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Rational homotopy via Sullivan models and enriched
Lie algebras

Yves Félix and Steve Halperin

Abstract. Rational homotopy theory originated in the late 1960s and the early 1970s with the
simultaneous but distinct approaches of Quillen (1969), Sullivan (1977) and Bousfield–Kan (1972).
Each approach associated to a path connected space X an “algebraic object” A which is then used
to construct a rational completion of X , X ! XQ. These constructions are homotopy equivalent
for simply connected CW complexes of finite type, in which case H�.XQ/ Š H�.X/ ˝ Q and
��.XQ/ Š ��.X/˝Q. Otherwise, they may be different; in fact, Quillen’s construction is only
available for simply connected spaces.

In this review, discussion is limited to Sullivan’s completions, and the notation X ! XQ is
reserved for these. We briefly review the construction, and follow that with a review of developments
and examples over the subsequent decades, but often without the proofs. Since the explicit form of
Sullivan’s completion has lent itself to a wide variety of applications in a range of fields, this survey
will necessarily be modest in scope.

To Dennis Sullivan, in celebration of the 80th birthday of a great mathematician,
and of his seminal contributions to mathematics

1. Sullivan models

Sullivan’s construction begins with a commutative differential graded algebra (cdga)
functor associating to each path connected space X a rational cdga APL.X/ which is
entirely analogous to the differential forms on a manifold. In particular, for any point x,

APL.x/ is equipped with a natural augmentationAPL.x/
Š
�!Q, and so based spaces .X;x/

yield augmented cdga maps APL.X/
"X
�! Q. A Sullivan model of X is then a quasi-

isomorphism
'X W

�^
V; d

�
! APL.X/

from a cdga satisfying two conditions:

•
V
V is the free graded commutative algebra on V D V �1;

•
V
V satisfies the following nilpotence condition: V is the increasing union of sub-

spaces Vn with V0 WD V \ ker d and d WVnC1 !
V
Vn.
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These are now called Sullivan algebras. For simplicity we will frequently write
V
V

for .
V
V; d/ when the differential is clear from the context.

Sullivan algebras have a second (wedge) gradation:
V
V Š

L
q�0

Vq
V , whereVq

V WD V ^ � � � ^ V (q factors), and a Sullivan algebra is minimal if d W V !
V�2

V .
Each cdga A with A0 Š Q has a unique (up to isomorphism) minimal Sullivan model,
and the minimal model of a path connected space X is by definition the minimal model
of APL.X/.

Secondly, to each Sullivan algebra .
V
V;d/ is associated a space h

V
V i, its geometric

realization. The geometric realization h i is a functor related to APL by an adjointness
property [16, § 1.6]: for any path connected space Z and any Sullivan algebra we have a
natural bijection

Hom
�^

V;APL.Z/
�
Š Hom

�
Z;
˝^

V
˛�
:

Here Hom on the left denotes the set of morphisms of differential graded algebras, and
Hom on the right denotes the set of simplicial maps. If

V
V is a Sullivan model ofX , then

these constructions yield a unique continuous map

X !
˝^

V
˛
:

It follows from the nilpotence condition for any Sullivan algebra that .
V
V; d/ Š

lim
�!
.
V
V˛; d / where the V˛ � V are the finite-dimensional subspaces for which d WV˛ !V

V˛ . This then implies that ˝^
V
˛
Š lim
 �
˛

˝^
V˛
˛
:

When
V
V is the minimal Sullivan model of X then, by definition, h

V
V i Š XQ and

the map X ! XQ is Sullivan’s completion. These constructions induce isomorphisms of
graded vector spaces

H�.X IQ/
Š
 �� H�

�^
V
�

and ��.XQ/ Š Hom.V;Q/:

Moreover, a map f WX ! Y induces a map fQWXQ ! YQ.

Example 1. A minimal Sullivan model 'W
V
VX ! APL.X/ induces by adjunction a map

'X WX ! XQ

such that H�.'X IQ/WH�.X IQ/! H�.XQIQ/ is injective.
In fact, [12, Appendix] 'X factors as^

VX
�
���! APL

˝^
VX
˛ APL.'X /
�����! APL.X/;

where � is the unit of the adjunction. It follows that H�.'X IQ/ Š H�.APL.'X // is
surjective, and therefore that H�.'X IQ/ is injective.
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1.1. LS category

The Lusternik–Schnirelmann (LS) category, cat X , of a space X is the least m such
that X can be covered by .m C 1/ open sets, each contractible in X . The LS category,
cat.

V
V; d/, of a Sullivan algebra .

V
V; d/ is the leastm such that .

V
V; d/ is a retract of

a minimal Sullivan model of the cdga
V
V=
V>m

V . These are related [16, Theorem 9.2]:
if .
V
V; d/ is the minimal Sullivan model of a space X then

cat
�^

V; d
�
� catX:

This illustrates the importance of the interaction of the multiplicative structure ofV
V with the differential. In fact, there are spaces whose models satisfy H�1.

V
V / �

H�1.
V
V / D 0 but for which cat.

V
V; d/ D1.

Example 2. Let .
V
W;d/ D .

V
.x; y; t/; d/, dx D dy D 0, dt D xy, deg x D degy D

deg t D 1, be the minimal model of the Heisenberg manifold. In this model the coho-
mology in degree 3 is generated by the cycle xyt . We construct a new Sullivan minimal
algebra

V
V by adding successively new generators to W to kill the cycles in

V�3
V .

In particular, dim V is infinite because V contains the sequence of elements un; n � 0,
defined by du0 D txy and, for n � 1, dun D un�1xy. The category of

V
V is infi-

nite because the associated homotopy Lie algebra (see below for the definition) L�1 is
abelian and infinite-dimensional [16, Chapters 9, 10]. On the other hand, by construction
H�1.

V
V / �H�1.

V
V / D 0.

