now argued that limsup, P(w, € R \ R) decreases down to
zero as k — oo. The final ingredient is to ensure (x): it can be guaranteed by passing to a
finite cover of X, if necessary.

Maher then proved in [64] that random walks show linear progress in the curve com-
plex metric. Note that in contrast with Mod(X) with the word metric, €(X) is not locally
compact and thus the standard non-amenability argument does not apply. Maher’s idea
was to construct a sequence of nested halfspaces associated with each trajectory and show
that the length of the sequence grows linearly in probability. This notion records a use-
ful partial history of the random walk, rather than merely recording the final product,
in the form of stopping times. This strategy also helped improve the result of [65] into
the exponential decay of the probability of non-pseudo-Anosovs, given that the transition
probability w is finitely supported [66].

Since these results were established based on the action on €(X), the key challenge
was to remove the properness of X and instead rely on the Gromov inequality among
points only. Another important ingredient was that 7 (X) and €(X) partially share the
same boundary structure, which coincides when we are concerned with p-boundaries.
Recall Theorem 3.3 again: (PMF, v) is a pu-boundary concentrated on UE C MIN.
Here, UE is not only a subset of 37 (X) but also a subset of 0€(X) = MIN . Thanks
to this coincidence, one can use the p-boundary obtained from the dynamics on 7 (%) to
investigate the asymptotic behavior of the random walk on €(X).

This effort culminated in Maher-Tiozzo’s extensive work in [67]. There, X is only
assumed to be separable, geodesic and Gromov hyperbolic, and G is a non-elementary
countable subgroup of Isom(X). Not assuming that X is proper, this setting includes
Mod(X) acting on €(X) and Out(F,) acting on the complex of free factors. As hinted
at by the preceding works, we obtain the p-boundary of G not directly from X but from
other spaces. We then extract the asymptotic phenomenon from the coinciding boundary
structure.

To this end, Maher and Tiozzo exploit the horofunction boundary X é’o, whose usage is
motivated from Calegari-Maher’s work [14]. Using the local minimum map ¢: X, élo — 0X
onto the Gromov boundary, one may

(1) push measures on X é’o forward to dX, and
(2) transfer the (weak-*) convergence of measures on X, ;‘o to that on 0X .

As the horofunction compactification X” of a separable metric space X is always com-
pact, the existence of a j-boundary v on X” and its concentration on the boundary X, é’o
follow. Also deduced is a.e. convergence of measures (w,v) on X, é’o All of these results
can be pushed forward to 39X ; for example, the invariant measure v on X” gives rise to
another measure vV on 0X.
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Meanwhile, given the convergence of (w, V) in dX, its convergence to an atom follows
from the Gromov hyperbolicity. This leads to the fact that a.e. @ = (w,) has a limit point
A = A(w) € 39X such that (w,V) — §; weakly. The final touch is to deduce the orbit
convergence from the weak convergence using shadows and the Gromov hyperbolicity;
this is not available on X" but on X U 8X. It also follows that ¥ is non-atomic; if not,
wandering of the maximum atom yields a contradiction with the assumption that G is
non-elementary.

Having established the relationship between the invariant, non-atomic measure v and
the escape to infinity of sample paths, plenty of dynamical properties of the random walk
can be obtained. These include positive escape rate, geodesic tracking and the linear
growth of translation length. We summarize these below.

Theorem 4.1 (cf. [67, Theorems 1.2, 1.3, 1.4]). Let G be a countable group acting on a
separable Gromov hyperbolic space X and | be a non-elementary measure on G. Then
the following hold:
(1) (Convergence to the boundary) For a.e. sample path @ = (wy)n, there exists
& € G such that lim, w0 = &.

(2) (Positive drift) There exists L > 0 such that

dx (o,
liminfM > L a.s.
n—o00 n

(3) (Geodesic tracking) If u has finite first moment, for a.e. ® = (wy,), there exists a

quasi-geodesic ray y such that

. dx(wpo,y)
hm _— =

n—o0o n

0.

(4) (Growth of translation length) There exists L > 0 such that
P(t(w,) < Ln) -0 asn — oo a.s.

The final term is related to our main concern. Since a mapping class is pseudo-Anosov
if and only if it acts on the curve complex loxodromically, we deduce that random walks
on mapping class groups eventually become loxodromic in probability.

A distinction should be made for random walks with bounded support. In this case,
the argument of [66] indicates that the probability of a shadow decreases exponentially as
its distance from the origin increases. Using this, the above results are promoted into the
following form.

Theorem 4.2 (cf. [67, Theorems 1.2, 1.3, 1.4]). Let X, G, i be as in Theorem 4.1, and
suppose further that | has bounded support. Then the following hold:

(1) There exists L, K > 0and 0 < ¢ < 1 such that
P(dx (0, w,0) < Ln) < Kc"
for all n.
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(2) Fora.e. = (wy), there exists a quasi-geodesic ray y such that

msup ——— < 00
n—o0 logn

(3) There exists L, K > 0and 0 < ¢ < 1 such that
P(t(wy) < Ln) < Kc"

for all n.

In particular, the escape to infinity and the linear growth of translation length occur
almost surely, rather than in probability; the geodesic tracking occurs in a logarithmic
manner, which is stronger than the sublinear one. In fact, combining Maher-Tiozzo’s
theory with Benoist—Quint’s theory (to be explained later) yields the almost sure phe-
nomena under finite second moment condition, as Dahmani and Horbez remark. We note
that [14, 81, 85] are also concerned with finitely supported random walks and deduce that
the probability of non-pseudo-Anosov elements decays exponentially.

We have yet to discuss the ultimate goal that (dX, V) is indeed the Poisson boundary
of (G, ). This requires a mild geometric condition on the action, namely, the acylindric-
ity. The statement holds given that G acts on X acylindrically and p has finite entropy and
first moment.

Maher-Tiozzo’s work shows that if loxodromic isometries are abundant, the coupling
of the group structure and the space is not strictly required for investigating the dynamical
features of random walks. Note that Theorem 4.1 does not require the action of G on X
to be cocompact or properly discontinuous (which would also restrict the geometry of X).
Yet, the Gromov hyperbolicity of X plays a significant role throughout the argument.
We also require X to be separable in order to control the topology of the horofunction
compactification (in fact, by [10, Theorem 4.1] and [46, Remark 4], one can remove the
separability assumption). In the next section, we will examine how critical these condi-
tions are.

5. Teichmiiller spaces

We now discuss random walks on Mod(X) acting on 7 (X). Recall that the translation
length 77 (x)(g) of a pseudo-Anosov mapping class g with respect to the Teichmiiller
metric and the stretch factor A(g) of g have the relationship A(g) = log 77 (x)(g). Hence,
investigating the asymptotics of the translation length on Teichmiiller spaces can reveal
the topological/dynamical properties of a generic mapping class.

An immediate difficulty is that Teichmiiller spaces are not Gromov hyperbolic. To
observe this, consider a geodesic triangle with vertices 0, T{ 0, Tg" o for a point o € T (%)
and Dehn twists T4, Tp along disjoint curves A, B; the Hausdorff distance of [T} 0, T " 0]
from [0, T{o] U [0, Tg" 0] increases logarithmically [74]. Another evidence is that the
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part of 7 (%) where a collection of disjoint curves {y1, ..., ¥, } is pinched resembles the
product space 7 (X \ {y1, ..., ¥n}) X [11=; H? (see [76]).

Despite this failure, Teichmiiller spaces (Mod(X), resp.) share many aspects with neg-
atively curved spaces (hyperbolic groups, resp.). For example, Margulis’ work on the
exponential growth of volumes and deck transformation orbits of a negatively curved
manifold has an analogy in the setting of Teichmiiller spaces and mapping class group
orbits [4]. The uniform exponential growth of hyperbolic groups is also copied onto map-
ping class groups ([1, 68]). In the same vein, many efforts have been made to copy the
‘thin triangle phenomenon’ from Gromov hyperbolic geodesic spaces onto Teichmiiller
spaces.

Let us begin with Duchin’s work on the geodesic tracking a la Kaimanovich, who sug-
gested two criteria for determining the Poisson boundary of groups, the sublinear geodesic
tracking and the strip approximation. Given that the strip approximation was effective
enough to determine the Poisson boundary of mapping class groups, Kaimanovich asked
whether the other criterion works, i.e., random walks on Mod(X) acting on 7 (%) show
sublinear geodesic tracking (cf. [53, Section 0]).

