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Chain duality for categories over complexes

James F. Davis and Carmen Rovi

Abstract. We show that the additive category of chain complexes parametrized by a finite simplicial
complexK forms a category with chain duality. This fact, never fully proven in the original reference
(Ranicki, 1992), is fundamental for Ranicki’s algebraic formulation of the surgery exact sequence
of Sullivan and Wall, and his interpretation of the surgery obstruction map as the passage from local
Poincaré duality to global Poincaré duality.

Our paper also gives a new, conceptual, and geometric treatment of chain duality on K-based
chain complexes.

Dedicated to Dennis Sullivan on the occasion of his 80th birthday

1. Introduction

Kervaire and Milnor [5] developed and applied the new field of surgery to classify exotic
smooth structures on spheres. Browder and Novikov independently extended and rel-
ativized the theory. Sullivan in his thesis [15] investigated the obstruction theory for
deforming a homotopy equivalence to a homeomorphism. In seminar notes [16] writ-
ten shortly after his thesis, Sullivan’s Theorem 3 packaged this in what is now called the
surgery exact sequence. (We will be ahistorical and concentrate on topological manifolds;
Kervaire–Milnor concentrated on smooth manifolds and Sullivan on PL-manifolds. The
extension to topological manifolds is due to the deep work of Kirby and Siebenmann [6].)
It was extended to the nonsimply-connected case and to the case of compact manifolds
by Wall [17]. The surgery exact sequence for a closed n-dimensional manifold X with
n � 5 is

� � � ! LnC1.ZŒ�1.X/�/! STOP.X/! N TOP.X/
�
�! Ln.ZŒ�1X�/:

The object one wants to compute is the structure set STOP.X/, first defined by Sullivan.
Representatives of the structure set are given by (simple) homotopy equivalences from a
closed n-manifold toX . Computing the structure set is the key ingredient in computing the
manifold moduli set, the set of homeomorphism types of n-manifolds homotopy equiva-
lent toX . The beauty of the surgery exact sequence is marred by many flaws. One is that it
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is an exact sequence of pointed sets. Another flaw is standard with a long exact sequence,
to do computations one needs to compute the surgery obstruction map � , including its
domain, the normal invariants N TOP.X/, and its codomain, the L-groups. For many fun-
damental groups (e.g., finite groups or finitely generated abelian groups) one can compute
the L-groups algebraically. Sullivan, in his thesis, analyzed the normal invariants, using
transversality to establish a bijection

N TOP.X/ Š ŒX;G=TOP�:

He also computed the homotopy groups �i .G=TOP/ which vanish for i odd, have order 2
for i � 2 .mod 4/, and are infinite cyclic for i � 0 .mod 4/ (this follows from the gener-
alized Poincaré conjecture). Furthermore, Sullivan analyzed the homotopy type ofG=TOP
and established Sullivan periodicity,

�4.Z �G=TOP/ ' Z �G=TOP:

This then determines an�-spectrum L: and its 1-connective cover L:h1i. There is a formal
identification

ŒX;G=TOP� D H 0.X IL:h1i/:

The surgery exact sequence is now becoming more presentable, but it is still marred
by functoriality issues: the L-groups are covariant in X , the normal invariants are con-
travariant in X , and the structure set has no obvious variance at all. Furthermore, it is only
defined for manifolds, and one would like an abelian group structure. These flaws make
computing the surgery obstruction map difficult. Quinn’s [10] vision (largely carried out
by Ranicki [12], see also [7]) is to find a bijection between the surgery exact sequence and
a long exact sequences of abelian groups defined for every space X and fully covariant
in X . In more detail, there is the following commutative diagram

LnC1.ZŒ�1X�/ STOP.X/ N TOP.X/ Ln.ZŒ�1X�/

LnC1.ZŒ�1X�/ Sh1inC1.X/ Hn.X IL:h1i/ Ln.ZŒ�1X�/

LnC1.ZŒ�1X�/ SnC1.X/ Hn.X IL:/ Ln.ZŒ�1X�/;

D Š Š D

D

Ah1i

D

A

where the vertical maps labelled Š are bijections when X is a closed n-manifold and
the bottom two horizontal lines are exact sequences of abelian groups, defined for any
spaceX . These two lines are called the 1-connective algebraic surgery exact sequence and
the algebraic surgery exact sequence, respectively. The mapsAh1i andA are called assem-
bly maps; they are defined at the spectrum level. Hence, there is a long exact sequence of
homotopy groups, where the algebraic structure groups are defined to be the homotopy
groups of the cofiber of the assembly maps. The map A is conjectured to be an isomor-
phism when X D B� with � torsionfree.
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There are myriad ways of constructing the assembly maps (the construction in the arti-
cle [3] seems best for computations). Different constructions are identified via axiomatics
(see [18], also [3]). Ranicki’s version of assembly, needed for his approach to the above
diagram, was motivated by his earlier work with Weiss [13] viewing the assembly maps
as a passage from local to global Poincaré duality. Much earlier Ranicki [11] reinterpreted
Wall’s algebraic L-groups as bordism groups of algebraic Poincaré complexes over the
group ring ZŒ�1X�. This is the global Poincaré duality. The local Poincaré duality comes
from making a geometric degree one normal map transverse to the dual cones of X (see
Section 3 for the definition). These degree one normal maps to the cones are then assem-
bled to give the original degree one normal map.

More precisely, Ranicki [12] defined the notion of an additive category with chain
duality A, the associated algebraic bordism category ƒ.A/ (see [12, Example 3.3]), and
the correspondingL-groupsLn.A/ (see [12, Definition 1.8]). In his notation, the assembly
map is given by establishing a map of algebraic bordism categories (see [12, Proposi-
tion 9.11])

ƒ..Z; X/-mod//! ƒ.ZŒ�1X�-mod/

and defining the assembly map to be the induced map on L-groups. However, one flaw in
his argument is that he never provided a proof that .Z;X/-mod is an additive category with
chain duality, despite his assertion in [12, Proposition 5.1]. Our modest contribution to this
saga is to provide a self-contained, conceptual, and geometric proof that .Z;X/-mod is an
additive category with chain duality.

We are not the first to provide a proof of this result – one is given in [1, Section 5].
However, we found the proof and its notation rather dense. Another account of this result
is given in a recent preprint of Frank Connolly [2]. Although his aims are quite similar to
ours, the approach is different, the reader may wish to compare.

We now outline our paper. In Section 2 we review Ranicki’s notion of an additive
category with chain duality, this is an additive category with a chain duality functor sat-
isfying a chain homotopy equivalence condition. In Section 3 we fix a finite simplicial
complexK (e.g., a triangulation of a compact manifold), and we define Ranicki’s additive
categories of K-based chain complexes. Here we need to warn the reader that we have
deviated from Ranicki’s notation in [12], which we found difficult to use. A comparison
between our notation and Ranicki’s is given in Remark 14. The two key additive categories
are Ch.Z.K/-mod/ and Ch.Z.Kop/-mod/. The latter category is the one whose L-theory
gives the normal invariants, so is perhaps more important. The simplicial chain complex
�K gives an object of Ch.Z.K/-mod/ and the simplicial cochain complex�K�� gives an
object of Ch.Z.Kop/-mod/. More generally, given a CW-complex X with aK-dissection,
the cellular chains C.X/ give an object of Ch.Z.K/-mod/ and given a CW-complex X
with a Kop-dissection, the cellular chains C.X/ give an object of Ch.Z.Kop/-mod/. We
related this to dual cell decompositions, defined even when K is not a manifold. In Sec-
tion 4, we develop homological algebra necessary for our proof that these categories admit
a chain duality.
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Section 5 may be of independent interest. For a finite simplicial complexK, we define
the dual cell decomposition DK which is a regular CW-complex refining the simplicial
structure onK. Corollary 32 and Remark 35 say that this, in some sense, gives a two-sided
bar resolution for the category of posets of K.