Remark. Sullivan completions provide a computable bridge connecting H�.X IQ/ and
��.XQ/. If X is a finite simply connected CW complex, then

H�.XQ/ Š H
�.X IQ/ and ��.XQ/ Š ��.X/˝Q:

However, the general situation is much more complex. For instance, the potential dif-
ference in cohomology is illustrated by an example of Ivanov and Mikhailov [22], who
prove that the cohomology in degree two of the Bousfield–Kan Q-completion of S1 _ S1

is uncountable. Now by the Bousfield–Gugenheim theorem [2, Theorem 12.2], in this
case the Bousfield–Kan completion and the Sullivan completion are equivalent, so that
H2.S

1 _ S1/Q is uncountable.

Nonetheless, it is often possible to get precise information about the minimal Sullivan
model of a space, and to extract interesting consequences from that. From the outset and
over the subsequent decades, this has produced a wide variety of applications, including
this small set of examples:

• The existence of infinitely many geometrically distinct closed geodesics on most
closed manifolds [17, 29].

• Construction of Sullivan models for the space of sections of a fibration [5, 19].

• Estimates for the growth of the rational homotopy of a free loop space [15, 23, 28].
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• Computing the rational homology of spaces of long knots [24].

• Rational ellipticity of almost non-negatively curved closed manifolds of cohomogene-
ity of most two [18].

• Properties of rational Poincaré duality for some intersection spaces [30].

2. Homotopy Lie algebras and enriched Lie algebras

A graded Lie algebra L is a graded vector space with a Lie bracket satisfying

Œx; y�C .�1/.degx/.degy/Œy; x� D 0

and

Œx; Œy; z�� D ŒŒx; y�; z�C .�1/.degx/.degy/Œy; Œx; z��:

All Lie algebras in this review are graded, L D
L
n�0 Ln and satisfy ŒLp; Lq� � LpCq .

For simplicity we may refer to them simply as Lie algebras. Ordinary Lie algebras will be
regarded as graded Lie algebras concentrated in degree 0.

We will also need the suspension, sM , of a graded vector space M :

.sM/kC1 DMk :

The standard convention for subscripts and superscripts defines M k D M�k , so that
.sM/k�1 DM k . Note as well the convention: Homk.M;Q/ D Hom.M k ;Q/.

Now, as already observed by Sullivan, for any Sullivan algebra .
V
V; d/ the desus-

pension of the vector space Hom.V;Q/ is naturally a Lie algebra LV D .LV /�0, which
is the homotopy Lie algebra of

V
V . Here we regard

V2
V as anti-commutative bilinear

functions in Hom.V;Q/ � Hom.V;Q/, and the Lie bracket is defined by the equation

hv; sŒx; y�i D .�1/degyC1
hd1v; sx; syi; v 2 V; x; y 2 LV ;

where d1v is the component of dv in
V2

V , and where

hv ^ w; sx; syi D hv; sxi � hw; syi C .�1/degv�degw
hv; syi � hw; sxi:

If
V
V is the minimal model of a space X , then the map ��.XQ/

Š
�! sLV converts

Whitehead products to Lie brackets.

Example 3 (Spheres). The minimal Sullivan model for Sn is given by .
V
v; 0/ with

degvD n if n is odd, and by .
V
.v;w/;dwD v2/ if n is even. It follows that the homotopy

Lie algebra in both cases is the free graded Lie algebra L.x/ on a generator x of degree
n � 1.
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For topological spaces X with minimal Sullivan algebra .
V
V; d/ the interaction

between H�.X IQ/ Š H�.
V
V / and ��.XQ/ Š sLV has been fundamental to appli-

cations and their proofs. For example, suppose X is a finite simply connected complex of
dimension m. Then

• The center of LV is finite-dimensional [16, Theorem 10.6].

• Either .LV /k D 0 for all k > 2.m� 1/, or else
PrCm
iDr dim .LV /i grows exponentially

in r [16, Chapters 12, 13].

• If dimLV <1, then H�.X IQ/ is a Poincaré duality algebra [20].

• If X is a finite wedge of spheres Sni , with ni > 1, then LV is the free graded Lie
algebra generated by T D

L
i ai with deg ai D ni � 1 [14, Theorem 24.5].

In addition to the Lie bracket, the nilpotence condition of a minimal model
V
V

imposes on LV an important additional structure: LV is a complete enriched Lie algebra.
We define these now, noting that this is sometimes different from that given in [6].

First observe that the relation ^
V Š lim

�!
˛

^
V˛

in Section 1 implies that
LV Š lim

 �
˛

L˛;

in which the L˛ are both finite-dimensional and nilpotent.

Definition. A complete enriched Lie algebra is a graded Lie algebra L together with an
inverse system of surjections �˛WL! L˛ onto finite-dimensional and nilpotent graded
Lie algebras, such that

L
Š
��! lim
 �
˛

L˛:

A complete enriched vector space is a complete enriched Lie algebra whose Lie
bracket is zero.

A coherent morphism of complete enriched Lie algebras f W .L; ¹�˛º/! .L0; ¹�0
ˇ
º/

is a morphism of graded Lie algebras such that for each ˇ there is an ˛ and a morphism
f˛;ˇ WL˛ ! L0

ˇ
such that �0

ˇ
ı f D f˛;ˇ ı �˛ .

A quadratic Sullivan algebra is a Sullivan algebra .
V
V;d1/ in which d1WV !

V2
V .

Any minimal Sullivan algebra .
V
V; d/ has an associated quadratic Sullivan algebra

.
V
V;d1/ defined by .d � d1/v 2

V�3
V , v 2 V . By definition, the homotopy Lie algebra

of .
V
V; d/ and .

V
V; d1/ coincide. On the other hand [12, Proposition 5] each complete

enriched Lie algebra is the homotopy Lie algebra of a unique quadratic Sullivan algebra.

If E is a Lie subalgebra of a complete enriched Lie algebra L then its closure,
xE WD lim

 �˛
�˛.E/, is a complete enriched Lie subalgebra of L. In particular, let ¹Lnºn�1

be the lower central series of L (Ln is the span of the iterated Lie brackets of length n).
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Then L.n/ Š Ln is called the enriched lower central series of L. It may happen that
L! lim

 �n
L=Ln is not an isomorphism (L may not be pronilpotent) but it is always true

that
L
Š
��! lim
 �
n

L=L.n/:

However, if dimL=L2 <1 then Ln Š L.n/, n � 1, and so L is pronilpotent.
Moreover, if .