Kaimanovich—Masur’s work already suggests the right candidate for the approximat-
ing geodesic. Namely, almost every sample path w = (w,) possesses the limit point
F(w) € UE such that w,o converges to F(w) when viewed in Thurston’s compactifi-
cation. Each geodesic [0, w,0] is recorded at the initial point o0 with the initial quadratic
differential ¢, € QD,. Using Masur’s comparison of Thurston and visual boundaries [70],
it follows that ¢, — ¢ in @D, and the geodesic y = y(w) with the initial quadratic dif-
ferential ¢ converges to F(w). Here, we are critically using the fact that F(w) belongs
to UE almost surely; compare this with the result in [63].

As hinted before, the nuisance is the thin part of 7 (X). If y(w) were always living
inside a thick part of 7 (X), then one could apply the theory for Gromov hyperbolic spaces
explained in Section 4. Although y is approximated by geodesics connecting thick points,
y may take a long excursion in the thin part of 7 (X). This led Duchin to focus on the
phenomenon inside thick parts [26]. More precisely, Duchin showed that when p has finite
first moment, a.e. ® = (w,) possesses a geodesic y: [0, co) — T (X) beginning from o
such that

ld(a),,o, Mk (y(d(o,w,0))) >0 asn — 0.
n

Here K denotes a thick part of 7 (X).

Duchin’s idea was to bring one particular property of ‘thin triangles’ in Gromov hyper-
bolic spaces to some collection of triangles in 7 (X). In order for a random walk to be
aligned along a geodesic, it is favored that consecutive orbits w,o0 form a sort of ‘highly
obtuse triangles’; in such a case, d(w,—0, w,0) + d(wy0, W, +r0) would be compara-
ble to d(w,—x0, W, +x0). Assuming such distance relations, we now conversely hope that
each w0 is not far away from the limiting geodesic y. Motivated by this, Duchin required
the following property. Let us first fix A > 0, and consider a geodesic triangle Axyz with
the longest side [y, z]. Let w € [y, z] be such that d(x, y) = d(w, y). Then the desired
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property is

dw,x) < Ald(y,x) +d(x,z) —d(y, z)].
For example, A = 2 works for triangles in R-trees. In general, A = 2 works for geodesic
triangles in a Gromov hyperbolic space with a sidelength threshold. Duchin showed that
geodesic triangles such that w € K, together with a side length threshold, satisfy this
property for some A = A(K). The condition w € K led to the subsequence restriction in
the theorem.

Before explaining how Rafi strengthened this approach, we digress to the complete
sublinear geodesic tracking proved by Tiozzo [87]. Tiozzo’s approach applies not only
to Mod(X) but also to groups acting on proper Gromov hyperbolic spaces, groups with
infinitely many ends, and groups acting on CAT(0) spaces. In the case of Mod(X) acting
on 7 (X), we rely on the following fact: for a.e. ® = (w,), the forward limit 1 and the
backward limit £ are distinct points in UE, and they are connected by a unique Teich-
miiller geodesic. Given this, Tiozzo applies the subadditive ergodic theorem to deduce the
conclusion.

Let us now discuss Rafi’s analysis on thin triangles of 7 (X) in [80]. Masur—Minsky’s
theory motivated Rafi to investigate Teichmiiller geodesics with subsurface projection.
A Teichmiiller geodesic y in 7 (X) for some surface ¥ can be cut into distinct subseg-
ments Y, each behaving like a Teichmiiller geodesic on some subsurface Y, isolated
during that time. Using such a decomposition, Rafi deduced the following two instances
of hyperbolicity in 7 (X).

The first item is fellow traveling. Consider two geodesics y: [a, b] = X, n:[a’, '] > X
with d(y(a), n(a’)) < C, d(y(b), n(b")) < C. If X were §-hyperbolic, then y and 7
K(C, §)-fellow travel. We also expect K(C, g)-fellow traveling between such geodesics
inside the e-thick part of 7 (X). However, there exists no a priori uniform bound K for
every pair of geodesics in (%) having pairwise near endpoints. Rafi’s theorem ([80, The-
orem 7.1]) asserts that the geodesics K(C, ¢)-fellow travel if the pairwise near endpoints
are e-thick, even if the geodesics are not entirely e-thick and visit the e-thin part.

The second item is as follows. Consider a geodesic triangle Axyz in X and p € [yz].
If X is §-hyperbolic, then p is within distance K(8) from either [x, y] or [x, z]. This is
not guaranteed in 7 (X) in general, but there instead exist K;(g), K, (¢) satisfying the
following. If p € I C [y, z] for some e-thick subsegment / that is longer than K; (¢), then
the distance between p and [x, y] U [x, z] is at most K;(¢).

As we will see in the next section, these results are useful to compare the concatenation
of geodesic segments [xg, x1], [x1, X2], ..., [xny—1, xn] With the direct one [xg, xn]. In
detail, suppose for each i that

(1) [xi,x;j+1] begins and ends in thick directions, and
(2) the beginning direction of [x;, x;+1] and the ending direction of [x;_p, x;] are
almost aligned.

Then we conclude that each [x;, x;4+1] fellow travels with a subsegment of [x¢, x]. This
fact is utilized by Baik—Choi—Kim’s pivoting, which we explain later.
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On the other hand, Rafi’s approach involving subsurface projections was continued by
Horbez, Dahmani—Horbez and Mathieu—Sisto.

Horbez’s approach in [51] and Dahmani—Horbez’s approach in [22] begin with trans-
ferring sample paths on 7 (%) to €(X) via the shortest curve projection : T (X) — €(X).
Here, the preimage of each point p € € by = is of infinite diameter. Nevertheless, for a
Teichmiiller geodesic y that is long in terms of both the Teichmiiller metric and the curve
complex metric, the (rough) preimage of 7 (y) may have stricter restriction. The follow-
ing observation is motivated by the work of Dowdall-Duchin—-Masur improving Rafi’s
thin triangle result [25, Theorem A].

Proposition 5.1 ([22, Proposition 3.7]). For all k > 0, there exist B, D > 0 such that
the following holds. Let [x, y] be a Teichmiiller geodesic that contains a subsegment y
with sufficient progress on €(X), that means, diame(z)(7w(y)) > B. If z € T (X) satisfies
that 7 ([x, z]) and 7w (y) k-fellow travel up to a reparametrization, then there exists a
subsegment 1 C [x, z] such that the Hausdorff distance of y and n in T (X) is at most D

and diam'(;'(z) ((n) = diaml‘f(E) (w(y)) — B.

In other words, the fellow-traveling among projections of long enough Teichmiiller
geodesics onto the curve complex can be lifted to the Teichmiiller space. Recall also the
result of Masur and Minsky that 7 is coarsely Mod(X)-equivariant, is coarsely Lipschitz,
and sends Teichmiiller geodesics to K(X)-quasi-geodesics. In this framework, we now
explain how Dahmani and Horbez lifted the behavior of random walks on €(X) to 7 (X).

First, Masur—Minsky’s theory provides a constant K such that the shortest curve pro-
jections of Teichmiiller geodesics are unparametrized Ky-quasi-geodesics on €(X) ([72,
Theorems 2.3, 2.6]). Since €(X) is Gromov hyperbolic, we have the following Morse
lemma for some K; > 0: any pair of Ky-quasi-geodesics that share the beginning and the
ending points K;-fellow travel up to a reparametrization. Moreover, there exist K, > 0
such that for a pair of Ko-quasi-geodesics K,-fellow travel up to a reparametrization if
their beginning points and ending points are (K; + 2§)-close, respectively.

Let us temporarily fix a reference point o’ in 7 (X), and let 0 = 7 (o). We recall a
result of Maher-Tiozzo: given a finitely supported measure p on Mod(X), almost every
sample path v = (wy,) of the random walk satisfies that

w,
lim te(s) (wn) _

n—o00 n

Aa

where A is the escape rate of the random walk in €(X).
See Figure 1. Let us consider geodesics [0, @, 0], [w,0,020],. .., [0k 1o,wko] in € (Z).
Suppose, say, that 1000(6 + B(10K3)) < de(x)(0, w,0) < 2An and
de(x)(0, @n0) — Te(z)(@n) < 0.01de(s) (0, w0)
(this will happen eventually in a.e. path ). Then [0} 0, w!~'0] and [0, ! 0] should
deviate early, at distance within 0.005d¢(x)(0, w,0). By §-hyperbolicity of € (%), there
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Figure 1. Schematics for the proof of Theorem 5.2. Curves on 7 (%) are Teichmiiller geodesics,

while their projections on €(X) are Kp-quasi-geodesics. The corresponding thick segments on

[0/, @30'] and [0}, =1,/ w,, Lo ] projects to sufficiently long, fellow-traveling thick segments on € (X).

