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Music of moduli spaces

Robert Penner

Abstract. A musical instrument, the plastic hormonica, is defined here as a birthday present for
Dennis Sullivan, who pioneered and helped popularize the hyperbolic geometry underlying its
construction. This plastic hormonica is based upon the Farey tessellation of the Poincaré disk
decorated by its standard osculating horocycles centered at the rationals. In effect, one taps or holds
points of another tessellation � with the same decorating horocycles to produce sounds depending
on the fact that the lambda length of e 2 � with this decoration is always an integer. Explicitly,
tapping a decorated edge e 2 � with lambda length � produces a tone of frequency 440 ���12N ,
where �12D 2 andN is some fixed positive integer shift of octave. Another type of tap on edges of �
is employed to apply flips, which may be equivariant for a Fuchsian group preserving � . Sounding
the frequency for the edge after an equivariant flip, one can thereby audibly experience paths in
Riemann moduli spaces and listen to mapping classes. The resulting chords, which arise from an
ideal triangle complementary to � by sounding the frequencies of its frontier edges, correspond to
a generalization of the classical Markoff triples, which are precisely the chords that arise from the
once-punctured torus. In the other direction, one can query the genera of specified musical pieces.

Introduction

Let D � C denote the Poincaré disk lying in the complex plane with its frontier circle
S1 � C at infinity. The modular group

PSL2 D PSL2.Z/;

comprised of two-by-two integral unimodular matrices modulo multiplication by minus
one, acts isometrically on D preserving S1. A horocycle is a curve in D of constant
geodesic curvature unity, which is asymptotic to a unique point in S1 called its center,
or equivalently, a Euclidean circle in D tangent to S1 at its center, for example, the
horocycle h� centered at �1 2 S1 containing the origin 0 2 D of C.

The lambda length � D �.h; h0/ of a pair h; h0 of horocycles with distinct centers is
defined by

� D exp ı=2;

Note added in proof: Aaron Fenyes has developed the first implementation (httpsW//vectornaut.github.io/
horomonica) with the name changed to the more mellifluous and less spell-check susceptible moniker
horomonica. It is recommended to use Shepard tone tuning to remain within the audible range.
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where ı is the signed hyperbolic distance between h and h0 along the geodesic connecting
their centers, taken with a positive sign if and only if the horocycles are disjoint. A small
calculation given in Section 2 shows that in fact, the lambda length of any two horocycles
in the orbit PSL2.h�/ of h� is a positive integer.

Our basic idea here is to capitalize upon this integrality in order to define a virtual
musical instrument, which is capable of both human play and automatic actuation, in order
to provide not only a mechanism for musical composition but also a tool for the auditory
probing of Riemann moduli spaces and mapping class groups of punctured surfaces.
After all, human auditory acuity far exceeds the other senses, so such a musical probe
could help elucidate both geometry and algebra.

Recall that there are 12 musical tones in an octave, and frequency doubling corre-
sponds to going up in tone by one octave. The difference between two consecutive notes
is called a hemitone. The frequencies of musical notes in so-called equally tempered tun-
ing, which is often implemented for instance in electric pianos, are given by !n D a �n,
where � D 2

1
12 D 1:05946 : : : and a is a constant, conventionally taken as a D 440 Hz

corresponding to the nearest note A above middle C, called A4, where the subscript deter-
mines the octave. The note with frequency !n is the musical note that is n hemitones
above or below A4.

Integrality of lambda lengths is exploited here, at first blush anyway, in the simplest
way possible: the frequency assigned to a pair of horocycles with lambda length � is given
by 440 ���12N D 27:5 ��, where the shiftN D 4 in octave is chosen so that small positive
values of � lie just in the audible range, which for newborn humans is something like
20–20,000 Hz. Thus, N D 4 does the trick, with A0 of frequency 27.5 Hz the effectively
unhearable note A four octaves below A4.

More specifically, the Farey tessellation �� of D, to be recalled in some detail in the
next section, is the orbit �� D PSL2.e�/, where e� is the geodesic in D with endpoints
˙1 2 S1. A collection of horocycles, one centered at each endpoint of a family of
geodesics, is called a decoration on the family, and PSL2.h�/ thus provides a decoration
of �� called the Farey decoration. Define the lambda length of a geodesic e decorated by
respective horocycles h; h0 centered at its endpoints to be

�.e/ D �.h; h0/:

A flip is the basic combinatorial move on a tessellation � , defined by removing a single
edge e from � , so as to produce a complementary ideal quadrilateral with diagonal e, and
replacing e in � by the other diagonal f of this quadrilateral, as depicted in Figure 1. The
Ptolemy equation

ef D ac C bd

describes the effect of flips on lambda lengths, which are here conflated with the edges
themselves, where e and f are diagonals of the quadrilateral with edges a opposite c and
b opposite d .
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Figure 1. Flip on an edge e.

Thus, beginning with the untuned instrument ��, one might perform a sequence of flips
to tune the instrument to another tessellation � , still with the original decoration, in order
to assign various integral lambda lengths, and hence this number of hemitones above some
fixed tone, to the edges of � .