V
V; d1/ is the quadratic Sullivan algebra corresponding to L and the

filtration V.n/ is defined by

V.0/ D V \ ker d1 and V.nC1/ D V \ d
�1
1

� 2̂
V.n/

�
;

then [12, Lemma 5]

L=L.nC2/
Š
��! Hom.V.n/;Q/; n � 0:

Furthermore, associated with any complete enriched Lie algebra L is its fundamental
group GL defined as follows: First, if dimL0=L

2
0 <1, then [16, Chapter 2] GL is the

group of units in the classical completion bUL0 of its universal enveloping algebra. This
definition then extends to any complete enriched Lie algebra L,

GL WD lim
 �
˛

GL˛ :

Thus, an inverse limit argument together with [16, Chapter 2] provides inverse bijections

L0

exp
++
GL:

log

kk

In any group, denote the commutator of elements a; b by Œa; b� D aba�1b�1. The
subgroup generated by iterated commutators of length n, denoted byGn, is normal. We set

G
.n/
L WD lim

 �
˛

GnL˛ :

Then combining [16, Chapter 2] with an inverse limit argument shows that exp and log
restrict to bijections

L
.n/
0

exp
,,
G
.n/
L ;

log

ll n � 2:

These in turn induce isomorphisms

nWL
.n/
0 =L

.nC1/
0 Š G

.n/
L =G

.nC1/
L
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of abelian groups. Moreover, denoting exp xi D ai 2 GL, we have

n.Œx1; Œ: : : Œxn�1; xn� : : : ��/ � Œa1; Œ: : : Œan�1; an� : : : �� mod G.nC1/L : (1)

Finally, if L is the homotopy Lie algebra of a minimal Sullivan algebra
V
V , then an

inverse limit argument combined with [16, Theorem 2.4] shows that the bijection

�1h
^
V i Š Hom.V 1;Q/ Š sL0 ! L0

exp
��! GL

is an isomorphism of groups. If
V
V is the minimal Sullivan model of a space X then

the completion X ! h
V
V i induces a homomorphism of fundamental groups. Combined

with the isomorphism above this yields the homomorphism

�1.X/! GL:

This enables Sullivan models as a method to explore the properties of �1.X/. For a
space X , we denote L.X/ the enriched Lie algebra associated to its minimal Sullivan
model.

Example 4. If a space X satisfies dimH1.X IQ/ <1, then

�n1 .X/=�
nC1
1 .X/˝Q

Š
��! GnL=G

nC1
L :

In fact, denoting �1.X/ by G, we have a classifying map X ! BG which induces an
isomorphism in H 1 and an injection in H 2. It follows that the corresponding morphism
of minimal Sullivan models is an isomorphism in degree 1. In particular,

L0.X/ Š L0.BG/:

It is therefore sufficient to establish the isomorphism above whenX ŠBG. This is proved
in [16, Theorem 7.5].

Remark. Even finite CW complexes (eg. S1 _ S1) can have a homotopy Lie algebra, L,
in which L0 is infinite-dimensional. Moreover, in general, inverse limits do not preserve
short exact sequences. However, a theorem of Bourbaki [1] implies that the inverse
limit of short exact sequences of vector spaces is exact, if the vector spaces are all
finite-dimensional. This has enabled a full development of the properties of enriched Lie
algebras [12], including the homotopy Lie algebra LV .

3. Profree Lie algebras, wedges of spheres, and free groups

Profree Lie algebras are the analogue of free graded Lie algebras among complete
enriched graded Lie algebras. In this context we consider graded vector spaces T D
Hom.sS;Q/ in which S D S�1. Then S is the direct limit of its finite-dimensional
subspaces, S˛ , and so T Š lim

 �˛
T˛ with T˛ D Hom.sS˛;Q/.
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Definition. A profree Lie algebra is a complete enriched graded Lie algebra xLT in which
LT is the free graded Lie algebra generated by T (as above) and the enriched structure is
provided by the surjections

LT �! LT˛ �! LT˛=.LT˛ /
n:

If L is a complete enriched Lie algebra and f W T ! L is a coherent linear map, then
f extends in a unique way as a coherent morphism xLT ! L. Moreover, any closed Lie
subalgebra of a profree Lie algebra is also profree [12, Proposition 12].

Theorem 1 ([12, Theorem 1]). The homotopy Lie algebra of a minimal Sullivan algebraV
V is profree (L D xLT ) if and only if there is a quasi-isomorphism^

V
'
��! Q˚ S

in which S � S D 0.

Remark. If the homotopy Lie algebra of a finite CW complex X is a profree Lie algebra
xLT , then sT Š Hom.H�1.X/;Q/ Š H�1.X IQ/.

Proposition 1. Let L D L0 be a complete enriched Lie algebra. Then the following
conditions are equivalent:

(i) L0 is profree.

(ii) A direct complement T ofL.2/0 inL0 freely generates a free Lie subalgebra ofL.

(iii) If xi is a basis of T then the elements exp xi freely generate a free subgroup
of GL.

Proof. It is straightforward to reduce to the case dimT <1. In this case T is closed and
Theorem 1 shows that (i), (ii).

(i) ) (iii). The proof depends on the properties of a finite wedge of based circles,
X Š

Wn
iD1 S

1
i . Let

V
V.1/ be the minimal Sullivan model of S1. The base point induces

an augmentation
V
V.1/! Q, and the quasi-isomorphism^

V.1/ �Q � � � �Q

^
V.1/! APL.S

1/ �Q � � � �Q APL.S
1/
'
�! APL.S

1
_ � � � _ S1/

identifies a minimal Sullivan model
V
V of

V
V.1/ �Q � � � �Q

V
V.1/ as a minimal

Sullivan model of S1 _ � � � _ S1.
The obvious quasi-isomorphism

V
V.1/�Q � � � �Q

V
V.1/

Š
�!H�.S1 _ � � � _ S1IQ/

provides a quasi-isomorphism^
V
'
��! H�.S1 _ � � � _ S1IQ/

which sends
V�2

V ! 0.
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Thus, it follows from Theorem 1 that the homotopy Lie algebra L of
V
V is profree.

