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The Sullivan dictionary and Bowen–Series maps

Mahan Mj and Sabyasachi Mukherjee

Abstract. The Sullivan dictionary between Kleinian groups and rational dynamics describes strik-
ing similarities between the fields, both in terms of the objects of study as well as the techniques
used. We give an expository account of a recent bridge between the two sides of the dictionary by
describing a framework for combining a Fuchsian group with a complex polynomial into a single
dynamical system on the Riemann sphere.

To Dennis with admiration and affection

1. Introduction

In this expository article, we draw heavily from and build upon two strands of Dennis
Sullivan’s work:

(1) The Sullivan dictionary between Kleinian groups and rational dynamics [53].

(2) The Patterson–Sullivan measure [51, 52].

We shall survey these two themes in the light of a recent combination theorem or a
bridge between Kleinian groups and polynomial maps discovered by the authors [41].
An essential ingredient in the building of this bridge is the Bowen–Series map [4, 5].

Sullivan’s dictionary [53, p. 405] was based on the empirical insight that Kleinian
groups and rational dynamics share many common features. For instance, the limit set
(respectively, the domain of discontinuity) of a Kleinian group corresponds to the Julia
set (respectively, the Fatou set) of a rational map. Sullivan extended these similarities to
a deeper similarity between techniques by introducing quasiconformal methods into the
field of rational dynamics. This led to the proof of his celebrated no wandering domains
theorem. In fact, using these techniques, Sullivan gave a new proof of Ahlfors’ finiteness
theorem along the lines of the no wandering domains theorem.

Our focus here is on a line in the Sullivan dictionary that observes the similarity
between the following:

(1) The Bers simultaneous uniformization theorem in Kleinian groups.

(2) Polynomial mating in rational dynamics, introduced by Douady and Hubbard [16].
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The first step is to replace the Kleinian group by a single map that captures its
dynamics. This brings us to the notion of a mateable map (see Section 2 below for details).
With the context of mateable maps in place, we address the following question:

Question 1.1. Which mateable maps and polynomials can be mated in the spirit of
Douady and Hubbard?

It turns out that Bowen–Series maps [4, 5] for punctured sphere groups provide such
examples. Surprisingly, there exists a new class of related maps which we call higher
Bowen–Series maps that also fit the bill and give rise to combination theorems as well
as ‘dynamically natural’ homeomorphisms between limit and Julia sets. As the name
suggests, higher Bowen–Series maps are closely related to Bowen–Series maps. Indeed,
higher Bowen–Series maps appear as second iterates of suitable Bowen–Series maps.
Higher Bowen–Series maps can also be characterized as ‘amalgams’ of several Bowen–
Series maps of the same Fuchsian group with overlapping fundamental domains. This part
of the story is complex analytic in flavor and is taken largely from [41].

It is worth mentioning that examples of dynamically natural homeomorphisms
between limit sets of Kleinian reflection groups (i.e., discrete subgroups of Aut.yC/
generated by reflections in finitely many Euclidean circles) including the classical Apol-
lonian gasket limit set and Julia sets of anti-holomorphic rational maps were first
constructed in [30], and this phenomenon was studied systematically in a general frame-
work in [27,29]. To the best of our knowledge, [41, Theorem 7.16] gives the first example
of such an explicit connection between limit sets and Julia sets in the holomorphic setting.

In the last section of this survey, we turn to the measurable dynamics of mateable maps
and the resulting matings. From the point of view of group theory, the measure-theoretic
framework, naturally and rather appropriately, turns out to be that of Patterson–Sullivan
measures. On the other hand, since mateable maps share features of rational maps, the
limit set of a mateable map supports a natural dynamically defined measure: the measure
of maximal entropy (the existence of a unique maximal entropy measure for a rational
map was proved in [32] and independently in [21,34]). The fact that a mateable map is an
object halfway between groups and polynomials is reflected in close connections between
maximal entropy measures of mateable maps and suitable Patterson–Sullivan measures.
We conclude the article with some estimates of Hausdorff dimensions of maximal entropy
measures of (higher) Bowen–Series maps and related open questions.

The phenomenon of ‘mating’ of rational maps with Fuchsian groups was discovered in
the 1990s by Bullett and Penrose in the context of iterated algebraic correspondences [11]
and was studied comprehensively in [9, 10]. Specifically, they constructed a family of
algebraic correspondences of bi-degree .2; 2/, and showed that the members of this family
can be interpreted in an appropriate sense as matings of the modular group with quadratic
rational maps. This is quite different from our mating framework as we extract a non-
invertible map (a mateable map) from a Kleinian group (i.e., a semi-group dynamics from
the dynamics of a non-commutative group) and then combine this map with the dynamics
of a polynomial thereby producing a hybrid dynamical system in one complex variable.
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It would be quite interesting to know if our mating framework has deeper connections
with that of Bullett–Penrose–Lomonaco.

2. Mateability

Let Aut.D/ denote the group of all conformal automorphisms of the unit disk D.
A Fuchsian group � is a discrete subgroup of Aut.D/. The aim of this section is to spell
out what it means to mate a Fuchsian group with a polynomial. We provide the definition
of mateability at the outset. The definition below will imply that � is a lattice (Lemma 2.9).

Definition 2.1. A continuous map AW S1 ! S1 is a mateable map associated with a
Fuchsian group � if the following are satisfied:

(1) A is orbit equivalent to � .

(2) A is piecewise analytic on S1.

(3) A is an expansive covering map of degree greater than one.

(4) A is Markov.

(5) No periodic break-point of A is asymmetrically hyperbolic.

The failure of any of the conditions in Definition 2.1 provides an obstruction to
mateability. Somewhat surprisingly, it turns out that these necessary conditions are also
sufficient (see Proposition 2.10).

We elaborate now on the terms used in Definition 2.1. Let AW S1 ! S1 be a (not
necessarily continuous) map. The grand orbit of a point x 2 S1 under A is defined as

GOA.x/ WD
®
x0 2 S1 W Am.x/ D An.x0/; for some m; n � 0

¯
:

Let � be a Fuchsian group with limit set equal to ƒ � S1. We say that a (not
necessarily continuous) map AWS1! S1 is orbit equivalent to � onƒ if for every x 2ƒ,

� � x D GOA.x/:

A (not necessarily continuous) map AW S1 ! S1 is piecewise Möbius if there exist
k 2 N, closed arcs Ij � S1, and gj 2 Aut.D/ for j 2 ¹1; : : : ; kº, such that

(1) S1 D
Sk
jD1 Ij ,

(2) int Im \ int In D ; for m ¤ n, and

(3) AjIj D gj .

A piecewise Möbius map A as above is called piecewise Fuchsian if g1; : : : ; gk
generate a Fuchsian group, which we denote by �A. If the maps gj are assumed only
to be complex-analytic in some small neighborhoods of Ij (without requiring them to be
Möbius), then f is said to be piecewise analytic.

The maps gj will be called the pieces of A. We shall occasionally refer to the domains
Ij of gj also as pieces of A when there is no scope for confusion.
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Remark 2.2. We think of the partition of S1 into the closed arcs ¹Ij º as a part of the data
of the piecewise Möbius/analytic map A. This can be formalized by defining a piecewise
Möbius/analytic map A as a pair .¹gj ºkjD1; ¹Ij º

k
jD1/.

Lemma 2.3 below upgrades the regularity of A considerably.

Lemma 2.3 ([41, Lemma 2.8]). Let AW S1 ! S1 be a (not necessarily continuous)
piecewise analytic map that is orbit equivalent to a finitely generated Fuchsian group � .
Then, A is piecewise Fuchsian, and the pieces of A form a generating set for � .

Suppose that x1; : : : ; xk are a cyclically ordered collection of k points on S1 defining
the pieces Ij D Œxj ; xjC1� of A (j C 1 taken modulo k). We shall say that A is minimal,
if the decomposition of S1 given by x1; : : : ; xk is minimal; i.e., there does not exist i and
h 2 �A such that

(1) AjŒxi ;xiC1� D hjŒxi ;xiC1�, and

(2) AjŒxi�1;xi � D hjŒxi�1;xi �.

Thus, a minimal A has no superfluous break-points.
Let A be a continuous piecewise Möbius map on the circle. Let D denote the unit disk.

Let I1; : : : ; Ik be a circularly ordered family of intervals with disjoint interiors such that

(1) Ij \ IjC1 D ¹xjC1º (the indices being taken mod k),

(2) AjIj D gj .

Let j be the semi-circular arc in D between xj ; xjC1 meeting S1 at right angles at
xj ; xjC1, and let Dj �

xD be the closed region bounded by Ij and j . Then yA, the canoni-
cal extension of A to a piecewise Möbius map in xD is defined on [jDj as yA D gj on Dj .

Set D WD [jDj and call D the canonical domain of definition of yA. Let R D D nD .
We shall call R the fundamental domain of A, as well as the fundamental domain of bA.
Each bi-infinite hyperbolic geodesic contained in the boundary @R will be called an edge
of R. The ideal vertices of R will be called the vertices of R. Let S be the set of vertices
of R. A pair of non-adjacent points in S , or equivalently the bi-infinite geodesic joining
them in R will be called a diagonal of R.

Remark 2.4. We note that the fundamental domain of a piecewise Fuchsian map A may
not be a fundamental domain for the Fuchsian group �A generated by the pieces of A (see
Section 4.1).

Remark 2.5. Let AW S1 ! S1 be a continuous piecewise Möbius map with pieces
¹gj º

k
jD1. By continuity, gj .xjC1/ D gjC1.xjC1/; i.e., aj D g�1j ı gjC1 2 �A fixes xjC1

(indices taken modulo k). Then, ak � � � a1 D 1 as a group element, or equivalently,
a1 ı � � � ı ak D id. Moreover, if A is orbit equivalent to a Fuchsian group � on S1, then �
is generated by ¹g1; a1; : : : ; akº by Lemma 2.3.

A continuous map f WS1 ! S1 is said to be expansive if there exists ı > 0 such that
for any a ¤ b 2 S1, there exists n 2 N such that d.f n.a/; f n.b// > ı.
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We endow S1 with the counter-clockwise orientation. For a; b 2 S1, we denote the
counter-clockwise arc of S1 connecting a; b by

_
ab. Suppose that y0 is a periodic point

of period n of a piecewise Möbius covering map AW S1 ! S1. Then, An is orientation-
preserving, and it maps an arc of the form_y1y0 to an arc of the form_y2y0. We define the
one-sided multipliers of A at y0 to be the one-sided derivatives of An:

.An/0.yC0 / D lim
y!y0
y2
_
y0 zy

An.y/ � y0

y � y0
; .An/0.y�0 / D lim

y!y0
y2
_
zyy0

An.y/ � y0

y � y0
;

where zy¤ y0 is any point on S1. See [41, Section 2] for properties of one-sided multipliers
of A.

Let x be a periodic point (of period n) of a piecewise Möbius, expansive cir-
cle covering A. Then x is said to be parabolic on the right (respectively, on the
left) if .An/0.xC/ D 1 (respectively, .An/0.x�/ D 1). Likewise, x is hyperbolic on the
right (respectively, on the left) if .An/0.xC/ > 1 (respectively, .An/0.x�/ > 1). Also,
x is symmetrically parabolic (respectively, symmetrically hyperbolic) if .An/0.xC/ D
.An/0.x�/D 1 (respectively, if .An/0.xC/D .An/0.x�/ > 1). The point x is called asym-
metrically hyperbolic if it is hyperbolic on both sides, but .An/0.xC/¤ .An/0.x�/. Finally,
x is said to be a periodic point of mixed type if it is hyperbolic on one side, but parabolic
on the other.

Lemma 2.6 ([41, Lemma 2.15]). Let AW S1 ! S1 be a piecewise Fuchsian expansive
covering map having x1; : : : ; xk as the break-points of its piecewise definition. Further,
let xj be a periodic point of A. Then, xj is not of mixed type.

Definition 2.7. Let X be a topological space and f W X ! X be a continuous map.
A collection of closed subsets ¹X1; X2; : : : ; Xnº of X is called a Markov partition for
.X; f / if the following properties are satisfied:

(1) X D [niD1Xi ,

(2) intXi \ intXj D ; for i ¤ j ,

(3) intXi D Xi for i 2 ¹1; 2; : : : ; nº,

(4) f jXi is injective, and

(5) if f .intXi / \ intXj ¤ ;, then f .Xi / � Xj .

It is well-known that continuous, open and distance expanding self-maps of compact
metric spaces admit Markov partitions (see [45, Section 3]). In particular, the polynomial
map z 7! zd , restricted to the unit circle S1, admits a Markov partition (in fact, explicit
Markov partitions for zd can be easily constructed).