Finally, in Section 6, we define chain duality functors .T; �/ on Ch.Z.Kop/-mod/ and
Ch.Z.K/-mod/ and prove our main theorem.

Theorem 1. The following are additive categories with chain duality:´
.Ch.Z.Kop/-mod/; T; �/;

.Ch.Z.K/-mod/; T; �/:

2. Chain duality

For a category K, write � 2 K when � is an object of K and K.�; �/ for the set of
morphisms from � to � . A preadditive category is a category where all morphism sets are
abelian groups and composition is bilinear. An additive category is a preadditive category
which admits finite products and coproducts. An example of an additive category is the
category of finitely generated free abelian groups.

Let A be an additive category and let Ch.A/ be the category of finite chain complexes
over A where finite means that Cn D 0 for all but a finite number of n. Homotopy notions
make sense in this category: the notions of two chain maps being chain homotopic, a chain
map being a chain homotopy equivalence, two chain complexes being chain homotopy
equivalent, and a chain complex being contractible. The notion of homology of a chain
complex over an additive category does not make sense.

Let Ch�;�.A/ be the category of finite bigraded chain complexes over A. There are
functors

TotWCh�;�.A/! Ch.A/;

Hom�;�WCh.A/op
� Ch.A/! Ch�;�.Z-mod/;

where Tot.C�;�/n D
L
pCqDnCpCq and Hom.C;D/p;q DA.C�p;Dq/. (Throughout this

paper, if the differentials are standard or can be easily determined, we omit them for read-
ability.) If C and D are finite chain complexes over an additive category A, then

HomA.C;D/ WD Tot.Hom�;�.C;D//

is a chain complex of abelian groups with differentials

dHomA.C;D/WHomA.C;D/n ! HomA.C;D/n�1;

d.f / D dD ı f C .�1/
nC1f ı dC :
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A 0-cycle is a chain map; the difference of chain maps is a boundary if and only if
the chain maps are chain homotopic. In particular, there is a monomorphism of abelian
groups Ch.A/.C;D/! HomA.C;D/0.

If C and D are chain complexes of abelian groups, then there is a chain complex
.C ˝D;d˝/ with differentials

d˝W .C ˝D/n ! .C ˝D/n�1;

d˝.x ˝ y/ D dC .x/˝ y C .�1/
jxjx ˝ dD.y/:

Definition 2. A chain duality functor .T; �/ on an additive category A is an additive
functor T WCh.A/! Ch.A/op together with a natural chain map

�C;D WHomA.TC;D/! HomA.TD;C /

defined for each pair of chain complexes C;D 2 Ch.A/ so that �2 D Id in the sense that
�D;C ı �C;D D Id.

Remark 3. By restricting to 0-cycles, the natural chain map � induces a natural isomor-
phism of abelian groups

�C;D WCh.A/.TC;D/! Ch.A/.TD;C /:

Lemma 4. Let .T; �/ be a chain duality functor on A. For C 2 Ch.A/, let eC WT 2C ! C

be �.IdTC /. This defines a natural transformation

eWT 2 ! IdWCh.A/! Ch.A/

so that for each object C 2 Ch.A/,

eTC ı T .eC / D IdTC WTC ! T 3C ! TC:

Proof. Suppose ˛WT U ! V and ˇWV !W are chain maps. Then naturality of � implies
that

�.ˇ ı ˛/ D �.˛/ ı T .ˇ/:

Thus,

eTC ı T .eC / D �.IdT 2C / ı T .eC /

D �.eC ı IdT 2C /

D �.eC / D IdTC :

It is also true, conversely, that an additive functor T WCh.A/! Ch.A/op and natural
transformation eWT 2! Id satisfying eTC ı T .eC /D IdTC for all C 2 Ch.A/ determines
a chain duality functor .T; �/, where �.f WTC !D/ WD eC ı T .f /, but we omit the proof
of this fact.
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Definition 5. A chain duality on an additive category A is a chain duality functor .T; �/
so that eC WT 2C ! C is a chain homotopy equivalence for all C 2 Ch.A/.

This is equivalent to the definition inAndrew Ranicki’s book [12, Definition 1.1].
Notice that a chain duality functor does not necessarily give a chain duality, because of the
extra condition that eC is a chain homotopy equivalence. We separately defined a chain
duality functor because there can be uses for the weaker notion, for example, see the thesis
of Christopher Palmer [9].

3. K -based chain complexes

Let K be a finite set.

Definition 6. An abelian group M is K-based if it is expressed as a direct sum

M D
M
�2K

M.�/:

A morphism f WM ! N of K-based abelian groups is simply a homomorphism of the
underlying abelian groups M and N . Equivalently, it is a collection of homomorphisms

¹M.�/! N.�// j �; � 2 Kº:

In our exposition, we choose to work withM being an abelian group. However, every-
thing we say (and everything Ranicki says in [12]) generalizes to the context ofR-modules
where R is a ring with involution.

When the set K is a finite poset, we are interested in a subcategory of the K-based
abelian groups.

Definition 7. Let K be a finite poset.
The objects of Z.K/-mod are the K-based abelian groups

M D
M
�2K

M.�/;

where M.�/ is a finitely generated free abelian group for each � 2 K. A K-based mor-
phism f WM ! N is a morphism in Z.K/-mod if, for all � 2 K,

f .M.�// �
M
���

N.�/:

The slogan for morphisms is “bigger to smaller.”
Let K be a finite simplicial complex. There is an associated poset, also called K,

whose objects are the simplices of K and whose morphisms are inclusions: � � � means
� � � . Our quintessential examples of a poset will be either K or Kop. Our convention
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will be that � � � means � �K � and we will try and minimize the use of � �Kop � . The
simplicial chain complex�.K/ 2 Ch.Z.K/-mod/ illustrates the bigger-to-smaller slogan.
Here �.K/n D

L
�2Kn �.K/n.�/, with

�.K/n.�/ Š

´
Z if n D j� j;

0 otherwise:

Since duality is the fundamental feature of this paper, we introduce it immediately.

Definition 8. Let K be a finite poset. The duality functor

�WZ.K/-mod! .Z.Kop/-mod/op

is defined on objects by
M � D

M
�2K

M.�/�;

where M.�/� D HomZ.M.�/; Z/. There is a natural isomorphism EW Id ) �� with
EM WM !M �� induced by

EM .�/WM.�/!M.�/��

given bym 7! .� 7! �.m//. The duality functor and natural isomorphism extend to chain
complexes

��WCh.Z.K/-mod/! Ch.Z.Kop/-mod/op

with .C��/n D C�n WD .Cn/�.

This definition illustrates some of our notational conventions. We writeC (and notC�)
to denote a chain complex. We use C�� (and not C �) so that the dual is also a chain com-
plex, whose differential has degree minus one. There are also sign conventions on the dif-
ferential; we follow the sign conventions of Dold [4]: the differential .C��/nC1 ! .C��/n
is given by .�1/nC1.@�n/�.

The simplicial cochain complex�K�� 2 Ch.Z.Kop/-mod/ of a finite simplicial com-
plex illustrates the Kop-slogan “smaller-to-bigger.”

Definition 9. Let K be a finite simplicial complex and let X be a finite CW-complex.

(1) AK-dissection of X is a collection ¹X.�/ j � 2Kº of subcomplexes of X so that

(a) X.�/ \X.�/ D

´
X.� \ �/ if � \ � 2 K;

; otherwise;

(b) X D
S
�2K X.�/.