Moreover, it follows from [16, Lemma 6.2] that V D V 1 and so L D L0. In particular,
L D xLT where

sT D H�1
�_

S1i IQ
�
:

Thus, if v1; : : : ; vn 2 V 1 represent the fundamental cohomology classes of the circles then
T Š

L
iQxi in which hvi ; sxj i D ıij .

Moreover, asX Š S1 _ � � � _S1, �1.X/ is a free group with generators gi correspond-
ing to the fundamental homology classes of the circles. In particular, �1.X/ is the disjoint
union of sets Pn of iterated commutators of length n in the gi . Thus, the homomorphism

'W�1.X/! GL

sends gi to the element exp xi 2 GL. It follows from Example 4 in the previous section
that this homomorphism maps each Pk to a basis of GkL=G

kC1
L . Therefore, ' identifies

�1.X/ as a free subgroup of GL, and (1) shows that this subgroup is the disjoint union of
the commutators Œexp xi1 ; Œ: : : Œexp xis�1 ; exp xis � : : : �� corresponding to the commutators
of the g0i in �1.X/. Therefore, (i)) (iii).

(iii)) (i). Since the groupG generated by the expx0is is a free group, it is the disjoint
union of sets Qn of iterated commutators in the exp x0is of length n. Moreover, since
G Š �1.S

1 _ � � � _ S1/, it follows that Pn ˝ Q Š Qn ˝ Q. Thus, from Section 2 we
obtain

dimLn=LnC1 D dimP n ˝Q:

On the other hand, let L be the free Lie algebra generated by the x0is. This gives a
surjection L! L for which (by the proof that (ii)) (i))

Ln=LnC1
Š
��! Ln=LnC1:

Therefore, L! L is an isomorphism, which proves (ii).

4. Wedge and free products

Suppose
V
V 0 and

V
V 00 are the minimal Sullivan models of spaces X 0 and X 00. Then the

quasi-isomorphisms^
V 0 �Q

^
V 00

'
��! APL.X

0/ �Q APL.X
00/
'
��! APL.X

0
_X 00/

identify a minimal Sullivan model
V
V for

V
V 0 �Q

V
V 00 as a minimal model for

X 0 _X 00.
On the other hand, denote byL0 q L00 the classical free product of graded Lie algebras

L0 and L00. If L, L0 and L00 are respectively the homotopy Lie algebras of X 0 _ X 00, X 0

and X 00 then the inclusions X 0; X 00 ! X 0 _ X 00 induce an inclusion L0 q L00 ! L.
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This [12, Proposition 23] then extends to an isomorphism of its closure L0 q L00 WD

L0 yqL00 onto L:
L0 yqL00

Š
��! L:

If now L0 and L00 are profree then
V
V 0
'
�! Q˚ S 0 and

V
V 00

'
�! Q˚ S 00 and so^

V 0 �Q

^
V 00

'
��! Q˚ S 0 ˚ S 00:

Therefore, L0 yqL00 is also profree and

L0 yqL00 Š xLT ; sT Š Hom.S 0;Q/˚Hom.S 00;Q/; H�1.X 0 _X 00IQ/Š S 0 ˚ S 00:

Example 5 (X D S1 _ S1). In this case L0 Š L.a0/ and L00 Š L.a00/, so that LX Š
xL.a0; a00/.

Example 6. LetX Dh
V
V i be the geometric realization of the Sullivan minimal model of

.Q˚W;0/whereW DW 2 is a countably infinite vector space with trivial multiplication.
Then the rational homotopy Lie algebra L D LV is a profree Lie algebra L Š xLT where
T D Hom.sW;Q/, and L D Hom.sV;Q/.

Proposition 2. With the hypotheses as above in Example 6, L2 ¤ L.2/ and H3.X/ ¤ 0.

Remark. An example of a space X satisfying the hypotheses of Example 6 is given by
the Sullivan completion of a wedge of infinitely many copies of the sphere S2. In this
case, surprisingly, H3.X/ ¤ 0.

Proof of Proposition 2. Let ¹xnºn�1 be a basis of V 2 Š W . Then a basis of V 3 is
given by the elements yij , 1 � i � j , with dyij D xixj . We associate to an element
h 2 L2 D Hom.sV 3;Q/ a symmetric matrix Mf defined by

.Mh/ij D hyij ; shi:

We also represent an element f 2 L1 by the column matrix Cf defined by

.Cf /i D hxi ; sf i:

If f; g 2 L1, then Œf; g� 2 L2 satisfies

hyij ; sŒf; g�i D �hxi ; sf i hxj ; sgi � hxi ; sgi hxj ; sf i:

It follows that
MŒf;g� D �.Cf � C

t
g C Cg � C

t
f /:

Represent an element u D
P
˛ixi in V 2 by the column matrix Cu with .Cu/i D ˛i .

Then, for f 2 L1 and u 2 V 2, we have

hu; sf i D
X
i

˛i hxi ; sf i D
X
i

˛i .Cf /i D .Cf /
t
� Cu:
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If u 2 ker sf \ ker sg, then MŒf;g� � Cu D 0.
More generally, for any fi ;gi 2L1, 1� i � n, there is a finite-codimensional subspace

Z � V such that for u 2 Z,

MP
Œfi ;gi � � Cu D 0:

On the other hand, let hWV 3 ! Q defined by h.yij / D 0 for i ¤ j and equal to 1 for
i D j . Then Mh is the identity matrix, so that Mh � Cu D Cu, for Cu as above. It follows
that ŒL1; L1� is strictly contained in L2.

Let ! 2 �3.X/ be a homotopy class corresponding by suspension to an element inL2,
but not in ŒL1; L1�. Then X contains a simply connected finite CW subcomplex Y such
that ! is in the image of �3.Y /. We denote this element by !Y 2 �3.Y /. It follows that
!Y is not decomposable, and by Lemma 1, the image aY of !Y in H3.Y / is non-zero.