In a visual representation of � on a computer screen not unlike a piano keyboard
or a harp, one might thus touch the edges of � in order to generate a musical sound at
the frequency determined by the lambda length. (We actually do something a little more
elaborate than this to produce sounds in order to capture standard Western chords, cf.
Section 4.1.)

To probe moduli spaces, we consider a torsion-free subgroup � of finite-index
in PSL2, so D=� is a punctured arithmetic surface

F D F sg D D=�

of some genus g � 0 with a finite number s � 1 of punctures of negative Euler character-
istic 2g � 2C s < 0, and � is a punctured arithmetic surface group.

Instead of flipping a single edge e 2 � in a �-invariant tessellation � , we perform flips
one at a time on the edges in an entire orbit �.e/ in order to derive another �-equivariant
tessellation of D, or in other words a triangulation of F with its vertices at the punctures,
to be apprehended here as a �-equivariant retunings of � . As explained in [7,9], sequences
of these �-equivariant flips correspond to paths in the Riemann moduli space of F , and
suitably periodic such sequences to elements of the mapping class group ofF . By listening
to the sequences of corresponding tones, we might probe moduli spaces and mapping class
groups alike.

On the other hand, we might also take a fixed piece of music, and ask for the smallest
genus of D=� for which the piece may be played on a �-equivariant tuning of ��.
As we shall see in Section 4.3, any tune on one instrument using notes from only one
octave, has genus at most three, for example, the classic melody Happy Birthday to You,
for Dennis Sullivan on this happy occasion of his 80th.

Dennis and I have been friends since the early 1980s. He was lecturing in Boston on
the measurable Riemann mapping theorem in the days before I married and received my
doctorate, and we first met at a reception to celebrate the former. During the next several
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years, we met often on Tuesdays, since I availed myself of his offer to all of us in the
nearby Thurston gang to attend his Einstein seminar at CUNY and stay for dinner on his
dime. At times simultaneously raising families of roughly comparable ages, we were at
points very close indeed.

Over the next many years, I would spend May with him at the IHES, and we would
often meet elsewhere as well. In one of my Parisian visits, we had without any doubt
the most efficient conversation of my life: In the midst of doing math one evening after
dinner, he abruptly looked me squarely in the eye and uttered “math, love, children, wine
and food,” with each word lifting another finger on his hand, to which I responded “yes,
and music.”

Nevertheless, I offer here to Dennis for his birthday present a musical instrument, the
plastic hormonica, a precursor to which, called the hormonica, was described in a footnote
of [9], which is reproduced here at the beginning of Section 3. I hope that Dennis among
others will appreciate not only the math underlying the plastic hormonica, for instance the
number-theoretic material on generalized Markoff triples, referred to here as triangular
chords, cf. Section 2, but also the tempting prospect of musically probing moduli spaces
and mapping class groups.

The oeuvre of Dennis pervades the constructions given here. It has influenced my
work, among so many others more generally in so many regards and in so many directions,
including his leading one of the first seminars on hyperbolic geometry (at the IHES, in
the 1980s). He nurtured Bill Thurston, my own post-doctoral teacher, and gave all of us
his seminal works on the distribution of horocycles [11] in hyperbolic surfaces, measures
on the boundary of hyperbolic space [10], random walks in hyperbolic surfaces [6],
the beautiful hyperbolic solenoid [12], among countless other contributions which have
fundamentally impacted the development of hyperbolic space as a playground for all sorts
of characters uncovering the richness of our modern hyperbolic geometry.

1. Farey tessellation

Let us begin in the upper half-plane model

U D ¹x C iy 2 C W y > 0º;

wherein horocycles are represented either as Euclidean circles tangent to R at their centers
or as horizontal lines ¹y D c > 0ºwhen the center is the point at infinity. Let hn denote the
horocycle with Euclidean diameter unity centered at n 2 Z � R, for each n 2 Z together
with the horocycle h1 D ¹y D 1º.

Two consecutive horocycles hn; hnC1 determine a triangular region bounded by the
interval Œn; nC 1� � R together with the horocyclic segments connecting the horocycle
centers to the point of tangency of hn and hnC1. There is a well-defined horocycle in each
such triangular region which is tangent to hn, to hnC1, and to the real axis, and we let
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Figure 2. The Farey decoration: a horocyclic packing of U.

hnC 1
2

denote this horocycle, tangent to the real axis at the half-integer point nC 1
2

and

of Euclidean diameter 1
4

. We may continue recursively in this manner, adding horocycles
tangent to the real axis and tangent to pairs of consecutive tangent horocycles, to produce
a family of horocycles H in U, cf. [3]. See Figure 2.

Lemma 1.1. There is a unique horocycle in H centered at each extended rational point
xQ D Q [ ¹1º, and the horocycle centered at p

q
2 Q has Euclidean diameter 1

q2
, where

p
q

is written in reduced form with1 D ˙1
0

. Furthermore, the horocycles in H centered
at distinct points p

q
; r
s
2 xQ are tangent to one another if and only if ps � qr D ˙1, and

in this case, the horocycle in H tangent to these two horocycles is centered at pCr
qCs
2 xQ.
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Figure 3. Farey tessellation of U.
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It is easy to prove this lemma inductively starting with the second sentence. Now
define the Farey tessellation to be the collection of hyperbolic geodesics in U that connect
centers of tangent horocycles in H ; see Figure 3.

