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BC-system, absolute cyclotomy and the quantized calculus

Alain Connes and Caterina Consani

Abstract. We give a short survey on several developments on the BC-system, the adele class space
of the rationals, and on the understanding of the “zeta sector” of the latter space as the Scaling
Site. The new result that we present concerns the description of the BC-system as the universal Witt
ring (i.e., K-theory of endomorphisms) of the “algebraic closure” of the absolute base S. In this
way we attain a conceptual meaning of the BC dynamical system at the most basic algebraic level.
Furthermore, we define an invariant of Schwartz kernels in one dimension and relate the Fourier
transform (in one dimension) to its role over the algebraic closure of S. We implement this invariant
to prove that, when applied to the quantized differential of a function, it provides its Schwarzian
derivative. Finally, we survey the roles of the quantized calculus in relation to Weil’s positivity, and
that of spectral triples in relation to the zeros of the Riemann zeta function.

Dedicated to Dennis Sullivan on his 80th birthday

. . . La vraie jeunesse ne s’use pas.
On a beau l’appeler souvenir,
On a beau dire qu’elle disparaît,
On a beau dire . . . que tout s’en va,
Tout ce qui est vrai reste là.

– J. Prévert

1. Introduction

We dedicate this paper to Dennis Sullivan, whose genuine love for understanding math-
ematics and his generosity in communicating new ideas has always been an inspirational
example to us. We take this opportunity to write an overview on the actual state of our
enduring interest in the Riemann zeta function. The Riemann zeta function has many
intriguing manifestations in science: our own interest was triggered with the discovery of
the surprising relation that this function has with noncommutative geometry.
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In quantum statistical mechanics in the first place, the zeta function appears as the
partition function of a dynamical system determined by the analysis of the Hecke algebra
of the affine group of rational numbers [3]. This result leads to the noncommutative space
of adele classes of the rationals [5]. The impact in number theory is the spectral realiza-
tion of the zeros of the Riemann zeta function and the geometric understanding of the
Riemann–Weil explicit formula as a trace formula [5, 30]. Moreover, the quantized calcu-
lus in noncommutative geometry, jointly with the theory of prolate spheroidal functions
in analysis provides, by means of a semilocal trace formula computation, a conceptual
reason for the positivity of Weil’s functional [19, 23].

The understanding of the adele class space of the rationals from a more classical geo-
metric standpoint is provided by the theory of Grothendieck toposes: indeed, in many
cases the space of the points of these toposes is noncommutative. The “zeta sector” of the
adele class space of the rationals is described precisely by the set of points of the Scal-
ing Site [14]. This result led us to a parallel and independent investigation of the algebraic
landscape of semirings of characteristic one, where each integer acts by an endomorphism,
thus generalizing the Frobenius operator on geometries in finite characteristic, and where
categorically, one only adds one more (prime) “field”: the Boolean semifield B (see [9]).

However, and in spite of its elementary definition, the Boolean B cannot qualify as
realizing the original dream of J. Tits in his search for a basic algebraic structure rooting
fundamental examples of combinatorial geometries, neither as an algebraic incarnation
of Waldhausen’s “initial ring”. The weakness of the classical algebraic approach is in part
due to the inherent deficiency of set-theory when compared to the more flexible categorical
counterpart. By following the simple idea that an abelian group A is entirely encoded by
the covariant functor HA that assigns to a pointed set X the pointed set of A-valued
“divisors” on X , one quickly realizes that the functorial viewpoint is a very natural and
versatile generalization of the original set-theoretical notion of abelian group.

This idea has led us to develop algebraic geometry over a “base” S that is the spherical
counterpart of the multiplicative monoid F1 D ¹0; 1º and the categorical backbone of the
sphere spectrum in homotopy theory [27]. Rings over this base are the �-rings of G. Segal
and the simplest of them is S, namely the identity endofunctor on the category of pointed
sets. Ordinary rings become �-rings through the Eilenberg–MacLane functor H . In [12]
we gave an arithmetic application of these ideas by extending, at archimedean infinity, the
structure sheaf of the algebraic spectrum of the ring of integers as a sheaf of �-rings, and
more precisely as a subsheaf of the constant sheaf HQ.

One instance of the relevance of the stalk at the archimedean place of this compacti-
fication (the Arakelov one point compactification) is exemplified through its relation with
the Gromov norm [17]. The choice of this new base has also the further advantage to pro-
vide the right framework for Hochschild and cyclic homologies, since simplicial �-sets
(i.e., �-spaces) are well understood and homotopy theory over them becomes, by means
of the Dold–Kan correspondence, homological algebra taking place over S [20].

In Section 2, we give a short survey of all these developments centered on the key
role played by the BC-system and the adele class space, and on the understanding of
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the “zeta sector” of the latter space as the Scaling Site. The new result that we present
in this context is introduced in Section 3, where we describe the BC-system as the Witt
ring (i.e., K-theory of endomorphisms) of the “algebraic closure” of S. In this way, we
obtain a conceptual meaning of the BC dynamical system no longer from analysis (in
terms of quantum statistical mechanics) but at the most basic algebraic level. The algebraic
closure xS is defined by adjoining to S all (abstract) roots of unity, and the relation between
its Witt ring and the BC-system suggests to perform the following two steps:

(i) Determine the extension of scalars Spec Z �S xS.

(ii) Define an appropriate De Rham–Witt complex for Spec Z �S xS.

An educated guess on Spec Z �S xS suggests that this space ought to involve alge-
braically the cyclotomic extension of the field of rational numbers. The De Rham–Witt
complex of Spec Z �S xS should mainly provide a strengthening of the link between two
worlds: on one side (say, on the left) the classical world of Arakelov geometry now
enriched over �-rings, while on the other side (the right) the analytic framework of non-
commutative geometry stemming from the BC-system and directly related to the under-
standing of the zeros of the Riemann zeta function. These two worlds are, a priori, quite
different in nature. Homological algebra over �-rings is, through the Dold–Kan corre-
spondence, naturally encoded by the homotopy theory of �-spaces, so that the world on
the left is that of homotopy theory, spectra, animas, . . .The world on the right side instead,
is that of analysis, Hilbert space operators, the quantum, . . .

One fundamental relation between these two worlds is the assembly map [1] which
associates toK-homology classes of the universal proper quotient, classes in theK-theory
of the reduced C �-algebra of a group. This creates a bridge, of index theoretic nature,
between the world of homotopy theory and the world of analysis where K-theory of C �-
algebras plays a key role. More precisely, the assembly map relates together two ways of
effecting the quotient of a space by a group action. On the left world one sees a homotopy
quotient as a special case of a homotopy colimit, while on the right world one effects a
cross product which is a special case of a general principle in noncommutative geome-
try of encoding difficult quotients (such as leaf spaces of foliations) by noncommutative
algebras.

It is also worth noticing that aside from quotient spaces, these tricky spaces also appear
naturally as sets of points of a topos. For example, to a small category C one may associate
the presheaf topos yC of contravariant functors from C to the category of sets. In general,
the nature of the space of points of the topos yC is as delicate as that of a quotient space,
and one may either use as a substitute the classifying space BC in the left world or view
such spaces as noncommutative spaces, if one prefers to work in the right world.

In Section 4, we describe the role of the one-dimensional quantized calculus in relation
to Weil’s positivity. A central role is played both by the unitary obtained by composing
Fourier transform with inversion, and by its quantized logarithmic derivative. An elemen-
tary lemma only meaningful in quantized calculus (called the main lemma in this paper)
gives the conceptual reason to expect Weil’s positivity. The fact that the hypothesis of
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this lemma is only verified up to an infinitesimal prevents one concluding immediately
that positivity holds. In [23] we showed that positivity can still be obtained, for a single
archimedean place, by treating separately this infinitesimal. Moreover, in the semilocal
case (i.e., when finitely many places, including the archimedean one, are involved), the
same infinitesimal property continues to hold [19], and this fact opens the way for a strat-
egy toward RH.