For any finite CW subcomplex Z of X containing Y , the element !Z induces also a
non-zero element aZ by the Hurewicz map, and by the naturality of the Hurewicz map,
the map H3.Y / ! H3.Z/ maps aY to aZ . Now X is the union of the finite CW
subcomplexes Z˛ containing Y . It follows that H3.X/ Š lim

�!˛
H3.Z˛/ and therefore the

family aZ˛ induces a non-zero element in H3.X/.

Lemma 1. Let Y be a finite type simply connected space with L2 ¤ ŒL1; L1�. Then the
Hurewicz map hurW�3.Y /! H3.Y / is non-zero.

Proof. Denote by
V
V the Sullivan minimal model of Y . Then V is a finite type

vector space. Therefore, the bracket Œ ; �W L1
V
L1 ! L2 is dual to the differential

d WV 3!
V2

V 2. Since L2 ¤ ŒL1; L1�, d is not injective. This implies that H 3.
V
V /!

H 3.
V
V=
V�2

V / is non-zero. But this last map is the dual of the Hurewicz map. Thus,
if ! 2 �3.Y / ˝ Q Š Hom.V 3;Q/ with !.v/ ¤ 0, then ! is not in the kernel of the
Hurewicz map.

Example 7 (X D S1 _ S2). In this case LX Š L0 yqL00, with L0 Š L.a/ and L00 Š L.b/,
where deg a D 0 and deg b D 1. Therefore,

��.S
1
_ S2/Q Š sxL.a; b/:

Now if fXQ is the universal cover of XQ then

��.fXQ/ Š s
�
ker
�
xL.a; b/! L.a/

��
:

The group �2.XQ/ is thus the suspension of the completion P of the vector space
generated by the elements adna.b/ D Œa; Œa; : : : Œa; b� : : : ��. In other words, P is the space
of series

P
n ˛n adna.b/, with ˛n 2 Q.

Proposition 3. L zX Š xLP and H3.fXQ/ ¤ 0, whereas H3. zX/ D 0.
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Proof. The Sullivan minimal model of S1 _ S2 is the minimal model .
V
V; d/ of the

cdga .
V
.x; y/=.xy/; 0/ with deg x D 1 and deg y D 2. This model is quasi-isomorphic

to the cdga
.A; d/ WD

�^
x ˝E; d

�
;

where E is the vector space generated by the elements yn; n � 0 with deg x D 1,
degyn D 2, E �E D 0, d.y0/ D 0 and for n � 1, d.yn/ D xyn�1. This follows because�^

V; d
�
Š
�^

x ˝
^
Y ˝

^
V �3; d

�
;

where Y D
L
n Qyn. Moreover, by construction sP Š Hom.E;Q/.

Since .A; d/ is a free
V
x-module, the quotient cdga .

V
V �2; xd/ŠQ

NV
x.
V
V;d/

is quasi-isomorphic to Q
NV

x.A;d/Š .Q˚E;0/. Therefore, the homotopy Lie algebra
LX is an extension

0! xLP ! LX ! Qx ! 0:

It follows that ��fXQ Š sxLP . Now it follows from Example 6 and Proposition 2 that
H3.fXQ/ ¤ 0.

5. Relation between S 1
Q
_ S 2

Q
and .S 1 _ S 2/Q

First recall that S1Q is the infinite Sullivan telescope

S1Q WD
[
n�1

.S1 � Œ0; 1�/n= �;

with .x; 1/n � .fn.x/; 0/nC1, where fnW S1 ! S1 is a map of degree n. Denote Xp DSp
nD1.S

1 � Œ0; 1�/n= �, then Xp Š S1 and the injection Xp ! XpC1 is the map fp of
degree p.

For any simply connected space Z the universal cover of S1 _ Z is the union of
the real line R with a space Z attached at each integer number of the line. We can thus
interpret the universal cover of Xp _ Z as the union of the real line with a copy of Z at
each rational point r=s where s is a divisor of .p � 1/Š. Since the universal cover Y of
S1Q _ Z is the union of the universal covers of the Xp _ Z, the space Y is a countable
wedge of copies of Z. In particular, the universal cover of S1Q _ S

2
Q is a countable wedge

of copies of S2Q.
The injections of S1 and S2 into S1 _ S2 induce maps S1Q ! .S1 _ S2/Q and

S2Q ! .S1 _ S2/Q, and therefore a map

'WS1Q _ S
2
Q ! .S1 _ S2/Q:

To justify the existence of ' recall that by Proposition 1, the Sullivan minimal model of
S1 _ S2 is the minimal model of the algebra .Q˚Qa˚Qb; 0/, in which ab D b2 D 0,
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deg a D 1 and deg b D 2. The Sullivan minimal models of S1 and S2 are the minimal
models of .Q ˚ Qa; 0/ and .Q ˚ Qb; 0/, the minimal models of the injections being
given by the corresponding projections. The morphism ' is then obtained by taking the
geometric realization of the projections.

As indicated in Example 7, sP Š �2..S
1 _ S2/Q/ is the space of infinite seriesP

n.ada/n.b/. This implies an isomorphism

P ! QŒŒt ��;
X

˛i .ada/i .b/!
X

˛i t
i :

Recall that the action of Œa� 2 �1.S1/Q on P is given by exp.ada/. It follows that the map
induced by ' on �2,

�2.'/W
M
ai2Q

Q � bi ! QŒŒt ��

maps bi to exp.bi t /. Finally, observe that �2.S1Q _ S
2
Q/ is countably infinite but �2..S1 _

S2/Q/ is not.

6. ��.XQ/: open questions and examples

Interesting questions about ��.XQ/, some of which have been resolved for simply
connected spaces, remain open when X is not simply connected and are particularly
interesting when XQ is a K.�; 1/. We provide here several questions, and some relevant
examples. The minimal Sullivan model of a space X and its homotopy Lie algebra will be
denoted throughout by

V
VX and LX .