Finally, define the Farey tessellation �� of D to be the image of the Farey tessellation
of U under the Cayley transform z 7! z�i

zCi
as illustrated in Figure 4, where �� is regarded

as a set of geodesics decomposing D into ideal triangles, i.e., regions bounded by three
disjoint geodesics pairwise sharing ideal points at infinity. (The Cayley image of H

in D is the orbit PSL2.h�/ in the Introduction.) The generation of a Farey point is the
number of open ideal triangles met by the geodesic path from the origin in C to the
Farey point.

Lemma 1.2. The modular group (or rather its conjugate by the Cayley transform) leaves
invariant the Farey tessellation �� and acts simply transitively on its oriented edges, so
oriented edges of �� are labeled by elements of PSL2.Z/. A generating set is given by any
pair of

S D

�
0 �1

1 0

�
; T D

�
1 1

0 1

�
; U D

�
1 0

1 1

�
;

where T �1 D SUS and U�1 D STS , and a presentation in the generators S; T
is given by S2 D 1 D .ST /3. Reversal of orientation corresponds to precomposition
with S .

In the sequel, we shall intentionally conflate a matrix
�
a b
c d

�
with its projectivization

as well as with its corresponding linear fractional transformation z 7! azCb
czCd

acting on U,
and even its Cayley conjugate acting on D.

1
0D�

1
0

0
1D�

0
1

�
1
1

1
1

1
4
1
3

1
2 2

3
3
2

2
1

3
1

4
1

�
4
1

�
3
1

�
2
1

�
3
2

�
2
3�

1
2

�
1
3

�
1
4

labeling of vertices

�1 C1

Ci

�i

I

U T

T U UT

U�1 T �1

UC2
TC2

U�2 T �2

T�1U�1 U�1T�1
1�4i
1C4i

1�3i
1C3i

1�2i
1C2i

2�3i
2C3i

3�2i
3C2i

2�i
2Ci

3�i
3Ci

4�i
4Ci

�4�i
�4Ci

�3�i
�3Ci

�2�i
�2Ci

3�2i
3C2i

�2�3i
�2C3i

�1�2i
�1C2i

�1�3i
�1C3i

�1�4i
�1C4i

labeling of edges

Figure 4. Farey tessellation of D. Following Gauss, we employ the right action on labels of edges.
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2. Lambda lengths and triangular chords

Direct calculations in the upper half-plane given in [7, 9] prove the following:

Lemma 2.1. If h; xh are two horocycles in U with respective centers x; xx 2 R and
Euclidean diameters ı; xı > 0, then

�.h; xh/ D
jx � xxjp

ıxı
;

while if xh is centered at infinity with Euclidean height H , then we have �.h; xh/ D
p
H
ı

.
Furthermore, if  D

�
a b
c d

�
2 PSL2.R/ maps h to xh, then xx D .x/ and

xı D  0.x/ı D
ı

.cx C d/2
;

while if .x/ D1, then xh has height ı
�1

c2
.

Corollary 2.2. The lambda length � of the pair of horocycles in the Farey decoration with
centers p

q
; r
s
, where p; q and r; s are each coprime pairs, is given by � D jps � qr j.

Proof. For the horocycles of respective Euclidean diameters 1
q2

and 1
s2

centered at p
q
< r
s
,

we find the lambda length

j
p
q
�
r
s
jq

1
q2

1
s2

D jps � qr j D qr � ps > 0:

This proves the basic integrality property of lambda lengths on the Farey decoration
which is at the heart of this paper.

Choose any three distinct rational numbers p
q
< r

s
< u

v
, each with coprime numerator

and denominator, so the Farey decoration assigns respective Euclidean diameters 1
q2

,
1
s2

, 1
v2

. The triple of pairwise lambda lengths of these three horocycles is given by

¹qr � ps; us � rv; uq � pvº;

and we call such a triple a (triangular) chord. Note that lambda lengths are invariant under
the action of PSL2.R/, so in particular the triple of lambda lengths is invariant under the
diagonal action of the modular group on xQ3.

Example 2.3. For any n � 1, each of ¹1; n; nC 1º, ¹1; n; 2nC 1º and ¹1; nC 1; 2nC 1º
is a triangular chord. To see this in the notation of Figure 4, serially flip along each of
the edges U; U 2; U 3; : : : ; U n; : : : in this order to produce the polygon P depicted in
Figure 5, decomposed into a collection of triangles sharing a vertex with respective triples
of lambda lengths ¹1; 1; 2º; ¹1; 2; 3º; ¹1; 3; 4º; : : : ; ¹1; n�1; nº; : : :, proving the first part.
(The weighted edges interior to P comprise a “hyperfan” in the sense of [8, 9].) Now flip
on edges in the frontier P for the other two classes of chords.
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Figure 5. The hyperfan P with lambda lengths indicated.

