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The diagonal of cellular spaces and effective
algebro-homotopical constructions

Anibal M. Medina-Mardones

Abstract. In this survey article we discuss certain homotopy coherent enhancements of the co-
algebra structure on cellular chains defined by an approximation to the diagonal. Over the rational
numbers, C1-coalgebra structures control the Q-complete homotopy theory of spaces, and over
the integers, E1-coalgebras provide an appropriate setting to model the full homotopy category.
Effective constructions of these structures, the focus of this work, carry geometric and combinatorial
information which has found applications in various fields including deformation theory, higher
category theory, and condensed matter physics.

On the occasion of Dennis Sullivan’s 80th birthday

1. Introduction

There is a tense trade-off in algebraic topology having roots reaching back to the beginning
of its modern form. This tension can be illustrated with the concept of cohomology. The
first approaches, dating back to Poincaré, are based on the subdivision of a space into
simple contractible pieces. These elementary shapes are made to generate a free graded
module whose spatial relations define a differential used to compute cohomology. This
definition makes fairly clear certain geometric properties of cohomology, for example,
excision. Yet, it is not easy to show that a continuous map of spaces induces a map between
their associated cohomologies. The functoriality just alluded to is trivial when defining
cohomology in terms of homotopy classes of maps to Eilenberg–MacLane spaces, but the
passage to the homotopy category erases geometric and combinatorial information and
the resulting definition is not well suited for concretely presented spaces.

Cohomology as a graded abelian group is a fairly computable invariant, but it has
noticeable limitations, for example, CP2 and S2 _ S4 are not distinguished by it.
Cohomology can be refined to a graded ring by endowing it with the cup product, an
enhancement that distinguishes these spaces. In the spectral context, the product structure

2020 Mathematics Subject Classification. Primary 55U15; Secondary 18N40, 18M70, 18M85, 55S30,
55S05.
Keywords. Cellular chains, diagonal map, effective constructions, C1-coalgebras, E1-coalgebras.

https://creativecommons.org/licenses/by/4.0/


A. M. Medina-Mardones 224

is defined through the wedge product of Eilenberg–MacLane spaces, whereas in the cel-
lular setting it is obtained from a choice of cellular approximation to the diagonal map
X ! X �X . Such cellular map induces a chain map

�WC.X/! C.X/˝ C.X/ (1)

making the cellular chains of X into a (differential graded) coalgebra. The fact that
the cup product on cohomology, induced by the linear dual of (1), is associative and
(graded) commutative, hints at the presence of additional structure extending the coalgebra
structure on C.X/.

In this survey article we will present, from a viewpoint that emphasizes their construc-
tive nature, C1 and E1 extensions of � over the rationals and integers, respectively.
The resulting algebraic structures control much of the homotopy theory of spaces.
For example, over the rationals, the quasi-isomorphism type of a C1-coalgebra exten-
sion of the symmetrization of � determines the Q-completion of X under certain
assumptions [10,41]. Whereas over the integers, and under similar assumptions, the quasi-
isomorphism type of an E1-coalgebra extension of � determines the homotopy type
of X [27].

Rational coefficients

In Section 2 we will study extensions of chain approximations to the diagonal with rational
coefficients. Over this field, a chain approximation to the diagonal can be symmetrized,
giving rise to a cocommutative coalgebra. This coalgebra cannot be made simultaneously
coassociative, but this relation can be imposed in a derive sense through a family of
coherent chain homotopies – which also respect certain symmetry constrains – and give
rise to a so-called C1-coalgebra structure. One can think of C1-coalgebras in terms of
the somewhat more familiar notion of A1-coalgebra where cocommutativity is satisfied
strictly. As a manifestation of Koszul duality, a C1-coalgebra structure on cellular chains
is equivalent to a differential on the completion of the free graded Lie algebra generated by
the cells shifted downwards in degree by one. This relates C1-coalgebras to deformation
theory, but we do not explore this deep connection here. For cell complexes whose
closed cells have the Q-homology of a point, Dennis provided in [50] a local inductive
construction defining a C1-coalgebra structure on their cellular chains. We reprint a
challenge he posted regarding the resulting structure.

Problem. Study this free differential Lie algebra attached to a cell complex,
determine its topological and geometric meaning as an intrinsic object. Give
closed form formulae for the differential and for the induced maps associated to
subdivisions. [25, p. 231]

As proven by Quillen, the quasi-isomorphism type of this C1-coalgebra is a complete
invariant of the rational homotopy type of simply-connected spaces. For theC1-coalgebra
structure on the interval, Dennis and Ruth Lawrence addressed the challenge reprinted
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above introducing a formula for it which can be interpreted in terms of parallel transport
of flat connections [25], and for which the subdivision map is described by the Baker–
Campbell–Hausdorff formula.

