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Formality and finiteness in rational homotopy theory

Alexander I. Suciu

Abstract. We explore various formality and finiteness properties in the differential graded algebra
models for the Sullivan algebra of piecewise polynomial rational forms on a space. The 1-formality
property of the space may be reinterpreted in terms of the filtered and graded formality properties
of the Malcev Lie algebra of its fundamental group, while some of the finiteness properties of the
space are mirrored in the finiteness properties of algebraic models associated with it. In turn, the
formality and finiteness properties of algebraic models have strong implications on the geometry of
the cohomology jump loci of the space. We illustrate the theory with examples drawn from complex
algebraic geometry, actions of compact Lie groups, and 3-dimensional manifolds.

Dedicated to Dennis Sullivan on the occasion of his 80th birthday
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1. Introduction

1.1. Rational homotopy type

Homotopy theory is the study of topological spaces up to homotopy equivalences. Typical
examples of homotopy type invariants of a space X are the homology groups Hn.X;Z/
and the homotopy groups �n.X/. The question whether one can reconstruct the homotopy
type of a space from homological data goes back to the beginnings of Algebraic Topology.
Poincaré realized that homology is not enough: for a path-connected space X , the first
homology group, H1.X;Z/, only records the abelianization of the fundamental group,
�1.X/. Even for simply-connected spaces, homology by itself fails to detect maps such
as the Hopf map, S3 ! S2. On the other hand, if one considers the de Rham algebra
of differential forms, one can reconstitute in a purely algebraic fashion all the higher
homotopy groups of Sn, modulo torsion.

As founded by Quillen [118] and Sullivan [137], rational homotopy theory is the study
of rational homotopy types of spaces. Instead of considering the groups Hn.X;Z/ and
�n.X/, one considers the rational homology groupsHn.X;Q/ and the rational homotopy
groups �n.X/˝Q. These objects are Q-vector spaces, and hence the torsion information
is lost, yet this is compensated by the fact that computations are easier in this setting.

1.2. Models for spaces and groups

In his seminal paper, [137], Sullivan attached in a functorial way to every space X a com-
mutative differential graded algebra over Q, denoted APL.X/. This CDGA is constructed
from piecewise polynomial rational forms and is weakly equivalent (through DGAs) with
the cochain algebra .C �.X;Q/; d/ so that, under the resulting identification of graded
algebras, H�.APL.X// Š H

�.X;Q/, the induced homomorphisms in cohomology corre-
spond.

We say that two CDGAs A and B are weakly equivalent (written A ' B) if there
is a zigzag of CDGA maps inducing isomorphisms in cohomology and connecting A
to B . If those maps only induce isomorphisms in degree at most q (for some q � 0)
and monomorphisms in degree qC 1, we say A and B are q-equivalent (written A'q B).

Let k be a coefficient field of characteristic 0. We say that a k-CDGA .A; d/ is a
model for a space X if A ' APL.X/˝Q k, and likewise for a q-model. For instance, if
X is a smooth manifold, de Rham’s algebra ��dR.X/ is a model for X over R, leading
to the following basic principle in rational homotopy theory: “The manner in which a
closed form which is zero in cohomology actually becomes exact contains geometric
information,” cf. [37].

Given a connected CDGA A, Sullivan constructed a minimal model for it, �WM.A/!

A, where � is a quasi-isomorphism and M.A/ is a CDGA obtained by iterated Hirsch
extensions, starting from k, so that its differential is decomposable. These properties
uniquely characterize the minimal model of A (up to isomorphism). The q-minimal
models Mq.A/ are similarly defined for all q � 0; they are generated by elements of
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degrees at most q, and the structural morphisms �q WMq.A/ ! A are only q-quasi-
isomorphisms.

A minimal model for a connected space X , denoted M.X/, is a minimal model for
the Sullivan algebra APL.X/. The isomorphism type of M.X/ is uniquely defined by the
rational homotopy type of X . The q-minimal models Mq.X/ are defined analogously;
moreover, if G is a finitely generated group, we set M1.G/ D M1.K.G; 1//. When
X is a nilpotent CW-complex with finite Betti numbers, Sullivan [137] showed that
�n.X/˝QŠ .V n/_ for all n� 2, where V D

L
nV

n and M.X/D .
V
V;d/ is a minimal

model for X over Q.

1.3. Formality

As formulated in [37, 137], the notion of formality plays a central role in rational
homotopy theory. We say that a path-connected space X is formal if its Sullivan algebra,
APL.X/, is weakly equivalent to its cohomology algebra, H�.X;Q/, endowed with the
zero differential. The notion of q-formality (for some q � 0) is defined accordingly.
In general, partial formality is a much weaker property than (full) formality; nevertheless,
if H�qC2.X IQ/ D 0, then X is q-formal if and only if X is formal, see [91]. One may
also talk about (q-) formality over a field k, but it turns out that all these formality notions
are independent of the choice of the coefficient field, as long as char.k/ D 0.

Various conditions on the connectivity of the space or the structure of its cohomology
algebra guarantee formality. For instance, if X is a k-connected CW-complex (k � 1)
of dimension n and n � 3k C 1, then X is formal, cf. [124]; moreover, if X is a closed
manifold of dimension n, the conclusion remains valid for n � 4k C 2, cf. [99]. Also, if
H�.X;Q/ is the quotient of a free CGA by an ideal generated by a regular sequence, then
X is formal, cf. [137].

A classical obstruction to formality is provided by the Massey products (of order 3
and higher): If a space X is formal, then all Massey products in the cohomology algebra
H�.X;Q/ vanish – in fact, vanish uniformly. Furthermore, if X is q-formal, for some
q � 1, then all Massey products in H�qC1.X;Q/ vanish.

A simply-connected space (or, more generally, a nilpotent space) X is formal if its
rational homotopy type is determined by H�.X;Q/. In the general case, the weaker
1-formality property allows one to reconstruct the rational pro-unipotent completion of the
fundamental group, solely from the cup products of degree 1 cohomology classes. Formal
spaces lend themselves to various algebraic computations that provide valuable homotopy
information. For instance, a result of Papadima–Yuzvinsky [115], which is valid for all
formal spaces X , states: The Bousfield–Kan completion Q1X is aspherical if and only if
H�.X;Q/ is a Koszul algebra.

1.4. Finiteness in CDGA models

A recurring theme in topology is to determine the geometric and homological finiteness
properties of spaces and groups. A prototypical such problem is to determine whether a
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path-connected space X is homotopy equivalent to a CW-complex with finite q-skeleton,
for some 1 � q � 1, in which case we say X is q-finite. Another question is to
decide whether a group G is finitely generated, and if so, whether it admits a finite
presentation; more generally, whether it has a classifying space K.G; 1/ with finite
q-skeleton.

A fruitful approach to this type of question is to compare the finiteness properties
of the spaces or groups under consideration to the corresponding finiteness properties
of algebraic models for such spaces and groups. By analogy with the aforementioned
topological notion, we say that a k-CDGA A is q-finite if it is connected (i.e., A0 D k � 1)
and dimAi <1 for i � q.

A natural question then is: When does a q-finite space X admit a q-finite q-model
.A;d/? A necessary criterion is given in [113]: If a spaceX does admit such a model, then
dimH i .Mq.X//<1, for all i � qC 1. For instance, ifGDFn=F 00n is the free metabelian
group of rank n � 2 then b2.M1.G// D 1, and so G admits no 1-finite 1-model. Other
finiteness criteria, based on the nature of the cohomology jump loci (see [113, 129]), are
discussed below.

1.5. Malcev and holonomy Lie algebras

In his landmark paper on rational homotopy theory, Quillen [118] defined the Malcev Lie
algebra, m.G/, of a finitely generated group G as the (complete, filtered) Lie algebra
of primitive elements in the I -adic completion of the group algebra QŒG�, where I is
the augmentation ideal. The associated graded Lie algebra with respect to this filtration,
gr.m.G//, is isomorphic to gr.G;Q/ the rational graded Lie algebra associated to the
lower central series filtration of G, cf. [119].

As shown by Sullivan [137] (see also [30, 66]), the Lie algebra dual to M1.G/ is
isomorphic to the Malcev Lie algebra m.G/. It follows that G is 1-formal if and only
if m.G/ is the LCS completion of a finitely generated, quadratic Lie algebra. A weaker
condition was given in [132]: we say thatG is filtered formal if m.G/ is the completion of
gr.G;Q/ with respect to its LCS filtration. As shown in [133], this condition is equivalent
to the existence of a Taylor expansion, G ! bgr.QŒG�/.

Now suppose G has a 1-finite 1-model .A; d/ over Q. Building on a classi-
cal construction of K.-T. Chen [31], the holonomy Lie algebra h.A/ was defined
in [92] as the quotient of the free Lie algebra on the dual vector space A1 D .A1/_

by the ideal generated by the image of the map .d C �/_, where d W A1 ! A2 is
the differential and �W A1 ^ A1 ! A2 is the multiplication map. Then, as shown
in [13, 113] (generalizing a result from [16]), the Malcev Lie algebra m.G/ is iso-
morphic to the LCS completion of h.A/. Moreover, the following complete finiteness
criterion in degree 1 was given in [113]: A finitely generated group G admits a
1-finite 1-model if and only if m.G/ is the LCS completion of a finitely presented
Lie algebra.
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1.6. Cohomology jump loci

The cohomology jump loci of a spaceX are of two basic types: the characteristic varieties,
V i
k
.X/, defined in terms of homology with coefficients in rank one local systems, and the

resonance varieties, Ri
k
.X/ or Ri

k
.A/, constructed from information encoded in either

the cohomology ring H�.X;C/, or in a CDGA model A for X .
The characteristic varieties and the related Alexander invariants of spaces and groups

have their origin in the study of the Alexander polynomials of knots and links. The
basic topological idea in defining these invariants is to take the homology of the max-
imal abelian cover of a connected CW-complex X and view it as a module over the
group ring of H1.X;Z/. One then studies the support loci of these modules, or, alter-
natively, the jump loci V i

k
.X/, viewed as subsets of the character group Char.X/ D

Hom.�1.X/;C�/.
The formality and finiteness properties of a space and its algebraic models put strong

constraints on the geometric structure of the cohomology jump loci. To start with, let X
be a q-finite space, for some q � 1. Then the tangent cone at the trivial character 1 to the
variety V i

k
.X/ is included in Ri

k
.X/, for all i � q and k � 0, see [86].

Now suppose X admits a q-finite q-model A; then TC1.V
i
k
.X// D Ri

k
.A/, for all

i � q, see [40]. Moreover, as a consequence of [40,42], all irreducible components of these
resonance varieties are rationally defined linear subspaces of H 1.A/ D H 1.X;C/, and,
by [25], all the components of V i

k
.X/ passing through 1 are algebraic subtori of Char.X/.

Finally, suppose X is q-formal. Then, for i � q, all the components of Ri
k
.X/ are

rationally defined linear subspaces of H 1.X;C/.

1.7. Models for Kähler manifolds and smooth algebraic varieties

One of the foundational papers of rational homotopy theory is the one by Deligne,
Griffiths, Morgan, and Sullivan [37], where the authors use Hodge theory and the
dd c-lemma to establish the formality of all compact Kähler manifolds, and thus, of all
smooth, complex algebraic projective varieties.

In [100], Morgan constructed a finite-dimensional model for any smooth, complex,
quasi-projective variety X by using a normal crossings divisors compactification xX .
This model was refined by Dupont in [45], by allowing those divisors to intersect like
hyperplanes in a hyperplane arrangement. These models are not always formal, but
still retain good partial formality properties; for instance, if X is the complement of a
hypersurface in CPn, then X is 1-formal, but not formal, in general.

The structure of the characteristic varieties of compact Kähler manifolds and smooth,
quasi-projective varieties was determined in [3, 12, 24, 28, 65, 123]: If X is such a space,
then each variety V i

k
.X/ is a finite union of torsion-translated subtori of Char.X/.

The key to understanding the degree-1 cohomology jump loci is the (finite) set E.X/

of holomorphic, surjective maps f WX ! † for which the generic fiber is connected,
and the target is a smooth curve † with �.†/ < 0, up to reparametrization at the
target. As an application of these techniques, we obtained in [113] the following result.
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Let X be a smooth quasi-projective variety with b1.X/ > 0, and let A be a Dupont
model for X ; then �1.X/ surjects onto a free, non-cyclic free group if and only if
R1
1.A/ ¤ ¹0º.

1.8. Models for compact Lie group actions

Let M be a compact, connected, smooth manifold that supports an almost free action
by a compact, connected Lie group K. Under a partial formality assumption on the
orbit space M=K and a regularity assumption on the characteristic classes of the action,
we constructed in [113] an algebraic model for M with commensurate finiteness and
partial formality properties. The existence of such a model has various implications on
the structure of the cohomology jump loci of M and of the representation varieties
of �1.M/.

In many ways, Sasakian geometry is an odd-dimensional analog of Kähler geome-
try. More explicitly, every compact Sasakian manifold M admits an almost-free circle
action with orbit space a Kähler orbifold. Furthermore, the Euler class of the action
coincides with the Kähler class of the base, h 2 H 2.M=S1;Q/, and this class sat-
isfies the Hard Lefschetz property. As shown by Tievsky in [141], every Sasakian
manifold M as above has a rationally defined, finite-dimensional model over R of
the form .H�.N;R/ ˝

V
.t/; d/, where the differential d vanishes on H�.N;R/ and

sends t to h. Using this model, it is shown in [113] that compact Sasakian manifolds
of dimension 2nC 1 are .n � 1/-formal, and that their fundamental groups are filtered-
formal.

1.9. Models for closed 3-manifolds

With a few exceptions (such as rational homology spheres, knot complements, or Seifert
manifolds), the rational homotopy theory of 3-dimensional manifolds is very difficult to
handle. Part of the reason is that not only 3-manifolds may fail to be formal, and even fail
to have a 1-finite 1-model. Nevertheless, much is known about the Alexander polynomial,
�M , of a closed, orientable 3-manifold M . and the way this polynomial relates to the
cohomology jump loci of M , see [43,61,127,129]. In turn, these invariants inform on the
formality and finiteness properties of M .

For instance, we showed in [129] the following: If b1.M/ is even and positive, and
if �M ¤ 0, then M is not 1-formal. On the other hand, if �M ¤ 0, yet �M .1/ D 0 and
the tangent cone to the zero set of �M is not a finite union of rationally defined linear
subspaces, then M admits no 1-finite 1-model.

When the 3-manifold M fibers over S1, more can be said. For instance, if b1.M/ is
even, then, as shown in [110], M is not 1-formal. On the other hand, if M is 1-formal
and the algebraic monodromy has 1 as an eigenvalue, then, as shown in [109], there are
an even number of 1 � 1 Jordan blocks for this eigenvalue, and no higher size Jordan
blocks.
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1.10. Organization

The paper in divided in roughly five parts.
Part I (Sections 2, 3, 4) treats the general theory of (commutative) differential graded

algebras, formality and its variants, Massey products, descent properties, Hirsch exten-
sions, and Sullivan minimal models.

Part II (Sections 5, 6, 7) deals with several of the Lie algebras that appear in this theory
(graded and filtered Lie algebras, Malcev Lie algebras, and holonomy Lie algebras) and
discusses some of their properties and interconnections.

Part III (Sections 8, 9, 10) contains the basics of rational homotopy theory, such
as completions, rationalizations, and algebraic models for spaces and groups, focusing
mostly on the formality and finiteness properties of such models.

Part IV (Sections 11, 12) brings into play the Alexander invariants and the cohomology
jump loci of spaces and suitable algebraic models, and connects the characteristic and
resonance varieties to various formality and finiteness properties.

Part V (Sections 13, 14, 15) applies these general theories in three particular contexts:
that of Kähler manifolds and smooth, quasi-projective varieties; compact Lie group
actions on manifolds; and closed, orientable 3-manifolds.

2. Differential graded algebras

2.1. Graded algebras

Throughout this work, k will denote a ground field of characteristic 0. Unless otherwise
specified, all tensor products will be over k.

A graded k-vector space is a vector space A over k, together with a direct sum
decomposition, A D

L
n�0 A

n, into vector subspaces. An element a 2 An is said to be
homogeneous; we write jaj D n for its degree, and put xa D .�1/jaja.

A graded algebra over k is a graded k-vector space, A� D
L
n�0 A

n, equipped with
an associative multiplication map, �WA � A ! A, making A into a k-algebra with unit
1 2 A0 such that ja � bj D jaj C jbj for all homogeneous elements a; b 2 A. A graded
algebra A is said to be graded-commutative (for short, a CGA), if a � b D .�1/jajjbjb � a for
all homogeneous a; b 2 A. A morphism between two graded algebras is a k-linear map
'WA! B that preserves gradings and satisfies '.a � b/ D '.a/ � '.b/ for all a; b 2 A.

A graded k-algebra A is of finite-type (or, locally finite) if all the graded pieces An

are finite-dimensional. We say that A is q-finite (for some integer q � 0) if dimkA
n <1

for n � q, and we say that A is finite-dimensional (as a k-vector space) if dimk A <1.
Finally, we say that A is connected if A0 is the k-span of the unit 1 (and thus A0 D k).

The most basic example of a k-CGA is the free commutative graded algebra on a
graded k-vector space V �; denoted by

V
V , this (connected) algebra is the tensor product

of the symmetric algebra on V even with the exterior algebra on V odd.
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2.2. Differential graded algebras

The next notion, which plays a key role in the theory described here, unifies the concept
of a graded algebra with that of a cochain complex.

Definition 2.1. A differential graded algebra (for short, a DGA) over a field k is a graded
k-algebra, A�, equipped with a differential d WA! A of degree 1 satisfying the graded
Leibniz rule: d.ab/ D d.a/ � b C xa � d.b/ for all homogeneous a; b 2 A.

Viewing .A; d/ as a cochain complex, we write Zn.A/D ker.d WAn! AnC1/ for the
space of n-cocycles and Bn.A/ D im.d WAn�1 ! An/ for the space of n-coboundaries,
and we let Hn.A/ D Zn.A/=Bn.A/ be the n-th cohomology group of .A; d/. The direct
sum of those vector spaces, H�.A/ D

L
i�0 H

i .A/, inherits the structure of a graded
algebra from A. When H�.A/ is of finite-type, we denote by bn.A/ D dimk H

n.A/ the
Betti numbers of A. Given an n-cocycle a, we denote by Œa� 2 Hn.A/ its cohomology
class.

A commutative differential graded algebra (for short, a CDGA) is a DGA A D .A�; d /

for which the underlying graded algebra is graded-commutative. In this case, the coho-
mology algebra H�.A/ inherits the structure of a CGA.

If A is a connected DGA, then the differential d WA0 ! A1 vanishes; indeed, d.1/ D
d.1 � 1/D d.1/ � 1C 1 � d.1/, and so d.1/D 0, since char.k/D 0. Therefore,H 0.A/D k
and the cohomology algebra H�.A/ is also connected.

2.3. Weak equivalences

A morphism between two DGAs is a k-linear map, 'WA ! B , which preserves grad-
ings, multiplicative structures, and differentials; in other words, ' is a map of graded
k-algebras which is also a map of cochain complexes. Such a map induces a morphism,
'�WH�.A/! H�.B/, between the respective cohomology algebras. We say that ' is a
quasi-isomorphism if '� is an isomorphism.

A weak equivalence between two DGAs, A and B , is a finite sequence of quasi-
isomorphisms (going either way) connecting A to B; for instance,

A A1 � � � A`�1 B: 

!'1  

!
'2

 

!  

!
'` (2.1)

Note that a weak equivalence induces a well-defined isomorphismH�.A/ ŠH�.B/. If a
weak equivalence between A and B exists, the two DGAs are said to be weakly equivalent,
written A ' B . Evidently,' is an equivalence relation among DGAs.

An analogous notion holds in the category of commutative DGAs. Namely, if A and B
are two CDGAs, we say that A ' B is there is a zigzag of quasi-isomorphisms as in (2.1)
that go through CDGAs Ai . The following theorem resolves a long-standing question,
by showing that weak equivalence among CDGAs holds even if one allows the zigzags
from (2.1) to go through DGAs.
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Theorem 2.2 ([26]). Let A and B be two k-CDGAs. Then A ' B as DGAs if and only if
A ' B as CDGAs.

All these concepts have partial analogs. Fix an integer q � 0. We say that a DGA

(or CDGA) morphism 'WA ! B is a q-quasi-isomorphism if '� is an isomorphism in
degrees up to q and a monomorphism in degree q C 1. A q-equivalence between two
DGAs (or CDGAs), A and B , is a zigzag of q-quasi-isomorphisms of DGAs (or CDGAs)
connecting A to B . If such a zigzag exists, we say that A and B are q-equivalent and
write this as A'q B . Again,'q is an equivalence relation among either DGAs or CDGAs.
We do not know whether Theorem 2.2 holds with ' replaced by 'q , for arbitrary q, but
we expect it does.

Clearly, if A ' B , then A 'q B for all q � 0, and if A 'q B , then A 'n B for
all n � q. Moreover, if A is of finite-type and A ' B , then B is also of finite-type and
bn.A/D bn.B/ for all n� 0. Likewise, ifA is q-finite andA'q B , then B is also q-finite
and bn.A/D bn.B/ for all n� q. The next lemma shows that every q-finite CDGA may be
replaced (up to q-equivalence) by a finite-dimensional one, whose graded pieces vanish
above degree q C 1.

Lemma 2.3 ([113]). Let A be a q-finite CDGA. There is then a natural q-equivalence,
A 'q AŒq�, where AŒq� is a finite-dimensional CDGA with AŒq�i D 0 for all i > q C 1.

The construction of AŒq� is done in two steps: first one replaces A by its truncation,
xA D A=A>qC1 D

L
i�qC1A

i , and then one defines a sub-CDGA AŒq� � xA by setting

AŒq� D
M
i�q

Ai ˚

�
dAq C

X
i;j�q

iCjDqC1

Ai � Aj
�
:

An analogous result holds for DGAs.

2.4. Homotopies and equivalences

Let A be a k-DGA, and let
V
.t; dt/ be the free k-DGA generated by elements t in degree 0

and u in degree 1, and differential d given by d.t/ D u and d.u/ D 0. For each s 2 k, let
evs W

V
.t; dt/! k be the DGA map sending t to s and dt to 0. This map induces another

DGA map,

Evs ´ id˝ evs WA˝
^
.t; dt/ �! A˝ k D A:

Two DGA maps, '0; '1WA ! B , are said to be homotopic if there is a DGA map,
ˆWA!B ˝

V
.t;dt/, such that Evs ıˆD 's for sD 0;1. It is readily seen that homotopic

DGA maps induce the same map in cohomology.
We say that two DGA morphisms, 'WA! B and '0WA0 ! B 0, are weakly equivalent

(written ' ' '0) if there are two zigzags of weak equivalences of DGAs, and DGA maps
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'1; : : : ; '`�1 such that the following diagram commutes, up to homotopy:

A A1 � � � A`�1 A0

B B 01 � � � B 0
`�1

B 0:

 

! '  ! '1

 

! 1  

!
 2

 ! '`�1

 

!  

!
 `

 ! '0

 

! 
0
1  

!
 02

 

!  

!
 0
`

(2.2)

The notion of q-equivalence (written ' 'q '
0) is defined similarly, and so are the

analogous notions in the CDGA category.

2.5. Poincaré duality

Let A be a finite-dimensional, commutative graded algebra over a field k of characteris-
tic 0. We say that A is a Poincaré duality algebra of dimension n (for short, an n-PDA)
if Ai D 0 for i > n and An D k, while the bilinear forms Ai ˝ An�i ! An D k given
by the product are non-degenerate, for all 0 � i � n (in particular, A is connected). If M
is a closed, connected, orientable, n-dimensional manifold, then, by Poincaré duality, the
cohomology algebra A D H�.M;k/ is an n-PDA.

Now let A D .A�; d / be a CDGA. We say that A is a Poincaré duality differential
graded algebra of dimension n (for short, an n-PD-CDGA) if the underlying algebra A is
an n-PDA, and, moreover, Hn.A/ D k, or, equivalently, dAn�1 D 0.

Clearly, if A is an n-PDA, then .A; 0/ is an n-PD-CDGA. Hasegawa showed in [69] that
the minimal model for the classifying space of a finitely-generated nilpotent group is a
PD-CDGA. Noteworthy is the following result of Lambrechts and Stanley [82]

Theorem 2.4 ([82]). Let .A;d/ be a CDGA such thatH 1.A/D 0 andH�.A/ is an n-PDA.
Then A is weakly equivalent to an n-PD-CDGA.

3. Formality

3.1. Formal DGAs

In this section, we cover the notion of formality. Introduced in [37, 137] and further
developed in [66, 68, 91, 100, 105, 122, 132, 139], and many other works, this notion plays
a central role in rational homotopy theory.

Definition 3.1 ([37, 137]). A DGA .A; dA/ is said to be formal if it is weakly equivalent
to .H�.A/; 0/, its cohomology algebra endowed with the zero differential.

Note that A is formal if and only if it is weakly equivalent to some DGA B with zero
differential, since, in that case, we necessarily have .B; 0/ ' .H�.A/; 0/. In like manner,
we say that a CDGA .A; dA/ is formal if .A; dA/ ' .H�.A/; 0/ via a weak equivalence
through CDGAs.
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Example 3.2. Let AD
V
.a1; a2; b/ be the free CGA on generators a1; a2 in degree n and

b in degree 2n � 1, equipped with the differential d given by dai D 0 and db D a1a2. If
n� 2, the CDGA .A;d/ is not formal, sinceH�.A/ is generated by the elements ui D Œai �,
and so any weak equivalence from .A; d/ to .H�.A/; 0/ would need to take the non-zero
element b to 0, by degree reasons.