Triangular chords generalize the classical Diophantine Markoff triples in the following
sense. Start from a triple of lambda lengths satisfying the Markoff equation

x2 C a2 C b2 D 3abx;

such as x D a D b D 1. The sum of the two roots of this quadratic equation in x is given
by 3ab according to the quadratic formula, and yet immediately 3ab D x C .a2 C b2/=x
for a solution to this equation. It follows that if .a; b; x/ is a Markoff triple, i.e., a solution
to the Markoff equation, then so too is .a; b; .a2 C b2/=x/, and we recognize this as
the Ptolemy transformation applied to the triple .a; b; x/ in the surface F 11 . In fact, by
well-known results [2], the Markoff triples are exactly the triangular chords arising from
any finite sequence of �-equivariant flips on ��, for any marked � < PSL2 with D=�
homeomorphic to F 11 .

First of all, one can relax this to consider � < PSL2 with any fixed topological type and
take finite sequences of �-equivariant flips to define various modular classes of triangular
chords.

Remark 2.4. A fundamental fact [7, 9], essentially going back to J. H. C. Whitehead,
is that finite sequences of �-equivariant flips act transitively on the collection of all
tessellations of D covering ideal triangulations of the topological surface D=� . It follows
that the collection of �-equivariant tessellations of D arising from finite sequences of
�-equivariant flips on any one of them depends only upon the topological type of the
surface D=� .

Or one can “go all the way” with the “universal” definition above for triangular chords
arising from any finite sequence of simple (i.e., non-equivariant) flips. (See [4,8,9] for the
sense in which the latter is universal.)

Let gcd.n1; : : : ; nm/ denote the greatest common divisor of any finite set
¹n1; : : : ; nmº � Z of integers. The rest of this section is dedicated to the proof of the
following theorem.
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Theorem 2.5. A triple �i 2 Z, for i D 1; 2; 3, occurs as a triangular chord if and only if
the following two conditions hold whenever ¹i; j; kº D ¹1; 2; 3º:

(1) gcd.�i ; �j / divides �k;

(2) if n D gcd.�1; �2; �3/ is even, then some �i=n is even.

Lemma 2.6. Given �i 2Z, for i D 1;2;3 satisfying condition (1), let nD gcd.�1;�2;�3/.
Then n D gcd.�i ; �j / as well, independently of the pair i; j 2 ¹1; 2; 3º.

This means that the �0i D �i=n, for i D 1;2;3 are pairwise coprime (and hence trivially
satisfy both conditions (1) and (2)). In particular, at most one of �0i , for i D 1; 2; 3, can be
even.

Proof of Lemma 2.6. Since gcd.�i ;�j /Dngcd.�0i ;�
0
j / divides �k , for ¹i;j;kºD ¹1;2;3º,

it follows that gcd.�0i ; �
0
j / divides �k=n D �0

k
. Thus, gcd.�0i ; �

0
j / divides each �i , for

i D 1; 2; 3, and hence also n. Conversely, gcd.�01; �
0
2; �
0
3/ trivially divides gcd.�0i ; �

0
j /,

and hence finally, they must be equal.

Proof of Theorem 2.5. We start with necessity of condition (1) and suppose that the
triangular chord in question arises from the triple p

q
< r

s
< u

v
. Choose  2 PSL2.R/ with

. r
s
/D 0

1
as well as  0.p

q
/D 1D  0.u

v
/, and let .p

q
/D p0

q0
, .u

v
/D u0

v0
. By the second part

of Lemma 2.1, the resulting horocycles centered at p
0

q0
and u0

v0
have unchanged diameters,

and now the diameter of the horocycle at 0
1

is given by some ı > 0.
The resulting lambda length of the horocycles centered at p0

q0
and u0

v0
is given

by u0q0 � p0v0, which agrees with uq � pv owing to PSL2.R/-invariance of lambda
lengths, while the other two lambda lengths are expressed as � p0

p
ı
D qr � ps and

u0p
ı
D us � rv by the first part of Lemma 2.1, again using invariance of lambda lengths.
It follows that uq � pv D u0q0 � p0v0 is a multiple of the greatest common divisor of

�p0 and u0 and hence of � p0
p
ı
D qr � ps and u0p

ı
D us � rv as well. Thus, condition (1)

is indeed necessary. It follows that ¹10; 12; 15º is not a triangular chord, for example.
Continuing with the proof of Theorem 2.5, let us henceforth adopt the abiding notation

A D �1; B D �2; C D �3; and a D A=n; b D B=n; c D C=n;

where n D gcd.A;B; C /.
We turn to necessity of condition (2) and suppose not, so that n is even, and each

of a; b; c is odd. Transitivity of PSL2 on triples in xQ D Q [ ¹1º allows us to posi-
tion respective vertices for the ideal triangle realizing the triangular chord A; B; C

at 0
1

, A=r D na=r , B=s D nb=s, for some r; s 2 Z. It follows that

nc D C D As � Br D n.as � br/;

where we have absorbed the absolute value into the signs of r; s.
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Thus, c D as � br , where each of a; b; c is assumed to be odd, so ¹r; sº must be equal
to ¹0;1ºmodulo 2. This is a contradiction since na=r and nb=s are each reduced fractions,
with n even and precisely one of r; s even, and this establishes necessity of condition (2).

Now we suppose that A; B; C is a triple satisfying both conditions (1) and (2) and
must establish that A;B;C is a chord. Write

n D 2e0p
e1
1 � � �p

em
m

as a product of distinct primes, where e0 � 0 and e1; : : : ; em � 1.
If e0 D 0, then it can be ignored, and the discussion below for the other prime factors

pertains; otherwise, by condition (1) and the fact already discussed that a;b; c are pairwise
coprime, at most one of these three can be even, say it is c.