This forces the or1g1na1 segments to also fellow-travel.

exist disjoint subsegments [x;, y;] of [o, a),]f 0] that 25-fellow travel with the middle 99%
of w10, who]. (%)

We now lift the situation to (%) using the ingredients below:

(1) First, curve complex geodesics [w fl_lo , 0] are Ky-close enough to the projec-

tions Jr([a)l o/, a) 0']) of the Teichmiiller geodesics.

(2) Similarly, [0, w¥o] and 7([o’, w¥0']) are Ko-close.

3) (1), (2)and (*) imply that 7 ([0’, a)ko’ ]) crosses the middle 98% of each projection

7([wl10’, wl0']) up to distance K.

We now apply Proposition 5.1 twice to obtain subsegments (nl)k Lof [0, a),]fo] that
satisfy the following. Let vy be a subsegment of [0, w,0'] that prOJCCtS onto the middle
96% of m([0’, w,0']). Then 771 and w! ., Yo are within Hausdorff distance D(K) on T (X).
Therefore, we have dff();)(a) o, [0, a)ko’]) < d(0’, yp) for each [ and

1
dy (z)(0, wn0) — T3 (x) (Wn) = d7(5)(0, @,0) — lim %d(o’ wko)

< 2dgx) (0, v0) + D(K).

It now suffices to control the final term, the Teichmiiller length of the left 2% portion
of [0/, w,0'] with respect to the curve complex distance. Although two distances are not
comparable in general, the linear escape and sublinear tracking of a.e. sample path on both
€(X) enable this. Using this type of argument, Dahmani and Horbez obtain the following
theorem.
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Theorem 5.2 ([22, Theorem 0.2]). Suppose that p is finitely supported. Then for a.e.

sample path (wy,), we have
lim /A(wy) = A,
n—>00
where A(wy) is the stretch factor of w, and log A is the escape rate of the random walk.

The finite support assumption in Theorem 5.2 originates from the spectral theorem
for €(X). As Dahmani and Horbez explain, the arguments of Benoist—Quint and Maher—
Tiozzo give rise to a spectral theorem for €(X) with finite second moment assumption.
Given this, the rest of the Dahmani—Horbez argument relies on the sublinear tracking and
the subadditive ergodic theorem that only requires finite first moment.

Another way to relate the actions of Mod(X) on €(X) and 7 (X) was suggested by
Mathieu and Sisto [75]. They first argue that non-elementary random walks on acylin-
drically hyperbolic groups are almost additive. This almost additivity reduces the limit
laws on such random walks to those of commutative random walks on R. In the course
of the argument, they establish deviation inequalities, logarithmic geodesic tracking (see
also [84]), and many more ingredients that we will observe soon.

Meanwhile, although it is true that Mod(X) is acting on €(X) and 7 (%) acylindri-
cally, (%) is not Gromov hyperbolic. Hence, one needs to bring the results on €(X)
to 7 (), which motivated Mathieu and Sisto to show the existence of o € €(X) and L >0
that satisfy the following. For /1, />,¢ > 0 and g, h € Mod(X) such that de(x)(go, ho) >
L + 11 + 15, we have

diam” P [z (BE® (g0, 1,)) N N] P (z" (BE® (ho, 1)))] < L1,

where 7 denotes the shortest curve projection and diam® , NX, BX refer to the diameter,
neighborhood and the ball with respect to dy, respectively. This property follows from
the coarse distance formula of the Teichmiiller metric in terms of (truncated) curve com-
plex distances on subsurfaces [79], and the bounded geodesic image theorem on curve
complexes of subsurfaces with uniform constant (see [72, 89]). Note that this property
promotes the bounded distance of 7 (p) from a long enough quasi-geodesic 7 (y) to the
bounded distance of p from y.

Both Dahmani—Horbez’s and Mathieu—Sisto’s approaches are concerned with geomet-
ric properties of 7 that are not expected for arbitrary pairs of points or geodesics on 7 (X)
but expected in almost every sample path. One partial reason, although not complete, is
that Mod(X) acts on 7 (X) as isometries that translates each e-thick reference point to
another e-thick point, rather than arbitrary points. This implies that the randomness from
random walks and other types of randomness in 7 (X) may show different behavior.

In this spirit, Gadre, Maher and Tiozzo captured the contrast between the harmonic
measure on PMF (X) arising from random walks and the Lebesgue measure [37]. A sim-
ilar contrast holds between the Lebesgue measure on dH? and the harmonic measure from
arandom walk on a cusped Fuchsian group. Gadre-Maher—Tiozzo considered the follow-
ing quantity: for a boundary point p € PMF (X), we first take a geodesic y tending to p,
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and approximate thick points y(¢) with mapping class group orbits /0 of the reference
point 0. Then we compare the word norm of /#; on Mod(X) and the displacement of &,
with respect to the curve complex metric. In terms of the Lebesgue measure, the ratio
between dyoacz) (1. 71¢) and de(z)(0, h0) tends to infinity in almost every choice of p;
on the other hand, in terms of the harmonic measure for p with finite first moment in the
word metric on Mod(X), dyoa(z) (1, 4;) and de(x) (0, h;0) are comparable and their ratio
converges to a uniform constant in almost every choice of p.

Let us finish this section by explaining a consequence of Rafi’s theorems that will
be used later on. Consider a geodesic triangle Axyz in 7 (X). A priori, Axyz is not §-
thin and [yz] need not be contained in a bounded neighborhood of [xy] U [xz]. However,
suppose that [x, y] initially fellow travels with a thick segment [x, y’]. This forces that
[x, y] is initially thick also, and Rafi’s theorem asserts that this beginning portion should
be contained in a bounded neighborhood of [x, y] U [y, z].

Let us similarly suppose that [x, z] initially fellow travels with a thick segment [x, z'],
and [x, y'] and [x, z'] are heading in different directions, i.e., (y’, z") is bounded. Then the
initial segment of [x, y] cannot be contained in the neighborhood of [x, z] and vice versa.
Finally, if we further suppose that points y, z are also thick, then Rafi’s fellow traveling
theorem implies that Axyz is an obtuse thin triangle: [y, z] and [x, y] U [x, z] are within
bounded Hausdorff distance.

6. Limit theorems I: Displacement

In the Euclidean setting, stronger moment assumptions lead to finer description of random
walks. For example, strong laws of large numbers (SLLN) are linked with the finitude of
first moment; central limit theorems (CLT) and laws of the iterated logarithm (LIL) are
relevant to the finitude of second moment; when the random walk has finite exponen-
tial moment, large deviation principles (LDP) is also available. Many recent work in this
topic tried to bring these results to hyperbolic settings under suitable moment conditions.
Among them we explain the results of Benoist—Quint, Horbez, Mathieu—Sisto, Boulanger—
Mathieu—Sert-Sisto, Gouézel, Baik—Choi—Kim and Choi.

In the setting of general metric spaces, two meaningful quantities arise from random
walks @ = (w,) on the isometry group: the displacement d (0, w,0) of a reference point
0 € X and the translation length 7(w;,). The first one is subadditive while the latter one
is not; this complicates the investigation of translation length. We will first discuss the
theorems for displacement and then move on to the case of translation length.

The theorem in hyperbolic settings that corresponds to laws of large number is the
subadditive ergodic theorem. For completeness, we spell out the following statement.

Theorem 6.1 (cf. [53, Theorem 5.5], [67, Theorem 1.3]). Let X = T(X) or €(X) and
suppose that [ is a non-elementary probability measure on G has finite first moment. Then
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there exists A > 0, called the escape rate of i, such that the random variables %d 'x (0, wn0)
converge to A in L' and almost surely.

Here, the strict positivity of the escape rate is due to the non-amenability of Mod(X)
in the case of X = 7 (X), whereas it follows from the existence of ‘persistent joints’ from
Maher-Tiozzo’s argument in the case of X = €(X) (which ultimately relies on the fact
that the harmonic measure for u on d€(X) is atom-free). We will revisit the notion of
persistent joints in Section 7.

We remark that this is not a consequence of the Borel-Cantelli argument. Indeed, for
example, the exponential decay of ]P’(%d (0, wp0) = A + ¢) for ¢ > 0 implies that  has
finite exponential moment. In contrast, P(%d (0, w,0) < A — ¢) does decay exponentially
even without any moment condition due to the recent work of [44]. We note that Gouézel’s
technique is powerful enough to deduce other results including the continuity of the escape
rate.