Formality is preserved under weak equivalences; that is, if A ' B , then A is formal
if and only if B is formal. Moreover, as shown by Halperin and Stasheff in [68], a CDGA

.A; d/ with H�.A/ of finite-type is formal if and only if the identity map of H�.A/ can
be realized by a weak equivalence between .A; d/ and .H�.A/; 0/.

The next result, originally proved directly by Saleh in [122], now follows at once from
Theorem 2.2.

Corollary 3.3 ([122]). Let A be a k-CDGA. Then A is formal as a DGA if and only if A is
formal as a CDGA.

3.2. Intrinsic formality

We now present two variants of formality, the first being a rigid type of formality and the
second formality up to a degree.

A strong form of formality was introduced by Sullivan in [137], and developed
in [50, 68, 88]. We say that a k-cga H is intrinsically formal if any k-DGA .A; d/ whose
cohomology is isomorphic to H must be formal, that is, .A; d/ ' .H; 0/. A similar
notion holds for CDGAs; by Theorem 2.2, if H is intrinsically formal in the category
of DGAs, it is also intrinsically formal in the category of CDGAs. Plainly, if A is a
DGA or a CDGA such that H�.A/ is intrinsically formal, then A is formal. The fol-
lowing results of Sullivan and Halperin–Stasheff provide large classes of intrinsically
formal CGAs.

Theorem 3.4 ([137]). Let H be the quotient of a finitely generated, free CGA by an ideal
generated by a regular sequence, that is, a sequence r1; : : : ; rn of homogeneous elements
in H such that ri is not a zero-divisor in H=.r1; : : : ; ri�1/, for each i � n. Then H is
intrinsically formal.

Algebras of the form H D
V
V=.r1; : : : ; rn/ as above are sometimes called hyperfor-

mal, see [50,88]. In particular, exterior algebras and polynomial algebras are hyperformal,
and thus intrinsically formal.

Theorem 3.5 ([68]). Let H be a connected CGA such that H i D 0 for 1 � i � k and for
i > 3k C 1. Then H is intrinsically formal.

3.3. Partial formality

The notion of formality can also be relaxed, as follows. Fix an integer q � 0. We say
that a DGA (or a CDGA) A is q-formal if .A; dA/ 'q .H�.A/; 0/ as DGAs (or CDGAs).
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We do not know whether the analog of Corollary 3.3 holds in this context, but we expect
it does.

Clearly, if A is formal, then A is q-formal, for all q � 0, and if A is q-formal, then it is
n-formal for every n � q. It is readily seen that connected DGAs are 0-formal. Moreover,
if A 'q B , then A is q-formal if and only if B is q-formal.

Example 3.6. Let A D
V
.a1; : : : ; a2q; b/ be the exterior algebra on specified generators

in degree 1, equipped with the differential d given by dai D 0 and db D a1a2 C � � � C
a2q�1a2q . It follows from [91, Remark 5.4] that the CDGA .A; d/ is .q � 1/-formal but
not q-formal.

We refer to Măcinic [91] for a more thorough discussion of partial formality and
related notions (see also [105, 132]).

3.4. Field extensions and formality

As is well known, a finite-type, rationally defined CDGA is formal if and only it is formal
over any field of characteristic 0. This foundational result was proved independently and
in various degrees of generality by Sullivan [137], Neisendorfer and Miller [101], and
Halperin and Stasheff [68]. We conclude this section with a discussion of this topic and
some recent generalizations from [132] to partially formal CDGAs.

Given a DGA .A; d/ over a field k of characteristic 0 and a field extension k � K, we
let .A˝k K; d ˝ idK/ be the CDGA over K obtained by extending scalars.

Theorem 3.7 ([68]). Let .A; dA/ and .B; dB/ be two CDGAs over k whose cohomology
algebras are connected and of finite type. Suppose there is an isomorphism of graded
algebras, f WH�.A/! H�.B/, and suppose f ˝ idKWH

�.A/˝K! H�.B/˝K can
be realized by a weak equivalence between .A˝K; dA ˝ idK/ and .B ˝K; dB ˝ idK/.
Then f can be realized by a weak equivalence between .A; dA/ and .B; dB/.

This theorem has the following corollary. The result is stated without proof in [68,
Corollary 6.9]; a complete proof is provided in [132, Corollary 4.17]. Self-contained
proofs under some additional hypotheses were previously given in [137, Theorem 12.1]
and [101, Corollary 5.2].

Corollary 3.8 ([68]). LetAD .A;dA/ be a connected k-CDGA withH�.A/ of finite-type.
Then A is formal if and only if the K-CDGA .A˝K; dA ˝ idK/ is formal.

These classical formality results were generalized in [132, Theorem 4.19], which
extends the descent-of-formality results of Sullivan, Neisendorfer–Miller, and Halperin–
Stasheff to the partially formal setting.

Theorem 3.9 ([132]). Let .A; dA/ be a CDGA over k, and let k � K be a field extension.
Suppose H�qC1.A/ is finite-dimensional and H 0.A/ D k. Then .A; dA/ is q-formal if
and only if .A˝K; dA ˝ idK/ is q-formal.
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3.5. Formality of DGA maps

The notion of formality may be extended from the objects to the morphisms of the DGA

category, as follows.

Definition 3.10. A DGA morphism 'WA! B is said to be formal if there is a diagram of
the form (2.2) connecting ' to the induced homomorphism '�WH�.A/!H�.B/ between
cohomology algebras (viewed as DGAs with zero differentials). Likewise, ' is said to be
q-formal, for some q � 0, if ' 'q '�.

Note that in the first case both A and B need to be formal DGAs, while in the second
case both A and B need to be q-formal. Also note that if ' is formal and ' ' '0, then '0

is also formal, and similarly for q-formality.
Completely analogous notions may be defined for CDGA morphisms, although we

do not know whether a statement analogous to Theorem 2.2 holds in this context.
Nevertheless, a descent of formality result analogous to Corollary 3.8 holds.

Theorem 3.11 ([137, 146]). Let 'WA! B be a morphism between connected k-CDGAs
with finite Betti numbers, and let k � K be a field extension. Then ' is formal if and only
if ' ˝ idKWA˝K! B ˝K is formal.

We do not know whether a statement in the spirit of Theorems 3.9 and 3.11 holds for
q-formal maps.

Example 3.12. Fix an even integer n � 2 and consider the CDGA morphism 'W .A; d/!

.B; 0/, where A D
V
.a; b/, with jaj D n, jbj D 2n � 1, and differential given by

d.a/ D 0 and d.b/ D a2; B D
V
.c/ with jcj D 2n � 1; and ' is given by '.a/ D 0

and '.b/ D c. Then H�.A/ D
V
.u/ with jaj D n, and the CDGA map  WA! H�.A/

given by  .a/ D u and  .b/ D 0 induces the identity in cohomology. Nevertheless, the
map '�W zH�.A/! zH�.B/ is trivial, and so the morphism ', which is non-trivial, cannot
be formal.

3.6. Massey products

A well-known obstruction to formality is provided by the higher-order Massey products,
introduced by W. S. Massey in [95], and studied for instance in [5, 78, 97, 116, 117, 121,
143].

Let .A; d/ be a k-DGA and let u1; : : : ; un be elements in H�.A/; without loss of
essential generality, we may assume that n � 3 and each ui is homogeneous and of
positive degree. A defining system for u1; : : : ; un is a collection of elements ai;j 2 A
such that dai�1;i D 0 and Œai�1;i � D ui for 1 � i � n and dai;j D

P
i<r<j xai;rar;j for

0 � i < j � n and .i; j / ¤ .0; n/. It is readily verified that the element

˛´
X
0<r<n

xa0;rar;n (3.1)
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is a cocycle, of degree j˛j D 2� nC
Pn
iD1 jui j. The n-fold Massey product hu1; : : : ; uni,

then, is the subset ofH�.A/ consisting of the cohomology classes Œ˛� corresponding to all
possible defining systems for u1; : : : ;un. We say that the Massey product is defined if there
is at least one such defining system, or, equivalently, hu1; : : : ; uni ¤ ;, in which case the
indeterminacy of the Massey product is the subset ¹u� v j u;v 2 hu1; : : : ; uniº �H�.A/.
When a Massey product is defined, we say it vanishes if it contains the element 0;
otherwise, it is non-vanishing.

The simplest Massey triple products are as follows. Let u1; u2; u3 be elements in
H 1.A/ such that u1u2 D u2u3 D 0. We may then choose 1-cocycles a0;1; a1;2; a2;3
representing u1; u2; u3 and 1-cochains a0;2 and a1;3 such that da0;2 D �a0;1a1;2 and
da1;3 D �a1;2a2;3, The triple product hu1; u2; u3i is then the subset ofH 2.A/ consisting
of the cohomology classes �Œa0;1a1;3 C a0;2a2;3�, for all such choices of defining sys-
tems. Due to the ambiguity in the choices made, hu1; u2; u3i may be viewed as a coset of
u1 �H

1.A/CH 1.A/ � u3 in H 2.A/.

Example 3.13. Let .A; d/ be the CDGA from Example 3.2 with n D 1; namely, A is the
exterior algebra on generators a1; a2; b in degree 1 and differential given by dai D 0

and db D a1a2. Letting ui D Œai � 2 H
1.A/, we have that the triple Massey products

hu1; u1; u2i D ¹Œa1b�º and hu1; u2; u2i D ¹Œba2�º are defined, have 0 indeterminacy, and
are non-vanishing; in fact, the two cohomology classes generate H 2.A/. Therefore, A is
not formal.

Massey products enjoy the following (partial) functoriality properties.

Proposition 3.14 ([78, 97]). Let 'WA! B be a DGA morphism, and let '�WH�.A/!
H�.B/ be the induced morphism in cohomology; then

'�.hu1; : : : ; uni/ � h'
�.u1/; : : : ; '

�.un/i: (3.2)

Moreover, if ' is a quasi-isomorphism, then (3.2) holds as equality.

In particular, if hu1; : : : ; uni is defined, then h'�.u1/; : : : ; '�.un/i is also defined;
and if, in addition, h'�.u1/; : : : ; '�.un/i is non-vanishing, then hu1; : : : ; uni is also
non-vanishing. As another consequence, the following holds: if A ' B , then all Massey
products in H�.A/ vanish if and only if all Massey products in H�.B/ vanish.

Finally, if the map 'WA! B is a q-quasi-isomorphism, for some q � 0, then (3.2)
holds as equality in degrees up to q C 1. Thus, if A 'q B , then all Massey products in
H�qC1.A/ vanish if and only if all Massey products in H�qC1.B/ vanish.

3.7. Massey products and formality

The vanishing of Massey products provides a well-known obstruction to formality. An
analogous statement holds for partial formality. For completeness, we make a formal
statement and sketch the proof.
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Proposition 3.15. Let .A; d/ be a k-DGA. If A formal, then all Massey products in
H�.A/ vanish. Furthermore, if A is q-formal, for some q � 1, then all Massey products
in H�qC1.A/ vanish.

Proof. First suppose d D 0, so that H�.A/ D A. Let hu1; : : : ; uni be a Massey product.
We may then choose a defining system with ai�1;i D ui and all other ai;j D 0, which
implies that the cocycle ˛ from (3.1) is equal to 0; thus, hu1; : : : ; uni vanishes.

Now suppose .A; d/ is formal, that is, .A; d/ ' .B; 0/. As we just saw, all Massey
products vanish inH�.B/; hence, they must also vanish inH�.A/. The case when .A; d/
is q-formal is treated completely analogously.

In general, formality is stronger than the mere vanishing of all Massey products;
in fact, it is equivalent to the uniform vanishing of all such products. This phenomenon
will be illustrated in Theorem 10.9, where we shall see examples of non-formal CDGAs
for which all Massey products vanish.

4. Minimal models

4.1. Hirsch extensions

Given a graded k-vector space V �, recall that
V
V denotes the free graded, graded-

commutative algebra generated by V . Choosing a homogeneous basis X D ¹x˛º˛2J
for V , this algebra may be identified with

V
X´

N
˛

V
.x˛/, where

V
.x/ is the exterior

(respectively, polynomial) algebra on a single generator x of odd (respectively, even)
degree.

Now let AD .A�; dA/ be an arbitrary CDGA. A Hirsch extension A (of degree n) is an
inclusion, .A;dA/ ,! .A˝

V
V;d/, where V is a k-vector space concentrated in degree n

and the differential d sends V into AnC1. We say this is a finite Hirsch extension if V is
finite-dimensional. The next lemma follows straight from the definitions.

Lemma 4.1. Let ˛W .A; dA/ ,! .A˝
V
V; d/ be the inclusion map of a Hirsch extension

of degree nC 1. Then ˛ is an n-quasi-isomorphism.

Now suppose V is an oddly-graded, finite-dimensional vector space, with homoge-
neous basis ¹ti 2 V mi º. Given a degree 1 linear map, � W V � ! Z�C1.A/, we define
the corresponding Hirsch extension as the CDGA .A ˝�

V
V; d/ where the differential

d extends the differential on A, while dti D �.ti /.

Proposition 4.2 ([85]). The isomorphism type of the CDGA .A˝�
V
V; d/ depends only

on A and the homomorphism induced in cohomology, Œ� �W V � ! H�C1.A/. Moreover,
Œ� � and Œ� � ı g give isomorphic extensions, for any automorphism g of the graded vector
space V .
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The above result is proved in [85, Lemmas II.2 and II.3] in the case when all the
degrees mi are equal; the same argument works in the general case.

Proposition 4.3 ([114]). Let A D B ˝�
V
.ti / be a Hirsch extension with variables ti of

odd degree mi . If B is an n-PD-CDGA, then A is an m-PD-CDGA, where m D nC
P
mi .

4.2. Minimal CDGAs

The following key definition is due to Sullivan [137].

Definition 4.4 ([137]). A CDGA A D .A�; d / is said to be minimal if the following
conditions are satisfied.

(1) A D
V

X is the free CGA on positive-degree generators X D ¹x˛º˛2J indexed
by a well-ordered set J .

(2) dx˛ 2
V
.¹xˇ j ˇ < ˛º/ for all ˛.

(3) dx˛ 2
VC

X �
VC

X for all ˛, where
VC

X is the ideal generated by X.

Letting V � be the graded vector space generated by the set X, we may also write
A D .

V
V; d/. We say that A is q-minimal (for some q � 1) if A is minimal and V i D 0

for all i > q, or, equivalently, deg.x˛/ � q for all ˛.
Here is an alternative interpretation of this notion. The CDGA .A; d/ is minimal if

AD
S
j�0Aj , whereA0Dk, eachAj is a Hirsch extension ofAj�1, and the differential d

is decomposable, i.e., dA � AC ^AC, where AC D
L
n�1A

n. This yields an increasing,
exhausting filtration of A by the sub-DGAs Aj . The decomposability of the differential is
automatically satisfied if A is generated in degree 1.

The next lemma illustrates some of the usefulness of the notion of 1-minimality.

Lemma 4.5 ([39]). Let A be a 1-minimal CDGA, and let '; WA! B be two homotopic
CDGA morphisms. Suppose dB D 0 and '1WA1 ! B1 is surjective. Then  1WA1 ! B1

is also surjective.

4.3. Minimal models

Let A be a CDGA. We say that a CDGA M is a minimal model for A if M is a minimal
CDGA and there exists a quasi-isomorphism �WM! A. Likewise, we say that a minimal
CDGA M is a q-minimal model for A if M is generated by elements of degree at most q,
and there exists a q-quasi-isomorphism �WM ! A. A basic result in rational homotopy
theory is the following existence and uniqueness theorem, first proved for minimal models
by Sullivan [137], and for partial minimal models by Morgan [100].

Theorem 4.6 ([100,137]). LetA be a k-CDGA withH 0.A/Dk. ThenA admits a minimal
model, M.A/, unique up to isomorphism. Likewise, for each q � 0, there is a q-minimal
model, Mq.A/, unique up to isomorphism.
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By construction, M.A/D .
V
V;d/ and Mq.A/D .

V
V�q; d /, for some graded vector

space V . It follows that the minimal model M.A/ is isomorphic to a minimal model built
from the q-minimal model Mq.A/ by means of Hirsch extensions in degrees q C 1 and
higher. Thus, in view of Lemma 4.1, Mq.A/ 'q M.A/.

Applying Lemma 2.3, we obtain the following finiteness criterion for CDGAs.

Proposition 4.7. Let A be a q-finite CDGA. Then bi .Mq.A// <1 for all i � q C 1.

The minimal model comes with a structural quasi-isomorphism, �WM.A/ ! A.
If �0WM0.A/!A is another minimal model, there is an isomorphism WM.A/

Š
�!M0.A/

such that �0 ı  ' �. Furthermore, the minimal model is functorial: if 'WA ! B is a
morphism between two CDGAs with connected homology, there is an induced morphism
of CDGAs, M.'/WM.A/!M.B/, such that �B ıM.'/ ' ' ı �A. Similar results hold
for the partial minimal models.

The above considerations imply the following: two CDGAs with connected homology
are weakly isomorphic if and only if their minimal models are isomorphic. Alternatively,
if A and A0 are two CDGAs with connected homology, then A ' A0 if and only if there is
a minimal CDGA M and a short zigzag of quasi-isomorphisms,

A M A0:

 

!
�0

 

!�

Analogous results hold for q-minimal models.

4.4. Minimality and formality

In [37], Deligne, Griffiths, Morgan, and Sullivan gave a very practical interpretation of
formality in the context of minimal CDGAs.

Theorem 4.8 ([37]). Let A D .
V
V; d/ be a minimal CDGA. Then A is formal if and

only if each subspace V i D Ai \ V decomposes as a direct sum, V i D N i ˚ C i , where
C i D Zi .A/ \ V and any cocycle in the ideal of A generated by

L
N i is a coboundary.

As noted in [37], choosing complements N i to C i with the specified property is
equivalent to choosing a CDGA-morphism .A; d/ ! .H�.A/; 0/ inducing the identity
in cohomology. Furthermore, the existence of splittings V i D N i ˚ C i such that any
cocycle in the ideal generated by

L
iN

i is a coboundary is one way of saying that one may
make uniform choices of subspaces spanned by defining systems so that all the cocycles
representing Massey products are coboundaries – a stronger condition than saying that
each individual Massey product vanishes.

Work of Sullivan [137] and Morgan [100] shows that a CDGA .A; d/ is formal if and
only of there exists a quasi-isomorphism  WM.A/ ! .H�.A/; 0/. Likewise, Măcinic
showed in [91] that A is q-formal if and only if there exists a q-quasi-isomorphism
 q WMq.A/ ! .H�.A/; 0/. The following lemma provides a convenient criterion for
partial formality.
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Lemma 4.9 ([132]). Let A be a k-CDGA, and suppose that dimk H
qC1.Mq.A// <1.

Then A is q-formal if and only if Mq.A/ is q-formal.

Minimal models are also relevant when considering the formality of morphisms
of CDGAs. Indeed, let 'W A ! B be a CDGA map; then ' is formal (in the sense of
Definition 3.10) if and only if there is a diagram of the form

A M.A/ .H�.A/; 0/

B M.B/ .H�.B/; 0/

 

! '

 

!�A

 ! M.'/

 

!
 A

 ! '�

 

!�B  

!
 B

which commutes up to homotopy.
Analogous statements hold for q-formal maps, with the middle arrow replaced by the

morphism Mq.'/WMq.A/!Mq.B/.

4.5. The dual of a 1-minimal CDGA

LetAD .A�;d / be a minimal CDGA over k, generated in degree 1. Following [53,77,100],
let us consider the filtration

k D A.0/ � A.1/ � A.2/ � � � � � A D
[
i�0

A.i/; (4.1)

where A.1/ is the subalgebra of A generated by the cocycles in A1, and A.i/ for i > 1
is the subalgebra of A generated by all elements x 2 A1 such that dx 2 A.i � 1/. Each
inclusion A.i � 1/ � A.i/ is a Hirsch extension of the form A.i/ D A.i � 1/ ˝

V
Vi ,

where
Vi ´ ker

�
H 2.A.i � 1//! H 2.A/

�
:

Taking degree 1 pieces in the filtration (4.1), we obtain the filtration kDA.0/1 �A.1/1 �
� � � � A1. Clearly, A1 is a 1-minimal CDGA.

Let us assume now that each of the aforementioned Hirsch extensions is finite, that is,
dimVi <1 for all i . Using the fact that d.Vi / � A.i � 1/, we infer that each dual vector
space Li D .A.i/

1/_ acquires the structure of a k-Lie algebra by setting

hŒu_; v_�; wi ´ hu_ ^ v_; dwi (4.2)

for u; v; w 2 A.i/1. Clearly, d.V1/ D 0, and thus L1 D .V1/
_ is an abelian Lie algebra.

Using the vector space decompositions

A.i/1 D A.i � 1/1 ˚ Vi and A.i/2 D A.i � 1/2 ˚ .A.i � 1/1 ˝ Vi /˚

2̂

Vi ;

one easily sees that the canonical projection Li � Li�1, defined as the dual of the
inclusion map A.i � 1/ ,! A.i/, has kernel V _i , and this kernel is central inside Li .
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Therefore, we obtain a tower of finite-dimensional, nilpotent k-Lie algebras,

0 L1 L2 � � � Li � � � : 

!

 

�

 

�

 

�

 

� (4.3)

Let L D L.A/ be the inverse limit of this tower, equipped with the inverse limit filtra-
tion. Then L is a complete, filtered Lie algebra with the property that L=yiC1.L/ D Li
for each i � 1. Conversely, from a tower as in (4.3), one can construct a sequence of
finite Hirsch extensions as in (4.1). Let A.i/ D A.i � 1/˝

V
Vi be one of the CDGAs in

this sequence, with differential given by (4.2). Then A.i/ coincides with the Chevalley–
Eilenberg complex C.Li / D .

V
L_i ; d / associated to the finite-dimensional Lie algebra

Li D L.A.i//; that is, the CDGA whose underlying graded algebra is the exterior algebra
on the dual vector space L_i , and whose differential is the extension by the graded Leibniz
rule of the dual of the signed Lie bracket on the algebra generators. By the definition of
Lie algebra cohomology, then,

H�.A.i// Š H�.Li ;k/:

The direct limit of the above sequence of Hirsch extensions, A D
S
i�0 A.i/, is a

minimal k-CDGA generated in degree 1. We obtain in this fashion an adjoint correspon-
dence that sends A to the pronilpotent Lie algebra L D L.A/ and conversely, sends a
pronilpotent Lie algebra L to the minimal algebra A D A.L/. Under this correspondence,
filtration-preserving CDGA morphisms A! B get sent to filtration-preserving Lie mor-
phisms L.B/! L.A/, and the other way around.

4.6. Positive weights

Following Body, Mimura, Shiga, and Sullivan [20], Morgan [100], and Sullivan [137], we
say that a commutative graded algebraA� has positive weights if each graded piece admits
a vector space decomposition

Ai D
M
˛2Z

Ai;˛

withAi;˛ D 0 for ˛ � 0, such that xy 2AiCj;˛Cˇ for x 2Ai;˛ and y 2Aj;ˇ . Furthermore,
we say that a CDGA .A; d/ has positive weights if the underlying CGA A� has positive
weights, and the differential is homogeneous with respect to those weights, that is,
dx 2 AiC1;˛ for x 2 Ai;˛ .

Now let .A; d/ be a minimal CDGA generated in degree one, endowed with the
canonical filtration ¹Aiºi�0 constructed in (4.1), where each sub-CDGA Ai is given by a
Hirsch extension of the form Ai�1 ˝

V
Vi . The underlying CGA A possesses a natural

set of positive weights, which we will refer to as the Hirsch weights: simply declare
Vi to have weight i , and extend those weights to A multiplicatively. We say that the
CDGA .A; d/ has positive Hirsch weights if the differential d is homogeneous with
respect to those weights. If this is the case, each sub-CDGA Ai also has positive Hirsch
weights.
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Lemma 4.10 ([132]). Let A be a minimal CDGA generated in degree one, with dual Lie
algebra L D L.A/. Then A has positive Hirsch weights if and only if L D bgr.L/.

The next example (extracted from [132]) shows that the hypothesis of Lemma 4.10 is
more restrictive than the Lie algebra L D L.A/ being filtered-formal.

Example 4.11. Let g be the 5-dimensional Lie algebra with basis e1; : : : ; e5 and with Lie
brackets given by Œe1; e2� D e3 � e4=2� e5, Œe1; e3� D e4, Œe2; e3� D e5, and Œei ; ej � D 0,
otherwise. It is readily verified that g is filtered-formal, although the differential of the
1-minimal CDGA A D

V
g_ is not homogeneous on the Hirsch weights.

If a minimal CDGA is generated in degree 1 and has positive weights, but these weights
do not coincide with the Hirsch weights, then the dual Lie algebra need not be filtered-
formal. This phenomenon is illustrated in the next example, adapted from [34, 132].

Example 4.12. Let g be the nilpotent, 5-dimensional Lie algebra with non-zero Lie brack-
ets given by Œe1; e3� D e4 and Œe1; e4� D Œe2; e3� D e5. The center of g is 1-dimensional,
generated by e5, while the center of gr.g/ is 2-dimensional, generated by e2 and e5. There-
fore, g 6Š gr.g/, and so g is not filtered-formal. The 1-minimal CDGA AD

V
g_ does have

positive weights, given by the index of the chosen basis, but A does not admit positive
Hirsch weights.