Since part of our examples are formal spaces or spaces equipped with a weight
decomposition, we recall the definitions here. A minimal model .

V
V; d/ has a weight

decomposition if V is equipped with a second lower gradation V D
L
n�0 Vn such

that d W V pn ! .
V
V /

pC1
n�1 . In that case H�.

V
V; d/ admits also an extra gradation,

H�.
V
V / Š

L
n�0Hn.

V
V /.

A space X with Sullivan minimal model .
V
V; d/ is formal if there is a quasi-

isomorphism .
V
V; d/! .H�.X IQ/; 0/. Then

V
V has a weight decomposition such

that Hn.
V
V / Š 0 for n > 0 [21]. When

V
V is equipped with a weight decomposition

then we can form the graded Lie algebra gL D
L
n�1En, with En D Hom.Vn�1;Q/:

ŒEp; Eq� � EpCq; and L Š lim
 �
n

gL=gL>n:

Moreover, when
V
V is formal, then En Š Ln=LnC1.

In geometry, compact Kähler manifolds are formal [8], and every complex algebraic
variety carries a weight decomposition [4, Theorem 4.9].
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6.1. Free Lie algebras

One of the oldest unresolved (even for simply connected spaces) conjectures in rational
homotopy is due to Avramov and Félix [14, Chapter 39, 4.]; in its simplest form it states
the following:

Conjecture. If X is a finite CW complex and LX is infinite-dimensional, LX contains a
free graded Lie algebra on two generators.

Here are three examples where the conjecture is true, and a fourth relevant example.

Example 8. If X is an orientable Riemann surface of genus g � 2 then LX contains a
profree ideal of codimension 1. In particular, �1.XQ/ contains a free group on infinitely
many generators.

In this case LX Š .LX /0 [11] and therefore
V
VX is quadratic. Moreover, VX \ kerd1

has a basis of the form ui ; vi , i � 1, and these cycles, together with 1 and u1v1 represent
a basis of H�.

V
VX /. Now let I � LX be the codimension 1 ideal defined by

I D ¹y 2 LX j hu1; syi D 0º:

We show that I is profree.
First observe that division by the ideal generated by u1 defines a surjection of quadratic

Sullivan algebras
V
VX !

V
V1 with V1 D VX=u1. It is immediate that LV1 is the

homotopy Lie algebra of I , and that mapping z and u1 to 0 yields a quasi-isomorphism

�W
�^

VX ˝
^
z; dz D u1

� '
��!

^
V1:

On the other hand, let W be a direct complement of VX \ ker d1 in VX . Then mapping
W; uiuj ; vivj ; uiuj (i ¤ j ) and uivi � uj vj all to zero defines a quasi-isomorphismV
VX ! H�.

V
VX /. This then extends to a quasi-isomorphism�^

VX ˝
^
z; d

� '
��!

�
H�.

^
VX /˝

^
z; d

�
where in both cdga’s dz D u1.

Finally, we necessarily have deg z D 0. A simple check shows that the homology of
H�1.H�.

V
VX /˝

V
z/ is concentrated in degree 1. It follows that this is also true for

H�.
V
V1/ and thus that I is profree.

Example 9. IfX is the classifying space of a right-angled Artin group then LX is abelian
or else .LX /0 contains a profree Lie subalgebra with two generators. In the second case,
�1.XQ/ contains a free group on two generators.

A right-angled Artin group is a group A with a presentation of the form

A Š hx1; : : : ; xn j xixj D xjxi for some possibly empty subset S of pairs .i; j /i:
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Thus, if S contains all the pairs .i; j / then A Š Z � � � � �Z. In this case X Š K.A; 1/ Š
S1 � � � � � S1 and LX Š Q � � � � �Q is abelian.

On the other hand if some pair .i0; j0/ 62 S , then A0 Š hxi0 ; xj0i is a retract of A, and
so its homotopy Lie algebra is a retract of LX . But A0 is a free group on two generators,
which, by Van Kampen’s theorem implies that K.A0; 1/ Š S1 _ S1. By Example 5 of
Section 4, its homotopy Lie algebra is xL.a; b/ which contains L.a; b/.

Example 10. If X is the complement in Cn of a central arrangement of hyperplanes then
either .LX /0 is abelian or .LX /0 contains a free Lie algebra on two generators. In the
second case, �1.XQ/ contains a free group on two generators.

An arrangement of hyperplanes is a finite set H1; : : : ; Hn of hyperplanes in Cn, and
is central if each Hi contains the origin. In this example,

X Š Cn
n

[
i

Hi ;

and there is a quasi-isomorphism .
V
VX ;d /! .H�.X IQ/;0/ [9]. The algebraH�.X IQ/

has been computed by Orlik and Terao [25].
We fix an order on the hyperplanes Hi , and for each of them we introduce a gen-

erator ei in degree 1. Then the cohomology H Š H�.Cn n
S
i Hi / is the quotient ofV

.e1; : : : ; en/ by an ideal I . Since the space is formal the component in degree 0 of the
homotopy Lie algebra LX depends only on the multiplication law:

V2
H 1 ! H 2. It fol-

lows that the Lie algebra .LX /0 is the component in degree 0 of the Lie algebra of the
minimal model of H=H�3.

The relations in degree 2 are obtained by family Hi1 ; : : : ; Hi3 such that for some j ,T
qHiq Š

T
q¤j Hiq . The associated relation is ei1ei2 � ei1ei3 C ei2ei3 .

Let E D ¹Hi \Hj ; i < j º. If the Hi \Hj are all different then there is no relation
of degree 2, which implies that LX is abelian. Otherwise we can suppose thatH1 \H2 D
H1 \H2 \H3. Let m be the integer for which H1 \H2 \Hk D H1 \H2 for k � m
and H1 \H2 \Hk¤H1 \H2 for k > m. Then for i < j � m, H1 \H2 D Hi \Hj .
For each such triple H1;H2;Hk we have e1e2 C e2ek C eke1 D 0.