To generalize Quillen’s equivalence of homotopy categories to one between (not
necessarily 1-connected) simplicial sets, Buijs, Félix, Murillo, and Tanré [10] extended
to n-simplices the Lawrence–Sullivan structure building, constructively for n 2 ¹2; 3º and
inductively otherwise, C1-coalgebra structures on their chains. Their construction agrees
after linear dualization with the one obtained by Cheng and Getzler in [13], where they
showed that the Kontsevich–Soibelman sum-over-trees formula defining the transfer of
A1-algebras through a chain contraction induces a transfer of C1-algebras. This allowed
them to construct a C1-algebra structure on simplicial cochains by transferring Dennis’
polynomial differential forms through Dupont’s contraction. The resulting description is
given in terms of rooted trees.

C1-coalgebras are controlled by the operad Com1 which is the Koszul resolution of
the operad Com, i.e., the cobar construction applied to the Lie cooperad, the Koszul dual
cooperad of Com. Another interesting resolution of Com is constructed concatenating
the bar and cobar constructions. This resolution method is an algebraic version of the
W-construction of Boardman–Vogt. As Dennis and Scott Wilson considered, the resulting
operad can be described using rooted trees with vertices colored black or white. In [42],
Daniel Robert-Nicoud and Bruno Vallette studied coalgebras over this resolution which
they termedCC1-coalgebras. They constructed on the chain of standard simplices natural
CC1-coalgebra structures and described them explicitly using bicolored trees.

Despite some progress – [9,18,19], [10, § 6.5] – the “closed form formulae” part of the
problem quoted before remains open. One possible avenue to generalize to cubical chains
the formula defining the Lawrence–Sullivan C1-coalgebra on C.I/, is to define the tensor
product of C1-coalgebras and then extend it monoidally to all cubes via the isomorphism
N.�n/ Š C.I/

N
n. The monoidal structure on the category of A1-coalgebras is defined

through a chain approximation to the diagonal of the Stasheff polytopes compatible
with the operad structure. Unfortunately, the resulting A1-coalgebra on C.I/

N
2 is

not C1. This could be corrected through an algebraic symmetrization of the associahedral
diagonal, but we do not pursue this here.

Integral coefficients

In Section 3 we will study extensions of chain approximations to the diagonal with inte-
gral coefficients. In contrast to the situation over Q, chain approximations to the diagonal
over these coefficients cannot be taken to be symmetric with respect to transposition
of tensor factors. The resulting coalgebras can be made cocommutative and coassocia-
tive only up to coherent homotopies, that is to say, provided with the structure of a
coalgebra over an E1-operad. The study of E1-structures has a long history, where
(co)homology operations [28, 47], the recognition of infinite loop spaces [5, 29], and the
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complete algebraic representation of the p-adic homotopy category [26] are key mile-
stones.

Steenrod was the first to introduce homotopy coherent corrections to the broken
symmetry of a chain approximation to the diagonal [44]. He did so on simplicial chains
in the form of explicit formulae defining his cup-i coproducts, with cup-0 agreeing with
the Alexander–Whitney chain approximation to the diagonal. These coproducts are used
to define Steenrod’s mod 2 cohomology operations and to effectively compute them in
specific examples.

Extending the cup-i coproducts of Steenrod, explicitly defined E1-coalgebra struc-
ture on simplicial chains were introduced by McClure–Smith [30] and Berger–Fresse [4].
It turns out that this structure can be described solely in terms of the Alexander–Whitney
diagonal, the augmentation map and a chain version of the join of simplices [33]. This
point of view can be abstracted using the language of props, which allows its application
to other contexts, for example those defined by cubical chains [24] and the Adams’ cobar
construction [39]. We will review the resulting model of theE1-operad, its action on sim-
plicial and cubical chains, and explicit generalizations of the cup-i coproducts to higher
arities effectively constructing Steenrod operations at all primes [23].

We devote the final subsection to overview the use of cochain level structures in the
classification of symmetry protected topological phases of matter.

2. C1-coalgebras

Over the rationals, the problem of extending a chain approximation to the diagonal
as a C1-coalgebra is related to the study of Lie algebras. In this section we recall
this connection, and Dennis’ construction of a C1-coalgebra structure on the cellular
chains of certain CW complexes. We also discuss the resulting structure on the cellular
chains of the interval, which is presented as a formula in the work of Dennis and Ruth
Lawrence. We discuss Quillen’s functor from simplicial sets to complete dg Lie algebras,
as extended by Buijs, Félix, Murillo, and Tanré through a cosimplicial C1-coalgebra, and
the problem of making this construction into explicit formulae extending the Lawrence–
Sullivan interval.