5. Lie algebras and filtered formality

5.1. Graded Lie algebras

Once again, let us fix a ground field k of characteristic 0. Let g be a Lie algebra over k;
that is, a k-vector space g endowed with an alternating bilinear operation, Œ ; �Wg� g! g,
that satisfies the Jacobi identity. We say that g is a graded Lie algebra if g decomposes
as g D

L
i�1 gi , the Lie bracket is compatible with the grading, and the Lie identities

are satisfied with the appropriate signs. A morphism of graded Lie algebras is a k-linear
map 'W g! h which preserves the Lie brackets and the degrees; in particular, ' induces
k-linear maps 'i Wgi ! hi for all i � 1.

The most basic example of a graded Lie algebra is constructed as follows. Let V
a k-vector space. The tensor algebra T .V / has a natural Hopf algebra structure, with
comultiplication � and counit " the algebra maps given by �.v/ D v ˝ 1C 1˝ v and
".v/ D 0, for v 2 V . The free Lie algebra on V is the set of primitive elements in the
tensor algebra; that is, Lie.V / D ¹x 2 T .V / j �.x/ D x ˝ 1C 1˝ xº, with Lie bracket
Œx; y� D x ˝ y � y ˝ x and grading induced from T .V /.

A Lie algebra g is said to be finitely generated if there is an epimorphism
'WLie.V /! g for some finite-dimensional k-vector space V . If, moreover, the Lie ideal
r D ker.'/ is finitely generated as a Lie algebra, then g is called finitely presented.
Now suppose all elements of V are assigned degree 1 in T .V /. Then the inclusion
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�W Lie.V / ! T .V / identifies Lie1.V / with T1.V / D V . Furthermore, � maps Lie2.V /
to T2.V / D V ˝ V by sending Œv; w� to v ˝w �w ˝ v for each v;w 2 V ; we thus may
identify Lie2.V / Š V ^ V by sending Œv; w� to v ^ w.

If gD Lie.V /=r, with V a (finite-dimensional) vector space concentrated in degree 1,
then we say g is (finitely) generated in degree 1. If, moreover, the Lie ideal r is homoge-
neous, then g is a graded Lie algebra. In particular, if g is finitely generated in degree 1
and the homogeneous ideal r is generated in degree 2, then we say g is a quadratic Lie
algebra.

5.2. Filtrations

A filtration F on a Lie algebra g is a nested sequence of Lie ideals, g D F1.g/ �

F2.g/� � � � . A well-known such filtration is the derived series, with terms Fi .g/D g.i�1/

inductively defined by g.0/ D g and g.i/ D Œg.i�1/;g.i�1/� for i � 1. Clearly, the derived
series is preserved by Lie algebra maps, and the quotient Lie algebras g=g.i/ are solvable.
Moreover, if g is a graded Lie algebra, all these solvable quotients inherit a graded Lie
algebra structure.

The existence of a filtration F on a Lie algebra g makes g into a topological
vector space, by defining a basis of open neighborhoods of an element x 2 g to be
¹xCFk.g/ºk2N . The fact that each basis neighborhood Fk.g/ is a Lie subalgebra implies
that the Lie bracket map Œ ; �Wg� g! g is continuous; thus, g is, in fact, a topological Lie
algebra. We say that g is complete (respectively, separated) if the underlying topological
vector space enjoys those properties.

Every ideal a of g inherits a filtration, given by Fk.a/´ Fk.g/ \ a. Likewise, the
quotient Lie algebra, g=a, has a naturally induced filtration with terms Fk.g/=Fk.a/.
Letting xa be the closure of a in the filtration topology, we have that xa is a closed ideal of
g. Moreover, by the continuity of the Lie bracket, Œxa;xr� D Œa; r�. Finally, if g is complete
(or separated), then g=xa is also complete (or separated).

For each j � k, there is a canonical projection, g=Fj .g/ ! g=Fk.g/, compatible
with the projections from g to its quotient Lie algebras g=Fk.g/. The completion of the
Lie algebra g with respect to the filtration F is defined as the limit of this inverse system,
yg D lim
 �k

g=Fk.g/. Using the fact that Fk.g/ is an ideal of g, it is readily seen that yg
is a Lie algebra, with Lie bracket defined componentwise. Furthermore, yg has a natural
inverse limit filtration, yF , whose terms yFk.yg/ are equal to 1Fk.g/D lim

 �i�k
Fk.g/=Fi .g/.

Observe that yFk.yg/ D Fk.g/, and so each term of the filtration yF is a closed Lie ideal
of yg. Furthermore, the Lie algebra yg, endowed with this filtration, is both complete and
separated.

Let �W g ! yg be the canonical map to the completion. Then � is a morphism of
Lie algebras, preserving the respective filtrations. Clearly, ker.�/ D

T
k�1 Fk.g/; hence,

� is injective if and only if g is separated. Moreover, � is surjective if and only if g is
complete.
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5.3. Filtered Lie algebras

A filtered Lie algebra (over the field k) is a Lie algebra g endowed with a decreasing
filtration F D ¹Fk.g/ºk�1 by k-vector subspaces, satisfying the condition

ŒFk.g/;F`.g/� � FkC`.g/ (5.1)

for all k; ` � 1. This condition implies that each subspace Fk.g/ is a Lie ideal, and so,
in particular, F is a Lie algebra filtration. Let

grF .g/´
M
k�1

Fk.g/=FkC1.g/ (5.2)

be the corresponding associated graded vector space. Condition (5.1) implies that the Lie
bracket map on g descends to a map Œ ; �WgrF .g/� grF .g/! grF .g/which makes grF .g/

into a graded Lie algebra, with graded pieces given by the decomposition (5.2).
A morphism of filtered Lie algebras is a linear map �Wg! h preserving Lie brackets

and the given filtrations, F and G . Such a map induces morphisms between nilpotent quo-
tients, �k Wg=FkC1.g/! h=GkC1.h/, and a morphism of associated graded Lie algebras,
gr.�/W grF .g/! grG .h/.

If g is a filtered Lie algebra with a multiplicative filtration F as in (5.1), then its com-
pletion, yg, is again a filtered Lie algebra with the completed multiplicative filtration yF .
By construction, the canonical map to the completion, �Wg! yg, is a morphism of filtered
Lie algebras. It is readily seen that the induced morphism, gr.�/W grF .g/! gr yF .yg/, is an
isomorphism. Moreover, if g is both complete and separated, then the map �Wg! yg itself
is an isomorphism of filtered Lie algebras. More generally, if �W g ! h is a morphism
of complete, separated, filtered Lie algebras, and gr.�/ is an isomorphism, then, as noted
in [132, Lemma 2.1], � is also an isomorphism.

5.4. The degree completion

Every Lie algebra g comes equipped with a lower central series (LCS) filtration,
¹n.g/ºn�1. This filtration is defined inductively by 1.g/ D g and n.g/ D Œn�1.g/;g�
for n � 2. This is a multiplicative filtration, and if ¹Fn.g/ºn�1 is another such filtration,
then n.g/�Fn.g/, for all n� 1. Lie algebra morphisms preserve LCS filtrations, and the
quotient Lie algebras g=n.g/ are nilpotent. We shall write gr.g/ for the associated graded
Lie algebra and yg for the completion of g with respect to the LCS filtration. Furthermore,
we shall take yn D xn as the terms of the canonical filtration on yg.

Every graded Lie algebra, g D
L
i�1 gi , has a canonical decreasing filtration induced

by the grading, Fn.g/´
L
i�n gi . Moreover, if g is generated in degree 1, then this

filtration coincides with the LCS filtration. In particular, the associated graded Lie algebra
with respect to F coincides with g. In this case, the completion of g with respect to
the lower central series (or, degree) filtration is called the degree completion of g, and is
simply denoted by yg. It is readily seen that ygŠ

Q
i�1 gi . Therefore, the morphism �Wg!yg

is injective, and induces an isomorphism between g and gr.yg/.
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Lemma 5.1 ([132]). Suppose L is a free Lie algebra generated in degree 1 and r is a
homogeneous ideal. Then the projection L� L=r induces an isomorphism yL=xr Š�! yL=r.

5.5. Filtered-formality

We now consider in more detail the relationship between a filtered Lie algebra g and
the completion of its associated graded Lie algebra, bgr.g/, equipped with the inverse
limit filtration. Note that both Lie algebras share the same associated graded Lie algebra,
namely, gr.g/. In general, though, g may fail to be isomorphic to bgr.g/. Of course, this
happens if g is not complete or separated, but it may happen even in the case when g is a
(finite-dimensional) nilpotent Lie algebra.

Definition 5.2 ([132]). A complete, separated, filtered Lie algebra g is filtered-formal
if there is a filtered Lie algebra isomorphism, g Š bgr.g/, which induces the identity on
associated graded Lie algebras.

If g is a filtered-formal Lie algebra, there exists a graded Lie algebra h such that
g is isomorphic to yh D

Q
i�1 hi . Conversely, if g D yh is the completion of a graded

Lie algebra h D
L
i�1 hi , then g is filtered-formal. Moreover, if h has homogeneous

presentation h D Lie.V /=r, with V finitely generated and concentrated in degree 1,
then, by Lemma 5.1, the complete, filtered Lie algebra g D

Q
i�1 hi has presentation

gD cLie.V /=xr. Some sufficient conditions for filtered formality are given in the following
proposition.

Proposition 5.3 ([132]). Let g be a complete, separated, filtered Lie algebra. Suppose
one of the following two conditions is satisfied.

(1) There is a graded Lie algebra h and an isomorphism g Š yh preserving filtrations.

(2) The graded Lie algebra gr.g/ is generated in degree 1 and there is a morphism of
filtered Lie algebras, �Wg! bgr.g/, such that gr1.�/ is an isomorphism.

Then g is filtered-formal.

As shown in [132], filtered-formality enjoys a descent property, provided some mild
finiteness hypotheses are satisfied. As usual, all the ground fields will be of character-
istic 0. First, let us record a straightforward lemma, which follows from the fact that
completion commutes with tensor products.

Lemma 5.4. Let g be a filtered-formal Lie algebra over a field k. If k � K is a field
extension, then the K-Lie algebra g˝k K is also filtered-formal.

The next theorem generalizes a result of Cornulier [34]; its proof is based in part on
work of Enriquez [47] and Maassarani [90].

Theorem 5.5 ([132]). Let g be a complete, separated, filtered k-Lie algebra such that
gr.g/ is finitely generated in degree 1, and let k � K be a field extension. Then g is
filtered-formal if and only if the K-Lie algebra g˝k K is filtered-formal.
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6. Lower central series and Malcev Lie algebras

6.1. Lower central series

Let G be a group. Given subgroups H1; H2 � G, their commutator, ŒH1; H2�, is the
subgroup of G generated by all elements of the form Œx1; x2� ´ x1x2x

�1
1 x�12 with

xi 2 Hi . The lower central series (LCS) of the group, ¹n.G/ºn�1, is defined inductively
by 1.G/DG and nC1.G/D Œn.G/;G�. This is anN -series, in the sense of Lazard [84],
that is, Œn.G/; m.G/� � ŒmCn.G/� for all m; n � 1. It follows that each subgroup
n.G/ is normal in G; moreover, each LCS quotient n.G/=nC1.G/ lies in the center
of G=nC1.G/, and thus is an abelian group. For instance, 2.G/ D ŒG;G� is the derived
(or, commutator) subgroup and G=2.G/ D Gab is the abelianization of G.

If n.G/ ¤ 1 but nC1.G/ D 1, then G is said to be an n-step nilpotent group; in
general, though, the LCS filtration does not terminate. For each n � 2, the factor group
G=n.G/ is the maximal .n � 1/-step nilpotent quotient of G.

The direct sum of the LCS quotients, gr.G/D
L
n�1 grn.G/, acquires the structure of

a graded Lie algebra over Z, called the associated graded Lie algebra of G. The addition
in gr.G/ is induced from the group multiplication and the Lie bracket is induced from
the group commutator. For instance, if G D Fn is a finitely generated free group of rank
n � 1, then gr.Fn/ D Lie.Zn/, the free Lie algebra on n generators.

If k is a field of characteristic 0, then gr.GI k/´
L
n�1 grn.G/ ˝Z k is a graded

Lie algebra over k. We note that both the assignments GÝ gr.G/ and GÝ gr.GIk/ are
functorial.

6.2. Malcev completion

A groupG is said to be rational (or, uniquely divisible) if the power mapG!G, g 7! gn

is a bijection, for every n � 1. The rational abelian groups are precisely the Q-vector
spaces. A natural way to rationalize an abelian group A is to map it to A ˝Z Q via
a 7! a˝ 1, with this map being universal for homomorphisms ofG into uniquely divisible
abelian groups.

In the works of Malcev [93], Lazard [84], and Hilton [71] (see also [22, 72, 74]), this
construction was extended to arbitrary nilpotent groups. The Malcev completion functor
is left adjoint to the embedding of the category of rational nilpotent groups into the
category of nilpotent groups. Thus, if N is a nilpotent group, its Malcev completion (or,
rationalization) is a rational nilpotent group, denoted N ˝Q, that comes endowed with a
map �WN ! N ˝Q which is universal for homomorphisms of G into uniquely divisible
nilpotent groups. Moreover, the kernel of � is equal to Tors.N /, the torsion subgroup
of N , and the induced map, ��WHom.N ˝Q; K/! Hom.N;K/, is an isomorphism for
all rational nilpotent groups K. Malcev completion is an exact functor, which induces
isomorphisms H�.N;Q/ Š H�.N ˝Q;Z/. The quotient N= Tors.N / is a torsion-free
nilpotent group that has the same rationalization as N . If N is finitely generated, then
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N ˝Q is a nilpotent Lie group defined over Q, with integral formN=Tors.N / and whose
Lie algebra, Lie.N ˝Q/, is nilpotent.

We now turn to an arbitrary groupG. The successive nilpotent quotients ofG assemble
into a tower of the form

� � � �! G=4.G/ �! G=3.G/ �! G=2.G/ �! 1:

Replacing in this tower each nilpotent quotient by its rationalization and taking the inverse
limit of this directed system, we obtain a prounipotent, filtered Lie group over Q,

GQ ´ lim
 �n

.G=n.G/˝Q/;

which is called the Malcev completion (or, the prounipotent completion) of the group G.
We denote by �WG!GQ the canonical homomorphism fromG to its rational completion
and note that the assignment GÝGQ is functorial.

The pronilpotent Lie algebra

m.G/ WD lim
 �n

Lie.G=n.G/˝Q/ (6.1)

is called the Malcev Lie algebra of G. This Lie algebra comes endowed with the
inverse limit filtration, which makes it a complete, separated, filtered Lie algebra over Q.
As before, the assignment GÝm.G/ is functorial. Moreover, if G is finitely generated,
then m.G/ is a finitely generated Lie algebra.

6.3. Quillen’s construction

A different approach was taken by Quillen in [118, Appendix A]; we recall now his
construction of the Malcev completion and the Malcev Lie algebra, building on the
treatment from [52, 96, 105, 106, 132].

A Malcev Lie algebra is a Lie algebra m over a field of characteristic 0, endowed
with a decreasing, complete vector space filtration F D ¹Fiºi�1 such that F1 D m and
ŒFi ;Fj � � FiCj , for all i; j , and with the property that the associated graded Lie algebra,
gr.m/D

L
i�1Fi=FiC1, is generated in degree 1. For example, the completion yg of a Lie

algebra g with respect to the lower central series filtration ¹i .g/ºi�1, endowed with the
canonical completion filtration, is a Malcev Lie algebra.

Given a group G, the group algebra QŒG� has a natural Hopf algebra structure, with
comultiplication map �WQŒG�! QŒG�˝QŒG� given by �.g/ D g ˝ g, and counit the
augmentation map "WQŒG�! Q given by ".g/ D 1. An element x 2 QŒG� is said to be
group-like if �.x/ D x ˝ x and primitive if �.x/ D x ˝ 1C 1˝ x; under the inclusion
G ,! QŒG�, the set of all group-like elements gets identified with G. Let I D ker."/ be
the augmentation ideal of, and let

1QŒG� D lim
 �
r

QŒG�=I r
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be the completion of QŒG� with respect to the filtration by the powers of this ideal. Define
the completed tensor product 1QŒG� y̋ 1QŒG� as the completion of QŒG� ˝ QŒG� with
respect to the natural tensor product filtration. Applying the I -adic completion functor to
the map� yields a comultiplication map, y�W1QŒG�!1QŒG� y̋ 1QŒG�, which makes 1QŒG�
into a complete Hopf algebra. As shown by Quillen, there is a natural, filtration-preserving
isomorphism,

m.G/ Š Prim
�1QŒG��;

between the Malcev Lie algebra of G and the Lie algebra of primitive elements in 1QŒG�,
with Lie bracket given by Œx; y� D xy � yx.

The set of all primitive elements in gr.QŒG�/ forms a graded Lie algebra, which is
isomorphic to gr.G/˝Q. An important connection between the Malcev Lie algebra and
the associated graded Lie algebra of G was discovered by Quillen, who showed in [119]
that there is a natural isomorphism of graded Lie algebras,

gr.m.G// Š gr.GIQ/: (6.2)

The Malcev completion GQ may be identified with the set consisting of all group-
like elements in the Hopf algebra 1QŒG�. This is a group which comes endowed with a
complete, separated filtration, whose n-th term is GQ \ .1C yI n/. As explained in [96],
there is a one-to-one, filtration-preserving correspondence between primitive elements and
group-like elements of 1QŒG� via the exponential and logarithmic maps,

GQ � 1C yI yI � m.G/:

 

!log

 

! exp

Passing to associated graded objects and using (6.2), we find that gr.GQ/ Š gr.GIQ/;
in particular, H1.GQ/ D H1.G;Q/.

6.4. Multiplicative expansions and Taylor expansions

Let G be a group. Given a map f W G ! R, where R is a ring, we will denote by
xf WQŒG�! R its linear extension to the group algebra. A (multiplicative) expansion of G

is a map
EWG �! bgr.QŒG�/ (6.3)

such that the linear extension xEWQŒG�! bgr.QŒG�/ is a filtration-preserving algebra mor-
phism with the property that gr. xE/ D id. Alternatively, a map as in (6.3) is an expansion
if it is a (multiplicative) monoid map and the following property holds: If f 2 I k n I kC1,
then xE.f / starts with Œf � 2 I k=I kC1; that is, xE.f / D .0; : : : ; 0; Œf �;�;�; : : : /.

Definition 6.1 ([8, 133]). An expansion EWG ! bgr.QŒG�/ is called a Taylor expansion
if it sends each element of G to a group-like element of bgr.QŒG�/; that is, x�.E.g// D
E.g/ y̋ E.g/, for all g 2 G.
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It is shown in [133] that a Taylor expansionEWG! bgr.QŒG�/ induces a filtration-pre-
serving isomorphism of complete Hopf algebras, yEW1QŒG�! bgr.QŒG�/, such that gr. yE/
is the identity on gr.QŒG�/. Conversely, a filtration-preserving isomorphism of complete
Hopf algebras, �W1QŒG� ! bgr.QŒG�/, induces a Taylor expansion EWG ! bgr.QŒG�/.
These facts may be summarized as follows.

Theorem 6.2 ([133]). The assignment EÝ yE establishes a one-to-one correspondence
between Taylor expansions G ! bgr.QŒG�/ and filtration-preserving isomorphisms of
complete Hopf algebras 1QŒG�! bgr.QŒG�/ for which the associated graded morphism
is the identity on gr.QŒG�/.

This theorem generalizes a result of Massuyeau, from finitely generated free groups
to arbitrary finitely generated groups. As a corollary, we obtain the following criterion for
the existence of a Taylor expansion.

Corollary 6.3 ([133]). A finitely generated group G has a Taylor expansion if and only if
there is an isomorphism of filtered Hopf algebras, 1QŒG� Š bgr.QŒG�/.

Now suppose G admits a finite presentation of the form G D F=R. Starting from
a Taylor expansion for the finitely generated free group F , one may find a presenta-
tion for the Malcev Lie algebra m.GI k/, using the approach of Papadima [103] and
Massuyeau [96]. This is summarized in the following theorem.

Theorem 6.4 ([96, 103]). Let G be a group with generators x1; : : : ; xn and relators
r1; : : : ; rm and let E be a Taylor expansion of the free group F D hx1; : : : ; xni. There
exists then a unique filtered Lie algebra isomorphism

m.G/ Š cLie.Qn/=hhW ii;

where hhW ii denotes the closed ideal of the completed free Lie algebra cLie.Qn/ generated
by the subset ¹log.E.r1//; : : : ; log.E.rm//º.

6.5. Filtered formality

Following [132], we say that a group G is filtered formal if its Malcev Lie algebra is
filtered formal, that is, m.G/ is isomorphic (as a filtered Lie algebra) to the degree
completion of its associated graded Lie algebra, gr.m.G//. In view of (6.2), this condition
is equivalent to m.G/ Š bgr.GIQ/. It follows from Lemma 5.1 that G is filtered formal if
and only if m.G/ admits a homogeneous presentation.

For instance, if G D Fn, then m.Fn/ Š cLie.Qn/, and so Fn is filtered formal.
Moreover, if G is a torsion-free, 2-step nilpotent group for which Gab is torsion-free (e.g.,
if G D Fn=3.Fn/ with n � 2), then G is filtered-formal. On the other hand, there are
torsion-free, 3-step nilpotent groups that are not filtered formal; see [132].

As the next theorem shows, the Taylor expansions of a finitely generated group G
are closely related to the isomorphisms between the Malcev Lie algebra and the LCS
completion of the associated graded Lie algebra of G.
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Theorem 6.5 ([133]). There is a one-to-one correspondence between Taylor expansions
G ! bgr.QŒG�/ and filtration-preserving Lie algebra isomorphisms m.G/ ! bgr.GIQ/
inducing the identity on gr.GIQ/.

Using this theorem, we obtain an alternate interpretation of filtered-formality.

Corollary 6.6 ([133]). A finitely generated group G is filtered-formal if and only if G has
a Taylor expansion.

6.6. The RTFN property and Taylor expansions

A group G is said to be residually torsion-free nilpotent (for short, RTFN) if for any
g 2G, g¤ 1, there exists a torsion-free nilpotent groupQ and an epimorphism WG!Q

such that  .g/¤ 1. The property of being residually torsion-free nilpotent is inherited by
subgroups and is preserved under direct products and free products.

The RTFN property may be expressed in terms of the rational lower central series
of G, whose terms are given by

Q
n .G/ D ¹g 2 G j g

m
2 n.G/, for some m 2 Nº:

The group G is RTFN if and only if the intersection of its rational lower central series,


Q
! .G/´

T
n�1 

Q
n .G/, is the trivial subgroup. We refer to [128] for alternate definitions

and more properties of this N -series.
As is well known, a group G is residually torsion-free nilpotent if and only if the

group-algebra QŒG� is residually nilpotent, that is,
T
n�1 I

n D ¹0º, where I is the
augmentation ideal. Therefore, ifG is finitely generated, the RTFN condition is equivalent
to the injectivity of the canonical map to the prounipotent completion, �WG! GQ, where
recall GQ is the set of group-like elements in 1QŒG�.

IfG is residually nilpotent and grn.G/ is torsion-free for all n� 1, thenG is residually
torsion-free nilpotent. Residually torsion-free nilpotent implies residually nilpotent, which
in turn, implies residually finite. Examples of residually torsion-free nilpotent groups
include torsion-free nilpotent groups, free groups, and surface groups.

Proposition 6.7 ([133]). A finitely generated group G has an injective Taylor expansion
if and only if G is residually torsion-free nilpotent and filtered-formal.

7. Holonomy Lie algebras

7.1. The holonomy Lie algebra of a CDGA

Let A D .A�; d / be a 1-finite k-CDGA, that is, a CDGA over a field k of characteristic 0
with A0 D k and dimk A

1 < 1. Writing Ai D Hom.Ai ; k/ for the k-duals of the
graded pieces, we let �_W A2 ! A1 ^ A1 be the k-dual of the multiplication map
�WA1 ^ A1 ! A2, and we let d_WA2 ! A1 be the dual of the differential d WA1 ! A2.
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We shall denote by Lie.A1/ the free Lie algebra on the k-vector space A1, and we will
identify Lie1.A1/ D A1 and Lie2.A1/ D A1 ^ A1.

Definition 7.1 ([92]). The holonomy Lie algebra of a 1-finite CDGA A D .A�; d / is the
quotient of Lie.A1/ by the ideal generated by the image of the map @A D d_ C �_,

h.A/ D Lie.A1/=him.@A/i:

Clearly, this construction is functorial. Indeed, let 'WA! B is a morphism of CDGAs
as above, and write 'i D .'i /_WBi ! Ai . Then the induced map, Lie.'1/W Lie.B1/!
Lie.A1/, factors through a morphism of Lie algebras, h.'/W h.B/! h.A/. Observe that
the Lie algebra h.A/ depends only on the sub-CDGA k � 1˚A1˚ .d.A1/C�.A1 ^A1//
of the truncation A�2. Therefore, h.A/ is finitely presented.

In general, though, the ideal generated by im.@A/ is not homogeneous, and so the Lie
algebra h.A/ does not inherit a grading from Lie.A1/.