In Section 4.1, we define an invariant of Schwartz kernels in one dimension and relate
the Fourier transform (in one dimension) to its role over xZ (see Section 3.3). Then, we
implement this invariant to prove that, when applied to the quantized differential of a
function, it delivers its Schwarzian derivative. This shows in particular that, as emphasized
in the fax of D. Sullivan reported in Figure 1 (beginning of Section 4), the quantized
differential calculus encodes in a subtle manner the conformal structure also in dimension
one, where the Riemannian point of view gives no clue.

In Section 4.2, we state the main lemma in quantized calculus that yields Weil’s pos-
itivity as a consequence of the triangular property of the quantized differential, and in
Section 4.3 we discuss the triptych formed by Fourier, zeta and Poisson. The quantized
calculus is then applied in the semilocal framework (Section 4.4) and provides, through
the semilocal trace formula, both the operator theoretic formalism for the explicit formulas
of Riemann–Weil and a conceptual reason for Weil’s positivity.

We discuss the radical of Weil’s quadratic form in Section 4.5, and the “almost rad-
ical” of its restriction to an interval Œ��1; �� in Section 4.6. We then use spectral triples
(through Dirac operators) to detect the zeros of the Riemann zeta function up to imagi-
nary part 2��2. This provides the operator theoretic replacement for the Riemann–Siegel
formula in analytic number theory and the approximation to the sought for cohomology
discovered in [21].

2. The BC-system and its role

The origin of the relation between noncommutative geometry and the Riemann zeta func-
tion is a fundamental interplay between the mechanism of symmetry breaking in physics
and the theory of ambiguity of E. Galois. In physics, the choice of an extremal equilibrium
state at zero temperature breaks the symmetry of a system. On the Galois side the choice
of such a state selects a group isomorphism of the abstract group Q=Z with the group
of roots of unity in C. The link is established explicitly by implementing the formalism
of quantum statistical mechanics [4] that encodes a quantum statistical system by a pair
.A; �t / of a C �-algebra A and a 1-parameter group of automorphisms � WR! Aut.A/.

The main tool is the KMS condition that analytically encapsulates the relation existing
in quantum mechanics between the Heisenberg time evolution of observables

�t .A/ D exp.i tH/A exp.�i tH/;
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where H is the Hamiltonian of the system, and an equilibrium state � at inverse tempera-
ture ˇ D 1

kT
, whose evaluation on an observable A is

�.A/ WD Z�1 Tr.A exp.�ˇH//;

where Z D Tr.exp.�ˇH//. The precise mathematical encoding of this relation was ob-
tained by Haag, Hugenholtz and Winnink [28], starting from earlier work of Kubo, Martin
and Schwinger. A way to understand the KMSˇ condition is provided by the equality�

'.x�t .y//
�
tDiˇ
D '.yx/

whose heuristic meaning is that �t at t D iˇ compensates for the lack of tracial property
of the state ' by allowing one to replace '.yx/ with '.x�t .y// at t D iˇ. The states
fulfilling the KMSˇ condition form a (possibly empty) convex compact simplex.

The specific system that exhibits the interplay between the phenomenon of symmetry
breaking in physics and the theory of ambiguity of E. Galois is the BC-system [3]. It is
defined using the affine group

PC.Q/ WD

²�
1 b

0 a

�
j a; b 2 Q; a > 0

³
:

The subgroup PC.Z/ of integral translations obtained by requiring that a; b 2 Z is almost
normal in PC.Q/, and this fact allows one to define a Hecke algebra A in place of the
convolution algebra of the quotient PC.Q/=PC.Z/. The action of A in the Hilbert space
`2.PC.Q/=PC.Z// plays the role of the regular representation. The significant fact here
is that this representation determines a factor of type III, thus naturally endowed with a
one parameter group of automorphisms �t of A (the time evolution). The pair .A; �t /
constitutes the BC-system. Its first properties are as follows:

• The system exhibits a phase transition with spontaneous symmetry breaking. The
KMSˇ state is unique for ˇ � 1. For ˇ > 1 the extremal KMSˇ states are parametrized
by the points of the zero-dimensional Shimura variety Sh.GL1; ¹˙1º/.

• The symmetries of the system are given by the group GL1.yZ/ D yZ� of invertible ele-
ments of the profinite completion of the integers. The zero-temperature KMS states
evaluated on a natural arithmetic subalgebra of the algebra of observables of the sys-
tem take values that are algebraic numbers and generate the maximal abelian extension
Qcycl of Q.

• The class field theory isomorphism intertwines the action of the symmetries and the
Galois action on the values of states, thus providing a quantum statistical mechanical
reinterpretation of the explicit class field theory of Q.

• The partition function Z.ˇ/ of the system is the Riemann zeta function evaluated
at ˇ 2 R.

The last property establishes the link between noncommutative geometry and the Riemann
zeta function. The algebra of the BC-system describes the quotient space Q�nAf of finite
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adeles of Q acted upon by the multiplicative group Q�. When passing to the dual system
using the dynamics, and combining the dual action of R�C together with the symmetries

GL1.yZ/ D yZ�

of the system, one obtains the action of the idele class group on the adele class space
Q�nAQ. This is the space that provides a geometric interpretation of the Riemann–Weil
explicit formulas [5].

This latter result was the starting point of a “longue marche” pursuing the study of the
geometry of the adele class space. This space provides the spectral realization of the zeros
of L-functions with Grössencharacter, where the Riemann zeta function is associated to
the trivial character and whose related space is the “zeta-sector”

X D Q�nAQ=yZ
�:

This zeta-sector provides a Hasse–Weil formula for the Riemann zeta function using the
action of R�C on X (see [7, 8]). In view of this result it is clear that X may play the role
of the space of the points of the curve for function fields. The geometric structure of X
came with the discovery of the “Arithmetic Site” [11, 13]: this is the presheaf topos bN�
dual to the multiplicative monoid of positive integers, endowed with the structure sheaf
provided by the only semifield F whose multiplicative group is infinite cyclic. The geom-
etry of the Arithmetic Site is tropical and of characteristic one (the addition is unipotent:
1C 1 D 1). The structure sheaf of this topos is obtained by implementing the action of
the semigroup N� on the semifield F by power maps x 7! xn.

It is a general fact that in characteristic one the power maps define injective endomor-
phisms of a semifield and that there exists only one semifield which is finite and not a field,
namely the Boolean semifield B WD ¹0; 1º. The Arithmetic Site is defined over B (because
F is of characteristic one) and a key result is that the “zeta-sector” X gets canonically
identified with the set of points of the Arithmetic Site defined over the semifield Rmax

C

of tropical real numbers. This semifield appears both in tropical geometry and also in
semiclassical analysis as a limit of deformations of real numbers.

One extremely convincing result of the dequantization program [29] is that the Fourier
transform becomes the Legendre transform when taken to the classical limit. The semifield
Rmax
C is an infinite extension of B and its absolute Galois group is determined by the power

maps
AutB.Rmax

C / D ¹Fr� j � 2 R�Cº; Fr�.x/ WD x�: (1)

This group acts on the points of the Arithmetic Site defined over Rmax
C and, under the

canonical identification of these points with the “zeta-sector” X D Q�nAQ=yZ�, this
action corresponds to the action of the idele class group. In spite of the fact that the Arith-
metic Site is an object of countable nature (the semigroup N� and the semifield F are
countable) and hence there is no non-trivial action of R�C on the topos, R�C acts meaning-
fully using the theory of correspondences [11, 13].
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The extension of scalars of the Arithmetic Site to Rmax
C determines the Scaling Site [14]

namely the Grothendieck topos Œ0;1/ Ì N� (where N� acts by multiplication) endowed
with the structure sheaf of continuous convex functions with integral slopes. The set of
points of the topos Œ0;1/ Ì N� identifies canonically with the “zeta sector” X . The
restriction of the structure sheaf of the Scaling Site to the periodic orbits in X deter-
mines, for each prime p, the quotient R�C=p

Z which appears in X as the counterpart of
the prime-point p of Spec Z. The emerging tropical structure describes an analogue of
an elliptic curve and it also exhibits a few totally new features. For instance, the divisor
degree on these curves is a real number and the Riemann–Roch formula is real valued.
Such real valued indices are ubiquitous in the noncommutative geometry of foliations and
the tropical geometry of the Scaling Site can be lifted in complex geometry [16].