2.1. Quillen construction

As a motivating example illustrating the connection between cocommutative and coas-
sociative coalgebras and dg Lie algebras, let us recall the so-called Quillen construction.
Consider one such coalgebra C , and form the free graded Lie algebra L generated by the
desuspension of C regarded as a graded vector space. Denote s�1C in L by L1 and L2
the linear span of brackets of elements in s�1C . The boundary map and coproduct induce
maps of degree �1

L1
l1
�! L1; L1

l2
�! L2;
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respectively, and their relations ensure that l1 C l2 squares to 0. More explicitly,

l1.s
�1c/ D �s�1 @ c; l2.s

�1c/ D
1

2

X
i

.�1/jai jŒs�1ai ; s
�1bi �;

where �.c/ D
P
i ai ˝ bi .

The extension of l1 C l2 as a derivation of the Lie bracket makes L into a free dg Lie
algebra naturally associated to C .

2.2. C1-coalgebras

The previous construction motivates the definition of C1-coalgebras. Before providing
it, let us recall the notion of a complete chain complex .C; F /, which is a filtered chain
complex C

C D F0C � F1C � � � �

such that

C D lim
k!1

C=FkC:

As expected, the completion of a filtered chain complex .C; F / is defined as C .
A C1-coalgebra structure on a graded vector space C is the data of a differential on

the completion, with respect to the filtration by number of brackets, of the free graded Lie
algebra generated by s�1C .

2.3. C1-coalgebras as commutative A1-algebras

We can interpret a C1-coalgebra structure on C in terms of the somewhat more familiar
notion of A1-coalgebra.

An A1-coalgebra structure on a graded vector space C is a family of degree k � 2
linear maps �k WC ! C

N
k satisfying for every i � 1 the following identity:

iX
kD1

i�kX
nD0

.�1/kCnCkn
�
id
N
i�k�n

˝�k ˝ id
N
n
�
ı�i�kC1 D 0: (2)

This is equivalent to the data of a differential on
Q
n�1.s

�1C/
N
n, the augmentation

kernel of the complete tensor algebra on the desuspension of C . Indeed, such differential
d D

P
k�1 dk is determined by its restriction to s�1C with dk.s�1C/ � T k.s�1C/, and

the correspondence is explicitly given by

�k D �s
N
k
ı dk ı s

�1; dk D �.�1/
k.kC1/
2 .s�1/

N
k
ı�k ı s:

Notice that (2) implies for any A1-coalgebra that �1 squares to 0, that �2 is a chain
map with respect to �1, and that �3 is a chain homotopy between .�2 ˝ id/ ı �2 and
.id˝�2/ ı�2.
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A C1-coalgebra structure on a graded vector space C is equivalent to an A1-
coalgebra structure on C such that the image dk lies in the invariants of .s�1C/

N
k under

the action of Sk , or, expressed in terms of the coproducts �k , one such that � ı�k D 0,
where

�.c1 ˝ � � � ˝ ck/ D

kX
iD1

X
�2S.i;k�i/

sign.�/ .c�.1/ ˝ � � � ˝ c�.i//˝ .c�.iC1/ ˝ � � � ˝ c�.k//

and S.i; k � i/ denotes the set of .i; k � i/-shuffles.

2.4. Sullivan’s cellular C1-coalgebra construction

We now present Dennis’ inductive construction of a local C1-coalgebra structure on the
chains of cell complexes whose closed cells have the Q-homology of a point [50].

Let X be one such cellular complex and L.X/ D L be the free Lie algebra generated
by the desuspension of its rational cellular chains s�1C .

Let us start by choosing a chain approximation�WC ! C ˝C to the diagonal, which
we assume equivariant – since we are working with rational coefficient – and local, in
the sense that �.e˛/ is contained in the subcomplex generated by the tensor product
of cells in the closure of e˛ . We remark that .C; ı; �/ is a cocommutative coalgebra
which is in general not coassociative. Let ı1 and ı2 be the respective maps from L1 to L1
and L2 induced from @ and �. We denote by the same symbols their extensions to L as
derivations. We now quote Dennis’ construction:

We interpret ı ı ı D 0 as the equation Œı; ı� D 0, where Œ�; �� is the graded
commutator. For any ı the Jacobi identity is Œı; Œı; ı�� D 0. Suppose ık D ı1 C