Example 7.2. Let AD
V
.a1; a2; a3/ be the exterior algebra on generators ai in degree 1,

endowed with the differential d given by da1 D da2 D 0 and da3 D a1 ^ a2. Identify
Lie.A1/ with the free Lie algebra on dual generators x1; x2; x3. Then the ideal him.@A/i
is generated by x3 C Œx1; x2�, Œx1; x3�, and Œx2; x3�, and thus is not homogeneous.

In the above example, h.A/ still admits the structure of a graded Lie algebra, with x1
and x2 in degree 1, and x3 in degree 2. Nevertheless, using a construction from [132],
we may define a minimal, finite CDGA A for which h.A/ does not admit any grading
compatible with the lower central series filtration.

Example 7.3. Let A D
V
.a1; : : : ; a5/, with jai j D 1 and differential d given by

da4 D a1 ^ a3, da5 D a1 ^ a4 C a2 ^ a3, and dai D 0, otherwise. Then, as shown
in [132, Example 10.5], h.A/ is not isomorphic to gr.h.A//, its associated graded Lie
algebra with respect to the LCS filtration.

7.2. The holonomy Lie algebra of a CGA

Now suppose d D 0, so that A is a graded, graded-commutative, 1-finite k-algebra.
Then h.A/ D Lie.A1/=him.�_/i is the classical holonomy Lie algebra introduced by
K.-T. Chen in [31] and further studied in [77, 94, 106, 131, 132]. Clearly, h.A/ inherits
a natural grading from the free Lie algebra Lie.A1/, which is compatible with the Lie
bracket. Consequently, h.A/ is a finitely-presented, graded Lie algebra, with generators in
degree 1 and relations in degree 2; in other words, h.A/ is a quadratic Lie algebra.

A graded, 1-finite k-algebra A may be realized as the quotient T .V /=I , where T .V /
is the tensor algebra on a finite-dimensional k-vector space V by a homogeneous, two-
sided ideal I . The algebra A is said to be quadratic if A1 D V and the ideal I is generated
in degree 2, i.e., I D hI 2i, where I 2 D I \ .V ˝ V /.

Given a quadratic algebra A D T .V /=I , we identify V _ ˝ V _ Š .V ˝ V /_, and
define the quadratic dual of A to be the algebra AŠ D T .V _/=I?, where I? is the
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ideal of T .V _/ generated by the vector subspace .I 2/?´ ¹˛ 2 V _ ˝ V _ j ˛.I 2/ D 0º.
Clearly, AŠ is also a quadratic algebra, and .AŠ/Š D A. For any graded algebra of the form
A D T .V /=I , we may define its quadrature closure as qA D T .V /=hI 2i.

For a Lie algebra g, we letU.g/ be its universal enveloping algebra. This is the filtered,
associative algebra obtained as the quotient of the tensor algebra T .g/ by the (two-sided)
ideal generated by all elements of the form a˝ b � b ˝ a � Œa; b� with a; b 2 g.

Proposition 7.4 ([115,132]). LetA be a commutative graded k-algebra such thatA0 D k
and dimkA

1 <1. Then U.h.A// is a quadratic algebra, and U.h.A// D .qA/Š.

Now suppose g is a finitely generated graded Lie algebra generated in degree 1. Then,
as shown in [132], there is a unique, functorially defined quadratic Lie algebra, qg, such
that U.qg/ D qU.g/. Therefore, by Proposition 7.4, we have that h..qU.g//Š/ D qg.

Work of Löfwall [87] yields another interpretation of the universal enveloping algebra
of the holonomy Lie algebra.

Proposition 7.5 ([87]). Let ŒExt1A.k;k/� WD
L
i�0 ExtiA.k;k/i be the linear strand in the

Yoneda algebra of A. Then U.h.A// Š ŒExt1A.k;k/�.

Applying the Poincaré–Birkhoff–Witt theorem, we infer that the graded ranks of h.A/

are given by Y
n�1

.1 � tn/dimk hn.A/ D

X
i�0

bi;i .A/t
i ;

where bi;i .A/ D dimk ExtiA.k;k/i .

7.3. The completion of the holonomy Lie algebra of a CGA

Let A be a connected k-CGA. A 1-minimal model M1.A/ for A may be constructed
in a “formal” way, following the approach outlined by Carlson and Toledo [27] (see
also [132]). For the construction of the full, bigraded minimal model of a CGA we refer to
Halperin and Stasheff [68].

As in Section 4.5, start with the CDGAs M.1/ D .
V
.V1/; 0/, where V1 D A1, and

M.2/ D .
V
.V1 ˚ V2/; d/, where V2 D ker.�WA1 ^ A1 ! A2/ and d W V2 ,! V1 ^ V1

is the inclusion map. Now define inductively a CDGA M.i/ as the Hirsch extension
M.i � 1/˝

V
.Vi /, where the k-vector space Vi fits into the short exact sequence

0 �! Vi �! H 2.M.i � 1// �! im.�/ �! 0;

while the differential d includes Vi into V1 ^ Vi�1 �M.i � 1/. Setting M1.A/ equal toS
i�1 M.i/, the subalgebras ¹M.i/ºi�1 constitute the canonical filtration (4.1) of M1.A/

and the differential d preserves the Hirsch weights on M1.A/. For these reasons, we say
that M1.A/ is the canonical 1-minimal model of A.

The next theorem relates L.M1.A//, the Lie algebra associated to M1.A/ under the
adjoint correspondence from Section 4.5 to the degree completion of h.A/, the holonomy
Lie algebra of A. A generalization will be given in Theorem 7.8.



Formality and finiteness in rational homotopy theory 351

Theorem 7.6 ([94, 100, 132]). If A is a 1-finite CGA, then L.M1.A// and bh.A/ are
isomorphic as complete, filtered Lie algebras.

Corollary 7.7. If A is a 1-finite CGA and M1.A/ D
V
.
L
i�1 Vi / is the canonical

1-minimal of A, then dimk hi .A/ D dimVi for all i � 1.

7.4. Holonomy and flat connections

Given a k-CDGA .A; d/ and a Lie algebra g, we let F .A; g/ be the set of g-valued flat
connections on A, that is, the set of all elements ! 2 A1˝ g satisfying the Maurer–Cartan
equation,

d! C 1
2
Œ!; !� D 0:

Suppose now that A is 1-finite. As shown in [92], the natural isomorphism A1˝ g
Š
�!

Hom.A1;g/ induces a natural identification,

F .A;g/
Š
�! HomLie.h.A/;g/: (7.1)

Assuming further that g is finite-dimensional, we let C.g/ D .
V

g_; d / be the
Chevalley–Eilenberg complex of g. This is the CDGA whose underlying graded algebra is
the exterior algebra on the dual k-vector space g_, and whose differential is the extension
by the graded Leibniz rule of the dual of the signed Lie bracket, d D �ˇ�, on the
algebra generators, see, e.g., [52, 68]. There is then a natural isomorphism A1 ˝ g

Š
�!

Hom.g_; A1/, which, by [40, Lemma 3.4], induces a natural identification,

F .A;g/
Š
�! HomCDGA.C.g/; A/: (7.2)

Now let yC be the functor which associates to a finitely generated Lie algebra h the
direct limit of CDGAs

yC.h/ D lim
�!
n

C.h=n.h//:

This functor sends finite-dimensional central Lie extensions to Hirsch extensions of
CDGAs. It follows that yC.h/ is a 1-minimal CDGA.

Now let .A; d/ be a 1-finite CDGA, with holonomy Lie algebra h D h.A/. By (7.1),
the identity map of h may be identified with the “canonical” flat connection,

! D
X
i

x�i ˝ xi 2 F .A; h.A//;

where ¹xiº is a basis for A1 and ¹x�i º is the dual basis for A1. This gives rise to a compati-
ble family of flat connections, ¹!n 2F .A;h=n.h//ºn�1. Using the correspondence (7.2),
we obtain a compatible family of CDGA maps, fnWC.h=n.h//! A. Passing to the limit,
we arrive at a natural CDGA map, f W yC.h.A// ! A. The next theorem recovers (in a
self-contained way) results from [13, 16, 18].

Theorem 7.8 ([113]). If A is a 1-finite CDGA, then the classifying map f W yC.h.A//! A

is a 1-minimal model map for A.

Consequently, we have an isomorphism M1.A/ Š yC.h.A//.
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7.5. The holonomy Lie algebra of a group

A construction due to K.-T. Chen [31] and further developed in the works mentioned
in Section 7.2 assigns to every finitely generated group G its holonomy Lie algebra,
h.GIk/, which is defined as the holonomy Lie algebra of the cohomology algebra of G
with coefficients in a field k of characteristic 0,

h.GIk/´ h.H�.G;k//:

By the discussion from Section 7.2, we have that h.GIk/ D Lie.H1.G;k//=h�_Gi, where
�G WH

1.G; k/ ^H 1.G; k/! H 2.G; k/ is the cup-product map in group cohomology
and �_G is its k-dual. It is readily seen that the assignment GÝ h.GIk/ is functorial.

The Lie algebra h.GI k/ is a finitely presented, quadratic Lie algebra that depends
only on the cup-product map �G . Moreover, as noted in [131], the projection map G�
G=n.G/ induces isomorphisms h.GIk/ Š�! h.G=n.G/Ik/ for all n � 3. Consequently,
the holonomy Lie algebra of G depends only on its second nilpotent quotient, G=3.G/.

An important feature of the holonomy Lie algebra is its relationship to the associated
graded Lie algebra, as detailed in the next theorem.

Theorem 7.9 ([94, 106, 131]). There exists a natural epimorphism of graded k-Lie
algebras, ˆW h.GIk/� gr.GIk/, which induces isomorphisms in degrees 1 and 2.

Following [131, 132], we say that a finitely generated group G is graded formal if the
map ˆW h.GIk/� gr.GIk/ is an isomorphism. This condition is equivalent to gr.GIk/
being a quadratic Lie algebra. As shown in [132], ifK � G is a retract of a graded formal
group G, then K is also graded formal.

The next result shows how to find a presentation for h.GIk/, given a presentation for
gr.GIk/.

Proposition 7.10 ([132]). Let V DH1.GIk/. Suppose the associated graded Lie algebra
g D gr.GI k/ has presentation Lie.V /=r. Then the holonomy Lie algebra h.GI k/ has
presentation Lie.V /=hr2i, where r2 D r \ Lie2.V /. Furthermore, if A D U.g/, then
h.GIk/ D h..qA/Š/.

8. Algebraic models for spaces

8.1. Rational homotopy equivalences

We start with a definition that goes back to the work of Quillen [118], Bousfield–
Gugenheim [21], and Halperin–Stasheff [68]. A continuous map between two topological
spaces, f W X ! Y , is said to be a rational quasi-isomorphism if the induced map
in rational cohomology, f �WH�.Y;Q/ ! H�.X;Q/, is an isomorphism. A rational
homotopy equivalence between X and Y is a sequence of continuous maps (going either
way) connecting the two spaces via rational quasi-isomorphisms. We say thatX and Y are
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rationally homotopy equivalent (or, have the same rational homotopy type) if such a zigzag
of rational quasi-isomorphisms exists, in which case we write X 'Q Y . The purpose of
rational homotopy theory, then, is to classify topological spaces up to this equivalence
relation.

One of the motivations of Sullivan’s work in this field was the idea that the rational
homotopy type of a simply-connected manifold, together with suitable characteristic class
and integral data determines the diffeomorphism type up to finite ambiguity. For instance,
he showed in [137, Theorem 13.1] that closed, simply-connected, smooth manifolds can
be classified up to finite ambiguity in terms of their rational homotopy type, rational
Pontrjagin classes, bounds on torsion, and certain integral lattice invariants. This important
result was subsequently refined by Kreck and Triantafillou [79] (under some partial
formality assumptions) and Crowley and Nordström [35] (under some higher connectivity
assumptions).

8.2. Sullivan algebras of piecewise polynomial differential forms

Let .C �.X; k/; d/ be the singular cochain complex of a space X , with coefficients in a
field k of characteristic 0. This is, in fact, a differential graded algebra, with multiplication
given by the cup-product. By definition, the cohomology of this k-DGA is the cohomology
algebraH�.X;k/; this is a CGA, although the cochain algebra itself is not a CDGA (except
in some very special situations). More generally, we say that a k-DGA .A; dA/ is a DGA

model for X if it is weakly equivalent (through DGAs) to .C �.X;k/; d/.
In his seminal paper [137], Sullivan associated in a functorial way to every space X a

rational, commutative DGA, denoted by .APL.X/; d/. When X is a simplicial complex,
the elements of this CDGA may be viewed as compatible collections of forms on the
simplices of X , which are sums with rational coefficients of monomials in the barycentric
coordinates. Integration defines a chain map from APL.X/ to C �.X;Q/ which induces
an isomorphism in cohomology. In fact, the Sullivan algebra .APL.X/; d/ is weakly
equivalent (through DGAs) with the cochain algebra .C �.X;Q/; d/; moreover, under
the resulting identification of graded algebras, H�.APL.X// Š H�.X;Q/, the induced
homomorphisms in cohomology correspond, see [52, Corollary 10.10].

We say that a k-CDGA .A; dA/ is a model over k for the space X if A is weakly
equivalent (through CDGAs) to APL.X/˝Q k; in particular,H�.A/ Š H�.X;k/. In view
of Theorem 2.2, we may also allow the weak equivalence to go through DGAs in this
definition. For instance, if X is a smooth manifold, then the de Rham algebra ��dR.X/

of smooth forms on X is a model of X over R, and if X is a simplicial complex, then
a rational model for X is As.X/, the algebra of piecewise polynomial Q-forms on the
simplices of X . We refer to [52–54, 139] for more details.

By the functoriality of the Sullivan algebra, a rational quasi-isomorphism f WX ! Y

induces a quasi-isomorphism APL.f /W APL.Y / ! APL.X/; therefore, if X 'Q Y , then
APL.X/ ' APL.Y /. Consequently, the weak isomorphism type of APL.X/ depends only
on the rational homotopy type of X . As another consequence, the existence of a finite
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model for a space X is an invariant of rational homotopy type, and thus, of homotopy
type.

Remark 8.1. In [137], Sullivan showed that there exist smooth manifolds whose rational
models are not weakly isomorphic, but which become weakly isomorphic when tensored
with R. Such failure of descent from real homotopy type to rational homotopy type may
even occur with models endowed with 0-differentials.

8.3. Sullivan minimal models

A minimal model for a connected space X , denoted M.X/, is a minimal model for the
Sullivan algebra APL.X/. By Theorem 4.6, this is a minimal CDGA, which always exists
and is unique up to isomorphism. The Sullivan minimal model comes equipped with a
CDGA map, �WM.X/!APL.X/, which is a quasi-isomorphism. Moreover, ifA'APL.X/

is a connected rational CDGA model forX , then there is a quasi-isomorphism M.X/! A

which corresponds to � via the chosen weak equivalence between A and APL.X/.
By a previous remark, the isomorphism type of M.X/ is uniquely defined by the ratio-
nal homotopy type of X . It is an open question whether there exist spaces with weakly
equivalent cochain algebras but non-isomorphic minimal models, see [51].

All these notions have partial analogs. Fix an integer q � 1. A map f WX ! Y is
said to be a rational q-quasi-isomorphism if the induced map in rational cohomology,
f �WH�.Y;Q/!H�.X;Q/, is an isomorphism in degrees up to q and a monomorphism
in degree qC 1. Clearly, such a map induces a q-equivalence, APL.f /WAPL.Y /! APL.X/.
A rational q-homotopy equivalence between X and Y is a zigzag of maps connecting the
two spaces via rational q-quasi-isomorphisms; if such a zigzag exists, we say that X and
Y are rationally q-homotopy equivalent.

A q-model for a space X over a field k of characteristic 0 is a k-CDGA .A; d/

which is q-equivalent to APL.X/˝Q k; in particular, H i .A/ Š H i .X;k/, for all i � q.
A q-minimal model for X , denoted Mq.X/, is a q-minimal model for APL.X/; this CDGA

comes equipped with a q-quasi-isomorphism,

�q WMq.X/ �! APL.X/: (8.1)

In this context, a basic question was raised in [113]: When does a q-finite space X
admit a q-finite q-model A? It follows from the above considerations that the existence
of a q-finite q-model for a space X is an invariant of rational q-homotopy type, and thus,
of q-homotopy type.

8.4. Rational completion

In their foundational monograph [22], Bousfield and Kan associated to every space X
its rational completion, Q1X . This is a rational space (i.e., its homology groups in
positive degrees are Q-vector spaces) which comes equipped with a structure map,
kX WX !Q1X , with the following property: Given a map f WX ! Y , there is an induced
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map, Q1f WQ1X ! Q1Y , such that Q1f ı kX D kY ı f . Moreover, the map f
is a rational homology equivalence if and only if the map Q1f is a weak homotopy
equivalence.

A space X is called Q-good if the structure map kX WX ! Q1X is a rational quasi-
isomorphism. It has been known for a long time that not all spaces enjoy this property.
Recently, Ivanov and Mikhailov [75] gave the first examples of finite CW-complexes that
are Q-bad: if X D

Wn
S1 is a wedge of n � 2 circles, then H2.Q1X;Q/ is non-zero

(in fact, it is uncountable), although of course H2.X;Q/ D 0.
The main connection between the Sullivan minimal model M.X/ and Bousfield and

Kan’s rational completion Q1X is provided by the following theorem of Bousfield and
Gugenheim [21].

Theorem 8.2 ([21]). Let X be a connected space with finite Betti numbers, and let
M.X/ D .

V
V; d/ be a minimal model for X over Q. Then �n.Q1X/ Š .V n/_, for

all n � 2.

A connected spaceX is a said to be rationally aspherical (or, a rationalK.�;1/ space)
if its rational completion is aspherical, i.e., �n.Q1X/D 0 for all n� 2. As an application
of the above theorem, we have the following immediate corollary.

Corollary 8.3 ([48, 115]). A connected space X is rationally aspherical if and only if
M.X/ ŠM1.X/.

8.5. Nilpotent spaces

For simply-connected spaces and, more generally, for nilpotent spaces, rational homotopy
theory takes a more concrete and approachable form. A path-connected space X is said to
be nilpotent if the fundamental group G D �1.X/ is nilpotent and acts nilpotently on the
homotopy groups �n.X/ for all n > 1. For instance, all tori are nilpotent, but the Klein
bottle is not; moreover, a real projective space RPn is nilpotent if and only if n is odd.

If X is a nilpotent space, then, as shown in [22], X is Q-good. Moreover, �1.Q1X/
is isomorphic to �1.X/ ˝ Q – the Malcev completion of the nilpotent group �1.X/ –
while �n.Q1X/Š �n.X/˝Q for n � 2, all in a functorial way. In this context, we also
have the following rational analog of Whitehead’s theorem (see also [120]).

Theorem 8.4 ([22]). A pointed map f W X ! Y between two nilpotent spaces is a
rational homotopy equivalence if and only if it induces isomorphisms f�W�n.X/˝Q!
�n.Y /˝Q for all n � 1.

Assume now that X is a nilpotent CW-complex with finite Betti numbers. Sullivan
proved in [137] that the minimal model (over Q) of such a space is of the form
M.X/ D .

V
V; d/, where V is a graded Q-vector space of finite type. Here are a few

standard examples.



A. I. Suciu 356

Example 8.5. An odd-dimensional sphere has minimal model M.S2nC1/ D .
V
.a/; 0/,

with jaj D 2n C 1. On the other hand, an even-dimensional sphere has minimal model
M.S2n/ D

�V
.a; b/; da D b2

�
, with da D 0, db D a2, and jaj D 2n. Finally, an

Eilenberg–MacLane space of type K.Z; n/ has minimal model .
V
.a/; 0/, with jaj D n.

If H>n.X/ D 0 for some n > 0, we can say a bit more. Pick a vector space decom-
position, Mn.X/ D Zn.M.X//˚ C n. Then the direct sum J DM�nC1.X/˚ C n is an
acyclic differential graded ideal of M.X/. By construction, APL.X/ is weakly isomorphic
to the CDGA M.X/=J , which is finite-dimensional as a vector space. We summarize this
discussion, as follows.

Theorem 8.6 ([137]). Let X be a nilpotent CW-complex.

(1) If all the Betti numbers of X are finite, then X admits a q-finite q-model, for all q.

(2) If dimH�.X;Q/ <1, thenX admits a model which is finite-dimensional over Q.

The main application of Sullivan’s theory of minimal models to the rational homotopy
of nilpotent spaces is given by the following theorem.

Theorem 8.7 ([137]). Let X be a connected, nilpotent CW-complex with finite Betti
numbers, and let M.X/D .

V
V;d/ be a minimal model forX over Q. Then �n.X/˝QŠ

.V n/_, for all n � 2.

An alternative proof of this foundational result was given by Lehmann in [85].
A generalization was given by Bock [19], who relaxed the hypothesis that �1.X/ be
nilpotent, thereby proving a statement first mentioned by Halperin in [67].

Theorem 8.8 ([19]). Let X be a path-connected, triangulable space whose universal
covering exists. Suppose �1.X/ has a rationally aspherical classifying space and �n.X/
is a finitely generated nilpotent �1.X/-module, for each n � 2. If M.X/ D .

V
V; d/ is a

minimal model for X over Q, then �n.X/˝Q Š .V n/_, for all n � 2.

Consider now the rational Hurewicz homomorphisms, hurk W�k.X/˝Q!Hk.X;Q/.
If X is n-connected for some n � 1, the above theorem implies that hurk is an iso-
morphism for k � 2n, while ker.hurk/ is the Q-span of the Whitehead products for
2nC 1 � k � 3nC 1, see [51]. For generalizations of Theorem 8.7 to rationally nilpotent
spaces we refer to [53].

8.6. Models for polyhedral products

We illustrate the general theory with a class of spaces particularly amenable to study
via rational homotopy methods. These spaces, variously known as polyhedral products,
(generalized) moment-angle complexes, or (generalized) Davis–Januszkiewicz spaces, are
constructed as follows (see, for instance, [7, 38] and references therein).

LetK be a finite simplicial complex on vertex set Œn�D ¹1; : : : ; nº, and let .X;X 0/ be a
sequence .X1;X 01/; : : : ; .Xn;X

0
n/ of pairs of spaces. The polyhedral product ZK.X;X

0/ is
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then the subspace of the Cartesian product
Qn
iD1Xi obtained as the union of all subspaces

of the form Z� .X;X
0/D

Qn
iD1 Yi , where � runs through the simplices ofK and Yi D Xi

if i 2 � and Yi D X 0i if i … � .
Assume now that all spaces Xi , X 0i are nilpotent CW-complexes of finite type. In [56],

Félix and Tanré describe the rational homotopy type of the corresponding polyhedral
product, as follows. LetAi andA0i be connected, finite-type rational models forXi andX 0i ,
so that there are quasi-isomorphisms M.Xi /! Ai and M.X 0i /! A0i . Suppose there are
surjective morphisms 'i WAi�A0i modeling the inclusionsX 0i ,!Xi . For each simplex �
on Œn�, let I� D

Qn
iD1Ei , with Ei D ker.'i / if i 2 � and Ei D Ai if i … � .

Theorem 8.9 ([56]). With assumptions as above, the polyhedral product ZK.X ; X
0/

has a connected, finite-type CDGA model of the form A.K/ D .
Nn
iD1 Ai /=I.K/, where

I.K/ is the ideal
P
�…K I� . Moreover, if L � K is a subcomplex, then the inclusion

ZL.X;X
0/ ,! ZK.X;X

0/ is modeled by the projection A.K/� A.L/.

Taking homology, this theorem recovers a result from [7]: the cohomology algebra
H�.ZK.X ; X

0/;Q/ is isomorphic to the quotient .
Nn
iD1 H

�.Xi ;Q//=J.K/, where
J.K/ is the Stanley–Reisner ideal generated by all the monomials xj1 � � � xjk with
xi 2 H

�.Xi ;Q/ for which the simplex � D .j1; : : : ; jk/ is not in K.

8.7. Configuration spaces

A construction due to Fadell and Neuwirth associates to a spaceX and a positive integer n
the space of ordered configurations of n points in X ,

Conf.X; n/ D ¹.x1; : : : ; xn/ 2 X�n j xi ¤ xj for i ¤ j º:

The most basic example is the configuration space of n ordered points in C; this is a
classifying space for Pn, the pure braid group on n strings, whose cohomology ring was
computed by Arnol’d in the late 1960s.

The E2-term of the Leray spectral sequence for the inclusion Conf.X; n/ ,! X�n

was described in concrete terms by Cohen and Taylor [33]. If X is a smooth, complex
projective variety of dimension m, then Conf.X; n/ is a smooth, quasi-projective variety;
moreover, as shown by Totaro in [142], the Cohen–Taylor spectral sequence collapses at
theEmC1-term, and theEm-term is a CDGA model for the configuration space Conf.X;n/.
Other rational models for configuration spaces of smooth projective varieties were con-
structed by Fulton–MacPherson [62] and Kříž [80].

Now let M be a closed, simply-connected smooth manifold. Under the assumption
that b2.M/ D 0, Lambrechts and Stanley [81] showed how to construct a rational model
for Conf.M; 2/ out of a model for M ; as a consequence, the rational homotopy type of
Conf.M; 2/ depends only on that of M . For configuration spaces of n points, Lambrechts
and Stanley [82] used Theorem 2.4 to associate to every rational model A for M a
Q-CDGA GA.n/, which they conjectured to be a rational model for Conf.M; n/. In [73],
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Idrissi proved that GA.n/˝Q R is a real model for the configuration space; thus, the real
homotopy type of M determines the real homotopy type of Conf.M; n/, for all n.

