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Quantum Satake in type A. Part I
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Abstract. We give an interpretation of sln-webs as morphisms between certain singular Soergel

bimodules. We explain how this is a combinatorial, algebraic version of the geometric Satake

equivalence (in type A). We then q-deform the construction, giving an equivalence between

representations of Uq.sln/ and certain singular Soergel bimodules for a q-deformed Cartan

matrix.

In this paper, we discuss the general case but prove only the case n D 2; 3. In the sequel we

will prove n � 4.
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1. Introduction

1.1. Equivalent equivalences. The geometric Satake equivalence (or just geometric
Satake for short) is an equivalence between two symmetric monoidal abelian

categories which can be attached to a reductive algebraic group. In this paper

we state a Soergel Satake equivalence, an equivalence of (strict) additive 2-categories

associated to a pair of Langlands dual lie algebras. Furthermore, in type A we

state an algebraic Satake equivalence, an equivalence between additive 2-categories

living inside the Soergel Satake equivalence. The fact that these three equivalences

imply each other is reasonably straightforward (given the results of Soergel and

Härterich). The real meat of this paper is computational: an explicit construction

of the algebraic Satake equivalence in type A, coming from a presentation of both

additive 2-categories by generators and relations. This gives a new, simple proof of

geometric Satake in type A (but see Remark 1.1). Finally, we present a q-deformation

of the Soergel and algebraic Satake equivalences in type A. This q-deformation has

no known geometric source at present.

Let g be a simple Lie algebra with Langlands dual g_. Let � denote the

fundamental group of g_, a finite abelian group realized as the weight lattice

�The author was supported by the NSF grants DMS-1103862 and DMS-1553032, and the Sloan

Fellowship.
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modulo the root lattice. Representations of g_ form a semisimple �-graded-monoidal

category, in the sense that each irreducible object has a character (or highest weight)

in �, and these characters add under taking tensor products and their summands. This

additive �-graded-monoidal category can also be encoded as an additive 2-category

Rep� with one object for each element of �. We give an introduction to these

constructions in §4.2.

Associated to the affine Dynkin diagram e� of g, one can construct an additive

2-category of singular Soergel bimodules SSBim as in [45], having one object for

each proper subgraph of e� . Chapter 5 contains an introduction to singular Soergel

bimodules. Within SSBim lies the full sub-2-category of maximally singular Soergel
bimodules mSSBim, which has objects for each subgraph of e� isomorphic to the

original Dynkin diagram � . Such subgraphs are parametrized naturally by the set �.

The Soergel Satake equivalence is an equivalence between Rep� and mSSBim.

Actually, 2-morphisms in mSSBim are graded vector spaces, so to be more precise,

Soergel Satake is a 2-functor from Rep� to mSSBim which is essentially surjective

up to grading shift, faithful, and full onto degree 0 maps.

The original geometric Satake equivalence (see, for instance, [18]) can be similarly

rephrased as an equivalence of 2-categories between Rep� and some 2-category

of perverse sheaves on affine partial flag varieties. Maximally singular Soergel

bimodules should be (roughly) thought of as the equivariant hypercohomologies

of these perverse sheaves, though thankfully they have an independent algebraic

definition.

Inside Rep� one can consider the additive sub-2-category Fund� whose

1-morphisms are tensor products of fundamental representations. There are certain

1-morphisms in mSSBim which correspond to fundamental representations in Rep�,

which could be called fundamental singular Soergel bimodules. Clearly, Fund�

should be equivalent to the monoidal sub-2-category of mSSBim generated by

fundamental singular Soergel bimodules1, a statement equivalent to Soergel Satake.

Sadly, neither 2-category is well-understood in general.

In type A, however, all fundamental representations are miniscule. In this case,

the fundamental singular Soergel bimodules are actually easy to describe, being

the generating 1-morphisms in the 2-category of maximally singular Bott–Samelson
bimodules mSBSBim inside mSSBim. Moreover, in type A both Fund� andSSBim

have a presentation by generators and relations using planar diagrams ( [5] and [10]

respectively), which is why we consider these categories to be “algebraic.” The

equivalence between Fund� and mSBSBim in type A will be called the algebraic

Satake equivalence, and will be proven by exploiting these presentations.

