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A note on laminations with symmetric leaves

Michael Kapovich

Abstract. We prove that (apart from dimension n D 4), each Riemannian solenoidal lamination
with transitive homeomorphism group and leaves isometric to a symmetric space X of noncompact
type, is homeomorphic to the inverse limit of the system of finite covers of a compact locally-
symmetric n-manifold.

To Dennis Sullivan on the occasion of his 80th birthday, with great admiration

This note is motivated by a talk by Alberto Verjovsky on solenoidal manifolds in
Cuernavaca in 2017 and the papers [21,22,25] of Dennis Sullivan and Alberto Verjovsky.
Our main result is Theorem 9 below describing n-dimensional homogeneous solenoidal
laminations with leaves isometric to a symmetric space of noncompact type. A very
detailed survey of solenoidal manifolds (especially in low dimensions) with a com-
prehensive bibliography of the subject, can be found in the paper [26] by Alberto
Verjovsky. On a personal note, I also would like to add that many papers written by
Dennis Sullivan on geometric topology, hyperbolic geometry, discrete groups and dynam-
ics were an inspiration for much of my work ever since I was an undergraduate student in
Novosibirsk.

1. Generalities on laminations

We refer the reader to [2, Section 1] and [13], especially, [13, Section 10], for in-depth
treatment of laminations.

An n-dimensional topological solenoidal lamination is a Hausdorff, 2nd countable
topological space L equipped with a system of local charts, which are homeomorphisms
�˛WU˛ �L! V˛ �C˛ �Rn �C , where C is the Cantor set, sets C˛ (local transversals)
are homeomorphic to C , ¹U˛º˛2A is an open cover of L, while each V˛ � C˛ is open in
Rn � C . The preimages ��1˛ .V˛ � ¹cº/ are the local leaves of L.

We will be mostly interested in compact solenoidal laminations, but some of the
discussion below is more general.
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For each lamination one defines an equivalence relation generated by the following
(nontransitive) relation: x � x0 if and only if x; x0 belong to the same connected com-
ponent of a common local leaf of L. Equivalence classes of this equivalence relation are
the leaves of L; the leaf through x is denoted Lx . Each leaf Lx carries a natural topol-
ogy with respect to which each leaf is a topological n-manifold. This topology is defined
via its basis as follows. Pick y 2 Lx and a local chart �˛WU˛ � L! V˛ � C˛ such that
y 2 U˛ . There exists a unique c 2 C˛ such that �˛.y/ 2 V˛ � ¹cº. The product V˛ � ¹cº is
homeomorphic to V˛ via the projection to the first factor. Then take a basis of the standard
topology in V˛ , and take its preimage in ��1˛ .V˛ � ¹cº/ under the composition

U˛
�˛
�! V˛ � C˛ ! V˛:

Doing so for all y 2 Lx and U˛ containing such y yields a basis of topology on Lx .
A lamination is said to be minimal if each leaf is dense in L. A lamination is said to

be homogeneous if its group of homeomorphisms acts transitively on L.

Remark 1. More generally, one can consider topological laminations where C is just
a topological space and, accordingly, local transversals are not required to be totally
disconnected, and instead of open subsets of Rn one takes open subsets of another model
space. Then the transition maps are required to send subsets in V˛ � ¹cº to subsets of
Vˇ � ¹c

0º. (In our setting, this property is automatic.) We will not discuss such general
laminations in this note: By default, all laminations are assumed to be solenoidal.

In what follows, by a map of two laminations we will mean a continuous mapL!L0;
since local transversals are totally disconnected, such a map necessarily sends leaves to
leaves.

A leaf-wise metric on a lamination L is a metrization of each leaf Lx of L by a
metric dLx . For convenience, we extend these metrics to a metric, denoted d , on the
entire L by d.x; x0/ D 1 if x; x0 belong to different leaves. The following definition
appears to be nonstandard, I could not find it in the literature:

Definition 2. A leaf-wise metric d on L is continuous if:

(1) Whenever two sequences .xi /; .yi / inL satisfy limi!1 d.xi ; yi /D 0, then for all
sufficiently large i , the pairs of points xi ; yi belong to the same local transversal.
(The local transversals, in general, will depend on i .)

(2) For any two sequences .xi /; .yi / which belong to the same U˛ for all i and such
that xi ; yi belong to the same local transversals (depending on i ) in U˛ , we have

xi ! x; yi ! y ) lim
i!1

d.xi ; yi / D d.x; y/:

In fact, all the leaf-wise metrics used in this paper will be not only continuous but
also path-metrics in the sense that the distance between any two points is the infimum of
lengths of paths connecting these points.
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Similarly to topological laminations, one defines smooth laminations, by requiring
that:

(a) The transition maps �˛ ı ��1ˇ are smooth when restricted to each Rn � ¹cº.
(b) All the partial derivatives of the transition maps (taken with respect to the Rn-

variables) are continuous as functions on Vˇ � Cˇ .
Accordingly, the leaves of a smooth lamination have natural structure of smooth

n-manifolds. For smooth laminations one defines Riemannian metrics as leaf-wise Rie-
mannian metrics which vary continuously with respect to the local transversals C˛ .
(See [2, Section 1] for details.) If L is compact, leaves Lx have (uniformly, indepen-
dently of x) bounded geometry. (Each point x has a neighborhood in Lx such that the
metric on this neighborhood is uniformly bi-Lipschitz to the standard open unit ball in the
Euclidean n-space. Moreover, the leafwise Riemannian curvature tensor has uniformly
bounded norm.) In particular, the corresponding leaf-wise metric d on L is continuous.
By the partition of unity, every smooth solenoidal lamination admits a Riemannian metric.

Below is an important class of solenoidal laminations. Start with a compact connected
manifold M and consider an infinite inverse system of nontrivial finite regular covering
maps

� � � !Mj !Mi !M

such that each covering Mi ! M corresponds to a finite index subgroup Gi < �1.M/.
(We use the linear order here is only for the notational convenience, the inverse system
is actually arbitrary.) Let yM ! M denote the covering of M corresponding to the
intersection of all the subgroups Gi . Then the inverse limit of the above system of
coverings is a compact connected solenoidal lamination L with leaves homeomorphic
to yM . In the terminology of Hurder in [13], L is a McCord lamination: Such laminations
were introduced and studied (in greater generality, the space M was not assumed to be
a manifold) by McCord in [17]. In particular, McCord proved that McCord laminations
are minimal and homogeneous. Every McCord’s lamination fibers over M with totally
disconnected fibers.

In the special case, whenG D ¹1º, the manifold yM is the universal cover ofM and the
laminationLwill be denotedM1; I will refer toM1 as a McCord solenoid. The existence
of a system of finite-index subgroups in � D �1.M/ whose intersection is trivial is known
as the residual finiteness property of � .

The same construction works in the smooth setting, yielding a smooth solenoidal
lamination. If M had structure of a Riemannian manifold, we take pull-backs of the
Riemannian metric to the covering spaces Mi . Accordingly, the inverse limit L has
structure of a Riemannian lamination: Each leaf of this lamination is a Riemannian
covering space of M . In the case of L DM1, each leaf of L is isometric to the universal
Riemannian covering of M and, hence, is quasi-isometric to the fundamental group
� D �1.M/ (recall that M is assumed to be compact).

A (compact) topological manifold M , of course, need not be smoothable, hence, we
cannot have a Riemannian metric. Nevertheless, as any Peano continuum, M can be
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metrized via a path-metric1: This result was conjectured (for general Peano continua)
by Menger and proved independently by Bing [1] and Moise [18]. The length structure
given by such a metric d lifts to the covering spaces Mi , so that the maps Mi ! M all
preserve lengths of curves, i.e., are isometries of the length structures.

Passing to the inverse limit, we obtain a leaf-wise path-metric dL on the corresponding
McCord solenoid L, such that the restriction of the projection L!M to each leaf of L is
locally isometric, which implies that the metric dL is continuous. IfLDM1, the group �
acts isometrically on each leaf Lx of L and, since the metric on Lx is a path-metric and
the action is properly discontinuous and cocompact, Lx is again quasi-isometric to � .

For completeness of the picture (even though, we will not need this), we note that one
also has the notion of triangulated solenoidal laminations. A triangulation of a solenoidal
lamination L is a triangulation of each leaf of L so that simplices vary continuously
with respect to the local transversals. The following theorem is due to Clark, Hurder and
Lukina [6]:

Theorem 3. Every compact solenoidal Riemannian lamination L admits a smooth trian-
gulation of bounded geometry.

Here a triangulation of a Riemannian manifold is said to have bounded geometry if
each k-simplex is �-bi-Lipschitz to the standard Euclidean k-simplex for some uniform
constant �.

Regarding the structure of solenoidal laminations, Clark and Hurder in [5, Theo-
rem 1.2] proved:

Theorem 4. For every smooth compact connected homogeneous solenoidal lamination L
with simply-connected leaves, there exists a compact topological manifold M such that
the McCord solenoid M1 is homeomorphic to L.

In addition to this difficult theorem we will need several easy properties of maps
between laminations proven below.

Lemma 5. Suppose that L; L0 are two compact solenoidal laminations equipped with
continuous leaf-wise metrics d; d 0 respectively. Then every continuous map f WL! L0 is
uniformly continuous with respect to the metrics d; d 0.