8.8. Rationalization

To every space X , Sullivan [135, 137, 138] associated in a functorial way its rationaliza-
tion, denoted XQ; we refer to [21, 51, 53, 74, 120] for more details on this construction.
The rationalization of X may be viewed as a geometric realization of the Sullivan mini-
mal model, M.X/, for the CDGA APL.X/. The space XQ comes equipped with a structure
map, hWX ! XQ, which realizes the morphism �WM.X/! APL.X/.

Now supposeX is a connected, pointed CW-complex which is a nilpotent space; then,
as shown in [53], the space XQ is again nilpotent and the map h is a rational homotopy
equivalence. Moreover, if H�.X;Q/ is of finite type, then the maps h�W �n.X/˝Q!
�n.XQ/ are isomorphisms, for all n � 2. The nilpotency condition is crucial here. Indeed,
if X D RP2, then �1.X/ D Z2 is nilpotent but does not act nilpotently on �2.X/ D Z;
we also have that XQ ' ¹�º, and so the map h�W�2.X/˝Q! �2.XQ/ is the zero map.

In general, the Bousfield–Kan completion and the Sullivan rationalization do not
agree, even for nilpotent spaces. Nevertheless, if X is nilpotent and H�.X;Q/ is of finite
type, then Q1X D XQ, see [21].

When X is a CW-complex, a more concrete way to construct the rationalization XQ

is via Sullivan’s infinite telescopes, introduced in [135]. For instance, if n is odd, then
SnQ ' K.Q; n/.

The constructions from Section 6 are related to the rationalizations of spaces, as
follows. Let X be a path-connected space with fundamental group �1.X/ D G. Then
M.GIQ/ D �1.XQ/, the fundamental group of the rationalization of X .

8.9. Equivariant algebraic models

The study of the rational equivariant homotopy type of a space subject to the action of a
finite group goes back to the work of Triantafillou [144] on equivariant minimal models.
We summarize here some recent work from [113] on this subject.

Letˆ be a finite group. The categoryˆ-CDGA (over k) has objects CDGAsA endowed
with a compatible ˆ-action, while the morphisms are ˆ-equivariant CDGA maps A! B .
Given a ˆ-CDGA A, we let Aˆ be the sub-CDGA of elements fixed by ˆ; there is then
a canonical CDGA map Aˆ ! A. By definition, a q-equivalence A 'q B in ˆ-CDGA

(1 � q � 1) is a zigzag of ˆ-equivariant q-equivalences in CDGA. It is readily seen that
A 'q B in ˆ-CDGA implies that Aˆ 'q Bˆ in CDGA.

Now suppose ˆ acts freely on a space Y , and let X D Y=ˆ be the orbit space. As
is well known, every CW-complex X has the homotopy type of a simplicial complex K;
moreover, if X has finite q-skeleton, so does K. Fix such a triangulation of X , and lift
it to the cover Y . The corresponding simplicial Sullivan algebras are then related by the
equality As.X/ D As.Y /

ˆ. Therefore, we have the following result.
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Proposition 8.10 ([113]). Let X be a CW-complex, and let Y ! X be a finite regular
cover, with group of deck transformations ˆ. Let A be a ˆ-CDGA over k.

(1) Suppose APL.Y / ˝Q k 'q A in ˆ-CDGA, for some 1 � q � 1. Then
APL.X/˝Q k 'q Aˆ in CDGA.

(2) If, moreover, A is q-finite, then Aˆ is q-finite.

As a consequence, if Y admits an equivariant q-finite q-model, then X admits
a q-finite q-model. The hypothesis from part (1) in the above proposition cannot be
completely dropped. Nevertheless, we have the following conjecture regarding algebraic
models for the orbit space X D Y=ˆ constructed from ˆ-equivariant models for Y .

Conjecture 8.11 ([113]). Let X be a connected CW -complex, and let Y ! X be
a finite, regular cover with deck group ˆ. Suppose that Y has finite Betti numbers.
Let A be a ˆ-CDGA, and assume that there is a zigzag of quasi-isomorphisms connecting
APL.Y /˝Q k to A in CDGA, such that the induced isomorphism between H�.Y;k/ and
H�.A/ is ˆ-equivariant. Then Aˆ is a model for X .

8.10. On the Betti numbers of minimal models

We conclude this section with an obstruction to the existence of a q-finite CDGA model A
for a spaceX , an obstruction expressed in terms of Betti numbers of the q-minimal model
Mq.X/ associated to X .

Theorem 8.12 ([113]). Let X be a connected CW-space, and assume that one of the
following conditions is satisfied.

(1) X is .q C 1/-finite.

(2) APL.X/˝Q k 'q A, where A a q-finite CDGA over k.

Then bi .Mq.X// <1, for all i � q C 1.

Proof. Recall from (8.1) that we have a q-quasi-isomorphism Mq.X/ ! APL.X/.
In case (1), the claim follows at once. In case (2), the discussion in Section 4.3 shows that
Mq.X/ is also a q-minimal model for A; thus, the claim follows from Proposition 4.7.

9. Algebraic models for groups

9.1. Malcev Lie algebras and 1-minimal models

Let G be a group, and let M1.G/ be its 1-minimal model, as described in Section 6.
By definition, this is a minimal CDGA over Q, generated in degree 1. If G D �1.X/

is the fundamental group of a path-connected space X , then any classifying map
X ! K.G; 1/ induces an isomorphism between the corresponding 1-minimal models,
M1.X/ŠM1.G/. Consequently, the existence of a 1-finite 1-model for a path-connected
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space X is equivalent to the existence a 1-finite 1-model for its fundamental group,
G D �1.X/.

Assume now that G is a finitely generated group. There is then a natural dual-
ity between the Malcev Lie algebra m.G/, endowed with the inverse limit filtration
given by (6.1) and the 1-minimal model M1.G/, endowed with the increasing filtra-
tion from (4.1). Recall that the latter filtration, ¹M.i/ºi�0, starts with M.0/ D Q.
Since G is finitely generated, the vector space V1 ´ H 1.G;Q/ is finite-dimensional.
Each sub-CDGA M.i/ is then a Hirsch extension of the form M.i � 1/ ˝

V
Vi , where

Vi D ker.H 2.M.i � 1// ! H 2.M1.G/// is again finite-dimensional. Let L.G/ D

lim
 �i

Li .G/ be the pronilpotent Lie algebra functorially associated to the 1-minimal
model M1.G/ in the manner described in Section 4.5. We then have the following basic
correspondence between the aforementioned Lie algebras.

Theorem 9.1 ([30, 66, 137]). There is a natural isomorphism between the towers of
nilpotent Lie algebras ¹m.G=i .G//ºi�0 and ¹Li .G/ºi�0, which gives rise to a functorial
isomorphism of complete, filtered Lie algebras, m.G/ Š L.G/.

The functorial isomorphism m.G/ Š L.G/, together with the dualization correspon-
dence M1.G/! L.G/ define adjoint functors between the category of Malcev Lie
algebras of finitely generated groups and the category of 1-minimal models of finitely gen-
erated groups. Using this isomorphism and the one from (6.2), we may identify grn.GIQ/
with .Vn/_ for all n � 1.

9.2. Groups with 1-finite 1-models

The next theorem provides an effective way of computing the Malcev Lie algebra of a
group G, under a certain finiteness assumption.

Theorem 9.2 ([113]). Let G be a finitely generated group that admits a 1-finite
1-model A. Then the Malcev Lie algebra m.G/ is isomorphic to the LCS completion of
the holonomy Lie algebra h.A/.

Proof. By our hypothesis and by the uniqueness of 1-minimal models, we have an isomor-
phism M1.G/ ŠM1.A/. By construction, the Lie algebra m.G/ is filtered isomorphic to
the inverse limit of a tower of central extensions of finite-dimensional nilpotent Lie alge-
bras. By Theorem 9.1, the terms m.G=i .G// of this tower are obtained by dualizing the
canonical filtration of M1.G/.

On the other hand, by Theorem 7.8, the CDGA M1.A/ is isomorphic to yC.h.A//, the
completion of the Chevalley–Eilenberg cochain functor applied to h.A/. Furthermore, it is
shown in [113, Corollary 5.7] that the dual of the canonical filtration of yC.h.A// is a tower
of central extensions of finite-dimensional Lie algebras, whose terms are the nilpotent
quotients h.A/=i .h.A//. Putting all these facts together yields the desired isomorphism,
m.G/ Š yh.A/.
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As an application, we have the following result, which gives a characterization of
groups G having a 1-finite 1-model in terms of their Malcev Lie algebras.

Theorem 9.3 ([113]). A finitely generated groupG admits a 1-finite 1-model if and only if
the Malcev Lie algebra m.G/ is the lower central series completion of a finitely presented
Lie algebra over Q.

The above condition means that m.G/D yL, for some finitely presented Lie algebra L
over Q, where yL D lim

 �n
L=n.L/. By Theorem 9.2, if A is a 1-finite 1-model for G, we

may take L to be the holonomy Lie algebra h.A/.
Finally, here is a finiteness obstruction for finitely generated groups, which follows at

once from Theorem 8.12.

Corollary 9.4 ([113]). LetG be a finitely generated group. Assume that eitherG is finitely
presented or G admits a 1-finite 1-model. Then b2.M1.G// <1.

9.3. Filtered formal groups

Recall from Section 6.5 that a finitely generated group G is said to be filtered formal if its
Malcev Lie algebra m.G/ is isomorphic to the degree completion of its associated graded
Lie algebra. The next result connects certain finiteness properties of algebraic objects
associated to such a group G.

Proposition 9.5 ([113]). Let G be a finitely generated, filtered formal group, so that
m.G/ Š yL, where L D L=J is a graded Lie algebra over Q generated in degree 1 and
J is an ideal included in L�2. If b2.M1.G// <1, then dimQ.J=ŒL; J �/ <1.

Here is another characterization of filtered-formality, this time in terms of minimal
models.

Theorem 9.6 ([132]). A finitely generated group G is filtered-formal over Q if and only
if the canonical 1-minimal model M1.G/ is filtered-isomorphic to a 1-minimal model M

with positive Hirsch weights.

The notion of filtered formality over an arbitrary field k of characteristic 0 is defined
analogously. It follows from Theorem 5.5 that G is filtered-formal over k if and only it is
filtered-formal over Q. Another notable property of filtered formality is that it descends
to maximal solvable quotients. The next theorem develops a theme started in [106].

Theorem 9.7 ([132]). Let G be a finitely generated group. For each i � 2, the quotient
map qi WG� G=G.i/ induces a natural epimorphism of graded k-Lie algebras,

‰.i/W gr.GIk/= gr.GIk/.i/ gr.G=G.i/Ik/: �

Moreover, if G is filtered-formal, then ‰.i/ is an isomorphism and the solvable quotient
G=G.i/ is filtered-formal.
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Taking G D Fn, it follows that each solvable quotient Fn=F
.i/
n is a filtered formal

group, with associated graded Lie algebra equal to Ln=L
.i/
n , where Ln D Lie.Qn/ denotes

the free Q-Lie algebra on n generators.

9.4. Non-finiteness properties of certain metabelian groups

As an application of these techniques, we may construct a large class of metabelian groups
that do not have good finiteness properties, either at the level of presentation complexes,
or at the level of 1-models.

A finitely generated groupG is said to be very large if it has a quotient a free group Fn
of rank n greater or equal to 2. The groupG is merely large if it has a finite-index subgroup
which is very large.

Theorem 9.8 ([113]). Let G be a metabelian group of the form G D �=� 00, where � is
very large. Then G is not finitely presentable and G does not admit a 1-finite 1-model.

Proof. By assumption, there is an epimorphism 'W � � Fn, for some n � 2. Since the
group Fn is free, the map ' admits a splitting, and thus, the induced homomorphism on
maximal metabelian quotients, x'W�=� 00� Fn=F

00
n , also has a splitting. By the homotopy

functoriality of the 1-minimal model construction from Theorem 7.8, the map x' induces
a CDGA map, x'�WM1.Fn=F

00
n /!M1.�=�

00/, which is a split injection up to homotopy.
Suppose now that �=� 00 admits a finite presentation, or a 1-finite 1-model. It then

follows from Corollary 9.4 that b2.M1.�=�
00// < 1. Since the map x'� is split injec-

tive (up to homotopy), and since homology is a homotopy functor, we infer that
b2.M1.Fn=F

00
n // < 1. Hence, since Fn=F 00n is filtered formal and L00n � L�2, Propo-

sition 9.5 implies that the Q-vector space L00n=ŒLn;L
00
n� is finite-dimensional. On the other

hand, a computation with Hall–Reutenauer bases done in [113, Proposition 3.2] shows
that dimQ.L00n=ŒLn;L

00
n�/ D1. This is a contradiction, and the proof is complete.

10. Formality of spaces, maps, and groups

10.1. Formal spaces

A space X is said to be formal (over a field k of characteristic 0) if the Sullivan algebra
APL.X/˝Q k is formal, i.e., it is weakly equivalent to the cohomology algebraH�.X;k/,
equipped with the zero differential,

APL.X/˝Q k ' .H�.X;k/; 0/:

If X is formal (over Q), its rationalization XQ depends only on H�.X;Q/.
The formality property behaves well with respect to field extensions of the form

Q � k. Indeed, Halperin and Stasheff’s result (Corollary 3.8) implies that a connected
space X with finite Betti numbers is formal over Q if and only if X is formal over k. This
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result was first stated and proved by Sullivan [137], using different techniques, while an
independent proof was given by Neisendorfer and Miller [101] in the simply-connected
case.

Formality is preserved under several standard operations on spaces. For instance,
if X and Y are formal, then so is the product X � Y and the wedge X _ Y ; moreover,
a retract of a formal space is formal; see [52, 54] for details. In general, a finite cover of a
formal space need not be formal; nevertheless, Conjecture 8.11 holds in the formal case,
and leads to the following result.

Proposition 10.1 ([113]). Suppose ˆ is a finite group acting simplicially on a formal
simplicial complex Y with finite Betti numbers. Then the orbit space X D Y=ˆ is again
formal.

The following result of Kreck and Triantafillou [79] fits into Sullivan’s “determined
up to finite ambiguity” philosophy.

Theorem 10.2 ([79]). Let H be a finitely generated graded commutative ring over Z.
Then there are only finitely many homotopy types of simply-connected, formal, finite
CW -complexes with integral cohomology isomorphic to H .

10.2. Formality criteria

For nilpotent spaces, Sullivan gave a formality criterion in terms of lifting automorphisms
of the cohomology algebra to the minimal model.

Theorem 10.3 ([137]). Let X be a nilpotent CW-complex with finite Betti numbers. Then
X is formal if and only if every automorphism of H�.X;Q/ can be realized by an
automorphism of M.X/.

Roughly speaking, the more highly connected a space is, the more likely it is to be
formal. This was made precise by Stasheff in [124], as follows.

Theorem 10.4 ([124]). Let X be a k-connected CW-complex of dimension n; if
n � 3k C 1, then X is formal.

This is the best possible bound: attaching a cell e3kC2 to the wedge SkC1 _ SkC1 via
the iterated Whitehead product Œ�1; Œ�1; �2�� yields a non-formal CW-complex.

A powerful formality criterion was given by Sullivan in [137].

Theorem 10.5 ([137]). IfH�.X;k/ is the quotient of a free CGA by an ideal generated by
a regular sequence, then X is a formal space. Consequently, if H�.M;k/ is a free CGA,
then X is formal.

This result provides a large supply of formal spaces, such as: rational cohomology
spheres and tori; compact connected Lie groupsG, as well as their classifying spaces,BG;
homogeneous spaces of the form G=K, with rankG D rankK; and Eilenberg–MacLane
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classifying spaces K.G; n/ for discrete groups G, provided n � 2. In particular, if X is
the complement of a knotted sphere in Sn, n � 3, then X is a formal space.

On the other hand, not all homogeneous spaces are formal. For instance, the quo-
tient spaces SU.pq/=.SU.p/ � SU.q// for p; q � 3; SO.n2 � 1/= SU.n/ for n � 3;
Sp.5/=SU.5/; and SO.78/=E6 are known to be non-formal. Furthermore,K.G;1/ spaces
need not be formal. For instance, Hasegawa [69] showed that a classifying space for a
torsion-free, finitely generated nilpotent group G is formal if and only if G is abelian.
We refer to [54] for more on these topics.

A connected space X is said to be intrinsically formal if any connected space whose
rational cohomology algebra is isomorphic to H�.X;Q/ has the same rational homotopy
type as X ; in other words, if there is a unique rational homotopy type whose rational
cohomology algebra is isomorphic to that of X .

Theorem 10.6 ([10, 68]). Let X be a connected space whose minimal model M.X/ is of
finite type. If b2k.X/D 0 for all k � 1, then X is intrinsically formal and has the rational
homotopy type of a wedge of odd spheres.

Although the spaces in the above theorem are intrinsically formal, they are typically
not hyperformal. For instance, the space X D S2k1�1 _ S2k2�1 fits into this frame-
work, but the cohomology algebra H�.X; k/ is isomorphic to

V
.x1; x2/=.x1x2/, with

jxi j D 2ki � 1, which is not hyperformal if k1 ¤ k2, since in that case ¹x1x2º is not a
regular sequence.

10.3. Formality properties of closed manifolds

As shown by Miller [99], the dimension bound from Theorem 10.4 can be relaxed for
closed manifolds, by using Poincaré duality.

Theorem 10.7 ([99]). Let M be a closed, k-connected manifold (k � 1) of dimension
n � 4k C 2. Then M is formal.

In particular, all simply-connected closed manifolds of dimension at most 6 are formal.
Again, this is the best possible: as shown by Fernández and Muñoz in [58], there exist
closed, simply-connected, non-formal manifolds in each dimension n � 7. On the other
hand, if M is a closed, orientable, k-connected n-manifold with bkC1.M/ D 1, then the
bound insuring formality can be improved to n � 4k C 4, see Cavalcanti [29].

Formality also behaves well with respect to standard operations on manifolds.
For instance, Stasheff [124] proved the following: If M is a closed, simply-connected
manifold such that the punctured manifold M n ¹�º is formal, then M is formal. More-
over, if M and N are closed, orientable, formal manifolds, so is their connected sum,
M#N ; see [52].

It has been shown by Cavalcanti [29], and, in stronger form, by Crowley and
Nordström in [35], that a certain type of Hard Lefschetz property insures the intrinsic
formality of highly connected manifolds.
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Theorem 10.8 ([35]). Let M be an .n � 1/-connected manifold of dimension 4n � 1.
Suppose bn.M/ � 3 and there is a cohomology class u 2 H 2n�1.M;Q/ such that the
map Hn.M;Q/! H 3n�1.M;Q/, v 7! uv is an isomorphism. Then M is intrinsically
formal.

In the same paper, Crowley and Nordström construct infinitely many simply-con-
nected, non-formal manifolds all of whose Massey products vanish (the smallest dimen-
sion of such a manifold is 7). We summarize their results, as follows.

Theorem 10.9 ([35]). For each k � 1, there is a non-formal, .2k � 1/-connected manifold
of dimension 8k � 1 and a .2k/-connected manifold of dimension 8k C 3 such that all
Massey products in the rational cohomology rings of these manifolds vanish.

In [37], Deligne, Griffiths, Morgan, and Sullivan showed that every compact Kähler
manifold M is formal. On the other hand, symplectic manifolds need not be formal:
the simplest example is the Kodaira–Thurston manifold, which is the product of the cir-
cle with the 3-dimensional Heisenberg nilmanifold (see Example 10.14 below). This led
Lupton and Oprea [89] to raise the question whether compact, simply-connected sym-
plectic manifolds are formal. The question was answered in the negative by Babenko
and Taimanov [5, 6], who used McDuff’s symplectic blow-ups to construct non-formal,
simply-connected symplectic manifolds in all even dimensions greater than 8; an
8-dimensional example was subsequently constructed by Fernández and Muñoz [60].
We refer to [54, 57, 83, 121, 143] for more on this subject.

10.4. Formal maps

A continuous map f WX ! Y is said to be formal (over Q) if the induced morphism
between Sullivan models, APL.f /WAPL.Y /! APL.X/, is formal, in the sense of Defini-
tion 3.10. By the discussion from Section 4.4, this condition is equivalent to the existence
of a diagram of the form

APL.Y / M.Y / .H�.Y;Q/; 0/

APL.X/ M.X/ .H�.X;Q/; 0/;

 ! APL.f /

 

!�Y

 ! M.f /

 

!
 Y

 ! f �

 

!�X  

!
 X

which commutes up to homotopy and in which the horizontal arrows are quasi-isomor-
phisms. When f is formal, the surjectivity of f � implies that of M.f /.

One may define in a similar fashion formality of maps over an arbitrary field k of
characteristic 0. As shown by Vigué-Poirrier in [146], a map f WX ! Y between two
nilpotent CW-complexes of finite type is formal over k if and only if it is formal over Q.
Moreover, as shown by Félix and Tanré [55], the cofiber of such a map is a formal space.

Example 10.10. Suppose f WM !N is a holomorphic map between two compact Kähler
manifolds. Then, as shown in [37], f is a formal map over R.
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In general, though, a map between two formal spaces need not be formal. A simple
example is provided by the Hopf map f W S3 ! S2, for which f �W zH�.S2; Q/ !
zH�.S3;Q/ is the zero map, yet the induced morphism M.f /WM.S2/!M.S3/ is non-

trivial.
The next result, due to Arkowitz [4], delineates a class of formal spaces X and Y for

which every map f WX ! Y is formal.

Theorem 10.11 ([4]). Let X and Y be simply-connected, formal, rational spaces, and let
ŒX; Y �f be the set of homotopy classes of formal maps from X to Y .

(1) The map ŒX; Y �f ! Hom.H�.Y;Q/;H�.X;Q//, f 7! f � is a bijection.

(2) Further, assume that X and Y are of finite type, bi .X/ D 0 for i � 2nC 1, and
Y is n-connected. Then every map f WX ! Y is formal.

10.5. Partial formality

Let q be a non-negative integer. A space X is said to be q-formal (over a field k
of characteristic 0) if its Sullivan algebra is q-formal, that is, .APL.X/ ˝Q k; d / 'q
.H�.X; k/; 0/. Clearly, if X is formal, then X is q-formal for all q � 0. Under some
additional hypothesis, this implication may be reversed.

Theorem 10.12 ([91]). Let X be a space such thatH i .X;k/ D 0 for all i � q C 2. Then
X is q-formal if and only if X is formal.

In particular, the notions of formality and q-formality coincide for .q C 1/-dimen-
sional CW-complexes.

Example 10.13. Let V be a complex algebraic hypersurface in CPn, with complement
X D CPn n V . Work of Morgan [100] shows that X is 1-formal, though not formal,
in general. By Morse theory, X has the homotopy type of a finite CW-complex of
dimension n. Thus, if n D 2 (that is, V is a plane curve), Theorem 10.12 implies that
X is formal.

Example 10.14. Let M D GR=GZ be the 3-dimensional Heisenberg nilmanifold, where
GR is the group of real, unipotent 3 � 3 matrices, and GZ D �1.M/ is the subgroup
of integral matrices in GR. This manifold has as a model the CDGA .A; d/, where
A D

V
.a1; a2; b/ with generators in degree 1, and differential given by dai D 0 and

db D a1a2. As noted in Example 3.6, this CDGA is not 1-formal. Alternatively, the triple
Massey product hŒa1�; Œa1�; Œa2�i D ¹Œa1b�º is non-vanishing, with trivial indeterminacy.
Therefore, M is not 1-formal.

Partial formality enjoys a descent property analogous to that for full formality. Indeed,
Theorem 3.9 has the following immediate corollary.

Corollary 10.15 ([132]). LetX be a connected space such that bi .X/ <1 for i � qC 1.
Then X is q-formal over Q if and only if X is q-formal over k.
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We may also consider a partial formality notion for maps. A continuous map
f W X ! Y is said to be q-formal if the morphism APL.f /W APL.Y / ! APL.X/ is
q-equivalent to the induced homomorphism in cohomology, f �WH�.Y;Q/!H�.X;Q/.

10.6. Koszul algebras and formality

Let A be a connected, locally finite k-CGA. The trivial A-module k has a free, graded
A-resolution of the form

� � � An2 An1 A k 0:

 

!
'3  

!
'2  

!
'1  

!

 

!

Such a resolution is minimal if all the non-zero entries of the matrices 'i have positive
degrees. The algebra A is said to be a Koszul algebra if the minimal A-resolution of k is
linear, or, equivalently, TorAi .k;k/j D 0 for all i ¤ j . A necessary condition is that A be
expressed as the quotient A D E=I of an exterior algebra on generators in degree 1 by
an ideal I generated in degree 2. A sufficient condition is that the ideal I has a quadratic
Gröbner basis. If A is a Koszul algebra, then the quadratic dual AŠ is also a Koszul algebra
and the following “Koszul duality” formula holds:

Hilb.A; t/ � Hilb.AŠ;�t / D 1:

The following theorem of Papadima and Yuzvinsky [115] relates certain properties of
the minimal model of a space X to the Koszulness of its cohomology algebra.

Theorem 10.16 ([115]). Let X be a connected space with finite Betti numbers.

(1) If M.X/ŠM1.X/, then the cohomology algebraH�.X;Q/ is a Koszul algebra.

(2) If X is formal and H�.X;Q/ is a Koszul algebra, then M.X/ ŠM1.X/.