(2) A Kop-dissection of X is a collection ¹X.�/ j � 2 Kº of subcomplexes of X so
that

(a) X.�/ \X.�/ D

´
X.� [ �/ if � [ � 2 K;

; otherwise;
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K0

x�0 x�1

x�2

x�02 x�12x�

x�01

dual cells

D��0 D��1

D��2

D�0�0

Kop-dissection

DK�0 DK�1

DK�2

K-dissection

�0 �1

�2

�02 �12

�01

�

Figure 1. Dual cells and K- and Kop-dissections of a 2-simplex.

(b) X D
S
�2K X.�/.

Here � [ � is the smallest simplex of K which contains � and �, if it exists. Note
that in a K-dissection � � � implies that X.�/ � X.�/, while in a Kop-dissection, � � �
implies that X.�/ � X.�/.

Remark 10. TheKop-dissections described here areK-dissections in Ranicki’s terminol-
ogy.

Example 11. The geometric realization of a finite simplicial complex K has both a K-
dissection given by the geometric realization of the simplices and a Kop-dissection given
by the dual cones of simplices. We describe the latter in order to fix notation.

Let K 0 be the barycentric subdivision of K. The vertices of K 0 are the barycenters x�i
of the geometric realization of the simplices �i 2 K. An r-simplex in K 0 is given by a
sequence x�0x�1 : : : x�r , where �i < �iC1, and K 0 is a subdivision of K (see Spanier [14,
Chapter 3, Section 3] for the definition of a subdivision); in particular, there is a PL-
homeomorphism jK 0j ! jKj. For � � � 2 K, the dual cell D�� is the union of the
geometric realization of all simplices x�0x�1 : : : x�r of the barycentric subdivision so that

� � �0 < �1 < � � � < �r � �:
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I

��0 �1

X.�/

X.�0/ X.�1/

DK�DK�0 DK�1

X.�/

X.�0/ X.�1/

Figure 2. K- and Kop-dissections.

Define the dual cone of � 2 K to be DK� D
S
¹� j���ºD�� . Then ¹DK�º gives a Kop-

dissection of the geometric realization of K.
With K a 2-simplex, Figure 1 shows a K and Kop dissection of the geometric realiza-

tion of a 2-simplex.

If .Y; B/ is a CW-pair, then the surjection of the cellular n-chains CnY ! Cn.Y; B/

has a canonical splitting (informally, it is given by the span of the n-cells of Y � B). We
will thus consider Cn.Y; B/ to be a subgroup of CnY . More generally, given a CW-triple
.Z; Y; B/, we consider Cn.Y; B/ to be a subgroup of CnZ.

IfX has aK-dissection and � 2K, define @X.�/D
S
�<� X.�/. This is a subcomplex

ofX.�/. For every cell e ofX , there is a unique � so that e � .X.�/� @X.�//. Then CnX
is K-based with

CnX D
M
�2K

Cn.X.�/; @X.�//:

In fact, C.X/ 2 Ch.Z.K/-mod/.
Corresponding assertions hold in the dual case. One defines @X.�/ D

S
�<� X.�/.

Then CnX is K-based with

CnX D
M
�2K

Cn.X.�/; @X.�//:

In fact, C.X/ 2 Ch.Z.Kop/-mod/.

Example 12. In Figure 2, we give examples of a K-dissection and a Kop-dissection.
Note that if X is an n-dimensional manifold, then a map f WX ! K 0 can be made

transverse to the dual cells DK� for all � 2 K so that f �1.DK�/ is a submanifold of
dimension n � j� j.

The notions of K and Kop-dissections are special cases of the notion of a free C -CW-
complex for a category C defined in [3, Section 3].
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4. The categorical point of view

Z.K/-mod is an additive category, but to use homological algebra, one needs to embed it
in an abelian category. In this section we develop this point of view.

Let K be a small category.
Recall that � 2 K means � is an object of K and that K.�; �/ is the set of morphisms

from � to � . Given a morphism ˛W� ! � , let s˛ D � , the source, and let t˛ D � , the target.
Let MorK be the set of all morphisms in K.

Let ZŒK�-mod be the category whose objects are functorsM WK! Z-mod and whose
morphisms are natural transformations. An example of a ZŒK�-module is the trivial mod-
ule ZK , where ZK.�/ D Z for every object � and ZK.˛/ D IdZ for every morphism ˛.
The category ZŒK�-mod is an abelian category. Its morphism sets are abelian groups. A
ZŒK�-module M is finitely generated if there are a1 2 M.�1/; : : : ; ak 2 M.�k/ so that
for any b 2M.�/, then b D

P
M.˛i /.ai / for some morphisms ˛1 2 K.�1; �/; : : : ; ˛k 2

K.�k ; �/. A ZŒK�-module is free if it is isomorphic to a direct sum of modules of the
form ZŒK.�;�/� for some � 2 K (the � can vary and repeat in the direct sum). A basis
for a ZŒK�-module M is a collection of subsets B� �M.�/�2K so that any b 2 M.�/
for any � can be expressed uniquely as b D

P
M.˛i /.bi / for morphisms ˛i and basis

elements bi .
We write HomZŒK�.M;N / for the morphism set ZŒK�-mod.M;N / given the structure

of an abelian group as a subgroup of
Q
�2K HomZ.M.�/; N.�//. When M is a ZŒKop�-

module and N is a ZŒK�-module, define the tensor product

M ˝ZŒK� N D

L
�2KM.�/˝Z N.�/

.mf; n/ � .m; f n/
:

This is an abelian group. For an abelian group A, there is the adjoint isomorphism

HomZ.M ˝ZŒK� N;A/ Š HomZŒKop�.M;HomZ.N;A//;

natural in M , N , and A.
Yoneda’s lemma gives isomorphisms of abelian groups

HomZŒK�.ZŒK.�;�/�; N / Š N.�/;

M ˝ZŒK� ZŒK.�;�/� ŠM.�/:

Here for a set S , ZŒS� is the free abelian group with basis S (elements are
P
nisi ) and

ZŒK.�;�/�WK ! Z-mod is the functor � 7! ZŒK.�; �/�.
LetF WJ !K be a functor. LetF �WZŒK�-mod!ZŒJ �-mod be the restrictionF �N D

N ı F . It has a left adjoint induction F�WZŒJ �-mod! ZŒK�-mod with

F�M.‹‹/ D ZŒK.F.‹/; ‹‹/�˝ZŒJ �M.‹/

where F � is exact, and F� takes projective objects to projective objects. They satisfy the
adjoint property (see [3, Lemma 1.9]):

HomZŒK�.F�M;N/
Š
�! HomZŒJ �.M;F

�N/:
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In the special case cWK ! 1, where 1 is the trivial category,

c�M D colim
K

M D ZK
op
˝ZŒK�M:

We now generalize Definition 7.

Definition 13. Let K be a small category. Let Z.K/-mod be the category whose objects
are K-based abelian groups

M D
M
�2K

M.�/

with M a finitely generated free abelian group and whose morphisms f WM ! N are a
collection of homomorphisms of abelian groups ¹f˛WM.t˛/! N.s˛/º˛2MorK , which are
zero for all but a finite number of ˛. The composition law is given by

.g ı f /˛ D
X
ˇı
D˛

g
 ı fˇ :

An example of a Z.K/-module is given by Z� , where

Z� .�/ D

´
Z � D �;

0 � 6D �:

Every Z.K/-module is isomorphic to a finite direct sum of such modules.
Define a functor

Œ �WZ.K/-mod! ZŒK�-mod

by sendingM to ŒM �.�/ D
L
‹!�M.‹/ and f D ¹f˛ºWM ! N to the map Œf �W ŒM �!