This paper proves the algebraic Satake equivalence for sl2 and sl3. We require

several results about singular Soergel bimodules, which for sl2 are all available in [8],

1More precisely, there should be a functor from Fund� to this sub-2-category which is essentially

surjective up to grading shift, faithful, and full onto degree 0 maps.
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and for sl3 are proven in the appendix. For slnC1 with n � 3, the requisite background

will eventually appear in joint work with Williamson [10], though we do not know

when this manuscript will become available. Moreover, the n � 3 case also requires

a great deal of additional calculation. For these reasons, we postpone the n � 3 case

to a followup paper.

Remark 1.1. The feature which is most obscured by the transformation from

geometric Satake to algebraic Satake is the symmetric structure on the original

monoidal category. The symmetric structure on perverse sheaves arises in a

complicated way from the study of the Beilinson–Drinfeld Grassmannian [35], and

it is unclear how this is translated into the language of Soergel bimodules. One

could make the argument that geometric Satake without the symmetric structure

is a significantly weaker theorem (we discuss this in more detail in Remark 6.1).

However, this argument seems to rely on the Decomposition Theorem [3], while

this paper gives a proof of geometric Satake (or rather, Soergel Satake) without any

reliance on the Decomposition Theorem or the related Soergel conjecture. Moreover,

making the equivalence explicit on 2-morphisms is a non-trivial result, and the ability

to discuss the equivalence in a new language (without Tannakian formalism) is useful.

In addition, the q-deformation below is new.

Remark 1.2. One can upgrade algebraic Satake to an equivalence of symmetric

monoidal categories, using recent work of Lusztig. It is easy to equip Fund� with a

natural symmetric structure, using the computational formulas (well known to knot

theorists) for the symmetric structure in representation theory. When this paper was

first written, there was no natural way to construct a natural symmetric structure on

singular Soergel bimodules. However, Lusztig has since devised such a structure

in an update to [34]. Technically, his symmetric structure lives on the Soergel

bimodules which arise from our singular Soergel bimodules, though it is not hard to

adapt the definition to the singular Soergel bimodules themselves. As far as we can

tell, no connection has yet been made between Lusztig’s symmetric structure and the

Beilinson–Drinfeld Grassmannian. See also Remark 1.6 below.

1.2. The q-deformation. The 2-categories Rep� and Fund� admit natural q-de-

formations Rep�
q and Fund�

q , describing representations of the quantum group

Uq.g_/. Let us restrict henceforth to type A, where Fund�
q also has a known

presentation by generators and relations. The surprising fact is that SSBim also

admits a q-deformation SSBimq compatible with the Soergel Satake equivalence.

We have a functor Fund�
q ! mSBSBimq which is fully faithful onto degree 0 maps,

which we call the quantum algebraic Satake equivalence. At the moment, there is no

known geometric source for this q-deformation of SSBim. Gaitsgory [17] also has a

notion of a quantum Satake equivalence, but there is currently no connection known

between his theory and ours.
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We now provide a brief description of the q-deformation of Soergel bimodules,

and a number of remarks. There are some technicalities which we ignore in the

introduction; §5 has a more accurate discussion.

Let W be a Coxeter group with simple reflections S . In [41] Soergel defines

a reflection faithful representation of W to be a vector space h over a field k on

which W acts faithfully, such that an element of W acts by a reflection on h (it has

one eigenvalue �1 and fixes a codimension 1 hyperplane) if and only if it is a reflection

in W . To such a representation, Soergel associates a monoidal category of Soergel

bimodules, and Williamson [45] a 2-category SSBim of singular Soergel bimodules.

The lightning definition is this: consider the coordinate ring R D Sym.h�/ equipped

with its action of W . For any finite parabolic subgroup associated to I � S one

has a subring RI of invariant polynomials, and when I � J one has RJ � RI .

Singular Soergel bimodules are defined to be the summands of (grading shifts of)

iterated tensor products of the induction and restriction bimodules between these

various rings RI .

In [12] it is explained how to generalize this construction beyond reflection faithful

representations. A realization of W is a representationhwhich is free over an arbitrary

commutative ring k, together with a choice of simple coroots �_ � h and simple

roots � � h�, satisfying some natural conditions. The pairing between � and �_ is

encoded in a (generalized) Cartan matrix A with entries .as;t /s;t2S valued in k. It

need not be the case that � and �_ form bases for their respective spaces, but when

they do, the realization is determined by the Cartan matrix. To any realization, [12]

and [10] provide a 2-category analogous to SSBim.