We call AWS1 ! S1 a piecewise Fuchsian Markov map if it is a piecewise Fuchsian
expansive covering map (of degree d at least two) such that the pieces Ij (intervals
of definition) of A in S1 give a Markov partition for AW S1 ! S1. The restrictions
AjIj D gj .2 �A/ of A to Ij will be referred to as pieces of A.
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By the Markov property of A, each interval Ij has exactly d pre-images under A.
This gives us a natural transition matrix for A�1 given by ajl D 1 if there exists a point
in the interior of Il mapped to Ij under A, and ajl D 0 otherwise. Further, there is a
naturally associated topological Markov chain, which we now describe (compare [17,48]).
We construct a d -regular directed graph G with k vertices (one for each Ij ) and a directed
edge from vertex j to vertex l if and only if ajl D 1. Further, we label such a directed
edge from j to l by g�1

l
(since the piece of A on Il is gl , the inverse branch from Ij to Il

is g�1
l

). Note that there are exactly d branches of A�1 at each interior point of an Ij and
any such branch is given by the inverse of one of the pieces of A; i.e., for each piece gi of
A, g�1i is a label of some edge of G and each label of an edge of G is of this form.

We now follow a point z 2 S1 under backward iteration of A. Let ¹z D z0; z1; : : : º
be a (finite or infinite) sequence of points in S1 such that A.ziC1/ D zi . Then any such
sequence encodes a geodesic in G ; i.e., an isometric immersion of an interval Œ0; a�, or
Œ0;1/ into G such that Œi; i C 1�maps isometrically to an edge of G labeled by (the unique)
g satisfying by the following:

(1) zi 2 Ij.i/.

(2) ziC1 2 Ij.iC1/.

(3) A restricted to Ij.iC1/ equals g�1.

(4) g.zi / D ziC1.

The labeled directed graph G (also known as a topological Markov chain) imposes
a structure akin to that of an automatic group [17] on backward orbits of points via
backward orbits of intervals Ij . Thus, a sequence of backward orbits of an interval Ij may
be given by Ij D Ij.0/; Ij.1/; : : : ; Ij.n/; : : : such that Ij.i/ � A.Ij.iC1//. This sequence
is also encoded by the same geodesic in G described above, since the pair ¹Ij.i/; Ij.iC1/º
corresponds to a unique edge in G , and the label on the edge is the unique g 2 � such that
g�1 is a piece of A satisfying Ij.i/ � g�1.Ij.iC1//.

A more concise version of Definition 2.1 can now be furnished as follows:

Definition 2.8. A piecewise Fuchsian Markov map AWS1 ! S1 is mateable if A is orbit
equivalent to the Fuchsian group �A generated by its pieces, and none of the periodic
break-points of A are asymmetrically hyperbolic.

We finally provide the lemma promised before Definition 2.1 guaranteeing that �A is
a lattice.

Lemma 2.9 ([41, Lemma 2.18]). If A is mateable, then �A is a lattice (or equivalently,
�A is a finitely generated Fuchsian group such that D=�A has finite hyperbolic area).

For a complex polynomial P , its filled Julia set K.P / is the completely invariant set
of all points whose forward orbits (under P ) stay bounded. A polynomial is said to be
hyperbolic if each of its critical points converges to an attracting cycle under forward iter-
ation. The set of all hyperbolic polynomials (of a given degree) is open in the parameter
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space. A connected component of degree d hyperbolic polynomials is called a hyperbolic
component in the parameter space of degree d polynomials. The hyperbolic component of
degree d polynomials containing the map zd is called the principal hyperbolic component,
and is denoted by Hd . The filled Julia set of each map in Hd is a quasidisk, and the dynam-
ics of such a map on its Julia set is quasisymmetrically conjugate to the action of zd on S1.

The next proposition says that the conditions of Definition 2.8 are sufficient to
guarantee conformal mateability of piecewise Fuchsian Markov maps and polynomials
in principal hyperbolic components.

For a Jordan curve J on the Riemann sphere, we denote its complementary compo-
nents by Din and Dout. The canonical extension yAWD ! xD of a mateable map is said to be
conformally mateable with a polynomial P in a principal hyperbolic component if there
exist a holomorphic map F defined on a subset of yC, a Jordan curve J � Dom.F /, and
a pair of conformal maps � inW xD ! Din and �outWK.P /! Dout that conjugate yA and P
(respectively) to F . The following is the first main result of [41].

Proposition 2.10 (Mateable maps are mateable [41, Proposition 2.23]). Let AWS1 ! S1

be a mateable map of degree d , and P 2 Hd . Then, the maps yAW D ! xD and
P WK.P /!K.P / are conformally mateable.

Remark 2.11. A mateable map may have parabolic fixed points on S1, and hence the
topological conjugacy between zd and A is not necessarily quasisymmetric. This renders
classical quasiconformal tools (such as the ones used in the proof of Bers simultaneous
uniformization theorem) insufficient for the purpose of conformally mating polynomials
with mateable maps associated with Fuchsian groups. However, an appropriate class of
‘generalized quasiconformal maps,’ called David homeomorphisms (maps with suitable
Sobolev regularity satisfying a quantitative control on the area of the region where the
dilatation blows up), allows one to perform the conformal mating construction. Two results
that lie at the analytic heart of the proof of Proposition 2.10 are the David integrability
theorem (this can be seen as a generalization of the measurable Riemann mapping
theorem, see [14], [3, Theorem 20.6.2]) and a David extension theorem for certain circle
homeomorphisms (which plays the role of the Ahlfors–Beurling extension theorem in the
current setting, see [33, Theorem 4.9]). In fact, item (5) in Definition 2.1 is required to
guarantee the existence of a David extension of a circle homeomorphism conjugating zd

to a mateable map.

3. Bowen–Series maps of Fuchsian punctured sphere groups

3.1. Bowen–Series maps for General Fuchsian groups

Archetypal examples of piecewise Fuchsian Markov maps of the circle that are orbit
equivalent to finitely generated Fuchsian groups are given by Bowen–Series maps. These
first appeared in the work of Bowen and Series [4, 5, 47].
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A finitely generated Fuchsian group � (of the first kind) admits a fundamental domain
R .� D/ that is a (possibly ideal) hyperbolic polygon. Denote the edges of R by ¹siºniD1
(labeled in counter-clockwise order around the circle). Each edge si of R is identified
with another edge sj by a corresponding element h.si / 2 � . The set ¹h.si /ºniD1 forms a
generating set for � .

Let C.si / be the Euclidean circular arc in D containing si and meeting S1 orthogo-
nally. Further, let N be the net in D consisting of all images of edges of R under elements
of � . The fundamental domain R is said to satisfy the even corners property if C.si / lies
completely in N , for i 2 ¹1; : : : ; nº.

Definition 3.1 (Bowen–Series map). Suppose that a fundamental domain R of � satisfies
the even corners property. Label (following [5]) the endpoints of C.si / on S1, Pi ; QiC1
(with QnC1 D Q1) with Pi occurring before QiC1 in the counter-clockwise order. These
points occur along the circle in the order P1;Q1; P2;Q2; : : : ; Pn;Qn (see Figure 1). The
Bowen–Series map A�;BSW S1 ! S1 of � (associated with the fundamental domain R)
is defined piecewise as A�;BS � h.si /, on the sub-arc ŒPi ; PiC1/ of S1 (traversed in the
counter-clockwise order).

P1
Q1

P2

Q2

P3
Q3

P4 Q4
P5

Q5

P6

Q6

P7

Q7

P8
Q8

x
y

R

s1

s2

s3 s4

s5

s6

s7
s8

P2 D Q2

P3 D Q3 P4 D Q4

P1 D Q1
s1

s2

s3

s4R

Figure 1. Bowen–Series maps for surfaces of higher genus.

Proposition 3.2 ([5, Lemma 2.4]). The map A�;BS is orbit equivalent to � , except
(possibly) at finitely many points modulo the action of � .

We shall simply denote A�;BS by A� . The Bowen–Series maps corresponding to
Fuchsian groups uniformizing positive genus surfaces (possibly with punctures) are
discontinuous. Let us illustrate this with two examples. In the left diagram in Figure 1,R is
a fundamental domain for a (closed) genus-two surface where the color coding determines
the side-pairings. Note that h.s1/.x/ D y, and h.s2/.P2/ D Q5. Thus, for continuity of
the corresponding Bowen–Series map at P2, the map h.s1/ must send the geodesic ray
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from x to P2 to the geodesic ray from y to Q5. But the former ray lies in the net N (by
the even corners property), while the latter ray passes through intR. This is absurd as R
is a fundamental domain, proving discontinuity of the Bowen–Series map at P2. In the
right diagram in the above figure, R is a fundamental domain for a once punctured torus
where the sides are paired according to their colors. The side-pairing transformations h.s1/
maps P2 to P3, while h.s2/ carries P2 to P1. This causes discontinuity of the associated
Bowen–Series map at P2.

Thus, to get continuous Bowen–Series maps, we need to restrict our attention to punc-
tured sphere groups (possibly with orbifold points) equipped with special fundamental
domains. In fact, it turns out that the Bowen–Series maps of Fuchsian punctured sphere
groups constructed below are coverings of S1 with degree at least two.

3.2. Bowen–Series maps for punctured spheres

We mention at the outset that we always associate Bowen–Series maps with Fuchsian
groups decorated with preferred fundamental domains and side-pairing transformations.

We first construct a specific Fuchsian group Gd uniformizing a .d C 1/-times punc-
tured sphere equipped with a preferred fundamental domain. The group Gd (equipped
with the preferred fundamental domain) will serve as a base-point in the Teichmüller
space of .d C 1/-times punctured spheres. Since any (marked) group � 2 Teich.Gd / is
conjugate to Gd via a quasiconformal homeomorphism of yC, the Bowen–Series map of
� equipped with a marked fundamental domain determined by the quasiconformal conju-
gacy is easily seen to be a quasiconformal conjugate of the Bowen–Series map of Gd .

Fix d � 2. For j 2 ¹1; : : : ; dº, let Cj be the hyperbolic geodesic of D connecting
pj WD e�i.j�1/=d and pjC1 WD e�ij=d , and C�j be the image of Cj under reflection in
the real axis. We further denote the complex conjugate of pj by p�j , j 2 ¹2; : : : ; dº.
Choose a Möbius automorphism gj of D defined as reflection in Cj followed by complex
conjugation. By construction, gj carries Cj onto C�j (cf. Figure 2). Note that for j 2
¹1; : : : ; d � 1º, the Möbius map gjC1g�1j is the composition of reflections in the circular
arcsCjC1 andCj . SinceCj andCjC1 touch at pjC1, a straightforward computation (using
the formula of circular reflections) shows that gjC1g�1j fixes pjC1 and has derivative equal
to one at this fixed point. Therefore, gjC1g�1j is parabolic with its unique fixed point at
pjC1. Likewise, the maps g1; gd fix p1; pdC1 (respectively), and have derivative equal
to one there. Thus, g1; gd are also parabolic with their unique fixed points at p1; pdC1,
respectively. Let

Gd WD hg1; : : : ; gd i:

We note that Gd is a Fuchsian group with fundamental domain R having C1; : : : ; Cd ,
C�d ; : : : ; C�1 as its edges. Moreover, D=Gd is a .d C 1/-times punctured sphere.

We refer the reader to Figure 2. For j 2 ¹1; : : : ; dº, let Ij denote the counter-clockwise
sub-arc of S1 connecting pj to pjC1. Let I�j denote the image of Ij under reflection in
the real axis. Note that the Bowen–Series mapAGd ofGd (equipped with the fundamental
domain R) acts on I˙j by g˙1j . The following two properties hold.
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R

C1

C�1

C2

C�2

C3

C�3

g1

g�11

g2

g�12

g3

g�13

p1

p2p3

p4

p�2p�3

Œp3� D Œp�3� Œp2� D Œp�2�

Œp4� Œp1�

Figure 2. The preferred fundamental domain R of G3, which uniformizes a four times punctured
sphere, is shown. The fundamental domain has all six vertices on S1, and they cut the circle into
six arcs. The corresponding Bowen–Series map acts on these arcs by the generators g˙1j displayed
next to them.

Proposition 3.3 (Properties of Bowen–Series maps of punctured spheres [41, Proposi-
tion 3.3]).

(1) For d � 2, the Bowen–Series map AGd of Gd (equipped with the fundamental
domain R) is a C 1 expansive degree 2d � 1 covering of S1, and hence is
topologically conjugate to z2d�1jS1 . Moreover, AGd is a piecewise Fuchsian
Markov map.

(2) AGd is orbit equivalent to Gd on S1.

We refer the reader to [41, Propositions 3.4, 3.5] for an orbifold variant of Proposi-
tion 3.3.