ŒN �, where the ‹‹! �; ‹! � component of

Œf �.�/W ŒM �.�/ D
M
‹!�

M.‹/! ŒN �.�/ D
M
‹‹!�

N.‹‹/

is given by the sum of all f‹‹!‹, where ‹‹!‹ satisfies ‹‹! � D .‹! �/ ı .‹‹!‹/. An
equivalent definition of Œ � is

ŒM � D

�M
�2K

M.�/

�
D

M
�2K

ZŒK.�;�/�˝Z M.�/:

The functor Œ � is a full, additive embedding. Note that there is a canonical identification
ŒZ� � D ZŒK.�;�/�.

Note that there is an embedding M.�/ � ŒM �.�/, corresponding to the identity sum-
mand. ŒM � is a finitely generated free ZŒK�-module; if ¹B�º�2K is a collection of bases
for the abelian groups M.�/, then ¹B�º�2K is also a basis for the ZŒK�-module ŒM �.



J. F. Davis and C. Rovi 488

Remark 14. In the case where K is the category of simplices of a simplicial complex,
here is the comparison of our notation with that of [12]:

ZŒK�-mod D A.Z/�ŒK�;

ZŒKop�-mod D A.Z/�ŒK� D ŒZ; K�-mod;

Z.K/-mod D A.Z/�.K/;

Z.Kop/-mod D A.Z/�.K/ D .Z; K/-mod:

Lemma 15. Let F W J ! K be a functor. Then the functor F�WZŒJ �-mod! ZŒK�-mod
restricts to the functor F�WZ.J /-mod! Z.K/-mod with

F�M.�/ D
M

�2F �1�

M.�/;

F�.f /ˇ D
X

˛2F �1ˇ

f˛:

Proof. It suffices to verify this for the module M D Z� in which case it follows from
Yoneda’s lemma.

Warning. The functor F �WZŒK�-mod! ZŒJ �-mod does not restrict to a functor

Z.K/-mod! Z.J /-mod:

Applying the above lemma to the constant functor K ! 1 gives the following corol-
lary.

Corollary 16. The functor colimK Œ �WZ.K/-mod! Z-mod satisfies

colim
K

ŒM � D
M

M.�/ and colim
K

Œf � D
X

f˛:

In other words, the colimit forgets the grading.

Example 17. LetK be a finite simplicial complex. Let ¹X.�/ j � 2Kº be aK-dissection
(orKop-dissection) of a CW complexX . Then colimK ŒC.X/�DC.jX j/, the usual cellular
chain complex of the underlying CW-complex. And ŒC.X/�.�/ D C.X.�//, the cellular
chain complex ofX.�/�X . A ZŒK�-basis for C.X/ is given by the (oriented) cells ofX .

In particular, the augmentation

"W Œ�K�! ZK

gives a chain homotopy equivalence, where �K is the Z.K/-chain complex of the sim-
plicial K-dissection of jKj and ZK is the ZŒK�-chain complex given by placing Z in
degree 0 at each object. Here ".�/ D 1 for all 0-simplices of K.

Thus Œ�K� should be regarded as a finite free ZŒK�-resolution of ZK .
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Definition 18. Let F .ZŒK�-mod/ be the full subcategory of ZŒK�-mod consisting of all
modules M so that

L
M.�/ is a finitely generated free abelian group.

Definition 19 (Round-square tensor products and Homs). There are additive functors

�˝Z.K� �WZ.K
op/-mod � F .ZŒK�-mod/! Z.Kop/-mod;

HomZ.K�.�;�/W .Z.K/-mod/op
� F .ZŒK�-mod/! Z.Kop/-mod;

with

.M ˝Z.K� N/.�/ DM.�/˝Z N.�/;

HomZ.K�.M;N /.�/ D HomZ.M.�/;N.�//;

.f ˝ g/�!� D f�!� ˝ g.� ! �/;

Hom.f; g/�!� D Hom.f�!� ; g.� ! �//;

where f WM ! M 0 and gWN ! N 0 are module morphisms and � ! � is a morphism
in K.

By additivity and the Tot construction, these functors extend to functors on chain com-
plexes: C ˝Z.K� D and HomZ.K�.C; D/. A careful look at the definitions shows that
C ˝Z.K� D is a subcomplex of the chain complex C ˝Z D. Also HomZ.K�.C;D/ is a
subcomplex of HomZ.C;D/.

Remark 20. We will be loose with the Z.K�-decorations in the following sense. If it is
clearly labelled whatM andN are, we will just writeM ˝N or Hom.M;N /. Conversely,
if we write, for example, M ˝Z.K� N , then we will assume that M is a Z.Kop/-module
and N is a ZŒK�-module.

Lemma 21. Hom and tensor products satisfy a myriad of identities; here are some we
need:

(1) colimKop ŒC ˝Z.K� D� D
L
�2K C.�/˝Z D.�/ D ŒC �˝ZŒK� D.

(2) colimKop ŒHomZ.K�.C;D/� D HomZŒK�.ŒC �;D/.

(3) .C ˝Z.K� ŒD�/˝Z.K� ŒE�
Š
�! .C ˝Z.K� ŒE�/˝Z.K� ŒD� I

x ˝ y ˝ z 7! .�1/jyjjzjx ˝ z ˝ y .

(4) colimKop ŒC��� D .colimK ŒC �/��.

(5) C�� ˝Z.K� D
��
Š
�! .C ˝Z.Kop� D/

�� I

˛ ˝ ˇ 7! .x ˝ y 7! .�1/jxjjˇ j˛.x/˝ ˇ.y/.

(6) C
Š
�! .C��/�� I x 7! .f 7! .�1/jxjf .x// for C 2 Ch.Z.K/-mod/.

(7) C ˝Z.K� D
Š
�! HomZ.K�.C

��;D/ I .x ˝ y/ 7! .f 7! .�1/jxjjyjCjxjf .x/y/.

(8) C�� ˝Z.K� D
Š
�! HomZ.K�.C;D/ I .f ˝ y/ 7! .x 7! .�1/jxjjyjf .x/y/.
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For example, we will prove part (1) for modules; then the verification for chain com-
plexes will be clear. Let C D

L
�2K C.�/ be a K-based abelian group and let D be a

ZŒK�-module. Then

colim
Kop

ŒC ˝Z.K� D� D ZK ˝ZŒKop� ŒC ˝Z.K� D�

D

M
�2K

�
ZK ˝ZŒKop�

�
ZŒK.�; �/�˝Z C.�/˝Z D.�/

��
D

M
�2K

C.�/˝Z D.�/ D
M
�2K

C.�/˝Z

�
ZŒK.�; �/�˝ZŒK� D

�
D ŒC �˝ZŒK� D;

where the second and fourth equalities are due to Yoneda’s lemma.

Remark 22. The last three isomorphisms depend on the hypothesis that ifM2Z.K/-mod
then the underlying module is finitely generated free. Without that hypothesis then one
only gets a map from left to right. To remind the reader of this fact, we will often write

C
Š
�! .C��/�� and C ˝Z.K� D

Š
�! HomZ.K�.C

��;D/:

The last two isomorphisms are called slant products.

Definition 23. A chain map f WC ! D of ZŒK�-chain complex is a weak equivalence if
for all � 2 K, f .�/WC.�/! D.�/ is an isomorphism on homology.

Proposition 24. Let f WA! B be a map in Ch.Z.K/-mod/. Then Œf �W ŒA�! ŒB� is a
weak equivalence if and only if f is a chain homotopy equivalence.

Proof. Standard techniques from homological algebra show that, in an abelian category
if the chain complexes are projective and bounded below, then a weak equivalence is a
chain homotopy equivalence. Thus, Œf � is a weak equivalence if and only if Œf � is a chain
homotopy equivalence. But since the embedding of Z.K/-mod in ZŒK�-mod is full, this
occurs if and only if f is a chain homotopy equivalence.