� � � C ık has been defined so that Œık ; ık � has the first non-zero term in monomial
degree k C 1. Jacobi implies this error commutes with ı1; that is, it is a closed
element in the complex Der.L/ of derivations of L. If we work in the closure
of a cell, the homology hypothesis implies that Der.L/ has homology only in
degrees 0 and �1. Therefore, the error, which lives in degree �2, can be written
as a commutator with ı1. Using the cells to generate a linear basis of each Lk by
bracketing, we choose this solution to lie in the image of the adjoint of ı1 to make
it canonical. This canonical solution is ıkC1 and this completes the induction,
since one knows at the beginning ı1 ı ı1 D 0 and ı2 is chain mapping; that is,
Œı2; ı1� D 0. [50, p. 252]

Dennis’ construction is such that ıe˛ is in the sub-Lie algebra generated by the closure
of the cells in e˛ , or, expressed in dual terms, the maps �r WC ! C

N
r corresponding to

the ır maps are local.
Recall Dennis’ problem, quoted in the introduction, of determining the topological

and geometric meaning of this C1-coalgebra as an intrinsic object, and give closed form
formulae for it and the induced maps associated to subdivisions. We will next present the
solution Dennis and Ruth Lawrence gave to this problem in the case of the interval.
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2.5. Lawrence–Sullivan interval

Let L be a completed free graded Lie algebra with filtration given by number of brackets,
and let U.L/ be the complete graded vector space of series on one indeterminate with val-
ues onLwhose filtration is induced from that ofL, i.e., theN th-part of the filtration U.L/
contains series of the form

1X
nD1

xnt
n

where xn is in FNL for every n. Consider the linear operator given by

d

dt

�X
xnt

n
�
D

X
n xnt

n�1

and the formal differential equation

du

dt
D @ v � adv u

where adv u D Œv; u�. By formally solving this equation one defines the flow generated
by v for any rational time t0.

An element u 2 L is said to be flat if it is in degree �1 and satisfies @uD 1
2
Œu; u�. It is

common to refer to these as Maurer–Cartan elements, but we do not use this terminology.
We now quote the theorem of Dennis and Ruth Lawrence.

There is a unique completed free differential graded Lie algebra, A, with gener-
ating elements a, b and e, in degrees �1, �1 and 0, respectively, for which a
and b are flat while the flow generated by e moves from a to b in unit time. The
differential is specified by

@ e D ade b C
1X
iD0

Bi

i Š
.ade/i .b � a/;

where Bi denotes the i th Bernoulli number defined as coefficients in the expansion

x

ex � 1
D

1X
nD0

Bn
xn

nŠ
:

[25, Theorem 1]

We remark that Dennis conjectured an equivalence between the description above and
the one obtained by applying his inductive procedure (Section 2.4). This conjecture was
verified by Parent and Tanré [40].

The Lawrence–Sullivan dg Lie algebra is described in terms of the associated
C1-coalgebra by

�1.c/ D y � z; �1.y/ D �1.z/ D 0;

�2.c/ D �
1

2

�
c ˝ .yC z/C .yC z/˝ c

�
; �2.y/ D �y ˝ y; �2.z/ D �z ˝ z;

�k.c/ D
X

pCqDk�1

Bk�1

pŠqŠ
c
N
p
˝ .y � z/˝ c

N
q; �k.y/ D �k.z/ D 0; .for k � 3/;
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where c, y and x are generators of degree 1, 0 and 0, respectively.

2.6. Rational homotopy theory

To algebraically model the rational homotopy category of spaces, two models were
introduced. On one hand, there is Dennis’ commutative approach [49] based on an
adjunction

sSet cdgaop:

 

!
APL

 

!

j � jS

On the other hand, there is Quillen’s Lie approach, introduced in [41] and extended
in [10, 11], which is based on an adjunction

sSet cdgl

 

!
L

 

!

j � jQ

where cdgl denotes the category of complete dg Lie algebras. This adjunction is defined
explicitly by

L.X/ D colim
4n!X

L.4n/; jLjn D cdgl.L.4n/; L/;

where L.4�/ is the cosimplicial complete dg Lie algebra defined by a natural C1-co-
algebra structures on the cellular chains of standard simplices.

Using the principles presented in the previous subsection and a careful treatment of
the simplicial structure, Buijs, Félix, Murillo, and Tanré [10] introduced a construction
of L.4�/, which they characterize axiomatically by requiring that the generators associ-
ated to vertices are flat, and that the linear part is induced from the boundary of chains.