Remark 3.4. In the above examples, the chosen fundamental domains of the groups
coincide with those of the corresponding Bowen–Series maps.

3.3. Mateability of Bowen–Series maps

We note now that Bowen–Series maps for punctured spheres fit into our mating frame-
work. Recall that Hk stands for the principal hyperbolic component in the space of degree
k polynomials.

Theorem 3.5 (Fuchsian punctured sphere Bowen–Series maps are mateable [41, The-
orem 3.7]). Let � 2 Teich.Gd /, and P 2 H2d�1. Then, the map yA� WDA� !

xD and
P WK.P /!K.P / are conformally mateable.
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4. Folding and higher Bowen–Series maps for Fuchsian groups

The aim of this section is to describe a new class of piecewise Fuchsian Markov maps
(following [41]), beyond the Bowen–Series examples that are mateable with polynomials.
We start with classes of maps that we shall be considering in this section. Recall that the
fundamental domain of a piecewise Fuchsian Markov map A is denoted by R. The set
D D xD n R is the canonical domain of definition of yA in xD, and a bi-infinite geodesic in
R joining a pair of non-adjacent vertices of R is called a diagonal of R.

It is instructive to go through the following two definitions in conjunction with the two
explicit examples of piecewise Fuchsian Markov maps given in Section 4.1 (cf. Figure 3).

Definition 4.1 (Completely folding map). A piecewise Fuchsian Markov mapAWS1!S1

is said to be a completely folding map if there exist finitely many diagonals ı1; : : : ; ıl of
R such that the following hold:

(1) For every edge ˛ of R, yA.˛/ is one of the diagonals ı1; : : : ; ıl .

(2) The ideal endpoints pi ; qi of ıi are fixed points of A for all i ; i.e., A.pi /D pi and
A.qi / D qi whenever pi ; qi are ideal endpoints of ıi .

(3) For pi ; qi as above, qi D piC1.

(4) ıi \ ıj D ; for i ¤ j . Further, p1 ¤ ql ; i.e., the sequence of diagonals ıi forms a
chain of non-intersecting bi-infinite geodesics such that, after adjoining the ideal
endpoints, one obtains a ‘piecewise geodesic’ embedding of the closed interval
Œ0; 1� in the closed disk xD.

Definition 4.2 (Higher degree map without folding [41, Definition 4.2]). A piecewise
Fuchsian Markov mapAWS1! S1 is said to have a diagonal fold if there exist consecutive
edges ˛1; ˛2 of @R and a diagonal ı of R such that yA.˛i / D ı for i D 1; 2. Note that if
a1; a2 (respectively, a2; a3) are the endpoints of ˛1 (respectively, ˛2) and p; q are the
endpoints of ı, then A.a1/ D p D A.a3/ and A.a2/ D q by continuity of A on S1.

A piecewise Fuchsian Markov map AW S1 ! S1 is said to be a higher degree map
without folding if the following hold:

(1) There exists an (open) ideal polygon D � R such that all the edges ı1; : : : ; ıl
of D are (necessarily non-intersecting) diagonals of R. We assume further that
ı1; : : : ; ıl are cyclically ordered along @D. We shall callD the inner domain of A.

(2) If p is an ideal vertex of D, then A.p/ D p.

(3) For every edge ˛ of R, yA.˛/ is one of the diagonals ı1; : : : ; ıl .

(4) A has no diagonal folds.

Cyclically ordering the edges ˛1; : : : ; ˛k of R, it follows from Definition 4.2, that
under a higher degree map without folding A, consecutive edges ˛i ; ˛iC1 of R go to
consecutive edges of D. Note however that a counter-clockwise cyclic ordering of edges
of R may be taken to a clockwise cyclic ordering of edges of D under A. In any case we
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have a continuous map yAW @R! @D. Adjoining the ideal endpoints of R and D, yA has a
well-defined degree d . Further, each edge of D has exactly jd j pre-images under yA since
there are no folds. Also, since each ıi is a diagonal of R, we have jd j > 1. We call jd j the
polygonal degree of A. (Since jd j > 1, we call A a higher degree map without folding.)

Remark 4.3. A piecewise Fuchsian Markov map with a diagonal fold need not be a
completely folding map; see Section 4.4.2 for an example.

4.1. A completely folding map and a higher degree map without folding for the
sphere with three punctures

We now give two simple examples: a completely folding map and a higher degree map
without folding which are orbit equivalent to �0 corresponding to a sphere with three
punctures. Then �0 is isomorphic to F2, the fundamental group of S0;3 (see Figure 3). We
will denote a bi-infinite hyperbolic geodesic in D having its (ideal) endpoints at a; b 2 S1

by ab.

h g

h�1 g�1

W

h.W / g.W /

h g

2 2

6 6

1 3 1 3

8

7 5

4

7 5

Figure 3. Fundamental domains for a completely folding map and a higher degree map without
folding: 3 punctures.

Fix a (closed) fundamental domain W of �0, given by an ideal quadrilateral with
its ideal vertices at the fourth roots of unity (the quadrilateral 1236 in the figure). The
generators of �0 are given by h; g, where h takes the edge 12 to 16, g takes 32 to 36, and
g�1h is parabolic. The combinatorics in this case is relatively simple and the case-by-case
analysis for proving orbit equivalence in Proposition 4.4 is easy.

4.1.1. A completely folding map for S0;3. We shall first construct a completely folding
map, and then modify the construction slightly to obtain a higher degree map without
folding. We define the fundamental domain R of the completely folding map A�0;cfm
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(to be constructed) as

R D int .W [ h:W [ g:W /:

Thus,R is the interior of the octagon 12345678 in Figure 3. We define the pieces ofA�0;cfm

as follows. In the list below, an arc will be indicated by
_
ij where the pair of numbers i; j

are its endpoints, provided there are no other break-points ofA�0;cfm in the arc. Otherwise,
we will denote the arc by all the break-points it contains. Further, the label of the arrow
will denote the piece of A�0;cfm that takes the domain arc to the range arc.

•
_
12

h
�!
_
123456

•
_
23

g
�!
_
678123

•
_
34

g�1

�!
_
3456

•
_
45

g�1

�!
_
6781

•
_
56

hıg�1

�!
_
123456 (we use the convention that ı indicates composition of maps)

•
_
67

gıh�1

�!
_
678123

•
_
78

h�1

�!
_
3456

•
_
81

h�1

�!
_
6781

4.1.2. A higher degree map without folding for S0;3. There is a higher degree map
without folding naturally associated with the completely folding map above. Note that the
completely folding map A�0;cfm is not minimal. The pieces of A�0;cfm for the contiguous
arcs

_
34 and

_
45 is g�1. Similarly, the pieces of A�0;cfm for the contiguous arcs

_
78 and

_
81

is h�1. We define A�0;hBSWS1 ! S1 to be the minimal piecewise Fuchsian Markov map
agreeing with A�0;cfm everywhere (here ‘hBS’ is an acronym for ‘higher Bowen–Series,’
the reason behind this terminology will be explained in Remark 4.8). Although A�0;cfm

andA�0;hBS agree pointwise, they are formally different piecewise Fuchsian Markov maps
as A�0;cfm has more pieces (some of which are repeated). Consequently, their canonical
extensions yA�0;cfm and yA�0;hBS have different domains of definition.

It is easy to see that yA�0;hBS is a higher degree map without folding. The fundamental
domain R0 for yA�0;hBS is the interior of the ideal hexagon 123567 contained in R.
The inner domain of yA�0;hBS is given by the ideal triangle 136 (see Definition 4.2). The
pieces of A�0;hBS are given by the following list (note that 4; 8 are not break-points of
A�0;hBS and hence we omit them from the notation):

•
_
12

h
�!
_
12356

•
_
23

g
�!
_
67123

•
_
35

g�1

�!
_
35671

•
_
56

hıg�1

�!
_
12356
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•
_
67

gıh�1

�!
_
67123

•
_
71

h�1

�!
_
35671

The polygonal degree of yA�0;hBS is 2.

4.1.3. Orbit equivalence.

Proposition 4.4. Let A�0;cfm; A�0;hBS be as above. Then A�0;cfm; A�0;hBS are orbit
equivalent to �0.

Proof. SinceA�0;cfm andA�0;hBS agree as maps on S1, it suffices to check this forA�0;hBS.
It is easy to see that A�0;hBS-grand orbits are contained in �0-orbits simply because the
pieces of A�0;hBS are elements of �0. It therefore suffices to show that if x; y are in the
same �0-orbit then they lie in the same A�0;hBS-grand orbit. It suffices to check this for
the generators g; h and their inverses.

Let y D g:x. We want to show that x; y lie in the same grand orbit under A�0;hBS.
Case 1: y 2

_
32176. Then x 2

_
32 and the piece of A�0;hBS restricted to

_
32 is g. Hence

y D A�0;hBS.x/.
Case 2: y 2

_
345. The branch of A�0;hBS restricted to

_
345 is g�1. Rewriting y D g.x/ as

g�1.y/ D x, we see that A�0;hBS.y/ D x.
Case 3: y 2

_
56. Then x 2

_
12. Note that the branch of A�0;hBS restricted to

_
56 is h ı g�1,

and the branch of A�0;hBS restricted to
_
12 is h. Hence,

A�0;hBS.y/ D h
�
g�1.y/

�
D h

�
g�1.g.x//

�
D h.x/ D A�0;hBS.x/:

This shows that x and y are grand orbit equivalent under A�0;hBS.
Next, if y D g�1:x, then x D g:y and exchanging the roles of x; y in the previous

paragraph shows that x; y are grand orbit equivalent under A�0;hBS. Finally, by the
symmetry of the setup, the same argument applies to h; h�1.

As a circle covering, the degree of A�0;hBS is equal to 4. This can be easily seen
from the actions of the pieces of A�0;hBS (along with their range) listed in Section 4.1.2.
Thus, we have now exhibited two different examples of piecewise Fuchsian Markov maps
that are orbit equivalent to a thrice punctured sphere Fuchsian group; namely, the Bowen–
Series map (of degree 3) and the higher degree map without foldingA�0;hBS defined above
(of degree 4). Moreover, the polygonal degree of yA�0;hBS is 2, while the Bowen–Series
map induces a self-homeomorphism on the boundary of its fundamental domain.

4.2. Folding and higher degree maps for general punctured spheres

We follow the scheme of Section 4.1 above and generalize it to the case of S0;k-a sphere
with k punctures, k > 3. We shall use Figure 4 below as an illustration for the general
case. Fix a (closed) fundamental domain of �0 D Gk�1 (see Section 3.2 for the definition
of Gk�1), given by an ideal .2k � 2/-gon W (the figure illustrates the k D 4 case). For
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definiteness, let us assume that the ideal vertices of W are the .2k � 2/-th roots of unity.
To make the bookkeeping a little easier, we modify the notation as follows.

(1) The vertices ofW on the bottom semi-circle are numbered 1D 1�; 2�; : : : ;k�D k
in counter-clockwise order.

(2) The vertices of W on the top semi-circle are numbered 1; 2; : : : ; k in clockwise
order.

(3) Between vertices i; i C 1 (and including i; i C 1) on the top semi-circle, there
are 2k � 2 vertices given by the vertices of gi :W (noting that gi :W \W equals
the bi-infinite geodesic i.i C 1/). We label the 2k � 4 vertices strictly between
i; i C 1 as ¹i; 2º; ¹i; 3º; : : : ; ¹i; 2k � 3º in clockwise order.

The generators of �0 are given by g1; : : : ; gk�1, where gi takes the edge i�.i C 1/�
to the bi-infinite geodesic i.i C 1/.

4.2.1. A completely folding map for S0;k. Define R as

R D int
�
W [

[
iD1;:::;k�1

gi :W
�
;

so that i.i C 1/ are diagonals of R.

g3
g2g1

g�11

g�12

g�13

g3
g2

g1
1

4

2� 3�

2
3

2
3

1
4

2� 3�

¹1; 2º

¹1; 3º

¹1; 4º

¹1; 5º

¹2; 2º ¹2; 3º ¹2; 4º
¹2; 5º

¹3; 2º

¹3; 3º

¹3; 4º

¹3; 5º

¹1; 4º

¹1; 5º

¹2; 2º ¹2; 5º

¹3; 2º

¹3; 3º

Figure 4. Fundamental domains for a completely folding map and a higher degree map without
folding: 4 punctures.

As in Section 4.1, we define A�0;cfm in terms of its pieces as follows. Recall that
_
ij

stands for an arc with its endpoints at the break-points i; j such that there are no other
break-points of A�0;cfm in the arc.

• On the arc
_
i�.i C 1/�, define A�0;cfm to be gi for i D 1; : : : ; k � 1. Then

A�0;cfm.
_
i�.i C 1/�/ equals the complement of (the interior of) the arc

_
i.i C 1/ in S1.