In order to extend the geometric positivity argument used by Mattuck and Tate, and
Grothendieck for function fields, to the field of rational numbers and on the above geomet-
ric space one needs to show a Riemann–Roch formula holding on the square of the Scaling
Site. In this respect, the case of periodic orbits is far too simplified since for curves one
can bypass the construction of a cohomology theory for divisors beyond H 0 using Serre
duality as a definition of H 1. For surfaces, and in particular for the square of the Scaling
Site, this trick handles only H 2 leaving H 1 still out of reach. One is thus faced with the
problem of developing a good cohomology theory in characteristic one.

Motivated by this application, we developed a general theory of homological algebra
for the (non-abelian) category of B-modules [15], however the lack of the additive inverse
makes the elimination of certain technical difficulties apparently quite hard. While trying
to by-pass this issue, we were led to investigate a more fundamental base for algebraic
manipulations, which is, as explained in the introduction, independent of the choice of a
characteristic. The main reason for our turn of interests toward this new base is that it is
the most natural one for Hochschild and cyclic homology theories. In the next section we
show that the fundamental basis S provides the conceptual interpretation of the BC-system
as the Witt construction over the algebraic closure of S.

3. The conceptual meaning of the BC-system

The convolution algebra of the quotient PC.Q/=PC.Z/ has an integral model [10, Sec-
tion 3], given by the Hecke algebra

HZ D ZŒQ=Z� Ì N:

The ring endomorphisms �n.e.r// D e.nr/, n 2 N act on the canonical generators of the
group ring e.r/ 2 ZŒQ=Z�, r 2 Q=Z. There are natural quasi-inverse linear maps

z�nWZŒQ=Z�! ZŒQ=Z�; z�n.e.// D
X
n 0D

e. 0/:

These two operators are used both in the definition of the crossed product ZŒQ=Z� Ì N
and in the presentation of the algebra.
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There is a striking analogy between the algebraic rules fulfilled by the pair ¹�n; z�nº and
the relations fulfilled, in the global Witt construction, by the Frobenius and Verschiebung
operators. The invariant part of the group ring ZŒQ=Z� for the action of the group

Aut.Q=Z/ D yZ�

is described in terms of Almkvist’s ring of endomorphisms W0.S/ as follows.

Theorem 3.1 ([20, Theorem 2.3]). The ring W0.S/ is canonically isomorphic to the
invariant part of the group ring ZŒQ=Z� for the action of the group Aut.Q=Z/ D yZ�.

In this section, we extend Theorem 3.1 by showing a natural isomorphism of the group
ring ZŒQ=Z� with the ring W0.xS/, where xS denotes the monoid S-algebra SŒM � of the
multiplicative pointed monoidM D .Q=Z/C, with elements the base point � D 0 and the
e.r/’s for r 2 Q=Z. The multiplication in M is defined by

e.r/e.s/ D e.r C s/ 8 r; s 2 Q=Z:

The functor xSW�op ! Sets�, is defined by xSŒX� D X ^M , where the monoid structure
in M yields the algebra structure xSŒX� ^ xSŒY �! xSŒX ^ Y �.

3.1. Endomorphisms and matrices

In [20] we considered the class of S-modules of the form SŒF � D S ^ F , where F is
a finite object of the category Sets� of pointed sets. As a functor SŒF �W �op ! Sets�
associates to a finite pointed set X the smash product SŒF �.X/ WD F ^ X and to a map
of finite pointed sets gWX ! Y the map SŒF �.g/ WD Id^g. An endomorphism of SŒF � is
a natural transformation.

Lemma 3.2. Let F;F 0 be two finite objects in Sets�. The map

HomS.SŒF �;SŒF
0�/! HomSets�.F; F

0/; � 7! �.1C/;

where �.1C/ denotes the restriction of � to 1C D ¹0; 1º is a bijection of sets. The inverse
map is

HomSets�.F; F
0/! HomS.SŒF �;SŒF

0�/;  7! z D Id^ ;

where z .X/ D IdX ^ WX ^ F ! X ^ F 0.

Proof. Let � 2HomS.SŒF �;SŒF 0�/ andX a finite pointed set. An element y 2SŒF �.X/D
F ^ X , y ¤ �, is determined by a pair y D .f; x/ 2 F � X , and there exists a (unique)
map of pointed sets gW 1C! X with g.1/ D x. By the naturality of the transformation �,
one has

� ı SŒF �.g/ D SŒF �.g/ ı �:

This shows that � is uniquely determined by its restriction �.1C/ on SŒF �.1C/D F , with
�.1C/ 2 HomSets�.F; F

0/. Conversely, given  2 HomSets�.F; F
0/ one associates to it
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the natural transformation z WSŒF �! SŒF 0� that maps a finite pointed set X to the map
IdX ^ W SŒF �! SŒF 0�. It is immediate to verify that the two maps are inverse of each
other.

In the following part we shall consider endomorphisms of xZ-modules of the form
xZŒF � D xZ ^ F , with F a finite pointed set. For n 2 N, nC WD ¹0; 1; : : : ; n � 1; nº.

Definition 3.3. Let MatRn .xZ/ be the multiplicative pointed monoid of n� nmatrices with
entries in the multiplicative monoid xZ.1C/ D M D .Q=Z/C, which have only one non-
zero (i.e., not equal to the base point �) entry in each column.

Given � D .�ij / 2 MatRn .xZ/ one defines a map of pointed sets by setting

�.�/WM ^ nC !M ^ nC; �.�/.˛; j / WD

´
� if �ij D � 8i ;

.�ij˛; i/ if �ij ¤ �:
(2)

Note that for � 2 MatRn .xZ/, there exists, for a given j , at most one i 2 ¹1; : : : ; nº with
�ij ¤ �.

Proposition 3.4. With the notations of Lemma 3.2, the map

z�WMatRn .xZ/! EndxZ.xZŒnC�/ z�.�/ WD e�.�/

is an isomorphism of multiplicative pointed monoids.

Proof. With � D .�ij / 2 MatRn .xZ/, e�.�/ defines a natural transformation

e�.�/W xZŒF �! xZŒF �; e�.�/.X/ D IdX ^�.�/WX ^M ^ nC ! X ^M ^ nC

that commutes with the action of M . Thus, it determines an endomorphism

e�.�/ 2 EndxZ.xZŒF �/:

Let �;�0 2 MatRn .xZ/: their product is given by

.��0/ik D

´
�ij�

0
jk

if 9 j such that �ij ¤ � and �0
jk
¤ �;

� otherwise:

By applying (2), one gets
�.��0/ D �.�/ ı �.�0/;

since �.�/ ı �.�0/.˛; k/¤ � if and only if there exist j with �0
jk
¤ � and i with �ij ¤ �.

In that case, one has

�.�/ ı �.�0/.˛; k/ D .�ij�
0
jk˛; i/ D ..��

0/ik˛; i/:
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This shows that z� is a multiplicative map. It is injective by construction. Next we show
that it is also surjective. Let � 2 EndxZ.xZŒF �/. Then by Lemma 3.2, � D z , where  is
the restriction �.1C/. This restriction commutes with the action of M on

.xZŒF �/.1C/ D F ^M;

and thus it is given by a matrix �.�/ acting as in (2).