The space of relations in degree 2 is therefore the sum of two components, the first one
in
V2
.e1; : : : ; em/ and the second one in the ideal generated by emC1; : : : ; en. This implies

thatH=.H�3; emC1; : : : ; en/ is a retract ofH=H�3. We are therefore reduced to prove that
the homotopy Lie algebra of the minimal model of H 0 WD .H=.H�3; emC1; : : : ; en/; 0/
contains a free Lie algebra.

In H 0, we have for r < s,
eres D e1er � e1es :

It follows that H 0 is the free module on
V
e1 generated by 1; e2; : : : ; em. Let

V
T be

its minimal model. Then, since the homology of
V
.T=e1/ is concentrated in degree 1,

LT contains a profree Lie algebra on m � 1 generators. By construction this profree Lie
algebra is a Lie subalgebra of LX .
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Example 11 (Configuration spaces in Rn). The rational homotopy Lie algebra of the
configuration space F.RqC2I k/ of k points in RqC2, q � 1, denoted by Lk.q/, has been
computed by Cohen and Gitler [7, Theorem 2.3].

The graded Lie algebra Lk.q/ is the quotient of the free graded Lie algebra on the
elements Bi;j , 1 � j < i � k of degree q by the following relations, called infinitesimal
braid relations:

(i) ŒBi;j ; Bs;t � D 0 if ¹i; j º \ ¹s; tº D ;,

(ii) ŒBi;j ; Bi;t C .�1/
qBt;j � D 0 if 1 � j < t < i � k,

(iii) ŒBt;j ; Bi;j C Bi;t � D 0 if 1 � j < t < i � k.

According to [7, Theorem 4.1], the Lie subalgebra generated by theBk;i is a free ideal,
and we have a short exact sequence of graded Lie algebras

0! L.xk;i /! Lk.q/! Lk�1.q/! 0:

Since Lk.q/ is a graded Lie algebra of finite type with no elements of degree 0,
L.xk;i / is profree.

Example 12 (An extension to universal enveloping algebras). The classical completion
of the universal enveloping algebra of a graded Lie algebra, L, is defined by bUL D
lim
 �n

UL=I n, where I denotes the maximal ideal of UL. Then, we have the following:

Problem 1. With the same hypotheses as in the Avramov–Félix conjecture, does bUL
contain a tensor algebra on 2 generators?

The following proposition is a partial answer to this question:

Proposition 4. Let
V
V be a Sullivan minimal model with associated homotopy Lie

algebra L. Suppose that dim L=L2 < 1, that V D V 1, that .
V
V; d/ has a weight

decomposition and that H�.
V
V; d/ is a finite-dimensional vector space with non-zero

Euler characteristic. Then bUL contains a tensor algebra on two generators.

Proof. Denote by gL the graded Lie algebra associated to the weight decomposition and
observe that we have injections

U.gL/ � UL �bUL:

It is therefore enough to construct an injection T .x; y/ � U.gL/.
By hypothesis, V D V 1 and V Š

L
n�0 Vn, with d.Vn/ �

�V2
V
�
n�1

. We equip V
with an extra upper gradation

V .2nC3/ D Vn:

It follows that d.V .r// � .
V2

V /.rC1/. In particular, with this new upper gradation
V
V

is a minimal Sullivan algebra, and V D V .odd/ and V D V .�2/. It follows that the
dimensions of the vector spaces H even.

V
V / and H odd .

V
V / have not been modified.
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In particular, the Euler characteristic of the cohomology of
V
V with the new grading

is non-zero. By [10], gL does not contain any non-zero solvable ideal and U.gL/

contains a tensor algebra T .x; y/. Forgetting this new grading, this defines an injection
T .x; y/ � U.gL/.

6.2. The growth of �1.X/Q

When X is a simply connected CW complex with finite Betti numbers and finite category,
the classical dichotomy theorem says that either ��.X/˝Q is finite-dimensional or else
the sequence

Ps
iD1 dim�i .X/˝Q has an exponential growth [14, Chapter 33].

A similar dichotomy problem concerns the fundamental group. Suppose catX <1.
Then denote by G the fundamental group of XQ and set LŠ .LX /0. Denote also as usual

G1 D G; and Gn D ŒGn�1; G�; n � 1;

and recall from Section 2,

L1 D L; and Ln D ŒLn�1; L�; n � 1:

Problem 2. Suppose
P

dimGn=GnC1 D1 and dimG1=G2 <1. Do the seriesX
n

dimGn=GnC1tn and
X
n

dimLn=LnC1tn

have exponential growth?

This is trivially the case when L contains a free Lie algebra on two generators, but
there is no global answer. The following proposition is a first step in that direction for a
special family of groups.

Proposition 5. Suppose X is formal, V D V 1, catX D m < 1 and dimL=L2 < 1.
Then the elements dimLn=LnC1 are unbounded, and the sequence

Pn
iD1 dimLi=LiC1

has exponential growth.

Proof. Since ŒL=L2; Lp=LpC1� Š LpC1=LpC2, if dimL D1, then Lp=LpC1 ¤ 0 for
all p.

For p < q, write VŒp;q� D
Lq
jDp Vj and denote �.k/D dimVŒk;2k�1�. By the mapping

theorem [16, Theorem 9.3] the category of the quotient minimal model�^
V�k ; xd

�
WD
�^

V; d
� O
.
V
V<k ;d/

Q

is�m, and VŒk;2k�1� � ker xd . Therefore,
VmC1

VŒk;2k�1� � Im xd . Since the differential d
is quadratic, it follows that

mC1̂

VŒk;2k�1� � xd
�
VŒ2k;4k�1�

�
�

m�1̂

VŒk;2k�1�:
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Since �.k/� k, we can choose k such that �.k/� C 2 with C D 2mC1.mC 1/Š. Then
for q � mC 1, �.k/ � q � �.k/

2
and so

�.k/mC1

.mC 1/Š2mC1
� dim

mC1̂

VŒk;2k�1�:

Therefore,
�.k/mC1

C
� �.2k/�.k/m�2:

We deduce that �.2k/ � �.k/2

C
. Iterating the process yields

�.2rk/ �
��.2r�1k/

C

�2
�

��.k/
C

�2r
:

Let now s and r in N be such that 2r�1k � s < 2rk. Then, with A D .�.k/
C
/
1
4k , we

have
sX
iD0

dimVi � �.2
r�2k/ �

��.k/
C

� 2r�2k
k
D A2

rk
� As :

It follows directly that the elements dimVn are unbounded.