Let us construct the triangular chord with vertices 0
1

, a=r , b=s realizing a; b; c where
c D as � br . From the parities of the a; b; c, it follows that r and s must have the same
parities.

If both of r; s are even, then c may be rewritten as

c D a.b C s/ � b.aC r/

with 0
1

, a=.aC r/ and b=.bC s/ still in reduced form and yielding lambda lengths a; b; c.
Replacing

s 7! b C s and r 7! aC r;

we may assume without loss that r and s are each odd, and in this case, each of 0
1

,
.2e0/a=r , .2e0/b=s is a reduced fraction, thus providing an ideal triangle for the chord
.2e0/a, .2e0/b, .2e0/c.

This shows that if a; b; c is a chord, then so too must be its homothetic scaling by 2e0 .
Now we proceed to include each of the remaining prime powers in n by adjusting the
denominators r; s so that they become coprime to the numerator we hope to introduce.
Namely, we proceed by induction under the assumption that r and s are coprime to

F D 2e0p
e1
1 � � �p

ek
k
;

and modify r; s so as to be coprime to 2e0pe11 � � �p
ekC1
kC1

. It follows that

0

1
;

�
2e0p

e1
1 � � �p

ekC1
kC1

�
a=r;

�
2e0p

e1
1 � � �p

ekC1
kC1

�
b=s

are already in reduced form and achieve the desired lambda lengths.
Suppose that pkC1 divides one of r and s, and suppose without loss that it is r .

Note first that if pkC1 were to also divide s, then it would moreover divide .F /c D
.F /as � .F /br , and hence pkC1 would divide c. By relative primality then pkC1 cannot
divide .F /a or .F /b, and so .F /b C s and .F /aC r are each likewise coprime to pkC1
and to F .
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It follows that

0

1
; .F /a=..F /aC r/; .F /b=..F /bC s/

is a triple of reduced fractions realizing the triple of lambda lengths .F /a, .F /b, .F /c.
Now take

s 7! .F /b C s and r 7! .F /aC r

to return to the case that pkC1 and F are coprime to both r and s, which was treated
before.

It remains only to consider the case that pkC1 divides r but not s. Since pkC1 ¤ 2,
pkC1 is coprime to both .F /aC r and 2.F /aC r and likewise coprime to at least one of
.F /b C s and 2.F /b C s.

If pkC1 is coprime to .F /b C s, then take

s 7! .F /b C s and r 7! .F /aC r;

and if pkC1 divides .F /b C s, then take

s 7! 2.F /b C s and r 7! 2.F /aC r:

In any case, the resulting r and s still satisfy c D as � br and are respectively coprime
to .F /a and .F /b by the Euclidean algorithm. Furthermore, both are coprime to pkC1
and F , again reducing to the earlier case.

This finally provides an ideal triangle with vertices

0

1
;

�
Fp

ekC1
kC1

�
a=r D

�
2e0p

e1
1 � � �p

ekC1
kC1

�
a=r;

�
Fp

ekC1
kC1

�
b=s D

�
2e0p

e1
1 � � �p

ekC1
kC1

�
b=s

realizing lambda lengths�
2e0p

e1
1 � � �p

ekC1
kC1

�
a;

�
2e0p

e1
1 � � �p

ekC1
kC1

�
b;

�
2e0p

e1
1 � � �p

ekC1
kC1

�
c:

The algorithmic procedure continues in this way through the remaining prime factors
of n.

It follows from the theorem that pairwise coprime triples are triangular chords, as
was noted before, and moreover the union of all triangular chords, as determined in the
theorem, is closed under integral homothety.

Furthermore, the theorem provides a generalization of the Bezout identity: For any
pair a; b of coprime integers and any non-zero integer n, there exists a pair of integers r; s
so that as � br D 1 and gcd.n; r/ D gcd.n; s/ D 1, namely, in the notation of the proof
either exactly one of a; b; c is even or all three are odd.

Basic problems and questions include:

• In light of Remark 2.4, characterize the triangular chords for various topological types
of punctured arithmetic surfaces. In particular, how does adding a single puncture
F sg 7! F sC1g affect the collection of equivariant triangular chords?



R. Penner 416

3. The hormonica and tempering

Here is the footnote from [9] which defines the hormonica, the starting point for this paper.

At the risk of proving beyond any doubt that we have too much spare time, let us
remark that there is a musical instrument, the “hormonica,” based on this observa-
tion [integrality of lambda lengths for the Farey decoration] as follows. Begin with
the Farey tessellation �� as the untuned instrument regarded as drawn before you
on the computer screen. Perform a sequence of flips by serially selecting edges
to produce another tessellation � of the Poincaré disk likewise displayed on the
computer screen. Choose some basic frequency, say middle C, to represent unity,
so that any natural number may be interpreted as a multiple of this frequency.
In this way, each edge of � with its integral lambda length can be “plucked”
to produce a corresponding tone. Moreover, each triangle complementary to �
can be “tapped” to produce a triple of tones or chord. Attributes such as duration
or timbre could be introduced as further aspects of the tuning process. Maybe this
is crazy, but it could be fun. On the other hand, it is difficult to probe the com-
binatorics of moduli spaces visually, and the analogous hormonicas based upon
tessellations of a fixed surface could provide an auditory tool towards this end.