For a given S-algebra A, we denote by MatRn .A/ the S-algebra of matrices over A
defined in [27, Section 2.1.4.1, Example 2.1.4.3 (6)]. Note that, up to transposition, there
are two equivalent definitions for such matrices: we let MatLn .A/ be the functor (S-
algebra) from finite pointed sets to pointed sets that maps a finite pointed set X to the
set of n � n matrices of elements of A.X/ with only one non-zero entry in each row.
Similarly, MatRn .A/ is the functor mapping a finite set X to the set of n � n matrices of
elements of A.X/ with only one non-zero entry in each column.

Next proposition shows that one can define a bimodule Matn.A/ over these two S-
algebras as the functor from finite pointed sets to pointed sets mapping X to the set of
n � nmatrices of elements of A.X/ with no restriction on the matrix entries. The proposi-
tion is in fact a special case of the composition law for S-algebras viewed as endofunctors.

Proposition 3.5. Let A be an S-algebra. The following facts hold:

(i) The action of MatLn .A/ on Matn.A/ by left multiplication

MatLn .A/.X/ �Matn.A/.Y /!Matn.A/.X ^ Y /

turns Matn.A/ into a left module over MatLn .A/.

(ii) The action of MatRn .A/ on Matn.A/ by right multiplication

Matn.A/.X/ �Matn.A/R.Y /!Matn.A/.X ^ Y /

turns Matn.A/ into a right module over MatRn .A/.

Proof. The proof is the same as the one in [27]: one simply needs to check that the product
in the S-algebra A determines a well-defined product of matrices. To this end, the point
is that the sum involved in determining the matrix element at position .i; j / is obtained
from a row by column product of two matrices that only contain one non-zero term. This
fact holds as long as either the rows of one matrix or the columns of the other one contain
only one non-zero element: this is the case in (i) and (ii).

For A D xZ and X D 1C, there is an isomorphism of pointed monoids1

MatRn .xZ/.1C/ D MatRn .xZ/:

1Note that the S-algebra MatRn .xZ/ is not the same as the spherical algebra of the monoid MatRn .xZ/.
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Moreover, the set of matrices Matn.xZ/ D Mn.SŒM �/ (where M D .Q=Z/C) coincide
with Matn.xZ/.1C/. By Proposition 3.5, they form a bimodule with right and left actions
provided by MatRn .xZ/ acting on the right of Matn.xZ/ by matrix multiplication and by

MatLn .xZ/ DMatLn .xZ/.1C/

acting similarly on the left. The role of the bimodule Matn.xZ/ D Matn.xZ/.1C/ is to
encode similarities.

Given a field k and the associated S-algebra Hk, morphisms of S-algebras

xZ D SŒM �! Hk

correspond bijectively to (multiplicative) monoid homomorphisms M ! k ([18, Propo-
sition 2.2 (i)]). In particular, to an injective morphism M ! k corresponds an extension
of xZ by the field k. In view of this fact, we introduce the following definition.

Definition 3.6. An element ˛ 2 Matn.xZ/ D Mn.SŒM �/ is invertible if and only if the
matrix ˛ 2Mn.k/ is invertible in all field extensions k of xZ.

Matrix similarity in Matn.xZ/ is stable by taking powers, as illustrated by the following
lemma.

Lemma 3.7. Let ˛ 2 Matn.xZ/, � 2 MatRn .xZ/,  2 MatLn .xZ/, such that ˛ D ˛�. Then
one has k˛ D ˛�k for all k 2 N.

Proof. One has 2˛ D ˛� D ˛�2, and by induction on k one derives k˛ D ˛�k .

In view of Proposition 3.4, it is equivalent to consider endomorphisms T2EndxZ.xZŒF �/
(where F is a finite-pointed set) of xZ-modules E D xZŒF �, or matrices � 2 MatR� .xZ/,
where � is the integer recording the cardinality of the complement of the base point in F .
One defines the notion of invariant (of endomorphisms) as follows.

Definition 3.8. An invariant is a map

� W MatR� .xZ/! R

to a commutative ring R that satisfies the following conditions:

(i) �.E; T / D �.T .E/; T /,

(ii) �.E1 _E2; T1 _ T2/ D �.E1; T1/C �.E2; T2/,
�.E1 ^E2; T1 ^ T2/ D �.E1; T1/�.E2; T2/,
where the smash product is taken over xZ

(iii) � is invariant under similarity, i.e., �./ D �.�/ if ˛ D ˛� for an invertible
matrix ˛ 2 Mat�.xZ/.

Condition (i) is the same as in [20, Definition 2.2], and has the role to mod out the zero
endomorphisms. The second condition implements the ring structure. Finally, (iii) realizes
invariance under similarity.
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3.2. Construction of the universal invariant

We shall define the universal invariant of endomorphisms after applying the extension
of scalars from xZ to the maximal cyclotomic extension of Q. In that set-up Almkivst’s
original result applies and associates to (square) matrices a divisor with coefficients in the
multiplicative group of the field. Our result states that the divisor has coefficients in the
group of roots of unity.

Next proposition gives the construction of the invariant of endomorphisms. We keep
the same notations of Section 3.1. In particular,M D .Q=Z/C denotes the multiplicative,
pointed monoid of abstract roots of unity.

Proposition 3.9. Let T 2 MatRn .xZ/ and �WM ,! k be an injective morphism into an
algebraically closed field extension of xZ of characteristic zero.

(i) The divisor D defined by Almkvist’s invariant of �.T / 2Matn.k/ has coefficients
in �.M�/. The divisor �.T / WD ��1.D/ with coefficients in M� is independent
of the choice of �.

(ii) The map
� WMatRn .xZ/! ZŒQ=Z�; �.T / WD ��1.D/

defines an invariant.

Proof. (i) Let t D .tij / 2 Mn.k/ be a matrix whose non-zero entries are roots of unity
and with at most one non-zero element tij in each column. We claim that the eigenvalues
of t are either 0 or roots of unity. Let E D kn be the k-vector space on which t acts.
The subspaces Ej WD tj .E/ form a decreasing filtration of E for which there exists a
finite index ` such that E`C1 D E`. The non-zero eigenvalues of t are the same as the
eigenvalues of the restriction t` of t on E`. We verify that the endomorphism t` has finite
order. Indeed, let

�WnC ! nC; �.j / D

´
i if tij ¤ 0;

� if tij D 0 8i .
(3)

The range of �` labels a basis of E`: in this basis the matrix of t` describes the per-
mutation obtained by restricting �, whose entries are in roots of unity. Such a matrix is
periodic thus all of its eigenvalues are roots of unity. This shows that Almkivst’s invari-
ant of �.T / 2 Matn.k/, i.e., a divisor D with coefficients in k�, has in fact coefficients
in �.M�/. Moreover, one also derives that the divisor �.T / WD ��1.D/ with coefficients
in M� is independent of the choice of �.

(ii) The map � fulfills the three conditions of Definition 3.8 since they hold true for
Almkivst’s invariant. In particular, the operations in condition (ii) correspond to direct
sum and tensor product of modules.
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3.3. Completeness of the invariant �

To prove that the above construction defines a universal invariant, one applies the same
proof as in [20, Theorem 3.3] (in the case of endomorphisms of finite S-modules), to show
the injectivity of � . The main fact to verify is that by implementing the (algebraic) Fourier
transform one can diagonalize any matrix in Matn.xZ/ corresponding to a permutation
at the set level. We shall see (in the proof of Theorem 3.11) that for a cycle of such
permutation one can choose a basis so that the matrix of such permutation is equivalent
to the cyclic permutation matrix multiplied by a root of unity. Next proposition gives
the algebraic relation between the endomorphisms determined by the cyclic permutation
matrix C.n/ of order n

C.n/ij WD

´
1 if i D j C 1 .n/,

0 otherwise.
8 i; j 2 ¹0; : : : ; n � 1º

and the diagonal matrix �.n/ whose entries are the full set of n-th roots of unity, i.e.,
�.n/jj D e.j=n/ for j 2 ¹0; : : : ; n� 1º. The proposition shows that there is a non-trivial
algebraic relation between�.n/ and C.n/, and by Lemma 3.7 the same relation holds true
when arbitrary powers of these two matrices are involved.