The next natural goal is CLTs of the following form.

Theorem 6.2 ([7, Theorem 1.1], [51, Theorem 0.1]). Let X = T(X) or €(X). Suppose
that w is a non-elementary, non-arithmetic probability measure on G with finite second
moment. Then there exists o > 0 such that JLZ [dx (0, wp0) — An] converges to the Gauss-
ian law N (0, o) in law, where A > 0 is the escape rate of the random walk. Explicitly, for
any a < b, we have

lim Plav/n < dx(0,wn0) —An < by/n e37120 g

b
1=/ 7

This direction dates back to Sawyer—Steger’s investigation [83] on the random walks
on free groups, which was also discussed by Ledrappier [62]. Its generalization to Gromov
hyperbolic groups under the finite exponential moment assumption is due to Bjorklund
(see [8]). The current CLT under the finite second moment assumption was proven by
Benoist and Quint in [7], using the machinery of their previous work on linear groups.
Finally, by the lifting principle that we explained before, Horbez generalized this CLT to
Teichmiiller spaces [51].

Benoist—Quint’s theory applies to non-elementary groups G acting on a proper, quasi-
convex, Gromov hyperbolic space X and non-elementary, non-arithmetic Borel measures
on G. Note that G and p need not be discrete here. The properness of X is assumed for
constructing the Gromov compactification X U 0X and the Busemann compactification
X U dp X. The main strategy is to find an alternative for the random variable d (o, w,0),
which can be expressed as martingales with step differences controlled in L? and in prob-
ability. The first trick is to use Busemann functions

o(g,x) = lim [d(g~"0,x,) — d(0,%,)]
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for x € dpX and x, — x instead of the displacement. In contrast with displacement,
Busemann functions satisfy the cocycle condition

o(gg' . x) =0(g.g'x) +0(g" . x). (1)

At the cost of this advantage, however, one should pay attention to several details. First,
the choice of the boundary point x causes some asymmetry. Moreover, the decomposition
of o (wy, x) into o (gx+1, wrX) as in equation (1) involves different boundary points wy x;
hence, the argument requires analysis on the boundary action of G and the stationary
measure on dg X or dX. Second, o (wy, x) is nonetheless different from d (o0, , 0) and the
discrepancy

d(o, w,0) —o(wy, X)

should be controlled for large enough 7 in probability. Finally, the quantities o (gx+1, Wg X)
still may not be adequate for martingale CLTs, as they are not ‘centered’ at the right value,
namely, the escape rate A. One should therefore solve the cohomological equation and
center 0 (gx 41, W X) by subtracting bounded random variables. After all these preliminary
steps, we can control the step differences in L2 and in probability using the finitude of
second moment of u and conclude. Note again that the spirit of this proof is ‘from the
infinity’, rather than ‘working inside the space’.

As we have seen before, the lifting argument often promotes phenomena in €(X)
to the corresponding ones in 7 (X). Horbez’s strategy in [51] was to lift the ingredi-
ents for Benoist—Quint’s CLT, including the centerability of Busemann functions and the
summable decay of shadows in particular directions, from €(X) to 7 (X). Although €(X)
is not proper and thus Benoist—Quint’s proof does not apply as is, these ingredients are
available on non-proper spaces by Maher-Tiozzo’s work. Once the ingredients are lifted
using Proposition 5.1, Benoist—Quint’s argument applies to Busemann functions on 7 (%)
and the desired CLT follows.

Another approach to the CLT for displacement was proposed by Mathieu and Sisto
in [75]. In fact, they provide a much more general framework, requiring the control on the
defects of the form

Onim(@) — On(@) — Qm(T"w)

(the Gromov products (@p+m0,0) 4,0 in our setting, for example) and yielding quantitative
estimates on the lack of additivity of such sequences.

To see the principle behind this, let G be acting on any metric space X and let us
assume that E[(w,0, @,0)2] is bounded by some constant B for all n. We now estimate
the distances among 0, ,0, 2,0, . .., w4k, 0. If the points were always perfectly aligned,
then E[d (0, w,x,0)] and Var[d (0, w,x,0)] would grow linearly with respect to 2% (note
that the family {a)i_nl w(i+1)n }i consists of independent RVs). We would also have

2k
d (0, wyk,0) = Z d(wi—10,w;0)

i=1
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and the classical CLT would imply that

1
\/7—’1[61 (0. wy1,0) — E[d (0. 51,,0)]]

converges in law to a Gaussian law N(0, g,,), where o,, = +/ Var[d (o, w,0)]/n.

However, the addition is not exact and the deficit is recorded in the form
2(winos Cbkno)wjno-

Note that in order to make d(0, w,k,0) out of d(0, w,0), ..., d(Wk_1),0, Wak,0), WE
need to add up 2% — 1 deficits

2(@:(2j-2)0, @21 2j-1)Nwysij0 (=0, k=1, j =1, 25711,

For a fixed ¢, these form a family of (2¥~*~! — 1) i.i.d. with variance less than B. Summing
them up and dividing by 1/+/2%n, the error from these terms is bounded by 7/ .3/n outside
an event of probability at most 8 B/ 3/n. By taking dyadic n = 2™, we deduce that

\/% [d(0, wam0) — E[d(0, wm0)]]
is Cauchy and 0, — o > 0 (here is required at least linear growth of Var[d (o, wm0)],
which is deduced from the non-arithmeticity of ). A similar argument can handle non-
dyadic steps also, if E[(w,0, @m0)3] is uniformly controlled for arbitrary n, m.

It remains to control E[(wy,0, ®,0)2] as promised, for which Mathieu-Sisto’s argu-
ment requires two assumptions: (1) that u has finite exponential moment, and (2) that
the action is acylindrical. Since the action of Mod(X) on €(X) is acylindrical, Mathieu—
Sisto’s theory applies to €(X) and deduces the CLT. Moreover, 7 (X) also fits into this
scheme since it is acylindrically intermediate for (Mod(X), €(X)).

Let us explain how Mathieu-Sisto’s viewpoint of ‘almost exact addition’ was expan-
ded in the works of Boulanger—Mathieu—Sert—Sisto, Gouézel and Choi. All these works
use the following same modification of random walks. Given a measure ;& on G and
S C G such that @ := min{u(g) : g € S} > 0, there exists a measure 7 such that yu =
aps + (1 —a)n, where g is the uniform measure on .S. We then consider:

e Bernoulli RVs p; (with P(p; = 1) =aand P(p; =0) =1 — ),
* 1n; with the law 7, and
e v; with the law g,

all independent, and define

_ ) mi whenp; =1,
i v; when p; = 0.

Then y; are i.i.d. of the law u that models the random walk on G generated by u. Let us
also define N (k) := Zle pi and 9(i) := min{j > 0: B(j) = i} for convenience. In
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this model, a random trajectory consists of relatively usual steps (V)41 - - -, Yo@+1)—1)
and special steps y;(;) in an alternating way, the first one being chosen with law v and the
second one being chosen with law .

Morally, v is designed to behave almost like p: they share the same moment condi-
tion and similar moment values. The displacements made by these usual steps are then
linked with the special steps from S. The desired property of special steps is that they can
align consecutive displacements with high probability. This is encoded in the notion of a
Schottky set, which stems from the classical Schottky decomposition.

Definition 6.3. Let K, K’, ¢ > 0. A finite set S of isometries of X is said to be (K, K')-
Schottky if the following hold:

(1) forall x,y € X, |{s € S : (x,5"y), > K for some i > 0}| < 2;

(2) forallx,y € X, |{s € S : (x,s'y), > K for some i < 0}| <2;

(3) foralls € Sandi # 0, d(0.s'0) > K'.
When X is Teichmiiller space, S is said to be (K, K’, &)-Schottky if the following condition
holds in addition to the above three:

(4) foralls € S and i € Z, the geodesic [0, s'0] is &-thick.

By employing Schottky sets for ‘linking steps’, one can add up step distances almost
exactly. In particular, Boulanger—Mathieu—Sert—Sisto recovered the following deviation

inequality of Mathieu—Sisto without the acylindricality assumption: if u has finite expo-
nential moment, there exists K, k > 0 such that

P[(ova)no)wio = R] =< Ke R

holds for any O < i < n. This result is subsequently used to establish the following large
deviation principle for the random walk.