There are several difficulties with this definition. The first problem is that frequencies
of musical notes are exponential (in equal-tempered tuning given by 440 �n, for integral n
with �12 D 2) and not multiplicative in this sense and are rationally rather than integrally
related, as discussed below. Another more amusing limitation is that traditional musical
chords, as given in Table 1, cannot be triangular chords on the original hormonica, since
neither minor chords 10 W 12 W 15 nor diminished chords 160 W 192 W 231 (nor its sometimes
useful approximation 20 W 24 W 29) satisfy condition (1) of Theorem 2.5.

However, not all major, minor or diminished chords can arise from ideal triangles
on the plastic hormonica either, with its system � 7! 27:5 �� of assigning frequencies
to lambda lengths; for example, the chords B0 major (2; 6; 9), C1 minor (3; 6; 10), and
B0 diminished (2;5;8) violate condition (1) of Theorem 2.5, where the triples are numbers
of hemitones of individual notes above A0, cf. the first two columns of Table 1. This
deficiency in the musical instrument will be rectified by activating tones with several
fingers.

Frequency ratios of 3-tone musical chords

Chord Hemitones between notes Ideal frequency ratios
Major 4; 3 4 W 5 W 6

Minor 3; 4 10 W 12 W 15

Diminished 3; 3 160 W 192 W 231

Table 1. The tones comprising major, minor and diminished chords.
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This table illustrates both the utilities and deficiencies of equally tempered tuning,
for example, the ideal major chord frequency ratios in equally tempered tuning are not
rational, but are approximated by �4 D 1:2599 : : : � 5=4 and �7 D 1:498 : : : � 6=4. But
in what sense do these irrational frequency ratios fail to be “ideal”?

Figure 6. The ideal musical notes arise from taking perfect fifths, namely frequencies in the
ratio 3 W 2, starting from C and going clockwise around the outside of the so-called circle of
fifths illustrated here, so for instance C to G, G to D, and so on are all perfect fifths. Since
.3=2/12 D 129:74633 : : : is not a power of 2, there is a resulting inconsistency in octaves. The lower
case inner circle likewise give perfect fifths beginning from “a.” Figure courtesy of Mysid/Andeggs.

That equal tempering is not the most harmonious tuning system goes back to the
ancient Greeks, who argued that we humans find sonorous those pairs of frequencies
whose ratio is a rational number with small denominator and numerator, for instance the
perfect fifth 3 W 2 and major third 6 W 5 in the ideal major chord; see Figure 6.

“Tempering” is a compromise in assigning frequencies to notes that respects the octave
as well as preserves perfect fifths, on top of other desired rational frequency ratios within
an octave according to certain criteria. It is thus a compromise between the physics of a
vibrating string and the physiological perceptions of multiple frequencies.

Pythagoras among others has proposed such compromise systems of rationally related
frequencies in an octave.1 An even more elaborate scheme is used to tune an ordinary
piano across its 87 hemitones D 71

3
octaves. Moreover, triples of tones are harmonious

when their integral frequencies share a common multiple in each of their eight smallest
multiples according to Helmholtz.

The point is that books have been written [1,5] on this topic of tempering with its rich
history, and it is more than we can discuss here. We needed at least to give sense to the

1Both interesting and beautiful, here are the Pythagorean frequency ratios in the key of C: C(1 W 1),
D(9 W 8), E(81 W 64), F(4 W 3), G(3 W 2), A(27 W 16), B(243 W 128), C(2 W 1).
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term, this compromise in tuning away from equal tempering to achieve some specified
collection of Diophantine frequency ratios.

In practice for a stringed musical instrument, one “fudges” a little here and there to
achieve desired Diophantine ratios at the expense of others, for instance in tuning a piano
or in placing the frets of a guitar. In a viola or violin, direct continuous tempering is
determined in real time by the musician based on where the bow and finger meet the
string among other things, or in a guitar, where notes are determined not only by the fret
but also by bending the string to change its tension. The plastic hormonica allows any
type of specified tempering analogous to both a piano and a guitar, as well as its real-time
refinement as for a violin, at heart exponential based on equal temperament.

4. The plastic hormonica

This section is finally dedicated to the definition of a musical instrument, the plastic
hormonica, and has three parts: first, the definition of the untuned instrument, which
may provide an interesting interaction with hyperbolic geometry; second, the methods
of tuning the instrument, which can be done either one ideal arc at a time, or equivariantly
for some fixed arithmetic Fuchsian group; third and finally, the two essential methods of
playing the instrument, one that fixes the tuning once and for all, and another that allows
real-time retuning, whether equivariant or not, while playing.

4.1. The untuned instrument

We shall consider a rendering of the Farey tessellation �� of D on a large touch-sensitive
computer screen, where for the moment we can either tap an edge e 2 �� with a finger to
produce a tone or hold it at some point p 2 e to sustain a tone.