Consequently, if X is formal, then X is rationally aspherical if and only if H�.X;Q/
is a Koszul algebra. When X is also a nilpotent space, Berglund [15] recovers this
equivalence (without assuming the cohomology algebra is generated in degree 1) and finds
several alternative conditions yielding the same class of spaces, which he calls Koszul
spaces.

As an application of Theorem 10.16, we have the following formality criterion.

Corollary 10.17 ([107]). LetX be a connected, finite-type CW-complex, and suppose that
H�.X;Q/ is a Koszul algebra. Then X is 1-formal if and only if X is formal.

Example 10.18. Let A be an arrangement of linear hyperplanes in Cn, with complement
X D Cn n

S
H2A H . Work of Arnol’d and Brieskorn from the 1960s shows that X is

formal. Now suppose A is a fiber-type arrangement, or, equivalently, if its intersection
lattice, L.A/, is supersolvable. Then X is aspherical and H�.X;Q/ is a Koszul algebra.
Theorem 10.16 implies that X is also rationally aspherical (this is a result first proved
by Falk [48] by other methods). It is an open question whether the converse is true: If X
is rationally aspherical, is A necessarily of fiber-type? Put differently: If H�.X;Q/ is a
Koszul algebra, is L.A/ necessarily supersolvable?
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10.7. The 1-formality property for groups

A finitely generated group G is said to be 1-formal (over a field k of characteristic 0) if
there is a classifying space K.G; 1/ which is 1-formal (over k). In view of the discussion
from Section 8.3, we see that a connected CW-complex X is 1-formal if and only if its
fundamental group, G D �1.X/, is 1-formal.

Over Q, the 1-formality property of a group G depends only on its Malcev Lie
algebra, m.G/, or its rationalization, GQ. This is a consequence of the following well-
known theorem, proved for instance in [27, 94, 132].

Theorem 10.19. A finitely generated group G is 1-formal if and only if m.G/ is isomor-
phic to the degree completion of a finitely generated, quadratic Lie algebra.

Let h.G/ D h.GIQ/ be the holonomy Lie algebra of G, as described in Section 7.5.
As shown in [106], the 1-formality of G is equivalent to m.G/ Š yh.G/.

Example 10.20. Let Fn be the free group of rank n � 1. We then have H1.Fn;Q/ D Qn

and H2.Fn;Q/ D 0; hence, �G D 0 and so h.Fn/ D Lie.Qn/, the free Lie algebra of
rank n. On the other hand, m.Fn/D cLie.Qn/, by Theorem 6.4. Therefore, Fn is 1-formal.

Example 10.21. Let†g be the Riemann surface of genus g � 1. The groupG D �1.†g/
is generated by x1; y1; : : : ; xg ; yg , subject to the single relation Œx1; y1� � � � Œxg ; yg �D 1. It
is readily checked that h.G;k/ is the quotient of the free Lie algebra on x1; y1; : : : ; xg ; yg
by the ideal generated by Œx1; y1� C � � � C Œxg ; yg �. A further computation using Theo-
rem 6.4 shows that m.G/ Š yh.G/; thus, G is 1-formal.

The 1-formality property is preserved under finite free products and direct products
of finitely generated groups. The following lemma (which follows at once from the
discussion in Section 8.3) provides a useful 1-formality criterion.

Lemma 10.22. LetG a finitely generated group. Suppose there is a 1-formal groupK and
a homomorphism 'WG ! K such that '�WH 1.K;Q/! H 1.G;Q/ is an isomorphism
and '�WH 1.K;Q/! H 1.G;Q/ is injective. Then G is also 1-formal.

Example 10.23. If G is a finitely generated group with b1.G/ equal to 0 or 1, then
G is 1-formal. Indeed, the claim is true for K0 D ¹1º (trivially) and for K1 D Z
(by Example 10.20). Moreover, if b1.G/ D i 2 ¹0; 1º, we may define a homomorphism
'W G ! Ki satisfying the assumptions of Lemma 10.22. Therefore, the claim holds
for G, too.

Here is another interpretation of the 1-formality notion. We say that a finitely generated
group G is graded-formal (over k) if the associated graded Lie algebra gr.GI k/ is
quadratic. It follows from Theorem 7.9 that G is graded-formal precisely when the
canonical surjection ˆW gr.GI k/� h.GI k/ is an isomorphism. As in Section 6.5, we
say that G is filtered-formal over k if m.G/˝ k Š bgr.GIk/. Putting things together, we
obtain the following result.
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Proposition 10.24 ([132]). A finitely generated group G is 1-formal (over k) if and only
if G is graded-formal and filtered-formal (over k).

As a corollary, we deduce that 1-formality enjoys a descent property.

Corollary 10.25 ([132]). A finitely generated group G is 1-formal over k if and only if
G is 1-formal over Q.

Indeed, it is easily seen that graded-formality is independent of the choice of a field k
of characteristic 0. By Theorem 5.5, the same is true for filtered-formality, and the
conclusion follows from Proposition 10.24. When G is finitely presented, we have that
b2.G/ <1, and the result also follows from Corollary 10.15.

As we saw in Example 10.20, the free group Fn has vanishing cup-product map �Fn
and is 1-formal. Here is a partial converse.

Proposition 10.26 ([42]). Let G be a group admitting a finite presentation with only
commutator relators. If G is 1-formal and �G D 0, then G is a free group.

Example 10.27. Let G D GZ be the Heisenberg group from Example 10.14. Then G
is isomorphic to F2=3.F2/, and so it has a finite presentation with only commutator
relators; moreover, �G D 0, yet G is not a free group, since it is 2-step nilpotent.
Therefore, we conclude once again that G is not 1-formal.

10.8. Polyhedral products and right-angled Artin groups

We conclude this section with a discussion of the formality properties of polyhedral
product spaces and some related groups. Given a finite simplicial complex K, it is a
subtle question to decide whether the polyhedral products ZK.X; X

0/ from Section 8.6
are formal, even when all the spaces Xi and the subspaces X 0i are formal. Theorem 8.9
(together with a previous remark) yields a sufficient condition for this to happen.

Corollary 10.28 ([56]). Let Xi , X
0
i be nilpotent, finite-type CW-complexes. Assume that

the inclusion maps X 0i ,! Xi are formal and induce epimorphisms in cohomology. Then
all polyhedral products ZK.X;X

0/ are formal.

We specialize now to the case when Xi D X and X 0i D X 0 for all i , and write
ZK.X; X

0/ for the corresponding polyhedral product. If X is nilpotent and formal, then
the inclusion � ! X satisfies the hypothesis of Corollary 10.28, and thus ZK.X; �/

is formal – a result first proved in [102]. In particular, the Davis–Januszkiewicz spaces
DJK D ZK.CP1;�/ and the toric complexes TK D ZK.S

1;�/ are all formal.
Letting � be the 1-skeleton ofK, it is readily seen that the fundamental group of TK is

the right-angled Artin group G� associated to the graph � . Consequently, all right-angled
Artin groups are 1-formal – a result also proved in [107], using Theorems 6.4 and 10.19.
Moreover, if the flag complex of � is simply connected, then, as shown in [104], the
Bestvina–Brady group associated to � is also 1-formal.
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Finally, let us consider the moment-angle complexes ZK D ZK.D
2; S1/. In this

situation, Corollary 10.28 no longer applies, since the inclusion-induced homomorphism
H 1.D2;Q/!H 1.S1;Q/ is not surjective. In fact, there are infinite families of simplicial
complexes K for which H�.ZK ;Q/ has non-vanishing Massey products, and thus ZK is
non-formal, see [9, 38, 64]. If K is an n-vertex triangulation of Sm, then ZK is a closed
manifold of dimension nCmC 1. Asymptotically, almost all triangulationsK of S2 yield
non-formal moment-angle manifolds ZK , see [38].

11. Alexander invariants and resonance varieties

11.1. A generalized Koszul complex

Given a finite-dimensional k-vector space V , we define the corresponding canonical
element to be tensor !V 2 V _˝V which corresponds to the identity automorphism of V _

under the tensor-hom adjunction (recall that˝D˝k). In concrete terms, if we pick a basis
¹e1; : : : ; enº for V _ and let ¹x1; : : : ; xnº be the dual basis for V , then !V D

Pn
jD1 ej ˝ xj .

Now let A D .A�; d / be a connected k-CDGA, and assume that the k-vector space
H 1.A/ is finite-dimensional. Since d.1/ D 0 and A0 D k, the differential d WA0 ! A1

vanishes; thus, we may identify H 1.A/ with Z1.A/. Setting H1.A/ D .H 1.A//_, we let
!A´ !H1.A/ 2 H

1.A/˝H1.A/ be the corresponding canonical element.
Let S D Sym.H1.A// be the symmetric algebra on H1.A/. The tensor product

A˝k S is both a free S -module and a bigraded k-algebra, with product .a˝ s/.a0˝ s0/D
aa0 ˝ ss0. It is also a k-CDGA, with differential d ˝ idS . Left-multiplication by !A,
viewed as an element ofZ1.A/˝H1.A/, defines an endomorphism ofA˝ S of bidegree
.1; 1/. We define an S -linear map, ıAWA˝k S ! A˝ S , by

ıA D !A C d ˝ idS : (11.1)

It is readily verified that ı2A D 0, and so the next result follows.

Proposition 11.1 ([130]). Let .A�; d / be a connected k-CDGA with dimk H
1.A/ <1.

There is then a cochain complex of free S -modules,

� � � Ai ˝ S AiC1 ˝ S AiC2 ˝ S � � � ;

 

!

 

!
ı iA  

!
ı iC1A  

! (11.2)

with differentials given by (11.1), such that .A� ˝ S; ıA/ is again a k-CDGA.

If we fix a k-basis ¹e1; : : : ; enº for H 1.A/ and let ¹x1; : : : ; xnº be the dual basis
for H1.A/, the ring S D Sym.H1.A// may be identified with the polynomial ring
kŒx1; : : : ; xn�, viewed as the coordinate ring of the affine space H 1.A/. The differentials
in (11.1) are then the S -linear maps given by

ıiA.a˝ s/ D

nX
jD1

eja˝ sxj C d.a/˝ s
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for all a 2 Ai and s 2 S . If the CDGA A has zero differential, each map ıiA is given by a
matrix whose entries are linear forms in the variables x1; : : : ; xn; in general, though, the
entries of ıiA may also have non-zero constant terms.

11.2. The Alexander invariants of a CDGA

The S -dual of the cochain complex (11.2) is the chain complex of free S -modules,

.A� ˝ S; ı
A/ W � � � A2 ˝ S A1 ˝ S A0 ˝ S D S;

 

!

 

!
ıA2  

!
ıA1 (11.3)

where the maps ıAi are the S -linear duals of the maps ıiA. By analogy with classical
the topological setting, we define the Alexander invariants of a CDGA .A�; d / as the
homology S -modules of this chain complex,

Bi .A/´ Hi .A� ˝ S/:

If d D 0, then the differentials in (11.3) are homogeneous (of degree 1), and so the
S -modules Bi .A/ inherit a natural grading. For instance, if E D

V
V is the exterior

algebra on a finite-dimensional k-vector space V , with differential d D 0, then Bi .E/D 0

for all i � 1. In general, though, the Alexander invariants Bi .A/ do not have a natural
grading.

An explicit finite presentation for the first Alexander invariant, B.A/´ B1.A/, was
given in [106, Theorem 6.2] in the case when d D 0. This presentation is generalized
in [130], as follows.

Let .A; d/ be a connected k-CDGA with A1 finite-dimensional. Set E D
V
H 1.A/

and identify E1 D H 1.A/ with Z1 D ker.d WA1 ! A2/. Let U 1 be its complementary
k-vector subspace, so that A1 D E1 ˚ U 1, and write Ai D .Ai /_ and so forth for the
k-dual vector spaces. Then U1 may be identified with the image of the k-dual of the
differential, d_WA2! A1, and we have a direct sum decomposition, A1 D E1 ˚ U1. Let
�U WA1 ! U1 be the projection onto the second summand.

Theorem 11.2 ([130]). The Alexander invariant of A, viewed as a module over the
symmetric algebra S D Sym.E1/, has presentation

.E3 ˚ A2/˝ S .E2 ˚ U1/˝ S B.A/ 0;

 

!

�
ıE3 0

�_E˝idS d_A˝idS Cˇ_A

�

 

!

 

!

where ˇ_A D .�U ˝ idS / ı .!A � �E ı !E /_.

Finally, let I be the maximal ideal at 0 of the polynomial ring S . The powers of this
ideal define a descending filtration, ¹I nB.A/ºn�0, on the Alexander invariant of A. Let
gr.B.A// be the associated graded S -module with respect to this filtration.

Proposition 11.3 ([130]). For each k � 1, there is an isomorphism of k-vector spaces,

grk.B.A//
_
Š TorE

k�1.A;k/k ;
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where on the right side A is viewed as a graded module over the exterior algebra
E D

V
A1.

11.3. Resonance varieties

Let .A; d/ be a connected CDGA. As noted previously, H 1.A/ D Z1.A/. For every
! 2 H 1.A/, the operator d! WD d C ! � is a differential on A. The resonance varieties
Ri
k
.A/ are defined, for all i; k � 0, as the infinitesimal jump loci

Ri
k.A/ D ¹! 2 H

1.A/ j dimH i .A; d!/ � kº:

When the CDGA A is q-finite, for some q � 1, these sets are Zariski closed subsets of the
affine space H 1.A/, for all i � q and k � 0.

Clearly,H i .A; ı0/DH
i .A/; thus, the point 0 2H 1.A/ belongs to the variety Ri

1.A/

if and only ifH i .A/¤ 0. Moreover, R0
1.A/D ¹0º. When the differential of A is zero, the

resonance varieties Ri
k
.A/ are homogeneous subsets ofH 1.A/D A1. In general, though,

the resonance varieties of a CDGA are not homogeneous, as we shall see in Example 11.6.
The following lemma follows quickly from the definitions.

Lemma 11.4 ([92]). Let 'WA! A0 be a CDGA morphism, and assume ' is an isomor-
phism up to degree q, and a monomorphism in degree q C 1, for some q � 0. Then
the induced isomorphism in cohomology, '�WH 1.A0/! H 1.A/, identifies Ri

k
.A/ with

Ri
k
.A0/ for each i � q, and sends R

qC1

k
.A/ into R

qC1

k
.A0/, for all k � 0.

Consequently, if A and A0 are isomorphic CDGAs, then their resonance varieties
are ambiently isomorphic. As we shall see (also in Example 11.6), the conclusions
of Lemma 11.4 do not always hold if we only assume that 'W A ! A0 is a q-quasi-
isomorphism.

An alternative interpretation of the degree 1 resonance varieties is given by the
following theorem.

Theorem 11.5 ([130]). Let A be a connected CDGA with 0 < dimA1 <1. Then, for all
k � 1,

R1
k.A/ D V

�
Ann

� k̂

.B.A//
��
;

at least away from 0 2 H 1.A/.

The next example (adapted from [92] and [126]) illustrates several of the points
mentioned above.

Example 11.6. Let A be the exterior algebra over C on generators a; b in degree 1,
equipped with the differential given by da D 0 and db D b � a. Then H 1.A/ D C,
generated by a. Setting S D CŒx�, the chain complex (11.3) takes the form

S S2 S:

 

!
ı2D

�
0
x�1

�

 

!
ı1D. x 0 /
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It is readily seen that the Alexander invariant B.A/ D H1.A� ˝ S/ is isomorphic to
S=.x � 1/. Its support is equal to ¹1º, yet the resonance variety R1

1.A/ is equal to ¹0; 1º;
both are non-homogeneous subvarieties of C. Finally, let A0 be the sub-CDGA generated
by a. Clearly, the inclusion map, �WA0 ,! A, induces an isomorphism in cohomology.
Nevertheless, R1

1.A
0/ D ¹0º, and so the resonance varieties of A and A0 differ, although

A and A0 are quasi-isomorphic.

11.4. Resonance of tensor products and Hirsch extensions

The resonance varieties behave well with respect to some natural operations on CDGAs.
The next result details the behavior of the depth-1 resonance varieties with respect to
tensor products.

Proposition 11.7 ([110, 112]). Let .A; d/ and .A0; d 0/ be two connected, finite-type
CDGAs. Then, for all q � 0,

Ri
1.A˝ A

0/ D
[

pCqDi

R
p
1 .A/ �R

q
1.A
0/:

A proof of this statement is given in [110, Proposition 13.1] under the assumption that
both differentials, d and d 0, vanish (see also [112, Proposition 2]). The same approach
works in this wider generality.

We conclude this section with a result that shows how the resonance varieties behave
under a certain type of Hirsch extensions.

Proposition 11.8 ([114]). Let B be a connected, finite-type CDGA. Fix an element e 2 B2

with de D 0, and let A D .B ˝e
V
.t/; d/ be the corresponding Hirsch extension.

(1) If Œe� D 0, then Ri
1.A/ D Ri�1

1 .B/ [Ri
1.B/, for all i .

(2) If Œe� ¤ 0, then

(a) Ri
k
.A/ � Ri�1

1 .B/ [Ri
k
.B/, for all i and k;

(b) R1
k
.A/ D R1

k
.B/, for all k.

12. Cohomology jump loci and finiteness properties

12.1. Characteristic varieties

Given a space X , the jump loci for cohomology with coefficients in rank 1 complex local
systems on X are powerful homotopy-type invariants, defined as follows.

We will assume that X is path-connected and its fundamental group, G D �1.X/, is
finitely generated. Let TG ´ Hom.G;C�/ be the group of C-valued multiplicative char-
acters on G. This is an abelian, complex algebraic group, whose identity 1 corresponds
to the trivial representation. The group TG may be identified with the cohomology group



A. I. Suciu 374

Char.X/´ H 1.X;C�/. Its identity component, T0
G , is isomorphic to the complex alge-

braic torus .C�/b1.X/; the other connected components of TG are copies of this torus,
indexed by the torsion subgroup of the finitely generated abelian group Gab D H1.X;Z/.

The characteristic varieties of X in degree i � 0 and depth k � 0 are the sets

V i
k.X/ D ¹� 2 Char.X/ j dimH i .X;C�/ � kº;

where C� is the rank 1 local system on X associated to a representation �WG ! C�. In
other words, C� is the vector space C viewed as a module over the group algebra CŒG�
via the action g � a D �.g/a, for g 2 G and a 2 C.

When the spaceX is q-finite, for some q � 1, the sets V i
k
.X/ are Zariski closed subsets

of the character group, for all i � q and k � 0, see [111]. It is readily seen that the sets
V1
k
.X/ depend only on the group G D �1.X/.
Now let G be a finitely generated group, and set V i

k
.G/ WD V i

k
.K.G; 1//. It is known

that the sets V1
k
.G/ with k � 0 depend only on the maximal metabelian quotient G=G00

(see e.g. [41]); more precisely, V1
k
.G/ D V1

k
.G=G00/.

The characteristic varieties have several useful naturality properties. For instance,
suppose 'WG�Q is an epimorphism. Then the induced morphism on character groups,
'�WTQ! TG , is injective and sends V1

k
.Q/ into V1

k
.G/ for all k � 0. Likewise, suppose

thatH <G is a finite-index subgroup. Then the inclusion ˛WH ! G induces a morphism
˛�WTG ! TH with finite kernel, which sends V i

k
.G/ to V i

k
.H/ for all i; k � 0.

For the free groups Fn of rank n� 2, we have that V1
k
.Fn/D .C�/n for k � n� 1 and

V1
n .Fn/D ¹1º. In general, though, the jump loci of a group can be arbitrarily complicated.

Example 12.1. Let f 2ZŒt˙11 ; : : : ; t˙1n � be an integral Laurent polynomial with f .1/D 0.
Then, as shown in [134], there is a finitely presented group G with Gab D Zn such that
V1
1 .G/ coincides with the variety V.f / WD ¹t 2 .C�/n j f .t/ D 0º.

12.2. Algebraic models and cohomology jump loci

Work of Dimca and Papadima [40], generalizing previous work of Dimca, Papadima,
and Suciu [42], establishes a tight connection between the geometry of the characteristic
varieties of a space and that of resonance varieties of a model for it, around the origins of
the respective ambient spaces, provided certain finiteness conditions hold.

Let X be a path-connected space with b1.X/ < 1, and consider the analytic map
expWH 1.X; C/ ! H 1.X; C�/ induced by the coefficient homomorphism C ! C�,
z 7! ez . Let .A; d/ be a CDGA model for X , defined over C. Upon identifying H 1.A/ Š

H 1.X;C/, we obtain an analytic map H 1.A/! H 1.X;C�/, which takes 0 to 1.

Theorem 12.2 ([40]). Let X be a q-finite space, and suppose X admits a q-finite,
q-model A, for some q � 1. Then, the aforementioned map, H 1.A/ ! H 1.X; C�/,
induces a local analytic isomorphism, H 1.A/.0/ ! H 1.X;C�/.1/, which identifies the
germ at 0 of Ri

k
.A/ with the germ at 1 of V i

k
.X/, for all i � q and all k � 0.
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The work of Budur and Wang [25] builds on this theorem, providing a structural result
on the geometry of the characteristic varieties of spaces satisfying the hypothesis of the
above theorem. Putting together Theorem 12.2 and Corollary 12.9 yields their result, in
the slightly stronger form given in [113].

Theorem 12.3 ([25]). Suppose X is a q-finite space which admits a q-finite q-model.
Then all the irreducible components of V i

k
.X/ passing through 1 are algebraic subtori of

Char.X/, for all i � q and k � 0.

12.3. Finiteness obstructions

The above theorem may be used to give examples of finite CW-complexes which do not
have 1-finite 1-models.

Example 12.4. Let f be an integral Laurent polynomial in n � 2 variables, and assume
its zero set in .C�/n contains the origin 1, is irreducible but is not an algebraic subtorus;
for instance, take f .t/ D

Pn
iD1 ti � n. Letting G be a finitely presented group with

V1
1 .G/ D V.f / as in Example 12.1, we deduce from Theorem 12.3 that the finite

presentation complex of G admits no 1-finite 1-model.

On the other hand, as the next example shows, the existence of a 1-finite 1-model for
a finitely generated group does not necessarily imply that the group is finitely presented.

Example 12.5. Let Y be a finite, connected CW-complex which is non-simply connected
yet has b1.Y / D 0, and let G be the Bestvina–Brady group associated to a flag triangula-
tion of Y . It is proved in [108, Section 10] that G is finitely generated and 1-formal, but
not finitely presented.

As the next family of examples illustrates, the infinitesimal finiteness obstruction from
Theorem 8.12 may be stronger than the one from Theorem 12.3, even when q D 1.

Example 12.6. Consider the free metabelian group G D Fn=F
00
n with n � 2. The free

group Fn D �1.
Wn

S1/ admits a formal, finite CW-complex as classifying space; thus,
Theorem 12.3 applies to Fn. It follows that the characteristic varieties V i

k
.G/ Š V i

k
.Fn/

satisfy the conditions from Theorem 12.3 for i � 1 and k � 0. On the other hand, as we
saw in the proof of Theorem 9.8, we have that b2.M1.G// D 1, and so the group G
admits no 1-finite 1-model.

12.4. Tangent cones

Before proceeding, we review two constructions that provide approximations to a subva-
riety W of a complex algebraic torus .C�/n. The first one is the classical tangent cone,
while the second one is the exponential tangent cone, a construction introduced in [42]
and further studied in [40, 125, 134].

Let I be an ideal in the Laurent polynomial ring CŒt˙11 ; : : : ; t˙1n � such thatW D V.I /.
Picking a finite generating set for I , and multiplying these generators with suitable
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monomials if necessary, we see that W may also be defined by the ideal I \ R in
the polynomial ring R D CŒt1; : : : ; tn�. Let J be the ideal in the polynomial ring
S DCŒx1; : : : ; xn� generated by the polynomials g.x1; : : : ; xn/D f .x1C 1; : : : ; xnC 1/,
for all f 2 I \R.

The tangent cone of W at 1 2 .C�/n is the algebraic subset TC1.W / � Cn defined
by the ideal in.J / � S generated by the initial forms of all non-zero elements from J .
The set TC1.W / is a homogeneous subvariety of Cn, which depends only on the analytic
germ of W at the identity. In particular, TC1.W / ¤ ; if and only if 1 2 W .

Let expWCn ! .C�/n be the exponential map, given in coordinates by xi 7! exi . The
exponential tangent cone at 1 to a subvariety W � .C�/n is the set

�1.W / D ¹x 2 Cn
j exp.�x/ 2 W; for all � 2 Cº:

It is readily seen that �1 commutes with finite unions and arbitrary intersections. Further-
more, �1.W / only depends on W.1/, the analytic germ of W at the identity; in particular,
�1.W / ¤ ; if and only if 1 2 W . The main property of this construction is encapsulated
in the following lemma.

Lemma 12.7 ([42, 125, 134]). The exponential tangent cone �1.W / of a subvariety
W � .C�/n is a finite union of rationally defined linear subspaces of the affine space Cn.

For instance, ifW is an algebraic subtorus of .C�/n, then �1.W / equals TC1.W /, and
both coincide with T1.W /, the tangent space to W at the identity 1. More generally, there
is always an inclusion between the two types of tangent cones associated to an algebraic
subset W � .C�/n, namely,

�1.W / � TC1.W /: (12.1)

As we shall see, though, this inclusion is far from being an equality for arbitrary W .
For instance, the tangent cone TC1.W /may be a non-linear, irreducible subvariety of Cn,
or TC1.W / may be a linear space containing the exponential tangent cone �1.W / as a
union of proper linear subspaces.