Theorem 6.4 ([11, Theorem 1.1]). If i has finite exponential moment, then there exists a
proper convex function I:R — [0, 0] (called the rate function) that satisfies

1 |
— inf I(a)fliminf—lnIP’[—d(o,wno)ER]
a€int(R) n n n

1 1
< limsup — lnP[—d(o, wn0) € R] < —inf /()
n n n o€R
for any measurable subset R of R. Moreover, I vanishes only at the escape rate A of the
random walk.

Roughly speaking, the probability that ,lld (0, wy0) deviates from A decays exponen-
tially, the speed of which is precisely encoded by /. We note that Boulanger, Mathieu,
Sert and Sisto establish the rate function from above (for values greater than A) on arbi-
trary metric spaces. Indeed, the existence of the rate function from above is essentially
equivalent to the finitude of exponential moment, rather than the geometric properties of



Random walks on mapping class groups 303

the underlying space, as mentioned before. Meanwhile, establishing the rate function from
below requires the existence of Schottky sets and the Gromov inequalities among points.

It was unexpected, however, that the exponential decay of the deviation from below
does not require any moment condition.

Theorem 6.5 ([44, Theorems 1.1, 1.2]). Let X =T (X) or €(X) and p be a non-elemen-
tary probability measure on G.

(1) If u has finite first moment and A is its escape rate, then
Pld (0, wn0) < (A — &)n]

decays exponentially for any ¢ > 0.

(2) If u has infinite first moment, then there is no finite ‘escape rate’:
Pld (o, w,0) < rn]
decays exponentially for any r > 0.

To establish this result, Gouézel first takes suitable integer N and a Schottky set S so
that we have a decomposition

W = ap 4+ (1 —a)v. 2)
Here the N-th convolution of p is designed to guarantee sufficiently large size of S; the
purpose of the self-convolution of the Schottky measure will become apparent soon. Then
the composition y; of the Bernoulli variable p; and 7;, v; models the convolution of steps
8&NG—1)+1- - - - » §Ni- We name some of the special steps 0} (i) as pivotal times, which are
meant to be the crucial moments throughout the history of the random path.
At each pivotal step, we hope that two Schottky segments are directed away from
each other and the former (latter, resp.) Schottky segment does not cancel out the previous
(upcoming, resp.) progress. To be concrete, suppose that we have chosen {m < --- <my}

from the special steps {ﬁ(i)}?i;l as pivotal times for the path (g1, ..., gsr)). Let
e =1 R | ro_ -1

Wi *= ONGni+1)PNmirs S 2= ONm; ON@mi+0.5)>  Si = ON(m;+0.5)PN(@mi+1)>
and wo := ®Nm,, So = id. See Figure 2. The desired situation that m, . . ., my is assumed
to satisfy is the following for suitable K:
. -1, o -

(s;770,5;0) < Kfori =1,...,k,
. (sl{_lo,wio)g <Kfori=1,...,k,
o (wilsiZlo,si0)p < Kfori =1,....k.

From these conditions, we can deduce small Gromov products among consecutive
pivotal loci: (w;—10, W;4+10)y;, for each i. Note that this alone does not guarantee small
Gromov products (w; 0, Wk 0)w, o for arbitrary i < j < k that we need to sum up intermedi-
ate progresses: recall the theory of Mathieu—Sisto. This is remedied by the fact that small
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WN(my+0.5)0

A =~
WNm, 0 WN(my+1)0 N~ ONm30  ON@Gns+1)0
0-----x 2L Yool AUz
AR 7},/)//0)1\/,,,20 wN(m2+1)0x>\ < WNHM)O
WN(m+0.5)0 WN(m3+0.5)0

Figure 2. A preliminary definition of pivotal loci.

Gromov products are actually guided by long enough Schottky segments. Hence, each
d(wj—10, w;110) is large enough and the Gromov inequality can deduce small arbitrary
Gromov products. In 7 (%), we rely on the consequence of Rafi’s theorems (cf. Section 5)
and similarly deduce small arbitrary Gromov products.

The ideal situation is that all special steps can work as pivotal steps. If it is the case,
the intermediate progresses are added up and the overall progress becomes large enough.
Unfortunately, there is always a small chance of the undesirable event: the probability that
all special steps are pivotal times decays exponentially. Nonetheless, we want to tolerate
some error and select a sufficiently large number of special steps that still work as pivotal
steps.

To further illustrate this idea, given pivotal times {m1,...,mg} for (g1,..., gsm))»
let us determine the pivotal times for the path (g1, ..., g9 +1)). One possible strategy is
just adding my 1 = (M) to the original set of pivotal times. Recall again the conditions
formy,...,mg:

. (si_lo,slfo)ofoori=l,...,k,
e (sslo,wi0), < Kfori =1,...,k,
o (wilsiZho.si0)p < Kfori =1,... k.

Fixing w; and s/, there are many other choices for each s; that satisfies the condition. In
particular, the property of Schottky sets implies that at least (#S — 2) choices out of all
choices are valid at each step. This process, fixing w; and s; and modifying the choice
of s; into another valid choice, is called pivoting.

If, for example, the additional sy 11, 5}, 41 and w4 satisty the above condition, then
we can add it to the set of pivotal times. This already takes up large enough probability,
at least ((#S — 2)/#5)2. In case of failure, however, we do not wish to give up the entire

selection {m1, ..., my} but rather retain a portion that works for (g1, ..., g9 +1))- For
example, can we hope that the set {my, ..., my_1} itself works for intermediate words
Wo, W1, ..., wk_lsks,'cwkskﬂs;cﬂwkﬂ? A priori, the final word depends on Sk+1s;c+1

so this cannot be answered without altering s, _, : this is not what we want. We can how-
ever require the following conditions:

© (s} 0, wk0)o < K,
o (wil s o.sk0)0 < K,

-1
© (Sg 0. S WkSk418) 1 Wh+10)0 < K.
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The first condition is already achieved by the fixed s; _, from the assumption, and the
latter two conditions can be achieved for any fixed s,’c_l, Wi—1, Sk+1, sl/c+1’ Wk+1 by
picking valid sj only. This has high chance, so we have

]P’[{ml, ....mg_1} works for (g1,..., 8o +1)) | {wi, wl{, Si b ASibistks Sk ¢ valid]
#S -3
> .
#S
Note that the estimation is conditioned on each equivalence class of choices that are piv-
oted at the k-th slot from each other. Summing them over bad choices of sg 1, s,’{ 410 We
have

P[{my.....mg_1}y.{my, ... mg}{my, ... mj41} does not work |
< |:1 - (#S _2)2:| =
- #S #S

Inductively, we deduce that the first k — i slots (and possibly some more) among
{m1,...,mg41} can be employed as pivotal times for (g1, ..., g9ar+1)) €xcept an expo-
nentially decaying probability, whose decay rate depends on the size of S. In summary, we
can guarantee almost definite increase of the proportion of pivots, as close to 1 as needed,
by taking a large enough Schottky set. For the precise definition that includes the modified
conditions, see [44] or [16].

Using small Gromov products among pivotal loci, one can show that d(o, w,0) is
bounded from below by a multiple of #{pivots for (g1, ..., g,)}. Hence, we have estab-
lished the definite progress of random walks outside an event of exponentially decaying
probability. In order to push this progress as close to the escape rate as we want, one should

modify the decomposition (2) and sandwich an auxiliary variable between Schottky steps.
‘We refer the readers to [44] for details.

7. Limit theorems II: Translation length

We now discuss the theory of translation length. In contrast with the case of displacement,
where SLLN with the optimal moment condition was obtained at once, the first result for
translation length was the following weak law of large numbers (WLLN).

Theorem 7.1. Let X = T (X) or €(X). Then there exists L > 0 such that
1
limP[—rX(wn) < Li| =0.
n n
If 0 has finite first moment in addition, then for any ¢ > 0 we have

limP[
n

1
—tx (wn) — A| > 8] =0,
n

where A is the escape rate of the random walk.
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The WLLN on €(X) follows from Maher—Tiozzo’s theory, again due to the fact that
the harmonic measure is atom-free. The corresponding result on 7 (X) is due to Dahmani—
Horbez’s lifting argument. Meanwhile, this convergence in probability alone is not enough
to deduce the following SLLN.