Proposition 25. Let C;D2Ch.F .ZŒKop�-mod// and E2Ch.Z.K/-mod/. If f WC!D

is a weak equivalence, then f ˝ZŒK� IdWC ˝ZŒK� ŒE�! D ˝ZŒK� ŒE� is a weak equiva-
lence.

This is proved by induction on the length of E.
The main result of this paper asserts that the additive categories of chain complexes

Ch..Z.Kop/-mod/ and Ch..Z.K/-mod/ admit a chain duality for a finite simplicial com-
plex K. The round-square tensor product is enough to construct the chain duality functor,
but to prove that it is a chain duality we need to introduce the round tensor product and
the category below. We discuss the geometric motivation in the next section.
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For a simplicial complex K, let DK be the poset whose objects are 1-chains .� � �/
and whose inequalities are .� � �/ � .� 0 � � 0/ if and only if � 0 � � � � � � 0. (A 1-chain
is simply a pair of simplices �; � 2 K with � a face of � .) There are morphisms of posets

Kop

DK

K

�K

�K

with �K.� � �/D � and �K.� � �/D � . Note thatDK ŠDKop with .� � �/$ .� � �/.
In Figure 1, we see an example of the geometric realization of the posetsDK (center of

the figure), K, and Kop (lower and upper right side, respectively) when K is a 2-simplex.

Definition 26 (Round tensor products and Homs). We have the following additive func-
tors:

(1) over Z.K/,

�˝Z.K/ �WZ.K
op/-mod � Z.K/-mod! Z.DK/-mod;

HomZ.K/.�;�/W .Z.K/-mod/op
� Z.K/-mod! Z.DK/-mod;

with

.M ˝Z.K/ N/.� � �/ DM.�/˝Z N.�/;

HomZ.K/.M;N /.� � �/ D HomZ.M.�/;N.�//;

.f ˝ g/.���/�.� 0�� 0/ D f� 0�� ˝ g��� 0 ;

Hom.f; g/.���/�.� 0�� 0/ D Hom.f� 0�� ; g��� 0/I

(2) over Z.Kop/,

�˝Z.Kop/ �WZ.K/-mod � Z.Kop/-mod! Z.DKop/-mod

HomZ.Kop/.�;�/W .Z.K
op/-mod/op

� Z.Kop/-mod! Z.DKop/-mod

with

.M ˝Z.Kop/ N/.� � �/ DM.�/˝Z N.�/;

HomZ.Kop/.M;N /.� � �/ D HomZ.M.�/;N.�//;

.f ˝ g/.���/�.� 0�� 0/ D f��� 0 ˝ g� 0�� ;

Hom.f; g/.���/�.� 0�� 0/ D Hom.f��� 0 ; g� 0�� /:

By additivity and the Tot construction, these functors extend to functors on chain com-
plexes: ´

C ˝Z.K/ D;

C ˝Z.Kop/ D;
and

´
HomZ.K/.C;D/;

HomZ.K/op.C;D/:



J. F. Davis and C. Rovi 492

In the formula for eC W T 2C ! C , the Z.DK/-chain complex �K�� ˝Z.K/ �K

arises. We need a weak equivalence

"W Œ�K�� ˝Z.K/ �K�! ZDK

similar to the augmentation of Example 17.
The (oriented) simplices ¹�º give a basis for �K and the dual basis ¹y�º gives a basis

for �K��. A basis of �K�� ˝Z.K/ �K is given by ¹y� ˝ �º, where � is a face of � .
Define ".y� ˝ �/ D 1 for any simplex � and ".y� ˝ �/ D 0 if � is a proper face of � . To
verify that " is a chain map, we need to show that if dim � D dim � C 1, then

".@.y� ˝ �// D @.".y� ˝ �// D @.0/ D 0:

Let Œ� W �� be the incidence number: the coefficient of � in @� . Note

@.y� ˝ �/ D Œ� W ��..�1/j� jC1y� ˝ � C .�1/j� jy� ˝ �/:

Hence,
".@.y� ˝ �// D 0:

Thus " is a chain map. We provide a proof that " is a chain equivalence with the help
of the geometry of the dual cell decomposition in the next section.

Note that similarly, a ZŒDKop�-basis of Œ�K ˝Z.Kop/ �K
��� is given by � ˝ y� ,

where � is a face of � . We define ".� ˝ y�/D .�1/j� j for any simplex � and ".� ˝ y�/D 0
if � is a proper face of � . To verify that " is a chain map, we need to show that if
dim � D dim � C 1, then

".@.� ˝ y�// D @.".� ˝ y�// D @.0/ D 0:

Like before, let Œ� W �� be the incidence number. Note

@.� ˝ y�/ D Œ� W ��.� ˝ y� C .�1/j� j.�1/j� jC1� ˝ y�/

D Œ� W ��.� ˝ y� C � ˝ y�/:

Hence,
".@.� ˝ y�// D 0:

Thus,
"W Œ�K ˝Z.Kop/ �K

���! ZDK
op

is a chain map.

5. The dual cell decomposition

A regular CW-complex is a CW-complex where the closure of each open n-cell is homeo-
morphic to an n-disk. We denote a regular CW-complexX by a pair .jX j;¹�nº/, where jX j
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�

D��

x� D �

�

Figure 3. �C (blue) and L�� (red).

is a topological space and each �n is a (closed) n-cell in jX j , and .jX j;¹�nº/ is a subdi-
vision of .jX j; ¹�nº/ if every cell of the former is a subset of a cell of the latter: �n � �n.

Regular CW-complexes are closely related to simplicial complexes. A simplicial com-
plex is a regular CW-complex (with simplices as cells) and every regular CW-complex has
a simplicial subdivision.

Let K D .jKj; ¹�º/ be a simplicial complex. We will define the dual cell subdivision
DKD .jKj;¹D��º/; its poset of cells will be the categoryDK mentioned earlier. The dual
cell decomposition is a regular CW-complex intermediary between K and its barycentric
subdivision K 0. The utility of the dual cell decomposition is that it is useful for the proof
that the category Ch.Z.Kop/-mod/ admits a chain duality.

We will first remind the reader of the barycentric subdivision

K 0 D .jKj; ¹x�0x�1 : : : x�nº/:

Here the �i are simplices of K satisfying �0 < �1 < � � � < �n, x� is the barycenter of � ,
and x�0x�1 : : : x�n is the convex hull of these barycenters.

For � � � 2 K, the dual cell D�� is the union of all simplices x�0x�1 : : : x�r of the
barycentric subdivision so that � � �0 < �1 < � � � < �r � � .

Lemma 27. For ���2K, the dual cellD���jKj is homeomorphic to a diskDdim ��dim�.

Proof. Please refer to the Figure 3 while reading the proof. Here � is a 2-simplex and � is
the lower left vertex.

Let �C be the subset of � spanned by the vertices of � which are not vertices of �
(in the example above �C is the blue line segment). Then �C is a simplex of dimension
dim � � dim � � 1. Let x� � �C be the union of all line segments between x� and a point
in �C . Then x� � �C is homeomorphic to the cone on �C , and hence is homeomorphic
to Ddim ��dim� .

Let L�� be the union of all simplices x�0x�1 : : : x�r of the barycentric subdivision so that
� < �0 < �1 < � � � < �r � � (in the example above L�� is in red).
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A radial argument using line segments starting at x� shows that D�� D x� � L�� is
homeomorphic to x� � �C .