Proposition 3.10. For n 2 N, let �n WD ¹e.a=n/ j a 2 Z=nZº be the group of n-th roots
of unity.

(i) The matrix V D .Vij / 2Matn.SŒ�n�/: Vij D e.ij=n/ is the matrix of the Fourier
transform on the cyclic group Z=nZ.

(ii) In any field extension of SŒ�n� one has n ¤ 0, and the inverse of V is, up to the
overall factor n, the matrix W D .Wij /: Wij D e.�ij=n/.

(iii) The following relations hold:

�.n/V D VC.n/; C.n/W D W�.n/: (4)

Proof. (i) It suffices to recall that the Fourier transform on the cyclic group Z=nZ is the
transformation F of functions f WZ=nZ! C defined by

F.f /.a/ D
X

".ab=n/f .b/; ".x/ WD exp.�2�ix/ 8 x 2 R:

(ii) Let k be a field extension of SŒ�n�, then k contains n distinct roots of unity of
order n, thus the characteristic of k is prime to n. It follows that n¤ 0 in k and the inverse
of V is 1

n
W .

(iii) One checks (4) by direct computation using the equality e.x/e.y/D e.xC y/.

We can now state and prove the main result of this section.

Theorem 3.11. The ring W0.xZ/ is canonically isomorphic to the group ring ZŒQ=Z�.
The invariant � WMatR� .xZ/! ZŒQ=Z� is universal and it extends the additive invariant of
Theorem 3.1.
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Proof. Let �WMatR� .xZ/ ! R be an invariant (thus fulfilling the conditions of Defini-
tion 3.8), then consider the map

ˇWQ=Z! R; ˇ.r/ WD �.Œe.r/�/ 8r 2 Q=Z;

where Œe.r/� is the endomorphism of the one dimensional module xZ given by multiplica-
tion by e.r/. By Definition 3.8 (ii), ˇWQ=Z! R� is a group homomorphism, and hence
it extends to a ring homomorphism ˇWZŒQ=Z�! R.

Next, we show that � D ˇ ı � . Let T 2 EndxZ.xZŒF �/, we prove that

�.T / D ˇ.�.T //:

We identify F D nC and let �D .�ij / be the matrix with z�.�/D T (see Proposition 3.4).
Let �W nC ! nC be the map as in (3). The ranges X` of the powers �` form a decreasing
sequence of subsets and we let ` be such that X` D X`C1. The matrix of the restriction
of T to X` is the matrix of the permutation obtained by restricting �, thus using Defi-
nition 3.8 (i) we can just consider the case where � is the matrix of a permutation with
entries in roots of unity. The required additivity in (ii) of Definition 3.8, allows one to
assume that the permutation is a cyclic permutation. Then we observe that the matrix of
a cyclic permutation � with entries roots of unity is equivalent, using a diagonal matrix
whose entries are ratios of entries of �, to the matrix of a cyclic permutation of type
e.s/C.m/, whose entries are all the same root of unity e.s/. It then follows from Proposi-
tion 3.10 and Definition 3.8 (iii) that

�.T / D �.e.s/�.m//;

and finally, using again (ii) of Definition 3.8, one obtains �.T / D ˇ.�.T //.

3.4. Frobenius and Verschiebung

The Frobenius endomorphisms and the Verschiebung maps are operators in W0.S/ ([20]).
The Frobenius ring endomorphisms Fn, n 2 N, are defined by the equality

Fn..E; T // WD .E; T
n/

(we refer to op. cit. for the notations). One easily checks that

�.Fn.x// D �n.�.x// 8 n 2 N; x 2W0.xZ/; (5)

where the group ring endomorphism �n is defined, for each n 2 N, by

�nWZŒQ=Z�! ZŒQ=Z�; �n.e.// D e.n/: (6)

The Verschiebung maps Vn replace a pair .E; T / by the endomorphism of the sum _nE
that cyclically permutes the terms and uses T WE ! E to turn back from the last term to
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the first. The map Vn is additive by construction and when applied to a one dimensional
xZ-module Œe.a/� it gives the sum of the Œe.b/�’s where nb D a. One thus obtains

�.Vn.x// D z�n.�.x// 8 n 2 N; x 2W0.xZ/; (7)

where z�n, n 2 N, is defined by

z�nWZŒQ=Z�! ZŒQ=Z�; z�n.e.// D
X
n 0D

e. 0/: (8)

Then, in analogy to and generalizing what is stated in [20, Section 2.2], one derives the
following theorem.

Theorem 3.12. The correspondences �n! Fn, z�n! Vn determine a canonical isomor-
phism of the integral BC-system (i.e., the Hecke algebra HZ D ZŒQ=Z� Ì N) with the
Witt ring W0.xZ/ endowed with the Frobenius and Verschiebung maps.

4. Analytic approach and noncommutative geometry

On September 27, 1993, Dennis Sullivan sent to the first author a fax, reproduced in
Figure 1, that sets the scene of the interactions between noncommutative geometry and
geometry of manifolds.2 In [6], the account of the analytic approach based on [5] was
reduced to the minimum. This section is dedicated to explain our recent results on this
analytic approach. Two main tools in noncommutative geometry play a key role here, they
are:

• the quantized calculus;

• the notion of spectral triple.

The quantized calculus is applied in the semilocal framework and it provides, through the
semilocal trace formula, both the operator theoretic formalism for the explicit formulas of
Riemann–Weil and a conceptual reason for Weil’s positivity (Sections 4.2–4.4).

Spectral triples (through Dirac operators) together with the understanding of the rad-
ical of the Weil quadratic form restricted to an interval Œ��1; �� using prolate functions,
and the implementation of the map

E.f /.x/ WD x1=2
�X
1

f .nx/;

allow one to detect the zeros of the Riemann zeta function up to imaginary part 2��2, thus
providing the operator theoretic replacement for the Riemann–Siegel formula in analytic
number theory (Sections 4.5 and 4.6).

2A joint paper (with N. Teleman) appeared in Topology in 1994 ([26]).
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Both notions make essential use of operators in Hilbert space and of the following
dictionary:

Real variable f WX ! R Self-adjoint operator H in Hilbert space

Range f .X/ � R of the variable Spectrum of the operator H

Composition � ı f , � measurable Measurable functions �.H/ of self-adjoint operators

Bounded complex variable Z Bounded operator A in Hilbert space

Infinitesimal variable dx Compact operator T

Infinitesimal of order ˛ > 0 Characteristic values �n.T / D O.n�˛/ for n!1

Algebraic operations on functions Algebra of operators in Hilbert space

Integral of function
R
f .x/ dx

R
– T D coefficient of log.ƒ/ in Trƒ.T /

Line element ds2 D g�� dx� dx� ds D : Fermion propagator D�1

d.a; b/ D Inf
R


p
g�� dx� dx� d.�; �/ D Sup j�.A/ � �.A/j; j kŒD;A�k � 1:

Riemannian geometry .X; ds2/ Spectral geometry .A;H ;D/

Curvature invariants Asymptotic expansion of spectral action

Gauge theory Inner fluctuations of the metric

Weyl factor perturbation D 7! �D�

Conformal Geometry Fredholm module .A;H ; F /, F 2 D 1.