We mention that this structure is isomorphic to the one obtained by dualizing the
simplicial C1-algebra defined by the homotopy transfer theorem of C1-algebras applied
to Dennis’ polynomial differential forms and Dupont’s contraction [13].

The problem of finding closed formulae for the C1-coalgebra structure on the
n-simplex remains open for n > 3.

2.7. Operadic viewpoint

The operad C1 is defined as the cobar construction on the Lie cooperad, the Koszul dual
cooperad of Com. That is to say

C1 D � Liec:

The operad C1 is a minimal projective resolution of Com. A larger projective resolution
is defined composing the bar and cobar constructions

CC1 D � B Com:

Since the bar and cobar constructions are defined in terms of rooted trees the CC1 operad
can be described using bicolored trees. In [42], Robert-Nicoud and Vallette constructed
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a cosimplicial CC1-coalgebra in terms of bicolored trees, and explored the induced
adjunction between simplicial sets and L1-algebras.

An anecdote shared with the author by both Dennis and Bruno Vallette, is that this
bicolored model brought them in contact for the first time; after a talk where Dennis used
this pictorial description, Bruno, then a recent graduate, recognized it as the bar-cobar
resolution of Com.

3. E1-coalgebras

In this section we consider E1-extensions of the Alexander–Whitney and Serre coalge-
bras on simplicial and cubical chains, respectively. The importance of these structures is
highlighted by a theorem of Mandell [27] stating that the whole homotopy type of nilpo-
tent finite type spaces is encoded in the quasi-isomorphism type of its E1-algebra on
cochains.

Additionally, we recall Steenrod’s cup-i coproducts and their induced square oper-
ations on mod 2 cohomology, identifying generalizations of these that induce Steenrod
operations on mod p cohomology for any prime p. We close this section overviewing the
use of cochain level structures in the study of topological phases of matter.

3.1. Alexander–Whitney coalgebra

The first chain approximation to the diagonal was given in the simplicial context by
Čech and Whitney building on independent works presented during the First International
Topological Conference in 1935 in Moscow by Alexander and Kolmogorov. The original
references are [2, 12, 51] and a historical account is presented by Whitney in [52, p. 110].
This chain map, referred to as the Alexander–Whitney coproduct, is defined on elements
of the canonical basis by the formula

�.Œ0; : : : ; n�/ D

nX
iD0

Œ0; : : : ; i �˝ Œi; : : : ; n�: (3)

Together with the augmentation map

".Œ0; : : : ; n�/ D

´
1; n D 0;

0; n > 0;
(4)

the Alexander–Whitney coproduct satisfies

.�˝ id/ ı� D .id˝�/ ı�;

."˝ id/ ı� D id D .id˝ "/ ı�;

making the (normalized) chains N.X/ of any simplicial set X into a natural coassociative
counital coalgebra, referred to as the Alexander–Whitney coalgebra of X .
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0 1

2

�

0 1

2

=

0 1

2

Figure 1. Geometric representation of the join product of two basis elements. It depicts the identity
�.Œ0�˝ Œ1; 2�/ D Œ0; 1; 2�.

We will use the following recursively defined notation for general coalgebras:

�1 D �;

�k D .�˝ id/ ı�k�1 :

3.2. The join product

The join product �WN.4n/
N
2 ! N.4n/ is the natural degree 1 linear map defined by

� .Œv0; : : : ; vp�˝ ŒvpC1; : : : ; vq�/ D´
.�1/p sign.�/Œv�.0/; : : : ; v�.q/�; 8 i ¤ j; vi ¤ vj ;

0; otherwise;

where � is the permutation that orders the vertices. It is an algebraic version of the usual
join of faces in a simplex, please consult Figure 1 for an example.

The join product can be used in conjunction with the Alexander–Whitney coproduct
to canonically construct boundaries in the chain complexes

Hom
�
N.4n/

N
s;N.4n/

N
r
�
:

For example,
H D .f � g/ ı�

is a chain homotopy between any two quasi-isomorphisms g;f WN.4n/! N.4n/. To see
this, recall the augmentation map "WN.4n/! k defined in (4) which is the counit of �,
and notice that the join is a chain homotopy between "˝ id and id˝ ", that is to say

@� D "˝ id � id˝ ":

Since f and g are quasi-isomorphisms, we have " ıf D " ı g D ", so

@H D ."˝ id � id˝ "/ ı .f ˝ g/ ı�

D ."˝ g � f ˝ "/ ı�

D g � f:
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3.3. Steenrod cup-i coproduct structure

As it can be seen directly from (3), the Alexander–Whitney coproduct is not cocommuta-
tive. In [44], Steenrod introduced coherent higher diagonals correcting homologically this
lack of cocommutativity. He used them to define the celebrated square operations, finer
invariants on the mod 2 cohomology of spaces (Section 3.4). In this subsection we present
an explicit recursive definition of Steenrod’s higher diagonals.

