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On the Whitehead nightmare and some related topics
Valentin Poénaru

Abstract. In this very fast survey I will start by reviewing my work on the QSF property in
geometric group theory. While working on this topic, I met some infinitistic complications which
I called the Whitehead nightmare. This has analogues in other areas of low-dimensional topology.
Afterwards I will present some joint work in progress with Louis Funar and Daniele Otera, where
we plan to show that all groups, and only finitely presented groups are concerned by this paper,
can avoid the nightmare in question. And also that all groups have the GSC (geometric simple
connectivity) property, much stronger than QSF. Both QSF and GSC are explained in the main text.

To Dennis Sullivan, for his 80th birthday

1. Memories

I could tell you a lot about my friend Dennis, whom I first met around 1964. But instead of
telling you about the magnificent contributions which he brought to so many and diverse
fields of mathematics, I will only present you some personal memories concerning our
friendship.

I really came close to him during the conference “Manifolds Amsterdam 1970,”
organized by our common friend the late Nico Kuiper, where we were both speakers.
And I spent a lot of time together with Dennis and his then big love Lucy, feeling like in
a magic fairyland, going together with Tristan and Isolde.

Few years later Dennis moved to the Paris region, he became a permanent professor at
the IHES, and then we really saw each other a lot. I must say that a large part of the maths
I know, I have learned it from him, during innumerable informal conversations. And his
very charismatic presence to our various parties, in our home was a big festive thing. I may
add that Dennis and Barry Mazur who, often, together, brought big joy to our gatherings,
are the most charismatic people I know. Happy birthday, Dennis!
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2. Introduction

Few years ago I managed to complete the proof that all groups possess the property
called QSF. This property was discovered by Steve Brick and further studied by Brick,
Mihalik and Stallings (see [2,23]). I will soon redefine QSF, but it suffices to say right
now that for fundamental groups of 3-manifolds, QSF is equivalent to simple connectivity
at infinity.

In the quest for proving QSF, I identified a certain kind of infinitistic complication,
a big difficulty for the proofs, which I called the Whitehead nightmare. But before I can
tell you what that is all about, I have to introduce one of my tools in geometric topology
(and low-dimensional topology), the REPRESENTATIONS, not to be mixed up with the
well-known group representations.

3. REPRESENTATIONS

And now I will tell you very briefly what REPRESENTATIONS are, and for more details
see [8,10,11,13,19]. The REPRESENTATION map is a non-degenerate simplicial map

Yy - x3 (1)

where Y is a GSC complex, in the sense explained in Section 5, of dimension 2 or 3 and
X3 is the space to be REPRESENTED.

The REPRESENTATION SPACE Y may not be locally finite, and to get it to be so, when
one needs it, requires hard work. In a nutshell, here are the features of (1):

(1-1) The map f is immersive, except at some singularities called mortal singular-
ities. We call mortal the singularities of a map, killed by the map in question,
and immortal the singularities of spaces to be represented, like a singular mani-
fold M(G) or its universal cover M (G), see below.

(1-2) In Y x Y every double point of f,(x, y), can be joined to the singularities by a
zipping path of double points.

(1-3) In a sense which is defined in [8, 19], f is “essentially surjective.”

With a lot more details, here is what the (1-2) above means. Let us consider a general,
simplicial map
Yy —-X
between cell complexes. There is then, to begin with, an obvious equivalence relation
d(f) C Y xY, where

(x,y) € ®(f) = f(x)=f(»).

But then, there is also a more subtle equivalence relation W(f) C Y x Y. Schematic-
ally speaking W( f) is the smallest equivalence relation, compatible with f (i.e. such that
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W(f) C O(f)) which kills all the mortal singularities of f, meaning the non-immersive
points.
Hence, in the diagram

y — 1 . x
N4
Y/W(f)
the map f1, naturally induced by f, is an immersion. So the f; is singularity-free and,
moreover, no equivalence relation smaller that W( /) can do the job.
In the papers [8, 10, 13], one can find the proofs for the existence and unicity of

our W(f).

With all these things, the existence of that zipping path in (1-2) above means:

V(f) = (/).

In plain English, this also means that the cheapest way to kill all the mortal singularities is
to kill all the double points. Recall that our terminology here is “mortal singularities” for
the singular points of f at the source Y and “immortal singularities” for the non-manifold
points of the target X.

It can be shown that if Y is simply connected, in particular if it is GSC (geometrically
simply connected, see Section 5), then

JTI(X) =0.