M. Mj and S. Mukherjee 194

• For every i D 1; : : : ; k � 1, and on each of the k � 1 short arcs
_
¹i; j º¹i; j C 1º

for i � j � i C k � 2 between i , i C 1, define A�0;cfm to be g�1i . Then

A�0;cfm.[
iCk�2
jDi

_
¹i; j º¹i; j C 1º/ equals the upper semi-circle between 1 and k. (Here,

for notational convenience, we identify ¹i; 1º with i and ¹i; i C 2k � 2º with i C 1.)
Also, for i � j � i C k � 2, A�0;cfm maps the clockwise arc from ¹i; j º to ¹i; j C 1º
onto the clockwise arc from j to j C 1. We refer to the clockwise arcs from ¹i; j º to
¹i; j C 1º (for i � j � i C k � 2) as short folding arcs under A�0;cfm.

• For i 2 ¹2; : : : ; k � 1º and 1� j � i � 1, set j D i � s, so that 1� s � i � 1. We define
A�0;cfm to be gs ı g�1i on

_
¹i; j º¹i; j C 1º. Thus, for j � i � 1, A.

_
¹i; j º¹i; j C 1º/

equals the counter-clockwise (long) arc from s to s C 1.

• For i 2 ¹1; : : : ; k � 2º and i C k � 1 � j � 2k � 3, let j D i C k � 1C t , so that
0 � t � k � 2 � i . We define A�0;cfm to be gk�1�t ı g�1i on

_
¹i; j º¹i; j C 1º. Thus,

for i C k � 1 � j � 2k � 3, A.
_
¹i; j º¹i; j C 1º/ equals the counter-clockwise (long)

arc from k � 1 � t to k � t .
We refer to the clockwise arcs from ¹i; j º to ¹i; j C 1º (for j � i � 1 or i C k � 1� j )
as long folding arcs under A.

• Note that A�0;cfm.i/ D i for all i D 1; : : : ; k.

It is easy to see from the above definition thatA�0;cfmWS1! S1 is a completely folding
map. As any (marked) group � 2 Teich.�0/ is conjugate to �0 via a quasiconformal
homeomorphism of yC that preserves S1;D and respects the markings, we define the
associated completely folding map A�;cfm to be the conjugate of A�0;cfm under such a
quasiconformal homeomorphism.

Remark 4.5. It is not hard to cook up other examples of completely folding maps.
However, we do not know of any other completely folding map that is orbit equivalent
to the Fuchsian group generated by its pieces.

4.2.2. A higher degree map without folding for S0;k. Again, as in Section 4.1, define
A�0;hBS to be the minimal piecewise Fuchsian Markov map coinciding withA�0;cfm on S1.
Denote the canonical extension of A�0;hBS by yA�0;hBS, its canonical domain of definition
in xD by D�0;hBS, and the fundamental domain of yA�0;hBS by R�0;hBS. Further, let D be
the open ideal polygon bounded by the bi-infinite geodesics 12; 23; : : : ; .k � 1/k; k1.
Evidently, all the edges ofD are (non-intersecting) diagonals ofR�0;hBS, each ideal vertex
ofD is fixed by A�0;hBS, each edge of R�0;hBS is mapped by yA�0;hBS to an edge ofD, and
yA�0;hBS has no diagonal folds. Therefore, yA�0;hBS is a higher degree map without folding

having D as its inner domain.

Definition 4.6 (Higher Bowen–Series map). We call the piecewise Fuchsian Markov
map A�0;hBS the higher Bowen–Series map of �0 (associated with the fundamental
domain W ). For any (marked) group � 2 Teich.�0/, we define the higher Bowen–Series
map of (the marked group) � to be the conjugate of A�0;hBS under a quasiconformal
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homeomorphism of yC that conjugates �0 to � (and respects the marking), and denote it
by A�;hBS.

Clearly, the higher Bowen–Series map of each � 2 Teich.�0/ is a higher degree map
without folding. We refer the reader to [41, Proposition 5.2] for a characterization of
higher Bowen–Series maps among all higher degree maps without folding.

4.2.3. Connections between Bowen–Series and higher Bowen–Series maps. The next
two propositions are about the relationship between Bowen–Series maps and higher
Bowen–Series maps (for � 2 Teich.�0/). In fact, Proposition 4.7 will give an alternative,
more direct construction of the higher Bowen–Series map of � in terms of the Bowen–
Series maps of � associated with various overlapping fundamental domains.

Proposition 4.7 (Characterizing higher Bowen–Series maps as piecewise Bowen–Series
maps [41, Proposition 4.5]). Let W be a (closed) fundamental domain for a Fuchsian
group � 2 Teich.�0/ (uniformizing a k-times punctured sphere) which is an ideal
.2k � 2/-gon. We label the ideal vertices of W as 1 D 1�; 2�; : : : ; .k � 1/�; k� D

k; k � 1; : : : ; 2 in counter-clockwise order, and assume that the side-pairing transforma-
tions of W (generating �) are given by g1; : : : ; gk�1, where gi takes the edge i�.i C 1/�
to the edge i.i C 1/.

Further, letD be the interior of the ideal polygon bounded by the bi-infinite geodesics
12; 23; : : : ; .k � 1/k; k1, and P the interior of the ideal polygon bounded by the bi-infinite
geodesics 1�2�; 2�3�; : : : ; .k � 1/�k�; k�1�. Then the following hold.

(1) W D xD [ xP , and for each j 2 ¹1; : : : ; k � 1º, xD [ gj .P / is a (closed) funda-
mental domain for � .

(2) On the clockwise arc from j to j C 1, the higher Bowen–Series mapA�;hBS equals
the Bowen–Series map of � associated with the (closed) fundamental domain
xD [ gj .P / (j 2 ¹1; : : : ; k � 1º), and on the counter-clockwise arc from 1 to
k, A�;hBS equals the Bowen–Series map of � associated with the fundamental
domain W D xD [ xP .

Conversely, a map AW S1 ! S1 defined as in condition (2) above is a higher Bowen–
Series map orbit equivalent to � , and the fundamental domain of A is given by
R D int .W [

S
iD1;:::;k�1 gi :W /.

Remark 4.8. The preceding description of A�;hBS shows that A�;hBS is made up of
Bowen–Series maps corresponding to various (overlapping) fundamental domains of � .
This justifies the terminology ‘higher Bowen–Series maps.’

Higher Bowen–Series maps also arise as second iterates of suitable Bowen–Series
maps.

Proposition 4.9 (Higher Bowen–Series as second iterate of Bowen–Series [41, Corol-
lary 5.6]). Let d � 2.
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(1) For � 2 Teich.Gd / D Teich.S0;dC1/ (respectively, � 2 Teich.Gd;2/), we have
A2�;BS D A� 0;hBS, where � 0 is an index-two subgroup of � with D=� 0 Š S0;2d .

(2) For � 2Teich.Gd;1/, we haveA2�;BSDA� 0;hBS, where � 0 is an index-two subgroup
of � with D=� 0 Š S0;2d�1.

In all cases, the second iterate of the Bowen–Series map of � is orbit equivalent to an
index-two subgroup of � .

The degree of the higher Bowen–Series map as a self-covering of S1 is .�� 1/2, where
� D 2 � k is the Euler characteristic of S0;k .

The last statement may be found in [41, Section 4.3.2]. We do not know if higher
iterates of Bowen–Series maps produce further examples of mateable maps (see Ques-
tion 4.16 below). With careful combinatorial bookkeeping, the arguments of the proof of
Proposition 4.4 can be adapted for the general case.

Proposition 4.10 (Orbit equivalence [41, Proposition 4.7]). Let � 2 Teich.�0/, and
A�;cfm; A�;hBS be as above. Then A�;cfm; A�;hBS are orbit equivalent to � .

4.3. Consequences

We now discuss some consequences.

4.3.1. Interpolating between completely folding maps and higher degree maps with-
out folding. The completely folding map A�;cfm and the higher Bowen–Series map
A�;hBS described in Sections 4.1 and 4.2 agree on S1. We denote the interior of the polygon
in Section 4.2 with vertices 1; : : : ; k by D. Note that xD is ‘half’ the (closed) fundamental
domainW in the sense that doubling xD along the bi-infinite geodesic 1k givesW . Choose
1 D i1 < i2 < � � � < ilC1 D k to be a selection of vertices in clockwise cyclic order along
the upper semi-circle. Let [1�j�l .ij ; ijC1/ D L denote a finite union of edges and diag-
onals of W contained in xD. Let W0 denote the part of W contained above L and let
WL D W0 [L. Set

RL D int
�
WL [

[
iD1;:::;k

gi :WL

�
:

Then RL is the fundamental domain of the piecewise Fuchsian Markov map AL whose
canonical extension cAL has domain DL D D nRL.

Note that, for all L, the map AL equals A�;cfm on S1. The map A�;hBS is the unique
minimal representative and corresponds to the case 1 D i1 < i2 D k. The map A�;cfm lies
at the other end of the spectrum, with l C 1 D k, and ij D j for j D 1; : : : ; k. The maps
AL are non-minimal representatives whenever l > 1.

4.3.2. Mateability of completely folding maps and higher Bowen–Series maps. We
now record the fact that higher Bowen–Series maps satisfy the conditions of Defini-
tion 2.1, and hence can be conformally mated with hyperbolic complex polynomials (of
appropriate degree) with Jordan curve Julia sets.
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Theorem 4.11 (Fuchsian higher Bowen–Series maps are mateable [41, Theorem 4.8]).
Let � 2 Teich.�0/, and P 2H.k�1/2 (where Hd stands for the principal hyperbolic com-
ponent in the space of degree d polynomials). Then, yA�;hBSWD�;hBS ! xD (respectively,
yA�;cfmWD�;cfm ! xD) and P WK.P /!K.P / are conformally mateable.

In light of Proposition 2.10, we make the following definition.

Definition 4.12 (Moduli space of matings). The moduli space of matings between a
topological surface † and complex polynomials in principal hyperbolic components
consists of triples .�; A� ; P /, where

(1) � is a Fuchsian group uniformizing †,

(2) A� is a minimal mateable map orbit equivalent to � on S1,

(3) and P is a polynomial in a principal hyperbolic component with deg.P / D
deg.A� WS1 ! S1/.

An immediate implication of Theorems 3.5 and 4.11 is that the moduli space of
matings between the topological surface S0;k (k � 3) and complex polynomials in
principal hyperbolic components is disconnected. Specifically, it contains at least two
components corresponding to

• Bowen–Series maps associated to groups in Teich.S0;k/ and polynomials in H2k�3,

• and higher Bowen–Series maps associated to groups in Teich.S0;k/ and polynomials
in H.k�1/2 .

We refer the readers to [41, Section 6.4] for further details.
Yet another application of orbit equivalence between higher Bowen–Series maps and

Fuchsian punctured sphere groups is the failure of orbit equivalence rigidity for Fuchsian
groups (see [19] for general background on orbit equivalence rigidity and positive results,
and [41, Section 8] for a precise statement of its failure in the Fuchsian case).

4.4. Two non-examples

In this subsection, we will consider two modifications of higher Bowen–Series maps and
show that the resulting piecewise Fuchsian Markov maps are not orbit equivalent to the
groups generated by their pieces.

4.4.1. A non-example without folding. The following description of the higher Bowen–
Series map A�0;hBS on S1 is straightforward to check from its construction (see
Section 4.2):

A�0;hBS D

8<:A�0;BS; on
�Sk�1

iD1

_
i�.i C 1/�

�
[

�Sk�1
iD1

SiCk�2
jDi

_
¹i; j º¹i; j C 1º

�
;

A2�0;BS; otherwise;

where A�0;BS denotes the Bowen–Series map of �0 associated with the fundamental
domain W .
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In fact, the agreement of A�0;hBS and A�0;BS on the arcs
_
¹i; j º¹i; j C 1º (where

i 2 ¹1; : : : ; k � 1º; j 2 ¹i; : : : ; i C k � 2º) played an important role in the proof of orbit
equivalence of �0 and A�0;hBS (see Proposition 4.4). However, if one replaces A�0;BS by
A2�0;BS on these arcs as well, the resulting minimal piecewise Fuchsian Markov map

B WD

´
A�0;BS; on S1 \ ¹z W Im.z/ � 0º;

A2�0;BS; on S1 \ ¹z W Im.z/ � 0º

is not orbit equivalent to �0.

W u

W l

g

g�1:W uh�1:W u

g:W lh:W l

h

h

h�1

g

g�1

h ı g�1g ı h�1

h�1 ı gg�1 ı h

gh

h

h�2

g

g�2

h ı g�1g ı h�1

h�1 ı g�1g�1 ı h�1

W

g:Wh:W

Figure 5. The two piecewise Fuchsian Markov maps B (left) and C (right) are depicted. They are
not orbit equivalent to the Fuchsian groups generated by their pieces.