Perturbation by Beltrami differential F 7! .aF C b/.bF C a/�1, a D .1 � �2/�1=2, b D �a

Distributional derivative Quantized differential d̄Z WD ŒF;Z�

Measure of conformal weight p f 7!
R
– f .Z/jdZjp

4.1. Schwartz kernels and Schwarzian derivative

Let V be a one-dimensional manifold and let H D L2.V / be the Hilbert space of square
integrable half densities: �.x/ D f .x/ dx1=2 2 H . The Schwartz kernel of an operator
T WH ! H is of the form: kT .x; y/ dx1=2 dy1=2. This means that, as a function of two
variables, the kernel depends on choices of positive sections of the one-dimensional bun-
dle of 1=2-densities. By varying the choice of a section, i.e., by dividing it with a positive
function �.x/, the kernel kT .x; y/ gets modified accordingly to �.x/�.y/kT .x; y/. The
next lemma detects an invariant of the above change.

Lemma 4.1. The differential form

! D @x@y log.kT .x; y// dx dy (9)

is independent of the choice of sections of the bundle of 1/2-densities and defines an invari-
ant !.T / of the operator T .
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(a) Page 1 (b) Page 2

Figure 1. “. . . After lecturing it became clear that .A;H ; F / is really the conformal structure, as
you always say, and the homotopy class .A;H ;F 0/ is really the first instance of the quasi-conformal
structure . . .”

Proof. One sees that by taking the log of the variation of the Schwartz kernel

log.�.x/�.y/k.x; y// D log.k.x; y//C log �.x/C log �.y/

and then applying @x@y , the output is independent of �.

Let now V D R and T D F the Fourier transform, then kF .x; y/ D exp.�2�ixy/
and the differential form becomes !.F / D �2�i dx dy.

Note that the Schwartz kernel of the Fourier transform already appeared in Section 3.3
(in matrix form) and there it played a crucial role in the determination of the K-theory of
endomorphisms of xZ.

Next, we compute !.d̄f / for the quantized differential of a function f on R.

Lemma 4.2. Let f be a smooth, complex valued function on R. Then

!.d̄f / D
�

f 0.x/f 0.y/

.f .x/ � f .y//2
�

1

.x � y/2

�
dx dy: (10)
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The restriction of !.d̄f / to the diagonal is 1
6
�.f / dx2, where

�.f / D
f .3/.x/

f 0.x/
�
3f 00.x/2

2f 0.x/2

is the Schwarzian derivative.

Proof. The Schwartz kernel of the quantized differential is

k.x; y/ D
i

�

f .x/ � f .y/

x � y
:

By applying (9) one obtains the stated equality (10).

Note, in particular, that the second statement of the above lemma shows that the quan-
tized differential determines the Schwarzian derivative.

4.2. The main lemma

The conceptual reason for the link between Weil’s explicit formula and the trace of the
compression of the scaling action on Sonin’s space [19, 23] is rooted in the following two
general facts.

Let H be a Hilbert space, and let F D 2P � 1 be the operator defining the quantized
calculus. An operator T in H is encoded by a matrix

T D

�
T11 T12
T21 T22

�
with

T11 D .1 � P /T .1 � P /; T12 D .1 � P /TP; T21 D PT .1 � P /; T22 D PTP:

Proposition 4.3 ([19, Proposition 5.4]). Let

U D

�
U11 U12
0 U22

�
be the upper-triangular matrix of an operator in H . Then U is unitary if and only if the
following conditions hold:

(i) U11 is an isometry;

(ii) U22 is a coisometry;

(iii) U12 is a partial isometry from ker.U22/ to the coker.U11/.

The next lemma (see also [22, Lemma 3.4]) relates the sign of the quantized differen-
tial of a triangular unitary operator U to the kernel of the compression PUP of U on P
(corresponding to Sonin’s space in the application related to Weil’s explicit formula).
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Lemma 4.4. With the notation of Proposition 4.3, let f be a positive operator and S the
orthogonal projection to ker.U22/. Let

zS D

�
0 0

0 S

�
;

and d̄U the quantized differential of U , then

�
1

2
Tr.f U �d̄U/ D Tr.f zS/ � 0:

Proof. We first show that �1
2
U �d̄U D zS . We have

U �PU D

�
U �11 0

U �12 U �22

� �
0 0

0 1

� �
U11 U12
0 U22

�
D

�
0 0

0 U �22

� �
U11 U12
0 U22

�
D

�
0 0

0 U �22U22

�
:

Then it follows that

U �PU � P D

�
0 0

0 U �22U22 � 1

�
:

One also has U �22U22 � 1 D �S since U22 is a coisometry. Then the claim follows from
the equality U �d̄U D 2.U �PU � P / together with the fact that the trace of a product of
two positive operators is non-negative.

4.3. The semilocal functional equation

In this part we explain the functional equation in the semilocal case, by giving a proof of
the local functional equation that extends naturally to the semilocal framework. We first
introduce some notations.

We denote by I the unitary inversion operator in the subspace L2.R/ev of even func-
tions in L2.R/ defined as

I.�/.x/ WD jxj�1�.x�1/:

The scaling operator #.�/, defined for � 2 R�C, is the unitary operator in L2.R/ev given
by

#.�/.�/.x/ D ��1=2�.��1x/:

One then has I ı #.�/D #.��1/ ı I . The Fourier transform FeR is the unitary operator in
L2.R/ev defined by

FeR.�/.y/ D

Z
�.x/ exp.�2�ixy/ dx:

One has FeR ı #.�/ D #.�
�1/ ı FeR . It follows that I ı FeR commutes with the scaling

.I ı FeR/ ı #.�/ D I ı .FeR ı #.�// D I ı .#.�
�1/ ı FeR/

D .I ı #.��1// ı FeR D #.�/ ı .I ı FeR/:
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The representation # of R�C by scaling in L2.R/ev is unitarily equivalent to the multipli-
cation action with the character ��is in L2.R/, through the Fourier transform F� ı w,
where w is the unitary isomorphism

wWL2.R/ev
! L2.R�C; dx=x/; w.�/.�/ D �1=2�.�/ 8� > 0

and F� denotes the multiplicative Fourier transform

F�.f /.s/ WD

Z 1
0

f .v/v�is d�v; d�v WD dv=v:

The von Neumann algebra generated in L2.R/ by the multiplications operators by ��is is
equal toL1.R/ acting by multiplication. The bicommutant theorem ensures that a unitary
operator commuting with this representation is a multiplication operator by a function of
modulus one on R. Then it follows that the composite operator in L2.R/

.F� ı w/ ı .I ı FeR/ ı .F� ı w/
�1 (11)

is the multiplication by a function u 2 L1.R/ of modulus one. Next, we shall develop on
the following schematic diagram (Figure 2).

Fact 4.5. The function u is the ratio of local archimedean factors

u.s/ D
�.1=2 � is/

�.1=2C is/
D
.1=2C is/

.1=2 � is/
; .z/ WD ��z=2�.z=2/: (12)

Proof. Let f 2 �.R/ be an even function with

f .0/ D 0 D

Z
f .x/ dx:

The Poisson formula (for x > 0)

x
X
n>0

f .nx/ D
X
n>0

yf
�n
x

�
implies

x1=2
X
n>0

f .nx/ D x�1=2
X
n>0

yf
�n
x

�
:

Define
E.f /.x/ WD x1=2

X
n>0

f .nx/ (13)

then we have: E.f /.x/ D E.FeRf /.x
�1/. By applying the multiplicative Fourier F� on

the right-hand side of this equality, one has (for s 2 R)

F�.E.f //.s/ D �.1=2 � is/F�.wf /.s/; (14)
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Fourier

Poisson zeta

Fourier D Inv ıConv

u D �.1=2�is/
�.1=2Cis/

functional
equation

u.s/ D .1=2Cis/
.1=2�is/

; .z/ D ��z=2�.z=2/

Figure 2. The Poisson formula yields a formula for the unitary u as a ratio of the zeta function on
the critical line and the functional equation for the complete zeta function expresses this ratio as the
ratio of local archimedean factors.

and by the above equality: F�.E.f //.s/ D F�.E.FeRf //.�s/. Thus, with (14), one ob-
tains

�.1=2 � is/F�.wf /.s/ D �.1=2C is/F�.wFeRf /.�s/

Finally, in view of (11), one writes

.F� ı w/ ı .I ı FeR/.f /.s/ D F�.wFeRf /.�s/ D
�.1=2 � is/

�.1=2C is/
F�.wf /.s/:

Thus, u D �.1=2�is/
�.1=2Cis/

is the ratio of local factors.