12.5. The Exponential Ax–Lindemann theorem

In [25], Budur and Wang establish the following version of a classical result, due to Ax
and Lindemann.

Theorem 12.8 ([25]). Let V �Cn andW � .C�/n be irreducible algebraic subvarieties.

(1) Suppose dim V D dimW and exp.V / � W . Then V is a translate of a linear
subspace, and W is a translate of an algebraic subtorus.

(2) Suppose the exponential map expWCn ! .C�/n induces a local analytic isomor-
phism V.0/ ! W.1/. Then W.1/ is the germ of an algebraic subtorus.

A standard dimension argument shows the following: if W and W 0 are irreducible
algebraic subvarieties of .C�/n which contain 1 and whose germs at 1 are locally
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analytically isomorphic, then W Š W 0. Using this fact, we obtain the following corollary
to part (2) of the above theorem.

Corollary 12.9. Let V � Cn and W � .C�/n be irreducible algebraic subvarieties.
Suppose the exponential map expWCn ! .C�/n induces a local analytic isomorphism
V.0/ Š W.1/. Then W is an algebraic subtorus and V is a rationally defined linear
subspace.

12.6. Tangent cones and jump loci

Let X be a q-finite space. Its cohomology algebra, H�.X;C/, is then q-finite; that is,
bi .X/ < 1 for i � q. Thus, the resonance varieties Ri

k
.X/ WD Ri

k
.H�.X; C// are

homogeneous algebraic subsets of the affine space H 1.X;C/, for all i � q and k � 0.
The following basic relationship between the characteristic and resonance varieties

was established by Libgober in [86] in the case when X is a finite CW-complex and i is
arbitrary; a similar proof works in the generality that we work in here.

Theorem 12.10 ([86]). Suppose X is a q-finite space. Then, for all i � q and k � 0,

TC1
�
V i
k.X/

�
� Ri

k.X/:

Putting together these inclusions with those from (12.1), we obtain the following
corollary.

Corollary 12.11. Suppose X is a q-finite space. Then, for all i � q and k � 0,

�1
�
V i
k.X/

�
� TC1

�
V i
k.X/

�
� Ri

k.X/:

A particular case of this corollary is worth mentioning separately.

Corollary 12.12. Let G be a finitely generated group. Then, for all k � 0,

�1
�
V1
k .G/

�
� TC1

�
V1
k .G/

�
� R1

k.G/:

Using now Theorems 12.2 and 12.3, we obtain the following “tangent cone formula.”

Theorem 12.13. Suppose X is a q-finite space which admits a q-finite q-model A. Then,
for all i � q and k � 0,

�1
�
V i
k.X/

�
D TC1

�
V i
k.X/

�
D Ri

k.A/:

This theorem, together with Theorem 9.3, yields the following corollary.

Corollary 12.14. Suppose G is a finitely generated group whose Malcev Lie algebra is
the LCS completion of a finitely presented Lie algebra. Then �1.V

1
k
.G// D TC1.V

1
k
.G//,

for all k � 0.

In other words, if the first half of the tangent cone formula fails in degree 1, i.e., if
�1.V

1
k
.G//¤ TC1.V

1
k
.G// for some k > 0, then m.G/ 6Š yL, for any finitely presented Lie

algebra L. This will happen automatically if the variety TC1.V
1
k
.G// has an irreducible

component which is not a rationally defined linear subspace of H 1.G;C/.
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12.7. Formality and cohomology jump loci

The main connection between the formality property of a space and the geometry of its
cohomology jump loci is provided by the next result. This result, which was first proved
in degree i D 1 in [42], and in arbitrary degree in [40], is now an immediate consequence
of Theorem 12.13.

Corollary 12.15. Let X be a q-finite, q-formal space. Then, for all i � q and k � 0,

�1
�
V i
k.X/

�
D TC1

�
V i
k.X/

�
D Ri

k.X/: (12.2)

In particular, if G is a finitely generated, 1-formal group, then, for all k � 0,

�1
�
V1
k .G/

�
D TC1

�
V1
k .G/

�
D R1

k.G/:

As an application of Corollary 12.15, we have the following characterization of the
irreducible components of the cohomology jump loci in the formal setting.

Corollary 12.16. Suppose X is a q-finite, q-formal space. Then, for all i � q and k � 0,
the following hold.

(1) All irreducible components of the resonance varieties Ri
k
.X/ are rationally

defined linear subspaces of H 1.X;C/.

(2) All irreducible components of the characteristic varieties V i
k
.X/ which contain

the origin are algebraic subtori of Char.X/0, of the form exp.L/, where L runs
through the linear subspaces comprising Ri

k
.X/.

13. Algebraic models for smooth quasi-projective varieties

13.1. Compactifications and formality

A complex projective variety is a subset of a complex projective space CPn, defined as the
zero-locus of a homogeneous prime ideal in CŒz0; : : : ; zn�. A Zariski open subvariety of a
projective variety is called a quasi-projective variety. We will only consider here projective
and quasi-projective varieties which are connected and smooth.

IfM is a smooth, projective variety – or, more generally, a compact Kähler manifold –
then the Hodge decomposition on the cohomology ring H�.M;C/ imposes stringent
constraints on the topological properties of M . For instance, in the famous paper of
Deligne, Griffiths, Morgan, and Sullivan [37] it is shown that every such manifold is
formal.

Each smooth, quasi-projective variety X admits a good compactification. That is to
say, there is a smooth, complex projective variety xX and a normal crossings divisor D
such that X D xX n D. By a well-known theorem of Deligne, each cohomology group
of X admits a mixed Hodge structure. This additional structure puts definite constraints
on the algebraic topology of such manifolds.
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For instance, if X admits a smooth compactification xX with b1. xX/ D 0, the weight 1
filtration on H 1.X; C/ vanishes; in turn, by work of Morgan [100], this implies the
1-formality of X . Thus, as noted by Kohno in [77], if X is the complement of a
hypersurface in CPn, then �1.X/ is 1-formal.

In general, though, smooth quasi-projective varieties need not be 1-formal. Moreover,
even when they are 1-formal, they still can be non-formal.

Example 13.1. Let E�n be the product of n copies of an elliptic curve E. The closed
form 1

2

p
�1

Pn
iD1 dzi ^ dxzi defines an integral cohomology class ! 2 H 1;1.E�n;Z/.

By the Lefschetz theorem on .1; 1/-classes, ! can be realized as the first Chern class
of an algebraic line bundle over E�n. Let Xn be the complement of the zero-section of
this bundle. Then Xn is a smooth, quasi-projective variety which is not formal. In fact,
Xn deform-retracts onto the .2n C 1/-dimensional Heisenberg nilmanifold Hn from
Example 14.19, and so Xn is .n � 1/-formal but not n-formal.

13.2. Algebraic models

As before, let X be a connected, smooth, complex quasi-projective variety, and choose a
smooth compactification xX such that the complement is a finite union, D D

S
j2J Dj ,

of smooth divisors with normal crossings. There is then a rationally defined CDGA,
A D A. xX;D/, called the Gysin model (or, the Morgan model) of the compactification,
constructed as follows. As a C-vector space, Ai is the direct sum of all subspaces

Ap;q D
M
jS jDq

Hp
�\
k2S

Dk ;C
�
.�q/

with p C q D i , where .�q/ denotes the Tate twist. Furthermore, the multiplication
in A is induced by the cup-product in xX , and has the property that Ap;q � Ap

0;q0 �

ApCp
0;qCq0 , while the differential, d WAp;q ! ApC2;q�1, is constructed from the Gysin

maps arising from intersections of divisors. The CDGA just constructed depends on
the compactification xX ; for simplicity, though, we will denote it by A.X/ when the
compactification is understood.

An important particular case is when our variety X has dimension 1. That is to say,
let † be a connected, possibly non-compact, smooth algebraic curve. Then † admits a
canonical compactification, x†, and thus, a canonical Gysin model, A.†/. We illustrate
the construction of this model in a simple situation, using the very explicit description
given by Bibby in [17] for complements of elliptic arrangements.

Example 13.2. Let † D E� be a once-punctured elliptic curve. Then x† D E, and the
Gysin model A.†/ is the algebra A D

V
.a; b; e/=.ae; be/ on generators a; b in bidegree

.1; 0/ and generator e in bidegree .0; 1/, with differential d WA!A given by daD dbD 0
and de D ab.

The above construction is functorial, in the following sense: If f W X ! Y is a
morphism of quasi-projective manifolds which extends to a regular map xf W xX ! xY
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between the respective good compactifications, then there is an induced CDGA morphism
f ŠWA.Y /! A.X/ which respects the bigradings.

Morgan showed in [100] that the Sullivan model APL.X/ is connected to the Gysin
modelA.X/ by a chain of quasi-isomorphisms preserving Q-structures. Moreover, setting
the weight of Ap;q equal to p C 2q defines a positive-weight decomposition on .A�; d /.

In [45], Dupont constructed a Gysin-type model for certain types of quasi-projective
varieties, where the normal crossings divisors hypothesis on the compactification can
be relaxed. More precisely, let A be an arrangement of smooth hypersurfaces in a
smooth, n-dimensional complex projective variety xX , and suppose A locally looks like
an arrangement of hyperplanes in Cn. There is then a CDGA model for the complement,
X D xX n

S
L2A L, which builds on the combinatorial definition of the Orlik–Solomon

algebra of a hyperplane arrangement.
Finally, let A be an arrangement of complex linear subspaces in Cn. Using a blow-

up construction, De Concini and Procesi gave in [36] a “wonderful” CDGA model for
the complement of such an arrangement. Based on a simplification of this model due
to Yuzvinsky [147], Feichtner and Yuzvinsky showed in [49] the following: If the inter-
section poset of A is a geometric lattice, then the complement of A is a formal space.
In general, though, the complement of a complex subspace arrangement need not be
formal. For instance, the polyhedral product constructions of [9,38,64] mentioned in Sec-
tion 10.8 yield coordinate subspace arrangements whose complements admit non-trivial
Massey products over the rationals.

13.3. Characteristic varieties

The structure of the jump loci for cohomology in rank 1 local systems on smooth, complex
projective and quasi-projective varieties (and, more generally, on Kähler and quasi-Kähler
manifolds) was determined through the work of Beauville [12], Green and Lazarsfeld [65],
Simpson [123], and Arapura [3]. The definitive structural result in the quasi-projective
setting was obtained by Budur and Wang in [24], building on the work of Dimca and
Papadima [40].

Theorem 13.3 ([24]). Let X be a smooth quasi-projective variety. Then each character-
istic variety V i

k
.X/ is a finite union of torsion-translated subtori of Char.X/.

Work of Arapura [3] explains how the non-translated subtori occurring in the above
decomposition of V1

1 .X/ arise. Let us say that a holomorphic map f WX!† is admissible
if f is surjective, has connected generic fiber, and the target † is a connected, smooth
complex curve with negative Euler characteristic. Up to reparametrization at the target,
the variety X admits only finitely many admissible maps; let EX be the set of equivalence
classes of such maps.

If f WX !† is an admissible map, it is readily verified that V1
1 .†/D Char.†/. Thus,

the image of the induced morphism between character groups, f �WChar.†/! Char.X/,
is an algebraic subtorus of Char.X/.
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Theorem 13.4 ([3]). The correspondence f 7! f �.Char.†// defines a bijection between
the set EX of equivalence classes of admissible maps from X to curves and the set of
positive-dimensional, irreducible components of V1.X/ containing 1.

The positive-dimensional, irreducible components of V1
1 .X/ which do not pass

through 1 can be similarly described, by replacing the admissible maps with certain “orb-
ifold fibrations,” whereby multiple fibers are allowed.

13.4. Resonance varieties

We now turn to the resonance varieties associated with a quasi-projective manifold, and
how they relate to the characteristic varieties. The tangent cone theorem takes a very
special form in this setting.

Theorem 13.5. Let X be a smooth, quasi-projective variety, and let A.X/ be a Gysin
model for X . Then, for each i � 0 and k � 0,

�1
�
V i
k.X/

�
D TC1

�
V i
k.X/

�
D Ri

k.A.X// � Ri
k.X/: (13.1)

Moreover, if X is q-formal, the last inclusion is an equality, for all i � q.

In particular, the resonance varieties Ri
k
.A.X// are finite unions of rationally defined

linear subspaces of H 1.X;C/. On the other hand, the varieties Ri
k
.X/ can be much

more complicated; for instance, they may have non-linear irreducible components. If X is
q-formal, though, Theorem 13.1 guarantees this cannot happen, as long as i � q.

13.5. Resonance in degree 1

Once again, let X be a smooth, quasi-projective variety, and let A.X/ be the Gysin model
associated with a good compactification xX . The degree 1 resonance varieties R1

1.A.X//,
and, to some extent, R1

1.X/, admit a much more precise description than those in higher
degrees.

As in the setup from Theorem 13.4, let EX be the set of equivalence classes of
admissible maps from X to curves, and let f W X ! † be such map. Recall from
Section 13.2 that the curve † admits a canonical Gysin model, A.†/. As noted in [40],
the induced CDGA morphism, f ŠW A.†/ ! A.X/, is injective. Let f �WH 1.A.†// !

H 1.A.X// be the induced homomorphism in cohomology.

Theorem 13.6 ([40,92]). For a smooth, quasi-projective variety X , the decomposition of
R1
1.A.X// into (linear) irreducible components is given by

R1
1.A.X// D

[
f 2EX

f �.H 1.A.†///: (13.2)

If X admits no admissible maps, that is, if EX D ;, formula (13.2) should be
understood to mean R1

1.A.X// D ¹0º if b1.X/ > 0 and R1
1.A.X// D ; if b1.X/ D 0.
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Example 13.7. Let X D X1 be the complex, smooth quasi-projective surface con-
structed in Example 13.1. Clearly, this manifold is a C�-bundle over E D S1 � S1

which deform-retracts onto the 3-dimensional Heisenberg nilmanifoldM DGR=GZ from
Example 10.14. Hence, V1

1 .X/ D ¹1º, and so �1.V
1
1 .X// D TC1.V

1
1 .X// D ¹0º. On the

other hand, R1
1.X/ D C2, and so X is not 1-formal.

Under a 1-formality assumption, the usual resonance varieties R1
1.X/ admit a similar

description.

Theorem 13.8 ([42]). Let X be a smooth, quasi-projective variety, and suppose X is
1-formal. Then the decomposition into irreducible components of the first resonance
variety is given by

R1
1.X/ D

[
f 2EX

f �.H 1.†;C//;

with the same convention as before when EX D ;. Moreover, all the (rationally defined)
linear subspaces in this decomposition have dimension at least 2, and any two distinct
ones intersect only at 0.

If X is compact, then the formality assumption in the above theorem is automatically
satisfied, due to [37]. Furthermore, the conclusion of the theorem can also be sharpened
in this case: each (non-trivial) irreducible component of R1

1.X/ is even-dimensional, of
dimension at least 4. In general, though, the resonance varieties of a quasi-projective
manifold can have non-linear components.

Example 13.9 ([42]). Let X D Conf.E; n/ be the configuration space of n points on an
elliptic curve E. Letting ¹a; bº be the standard basis ofH 1.E;C/D C2, we may identify
H�.E�n;C/ with

V
.a1; b1; : : : ; an; bn/ and find a presentation for H�2.X;C/ from

Totaro’s spectral sequence [142]. A computation then gives

R1
1.Conf.E; n// D

´
.x; y/ 2 Cn

�Cn

ˇ̌̌̌
ˇ
Pn
iD1 xi D

Pn
iD1 yi D 0;

xiyj � xjyi D 0; for 1 � i < j < n

µ
:

If n � 3, this variety is irreducible and non-linear (in fact, it is a rational normal scroll),
from which we conclude that the configuration space Conf.E; n/ is not 1-formal.

13.6. Large quasi-projective groups

Recall that a quasi-projective variety is a Zariski open subset of a projective variety.
We will say that a space X is a quasi-projective manifold if it is a connected, smooth,
complex quasi-projective variety. Every such manifold has the homotopy type of a finite
CW-complex.

A group G is said to be quasi-projective if it can be realized as the fundamental group
of a quasi-projective manifold. Clearly, every such a group admits a finite presentation. We
now turn to the question of deciding whether a quasi-projective group is large. It turns out
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that a complete answer to this question can be given in terms of “admissible” maps to
curves.

A map f WX ! C from a quasi-projective manifold X to a smooth complex curve C
is said to be admissible if it is regular, surjective, and has connected generic fiber. It is
easy to see that the homomorphism on fundamental groups induced by such a map,
f]W �1.X/ ! �1.C /, is surjective. We denote by E.X/ the family of admissible maps
to curves with negative Euler characteristic, modulo automorphisms of the target.

Deep work of Arapura [3] characterizes those positive-dimensional, irreducible com-
ponents of the characteristic variety V1

1 .X/ which contain the origin of the character
group Char.X/: all such components are connected, affine subtori, which arise by pullback
of the character torus Char.C / along the homomorphism f]W�1.X/! �1.C / induced by
some map f 2 E.X/.

Suppose now that C is a smooth complex curve with �.C / < 0. It is readily seen
that the fundamental group G D �1.C / surjects onto a free, non-abelian group, and so
G is very large. More generally, we have the following characterization of large, quasi-
projective groups.

Proposition 13.10 ([113]). Let X be a smooth quasi-projective variety. Then:

(1) �1.X/ is large if and only if there is a finite cover Y ! X such that E.Y / ¤ ;.

(2) �1.X/ is very large if and only if E.X/ ¤ ;.

Consequently, if b1.X/ > 0, then E.X/ ¤ ; if and only if the analytic germ at 1 of
V1
1 .X/ is not equal to ¹1º.

13.7. Resonance and largeness

To conclude this section, we rephrase the last condition in terms of resonance varieties. As
shown by Morgan [100], every quasi-projective manifold X admits a finite-dimensional
model A. xX; D/; such a “Gysin” model depends on a smooth compactification xX for
which the complementD D xX nX is a normal crossings divisor. Let A be a Gysin model
for X , or any one of the more general Orlik–Solomon models constructed by Dupont
in [46]. In either case, let us note that all resonance varieties of A have positive weights,
i.e., they are invariant with respect to a C�-action on H 1.A/ with positive weights.

Proposition 13.11 ([113]). Let X be a smooth, quasi-projective variety with b1.X/ > 0
and let A be an Orlik–Solomon model for X . Then �1.X/ is very large if and only if
R1
1.A/ ¤ ¹0º.

Example 13.12. Let †g be a compact, connected Riemann surface of genus g, and let
X D F�.†g/ be the partial configuration space associated to a finite simple graph � .
More concretely, if n is the number of vertices of � , then F�.†g/ is the complement
in †ng of the union of the diagonals zi D zj , indexed by the edges of � . No convenient
presentation is available for the fundamental group G�;g ´ �1.F�.†g//. On the other
hand, the Orlik–Solomon model A for F�.†g/ is much more approachable. Computing
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the resonance variety R1
1.A/ leads to a complete, explicit description of E.F�.†g//. Such

a description is given in [13], for all g � 0 and for all finite graphs � , generalizing a result
from [18], valid only for chordal graphs. In particular, E.F�.†g// D ;, that is, G�;g is
not very large, if and only if either g D 1 and � has no edges, or g D 0 and � contains no
complete subgraph on 4 vertices.

14. Algebraic models for Lie group actions

14.1. Almost free actions and Hirsch extensions

LetK be a compact, connected, real Lie group. Consider the universal principalK-bundle,
K ! EK ! BK, with contractible total space EK and with base space the classifying
space BK D EK=K. By a classical result of Hopf, the cohomology ring of K (with
coefficients in a field k of characteristic 0) is isomorphic to the cohomology ring of a
finite product of odd-dimensional spheres. That is, H�.K; k/ Š

V
P �, where P � is an

oddly-graded, finite-dimensional vector space, with homogeneous basis ¹t˛ 2 Pm˛ º, for
some odd integers m1; : : : ; mr , where r D rank.K/.

Now let M be a compact, connected, differentiable manifold on which the compact,
connected Lie group K acts smoothly. Both M and the orbit space N D M=K have
the homotopy type of finite CW -complexes. We consider the diagonal action of K
on the product EK �M , and form the Borel construction, MK D .EK �M/=K. Let
prWMK ! N be the map induced by the projection pr2WEK �M !M .

The K-action on M is said to be almost free if all its isotropy groups are finite. When
this assumption is met, the work of Allday and Halperin [1] provides a very useful Hirsch
extension model for the manifold M .

Theorem 14.1 ([1]). Suppose M admits an almost free K-action, with orbit space
N D M=K. There is then a map � W P � ! Z�C1.APL.N // such that pr� ı Œ�� is the
transgression in the principal bundle K ! EK �M !MK , and

APL.M/ ' APL.N /˝�
^
P:

This theorem may be applied, for instance, to the total space M of a principal
K-bundle over a compact manifold N D M=K. The next result identifies an interesting
class of finite-dimensional CW-spaces that have finite CDGA models.

Proposition 14.2 ([114]). LetM be an almost freeK-manifold. WriteH�.K;k/D
V
P ,

for some graded k-vector space P , and let m be the maximum degree of P �.

(1) Suppose B is a q-finite q-model of the orbit space N D M=K, with q � mC 1.
Then a suitable Hirsch extension A D B ˝�

V
P is a q-finite q-model for M .

(2) Suppose N D M=K is q-formal. Then we may take B� D .H�.N; k/; 0/, and
A D B ˝�

V
P is a q-finite q-model of M with positive weights.
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Restricting to principal K-bundles, we can say more. As before, identify H�.K;Q/
with

V
P D

V
.t1; : : : ; tr /.

Theorem 14.3 ([114]). LetN be a connected, finite CW-complex and letK be a compact,
connected, real Lie group. IfN has a finite-dimensional rational modelB , then any Hirsch
extension A D B ˝�

V
P can be realized as a finite-dimensional rational model of some

principal K-bundle M over N . When B has positive weights and the image of Œ� � is
generated by weighted-homogeneous elements, A also has positive weights.

14.2. Graded regularity and partial formality

Fix an integer q � 0. LetH� be a connected commutative graded algebra over a field k of
characteristic 0. Following [114], we say that a homogeneous element e 2 H k is a non-
zero divisor up to degree q if the multiplication map e�WH i ! H iCk is injective, for all
i � q. (For q D 0, this simply means that e ¤ 0.)

Likewise, we say that a sequence e1; : : : ; er of homogeneous elements in HC is
q-regular if the class of each e˛ is a non-zero divisor up to degree q � deg.e˛/ C 2 in
the quotient ring H=

P
ˇ<˛ eˇH . (This implies in particular that the elements e1; : : : ; er

are linearly independent over k, when q � deg.e˛/ � 2 for all ˛.)

Theorem 14.4 ([114]). Suppose e1; : : : ; er is an even-degree, q-regular sequence in H�.
Then the Hirsch extension A D .H ˝�

V
.t1; : : : ; tr /; d/ with d D 0 on H and

dt˛ D �.t˛/ D e˛ has the same q-type as .H=
P
˛ e˛H; 0/. In particular, A is q-formal.

Classical results of Borel and Chevalley provide the machinery for constructing graded
algebras which satisfy the hypothesis of Theorem 14.4, in the case when q D 1. Let
H�.BK;k/ be the cohomology algebra of the classifying space of a compact, connected
Lie group K. Let T be a maximal torus in K, and let W D NT=T be the Weyl group.
The classifying space BT is the product of r copies of CP1, where r is the rank ofK. Its
cohomology algebra isH�.BT;k/D kŒx1; : : : ; xr �, with degree 2 free algebra generators,
on which W acts by graded algebra automorphisms.

The natural map �WBT ! BK identifies the cohomology algebra H�.BK; k/ with
the invariant subalgebra of the W -action. More precisely, H�.BK;k/ is isomorphic to a
polynomial ring of the form kŒf1; : : : ; fr �, where each f˛ is a W -invariant polynomial of
even degree m˛ C 1, with m˛ as in Section 14.1. Moreover, f1; : : : ; fr forms a regular
sequence in kŒx1; : : : ; xr �.

Let U � K be a closed, connected subgroup of a compact, connected Lie group.
As shown in [140], the Sullivan minimal model of the homogeneous space K=U is a
Hirsch extension of the form ADH ˝�

V
.t1; : : : ; ts/, whereH� is a free graded algebra

on finitely many even-degree generators, with zero differential, as in Theorem 14.4.
As is well known, not all homogeneous spaces K=U are formal. Nevertheless, the
criterion from Theorem 14.4 may be used to gain information on their partial formality
properties.
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Example 14.5. For the homogeneous space Sp.5/= SU.5/, the aforementioned alge-
bra H� has two free generators, x6 and x10, where subscripts denote degrees, and the
sequence from Theorem 14.4 is ¹x26 ; x

2
10; x6x10º, see [54]. It follows that Sp.5/=SU.5/ is

19-formal. On the other hand, a computation with Massey triple products shows that this
estimate is sharp, that is, Sp.5/=SU.5/ is not 20-formal.

14.3. Partial formality of K -manifolds

Let M be an almost free K-manifold. We write H�.K; k/ D
V
.t1; : : : ; tr /, and denote

the transgression of t˛ by e˛ 2 Hm˛C1.M=K;k/. As before, set m D max¹m˛º.