Theorem 7.2. Let X = T (X) or €(X) and suppose that | satisfies some moment condi-
tion. Then almost every random path w = (wy,) satisfies

1
lim —tx (wy) = A.
non

In [67], Maher and Tiozzo discuss summable estimates of shadows along a direc-
tion for random walks on €(X) with bounded support. This is generalized to random
walks with finite exponential moment, for which Boulanger, Mathieu, Sert and Sisto
establish the same exponential decay of harmonic measure along the distance from the
reference point (see [11]). Moreover, as Dahmani and Horbez point out, Benoist—Quint’s
analogue of Hsu—Robbins—Baum—Katz’s theorem gives summable estimates for random
walks with finite second moment. This leads to Theorem 7.2 under finite second moment,
and Dahmani—Horbez’s argument brings Theorem 7.2 to the setting of 7 (X). Here the lift-
ing is possible whenever the random walk has finite first moment with respect to dy(x),
but it is the SLLN on €(X) that restricts the moment condition.

Before introducing Baik—Choi—Kim’s theory in [5] for the SLLN under finite first
moment condition, let us recall Maher-Tiozzo’s strategy. In a §-hyperbolic space such
as €(X), the discrepancy d (0, w,0) — t(wy) is comparable to the quantity (o, 10, ©,0),.
In particular, if (w;, !0, w,0), is smaller than half of d (0, w,0) minus a constant, then the
discrepancy is bounded by (w;, 0, ,0), plus a constant.

In order to control (w;, '0, ®,0),, we now claim that the direction of [0, w,0] ([0, w; 0],
resp.) is almost guided by [0, g1 -+ gn/2)0] ([0, g5 ---ngl/zHlo], resp.). Given this
claim, (w;, 0, ®,0), is now correlated with the deviation (g, ' - - -gL_nl/2J +10:81°°&[n/2)0)
between two independent random paths. Actually, the claim itself also involves quantities
of the same nature: (w,0, W[y 2]0)o grows linearly almost surely if d(o, |,/2j0) does
grow linearly (which is true by the ergodic theorem) and

(ova)no)a)tn/zJO = (g|__nl/2J "'gl_loagl_n/ZJ+1 "'gno)o»

being the deviation between another pair of independent random paths, grows sublinearly.

Hence, it suffices to show that P[(&,0, w,0), > Kn] is summable for any K > 0.
For this Maher and Tiozzo condition on each choice of @, and regard (&0, ®,0), as the
deviation of a random segment [0, w, 0] from a fixed direction [0, @, 0]. By [7, Lemma 4.5]
(used together with the observation that a can be chosen as any positive number for [7,
item (4.8)]), the probability is summable when p has finite second moment and the conclu-
sion follows. However, it is difficult to obtain summable estimates from weaker moment
conditions with this strategy, considering Baum—Katz’s theorem.
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The situation is more complicated in 77 (%) since it lacks §-hyperbolicity. Here, summ-
able estimates of IP[(&,0, w,0), > Kn] are not enough and the deviation between paths
should occur at special loci that enable arguments for §-hyperbolic spaces.

Interestingly, Baik—Choi—Kim’s strategy in [5] does not rely on the estimates for
P[(wn0, wy0), > Kn]. Their idea is to utilize the notion of persistent joints of Maher
and Tiozzo. Fixing suitable L, we say that a persistent joint arises at step 3k L if:

 the steps (g3(k—1)L+1. - - - » §3kL) constitute one of two Schottky-type paths,

» the forward subpath (w30, W3k +10, . . .) is contained in a shadow centered at w310
viewed from w(zx—1yz0, and

 the backward subpath (..., @3¢—1)L—10, ©3(k—1)L0) is contained in a shadow cen-
tered at w3k —2)L.0.

Both this construction and Gouézel’s construction pinpoints the steps for pivoting and
derive almost sure phenomena. Nevertheless, the desired phenomena are different: Baik,
Choi and Kim intend to guarantee large translation length by pivoting on the event of
small translation length, while Gouézel intends to guarantee definite progress from the
prevalence of pivotal loci and one performs pivoting to establish this prevalence.

Moreover, Baik, Choi and Kim’s pivots entail technicalities that are not shared with
Gougzel’s pivots. First, the prevalence of persistence joints is guaranteed outside events of
summable probabilities. Another complication is that persistent joints are not independent
variables. Nonetheless, persistent joints at different steps are linked by the ergodic shift
and the subadditive ergodic theorem does guarantee the eventual prevalence of persistence
joints for almost every path. We remark that Gouézel’s construction equally works with
stronger implications.

We explain how Baik—Choi—Kim achieved the almost sure linear growth of tx (w,)
without moment condition. We hope to declare an equivalence relation among random
paths by pivoting: two paths are equivalent if they are identical except at the middle Schot-
tky segment of the first N persistent joints. Here comes one technical issue that the original
and the pivoted path may not have exactly the same persistent joint steps. This is because
persistent joints are random variables depending on entire @ (not on finitely many steps
near that joint) and single pivoting may alter entire distribution of persistent joints. To
avoid this issue, Baik—Choi—Kim redefines pivots so that pivoting does not alter the pivot
distribution. Moreover, according to their definition, persistent joints are incorporated in
these pivots so the number of pivots also linearly grows almost surely.

Given this, the more pivots a path has, the smaller conditional probability that the path
possesses inside its equivalence class. We now observe that if a path @ has small y (wy,)
and has enough number of early pivots within distance %[d (0, wp0) — ¥ (wy)] from o,
then the early pivoting @ +— @ results in large ty (@, ). Similar discussion holds for the late
pivoting; in this case, enough number of late pivots within distance %[d (0,w,0) — tx (wp)]
from wy 0 are needed. It remains to show that random paths either have enough number of
early or late pivots near o or near w,o, respectively. This follows from distant allocation
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of pivotal loci: pivotal loci cannot be concentrated within distance Ln for some suitable
L > 0, so those paths w with tx (w,) < Ln necessarily fall into the above two categories.

The above argument can be improved if p has finite first moment. For example, a lin-
early growing number of pivots for (g1, ..., g,) should arise before 0.01n almost surely
due to the subadditive ergodic theorem. Then the SLLN for displacement, another con-
sequence of the ergodic theorem, asserts that a linearly growing number of pivots appear
within distance 0.02An from o, where A is the escape rate. Thus, one can rely only on
the early pivoting and bound the probability of {tx (w,) < d(0, w,0) — 0.04An}. Since
d(o,wn0)/n also converges to A, we obtain that lim sup,, tx (w,)/n > 0.96A almost surely
when X = €(X).

In the case of 7 (%), one should keep in mind that small (w; !0, ®,0), will not
automatically imply small (w, ™o, a),’f 0), for all m, k > 0. Nonetheless, Baik—Choi—Kim
exploit Rafi’s results on thin triangles and fellow-traveling with thick ingredients and
deduce the following fact. If the pivots are constructed with a (K, K’, £)-Schottky set
for a sufficiently large constant K’, then each middle Schottky segment at the pivotal
steps fellow travels with some subsegment of [0, w,0]. Moreover, when a random path o
satisfies

3100, 000) ~ T(0p)] = d(0,2) + C

for some pivotal locus z, then the directions of [0, &;,0] and [0, w,0] near z are guided by
the same Schottky segment. If one pivots the path at z by choosing a different Schottky
direction, then [0, @y,0] and [0, @,0] deviate at z and [y, 0, B,0] passes nearby z. This in
turn implies that

T(wyp) > d(o, w,0) — 2d(0, 2).

Therefore, the SLLN in §-hyperbolic spaces is copied to T (X).

After Gouézel and Baik—Choi—Kim’s work, Choi tried to incorporate two notions of
pivots in [16]. As a result, Choi explained how accurately displacement and translation
length match from the prevalence of pivots except for an event of exponentially decaying
probability. This implies the following deviation inequality.

Proposition 7.3. Let X = T (X) or €(X) and | be a non-elementary probability measure
on G with finite p-moment for some p > 0. Let also q < p be a non-negative integer. Then
there exists K > 0 such that

E[(&mo, om0)2+] < K + Ke ™ Km' —m)4,

E[d (0, [dm0, omo))PT] < K + Ke™™ K (m' —m)?

forall 0 < m < m’, respectively.

In the special case m = m’, we obtain uniform control on E[(&y,0, a)m/o)gp ] from the
finite p-moment of ©. While Maher-Tiozzo’s argument first fixes one of random paths and
considers the deviation of the other path from that fixed direction, Choi performs pivoting
on both random paths to make the estimate more effective and obtains exponent doubling.
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In particular, when p has finite p-moment for some p > 1/2, the above estimate
implies that

E[(@mo.om0)s"] _ K

P[((Z)mO,(l)mO)o z Cm] = (Cm)ZP - (Cm)ZP

is summable for any C > 0. Hence, Choi’s result (together with Gouézel’s weak LDP from
below) implies the SLLN for translation length in Gromov hyperbolic spaces including
€(X) when p has finite p-moment for some p > 1/2. Nevertheless, this still requires
a moderate moment condition; the SLLN for translation length without moment condi-
tion relies on the pivoting itself, as in Baik—Choi—Kim’s argument. Choi deduces another
consequence of the pivoting, the control of the discrepancy between displacement and
translation length with greater precision, as follows.