So, coming back to REPRESENTATIONS, the space to be REPRESENTED has to be
simply connected. Several simply-connected 3-dimensional spaces can be REPRESENTED
(and the very good serious reasons why I will work with the 3-dimensional group
presentations M(G) are presented in [19]). I actually started using REPRESENTATIONS
of homotopy 3-balls in my program for proving the 3-dimensional Poincaré conjecture.

And the Whitehead manifold Wh? can be REPRESENTED too. Strange things happen
then, to which I will come back.

When it comes to geometric group theory, then I am interested in REPRESENTATIONS

X — M(G) 2

where X is 2-dimensional or 3-dimensional and where M (G) is a 3-dimensional present-
ation of G, and in all this story, and the related ones [8, 1315, 18, 19], the standard
well-known 2-dimensional group presentations are totally inadequate (see [18]).

It so happens that REPRESENTATIONS like (2) are very easy to construct, see [19],
but the easy approach only yields REPRESENTATION spaces which are not locally finite,
hence totally useless.

Notice, finally, that while the standard, well-known, group representations go like
G — {some other group}, our REPRESENTATIONS go the other way around

Y > M(G)~G (quasi-isometry).
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Then, about ten years ago I proved the following:

Theorem 1 (Po, [13]). For any finitely presented group G we can find a 3-dimensional
REPRESENTATION
f:X*— M(G), A3)
with the following features:
(1) The complex X3 is locally finite.

(2) The group G acts freely on X3, G x X3 — X3, and f is equivariant, meaning
that for any x € X3 and g € G, we have f(gx) = g(f(x)).

(3) The zipping length is uniformly bounded. This means that there is a constant
C > 0 such that for any (x,y) € M?(f) we have

iaf{length of the zipping path A(x, y)} < C.

We use here the following notation. If ¢: A — B is a map, then M5 (¢p) C A is the set
of double points, meaning that if x € M,(¢), then cardg ~!(x) > 1. And M?(¢) C A x A
means pairs of points (x, y) such that x # y and ¢ (x) = ¢(y).

Theorem 1 is proved in [13], which I call Trilogy I since it is the first of the trilogy of
papers [13—15] which prove that all groups are QSF.

Now, if in the context of Theorem 1, X2 is an appropriate, very dense 2-skeleton
of X3, then the 2-dimensional REPRESENTATION

f:X? > M(G) )

also has the three features from the theorem.

4. The QSF property and the Whitehead nightmare

By definition, a locally compact complex X is QSF, if for any compact k C X there is a

commutative diagram
ke—" > X
N
K

where K is some abstract simply-connected finite simplicial complex, j is an inclusion
map, and f is a simplicial map. Moreover, the following Dehn-type condition is fulfilled

Jj) N My (f) = 0.

QSF stands for quasi-simply filterable. This notion was abstracted from earlier work of
Casson [24] and Po by Steve Brick [1,2].
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In particular, in my older work on 7{® M 3 [11,12], I had introduced the notion of
Dehn exhaustibility, which is a direct fore-runner of QSF. So, QSF has its roots in the old,
classical Dehn’s lemma.

And then, Brick, Michael Mihalik and the late John Stallings proved the following
theorem (see [2,23]):

Theorem 2 (Brick—Mihalik, [2]). The following statements hold:
*  For open 3-manifolds QSF is equivalent to n{° = 0.

* If Ky and K, are finite simplicial complexes with the same w1 = G, then
K1 € QSF < K, € QSF,

and we will say that G is QSF.

So, QSF is a group theoretical property, independent of the presentation of G. This is
one of its important features.
And here comes now the following:

Theorem 3 (QSF theorem, Po). All finitely presented groups are QSF.

This is proved in the Trilogy [13—15]. But see also the rather detailed surveys [8, 18]
which can be very useful.

Notice, to begin with, that the QSF is, now, at the same time universally true for all
groups, and highly non-trivial, since it implies Perelman’s nfOM 3 = 0, consequence of
the geometrization of 3-manifolds, which requires even more steam of the Ricci flow than
the Poincaré conjecture (see [5,6]). And this combination goes against standard wisdom.

And I have an “esoteric conjecture,” to which I will come back, which is supposed to
resolve this tension, which at least in part has motivated it.

For the proof of the QSF theorem we have to move in the very rarefied context of all
groups, with no special features to hang on to, and just use the following mantra:

Discrete symmetry with compact fundamental domain.