Let C be a chain complex of Z-modules and regard Hom.C; C ˝ C/ as a chain
complex of ZŒS2�-modules where S2 acts by permuting the factors in the target. Denote
the elements 1C .12/ and .12/� 1 in ZŒS2� byN and T , respectively. A cup-i coproduct
structure on C is an equivariant chain map W.2/! Hom.C; C ˝ C/ where

W.2/ D ZŒS2�¹e0º
T
 � ZŒS2�¹e1º

N
 � ZŒS2�¹e2º

T
 � � � �

is the minimal free resolution of Z as a ZŒS2�-module. The image of ei is denoted by
�i WC ! C ˝ C and is referred to as the cup-i coproduct of C (with respect to the given
cup-i coproduct structure).

We can use the Alexander–Whitney coproduct and the join product to give a recursive
description of the natural cup-i coproduct structure on simplicial chains introduced in [44,
p. 293]:

�0 D �;

�i D .� ˝ id/ ı .id˝ .12/�i�1/ ı� :
(5)

We refer to [17, 30, 37] for alternative descriptions of cup-i constructions, which
have been shown to give rise to the same coproducts using an axiomatic characteriza-
tion [35]. This “universal” chain level structure seems to be combinatorially fundamental.
As examples illustrating this, we mention that it induces the nerve of strict infinity cat-
egories [31, 48], and that its comodules fully-faithfully model chain complex valued
presheaves on simplicial complexes [36].

3.4. Steenrod square operations

Let C be equipped with a cup-i coproduct structure. The Steenrod square operations

Sqk WH
�
C_

�
! H

�
C_

�
on the homology of its dual chain complex C_ D Hom.C; F2/ are defined for every
integer k by the formula

Sqk.Œ˛�/ D
�
.˛ ˝ ˛/�k�j˛j.�/

�
where brackets are used to denote represented elements in H.C_/.

3.5. An E1-coalgebra on simplicial chains

Cup-i coproducts on simplicial chains are part of an E1-coalgebra structure. This is a
natural coalgebra structure over an operad whose arity r part is a chain complex of free
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kŒSr �-module with the k-homology of a point. Similar to Dennis’ construction over Q
of a C1-coalgebra structure on cellular chains (Section 2.4), the existence of an E1-
coalgebra structure over any coefficient ring can be guaranteed using an acyclic carrier
argument [14]. The goal of this subsection is to describe explicitly an E1-coalgebra
structure on simplicial integral chains generalizing the construction of cup-i coproducts
of Steenrod (Section 3.3).

The collection of all linear maps N.4n/! N.4n/
N
r for any r that can be expressed

as an arbitrary composition of the Alexander–Whitney coproduct, the join product, and
permutations of factors, define an E1-coalgebra structure on the chains of standard
simplices. We remark that, since we are only considering maps whose domain is N.4n/,
the join is not part of this structure, although it is used in its construction.

The E1-operad U.M/ defining this structure can be abstracted from this example.
Roughly speaking, U.M/ D ¹M.1; r/ºr�0 is the operad associated to the prop M gener-
ated by symbols�; ";� in biarities .1; 2/, .1; 0/, and .2; 1/ of degree 0; 0; 1 with @� D 0,
@ "D 0, and @� D "˝ id� id˝ ", modulo the relations ."˝ id/ ı�D idD .id˝ "/ ı�
and " ı � D 0. In Section 3.7 we review a family of explicit chain contractions that can
be used to compute the homology of U.M/. We use this family in Section 3.8 to define
cup-.r; i/ coproducts responsible for Steenrod operations at all primes.

Full details regarding the construction of the operad U.M/ can be found in [33, 34]
together with a comparison to the surjection operad [4, 30], a construction based on an
earlier generalization of Steenrod’s cup-i coproducts [3, § 4.5].