Proposition 4.13 ([41, Proposition 4.9]). The map BWS1 ! S1 is not orbit equivalent to
the Fuchsian group �0 generated by its pieces.

Remark 4.14. The map B has no diagonal fold, but it is not a higher degree map without
folding. This is because some edges of the boundary of the fundamental domain of B
are not mapped to diagonals, and hence condition (3) of Definition 4.2 is violated (see
Figure 5 (left)).

4.4.2. A non-example with folding. Yet another example of a piecewise Fuchsian
Markov map that is not orbit equivalent to the Fuchsian group generated by its pieces is
given by the following symmetric version of higher Bowen–Series maps. For simplicity,
we illustrate the thrice punctured sphere case.

Consider the Fuchsian group �0 of Section 4.1, the (closed) fundamental domain W
with vertices at the fourth roots of unity, and the generators g; h that pair the sides of W
(as in Figure 3). We set

W u
WD W \ ¹Im.z/ � 0º; W l

WD W \ ¹Im.z/ � 0º:
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The piecewise Fuchsian Markov map C W S1 ! S1 depicted in Figure 5 (right) has
degree 5. It has diagonal folds in the sense of Definition 4.2, but it is not a completely
folding map since condition (4) of Definition 4.1 fails. Moreover,

Proposition 4.15. The piecewise Fuchsian Markov map C WS1 ! S1 of Figure 5 (right)
is not orbit equivalent to the Fuchsian group �0 generated by its pieces.

Proof. Observe that g.�i/ D i , and thus the points ˙i lie in the same �0-orbit. But both
these points are fixed by C , and hence they cannot lie in the same grand orbit of C .

The proofs of orbit equivalence for Bowen–Series and higher Bowen–Series maps
only involve looking at the first iterates of the maps. On the other hand, the orbit equiva-
lence property is ruled out for the above two piecewise Fuchsian Markov maps simply by
furnishing suitable fixed points of the maps. In general, we ask the following question.

Question 4.16. Is there a general recipe to test whether a piecewise Fuchsian Markov
map is orbit equivalent to the Fuchsian group generated by its pieces?

5. Invariant laminations and Bers boundary groups

The existence of mateable maps orbit equivalent to Fuchsian punctured sphere groups
leads one to the hunt for groups on boundaries of Teichmüller spaces (of punctured
spheres) that can be conformally mated with complex polynomials. Since Fuchsian
realizations of Teichmüller spaces are non-compact, the aforementioned pursuit ought to
be carried out on boundaries of Bers slices of Fuchsian punctured sphere groups (note that
such a realization of the Teichmüller space is precompact in a suitable topology). As in
the Fuchsian case, the first challenge one encounters in this program is to come up with
the correct notion of ‘mateable maps’ for Bers boundary groups.

Let us fix a Fuchsian punctured sphere group �0 equipped with a (higher) Bowen–
Series map A�0 . We denote the Bers slice of �0 by B.�0/. The map A�0 defines, for
each (marked) group � 0 in B.�0/, a piecewise Möbius Markov covering map A� 0 (via
quasiconformal conjugation) of the limit set ƒ.� 0/ such that A� 0 is orbit equivalent to � 0

on ƒ.� 0/. The map A� 0 is the (higher) Bowen–Series map associated with the map � 0.
Now let � 2 @B.�0/. Guided by the Fuchsian situation, we call a continuous self-map
A� Wƒ.�/! ƒ.�/ the (higher) Bowen–Series map of � 2 @B.�0/ if

(1) A� is orbit equivalent to � , and

(2) A� is the uniform limit of the (higher) Bowen–Series maps A� 0 , as � 0 2 B.�0/

converges to � in the strong topology.

The Bers density conjecture, now a theorem due to Brock–Canary–Minsky [8,36] (see
also [7]) states that the Bers slice is dense in the space of all Kleinian surface groups with
one end carrying a fixed conformal structure. Thus, the closure of the Bers slice gives
all such Kleinian surface groups. For any such group � on the Bers boundary, there is an
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end-invariant called the ending lamination – a geodesic lamination supporting a transverse
measure. Further, there exists a topological semi-conjugacy [37, 39], called a Cannon–
Thurston map from the circle onto the limit set ƒ.�/ of � . It was shown in [38, 39] that
the Cannon–Thurston map identifies precisely the end-points of the ending lamination.

It follows from [8, 36] (see also [7]) that any Bers boundary group is a strong limit
of groups in the Bers slice. Let �n D �n ı �0 ı ��1n be a sequence of groups in B.�0/

(where �n is a quasiconformal homeomorphism inducing the representation �0 ! �n)
converging strongly to � 2 @B.�0/. By [42, 43], [40, Section 4.2], Cannon–Thurston
maps of �n converge uniformly to the Cannon–Thurston map of � . Since the (higher)
Bowen–Series map of �n is equal to �n ı A�0 ı �

�1
n , by definition, the (higher) Bowen–

Series mapA� , if it exists, must be given by �1 ıA�0 ı �
�1
1 , where �1WS1!ƒ.�/ is the

Cannon–Thurston map of � . Thus, the (higher) Bowen–Series map A� Wƒ.�/! ƒ.�/,
if it exists, must be semi-conjugate to the base (higher) Bowen–Series map A�0 WS

1! S1

via the Cannon–Thurston map of � (see [41, Section 7.1] for details):

S1 S1

ƒ.�/ ƒ.�/

A�0

C:T: C:T:

A�

Put differently, in the light of [38], the existence of a (higher) Bowen–Series map A�
requires the ending lamination L of � (where S1=L Š ƒ.�/) to be invariant under the
action of A�0 [41, Lemma 7.3]. On the other hand, such laminations are necessarily
invariant under the action of �0. Simultaneous invariance of L under the group �0 and the
covering map A�0 can be thought of as a compatibility condition between Kleinian group
dynamics and polynomial dynamics, which turns out to be very restrictive.

Theorem 5.1 (Bers boundary (higher) Bowen–Series maps are sparse [41, Proposi-
tions 7.6, 7.8]). Let �0 be a punctured sphere Fuchsian group. Then, there are only finitely
many quasiconformal conjugacy classes of groups � 2 @B.�0/ for which the Cannon–
Thurston map of � semi-conjugates the (higher) Bowen–Series map of �0 to a self-map
A� of ƒ.�/ that is orbit equivalent to � . These Kleinian groups arise out of pinching
finitely many disjoint, simple, closed curves (on the surface D=�0) out of an explicit finite
list. In particular, all such groups � are geometrically finite.

Remark 5.2. Consider the Bowen–Series map AGd associated with the Fuchsian group
Gd equipped with the preferred fundamental domain R given by the ideal polygon with
vertices at the 2d -th roots of unity (see Section 3.2). In this case, the explicit finite list of
Theorem 5.1 is

Sd WD ¹g2; : : : ; gd�1º [
®
g�1i ı gj W i; j 2 ¹1; : : : ; dº; i � j > 1

¯
(see [41, Proposition 7.6]), and hence every AGd -invariant geodesic lamination on
D=Gd Š S0;dC1 is a subset of Sd . For d D 3, this gives exactly two invariant lami-
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nations: ¹¹g2º; ¹g�13 ı g1ºº. The curve corresponding to g2 (respectively, g�13 ı g1) on the
four times punctured sphere depicted in Figure 2 is the ‘vertical’ (respectively, ‘horizon-
tal’) curve which separates the punctures Œp3�; Œp4� from Œp1�; Œp2� (respectively, Œp1�; Œp4�
from Œp2�; Œp3�).

The (higher) Bowen–Series map of a Bers boundary group (when it exists) is piecewise
Möbius and hence admits a canonical extension yA� to a subset of the filled limit set K.�/
of the group (i.e., the complement of the completely invariant component of its domain of
discontinuity).

Now let P be a complex polynomial in the principal hyperbolic component Hk , where
k D deg¹A� Wƒ.�/! ƒ.�/º. Then, the action of P on its Julia set J.P / is topologically
conjugate to zkjS1 . On the other hand, A� jƒ.�/ is a factor of A�0 jS1 , which is in turn
topologically conjugate to zkjS1 . One can now glue the filled Julia set K.P / (which is
a closed Jordan disk) outside the filled limit set K.�/ using a semi-conjugacy between
P jJ.P / and A� jƒ.�/, and this produces a topological 2-sphere. Moreover, the existence of
this semi-conjugacy implies that the action ofP on K.P / and the action of yA� on a subset
of K.�/ paste together to yield a continuous map on the copy of S2 just defined. This
map is called the topological mating of yA� and P . We say that the canonical extension
yA� of the (higher) Bowen–Series map of a Bers boundary group is conformally mateable

with a polynomial P in the principal hyperbolic component Hk if the above topological
2-sphere admits a complex structure that turns the topological mating into a holomorphic
map (cf. [41, Section 7.5]).

A sophisticated surgery procedure involving David homeomorphisms yields the fol-
lowing conformal mateability theorem.

Theorem 5.3 (Bers boundary (higher) Bowen–Series maps are mateable [41, Theo-
rem 7.19]). Let � 2 @B.�0/ be a group that admits a (higher) Bowen–Series map A� .
Then the canonical extension yA� can be conformally mated with polynomials lying in the
principal hyperbolic component Hk , where k D deg¹A� Wƒ.�/! ƒ.�/º.

For a group � 2 @B.�0/ admitting a (higher) Bowen–Series map A� , the correspond-
ing geodesic lamination L is invariant under the base (higher) Bowen–Series map A�0 .
The associated equivalence relation L on S1 satisfies the following properties.

(1) L is closed in R=Z �R=Z.

(2) Each equivalence class X of L is a finite subset of R=Z.

(3) L-equivalence classes are pairwise unlinked; i.e., if X and Y are two distinct
equivalence classes of L, then there exist disjoint intervals IX ; IX � R=Z such
that X � IX and Y � IY .

(4) If X is an L-equivalence class, then A�0.X/ is also an L-equivalence class.

(5) If X is an L-equivalence class, then X 7! A�0.X/ is a cyclic order preserving
bijection.
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On the other hand, the lamination associated with a complex polynomialP with connected
Julia set also enjoys analogues of the properties listed above (where the role of A�0 is
played by the base polynomial zd ). Roughly speaking, the lamination associated with
P is a zd -invariant closed equivalence relation on S1 such that the quotient of S1 by the
equivalence relation yields a topological model of the Julia set ofP (cf. [26]). Remarkably,
the topological conjugacy between A�0 jS1 and zd jS1 (for some d � 2) provides us with
a tool to pass from laminations in the group world to those in the polynomial world.
This combinatorial link allows one to invoke standard realization results from polynomial
dynamics and conclude that the limit set ƒ.�/ is indeed homeomorphic to the Julia set of
a complex polynomial in a ‘dynamically natural’ way.

Theorem 5.4 (Equivariant homeomorphism between limit and Julia set [41, Theo-
rem 7.16]). Let � 2 @B.�0/ be a group that admits a (higher) Bowen–Series map A� .
Then there exists a complex polynomial P� (of degree equal to that of A� Wƒ.�/!ƒ.�/)
such that the action of A� on the limit setƒ.�/ is topologically conjugate to the action of
P� on its Julia set.

6. Measures of maximal entropy and Patterson–Sullivan measures

In this section, we study the measure-theoretic dynamics of Bowen–Series and higher
Bowen–Series maps associated with Fuchsian punctured sphere groups, thus linking this
theme to another seminal piece of work by Sullivan – the Patterson–Sullivan measure.
Specifically, we show that measures of maximal entropy of (higher) Bowen–Series maps
acting on the circle are push-forwards of appropriate Patterson–Sullivan measures sup-
ported on Gromov boundaries of free groups.

Informally speaking, the Sullivan–Patterson measure on the Gromov boundary of a
group is the weak limit of a sequence of atomic measures supported on the words of
length n, appropriately weighted by the distances of the group elements from a fixed
base point (for the free group with the standard generating set, the sequence reduces to
formula (1)). Although we will not use the general theory of Patterson–Sullivan measures,
we encourage the reader to consult [12,44,51] for the construction and basic properties of
these measures in the context of Fuchsian groups, Kleinian groups, and hyperbolic groups,
respectively. For background on symbolic dynamics and topological/measure-theoretic
entropy, we refer the reader to [6, 54].