7. Inert attachments

A cell attachment via f W Sn ! X is called inert if the induced maps ��.X/ !
��.X

S
f D

nC1/ are surjective. We say that the attachment is rationally inert if the mor-
phism LX ! LX

S
f D

nC1 is surjective.
Write Y D X

S
f D

nC1. Then we have the following:

Theorem 2 ([13]). The following three conditions are equivalent:

(i) The attachment f is inert.

(ii) The homotopy Lie algebra of the homotopy fibre of the map XQ ! YQ is a
profree Lie algebra.

(iii) The element Œf � generates a profree ideal I in ��.�XQ/ and there is an
isomorphism

I=I .2/ Š U.��.�XQ/=Œf �/:

When an attachment is not inert, the attachment often creates new profree Lie algebras.
Here are two examples:

Theorem 3 ([13]). Let Y be a space obtained by adding 2-cells to a wedge of circles X .
Denote by E the image of the map LX ! LY . Then the injection E ! LY admits a
retraction r whose kernel is a profree Lie algebra.
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Proposition 6. Let Y D X
S
f D

nC1 where f corresponds to a non-zero element ˇ in
the center of .LX /n�1. We suppose that �1.XQ/ ¤ 0 and that dim�1.XQ/ � 2. Then LY
contains a profree Lie algebra xL.x; y/ with deg x D 0 and degy D n.

Proof. To simplify we suppose that n is odd. The proof is similar when n is even. Let
.
V
V; d/ be the Sullivan minimal model of X and let �W .

V
V; d/ ! .Q ˚ Q � a; 0/

be a Sullivan representative of f W Sn ! X . Then choose v 2 V 1 and w 2 V n with v
and w linearly independent, dv D 0, �.w/ D a and hw; sˇi D 1. Denote by E a direct
complement of the vector space generated by v andw in V . Since ˇ is in the center ofLX ,
there is no z 2 V with dz D vw C ! with ! in the ideal generated by E.

Write B D dw and let 'W
V
T
'
�! .Q˚ ker �/ be a Sullivan minimal model. We can

suppose that V �m � T and B 2
V
T . There is then an element z 2 TmC1 with dz D Bv

and '.z/ D wv.
Now denote by  W .

V
W; xd/ ! .Q ˚ .z; v/; 0/ the Sullivan minimal model of

.Q ˚ .z; v/; 0/. Since this is a formal space we can suppose that W is equipped with
a second lower gradationW Š

L
qWq such that d.Wq/� .

V
W /q�1 andHq.

V
W /Š 0

for q ¤ 0. By constructionW0 Š .z;w/ andW1 Š .y1; z1/ with xdy1 D zv and xdz1 D z2.
For r < s, we write WŒr;s� Š

Ls
qDr Wq .

We construct by induction on the lower gradation a differential d and a morphism of
cdga’s

'W
�^

E�n ˝
^
W; d

�
! Q˚ .ker �; d/

with the following properties:

• '.W�1/ D 0.

• On W , the differential d has the following form. If x 2 Wr , then

d D xd C ı; where ı.x/ D

1X
qD1

�q.x/B
q; and �q.x/ 2 WŒ1;r�:

On
V
x ˝

V
E�n, ' is the natural injection. The morphism ' and the differential on

W�1 are given by '.v/ D v, '.z/ D wv, dz D vB , d.y1/ D zv, d.z1/ D z2 � 2y1B ,
'.y1/ D '.z1/ D 0.

Suppose we have constructed d on W<q for some q, with '.WŒ1;q�/ D 0 and d2 D 0.
In particular, for m � 1,

�m xd C xd�m C
X

iCjDm

�i�j D 0:

Now let x 2 Wq . Since xd�1 xdx D ��1 xd2x D 0, and since  is a quasi-isomorphism,
there is a �1.x/ 2 WŒ1;q� with �1 xdx D �xd�1x. We construct inductively the �p . First we
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verify that xd.�p xd C
P
iCjDp �i�j /x D 0. Indeed,

xd

�
�n xd C

X
iCjDp

�i�j

�
x D ��p xd

2x �
X

rCsDp

�r�s xdx D xd
X

iCjDp

�i�j .x/

D �

X
rCsDp

�r

�
xd�s �

X
kC`Ds

�k�`

�
.x/ � xd

X
iCjDp

�i�j .x/

D xd
X

rCsDp

�r�sx C
X

rCsDp;aCbDr

�a�b�sx

�

X
rCsDp;kC`Ds

�r�k�`x � xd
X

iCjDp

�i�j .x/ D 0:

Since  .�p xd C
P
�i�j /x D 0, we can define �p.x/ 2 WŒ1;q� with�

�p xd C
X

iCjDp

�i�j

�
x D �xd�px:

Finally, we define '.x/ D 0.
Denote by L the rational homotopy Lie algebra of .

V
v˝

V
E�n ˝

V
W;d/, and by

˛ and ˇ elements with hv; s˛i D 1 D hw; sˇi. Since we have a surjection�^
v ˝

^
E�n ˝

^
W; d

�
!
�^

W; xd
�
;

L contains the profree Lie algebra on ˛ and ˇ.
Now we extend ' to a quasi-isomorphism�^

Z; d
�
WD
�^

v ˝
^
E�n�1 ˝

^
W ˝

^
Z0; d

�
! Q˚ ker �:

By this construction .
V
Z; d/ is not necessarily minimal. We denote its homotopy Lie

algebra by LZ , and by construction we have a not necessarily surjective morphism
LZ ! L. However, since v and z are not boundaries in Z for the linear part of the
differential, the elements ˛ and ˇ are in the image of LZ ! L. Therefore, LZ contains
the free Lie algebra on ˛ and ˇ.
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