Here are some details. Embed � isometrically into Rn with x� mapping to the origin.
For L � Rn, the cone on L is

Cone.L/ D ¹tx j t 2 Œ0; 1�; x 2 Lº;

where Cone.L/ is a proper cone if L is compact, 0 62 L, and every ray starting at the
origin intersects L in at most one point. Let S.L/ D ¹x=kxk j x 2 Lº. Two proper cones
Cone.L/ and Cone.M/ are commensurate if every ray starting at the origin intersects L
if and only if it intersects M , equivalently, S.L/ D S.M/. As an example, If � is placed
at the origin, D�� D Cone.L��/ and Cone.�C / are commensurate.

We claim that commensurate cones are homeomorphic. Using compactness of L one
shows that map L! S.L/; x 7! x=kxk is a homeomorphism, that the maps

L � Œ0; 1�! Cone.L/; .x; t / 7! tx and L � Œ0; 1�! Cone.S.L//; .x; t / 7! tx=kxk

are quotient maps, and that the induced map Cone.L/! Cone.S.L// is a homeomor-
phism.

Lemma 28. If K is a finite simplicial complex, then .jKj; ¹D��º���2K/ is a regular
CW-complex.

Proof. A finite regular CW-complex is a compact Hausdorff space covered by a finite
collection of closed cells, whose interiors partition the space, and so that the boundary of
each cell is a union of closed cells. These conditions are satisfied, since

@D�� D

� [
�<� 0��

D��
0

�
[

� [
��� 0<�

D� 0�

�
:

For a regular CW-complex Z, one can define a Z-dissection and a Zop-dissection, as
in Definition 9. Similar to Example 11, the regular CW-complexDK has aDK-dissection.
Thus the chain complex C.DK/ is a Z.DK/-chain complex.

An orientation on an n-cell � of a regular CW -complex is a choice of generator of
the infinite cyclic group Hn.�; @�/. We require that all 0-cells are positively oriented, in
other words the generator is the unique singular 0-chain with image the 0-cell. An oriented
regular CW -complex is a CW-complex with an orientation for each cell. We will abuse
notation and, in an oriented CW-complex X , use � to denote an n-cell, the generator of
Hn.�; @�/, and the image element in Cn.X/. The cellular chains of an oriented regular
CW -complex are based. In a regular CW -complex we will use the notation � 0 � � to
mean that � 0 is a codimension one face of � , that is, � 0 and � are both cells, � 0 � @� , and
1C dim� 0 D dim� . If .X; ¹�nº/ is an oriented regular CW -complex, and, in the cellular
chain complex @� D

P
� 0�� Œ� W �

0�� 0, then the coefficients Œ� W � 0� are called incidence
numbers; note that Œ� W � 0� D ˙1.
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We wish to orient the dual cell decomposition DK of jKj with an orientation which
only depends on the orientation of K. To quote William Massey (see [8, p. 243]): “we
can specify orientations for the cells of a regular CW -complex by specifying a set of
incidence numbers for the complex. This is one of the most convenient ways of specifying
orientations of cells.” The following theorem is essentially [8, Theorem 7.2, Chapter IX].

Theorem 29. Let X be a regular CW-complex. For each pair .�n; �n�1/ consisting of an
n-cell and an .n� 1/-cell of X , let there be given an integer ˛n�� D 0 or˙1 such that the
following four conditions hold:

(1) If �n�1 is not a face of �n, then ˛n�� D 0.

(2) If �n�1 is a face of �n, then ˛n�� D ˙1.

(3) If �0 and �0 are the two vertices of the 1-cell �1, then

˛1�� C ˛
1
�� D 0:

(4) Let �n and �n�2 be cells ofX so that �n�2 � �n; let �n�1 and �n�1 be the unique
.n � 1/-cells so that �n�2 � �n�1 � �n and �n�2 � �n�1 � �n. Then

˛n��˛
n�1
�� C ˛

n
��˛

n�1
�� D 0:

Under these assumptions, there exists a unique choice of orientations for the cells so that
in the cellular chain complex C.X/

@�n D
X

�n�1��n

˛n���
n�1:

Thus the ˛’s not only determine orientations on all the cells, they identify the cellular
chain complex C.X/.

Theorem 30. Let K be a finite oriented simplicial complex. There is an orientation on
the regular CW-complex DK and an isomorphism of Z.DK/-complexes

C.DK/ Š �K�� ˝Z.K/ �K;

D�� 7! y� ˝ �:

Proof. We have

@.y� ˝ �/ D .�1/j� jC1
X

��� 0��

Œ� 0 W ��y� 0 ˝ � C .�1/j� j
X

��� 0��

Œ� W � 0�y� ˝ � 0:

Thus if � � � 0 � � , define ˛nD��D�� 0 D .�1/j� jC1Œ� 0 W �� and if � � � 0 � � , define
˛nD��D� 0�

D .�1/j� jŒ� W � 0�.
Finally, we should check that the ˛’s satisfy the hypothesis of Theorem 29. There

are two possibilities for codimension one faces of D�� , namely D�� 0 where � � � 0 � �
and D� 0� , where � � � 0 � � . In both cases, parts (1), (2), and (3) of Theorem 29 are sat-
isfied. There are three possibilities for codimension 2 faces ofD�� , namelyD�� 00,D� 00� ,
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u v

Figure 4. Orientation of dual cells in a 2-simplex.

and D� 0� 0, when � is a codimension two face of � 00, when � 00 is a codimension two face
of � , and when � 0 � � and � 0 � � . Part (4) is satisfied in each case since�K�� ˝Z.K/ �K

is a chain complex.
This orients DK and shows that the map is an isomorphism of chain complexes.

Example 31. Using the assumptions in Theorem 29, Figure 4 shows the orientations of
the dual cells in a 2-simplex.

Corollary 32. For � � � 2 K, Hi .Œ�K�� ˝Z.K/ �K�/.� � �/ is zero for i > 0 and is
infinite cyclic for i D 0. In fact, "W Œ�K�� ˝Z.K/ �K�! ZDK is a weak equivalence.

Proof. The previous theorem shows that

Œ�K�� ˝Z.K/ �K�.� � �/ Š C.DK/.� � �/ D C.D��/:

Lemma 27 shows that these chain complexes have the homology of a point. Since ".� � �/
is onto the result follows.

Lemma 33. There is an isomorphism of chain complexes

pW Œ�K�� ˝Z.K/ �K�.� � �/! Œ�K ˝Z.Kop/ �K
���.� � �/

y� ˝ � 7! .�1/j� jj� j� ˝ y�:

Proof. First note that in this statement we are using the fact that DK Š DKop with
.� � �/$ .� � �/.

The isomorphism as graded groups is clear. We need to check that the map p com-
mutes with differentials:

p@.y� ˝ �/ D .�1/j�
0jj� j.�1/j� jC1

X
��� 0��

Œ� 0 W ��� ˝ y� 0

C .�1/j� jj�
0j.�1/j� j

X
��� 0��

Œ� W � 0�� 0 ˝ y�
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D .�1/j� jj� j
� X
��� 0��

Œ� W � 0�� 0 ˝ y� C .�1/j� j.�1/j� jC1
X

��� 0��

Œ� 0 W ��� ˝ y� 0
�

D @p.y� ˝ �/:

Corollary 34. The chain map

"W Œ�K ˝Z.Kop/ �K
���! ZDK

op

is a weak equivalence.

Proof. This follows from Lemma 33 and Corollary 32.

Remark 35. Davis and Lück’s [3, Lemma 3.17] gives, for an arbitrary category C , a free
Cop � C -CW-approximation of the discrete Cop � C -space C.‹; ‹‹/. This CW-approxi-
mation is foundational for homotopy (co)limits, and is essential for a 2-sided bar res-
olution. The material in this section shows that there is a much smaller model for this
CW-approximation in the case whereK is the poset of a finite simplicial complex, namely
one can use the Kop �K-space given by

.�; �/ 7!