The proof of the QSF theorem starts with the REPRESENTATION provided by The-
orem | and then, right away, we meet the following difficulty, the Whitehead nightmare,
in a group-theoretical context.

We want to inspect the group G, in its quasi-isometric disguise M (G), by a REPRES-
ENTATION map of source the GSC space Y. And f(Y) has to put its nose in every hook
and nook of M (G). Now, when the nightmare is there, then this happens infinitely many
times in every little spot. And then things get hard.

The “Whitehead nightmare” is a terminology which I concocted many years ago,
during a walk under the starry sky, in a cold winter night. It refers to a phenomenon
which occurs for the Whitehead manifold Wh?3, for the Casson Handles, for the gropes of
Stanko, and which is also present in the work of Mike Freedman and Frank Quinn.
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Here is a more precise formulation of what is at stake. In the context of (3), generally
speaking, any compact K C M (G) is touched infinitely many times by f. Equivalently,
in the context of (4), none of the following two subsets is closed:

f(X?) c M(G) and M,(f) U Sing(f) C X2. 5)

There is actually the following fact (see [14]):

Lemma 1. The following two items are equivalent:

(1) For the 3-dimensional REPRESENTATION (3) every compact K C M(G) is
touched only finitely many times by f.

(2) For the 2-dimensional REPRESENTATION (4) the two subsets (5) are closed.

If a group G is like in the lemma above, i.e. if it manages to avoid the Whitehead
nightmare, we will call it “easy.” And do not mix this technical meaning of that word,
with its standard use. It is actually easy to show that any “easy” group is QSF (see [7]).
And in this sentence the first easy is meant the normal way, while the second one is with
the technical meaning.

Actually, in the old days when Andrew Casson and I, independently of each other,
were working on nfOM 3, neither the QSF notion nor the other concepts like “easy” group
etc. existed, but if one looks with today’s eyes at what we did then (in [11, 12, 24] etc.),
then one can see the following. Without any connection to 3-manifolds, or any reference
to them, we had actually proved that many classes of groups, like Gromov’s hyperbolic,
Cannon’s almost convex, Thurston’s combable, automatic, and others, were “easy” and
hence QSF.

Now, when one wants to prove the QSF theorem for arbitrary groups, these may not
be “easy” and one has to face the Whitehead nightmare. This is a difficulty one has to live
with.

In a later section I will give a glimpse into the proof of the QSF theorem and then,
I will very briefly describe some recent developments. Together with Louis Funar and
Daniele Otera we have a research program which is a direct outgrowth of the proof of the
QSF theorem. Twisting around the technology of the Trilogy, we hope to be able to go far
beyond QSF.

But before I can go into all that, I have to say something on geometric simple
connectivity (GSC), a crucial concept for all these topics.

5. A digression on geometric simple connectivity (GSC)
Everybody knows that GSC means that “the 1-handles are cancelled by the 2-handles,”

like in Steve Smale’s proof of the high-dimensional Poincaré conjecture. But in our con-
text of non-compact, singular manifolds with non-empty boundary, we have to be more
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precise (see [13]). Our cell-complexes X” come endowed with handlebody decomposi-
tions into handles H* of index A

X" =N"T)+ ) H'+) HP +) H*2, ©)

iel jed

where N"(T) is the regular neighbourhood of an infinite tree 7'.
Here we have a canonical isomorphism / =~ ¢ and with (6) comes a geometric
intersection matrix

H?-H!' =6 +aji. @)

where H? - H; is the number of times the attaching zone dH} goes through the lateral
surface §H;'. So here aj; € Z and there are no = signs involved. And our X" is GSC if
the matrix (7) is of the form:

easy id + nilpotent, meaning that aj; > O implies j > i.

The Wh3, which is not GSC, has a geometric intersection matrix of the form difficult
id + nilpotent, see [17]. Here a;; > 0 implies j <.

Notice at this point that in the compact (i.e. finite) case difficult and easy id + nilpotent
are equivalent; so we can give now a general definition of GSC, valid both in the compact
and the non-compact case.

By definition, a handlebody or cell-complex is GSC if for a handlebody decompos-
ition like (6), with an isomorphism / & , the geometric intersection matrix is easy
id + nilpotent; in the compact case this simply means id + nilpotent.

Now, since GSC is very close to my heart, I feel like saying a few more words. To begin
with, clearly GSC implies w1 = 0. And here is the answer for the converse implication, in
the case of compact smooth rn-manifolds:

(i) Forn > 5, answer YES (Smale).