6.1. Maximal entropy measure for Bowen–Series maps

For definiteness, let us fix the Fuchsian .d C 1/-times punctured sphere group �0 D Gd
of Section 3.2 and the fundamental domain R given by the ideal polygon with vertices at
the 2d -th roots of unity (d � 2). Further, let A � A�0;BSWS1 ! S1 be the Bowen–Series
map of �0 associated with the fundamental domain R.
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The topological entropy of a dynamical system is a numerical topological conjugacy
invariant that measures the complexity of the system. Roughly, it represents the exponen-
tial growth rate of the number of essentially different orbit segments of length n. Since A
is topologically conjugate to z2d�1, the topological entropy of the A-action on S1 is equal
to ln.2d � 1/. We are interested in studying the measure of maximal entropy (MME for
short) for A; i.e., the unique A-invariant measure on S1 whose measure-theoretic entropy
is equal to the topological entropy ln.2d � 1/ (see [1, 2] for computation of topological
entropy of Bowen–Series maps associated with cocompact Fuchsian groups and results
regarding their measures of maximal entropy).

6.1.1. MME of A in terms of topological dynamics. By Proposition 3.3, there exists
a homeomorphism

�WS1 ! S1

that conjugates pW z 7! z2d�1 to A (this homeomorphism can be thought of as a gen-
eralization of the Minkowski question-mark function ? ; see [28, Section 4.4.2] for the
analogy in the anti-holomorphic context).

We denote the Haar (normalized Lebesgue) measure on S1 by m. Note that m is
the unique measure of maximal entropy for the action of p on S1 (a straightforward
computation shows that the measure-theoretic entropy of pjS1 with respect to m is equal
to the topological entropy ln.2d � 1/, and the uniqueness of this measure follows for
instance from [32, Theorem 9]). Since the homeomorphism � is a conjugacy, we have the
following.

Proposition 6.1. � D ��m, where � is the unique measure of maximal entropy for the
A-action on S1.

6.1.2. MME of A in terms of symbolic dynamics. The partition of S1 determined
by the 2d -th roots of unity form a Markov partition for A. We denote this partition
by ¹I1; I�1; : : : ; Id ; I�d º, where Ij is the counter-clockwise arc of S1 connecting
exp.2�i.j � 1/=2d/ and exp.2�ij=2d/, and I�j is the complex conjugate of Ij , for
j 2 ¹1; : : : ; dº. The transition matrix for this Markov partition is

M WD

266666666664

1 0 1 1 � � � 1 1

0 1 1 1 � � � 1 1

1 1 1 0 � � � 1 1

1 1 0 1 � � � 1 1
:::

:::
:::

:::
:::

:::
:::

1 1 1 1 � � � 1 0

1 1 1 1 � � � 0 1

377777777775
:

The above transition matrix gives rise to a one-sided subshift of finite type

� W†CM ! †CM :
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Here †CM is the collection of M -admissible infinite words in ¹˙1;˙2; : : : ;˙dºN ; i.e.,

†CM WD
®
.i1; i2; : : : / 2 ¹˙1;˙2; : : : ;˙dº

N
W A.Iij / � IijC1 for all j � 1

¯
;

and � is the left-shift map. A cylinder set of rank k � 1 in †CM is a set of the form

Œr1; : : : ; rk � WD
®
.i1; i2; : : : / 2 †

C

M W ij D rj ; for j 2 ¹1; : : : ; kº
¯
;

where .r1; : : : ; rk/ 2 ¹˙1; : : : ;˙dºk . We metrize †CM with the usual ultra-metric (in
base e).

Since A is expansive, one obtains a continuous surjection

 W†CM ! S1

that semi-conjugates � to A. We may and will assume that  carries the cylinder set
Œ˙j � � †CM to the Markov partition piece of A connecting e˙�i.j�1/=d to e˙�ij=d .

Remark 6.2. See [50] for Markov partitions of Bowen–Series maps associated with more
general Fuchsian punctured surface groups. These maps, however, are not continuous if
the genus of the surface is greater than zero.

The unique measure of maximal entropy for the � -action on †CM (which is called the
Parry measure in symbolic dynamics) is given by the ‘uniform’ Markov measure � that
assigns mass 1

2d �.2d�1/n
to each cylinder set of rank nC 1 (n � 0). The corresponding

topological entropy is also ln.2d � 1/ (note that 2d � 1 is the largest eigenvalue of M ).
The existence of the semi-conjugacy  now implies the following:

Proposition 6.3. The measure of maximal entropy of A, which we denote by �, is the
push-forward of the Parry measure � under  ; i.e., � D  ��.

6.1.3. MME of A in terms of Patterson–Sullivan measure. Since the Bowen–Series
map A is cooked up from the Fuchsian group �0, it is natural to ask whether the measure
of maximal entropy � of A is related to the Patterson–Sullivan measure class of �0. The
following proposition gives a negative answer to this question (recall that a Patterson–
Sullivan measure of �0 lies in the class of the Haar measure m).

Proposition 6.4. The measure � is not mutually absolutely continuous with respect to the
Haar measure m; i.e., � and m do not lie in the same measure class.

Proof. We learned this from Caroline Series. The proposition follows from the facts that

(1) the action of the Fuchsian group �0 on S1 D @D is of type III1;

(2) the action of the polynomial zk on S1 D @D is of type IIIln.k/.

See [49] for details.

Fortunately, the free group on d generators Fd Š �0 provides us with a Patterson–
Sullivan measure (supported on the Gromov boundary of Fd ) that is intimately related
to �.
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We denote the Cayley tree of Fd by X , and equip it with the word metric. The group
acts on the tree by isometries. The Gromov boundary of Fd is denoted by @X . Note that
we can naturally identify @X with the shift space †CM . Visualizing the Cayley tree X as
dual to the �0-tessellation of D (associated with the fundamental domain R), one sees in
light of the identification @X Š †CM that the map  is the (Floyd–)Cannon–Thurston map
from @X to S1 (cf. [20]).

Definition 6.5. Let X denote a Cayley graph of a group � . Let g 2 � (thought of as a
vertex of X ). The cone of g consists of the vertices h 2 X such that any geodesic Œ1; g�
followed by any geodesic Œg; h� is a geodesic Œ1; h� in X joining 1; h.

The next result enables us to connect � to a suitable Patterson–Sullivan measure on @X .

Lemma 6.6. The Patterson–Sullivan measure on @X (with respect to the base point 1 and
the standard generating set) is given by the Parry measure �.

Proof. Note that the number of words in Fd of length r is 2d � .2d � 1/r�1, for r � 1.
Hence, the Patterson–Sullivan measure on @X (with respect to the base point 1 and the
standard generating set) is a weak limit of the measures

�n WD
ı1 C

Pn
jD1

1
.2d�1/j

�P
jgjDj ıg

�
1C

Pn
jD1

2d �.2d�1/j�1

.2d�1/j

D

ı1 C
Pn
jD1

1
.2d�1/j

�P
jgjDj ıg

�
1C 2dn

2d�1

: (1)

A straightforward computation now shows that the �nCr -mass of the cone at a group
element of length r is:

1

1C 2d.nCr/
2d�1

�
nC 1

.2d � 1/r
;

which tends to 1
2d.2d�1/r�1

as n! C1. It follows that the Patterson–Sullivan measure
on @X assigns mass 1

2d.2d�1/r�1
to each cylinder set (in @X ) of rank r . In view of the

definition of �, the proof is now complete.

Since � D  ��, we conclude the following result.

Proposition 6.7. The measure of maximal entropy � of the Bowen–Series map A is the
push-forward of the Patterson–Sullivan measure � on @X (with respect to the base point 1
and the standard generating set) under the (Floyd–)Cannon–Thurston map  .

6.1.4. �0-invariance of the MME of A. We now exploit the connection between �
and Patterson–Sullivan measures to exhibit �0-invariance of the measure class of �.

Proposition 6.8. For each  2 �0, the measures � and �� are mutually absolutely
continuous.

Proof. First note that the (Floyd–)Cannon–Thurston map  semi-conjugates the Fd -
action on @X to the �0-action on S1 [20]. We will denote the element of Fd corresponding
to  2 �0 by z .
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By Proposition 6.7 and the previous paragraph, the measure �� on S1 is the push-
forward of the measure z�� on @X under  . Moreover, as � is a Patterson–Sullivan
measure on @X , it follows that z�� and � are mutually absolutely continuous (see [12,
Theorem 5.4, Theorem 8.2]). It is now easy to see using the definition of push-forward
of a measure that the measures � D  �.�/ and �� D  �.z��/ are mutually absolutely
continuous.

Remark 6.9. For  2 �0, the Radon–Nikodym derivative d.��/=d� can be writ-
ten in terms of  and the Radon–Nikodym derivative d.z��/=d�, which in turn
can be computed from measures of cylinder sets (see [12, Section 8] for a general
method of describing such Radon–Nikodym derivatives in terms of Busemann func-
tions).

Now observe that the Bowen–Series map A does not depend only on the group �0,
but also on the choice of the fundamental domain R. The translation of R by an element
 2 �0 is a different fundamental domain  �R for �0. We denote the Bowen–Series map
of �0 associated with the fundamental domain  � R by A . Clearly, A D  ı A ı �1.
Moreover, the unique measure of maximal entropy for the A -action on S1 is given by
��. Proposition 6.8 now implies the following.

Corollary 6.10. The measures of maximal entropy for the Bowen–Series maps associated
with the fundamental domains  � R (for  2 �0) are mutually absolutely continuous.
In particular, all these measures have the same Hausdorff dimension.

6.1.5. MME for matings of Bowen–Series maps and polynomials. Recall that The-
orem 3.5 provides us with a conformal mating of the canonical extension yA of the
Bowen–Series map A (associated with the fundamental domain R of �0) and the poly-
nomial map z2d�1. Also note that the restriction of this conformal mating on its Jordan
curve limit set is topologically conjugate to AjS1 . The following description of the mea-
sure of maximal entropy of the conformal mating now follows from Propositions 6.1
and 6.7.

Proposition 6.11. The unique measure of maximal entropy of the conformal mating of
yA and z2d�1 restricted to the limit set is equal to the push-forward of the normalized

Lebesgue measure m (which is the unique measure of maximal entropy of z2d�1jS1 )
as well as the push-forward of the Patterson–Sullivan measure � on @X (with respect
to the base point 1 and the standard generating set) under appropriate conjugacies.
In particular, the corresponding topological entropy is ln.2d � 1/.

6.1.6. Topological entropy ofA from a group-theoretic perspective. The topological
entropy ln.2d � 1/ of A can be related to the volume entropy of the group Fd , which
measures the exponential growth rate of the number of words of length n in a group
(equivalently, the exponential growth rate of the number of group elements in a ball of
radius n around identity).
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Lemma 6.12. The volume entropy of Fd with respect to the standard (symmetric) set of
generators and the critical exponent for the Fd -action on X are both equal to ln.2d � 1/.

Proof. Recall that the number of words in Fd of length r is 2d � .2d � 1/r�1, for r � 1.
Hence,

#¹g 2 Fd W jgj � nº D 1C 2d
nX
rD1

.2d � 1/r�1 D 1C 2d
.2d � 1/n � 1

2d � 2
;

from which it follows that the volume entropy is ln.2d � 1/.
Now consider the Poincaré series with exponent s:

�Fd .s/ WD
X
g2Fd

e�sjgjD

1X
nD1

X
g2Fd
jgjDn

e�snD 2d

1X
nD1

.2d � 1/n�1

esn
D

2d

2d � 1

1X
nD1

�2d � 1
es

�n
:

Clearly, the series converges if and only if 2d � 1 < es ” s > ln.2d � 1/. In particular,
the critical exponent is ln.2d � 1/.

Remark 6.13. A connection between the topological entropy of Bowen–Series maps
associated with cocompact Fuchsian groups and the volume entropy of suitable hyperbolic
groups was established in [31].

In [52, Theorem 1], Sullivan proved equality of critical exponents and Hausdorff
dimensions of limit sets for geometrically finite Kleinian groups. While the analogous
result for hyperbolic groups follows from general consideration (cf. [12, Theorem 8.3],
[23, Theorem 15.8]), we can give a simple proof in the present setting.

Lemma 6.14. The Hausdorff dimension of the Gromov boundary of Fd equipped with
the visual metric (in base e) is equal to ln.2d � 1/. Moreover, the ln.2d � 1/-dimensional
Hausdorff measure Hln.2d�1/ (on @X ) and � are mutually absolutely continuous.

Proof. The visual metric (in base e) on @X is bi-Lipschitz to the ultra-metric given by
d.a; b/ D e�jcj, where c is the bifurcation point for the geodesic rays Œ1; a/ and Œ1; b/.
Hence, it suffices to compute the Hausdorff dimension of @X with respect to this ultra-
metric.