Theorem 14.6 ([114]). Suppose the K-action on M is almost free, the orbit space
N D M=K is k-formal, for some k � mC 1, and e1; : : : ; er form a q-regular sequence
in H�.N;k/, for some q � k. Then the quotient algebra H�.N;k/=

Pr
˛D1 e˛H

�.N;k/,
equipped with the zero differential, is a finite-dimensional q-model for M ; in particular,
M is q-formal.

As illustrated in the next two examples, the q-regularity assumption from Theo-
rem 14.6 is optimal with respect to the q-formality conclusion for the manifoldM , at least
in the case when K D S1 or S3.

Example 14.7. Let M D H1 be the 3-dimensional Heisenberg nilmanifold from Exam-
ple 10.14. This manifold is the total space of the principal S1-bundle over the formal
manifold N D S1 � S1, with Euler class e 2 H 2.N;Z/ equal to the orientation class. In
this case, the sequence ¹eº is 0-regular, but not 1-regular in H�.N; k/. In fact, as men-
tioned previously, M is not 1-formal. As explained in Example 14.19, this is the first
manifold in a series, Hn, where .n � 1/-regularity implies .n � 1/-formality in an opti-
mal way.

Example 14.8. LetM to be the total space of the principal S3-bundle overN D S2 � S2

obtained by pulling back the Hopf bundle S7 ! S4 along a degree-one map N ! S4.
As above, N is formal, and the Euler class e 2 H 4.N;Z/ is the orientation class. In this
case, ¹eº is 3-regular, but not 4-regular in H�.N; k/, and Theorem 14.6 says that M is
3-formal. Direct computation with the minimal model of M shows that, in fact, M is not
4-formal.

14.4. Malcev completion and representation varieties

Let H be a 2-finite CDGA with zero differential, and let A D H ˝�
V
P be a Hirsch

extension, where P is an oddly-graded, finite-dimensional vector space.

Theorem 14.9 ([114]). The holonomy Lie algebra h.A/ admits a finite presentation with
generators in degree 1 and relations in degrees 2 and 3.

Corollary 14.10 ([114]). Suppose M supports an almost free K-action with 2-formal
orbit space. Then:
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(1) The group � D �1.M/ is filtered-formal. More precisely, the Malcev Lie algebra
m.�/ is isomorphic to the LCS completion of Lie.H1.�; k//=r, where r is a
homogeneous ideal generated in degrees 2 and 3.

(2) For every complex linear algebraic group G, the germ at the origin of the
representation variety Homgr.�;G/ is defined by quadrics and cubics only.

The second statement in the above corollary is analogous to the quadraticity obstruc-
tion for fundamental groups of compact Kähler manifolds obtained by Goldman–Millson
in [63]. Note that the corollary applies to principal K-bundles over formal manifolds.

14.5. Orbifold fundamental groups

Assume now that M is an almost free K-manifold. By [23, Theorem 4.3.18], the projec-
tion pWM ! M=K induces a natural epimorphism f W �1.M/� �orb

1 .M=K/ between
orbifold fundamental groups.

Theorem 14.11 ([114]). Suppose that the K-action on M is almost free and the trans-
gression P � ! H�C1.MK ; k/ Š H�C1.M=K; k/ is injective in degree 1. Then the
following hold.

(1) If the orbit space N D M=K has a 2-finite 2-model over k � C, then the
homomorphism f W�1.M/� �orb

1 .N / induces an analytic isomorphism between
the germs at 1 of V1

k
.�orb
1 .N // and V1

k
.�1.M//, for all k.

(2) If N is 2-formal, then f induces an analytic isomorphism between the germs at 1
of Hom.�orb

1 .N /;SL2.C// and Hom.�1.M/;SL2.C//.

Example 14.12. Let K be a compact, connected Lie group, and identify H�.K;Q/ withV
P �K . Let N be a compact, formal manifold, and assume b2.N / � s, where s D dimP 1K

(for instance, take N to be the product of at least s compact Kähler manifolds). There is
then a degree-preserving linear map, � WP �K!H�C1.N;Q/, which is injective in degree 1.
By Theorem 14.3, such a map can be realized as the transgression in a principalK-bundle,
M� ! N , and the manifold M� satisfies the assumptions from Theorem 14.11.

Theorem 14.11 may also be applied to a Seifert fibered 3-manifold with non-zero
Euler class, pWM ! M=S1 D †g . In this case, V1

k
.M/.1/ is isomorphic to V1

k
.†g/.1/,

for all k, while Hom.�1.M/;SL2.C//.1/ Š Hom.�1.†g/;SL2.C//.1/.

14.6. Sasakian geometry

The machinery outlined above has some noteworthy consequences for the topology of
compact Sasakian manifolds, which are related to formality properties, representation
varieties and cohomology jump loci. A comprehensive reference for Sasakian geometry
is the book of Boyer and Galicki [23].

Let M 2nC1 be a compact Sasakian manifold of dimension 2n C 1. Without loss of
essential generality, we may assume that the Sasakian structure is quasi-regular. A basic
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structural result in Sasakian geometry guarantees that, in this case, M supports an almost
free circle action. Furthermore, the quotient space, N D M=S1, is a compact Kähler
orbifold, with Kähler class h 2 H 2.N;k/ satisfying the Hard Lefschetz property, that is,
multiplication by hk defines an isomorphism

Hn�k.N;k/ Š�! HnCk.N;k/

for each 1 � k � n; see [23, Proposition 7.2.2 and Theorem 7.2.9]. The thesis of
Tievsky [141, Section 4.3] provides a very useful model for a Sasakian manifold.

Theorem 14.13 ([141]). Every compact Sasakian manifold M admits as a finite model
over R the Hirsch extension A�.M/ D .H�.N;R/ ˝h

V
.t/; d/, where d is zero on

H�.N;R/ and dt D h, the Kähler class of N .

Sasakian geometry is an odd-dimensional analog of Kähler geometry. From this point
of view, the above theorem is a rough analog of the main result on the algebraic topology
of compact Kähler manifolds from [37], guaranteeing that such manifolds are formal.
Theorem 14.13 only says that M behaves like an almost free compact S1-manifold with
formal orbit space. A result from [11] establishes the formality of the orbifold de Rham
algebra of a compact Kähler orbifold. Unfortunately, this is not enough for applying
Theorem 14.6, since the authors of [11] do not prove that the orbifold de Rham algebra is
weakly equivalent to the Sullivan de Rham algebra.

By construction, the Tievsky model A�.M/ is a real CDGA defined over Q. Neverthe-
less, in view of Remark 8.1, it does not follow from [141] that A�.M/ is a model for M
over Q.

However, we can say something very useful regarding rational models for Sasakian
manifolds. We start with a lemma and will come back to this point in Theorem 14.18.

Lemma 14.14 ([114]). The Tievsky model A�R.M/ D .H�.N;R/˝h
V
.t/; d/ is a finite

model with positive weights for M .

Corollary 14.15 ([114]). Let M be a compact Sasakian manifold. For each i; k � 0,
all irreducible components of the characteristic variety V i

k
.M/ passing through 1 are

algebraic subtori of the character group H 1.M;C�/.

A well-known, direct relationship between Kähler and Sasakian geometry is as fol-
lows. Let N be a compact Kähler manifold such that the Kähler class is integral, i.e.,
h 2 H 2.N;Z/, and let M be the total space of the principal S1-bundle classified by h.
Then M is a regular Sasakian manifold. A concrete class of examples is provided by the
Heisenberg manifolds Hn from Example 14.19 below.

14.7. Partial formality of Sasakian manifolds

Let M 2nC1 be a compact Sasakian manifold, with fundamental group G D �1.M/. One
may ask: Is the group � (or, equivalently, the manifold M ) 1-formal? When n D 1,
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the answer is clearly negative, a simple example being provided by the Heisenberg
manifold H1. In [76, Theorem 1.1], Kasuya claims that the case n D 1 is exceptional,
in the following sense.

Claim 14.16. Every compact Sasakian manifold of dimension 2nC 1 is 1-formal over R,
provided n > 1.

As pointed out in [114], the proof from [76] has a gap, which we briefly explain. Given
a CDGA A, the decomposable part of H 2.A/ is the linear subspace DH 2.A/ defined as
the image of the product map in cohomology, H 1.A/ ^H 1.A/! H 2.A/. What Kasuya
actually shows is that

DH 2.M1.M// D H 2.M1.M//; (14.1)

for a compact Sasakian manifold M 2nC1 with n > 1, where M1.M/ is the 1-minimal
model of M over R. Equality (14.1) is an easy consequence of 1-formality. Kasuya
deduces the 1-formality of M from (14.1), by invoking as a crucial tool [2, Lemma 3.17].
Unfortunately, though, this lemma is false, as shown by Măcinic in [91]. Nevertheless, the
next theorem proves Claim 14.16 in a stronger form, while also recovering equality (14.1).

Theorem 14.17 ([114]). Every compact Sasakian manifold M of dimension 2n C 1 is
.n � 1/-formal, over an arbitrary field k of characteristic 0.

The next result makes Theorem 14.17 more precise, by constructing an explicit finite,
.n � 1/-model with zero differential for M over any field of characteristic 0.

Theorem 14.18 ([114]). LetM be a compact Sasakian manifold M of dimension 2nC 1.
The Sullivan model of M over a field k of characteristic 0 has the same .n � 1/-type
over k as the CDGA .H�.N;k/=h �H�.N;k/; 0/, where N DM=S1 and h 2 H 2.N;k/
is the Kähler class.

As illustrated by the next example, the conclusion of Theorem 14.17 is optimal.

Example 14.19. Let E D S1 � S1 be an elliptic complex curve, and let N D E�n

be the product of n such curves, with Kähler form ! D
Pn
iD1 dxi ^ dyi . The corre-

sponding Sasakian manifold is the .2n C 1/-dimensional Heisenberg nilmanifold Hn.
Theorem 14.17 guarantees that Hn is .n � 1/-formal. As noted in [91], though (see also
Example 3.6), the manifold Hn is not n-formal.

14.8. Sasakian groups

A group � is said to be a Sasakian group if it can be realized as the fundamental group of a
compact, Sasakian manifold. A major open problem in the field (see, e.g., [23, Chapter 7]
or [32]) is: “Which finitely presented groups are Sasakian?”

A first, well-known obstruction is that the first Betti number b1.�/ must be even, see,
for instance, the references listed in [32]. Much more subtle obstructions are provided by
the following result. Fix a field k of characteristic 0.
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Corollary 14.20 ([114]). Let � D �1.M 2nC1/ be a Sasakian group. Then:

(1) The Malcev Lie algebra m.�;k/ is the LCS completion of the quotient of the free
Lie algebra Lie.H1.�; k// by an ideal generated in degrees 2 and 3. Moreover,
this Lie algebra presentation can be explicitly described in terms of the graded
ring H�.M=S1;k/ and the Kähler class h 2 H 2.M=S1;k/.

(2) The group � is filtered-formal.

(3) For every complex linear algebraic group G, the germ at the origin of the
representation variety Hom.�;G/ is defined by quadrics and cubics only.

As an application of Corollary 14.15, we obtain another (independent) obstruction to
Sasakianity.

Corollary 14.21 ([114]). Let � be a Sasakian group. For each k � 0, all irreducible
components of the characteristic variety V1

k
.�/ passing through 1 are algebraic subtori

of the character group Hom.�;C�/.

By Theorem 14.13, the R-homotopy type of a compact Sasakian manifoldM depends
only on the cohomology ring H�.M=S1;R/ and the Kähler class h 2 H 2.M=S1;Q/.
Surprisingly enough, it turns out that the germs at 1 of certain representation varieties and
jump loci of �1.M/ depend only on the graded cohomology ring of M=S1.

Corollary 14.22 ([114]). Let M be a compact Sasakian manifold, and let G D SL2.C/.
Then the germ at 1 of Hom.�1.M/; G/ depends only on the graded ring H�.M=S1;C/
and the Lie algebra of G, in an explicit way. Similarly, the germs at 1 of the characteristic
varieties V1

k
.�1.M// depend (explicitly) only on H�.M=S1;C/.

15. Algebraic models for closed 3-manifolds

In this final section we give a partial characterization of the formality and finiteness
properties for rational models of closed 3-manifolds.

15.1. The intersection form of a 3-manifold

Let M be a compact, connected 3-manifold without boundary. For short, we shall refer
toM as being a closed 3-manifold. Throughout, we will also assume thatM is orientable.

Fix an orientation class ŒM � 2H3.M;Z/ŠZ. With this choice, the cup product onM
determines an alternating 3-form �M on H 1.M;Z/, given by

�M .a ^ b ^ c/ D ha [ b [ c; ŒM �i; (15.1)

where h�; �i denotes the Kronecker pairing. In turn, the cup-product map
V2

H 1.M;Z/!
H 2.M;Z/ is determined by the intersection form �M via ha [ b; i D �M .a ^ b ^ c/,
where c is the Poincaré dual of  2 H2.M;Z/.

In [136], Sullivan proved the following result.
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Theorem 15.1 ([136]). For every finitely generated, torsion-free abelian group H and
every 3-form � 2

V3
H_, there is a closed, oriented 3-manifoldM withH 1.M;Z/DH

and cup-product form �M D �.

Such a 3-manifold can be constructed by a process known as “Borromean surgery.”
More precisely, if n D rankH , a manifold M with the claimed properties may be defined
as 0-framed surgery on a link in S3 obtained from the trivial n-component link by
replacing a collection of trivial 3-string braids by the corresponding collection of 3-string
braids whose closures are the Borromean rings. For instance, 0-surgery on the Borromean
rings produces the 3-torus T 3.

15.2. Poincaré duality and Koszul complex

We now fix a basis ¹e1; : : : ; enº for the free abelian group H 1.M;Z/, and we choose
¹e_1 ; : : : ; e

_
n º as basis for the torsion-free part of H 2.M; Z/, where e_i denotes the

Kronecker dual of the Poincaré dual of ei . Writing

�M D
X

1�i<j<k�n

�ijkeiej ek ;

where�ijk D�.ei ^ ej ^ ek/ and using formula (15.1), we find that eiej D
Pn
kD1�ijke

_
k

.
In order to identify the resonance varieties of the cohomology algebraA�DH�.M;C/,

we let S D Sym.A1/ be the symmetric algebra onA1DH1.M;C/, and we identify S with
the polynomial ring CŒx1; : : : ; xn�. The Koszul complex from (11.2) then has the form

A0 ˝C S A1 ˝C S A2 ˝C S A3 ˝C S;

 

!
ı0A  

!
ı1A  

!
ı2A

where the differentials are the S -linear maps given by ı
q
A.u/ D

Pn
jD1 eju ˝ xj for

u 2 Aq . In our chosen basis, the matrix of ı2A is the transpose of ı0A D .x1 � � � xn/,
while the matrix of ı1A is an n � n matrix of linear forms in the variables xi , given by
ı1A.ei / D

Pn
jD1

Pn
kD1 �j ike

_
k
˝ xj .

Note that the matrix ıM ´ ı1A is skew-symmetric; moreover, it is singular, since the
vector .x1; : : : ; xn/ is in its kernel. Hence, both the determinant det.ı1A/ and the Pfaffian
pf.ıM / vanish. Let ıM .i I j / be the sub-matrix obtained from ıM by deleting the i -th row
and j -th column. We then have the following lemma, due to Turaev [145].

Lemma 15.2 ([145]). Assume n � 3. There is then a polynomial Det.�/ 2 S such that
det ıM .i I j / D .�1/iCjxixj Det.�/. Moreover, if n is even, then Det.�/ D 0, while if n
is odd, then Det.�/ D Pf.�/2, where pf.ıM .i I i// D .�1/iC1xi Pf.�/.

15.3. Resonance varieties of 3-manifolds

Let Ri
k
.M/ be the resonance varieties associated to the cohomology algebra

A D H�.M;C/ of a closed, orientable 3-manifold M . As shown in [127], Poincaré dual-
ity implies that R2

k
.M/DR1

k
.M/ for 1� k � n, while R3

1.M/DR0
1.M/D ¹0º if n> 0.
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The basic structure of the degree 1, depth 1 resonance varieties is given by the following
theorem.

Theorem 15.3 ([127, 129]). Let M be a closed, orientable 3-manifold. Set n D b1.M/

and let �M be the associated alternating 3-form. Then

R1
1.M/ D

8̂̂̂̂
<̂
ˆ̂̂:
; if n D 0I

¹0º if n D 1 or n D 3 and �M has rank 3I

V.Pf.�M // if n is odd, n > 3; and �M is genericI

H 1.M IC/ otherwise:

In the case when n D 2g C 1 with g > 1, we say that the alternating form �M is
generic (in the sense of Berceanu and Papadima [14]) if there is an element c 2 A1 such
that the 2-form c 2 A1 ^ A1 defined by c.a ^ b/ D �M .a ^ b ^ c/ for a; b 2 A1

has maximal rank, that is, gc ¤ 0 in
V2g

A1. For detailed information on the resonance
varieties R1

k
.M/ in depth k > 1 we refer to [127].

15.4. Characteristic varieties of 3-manifolds

As noted in [129], Poincaré duality with local coefficients imposes the same type of con-
straints on the characteristic varieties of a closed, orientable 3-manifold M ; for instance,
V1
k
.M/ Š V2

k
.M/, for all k � 0. Best understood is the variety V1

1 .M/, due to its close
connection to both the resonance variety R1

1.M/ and to the Alexander polynomial �M ,
which we define next.

Let H D Gab= Tors.Gab/ be the maximal torsion-free abelian quotient of the group
G D �1.M;x0/, and let qWMH !M be the regular cover corresponding to the projection
G � H . The Alexander module of M is defined as the relative homology group
AM D H1.M

H ; q�1.x0/IZ/, viewed as a module over the Noetherian ring ZH . Finally,
let E1.AM / � ZH be the ideal of codimension 1 minors in a ZH -presentation for AM .
The Alexander polynomial of M is then defined as the greatest common divisor of the
elements in this determinantal ideal, �M D gcd.E1.AM //.

As noted in [41] and [129], works of McMullen [98] and Turaev [145] yield the fol-
lowing relationship between the first characteristic variety and the Alexander polynomial
of M .

Proposition 15.4 ([41, 129]). Let M be a closed, orientable, 3-dimensional manifold.
Then

V1
1 .M/ \ Char.M/0 D V.�M / [ ¹1º:

Moreover, if b1.M/ � 4, then V1
1 .M/ \ Char.M/0 D V.�M /.

The next theorem shows that the second half of the tangent cone formula (12.2) holds
for a large class of closed 3-manifolds with odd first Betti number (regardless of whether
those manifolds are 1-formal), yet fails for most 3-manifolds with even first Betti number.



Formality and finiteness in rational homotopy theory 393

Theorem 15.5 ([129]). Let M be a closed, orientable 3-manifold, and set n D b1.M/.

(1) If n � 1, or n is odd, n � 3, and �M is generic, then TC1.V
1
1 .M// D R1

1.M/.

(2) If n is even, n � 2, then TC1.V
1
1 .M// D R1

1.M/ if and only if �M D 0.

The information contained in the cohomology jump loci and the Alexander polyno-
mials provides a method for determining which 3-manifold groups can also be realized as
fundamental groups of Kähler manifolds, or smooth, quasi-projective varieties. We sum-
marize the relevant results from [43, 44, 61], as follows.

Theorem 15.6. Let G D �1.M/ be the fundamental group of a closed, orientable
3-manifold M . Then:

[44] G Š �1.X/, for some compact Kähler manifold X if and only if G is a finite
subgroup of SO.4/, acting freely on S3.

[43] G is 1-formal and G Š �1.X/, for some smooth quasi-projective variety X if
and only if m.G/ Š m.Fn/ or m.G/ Š m.Z � �1.†g//.

[61] If G Š �1.X/, for some smooth quasi-projective variety X , then all the prime
components of M are graph manifolds.

15.5. Finite models for 3-manifolds

The previous theorem leads to obstructions to the existence of CDGA models for closed
3-manifolds with specified finiteness properties. These obstructions are quite effective
since they are expressed solely in terms of the Alexander polynomial of the manifold.

Theorem 15.7 ([129]). Let M be a closed, orientable, 3-manifold, and set n D b1.M/.

(1) If n � 1, thenM is formal, and has the rational homotopy type of S3 or S1 � S2.

(2) If n is even, n � 2, and �M ¤ 0, then M is not 1-formal.

(3) If �M ¤ 0, yet �M .1/ D 0 and TC1.V .�M // is not a finite union of rationally
defined linear subspaces, then M admits no 1-finite 1-model.

Proof. For completeness, we give a proof of this result. As shown in [59], the 1-formality
of M is equivalent to formality. On the other hand, we saw in Example 10.23 that any
finitely generated group G with b1.G/ � 1 is 1-formal. Thus, if b1.M/ D 0 or 1, then M
is formal, and so, as noted in [105], M must be rationally homotopy equivalent to either
S3 or S1 � S2.

Now suppose b1.M/ is even and positive, and �M ¤ 0. Then, by Theorem 15.5, we
have that TC1.V

1
1 .M// ¤ R1

1.M/, and so, by Corollary 12.15, M is not 1-formal.
Finally, if �M ¤ 0 and �M .1/ D 0, it follows from Proposition 15.4 that V1

1 .M/

and V.�M / share the same tangent cone and exponential tangent cone at 1. On the other
hand, if not all the irreducible components of TC1.V.�M // are rational linear subspaces,
then, by Lemma 12.7, �1.V.�M // ¤ TC1.V.�M //. Therefore, if both assumptions are
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satisfied, �1.V
1
1 .M// ¤ TC1.V

1
1 .M//, and so, by Theorem 12.13, M cannot have a

1-finite 1-model.

Consequently, if m D m.G/ is the Malcev Lie algebra of G D �1.M/, then the
following hold in the three cases delineated in Theorem 15.7: (1) m D 0 (if n D 0) or
m D Q (if n D 1); (2) m is not the LCS completion of a finitely generated, quadratic Lie
algebra; and (3) m is not the LCS completion of a finitely presented Lie algebra.

The next two examples illustrate how the finiteness obstructions provided by Theo-
rem 15.7 work in cases (2) and (3).

Example 15.8. The Heisenberg 3-dimensional nilmanifold M admits a finite model,
for instance, A D .

V
.a; b; c/; d/ with da D db D 0 and dc D ab. Nevertheless,

M is not 1-formal, since b1.M/ D 2 and �M D 1. Furthermore, �M D 0, and so
TC1.V

1
1 .M// D ¹0º, whereas R1

1.M/ D C2.

Example 15.9. Let M be a closed, orientable 3-manifold with H1.M; Z/ D Z2 and
�M D .t1 C t2/.t1t2 C 1/ � 4t1t2 (such a manifold exists by [145, Chapter VIII Sec-
tion 5.3]). Then TC1.V

1
1 .M// D ¹x21 C x

2
2 D 0º decomposes as the union of two lines

defined over C, but not over Q; hence, M admits no 1-finite 1-model. Furthermore,
�1.V

1
1 .M// D ¹0º is properly contained in TC1.V

1
1 .M//.

15.6. 3-manifolds fibering over the circle

We conclude this section with a discussion of the 1-formality property for closed
3-manifolds that fiber over S1. We start with a result which relates the notion of
1-formality of a semidirect product of the form G D K G Z to the algebraic monodromy
of the extension.

Theorem 15.10 ([109]). Let 1!K! G! Z! 1 be a short exact sequence of groups.
Suppose G is finitely presented and 1-formal, and b1.K/ <1. Then the eigenvalue 1 of
the monodromy action on H1.K;C/ has only 1 � 1 Jordan blocks.

This theorem yields as an immediate corollary a substantial extension of a result of
Fernández, Gray, and Morgan [57], where the non-formality of the total spaces of certain
bundles is established by a different method, using Massey products.

Corollary 15.11 ([109]). Let F ! X ! S1 be a smooth fibration whose fiber F is
connected and has the homotopy type of a CW-complex with finite 2-skeleton, and for
which the monodromy on H1.F;C/ has eigenvalue 1, with a Jordan block of size greater
than 1. Then the group G D �1.X/ is not 1-formal.

Next, we recall a result from [110], which is based on the interplay between the
Bieri–Neumann–Strebel invariant, †1.G/, and the (first) resonance variety, R1

1.G/, of
a 1-formal group G.
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Proposition 15.12 ([110]). Let M be a closed, orientable 3-manifold which fibers over
the circle. If b1.M/ is even, then M is not 1-formal.

Combining the results above yields the following corollary, which puts strong restric-
tions on the algebraic monodromy of a formal 3-manifold fibering over the circle.

Corollary 15.13 ([109]). Let M be a closed, orientable, 1-formal 3-manifold. Suppose
M fibers over the circle, and the algebraic monodromy has 1 as an eigenvalue. Then,
there are an even number of 1 � 1 Jordan blocks for this eigenvalue, and no higher size
Jordan blocks.

Indeed, by Corollary 15.11, the algebraic monodromy has only 1 � 1 Jordan blocks
for the eigenvalue 1. Letm be the number of such blocks. From the Wang sequence of the
fibration, we deduce that b1.M/ D mC 1. By Proposition 15.12, m must be even.

Example 15.14. The 3-dimensional Heisenberg manifold M from Examples 10.14
and 10.27 fibers over S1 with fiber S1 � S1 and monodromy given by the matrix . 1 10 1 /.
Since this is a Jordan block of size 2 with eigenvalue 1, we see once again that M is not
1-formal.
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[91] A. D. Măcinic, Cohomology rings and formality properties of nilpotent groups. J. Pure Appl.
Algebra 214 (2010), no. 10, 1818–1826 Zbl 1238.20052 MR 2608110
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