3.6. Monoidal extension and cubical chains

Let us consider the cellular chains on the interval C.I/ as a counital coalgebra in the usual
way:

�Œ01� D Œ0�˝ Œ01�C Œ01�˝ Œ1�; �Œ0� D Œ0�˝ Œ0�; �Œ1� D Œ1�˝ Œ1�;

"Œ01� D 0; "Œ0� D 1; "Œ1� D 1:

This structure can be extended to the chains of cubical sets using the isomorphism

N.�n/ Š C.I/
N
n

and the fact that the tensor product of counital coalgebras receives this structure canoni-
cally. Explicitly, for i 2 ¹1; 2º let Ci be a counital coalgebra, the tensor product C1 ˝ C2
is a counital coalgebra with

�.c1 ˝ c2/ D .23/
�
�.c1/˝�.c2/

�
; (6)

".c1 ˝ c2/ D ".c1/ ".c2/; (7)

where the symmetric group S4 acts by permuting the tensor factors of C1 ˝ C1 ˝
C2 ˝ C2.
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For any cubical set Y the induced structure on its chains agrees with that considered
by Serre in [43], and we refer to it as the Serre coalgebra of Y .

We can define an E1-coalgebra structure extending the Serre coalgebra by describing
an extension to all N.�n/ of the map �WC.I/

N
2 ! C.I/ defined to be non-zero only for

�.Œ0�˝ Œ1�/ D Œ01�; �.Œ1�˝ Œ0�/ D �Œ01�:

For i 2 ¹1; 2º let Ai be a chain complex equipped with a degree 1 map �WA
N
2

i ! Ai
and a chain map "WAi ! k such that " ı � D 0 and @ � D " ˝ id � id ˝ ". The tensor
product A1 ˝ A2 has the same structure, explicitly defined by (7) and

�
�
.a1 ˝ a2/˝ .a

0
1 ˝ a

0
2/
�
D .id˝ "˝ �C �˝ "˝ id/.23/

�
a1 ˝ a2 ˝ a

0
1 ˝ a

0
2

�
(8)

where the right-hand side can be given more explicitly by

.�1/ja2jja
0
1j
�
".a01/ a1 ˝ �.a2 ˝ a

0
2/C �.a1 ˝ a

0
1/˝ ".a2/ a

0
2

�
:

Together, formulae (6), (7), and (8) induce on the tensor product of M-bialgebras the
same structure. In particular, N.�n/ŠC.I/

N
n is equipped with an M-bialgebra structure

induced from that in the cellular chain on the interval. From it, a standard categorical
construction – a Kan extension along the Yoneda embedding – provides the chains on any
cubical set with the structure of an E1-coalgebra extending the Serre coalgebra structure
or, more specifically, the structure of a U.M/-coalgebra.

Using the monoidal structure on M-bialgebras we also have a natural M-bialgebra
structure on any tensor product N.4n1/˝ � � � ˝ N.4nk / which defines a natural U.M/-
coalgebra on multisimplicial chains [20, 38].

3.7. Chain contractions for M

We now explicitly describe chain contractions

M.s; r/ M.s; r � 1/
 

!
�

 

!
�

 

!

�

for every s � 1 and r � 0. In the next section we will use these to define cup-.r; i/
coproducts on U.M/-coalgebras.

Recall that M is the prop generated by �, ", and � modulo certain relations (Sec-
tion 3.5). Let � 2M.s; r/ be a composition of generators and define

�.�/ D .id˝ �/ ı�;

�.�/ D
�
"˝ id

N
r�1

�
ı �;

�.�/ D
�
� ˝ id

N
r�1

�
ı .id˝ �/ ı� :

These define a chain contraction as above, i.e., they satisfy

� ı �� id D 0; � ı� � id D @ �:
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Using the relations defining M it is not hard to see that M.s; 0/ Š k, so we have an
explicit chain contraction

M.s; r/ k
 

!
h

 

!
�r

 

!

�r

where
h D � C � � � C � � � C �r � �r : (9)

In particular, given that by construction U.M/.r/ is a free ZŒSr �-module, these chain
contractions show that U.M/ is an E1-operad.

3.8. Steenrod cup-.r; i / products

To generalize the notion of cup-i coproduct structure, consider the cyclic group of order r
and the minimal free resolution of Z as a ZŒCr �-module

W.r/ D ZŒCr �¹e0º
T
 � ZŒCr �¹e1º

N
 � ZŒCr �¹e2º

T
 � � � �

where
N D 1C �C � � � C �r�1; T D � � 1; (10)

and � is a generator of Cr .
Let C be a U.M/-coalgebra, for example the chains on a simplicial or cubical set.

For r � 2, let  .r/WW.r/ ! End.C; C
N
r / be the Cr -equivariant chain map defined

recursively by
 .r/.e0/ D �

r�1;

 .r/.e2mC1/ D hT  .r/.e2m/;

 .r/.e2m/ D hN  .r/.e2m�1/;

(11)

where T and N are explicitly defined in (10) and h in (9). The Steenrod cup-.r; i/ product
of C is defined for every r; i � 0 as the image in End.C; C

N
r / of  .ei /. We remark that

for r D 2 the resulting cup-i coproduct structure on simplicial chains recovers Steenrod’s
original construction (5).