We first note that the �-measure of a cylinder of rank n is equal to 1
2d.2d�1/n�1

. On
the other hand, the diameter of a cylinder of rank n is e�n. Thus,

�.B.a; e�n// D
1

2d.2d � 1/n�1
H) �.B.a; r// � r ln.2d�1/:

The result now follows from standard results on Hausdorff dimension (for instance,
see [18, Proposition 4.9]). In fact, we have shown that the ln.2d � 1/-dimensional
Hausdorff measure is positive and finite. The second statement is obvious from the above
proof.
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6.2. Maximal entropy measure for higher Bowen–Series maps

We now carry out a similar analysis for the measure of maximal entropy of a higher
Bowen–Series map of a Fuchsian punctured sphere group. For simplicity of exposition,
we work with the thrice punctured sphere case.

Let us fix the Fuchsian thrice punctured sphere group �0 of Section 4.1 and a (closed)
fundamental domainW given by the quadrilateral with vertices at the fourth roots of unity.
Further, let A � A�0;hBSWS1! S1 be the associated higher Bowen–Series map of �0. As
AjS1 is topologically conjugate to z4jS1 , the topological entropy of A is equal to ln.4/.
We denote the unique measure of maximal entropy for AjS1 by �.

6.2.1. Topological dynamics. As A is an expansive circle covering of degree 4, there
exists a homeomorphism

�WS1 ! S1

that conjugates pW z 7! z4 to A [13]. Using the conjugacy �, one can write the measure of
maximal entropy � for AjS1 as the push-forward measure ��m.

6.2.2. Symbolic dynamics. The pieces of A are given by g˙1; h˙1; g ı h�1; h ı g�1.
Their intervals of definition yield a Markov partition (counter-clockwise starting at 1) for
A with transition matrix

M WD

266666664

1 1 1 1 0 0

1 1 0 0 1 1

0 0 1 1 1 1

1 1 1 1 0 0

1 1 0 0 1 1

0 0 1 1 1 1

377777775 :

The above transition matrix gives rise to a one-sided subshift of finite type

� W†CM ! †CM ;

where †CM consists of M -admissible infinite words in ¹1; 2; : : : ; 6ºN , and � is the left-
shift map. As before, we metrize †CM with the usual ultra-metric (in base e). Since A is
expansive, one obtains a continuous surjection

 W†CM ! S1

that semi-conjugates � to A, and sends the cylinders of rank 1 to the Markov partition
pieces of A.

The Parry measure (i.e., the unique measure of maximal entropy) for the � -action on
†CM is given by the ‘uniform’ Markov measure �, that assigns mass 1

6�4n
to each cylinder

set of rank nC 1 (n � 0). The corresponding topological entropy is also ln.4/ (note that
4 is the largest eigenvalue of M ), and � D  ��.



The Sullivan dictionary and Bowen–Series maps 209

6.2.3. Patterson–Sullivan measure. We now turn our attention to the free group F2 Š
hgi � hhi with the generating set ¹g˙1; h˙1; g ı h�1; h ı g�1º (which are precisely the
pieces of A).

We denote the Cayley graph of F2 with respect to the above (non-standard) generating
set by X , and equip it with the word metric. Note that we can naturally identify the
Gromov boundary @X with the shift space †CM . With this identification, the boundary
at infinity of the cone at a generator is the corresponding cylinder set in †CM .

1 g

gh�1

gh�1g�1

gh�2

gh�1g

.gh�1/2

g�1

g�1hg�1hg�1

g�1h�1

h

hg�1

hg�1h

.hg�1/2

hg�1h�1

hg�2 hg

hgh�1

h�1
h�1g�1 h�1g

h�1gh�1

g2

g2h�1

g�2

h2
h2g�1

h�2

ghghg�1

Figure 6. The words of length one and two in the Cayley graph of F2 with respect to the generating
set ¹g˙1; h˙1; g ı h�1; h ı g�1º are displayed.

Remark 6.15. The higher Bowen–Series map A gives rise to a Markov map zA acting on
the Gromov boundary @X (such that zA is orbit equivalent to the F2-action on @X ) in the
following way: for ˛ 2 ¹g˙1; h˙1; g ı h�1; h ı g�1º, the map zA acts on the boundary at
infinity of Cone.˛/ as ˛�1.

Lemma 6.16. The Patterson–Sullivan measure on @X (with respect to the base point 1
and the generating set ¹g˙1; h˙1; g ı h�1; h ı g�1º) is given by the Parry measure �.
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Proof. It is easy to see from the generators and relations (equivalently, from the Cayley
graph depicted in Figure 6) that the number of words of length r in F2 (with respect to
generating set ¹g˙1; h˙1; g ı h�1; h ı g�1º) is 6 � 4r�1 (r � 1). A computation similar to
the one in the proof of Lemma 6.6 now readily shows that the Patterson–Sullivan measure
in question (on @X ) assigns mass 1

6�4r�1
to each cylinder set (in @X ) of rank r . Thus, the

Patterson–Sullivan measure agrees with � on each cylinder set.

Proposition 6.17. The measure of maximal entropy � of the higher Bowen–Series map A
is the push-forward of the Patterson–Sullivan measure � on @X (with respect to the base
point 1 and the generating set ¹g˙1; h˙1; g ı h�1; h ı g�1º) under  .

6.2.4. �0-invariance of the class of �. Proposition 6.17, Fd -invariance of the measure
class of the Patterson–Sullivan measure � (on @X ) [12, Theorem 5.4, Theorem 8.2], and
the fact that the map  semi-conjugates the Fd -action on @X to the �0-action on S1

together imply the following.

Proposition 6.18. For each  2 �0, the measures � and �� are mutually absolutely
continuous.

6.2.5. MME for mating. According to Theorem 4.11, there exists a conformal mating of
the canonical extension yA of the higher Bowen–Series map A (associated with the closed
fundamental domain W of �0) and the polynomial map z4 such that the restriction of this
conformal mating on its Jordan curve limit set is topologically conjugate to AjS1 . The
interpretation of the measure � in terms of m and � implies the following.

Proposition 6.19. The unique measure of maximal entropy of the conformal mating of
yA and z4 restricted to the limit set is equal to the push-forward of the MME of z4 on

S1 as well as the push-forward of the Patterson–Sullivan measure on @X (with respect to
the base point 1 and the generating set ¹g˙1; h˙1; g ı h�1; h ı g�1º) under appropriate
conjugacies. In particular, the corresponding topological entropy is ln.4/.

6.2.6. Topological entropy, volume entropy, and Hausdorff dimension. Since there
are 6 � 4r�1 words of length r in F2 (with respect to generating set ¹g˙1; h˙1; g ı h�1;
h ı g�1º), the arguments used in the proof of Lemmas 6.12, 6.14 apply mutatis mutandis to
the current setting and prove equality of volume entropy, critical exponent, and Hausdorff
dimension of the Gromov boundary. Moreover, this number coincides with the topological
entropy of AjS1 .

Lemma 6.20. The following statements hold:
(1) The volume entropy of F2 with respect to the generating set ¹g˙1; h˙1; g ı h�1;

h ı g�1º and the critical exponent for the F2-action on X are both equal to ln.4/.

(2) The Hausdorff dimension of @X equipped with the visual metric (in base e) with
respect to the generating set ¹g˙1; h˙1; g ı h�1; h ı g�1º is equal to ln.4/.
Moreover, the ln.4/-dimensional Hausdorff measure Hln.4/ and � (on @X ) are
mutually absolutely continuous.
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6.3. Hausdorff dimension of measure of maximal entropy: thrice punctured sphere

Recall from Proposition 6.4 that the measure of maximal entropy of the Bowen–Series
map of a Fuchsian punctured sphere group does not lie in the Lebesgue measure class.
In this section, we will prove a sharper version of this fact in the thrice punctured sphere
case.

Specifically, we will show that the Hausdorff dimension

HD.�/ WD inf
®
HD.Y / W Y � S1; �.Y / D 1

¯
of the MME � of the (higher) Bowen–Series map of a Fuchsian thrice punctured sphere
group is strictly less than 1. This statement should be compared with the analogous
result that except for some very special cases, the Hausdorff dimension of the measure
of maximal entropy of a rational map is strictly smaller than the Hausdorff dimension of
the Julia set [55].

In what follows, we will cook up a self-map of the interval Œ0; 1� from the (higher)
Bowen–Series map under consideration, and relate the Hausdorff dimension of the MME
of the (higher) Bowen–Series map to that of the MME of the associated self-map. This
will allow us to obtain the desired upper bounds. We note that while this intermediate
step is not essential for the Bowen–Series map (in this case, one can obtain the upper
bound of Proposition 6.22 by working directly with the Bowen–Series map), this method
yields additional information in the higher Bowen–Series case. Indeed, this reduction step
connects the MME of the higher Bowen–Series map to a classical measure from number
theory, which makes known results applicable to the current setting and gives a better
estimate for the Hausdorff dimension of the MME.

6.3.1. The Bowen–Series case. Since the Teichmüller space of a thrice punctured sphere
is a singleton, we may, without loss of generality, work with the Bowen–Series map
AG2 introduced in Section 3.2. Note that every non-identity element g in the free group
G2 admits a unique shortest representation with respect to the symmetric generating set
¹g˙11 ; g˙12 º introduced in Section 3.2. The length of this shortest representation is called
the length of g (the length of the identity element is defined to be zero). Recall that the
ideal polygon in D with vertices at the fourth roots of unity is a fundamental domain for
the G2-action on D, and hence its translates under elements of G2 yield a tiling TG2 of D.
We call this fundamental domain the rank 0 tile and its translate under an element g 2 G2
of length k a rank k tile for the above tessellation.

We will use a specific symmetric property of the tessellation TG2 which we now
describe. Following Section 3, we denote the ideal polygon in D with vertices at the
fourth roots of unity by R, and its edges by C˙1; C˙2. Let us further denote the anti-
Möbius reflections in these edges by �˙1; �˙2, and the reflection group generated by
�˙1; �˙2 by G. Note that the polygon R is invariant under the actions of R and �, where R
is rotation by angle �=2 and � is the reflection in the real axis. It follows that conjugation
by R and � act as permutations on the generating set ¹�˙1; �˙2º of G, and hence R and
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� conjugate G to itself. Hence, the G-tessellation TG of D arising from the fundamental
domain xR (closure taken in D) is preserved by both R and �. Note furthermore that the
relations gi D � ı �i D ��i ı �, i 2 ¹1; 2º, and �-invariance of the tessellation TG imply
that the tessellations TG and TG2 are the same. It follows that the tessellation TG2 of D is
symmetric with respect to �=2-rotation R.

For the current purpose, it will be more convenient to work with the upper half-plane
model. To this end, consider the Möbius transformation M.z/ D i.1 � z/=.1C z/ which
carries the unit disk onto the upper half-plane such thatM.1/D 0;M.i/D 1;M.�1/D1,
andM.�i/D�1. Hence,M sends the ideal polygon in D with vertices at the fourth roots
of unity to the ideal polygon in H with vertices at �1; 0; 1, and1. The mapM conjugates
G2 to a discrete subgroupG2 of PSL2.R/, and transports theG2-tessellation of D defined
in the previous paragraph to a G2-tessellation of H. One defines tiles of this tessellation
and their ranks as in the previous paragraph. Moreover, M conjugates the Bowen–Series
map AG2 to the map

� WR [ ¹1º ! R [ ¹1º; �.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
t C 2; t 2 Œ�1;�1�;
t

1C2t
; t 2 Œ�1; 0�;

t
1�2t

; t 2 Œ0; 1�;

t � 2; t 2 Œ1;C1�:

By construction, � maps Œ0; 1
3
� to Œ0; 1�, Œ1

3
; 1
2
� to Œ1;C1�, and Œ1

2
; 1� to Œ�1;�1� (see

Figure 7).
Since Euclidean isometric rotation RW z 7! iz (about the origin) respects the G2-

tessellation of D, it follows that the conformal rotation RH.w/ D M.i �M�1.w// D
1Cw
1�w
2 PSL2.R/ (about i ) respects the corresponding G2-tessellation of H.

This allows one to construct a self-map of Œ0; 1/ associated with � :

F W Œ0; 1/! Œ0; 1/; F.t/ D

8̂̂<̂
:̂
�.t/ D x

1�2x
; t 2

�
0; 1
3

�
;�

R�1H ı �
�
.t/ D 3x�1

1�x
; t 2

�
1
3
; 1
2

�
;�

R2H ı �
�
.t/ D 2x�1

x
; t 2

�
1
2
; 1
�
:

(See Figure 8.) The symmetry of the G2-tessellation of H under the conformal rotation
RH implies that F sends the ideal vertices of tiles of a given rank to the ideal vertices of
tiles of the previous rank.