Proof. The proof is essentially a standard argument for uniform continuity of continuous
functions on compact metric spaces. Suppose f is not uniformly continuous. Then there
exist two sequences .xi /; .yi / such that d.xi ; yi /! 0 (in particular, for all sufficiently
large i , Lxi D Lyi and, moreover, by part (1) of the definition of a continuous metric,
xi ; yi belong to the same local transversal), but d 0.f .xi /; f .yi // > " for some " > 0

independent of i . By the compactness of L, we can assume that xi ! x; yi ! y in the
topology of L. Hence, by the continuity assumption on d (part (2) of the definition),

1By compactness, this is equivalent to the property that the metric is geodesic.
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x D y. By the continuity assumption on f , f .xi /! f .x/, f .yi /! f .y/ D f .x/ and,
moreover, for all large i , the pairs xi ;yi belong to common local transversals in the domain
U 0˛ � L

0 of some local chart of L0. By applying the continuity assumption (part (2)) for
the metric d 0,

lim
i!1

d 0.f .xi /; f .yi // D d
0.f .x/; f .y// D 0:

A contradiction.

Corollary 6. Under the assumptions of Lemma 5, every continuous map f WL! L0 is
coarsely Lipschitz in the sense that there exist constants k � 1, a � 0 such that for any
two points x; y 2 L,

d 0.f .x/; f .y// � kd.x; y/C a:

Proof. Since d; d 0 are path-metrics, this corollary is an immediate consequence of the
uniform continuity of f , cf. [7, Lemma 8.8].

Corollary 7. Under the assumptions of Lemma 5, every homeomorphism f W L ! L0

defines a quasi-isometry between the leaves of L;L0 with respect to the metrics d; d 0.

Proof. Since f and f �1 are coarse Lipschitz maps between the leaves of L; L0, the
statement follows from one of the equivalent definitions of quasi-isometries, see [7,
Definition 8.10].

Lemma 8. Suppose that L is a compact Riemannian lamination and L0 D M1 is a
topological McCord solenoid, homeomorphic to L. Then each leaf of L (equipped with
the leaf-wise Riemannian distance function d ) is quasi-isometric to the fundamental group
of M (equipped with the word-metric).

Proof. We equipL0DM1 with the leaf-wise path-metric d 0D dM1 defined earlier. Each
leaf L0x0 of L0 with the metric d 0 is quasi-isometric to �1.M/. By Corollary 7, every leaf
of L is quasi-isometric to its image leaf in L0 (equipped with the metric d 0). Lemma
follows.

2. Homogeneous solenoidal laminations with symmetric leaves

In this section we prove the main result of the note. We fix X , a symmetric space of
noncompact type.

Theorem 9. Let L be a compact homogeneous solenoidal n-dimensional Riemannian
lamination with leaves isometric toX . Then there exists a closed aspherical n-manifoldM
such that:

(1) The McCord solenoid M1 is homeomorphic to L.
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(2) If n ¤ 4 then M is homeomorphic to the quotient of X by a discrete, torsion-
free cocompact group of isometries. If n D 4, then M is homotopy-equivalent
to such a quotient. For example, if X D Hn is the hyperbolic n-space, then
M is either homeomorphic (in dimensions n ¤ 4) or homotopy-equivalent (in
dimension n D 4) to a hyperbolic n-manifold.

Proof. As the reader will observe, my contribution to this result is minimal, it is mostly
to combine deep work by others and to prove Lemma 8.

Part (1) of the theorem is due to Clark and Hurder, see Theorem 3 above.
We now proceed to part (2). The manifold M satisfies two properties: It is aspherical

(since its universal covering space is homeomorphic to X which is aspherical), in particu-
lar, its fundamental group � D �1.M/ is torsion-free, and the group � is quasi-isometric
to the leaves of L, i.e., to X (see Lemma 8).

It now follows from quasi-isometric rigidity of symmetric spaces of noncompact type
that � is isomorphic to a uniform lattice in the isometry group of X . This deep result is a
combination of work of many people:

• Tukia [24], Gabai [12], Casson and Jungreis [3] for X D H2, Sullivan [20] for H3,
Tukia [23] for X D Hn (see also [14] and [7, Chapter 23]).

• Chow [4] for complex hyperbolic spaces X D CHn.

• Pansu [19] for quaternionic hyperbolic spaces and octonionic hyperbolic plane.

• Kleiner and Leeb [15] when X is a symmetric space of higher rank without rank 1
factors. A bit later, this result was also obtained by Eskin and Farb in [8] by a different
method.

• Lastly, Kleiner and Leeb [16] handled the case of symmetric spaces with rank one
factors.

We also refer the reader to surveys of these results in [9] and [7, Chapter 25].
Thus, we conclude that � is isomorphic to the fundamental group of a closed

locally-symmetric (modeled on X ) n-manifold M 0. In particular, M is homotopy-
equivalent to M 0. In dimensions different from 4, a compact n-dimensional manifold
homotopy-equivalent to a locally-symmetric manifold of nonpositive curvature is actu-
ally homeomorphic to it: In dimension 2 it is classical, in dimension 3 it is a corollary of
Perelman’s geometrization theorem, and in dimensions> 4 this result is due to Farrell and
Jones [10, 11].

Acknowledgments. I am grateful to Steve Hurder for helpful references on geometry of
solenoidal laminations and to the referees for their comments and suggestions.
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