´
D�� � � �;

; otherwise:

6. K -based chain duality

Recall our main theorem: ´
Ch..Z.Kop/-mod/;

Ch..Z.K/-mod/

admits the structure .T; �/ of a category with chain duality. Note that in what follows
we will give more details for the results in the Z.Kop/-mod category. The reason for this
choice is that the Z.Kop/-mod category is more relevant for applications.

We now define T .

Definition 36. Let K be a finite simplicial complex. Define

(1) the T functor for Ch.Z.Kop/-mod/ as

T D TK WCh.Z.Kop/-mod/! Ch.Z.Kop/-mod/op;

TC D .�K ˝Z.Kop� ŒC �/
��
I

(2) the T functor for Ch.Z.K/-mod/ as

T D TK WCh.Z.K/-mod/! Ch.Z.K/-mod/op;

TC D .�K�� ˝Z.K� ŒC �/
��:
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To give credence to the assertion that this is a form of duality, we pause for the fol-
lowing proposition, which asserts that TC is aK-based dual of the result of forgetting the
K-based structure of C .

Proposition 37. The map

."˝ Id/��W .ZK ˝ZŒKop� ŒC �/
��
! colim

Kop
ŒTC �

is a chain homotopy equivalence. Thus the dual of the underlying chain complex of C is
chain homotopy equivalent to the underlying chain complex of TC .

Proof. The augmentation
"W Œ�K�! ZK

gives a weak equivalence, and hence by Proposition 25,

"˝ IdW Œ�K�˝ZŒKop� ŒC �! ZK ˝ZŒKop� ŒC �

is a weak equivalence. The chains in both the domain and codomain are free abelian
groups, so this map is a chain homotopy equivalence. Thus, so is its dual

."˝ Id/��W .ZK ˝ZŒKop� ŒC �/
��
! .Œ�K�˝ZŒKop� ŒC �/

��:

By Lemma 21 parts (1) and (4),

.Œ�K�˝ZŒKop� ŒC �/
��
D .colim

K
Œ�K ˝Z.Kop� ŒC ��/

��

D colim
Kop

Œ.�K ˝Z.Kop� ŒC �/
���

D colim
Kop

ŒTC �:

Proposition 38. For

C;D 2

´
Ch.Z.Kop/-mod/;

Ch.Z.K/-mod/:

there is a natural isomorphism´
�C;D WHomZ.Kop�.TC; ŒD�/! HomZ.Kop�.TD; ŒC �/;

�C;D WHomZ.K�.TC; ŒD�/! HomZ.K�.TD; ŒC �/;

satisfying �D;C ı �C;D D Id.

Proof. We give the proof for C;D 2 Ch.Z.Kop/-mod/ as follows:

HomZ.Kop�.TC; ŒD�/ D HomZ.Kop�..�K ˝Z.Kop� ŒC �/
��; ŒD�/

Š
 � .�K ˝Z.Kop� ŒC �/˝Z.Kop� ŒD� [by Lemma 21 (7)]

Š .�K ˝Z.Kop� ŒD�/˝Z.Kop� ŒC �

Š
�! HomZ.Kop�..�K ˝Z.Kop� ŒD�/

��; ŒC �/

D HomZ.Kop�.TD; ŒC �/:
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The proof with C;D 2 Ch.Z.K/-mod/ is similar. The only difference is to use the
appropriate definition for TC if C is a Z.K/-mod chain complex.

By taking colimits, and restricting to 0-cycles, we obtain the following corollary.

Corollary 39. The following is an additive category with a chain duality functor:´
.Ch.Z.Kop/-mod/; T; �/;

.Ch.Z.K/-mod/; T; �/:

Ranicki’s book [12] does prove this corollary. However, what is missing is a proof
that eC is a chain homotopy equivalence, i.e., this chain duality functor produces a chain
duality.

By Lemma 4, there is a natural
²

Z.Kop/

Z.K/
-module chain map

eC D �.IdTC /WT 2C ! C:

Our next task will be to show that the chain duality functor is a chain duality, i.e., that eC
is a chain homotopy equivalence. But first we need a formula for eC . In the following
theorem we work with Z.Kop/-mod chain complexes and use the triple tensor product.
The corresponding statement for Z.K/-mod is very similar except for some details with
the signs involved in the vertical isomorphism. We give the formulas in this case in Theo-
rem 42 below.

To deal with T 2C we have to make use of one more construction, which will allow
for a convenient coordinate change.

Definition 40. Let K be a poset. Let C be a Z.Kop/-chain complex, D be a Z.K/-chain
complex, and E be a ZŒKop�-chain complex. The triple tensor product is the Z.Kop/-
chain complex

C ˝D ˝E D �K�.C ˝Z.K/ D/˝Z.Kop� E:

Then
.C ˝D ˝E/.�/ D

M
���

C.�/˝Z D.�/˝Z E.�/

(see Lemma 15 and Lemma 21 (1)), and for c ˝ d ˝ e 2 Ci .�/˝Dj .�/˝ Ek.�/, the
boundary map is

@.c ˝ d ˝ e/ D
X

��� 0��

�
@C��� 0c ˝ d ˝ e C .�1/

ic ˝ @D� 0��d ˝E.�
0
� �/e

�
C .�1/iCj c ˝ d ˝ @Ee:

Theorem 41. The following assertions are valid.
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(1) There is an isomorphism of ZŒKop�-chain complexes

‰W�K�� ˝�K ˝ ŒC �! T 2C D .�K ˝ Œ.�K ˝ ŒC �/���/��

given by

‰n.�/W
M
�����

.�K��.�/˝�K.�/˝ C.�//n

!
�
.�K ˝ Œ.�K ˝ ŒC �/���/��

�
n
.�/;

where

‰n.�/.y� ˝ �˝ a/ D
�
� ˝ f 7! .�1/.1Cj� j/.nCj� j/f .�˝ a/

�
:

(2) If ˆn.� � � 0/ is the map defined by the commutative triangle:L
����� .�K

��.�/˝�K.�/˝ C.�//n

Cn.�
0/;

.T 2C/n.�/

ˆn.���
0/

‰n.�/

.eC /n.���
0/

then

• ˆn.� � �
0/j�K��.�/˝�K.�/˝C.�/ D 0 if � < �;

• ˆn.� � �
0/j�K��.�/˝�K.�/˝C.�/ D 0 if � ¤ � 0;

• ˆn.� � �
0/.y� ˝ � ˝ a/ D a, with � a generator of the infinite cyclic group

�Kj� j.�/ and y� the dual generator of �K j� j.�/ and a 2 Cn.� 0/.

Proof. (1) Note that in the following lines n C j� j D jaj C j�j. We use Lemma 21 (6)
and (5),M
�����

�
�K��

�j� j.�/˝ .�K.�/˝ C.�//nCj� j
�
n
I y� ˝ �˝ a

Š
�!

M
�����

�
�K��

�j� j.�/˝ ..�K.�/˝ C.�//
��/��nCj� j

�
n
I y� ˝ .f

ˇ
7�! .�1/nCj� jf .�˝ a//

D
�
�K��

�j� j.�/˝ .ŒTC �.�//
��
nCj� j

�
n
I y� ˝ ˇ

Š
�!