Let �W S1 ! S1 be the homeomorphism conjugating z3 to the Bowen–Series map
AG2 with �.1/ D 1. As the chosen fundamental domain of AG2 is symmetric under
rotation by �=2, one readily sees that the map � commutes with z 7! iz. Using this,
it is straightforward to verify that the tripling map �3W Œ0; 1/! Œ0; 1/

�3.x/ D

8̂̂<̂
:̂
3x; x 2

�
0; 1
3

�
;

3x � 1; x 2
�
1
3
; 2
3

�
;

3x � 2; x 2
�
2
3
; 1
�
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�1 0 1 �1 0 1
3

1
2

1

Figure 7. Left: A fundamental polygon of the thrice punctured sphere Fuchsian group G2 D
M ıG2 ıM

�1 with ideal vertices at 0;˙1, and1. Right: A tile of rank one with ideal vertices at
0; 12 ;

1
3 , and 1 is shown.

is topologically conjugate to F via

H W Œ0; 1�! Œ0; 1�; x 7!M.�.E.x///; where E.x/ D exp.2�ix=4/:

Due to the conjugation property, the homeomorphismH sends the rational numbers k=3n

(which are the n-th preimages of 0 under �3) to the ideal vertices of tiles of rank n (which
are the n-th preimages of 0 under F ).

Also note that the Lebesgue measure xm on Œ0; 1� is the measure of maximal entropy
for �3, and hence,

�0 WD H� xm (2)

is the measure of maximal entropy for F .

Lemma 6.21. Let �; �0 be the measures of maximal entropy of the Bowen–Series map
AG2 and the map F , respectively. Then, HD.�0/ D HD.�/.

Proof. We first observe that the Möbius map M W ¹ei� W � 2 Œ0; �=2�º ! Œ0; 1� is bi-
Lipschitz, and hence preserves Hausdorff dimension (this can, for instance, be deduced
from the fact that M.ei� / D tan. �

2
/). Thus, by definition of �0 (see equation (2)), we

have
HD.�0/ D HD..� ıE/� xm/:

Note that the measure E�. xm/ is simply the normalized Lebesgue measure on the arc
¹ei� W � 2 Œ0; �=2�º � S1.

Now choose A � S1 with �.A/ D 1, and set A0 WD A \ ¹ei� W � 2 Œ0; �=2�º. By
definition, the set ��1.A/ has full measure with respect to the Haar measure m on
S1, and hence, m.��1.A0// D 1=4 (here we have used the fact that � maps the first
quadrant of S1 to itself). This implies that ��1.A0/ is a full measure set with respect
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to E� xm, and thus in turn A0 is a full measure set with respect to .� ı E/� xm. There-
fore,

HD..� ıE/� xm/ � HD.A0/ � HD.A/:

Taking the infimum over all full �-measure subsets A of S1, we conclude that

HD.�0/ D HD..� ıE/� xm/ � HD.�/:

For the opposite inequality, pick A0 � ¹ei� W � 2 Œ0; �=2�º with full .� ı E/� xm-
measure. Define A to be the symmetrization of A0 under rotation by �=2. As ��1.A0/ has
full measure with respect to E� xm, we have that m.��1.A0// D 1=4. Since � commutes
with multiplication by i , it now follows that m.��1.A// D 1; i.e., A has �-measure 1.
Therefore,

HD.�/ � HD.A/ D HD.A0/

Finally, taking the infimum over all full .� ı E/� xm-measure subsets A0 of ¹ei� W
� 2 Œ0; �=2�º, we have that

HD.�/ � HD
�
.� ıE/� xm

�
D HD.�0/:

Proposition 6.22. Let � be the measure of maximal entropy of the Bowen–Series
map AG2 . Then, HD.�/ < 1.

.0; 0/ .1
3
; 0/ .1

2
; 0/ .1; 0/

.0; 1/

.0; 0/ .13 ; 0/

.12 ; 0/

.1; 0/

y D ln.3/

Figure 8. Left: The graph of F . Right: The graph of ln jF 0j.
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Proof. By Lemma 6.21, it suffices to show that HD.�0/ < 1, where �0 is the mea-
sure of maximal entropy of F (defined by equation (2)). The following relation
between Hausdorff dimension, entropy, and Lyapunov exponent is standard (see [45, Sec-
tion 10], [22]):

HD.�0/ D
ln.3/R 1

0
ln jF 0jd�0

:

We also have the following explicit description of ln jF 0j on .0; 1/ n ¹1
3
; 1
2
º:

ln jF 0j.t/ D

8̂̂<̂
:̂

ln 1
.1�2x/2

; t 2
�
0; 1
3

�
;

ln 2
.1�x/2

; t 2
�
1
3
; 1
2

�
;

ln 1
x2
; t 2

�
1
2
; 1
�
:

(See Figure 8.)
Our goal is to show that ln.3/ is a strict lower bound for the Lyapunov exponent of F .

To this end, we first note that by definition of �0, the ideal vertices (in Œ0; 1�) of the tiles
of rank up to three divide the unit interval into 33 sub-intervals each of which has �0-mass
1=33. The endpoints of these intervals are displayed in Figure 9.

0
1
7

1
6

1
5

2
9

3
13

1
4

3
11

2
7

1
3

3
8

5
13

2
5

7
17

5
12

3
7

4
9

5
11

1
2

5
9
4
7

3
5

5
8

7
11

2
3

5
7

3
4

1

Figure 9. The break-points of the piecewise definition of F (which are the ideal vertices of a rank
one tile) are marked in red. The new ideal vertices of the rank two, three tiles are displayed in green,
orange (respectively). Each of the 27 complementary components has �0-mass 1

27 .

Since ln jF 0j is increasing on .0; 1
3
/ and .1

3
; 1
2
/, and decreasing on .1

2
; 1/, we have:Z 1

0

ln jF 0jd�0

�
ln
ˇ̌
F 0.0/ � F 0

�
1
7

�
� F 0

�
1
6

�
� F 0

�
1
5

�
� F 0

�
2
9

�
� F 0

�
3
13

�
� F 0

�
1
4

�
� F 0

�
3
11

�
� F 0

�
2
7

�ˇ̌
33

C
ln
ˇ̌
F 0
�
1
3

�
� F 0

�
3
8

�
� F 0

�
5
13

�
� F 0

�
2
5

�
� F 0

�
7
17

�
� F 0

�
5
12

�
� F 0

�
3
7

�
� F 0

�
4
9

�
� F 0

�
5
11

�ˇ̌
33

C
ln
ˇ̌
F 0
�
5
9

�
� F 0

�
4
7

�
� F 0

�
3
5

�
� F 0

�
5
8

�
� F 0

�
7
11

�
� F 0

�
2
3

�
� F 0

�
5
7

�
� F 0

�
3
4

�
� F 0.1/

ˇ̌
33

� 1:201 > ln.3/:

(The number 1:201 above is obtained by explicit numerical computation using the formula
of ln jF 0j given above, and is correct up to 3 decimal places.)

Hence, HD.�0/ D ln.3/R 1
0 ln jF 0jd�0

< 1.
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6.3.2. The higher Bowen–Series case. We will now show that the Hausdorff dimension
of the MME � of the higher Bowen–Series map A of Section 4.1 is strictly less than 1. To
simplify computations, we will first apply a reduction step that will allow us to work with
a degree �2 covering of S1 (note that A is a degree 4 covering of the circle). This will
also relate the Hausdorff dimension of � to that of a classically studied measure arising
naturally from the Minkowski question-mark function ? (see [15, 25, 46] for details on
the question-mark function).

For consistency, we will use the notation employed in Section 4.1. Recall that W is
a (closed) ideal quadrilateral in D with ideal vertices at the fourth roots of unity (the
quadrilateral 1236 in Figure 3). The Möbius maps g; h pair the sides of this quadrilateral
(as shown in Figure 3), and generate a thrice punctured sphere Fuchsian group �0.
Moreover, W is a (closed) fundamental domain of �0. The fundamental domain of the
higher Bowen–Series mapA is given by the ideal hexagon 123567, while the inner domain
of A is the ideal triangle 136.

Let us denote reflections in the hyperbolic geodesics 13; 36, and 61 by r1; r2; r3. With
this notation, the side-pairing transformations g and h are given by r2 ı r1 and r3 ı r1,
respectively. It is also readily checked that the map AW S1 ! S1 is the second iterate of
the piecewise reflection Markov map

RWS1 ! S1; z 7!

8̂̂<̂
:̂
r1.z/ if z 2

_
123;

r2.z/ if z 2
_
356;

r3.z/ if z 2
_
671:

Hence, the circle endomorphisms A and R have the same measure of maximal entropy.
We will now relate the map R to a well-studied orientation-reversing double covering

of S1. Note that as any pair of hyperbolic ideal triangles are Möbius equivalent, the
triangle �136 of Figure 3 is Möbius equivalent to the regular ideal polygon … � D
with vertices at the third roots of unity. The Nielsen map �2W S1 ! S1 of the regular
ideal triangle reflection group is defined as anti-Möbius reflections in the three sides of…
on the three corresponding arcs of S1 (see Figure 10 for a pictorial illustration and [28,
Section 2], [30, Section 4.1] for the precise definition and properties of this map). The
Möbius equivalence of �136 and … implies that the map R is Möbius conjugate to �2.
Moreover, the fact that Möbius maps are bi-Lipschitz tells us that the Hausdorff dimension
of the MME � of the higher Bowen–Series map A is equal to the Hausdorff dimension of
the MME of �2.

Figure 10: The Nielsen map �2 acts on the arcs
_
1e2�i=3,
_
e2�i=3e4�i=3, and

_
e4�i=31 of

S1 as reflections in the bi-infinite hyperbolic geodesics 1e2�i=3, e2�i=3e4�i=3, and e4�i=31,
respectively. It naturally extends as a piecewise anti-Möbius map to the complement of the
ideal triangle … (in gray) in D.

Applying the construction of Section 6.3.1 to the upper half-plane model of �2 (such
that the ideal triangle in D with vertices at the third roots of unity corresponds to the
ideal triangle in H with vertices at 0; 1;1) combined with the arguments of Lemma 6.21,
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Figure 10. The action of the Nielsen map �2 of the ideal triangle group is depicted.

one can show that the Hausdorff dimension of the MME of �2 is equal to the Hausdorff
dimension of the MME of the orientation-reversing degree two map

F W Œ0; 1/! Œ0; 1/; �.t/ D

´
2t�1
t�1

.mod 1/; t 2
�
0; 1
2

�
;

1�t
t
.mod 1/; t 2

�
1
2
; 1
�
:

We refer the reader to [30, Section 9] for the details of this construction. It is also shown
there that the map F is topologically conjugate to the orientation-reversing doubling
map

��2.x/ D

´
�2x C 1 .mod 1/; x 2

�
0; 1
2

�
;

�2x C 2 .mod 1/; x 2
�
1
2
; 1
�
;

via the question-mark function. Hence, the MME of F is given by the push-forward of the
Lebesgue measure on Œ0; 1� under ?

�1
. According to [24], the Hausdorff dimension of

this measure is strictly less than 1. In fact, it is shown there that the Hausdorff dimension
of the push-forward of the Lebesgue measure on Œ0; 1� under ?

�1
is approximately 0:875

(see [24, Figure 2, Section 3]). We collect the upshot of the above analysis in the following
proposition.

Proposition 6.23. Let � be the measure of maximal entropy of the higher Bowen–Series
map A of a Fuchsian thrice punctured sphere group. Then,

HD.�/ � 0:875 < 1:

6.4. Some open questions

We conjecture that the results of Section 6.3 hold in greater generality.
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Question 6.24. Let � be the measure of maximal entropy of a (higher) Bowen–Series
map of a Fuchsian punctured sphere group. Is

HD.�/ WD inf
®
HD.Y / W Y � S1; �.Y / D 1

¯
less than 1?

Henceforth, we will assume that k > 3, so that the surface S0;k has a non-trivial
Teichmüller space.

We believe that the Hausdorff dimension of the limit set of the conformal mating of
yA�;BS (respectively, yA�;hBS) and P , where � 2 Teich.S0;k/ and P 2H2k�3 (respectively,
P 2 H.k�1/2 ), is strictly greater than 1. The next question is motivated by Bowen’s
theorem on Hausdorff dimension of quasi-Fuchsian limit sets (cf. [4]).

Question 6.25. Do the Hausdorff dimensions of limit sets of the above class of conformal
matings attain its global minimum at a unique point?

The following questions are motivated by results of McMullen on variation of
Hausdorff dimensions of limit sets and naturally associated measures living on them
(cf. [35]).

Question 6.26. How does the Hausdorff dimension of the measure of maximal entropy
of the (higher) Bowen–Series map vary as the marked group runs over Teich.S0;k/?

Question 6.27. How does the Hausdorff dimension of the limit set of the conformal
mating of yA�;BS (respectively, yA�;hBS) and P vary as � runs over Teich.S0;k/ and P
runs over H2k�1 (respectively, over H.k�1/2 )?
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