Each e 2 �� � ¹e�º comes equipped with its canonical orientation pointing from lower
to higher Farey generation of its endpoints, extended to e� pointing from 0

1
to 1

0
by

convention. Each such edge e 2 �� also comes equipped with its distinguished point p0 2 e
lying in two Farey horocycles, that is, equidistant to the Farey horocycles centered at the
endpoints of e. This point in turn determines the net of points pj 2 e, j 2 Z, called frets,
at hyperbolic distance j

2
exp.1

2
/ from the distinguished fret p0 along e.

Fix any edge e 2 ��. In this untuned setting, tapping e always produces a burst at
27.5 Hz by convention, which is likewise produced continuously when the distinguished
fret p0 2 e is held. The fret pi can be tapped or held and emits the note which is
i hemitones from that of p0 in whatever tempering seems salutary, like keys on a piano
keyboard but also like frets on a guitar.

More generally, holding an arbitrary point on e determines a continuum of frequency
response that interpolates that of the frets in any desired manner, so tapping or holding
nearby a fret modulates the tempering. It is this more general plasticity of tone, akin to
a violin or mouth harmonica, that is reflected in the name of the new instrument.
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Let us indicate orientation with a color spectrum on each edge, with tick marks for the
frets, and a special �-mark for the distinguished fret. As with the original hormonica,
the timbre of each sound (its character as determined by its spectrum) and its attack
(how the tone itself initiates and decays) can be set however one desires, for instance
like a staccato saxophone in one region of ��, like a slide guitar in another region, and like
a snare drum in yet another. In principle but impracticably, any piece of music could be
played using one edge of �� for each instrument.

As in the original hormonica, let us also allow tapping and holding a complementary
ideal triangle to actuate the three tones associated with the distinguished frets in its three
frontier edges, which agree for the untuned ��.

4.2. Tuning the instrument

Start from the untuned � D ��, and recursively suppose a tessellation � of D is
displayed whose vertices are given by the Farey rationals and whose colored edges
come equipped with a net of frets at distance 1

2
exp.1

2
/ from one another, together

with a distinguished fret denoted � as before. There is moreover the assignment
of a burst or sustained tone to the respective tapping or holding of a point on any
edge in � , as well as triples of tones of the distinguished frets in the frontier of a
complementary ideal triangle for tapping or holding any point in an ideal triangle comple-
mentary to � .

Given an edge e 2 � , imagine a new type of tap called a pedal-tap, for instance
activated by holding down a foot-pedal while tapping. The effect of a pedal-tap on e 2 �
is first of all to perform a flip upon this edge of � so as to display the new edge f in
the resulting tessellation � 0. This edge f 2 � 0 also runs between Farey rationals and
meets the Farey decoration at points whose hyperbolic distance ı satisfies exp ı=2 2 Z
according to Corollary 2.2, and thus extends to a system of frets on f between the two
horocycles, where the distinguished fret is the equidistant point between them. (Because
of the coefficient one half in our specification of distance between frets, the midpoint is
always a fret, whether the lambda length is even or odd.)

The frequency associated to tapping f or holding its distinguished fret is given by
27:5 ��, where � is the lambda length of f for the Farey decoration, and this tone is
sounded as the second effect of a pedal-tap. A pedal-tap not only retunes � to � 0, but also
returns a tone based on the resulting new lambda length, so a series of pedal-taps provides
not only a series of tuned instruments, but also a series of tones.

Another method of tuning � depends upon the specification of a fixed torsion-free
� < PSL2 of finite index preserving � . In �-equivariant tuning, the pedal-tap on an
edge e 2 � flips each edge in the orbit �.e/ to produce another tessellation, which is again
preserved by � . Each edge in �.e/ has the same lambda length, and after a �-equivariant
pedal-tap, the instrument sounds a tone of the resulting corresponding common frequency
as before.

This completes the recursive definition of the plastic hormonica � and its tuning.
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4.3. Playing the instrument

Having tuned the instrument (perhaps equivariantly), the plastic hormonica � is played
by tapping or pedal-tapping (perhaps equivariantly) edges of � , by tapping or holding
a point of a complementary ideal triangle, or by holding any point of any edge in � .
A sequence of such actions yields in particular a sequence of tones, and this is how one
plays the instrument. There are several embodiments of the plastic hormonica depending
upon tuning methods and whether holding is permitted or just tapping.

Minimal simple embodiment. The simplest version of the plastic hormonica is to
perform a finite sequence of flips once and for all and then simply allow tapping of edges
and triangles. This is essentially the original hormonica of [9]. The polygon P in the proof
of Lemma 2.3 provides a consecutive sequence of hemitones, which could be colored
black and white to mimic the piano keyboard.

There is already here as well as below a method of general utility for the automatic play
of a tuned plastic hormonica � . Namely, a given edge e 2 � has among its frets of course
the distinguished one, but also the two frets which lie in the horocycles decorating the
endpoints of e. Given a point q 2 e \ h in such a horocycle h, we can traverse h with
unit hyperbolic distance from q in a suitable unit of time, thereby meeting a sequence
qk D h \ ek of points in h \ � , for edges ek 2 � . The sequence of tones for the lambda
lengths of ek , played in this time signature determined by hyperbolic distance along the
horocycle, provides a kind of arpeggio autoplay of the instrument from a specified point
of the Farey decoration lying in an edge of � .