�
�Kj� j.�/˝ ŒTC �.�/�n�j� j

���
n
I � ˝ f 7! .�1/j� j.nCj� j/ˇ.f /

D .T 2C/n.�/ I .�1/
j� j.nCj� j/.�1/nCj� jf .�˝ a/

D .�1/.1Cj� j/.nCj� j/f .�˝ a/:



Chain duality for categories over complexes 501

(2) Recall, from the proof of Proposition 38 that there is an isomorphism � :

Hom.TC; ŒTC �/
Š
 � .�K ˝ ŒC �/˝ ŒTC �

Š .�K ˝ ŒTC �/˝ ŒC �
Š
�! Hom.T 2C; ŒC �/;

and that eC is represented by the image of IdTC under � (after taking colimits and 0-
cycles).

However, to incorporate the triple tensor product, we factor the last isomorphism as
follows:

.�K ˝ ŒTC �/˝ ŒC � Š .�K�� ˝�K ˝ ŒC �/�� ˝ ŒC �

Š
�! Hom...�K�� ˝�K ˝ ŒC �/��/��; ŒC �/
Š
�! Hom.�K�� ˝�K ˝ ŒC �; ŒC �/
Š
 � Hom.T 2C; ŒC �/;

where the first isomorphism is induced by

.‰�1/��W .�K�� ˝�K ˝ ŒC �/�� ! �K ˝ ŒTC � D �K ˝ Œ.�K ˝ ŒC �/���

and the last isomorphism is induced by ‰. Since the last isomorphism is induced by ‰,
it suffices to trace through the above isomorphisms and show that the image of IdTC in
Hom.�K�� ˝�K ˝ ŒC �; ŒC �/ is represented by ˆ.

First note that

Hom.TC; ŒTC �/0.�/ D
M
���

Hom.TC.�/; TC.�//0

Š
�!

M
��� 0;
�����

Hom.�K��.�/˝ C��.� 0/;�K��.�/˝ C��.�//0:

The components of the image of IdTC .�/ are identity maps when .�; � 0/ D .�; �/ and are
zero otherwise. That is,M
���

Hom.TC.�/; TC.�//0
Š
�!

M
��� 0;
�����

Hom.�K��.�/˝ C��.� 0/;�K��.�/˝ C��.�//0

IdTC .�/ 7!
�
.IdW y� ˝ ya 7! y� ˝ ya/.�;� 0/D.�;�/; .0/.�;� 0/6D.�;�/

�
:

In the next steps, we will need the following result. For an abelian group A, there is
the evaluation homomorphism

evWA� ˝ A! HomZ.A;A/;

f ˝ y 7! .x 7! f .x/y/:
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This is an isomorphism if A is finitely generated free, and if ¹eiº is a basis for A with dual
basis ¹yeiº, then

P
i ev.yei ˝ ei / D IdA.

If we pass to a chain complex of abelian groups, the evaluation homomorphism is the
same up to signs

evWC�� ˝ C ! Hom.C; C /;

f ˝ y 7! .x 7! .�1/jxjjyjf .x/y/:

Using these facts, and writing a 2 C.� 0/, and ¹eiº as a basis for C.� 0/,

Hom.�K��.�/˝ C��.� 0/;�K��.�/˝ C��.� 0//0 I .Id W y� ˝ ya 7! y� ˝ ya/
Š
 � .�K.�/˝ C.� 0/˝�K��.�/˝ C��.� 0//0 I

X
i

.�1/j� j.j� jCjei j/� ˝ ei ˝ .y� ˝ bei /
sw
�! .�K.�/˝�K��.�/˝ C��.� 0/˝ C.� 0//0 IX

i

.�1/.j� j�jei j/.j� jCjei j/� ˝ .y� ˝ bei /˝ ei
Š
�! Hom.�K��.�/˝�K.�/˝ C.� 0/; C.� 0//0 I .ˆ W y� ˝ � ˝ a 7! a/:

Note that the signs occurring at each step in these isomorphisms come from a careful
application of the signs in Lemma 21.

The analogous statement of Theorem 41 for the Z.K/-mod category is as follows.

Theorem 42. The following assertions are valid.

(1) There is an isomorphism of Z.K/-chain complexes

‰W�K ˝�K�� ˝ ŒC �! T 2C D .�K�� ˝ Œ.�K�� ˝ ŒC �/���/��

given by

‰n.�/W
M
�����

.�K.�/˝�K��.�/˝ C.�//n

!
�
.�K�� ˝ Œ.�K�� ˝ ŒC �/���/��

�
n
.�/;

where

‰n.�/.� ˝ y�˝ a/ D
�
� ˝ f 7! .�1/.1Cj� j/.nCj� j/f .y�˝ a/

�
:

(2) If ˆn.� 0 � �/ is the map defined by the commutative triangle:L
����� .�K.�/˝�K

��.�/˝ C.�//n

Cn.�
0/

.T 2C/n.�/

ˆn.�
0��/

‰n.�/

.eC /n.�
0��/
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then

• ˆn.�
0 � �/j�K.�/˝�K��.�/˝C.�/ D 0 if � < �;

• ˆn.�
0 � �/j�K.�/˝�K��.�/˝C.�/ D 0 if � ¤ � 0;

• ˆn.�
0 � �/.� ˝ y� ˝ a/ D .�1/j� ja, with � a generator of the infinite cyclic

group �Kj� j.�/ and y� the dual generator of �K j� j.�/ and a 2 Cn.� 0/.

Proof. The proof is similar to that of Theorem 41.

A ZŒDK�-module M.� � �/ extends to a ZŒKop �K�-module as follows:

M.�; �/ D

´
M.� � �/ if � � �;

0 if � 6� �:

Corollary 43. If C 2 Ch.Z.Kop/-mod/ and � 2 K, there is a commutative square with
vertical isomorphisms

Œ�K�� ˝Z.K/ �K�.�;�/˝ZŒKop� ŒC � ZDK.�;�/˝ZŒKop� ŒC �

ŒT 2C �.�/ ŒC �.�/:

"˝Id

Œ‰�.�/ YL

ŒeC �.�/

Proof. The right hand vertical map is given by Yoneda’s lemma. The left-hand vertical
isomorphism is defined to be Œ‰�.�/ D

L
��x ‰.x/ from Theorem 41, after we identify

Œ�K�� ˝Z.K/ �K�.�;�/˝ZŒKop� ŒC � D
M
���

Œ�K�� ˝Z.K/ �K�.� � �/˝Z C.�/

D

M
��x�y��

.�K��.x/˝Z �K.y/˝Z C.�//

D Œ�K�� ˝�K ˝ C �.�/:

We view the square as a triangle with a vertex at the upper left and two vertices on the bot-
tom. Then the triangle (and hence the square commutes) since it results from applying Œ �

to the commutative triangle from Theorem 41.

The analogous statement of Corollary 43 for the Z.K/-mod category is as follows.

Corollary 44. Let C 2 Ch.Z.K/-mod/ and � 2 K, there is a commutative square with
vertical isomorphisms

Œ�K ˝Z.Kop/ �K
���.�;�/˝ZŒK� ŒC � ZDK

op
.�;�/˝ZŒK� ŒC �

ŒT 2C �.�/ ŒC �.�/:

"˝Id

Œ‰�.�/ YL

ŒeC �.�/

Proof. The proof is similar to the one for Corollary 43.
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Corollary 45. The chain map eC is a chain homotopy equivalence.

Proof. Corollaries 32 and 34 imply that, for all
²
�

�
,

´
Œ�K�� ˝Z.K/ �K�.�;�/! ZK ;

Œ�K ˝Z.Kop/ �K
���.�;�/! ZK

op

is a weak equivalence of
²

ZŒK�
ZŒKop�

-modules.

Thus by Corollaries 43 and 44 and Proposition 25, ŒeC �.�/ and ŒeC �.�/ are weak
equivalences. Then by Proposition 24, eC is a chain homotopy equivalence.

This completes the proof of our Theorem 1.
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