Theorem 7.4. Suppose that p has finite first moment. Then there exists a constant K < 0o

such that :

logn

lim sup |t(wy) — d(o,wy0)| < K
n

for almost every w.

Meanwhile, the deviation inequality of Choi also turns out to be useful. One applica-
tion is the improvement of the moment condition for geodesic tracking. Using the eventual
version of Proposition 7.3, one can prove that sublinear geodesic tracking occurs in ran-
dom walks with finite (1/2)-th moment. Moreover, a similar result for random walks
with finite exponential moment implies logarithmic geodesic tracking. We note that log-
arithmic tracking was previously discussed on free groups, Gromov hyperbolic spaces
and relatively hyperbolic spaces, the last two dealing with the case of bounded support
(see [9,62,67,84])).

Recall also that one can complete Mathieu—Sisto’s approach to the CLT for displace-
ment and translation length with this deviation inequality for p = 2, hence achieving the
optimal moment condition. Moreover, Choi established via explicit pivoting the converse
of CLTs: the convergence of Ln [d(0, w,0) — cy] o1 Ln [t(wn) — ¢p] in law for some con-
stant ¢, implies that the random walk has finite second moment. By adapting de Acosta’s
proof of the LIL for real-valued variables, Choi also establishes the LIL for displacement
and translation length.

Let us now explain why the pivoting method is so effective. First, phenomena in prob-
ability are correlated to certain probabilities that decay to zero, which ultimately relies
on the non-atomness of the harmonic measure. This is due to the fact that G is non-
elementary: if a boundary point has the maximal atom, then all of its translations by G
should also have maximal atom and the boundary point should have finite orbit by G.
This technique has been employed by many authors, including Woess [90], Kaimanovich—
Masur [54], Maher [65] and Maher-Tiozzo [67].

Nonetheless, this is not enough to deduce almost sure phenomena and more accurate
information is needed. Specifically, we need to elaborate the decay rate of the harmonic
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measure corresponding to shadows, in terms of the distance of the shadows from the ref-
erence point. The first success was achieved by Maher, who deduced in [66] exponential
decay rate for random walks on X = €(X) with bounded support. We here explain a slight
variation of Maher’s argument.

Let us define the shadow Sy (y,r) by the set {z : (¥,2)x > r}. Observe the following.

Lemma 7.5. For x,y,z € G -0, § € X U 30X and sufficiently large R, R’ > 0, we have
the following:

(1) ify ¢ Sx(6, R)andz € Sx(§, R" + R), then y € S;(0,R) and z € S, (§, R');
2) v(Sx(&, R)) :=P[(wnx, &)x = R eventually] < 0.1;
(3) H(Sx(&, R)) := P[(wnx,&)x = R at least once] < 0.12.

The first item in fact holds for arbitrary R and R’; it follows from the inequalities
(Zv S)y’ ()C, y)Z Z (Z’ E)x - (ys é))h

which are equivalent to the triangle inequality. The second item is due to the fact that v
is atom-free. For the last item, we should correlate the once-hitting event and the even-
tual event. Let Ny be the first hitting time for Sx (&, R), i.e., the earliest step at which
(wnx,£), > R;this is a stopping time and the Markov property can be applied. Now with
respect to any point p € Sy (&, R), we have

Sx(§,0.5R)¢ C S,(x,0.5R)
by the second item. Since v(S,(0,0.5R)) < 0.1 for sufficiently large R, we have
V[Sx(£,0.5R) | oy, x = p] > 0.9
for each p € Sy (&, R). Consequently, we obtain
V[Sx(§,0.5R)] = 0.9H(Sx(§, R)). H(Sx(§. R)) < 0.12.

Let us now fix £ € X U dX and a sufficiently large number R > 0, and estimate the
hitting measure of S, (€, kR). We establish k ‘intermediate rivers’

R: :SO(Es 3i;2R>\So<§, 3i3—1R>

that satisfy the following properties:
(1) each R; separates X \ R; into two part, XZ-Jr and X;~, such that d(Xl.+, X7)>M;
(2) for each i, Ry,..., R;—1 are contained in X;” and R;11,..., Ry are contained
in X i+;

(3) R;4+1 is contained in a shadow of distance R /4 with respect to any point in R;.
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Figure 3. Schematics of rivers R; in Maher’s argument. Each white dots represents the sample locus
at N; ().

Due to properties (1), (2), and the fact that each random path consists of bounded
steps, it is necessary to enter each R; at least once to reach beyond Rj. This motivates
us to consider the first hitting time N;(w) at which step wyo first enters R; and define
E; :={w: N1(w),..., Nij(w) < oo}. In order to calculate P[E;+; | E;], we condition on
each choice of w until N; and fix p = wy,0 € R;. As N;(w) is a stopping time, one can
then apply the Markov property for estimation. Namely,

3i +1

Ris1 C S, (s, R) C S,(.2R/3)

has hitting measure at most 0.12, and we have

P[E;i+1] = Z H(Rit1)-Plo: Ni(w) =n.g =a; foreachi =1,...,n]

ai,...,an€G
< Z H(Sa,.-a,0(6,2R/3)) - P[w : Ni(w) = n, g; = a; foreachi =1,...,n]|
ai,...,an€G
<012 Y Plo:Ni(w)=n.g =a foreachi =1,....n] = 0.12P[E;].
ai,....,an€G

This implies H(S,(£,kR)) < P[Ex] < 0.12%, as desired.

The role of Lemma 7.5 is to correlate the probability of progress in a specific direction
with the probability of the rest. Note that this process does not require moment condition.
However, in order to correlate those probabilities with the distance, one needs to quotient
out the path space into measurable equivalence classes at regular distances. This is realized
using hitting times, which crucially depend on the boundedness of each step so that no
path jumps over and skips any river. We remark that random walks with finite exponential
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moment exhibit similar behavior. Although the hitting time for each river is not exactly
realized, the probability of the error case that one jumps over n river decays exponentially
and we have similar exponential decay of the harmonic measure (cf. [11, Corollary 2.13]).

Meanwhile, Benoist—Quint’s martingale version of Hsu—Robbins—Baum-Katz’s theo-
rem can deal with measures with finite p-moment, beyond those with bounded support.
Let x € X be approximated by a sequence {x,}, € X. We then define the cocycle arising
from a horofunction

0(g.x) 1= hx(g""'0) = lim [d(g™"0.xn) — d(0.xn)].

We then estimate the concentration of E «, [0 (g, x)] near the average An. In this perspec-
tive, one adds up n martingale differences oo(g;, !, g;_ll gl_lo), which is a balanced
version of d(x, w,0) — d(x, w,—10) and is bounded by 2d (0, g, 0). Since this step is L?-
bounded, one obtains an L?~2-convergence rate: for each & > 0, there exist constants D,,
such that Y, n?~2D, < oo and

Plo:A—e<o(w,'.x) <A+¢e] <D,

The advantage of this method is that it applies to L?-integrable cocycles on an arbi-
trary compact metric space, where the p-th moments of the steps are uniformly bounded
but not summable: it becomes summable only after modulating by order 2. In our set-
ting of Gromov hyperbolic spaces or Teichmiiller spaces, however, one can expect further
efficiency from below since the p-th moment of the steps are not only bounded but expo-
nentially decaying. More precisely, one does not observe d(x, w,0) — d(x,0) but observes
its counterpart (w,0, X),: this conversion requires Gromov hyperbolicity or its analogy on
Teichmiiller spaces.

This alternative strategy is also pursued in [7], beginning from the spectral gap of
amenable groups acting on compact spaces and the exponential growth. Recall that another
approach to this part of the argument, suggested in [16], removes the cocompactness
assumption. Given this preliminary estimates, the final step is to bound lim, (w0, x)&
with the sum of the terms

d(ovgk-‘rlo)pllim(x,wno)zd(o,wko) (when0 < p <1)

or

27 [d(O, gk+10)p +d(o, wko)p_ld(ov gk-‘rlo)]llim(x,wno)zd(o,wko) (when p > 1)

and control each expectation. In plain language, this counts the contribution of each step
of the form d (o0, gx110)? or d(o, wr0)?~'d (o, gk110) only when the progress of the
random path is toward x, whose probability decays exponentially and results in summable
contribution to the p-th moment.