(i) For n = 4, answer NO. Andrew Casson proved that the old Mazur-Po mani-
folds [4, 9] provide counterexamples. Casson never wrote this down, but I learned
it from Mike Freedman.

(iii) For n = 3, answer YES (Grisha Perelman’s famous work, see [5, 6]).

Retain that dimension four is very special, and here is a (partial?) list of reasons why:

(A) The (ii) above.

(B) Then, there is a big gap between DIFF and TOP, totally beyond the control of
algebraic topology, exactly in dimension four. We know this from the work of
Donaldson and Freedman, combined with the Yang—Mills equations. Incidentally,

my interest in the smooth 4-dimensional Schoenflies (see, for instance, [16,20])
is not unrelated with my interest in that gap.
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(C) Connected to point (B), it is only in dimension four that the equations of Yang—
Mills, and hence Maxwell too, make sense. We need that the Hodge dual of a
2-form should be, again, a 2-form.

We listed above our YES/NO answers for the question whether simple connectivity
implies GSC, for the case of compact manifolds. The situation is very much the same in
the open case, provided one adds the hypothesis “simply connected at infinity.” But when
we are in the case of non-compact manifolds with non-empty boundary, then there are
no general YES/NO theorems, and when one still needs to prove something, this requires
hard work. This is the murky context of my efforts in geometric group theory, since many
years.

We end this digression on GSC with the following item, of direct interest for this
survey paper. There is an implication

GSC = QOSF.

6. A very fast glimpse into the proof of the QSF theorem

We start with the 3-dimensional REPRESENTATION provided by Theorem 1, i.e. by
Trilogy I, and then, going to an appropriate 2-dimensional skeleton X2 of X3, we get
the 2-dimensional REPRESENTATION

X2 — M(G).

And here we meet already the Whitehead nightmare. Here is the simplest kind of
occurrence.

In our present context, the fact is that, generally speaking, our M, ( ) U Sing( f) is not
a closed subspace of X2. As it will be soon explained, this is one of the main difficulties
for proving the QSF theorem. And since we have to live with it, we start by constructing
a REPRESENTATION f: X2 — M (G), where although not closed, M>(f) should still
have an accumulation pattern, as mild as still possible. To see what this means, let us start
with the simplest totally non-singular situation when, locally, X2 is a copy of R? and any
connected component of M, ( f) is a copy of R. Inside this R? C X? the M,(f) N R?
consists now of a collection of parallel lines, normally infinitely many of them. This should
remind the reader of a one-dimensional foliation ¥ or a one-dimensional lamination £
of R2. These have transversal structures, which are R in the case of ¥ or a Cantor set in
the case of L.

In the case of My(f) N R2, once this is not a closed subset, we can construct
REPRESENTATIONS (4) which realize, as transversal structures go, the next best thing,
once M5 (f) is not closed (or, put otherwise, the least harmful thing). And this next best
thing is a countable set which has only a finite set of points of accumulation. This kind
of transversal structure for M,(f) C X? is realized in [13] by a process which I have
called the “decantorianization.” But then, this structure is only the simplest of the local
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complications with which we have to live. More complicated ones, not to be described
here, are necessary too. But the important point is that we can live with them, we can
prove the QSF theorem, with them being around.

And before we continue with the proof of the QSF theorem, let us look at the simplest
2-dimensional REPRESENTATION for the Whitehead manifold Wh3,

Y2 — Wh3,

Now the nightmare in unavoidable. Even the worst things happen. The accumulation
pattern transversal to M( f) has a dynamics which is governed by the Julia sets [8, 22];
remember the infinite iteration of quadratic maps, the Mandelbrot set, etc.

And now back to the proof of the QSF theorem. We move to Trilogy II [14]. It starts
with a ballet between 2d and 3d:

a 3d REPRESENTATION = a 2d REPRESENTATION X2 — M(G)
= another 3d REPRESENTATION ©3(X?) — M (G).
Here ©3(X?2) is some singular 3-dimensional, very thin, thickening of X?2. But

®3(f(X?)) = f(©3(X?))is not locally finite, and here the game starts.
We construct a locally finite, singular and very high-dimensional space

$.M(G), (8)

which is {a singular high-dimensional thickening of ®3(X?) from which various things
are deleted, i.e. sent to infinity} + {some more non-compact additions}.
And the main result of Trilogy II is the following:

Theorem 4 (GSC theorem, Po, [14]). SMI\7I(G) is GSC.