An argument similar to the one just developed in the above proof applies in the semilo-
cal case (when finitely many places are involved, inclusive the archimedean) [22]. More
precisely, one lets S be a finite set of places of Q containing the archimedean place and
one considers the semilocal adele class space

XQ;S WD AQ;S=�; (15)

where AQ;S D
Q
v2S Qv is the product of the local fields acted upon (by multiplication)

by the subgroup

� D ¹˙p
n1
1 � � �p

nk
k
W pj 2 Sn¹1º; nj 2 Zº � Q�: (16)

Even though XQ;S is a noncommutative space, at the topological level and when S
contains at least three places, this space is well behaved at the measure theory level
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because the additive and multiplicative Haar measures are equivalent on the finite prod-
uct of local fields [5, 24]. There is a natural Hilbert space L2.XQ;S / of square integrable
functions on XQ;S . Moreover, and very importantly, the Fourier transform F˛ on AQ;S

descends to a unitary operator F˛ in L2.XQ;S /. After passing to the dual of the group
CQ;S D GL1.AQ;S /=� by the Fourier transform FC and using the inversion I , F˛ reads
as the multiplication by a function u of modulus 1 on the dual of CQ;S (see [24, Chap-
ter 2])

F˛ D w
�1
ı I ı F�1C ı u ı FC ı w: (17)

Let �v be the projection from the dual of CQ;S to the dual bQ�v , the unitary u is of the form

u D
Y
S

uv ı �v; (18)

where the uv 2 L1.bQ�v / are the functions involved in the local functional equation of
Tate [35]:Z

Q�v

F˛v .f /.x/�.x
�1/jxj1=2 d�x D uv.�/

Z
Q�v

f .x/�.x/jxj1=2 d�x: (19)

Here, F˛v denotes the Fourier transform relative to the canonical additive character ˛v of
the local field Qv .

One knows that the function uv is the ratio of the local factors of L-functions. When
restricting to the “zeta sector”, i.e., to the subspace of L2.XQ;S / of functions invariant
under the action of the maximal compact subgroup of CQ;S , the function u is the product
of ratios of local factors of the Riemann zeta function:

u D �1
Y

�p:

This can be proved directly using the same argument as in the above proof of Fact 4.5
(see [22]). In [19], we have developed the notion of quasi-inner function as a generaliza-
tion of Beurling’s notion of inner function which we first related to the main Lemma 4.4.
In [19, Theorem 4.1] we showed that the product u D �1

Q
�p of ratios of local factors

of the Riemann zeta function is a quasi-inner function

Theorem 4.6. The product u D �1
Q
�p of ratios of local factors over a finite set of

places of Q containing the archimedean place is a quasi-inner function relative to

C� D
°
z 2 C j <.z/ �

1

2

±
:

This fact shows that the quantized differential u�d̄u fulfills the hypothesis of the main
Lemma 4.4 “modulo infinitesimals”, i.e., working in the Calkin algebra (quotient of the
algebra of bounded operators by the ideal of compact ones).
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4.4. Quantized calculus and the semilocal trace formula

The key fact enabling the development of the semilocal framework of Section 4.3 is the
equivalence of the additive and multiplicative Haar measures on a finite product of local
fields. This fact fails in the global adelic case. The reason why one can go around this
difficulty in order to understand the location of the zeros of the Riemann zeta function is
that Weil’s criterion

RH ”

X
v

Wv.g � g
�/ � 0 8g 2 C1c .R

�
C/ with yg

�
˙
i

2

�
D 0; (20)

only involves finitely many primes at a time. Indeed, while the sum on the right is extended
to all places of Q, for v D p a non-archimedean prime, the functional

Wp.f / WD .logp/
1X
mD1

p�m=2
�
f .pm/C f .p�m/

�
(21)

vanishes on test functions with support in the interval .p�1; p/. Thus,Wv.g � g�/¤ 0 for
only finitely many v. The functionalsWv are given by the Riemann–Weil explicit formula

yf
� i
2

�
�

X
1
2Cis2Z

yf .s/C yf
�
�
i

2

�
D

X
v

Wv.f /;

yf .s/ WD

Z 1
0

f .x/x�is d�x; d�x D
dx

x
;

(22)

where Z is the multi-set of the non-trivial zeros of the Riemann zeta function.
The archimedean distribution WR is defined as

WR.f / D .log 4� C /f .1/C
Z 1
1

�
f .x/C f .x�1/ � 2x�1=2f .1/

� x1=2

x � x�1
d�x:

(23)
The key equality now is the local trace formula of [5] (as revisited in [24])X

v2S

Wv.f / D
1

2
Tr. yf u� d̄u/; (24)

where the notations for the right-hand side are as in Section 4.3. Lemma 4.4 would imply
the negativity criterion (20), if u fulfilled the required hypothesis of that lemma (in Sec-
tion 4.3 we pointed out that the failure is only by an infinitesimal). When S is reduced
to the single archimedean place, this difficulty can be bypassed by analyzing the effect
of the infinitesimal [23], and the expected negativity of the criterion can be derived from
Lemma 4.4, where the role of the orthogonal projection to ker.U22/ is played by the
orthogonal projection S on Sonin’s space, one has

Theorem 4.7 ([23]). Let g 2 C1c .R
�
C/ have support in the interval Œ2�1=2; 21=2� and

Fourier transform vanishing at i
2

and 0. Then the following inequality holds:

�WR.g � g
�/ D W1.g � g

�/ � Tr.#.g/S#.g/�/: (25)
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In the next Section 4.5 we shall see that a difficulty to extend this result in the semilocal
case is that the restriction of Weil’s quadratic form to test functions with support in the
interval Œ��1; �� � R�C admits (for large values of �) extremely small eigenvalues. This
fact prevents the use of the approximation method developed in [23].

4.5. The radical of the Weil quadratic form

Weil’s quadratic form

QW.f; g/ WD
X

1=2Cis2Z

yf .xs/yg.s/ (26)

admits a non-trivial radical when working with general test functions (i.e., if one drops the
compact support condition of (20)). This radical contains the range of the map E defined
on the codimension two subspace � ev

0 of even Schwartz functions fulfilling the equalities
f .0/ D 0 D yf .0/ by the formula

E.f /.x/ D x1=2
X
n>0

f .nx/ 8f 2 � ev
0 : (27)

Indeed, elements h D E.f / of this range fulfill yh.s/ D 0 when 1=2C is 2 Z.
The Riemann–Weil explicit formula expressesQW.f; g/ on test functions f; g whose

support is contained in Œ��1; ���R�C as a finite sum, thus in a form suitable for numerical
testings since the sum involves primes less than �2. In [21] we provided numerical evi-
dence to the fact that as � increases the operator in H .�/ WD L2.Œ��1; ��; d�u/ associated
to the quadratic formQW� (restriction ofQW ) admits a finite number of extremely small
positive eigenvalues. For instance, we have found that when �2 D 11 the smallest posi-
tive eigenvalue is 2:389 � 10�48. The presence of these minuscule positive eigenvalues is
explained conceptually by the fact that the radical of Weil’s quadratic form contains the
range of the map E .