Minimal equivariant embodiment. Take any punctured arithmetic surface F D D=� ,
so � < PSL2 preserves the Farey tessellation ��. Only sequences of �-equivariant tunings,
that is, finite sequences of pedal-taps, are permitted in this embodiment. As explained
in [7, 9], such sequences correspond to paths in the decorated Teichmüller space of F .
(These integral lambda lengths correspond to the “centers of top-dimensional cells,” flips
to “crossing codimension-one faces between these cells” and the transitivity in Remark 2.4
to general position in the path connected decorated Teichmüller space.)

Moreover, the mapping class 'W F ! F corresponds to the sequence of flips from
an ideal triangulation � of F to '�1.�/, hence to a sequence of �-equivariant retunings
manifest as a periodic sequence of pedal-taps with its corresponding melody.

There are endless attendant questions and tasks including:

• Play the arpeggio of each puncture in some examples of equivariant tuning. Play some
periodic homeomorphisms of punctured surfaces. How does a pseudo-Anosov homeo-
morphism sound? How do these several sonic tasks behave under finite-sheeted covers,
possibly branched over the (missing) punctures as with the punctured solenoid? Which
integrally weighted pentagons occur universally, or equivariantly, and how do their
pentagon relations sound?

• Choose any fixed piece of music and ask for the minimal genus D=� , for � < PSL2
so that the piece could be played on a �-equivariant tuning. The hyperfan piano
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Example 2.3 shows that any single-voiced tune has finite minimal genus bounded just
in terms of the number of octaves it spans. Chords are another matter entirely, as has
been discussed.

• Is there a natural tempering of the plastic hormonica more sonorous than equal tem-
perament, where the frequency of an edge perhaps depends not only multiplicatively
on its integral lambda length as with the ordinary hormonica, but also on the rational
Farey labeling of its endpoints? Could the Minkowski question mark function (which
maps the dyadic tessellation to the Farey tessellation, cf. [9]) play a role in sonorous
tempering?

The two minimal embodiments naturally combine: after a finite sequence of possi-
bly �-equivariant retunings from ��, play the resulting instrument with tapping in one
embodiment and with �-equivariant pedal-tapping as well in another, providing dynamic
real-time perhaps equivariant instrument retuning.

Most flexible embodiment. On top of the full tapping and possibly equivariant pedal-
tapping instrument, we finally include holding points on the edges, to unleash a continuum
of sound for each edge. Tuples of points can be simultaneously held to produce any
musical chord. This embodiment involves full functionality of the frets, now with arpeggio
autoplay also enabled for each oriented edge. This is the full instrument which seems to
have the desired nuanced responsiveness for musical expression.

5. Closing remarks

This overall octave scaling N D 4 to 27:5 �� D 440 ���12N of frequency from lambda
length was unrealistic and metaphorical, where N or more generally some other lowest
reasonably audible frequency can be adjusted as part of pre-tuning. The distinguished fret
illustrates where some fixed octave of the note for the string is located, which is useful for
holding edges.

In probing moduli spaces and mapping class groups with the minimal equivariant
embodiment, any assignment of frequency to lambda length will suffice, for instance that
of the original hormonica. The frequency tuning of the plastic hormonica is specified
simply in order to mimic familiar instruments for musical expression.

A natural extension of the plastic hormonica, among others, allows tapping or holding
points of a complementary triangle to activate not just the single triple of frequencies
associated to its frontier edges, but different modulations and combinations of this triple
depending on the point of contact within the triangle.

One can imagine circumstances where the discrepancies between our own at least
locally Euclidean world and the hyperbolic plane may make instrument play impractical
at the scale of fingers on pictures on screens. The solution is a renormalization by
PSL2 D PSL2.Z/ or PSL2.R/ if the scale becomes problematic, perhaps with several
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simultaneous screenshots of different regions at different scales, or better yet, a multiscale
virtual reality implementation, as long as we are being speculative.

One might also dream of an implementation of the minimal equivariant embodiment
on a physical model of a punctured surface, i.e., a higher-genus touch-sensitive screen
as the boundary of a body in space, a physical three-dimensional version of the equiv-
ariant plastic hormonica of some fixed topological type. Again in principle, this could
presumably be executed in virtual reality. Another more pedestrian solution to the diffi-
culties mentioned in the previous paragraph in this equivariant setting would be to display
only the horocycles in the quotient surface, together with their intersection points with the
edges of the tessellation, which can be tapped or pedal-tapped.

At the other extreme, there is a purely physical way to imagine the plastic hormonica
with fixed tuning as a collection of strings in the hyperbolic plane with endpoints on the
horocycles of the Farey decoration. What is the actual physics of the sounds produced
by plucking these strings in hyperbolic space? Does sound perception differ in spaces of
different curvatures?

Plans are afoot to implement one or another of these embodiments, or at least
listen to some mapping classes. It will surely be fun, and we can always retreat to the
mathematician’s last refuge: this all could be a little bit too much, I admit, and if so,
I hope you agree that at least there seem to be some interesting questions.

Acknowledgments. It is a pleasure to thank Yi Huang for useful discussions and con-
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comments.
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