This is actually the main step in the proof of the QSF theorem. And I have to tell you
some words regarding its proof, because it concerns our present topic.
To begin with, our §,, is a functor, the $,, M (G) makes sense too, and we have:

$uM(G) = ($.M(G))™.

One builds up the S, M (G) by starting with the zipping of f (X, 2) where X2 is the
REPRESENTATION space of the 2d REPRESENTATION f: X2 = X — M (G) above,

X2 = X} - X} — - — f(XP).

There is no reason why this process should be GSC preserving. In the case of
an “easy” G, starting from our Y satisfying GSC, one can actually produce a GSC-
preserving, high-dimensional thickening of (7), see [7]. But in the general case, the
Whitehead nightmare is in the way for this procedure.
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So we need a second functor S, which uses now an infinite sequence of quite naturally
GSC-preserving inclusions, instead of our former quotient maps, which the inclusions
replace:

GSC> XY - xVN 5 xV - ... 5 §,M(G).

Here, again we have
SM(G) = (5pM(G))".

[T L)

Incidentally, “u” stands for usual and “b” for bizarre. Anyway, in the context of (8)
we find now that the following things happen:
(11-1) Quite naturally, now SbM(G) is GSC.
(11-2) It is only Sbﬂ (G) which sees the infinite complications, see below, none of
the intermediary X __ do.

What we want to do now is to relate 8, M (G) to S, M (G). We start by going down,
from M (G) to M(G), and now we are in the compact surrounding of M (G). But, careful,
the §, M(G) is not compact. Then, by various compactness arguments and also making
big use of the uniform boundedness of the zipping length (Trilogy I, remember), we can

prove the diffeomorphism

SuM(G) "' §,M(G),

and hence we also have
SuM(G)” = S§M(G)™.

Then, finally, by functoriality we get:
$uM (G) = $,M(G)™ = $,M(G)™ = §,M(G),

and we conclude that SuM(G) is GSC, because SbM(G) is so.

7. A very fast survey of recent joined work, in progress, with Louis
Funar and Daniele Otera

What we hope to prove is the following result, and I put a question mark to the statement
below, since we do not yet have a complete proof, but I am quite optimistic about it.

Proposition 1. For any finitely presented group G (and no other groups will concern us
here) there exist two twin locally-compact cell complexes XN (with high N ) and X2, both
geometrically simply connected (GSC), such that the following things should happen:

(1) There is a free and co-compact action

G x XN - xN.
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(2) » There is a 3-dimensional REPRESENTATION
f1X3 — M(G),

where M(G) is a compact singular 3-manifold with m1iM(G) = G, such
that any compact K C M (G) should be touched only finitely many times
by f(%3).

e Oy, equivalently, there is a 2-dimensional REPRESENTATION, from a well-
chosen sufficiently fine 2-skeleton X3 of X3

f1X2 > M(G),
such that both
f(X3)C M(G) and M>(f) U Sing(f) C X2

(where M means double points and Sing are the non-immersive points) are
closed subsets.

Our (1) above means that all finitely presented G’s are GSC and hence Tucker too'
(see also [3]). (Just like 77° = 0 means asymptotically simply connected, Tucker means
asymptotic with finitely presented ;.)

Our (2) above means that all G’s can avoid the Whitehead nightmare. Or, to put it
another way:

“All groups are ‘easy’,”

something I had conjectured years ago [19], calling this the impertinent conjecture.

And I also have a much more esoteric conjecture, already mentioned, about the
existence of a much larger category than groups, where the “difficult” objects should
hide. I believe that this new category manifests itself already via things like the Penrose
aperiodic tilings and the quasi-crystals of condensed matter physics. Inside it, the finitely
presented groups should live like the rationals among reals, or periodic functions among
the quasi-periodic ones.

And now that Proposition | tells us that all G’s are GSC, I also suspect that those
difficult guys should brutally violate GSC. And this should bring the non-commutative
geometry of Alain Connes into the picture, see [19,21].

In the proof of the QSF theorem we have learned how to live with the Whitehead
nightmare, and the idea now is that this has created enough technology so that we should
be able to circumvent it altogether, for all G’s.

We have now a free action (actually everything above was equivariant, see Theorem 1)

G x 8, M(G) — $,M(G), ©)

and the S, M (G) is GSC. But our (9) is not co-compact. And here the work starts.

1. Funar, comments on WGSC, Tucker and GSC; letter, 2015.
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