In [21] we also gave an excellent approximation of the related eigenfunctions and
we showed that even though RH implies QW� > 0, (thus that its radical is ¹0º), one
can nevertheless construct, by making use of (27), functions g with support in Œ��1; ��
fulfilling:

QW�.g/� kgk
2:

Indeed, let P� and �P� be the cutoff projections in the Hilbert space L2.R/ev, then the
projection P� is given by the multiplication with the characteristic function of the interval
Œ��;���R. The projection �P� is the conjugate of P� by the Fourier transform FeR . If the
even function f 2 � ev

0 belongs to the range of P�, then the support of E.f / is contained
in .0;���R�C. On the other hand, when f 2 � ev

0 is in the range of �P� the Poisson formula

E.f /.x/ D E.FeRf /.x
�1/

shows that the support of E.f / is contained in Œ��1;1/. The obstruction to obtain an
element E.f / in the radical of QW� is provided by the equality P� \ bP � D ¹0º.
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The seminal work of Slepian and Pollack [32–34] on band limited functions shows that
while P� \ bP � D ¹0º the prolate functions for small enough eigenvalues almost belong to
P� and to bP �. Using this fact we constructed in [21] functions denoted “prolate vectors”,
on which QW� takes extremely small, non-zero values. In the same article, we verified
concretely that the orthogonalization of the prolate vectors give an excellent approxima-
tion of the eigenvectors associated to the smallest eigenvalues of Weil’s quadratic form.
The first k C 2 prolate vectors, determine a k-dimensional subspace of

L2.Œ��1; ��; d�u/ ' L2.R�C=�
2Z; d�u/

on which the associated orthogonal projection ….�; k/ acts. Note that the construction of
….�; k/ only uses the prolate vectors without any reference to QW�.

4.6. Spectral triples and zeros of zeta

The notion of a spectral triple .A;H ;D/ formalizes the concept of a “spectral geometry”,
where the underlying “space” is encoded by the algebra A (in general noncommutative)
that acts by operators in the Hilbert space H . The self-adjoint operator D in H encodes
both the metric aspect of the space (by the formula d.�; �/ D Sup j�.A/ � �.A/j, with
kŒD;A�k � 1 for the distance between states on the algebra A) and the fundamental class
in K-homology (and also in KO-homology if a real structure J is present).

In [21], we have constructed spectral triples

‚.�; k/ D .A.�/;H .�/;D.�; k//

making use of the orthogonal projections ….�; k/ recalled at the end of Section 4.5. For
this application, the algebra A is

A.�/ WD C1.R�C=�
2Z/

acting by multiplication on H .�/ WD L2.R�C=�
2Z; d�u/. The operator D.�; k/ is the

finite rank perturbation

D.�; k/ WD .1 �….�; k// ıD0 ı .1 �….�; k//; D0 D �iu@u (28)

of the standard Dirac operator D0 D �iu@u (with periodic boundary conditions when
viewed in L2.Œ��1; ��; d�u/ ' L2.R�C=�

2Z/). In [21, Proposition 4.2] we explain how
we are able to grasp the zeros of the Riemann zeta function up to height t D 2��, by com-
puting the spectra of the operators D.�; k/ for �2 � �. The computation of the involved
prolate vectors only requires the use of integers less than the integer part of �, because
all other terms in the sum involved in the definition of the map E vanish due to the sup-
port condition. This means that we only use integers n between 1 and �. In this way, we
have found a remarkable agreement with the first 31 zeros of zeta only implementing the
integers 2, 3, 4!
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This fact is all the more remarkable since the above restriction on the involved integers
(in the sum defining the map E) coincides exactly with the restriction in the partial sums
occurring in the Riemann–Siegel formula (see [2] and [31, Section 6.1]). While these
findings are largely depending on computer calculations of spectra of large matrices, we
have provided their conceptual explanation by introducing the notion of zeta-cycle [21].
With †� denoting the Poincaré series operator, i.e., the linear map defined on functions
gWR�C ! C by the formula

.†�g/.u/ WD
X
k2Z

g.�ku/: (29)

We can state the following result.

Theorem 4.8. For � > 1, let C be the circle C WD R�C=�
Z.

(i) The spectrum of the action of the multiplicative group R�C on the orthogonal of
†�E.� ev

0 / in L2.C / is formed of imaginary parts of zeros of zeta on the critical
line.

(ii) Let s > 0 be such that �.1=2 C is/ D 0, then any circle of length an integral
multiple of 2�=s is a zeta cycle and its spectrum contains is.

Remark 4.9. The spectral triples‚.�; k/D .A.�/;H .�/;D.�; k// have the same ultra-
violet spectral behavior as the Dirac operator D0 D �iu@u on the circle C D R�C=�

2Z.
In particular, the number of eigenvalues with absolute value less than E grows linearly
with E. The ultraviolet behavior of the zeros of the Riemann zeta function is given by
Riemann’s formula for the number N.E/ of zeros of imaginary part between 0 and E,

N.E/ D
E

2�
log

E

2�
�
E

2�
CO.logE/: (30)

The problem of finding a Dirac operator with the ultraviolet behavior (30) is solved by
the first author and H. Moscovici in [25]. Remarkably, the solution involves the prolate
spheroidal wave operator W� whose commutation with the projections P� and �P� plays
a key role in [32–34].

4.7. Prolate vectors and the semilocal framework

The construction of the prolate vectors (and of the projection ….�; k/) makes use of the
map E . In this part we exhibit the relation between this construction and the semilocal
framework, showing that the map E appears naturally in the quotient XQ;S for functions
with small enough support.

Proposition 4.10. Let � > 1, � D �1=2 and f an even function on R with support
in Œ��; ��. Let S D ¹1; 2; 3; : : : ; p0º, where p0 is the largest prime less than �. Let zf
be the function on XQ;S associated to the function ˝v2Sn11Zv ˝ f where 1Zv is the
characteristic function of the maximal compact subring Zv � Qv . Then the following
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equality holds
w. zf /.u/ D 2E.f /.u/ 8u > ��1: (31)

Proof. For u 2 R�C, one has by construction

w. zf /.u/ D u1=2
X
g2�

.˝v2Sn11Zv ˝ f /.g.1; 1; : : : ; u//:

The terms in the sum vanish unless g is an integer since otherwise g.1; 1; : : :/ …
Q

Zv .
Moreover, in that case the terms are equal to f .gu/. Thus, the sum becomes

w. zf /.u/ D u1=2
X

g2Z\�

f .gu/:

Assume u > ��1. Then for any integer n, with jnj>�D �2, one has f .nu/D 0 since the
support of f is in Œ��; ��. Moreover, the following sets are equal since all prime factors
of integers less than � are in S :

Y D Z \ � \ Œ��;�� D ¹˙n j n 2 N; 0 < n � �º;

and thus for u > ��1, one obtains (since f is even)

w. zf /.u/ D u1=2
X
g2Y

f .gu/ D 2E.f /.u/;

which gives the required equality.

For each prime p the characteristic function 1Zp is its own Fourier transform on Qp

and this implies that the semilocal Fourier transform F˛ acts as the archimedean Fourier
transform FeR on functions zf on the quotientXQ;S , associated as above to simple tensors
˝1Zp ˝ f . Thus,

F˛. zf / D BFeR.f /:

Moreover, if the support of f is contained in the ball of radius � the same holds for zf .
Together with Proposition 4.10 this fact suggests that the minuscule eigenvalues of the
Weil quadratic form of Section 4.5 can be reinterpreted intrinsically in the semilocal
framework, without using the map E , just by analyzing the relative position of the semilo-
cal analogue of the cutoff projections P� and �P�.
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