3.9. Steenrod operations

Let p be an odd prime. We now review a construction of Steenrod operations in mod p
cohomology analogue to the one given in Section 3.4 for Steenrod squares. We remark
that Steenrod square operations are parameterized by the mod 2 homology of C2 D S2.
As explained for example in [1, Corollary VI.1.4], an inclusion Cp ! Sp induces a
surjection in mod p homology. Using the homological degrees where this surjection is
non-zero we have the following construction explained in more detail in [28, 45–47].

Let C be a U.M/-coalgebra and C_ D Hom.C;Fp/. We simplify notation and denote
the explicit linear map  .p/.ei /W C ! C

N
p defined in (11) simply by  i . For any

integer s, the Steenrod operations

Ps WH
�
C_IFp

�
! H

�
C_IFp

�
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and
ˇPs WH

�
C_IFp

�
! H

�
C_IFp

�
are respectively defined by sending the class represented by ˛ 2 C_ of degree q to the
classes represented for " 2 ¹0; 1º by

˙˛
N
p
ı  .2s�q/.p�1/�".�/;

where a possible sign convention is introduced and motivated in [46, (6.1)].

3.10. Cartan and Adem relations

There is a conceptual pattern producing additional homological information from relations
bounding primary structure. As an example, we have seen that Steenrod operations can
be understood as structure on cohomology deduced from lifting to the cochain level the
commutativity relation satisfied by the cup product. Steenrod operations, which we now
regard as primary cohomological structure, satisfy relations that lead to finer structure.
The first of these is the Cartan relation that establishes a connection between Steenrod
operations and the cup product, it is given by:

Ps.˛ˇ/ D
X
iCjDs

Pi .˛/Pj .ˇ/:

The second is the Adem relation, controlling the iteration of Steenrod operations, and
given by:

(1) If p D 2 and a > 2b, then

PaPb D
X
i

�
2i � a

a � b � i � 1

�
PaCb�iPi I

(2) if p > 2 and a > pb, then

PaPb D
X
i

.�1/aCi
�

pi � a

a � .p � 1/b � i � 1

�
PaCb�iPi :

There are versions of these using the ˇPs operations but we do not write them here, see
for example [28, 47].

Steenrod operations and the above relations are homological consequences of an
E1-structure. For cellular chains we have seen explicit cochain level constructions, the
cup-.p; i/ products, inducing the Steenrod operations, and it is desirable to produce
cochains enforcing these relations. For the even prime case, Cartan and Adem cobound-
aries have been constructed effectively in [32] and [6], respectively. Cartan coboundaries
for odd primes can be constructed with the tools already described, but the Adem relation
requires additional techniques not yet available.

A source of motivation for these cochain level constructions comes from their use in
the study of topological phases as we overview next.



A. M. Medina-Mardones 238

3.11. Symmetry protected topological phases and cochain constructions

A central problem in physics is to define and understand the moduli “space” of quantum
systems with a fixed set of invariants, for example, their dimension and symmetry type.
In condensed matter physics, quantum systems are presented using lattice models which,
intuitively, are given by a Hamiltonian presented as a sum of local terms on a Hilbert space
associated to a lattice in Rn. We think of these as defined on flat space. One such system
is said to be gapped if the spectrum of the Hamiltonian is bounded away from 0, and
two Hamiltonians represent the same phase if there exists a deformation between them
consisting only of systems that remain bounded from below.

Given a lattice model, using cellular decompositions and state sum type constructions,
one can often compute the corresponding partition functions on spacetime manifolds from
actions expressed in terms of gauge fields represented by cochains and cochain level
structures: Stiefel–Whitney cochains, cup-i products and Cartan or Adem coboundaries,
for example. Subdivision invariance gives rise to a topological quantum field theory,
which in the invertible case is expected to be controlled by a generalized cohomology
theory [15, 16, 53]. The cochain level structure used in the definition of the cellular
gauge theory is interpreted from this point of view as describing a cochain model of the
Postnikov tower of the relevant spectrum. For example, fermionic phases protected by a
G-symmetry are believed to be classified by applying to BG the Pontryagin dual of spin
bordism [21, 22]. Building on these insights, A. Kapustin proposed a structural ansatz
in low dimensions that Greg Brumfiel and John Morgan verified by constructing cochain
models of certain connective covers of said spectrum [7,8]. The resulting models use cup-i
products and Adem coboundaries to represent k-invariants and the additive structure of the
spectrum.
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