The description so far of Maher’s and Benoist—Quint’s theories are by no means
complete; for a fuller analysis, including the martingale version of Hsu—Robbins—Baum—
Katz’s theorem, see [6, 7, 66].
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To sum up, the above strategies estimate the decay rate of the harmonic measure by
packing random paths into effective and ineffective cases, in terms of the intermediate
steps, and by counting the effective cases only. This philosophy is maximized in the notion
of pivots in Gouézel’s, Baik—Choi—Kim’s and Choi’s work. Each equivalent class of the
same pivots consists mostly of the desirable paths and a small portion of undesirable
paths; their probability can be compared by pivoting and can be summed using the Markov
property. The notion of pivots also fit into the realm of random walks with infinite support;
moment conditions are not necessary for the punctual appearance of pivots, and are used
only to synchronize the time and distance progress of pivots.

8. Distance and counting

So far, we have discussed various methods to study random mapping classes that arise
from random walks, especially with respect to their action on € (%) or 7 (X). This philoso-
phy essentially differs from studying the random mapping classes on Mod(X) itself, since
Mod(X) equipped with the word metric is not quasi-isometric to €(X) nor 7 (X). Fur-
ther, counting problems are sensitive to the choice of the finite generating set of Mod(X).
This is because a property P that is generic with respect to a metric d may not be generic
with respect to another metric d’ that is quasi-isometric to d. Hence, counting elements
in Mod(X) with respect to the word metric is an essentially different problem than anal-
ogous problems on €(X) or 7 (X). A stereotypical problem in this direction is whether
pseudo-Anosovs are generic in Mod(X) when counted with respect to a word metric.

One possible solution is to use properties of the action of Mod(X) on 7 (X) or €(X)
beyond non-elementariness. In this direction, we mentioned that Mathieu—Sisto exploited
the acylindrical hyperbolicity of Mod(X) to bring the aforementioned results (including
definite progress, CLT, etc.) on €(X) to Mod(X) or 7 (X) (see [75]).

Another solution is to realize a Markov process on the group itself. Here we use the
automatic structure of groups, first hinted at by Cannon [15] and later formulated by
W. Thurston. For general reference, see [27]. An automatic structure of a group models
(quasi-)geodesics on the group with paths on a directed graph. By considering a Markov
process on this graph, we can utilize the techniques for random walks to describe the
asymptotic behavior in the counting setting. In particular, if the graph possesses suitable
hyperbolicity (e.g., exponential growth, independent directions, etc.), then the counting
problem (guided by the Patterson—Sullivan measure) mingles with the random walk the-
ory (guided by the harmonic measure). One can also interpret pivots as a partial realization
of an automatic structure, by recording pivotal times (as if they represent specific vertices
on the graph structure) and pivoting the choices at pivots (as if we distinguish cone types).

Notable examples of (geodesic) automatic groups include hyperbolic groups, rela-
tively hyperbolic groups, right-angled Artin/Coxeter groups and many more. In particular,
hyperbolic groups have a geodesic automatic structure with respect to any finite generating
set, allowing the WLLN [40] and CLT [41] for displacement and translation length. Still,
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the theory is not applicable for the entire mapping class group at the moment: although
mapping class groups have quasi-geodesic automatic structures, it is not known whether
they have a geodesic automatic structure. Nonetheless, if the generating set is nicely pop-
ulated with some Schottky set, one can partially realize this strategy on weakly hyperbolic
groups and Mod(X) that lack a geodesic automatic structure. This will be explained fur-
ther in the forthcoming preprint [17] of the second author.

9. Mapping class groups and Out(F,)

Lastly, let us mention another family of groups related to mapping class groups. By Dehn—
Nielsen—Baer’s theorem, one can interpret the mapping class group Mod(X) of a closed
orientable surface ¥ of genus at least 2 as an index 2 subgroup of the outer automorphism
group of 71 (X). This relationship does not hold true for punctured surface, and the outer
automorphism group Out(F;,) of the free group of rank n becomes a separate object to
study.

Nonetheless, mapping class groups and Out(F;) have strong analogy. For example,
Out(F},) also canonically acts on a moduli space of a geometric object, namely, the space
of simplicial graphs whose fundamental group is F;, and whose all vertices have valency at
least 3 (see [21]). We call it the Culler—Vogtmann outer space of rank n (denoted by C V;,).
Another impetus to the study of Outer space was the introduction of an asymmetric metric
structure called the Lipschitz metric. This metric correctly captures the dynamics of outer
automorphisms, as the Teichmiiller metric does for mapping classes. For a systematic
exposition on this metric, see [31].

Using the action of Out(F,) on CV, and its compactification C'V,,, Horbez proved
the following theorem.

Theorem 9.1 ([50, Theorem 0.1]). Let G = Out(Fy,), X = CV,, and u be a non-elemen-
tary probability measure on G. Then for an a.e. sample path @ := (wn)n of the random
walk generated by |, there exists a simplex £(w) of free arational trees such that for all
x € CVy, (wnX), converges to &(w). This gives rise to a non-atomic hitting measure v
on the space ¥ 1 of simplices of free arational trees.

Moreover, when  has finite first logarithmic moment with respect to the word metric
on G and finite entropy, then (¥1,v) is the Poisson boundary of (G, ().

The proof follows the same storyline as in [54]. At the moment, dC V,, plays the role of
PMF and rational/arational trees play the role of non-minimal/minimal foliations. First, a
J-stationary measure v is constructed on dC V;, via the Cesaro mean, where v is supported
on %[ due to the maximal atom trick as in [54, Lemma 2.2.2]: each rational tree fixes the
conjugacy class of an element of F, and the set of rational trees in dC V}, can be divided
into countably infinitely many stabilizers. The non-atomness of v follows similarly. A
lemma of Kaimanovich and Masur ([54, Lemma 2.2.3]) then asserts that (¥, v) is a u-
boundary. The orbit convergence is also argued by bringing the concept of universally
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convergent sequences. Finally, Kaimanovich’s strip approximation criterion is satisfied by
Hamenstidt’s lines of minima [47] and leads to the identification of the Poisson boundary.

Here, we did not make an analogy of a part of Kaimanovich—-Masur’s argument.
Among free arational trees, some admit a non-trivial simplex of length measures while the
others admit only one length measure. Trees of the latter category are said to be uniquely
ergometric, which partially correspond to uniquely ergodic measured foliations in PMF .
Kaimanovich and Masur argued that the hitting measure v on MIN is actually supported
on UE. Lacking a powerful divergence result as in [71], we are unable to conclude that
a.e. sample path heads to a uniquely ergometric tree. This was supplemented by other
authors; namely, Namazi, Pettet and Reynolds proved that the hitting measure v is sup-
ported on the set of uniquely ergometric trees [77], when pu is further assumed to have
finite first moment on CV},. In the same paper, they also showed the sublinear geodesic
tracking on CV,.

Yet another important analogy between the study of 7 (X) and CV,, is the existence
of auxiliary Gromov hyperbolic spaces, namely, the curve complex €(X) and the free
factor complex ¥ ¥ . Just as we pick the shortest curve on a point x € 7 (X) to define the
shortest curve projection e (x) € €(X), we pick properly embedded, non-contractible,
connected subgraphs of x € CVy to define the projection w# #(x) € ¥ F . Just as we,
¢ that sends geodesics to quasi-geodesics. Although there are some technicalities,
largely due to the asymmetry of the Lipschitz metric on C V},, the strategies of Horbez [51]
and Dahmani—Horbez [22] apply here. Namely, we can bring the limit laws on a Gromov
hyperbolic space ¥ F (due to [67] and [7]) to CV,,, as we did for €(X) and 7(X). As a
result, we obtain the SLLN and CLT on CV,.

10. Further directions

We have discussed random walks on Mod(X) from different perspectives. Several ques-
tions arise from the difference among groups and spaces. First, it is known that random
walks on hyperbolic groups also satisfy the local limit theorem [43]. The ingredient of
Gouézel’s argument that depends on the Gromov hyperbolicity is to establish Ancona’s
inequality (see also [39] for a related work of Gekhtman—Gerasimov—Potyagailo—Yang).
Considering the parallel theory of pivoting on Gromov hyperbolic spaces and 7 (X), one
might hope for a similar result on 7 (X).

Despite partial achievements, the complete Patterson—Sullivan theory on Mod(X) is
not attained yet. Once achieved, this will serve as another perspective for the counting
problem in Mod(X). For instance, see Gekhtman’s analysis on the stable type of mapping
class groups [38].
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