To obtain SSBimq one begins with a q-deformed version of the eAn Cartan matrix,

defined over a base ring k D ZŒq; q�1�, called the exotic affine slnC1 Cartan matrix.

For n � 2 we use

0
BBBBBBB@

2 �1 0 � � � 0 �q�1

�1 2 �1 � � � 0 0

0 �1 2 � � � 0
:::

:::
:::

: : : �1 0

0 0 �1 2 �q

�q 0 0 � � � �q�1 2

1
CCCCCCCA

: (1.1)

For n D 1, we use �
2 �.q C q�1/

�.q C q�1/ 2

�
: (1.2)

The parameter q can be specialized to a non-zero complex number, so that these

exotic matrices also yield one-parameter families of Cartan matrices over k D C.

These exotic Cartan matrices do not seem to appear in the literature, nor is there

yet a satisfactory geometric explanation for them. (However, the corresponding

1-parameter family of representations of the affine Weyl group does appear in the
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literature, see the discussion in §5.3). The author came upon them while hunting for

a possible quantum Satake equivalence, inspired by the sl2 case which is studied in

detail in [8]. An exotic realization of affine slnC1 is a realization of eAn over ZŒq; q�1�

or C having such a Cartan matrix, and SSBimq will be the associated 2-category.

Remark 1.3. Suppose that k is a field containing R. For any two s ¤ t 2 S , let mst

denote the order of st in W . A standard realization of W is one with a symmetric

Cartan matrix valued in R, satisfying as;s D 2 and as;t D � cos. �
mst

/ for s ¤ t .

When the Coxeter graph of W is a tree, it is easy to argue that any Cartan matrix

is standardizable, i.e. conjugate by a diagonal matrix to a standard Cartan matrix.

Conjugating by a diagonal matrix corresponds to rescaling � and �_, and does not

alter the 2-category of singular Soergel bimodules.

However, when the Coxeter graph of W is not a tree, such as for eAn, a realization

need not be standardizable. The reader can check that for n � 2 the exotic Cartan

matrices above are standardizable if and only if q D ˙1. In particular, when

q 2 C� n R�, the complex realization h has no real form. It is not difficult to deduce

that the exotic family over C exhausts the possible complex Cartan matrices for eAn,

up to conjugation by diagonal matrices, from the fact that the Dynkin diagram of fAn

has fundamental group isomorphic to Z.

Because Coxeter graphs of affine Weyl groups in other types are trees, it seems

unlikely that one could use a similar construction to produce a quantum algebraic

Satake equivalence in other types.

Remark 1.4. The exotic Cartan matrix has determinant 2 � q2 � q�2. Therefore,

outside of the classical cases q D ˙1, � and �_ are each linearly independent.

Let w1 denote the reflection corresponding to the longest root in the finite Weyl

group (the part with the usual Cartan matrix) and let s0 denote the affine reflection.

When q is specialized to a primitive 2m-th root of unity, the element .s0w1/ has finite

order m on the span of �_. Thus the action of W on the span of �_ is not faithful.

Whenever a Cartan matrix is nondegenerate, h can be decomposed as a direct sum of

the span of �_ and a trivial representation, so that no exotic realization is faithful at

a non-real root of unity. We will discuss this remark further in Section 5.3.

Remark 1.5. Soergel conjectured that for any reflection faithful representation h

over a field k of characteristic zero, the indecomposable Soergel bimodules descend

in the Grothendieck group to the Kazhdan–Lusztig basis of (in this case) the affine

Hecke algebra. Williamson has shown [45] that when this is true, the classes of

the indecomposable singular Soergel bimodules descend to the Kazhdan–Lusztig

basis of the affine Hecke algebroid. Soergel’s conjecture is proven in [11] for the

standard reflection representation, but the arguments also apply to other realizations

possessing a real form, and satisfying a positivity property.

Now consider the exotic realization when n � 1, and set q ¤ ˙1 to be a root

of unity. Quantum algebraic Satake relates maximally singular Soergel bimodules

to the representation theory of Uq.slnC1/, which is no longer semisimple. The
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lack of semisimplicity prevents the indecomposable bimodules from having the same

character they have generically. Therefore indecomposable bimodules do not descend

to the Kazhdan–Lusztig basis. This does not contradict the results of [11], as the

realization has no real form. It also does not contradict the Soergel conjecture, as no

exotic realization is reflection faithful at a root of unity.

Remark 1.6. We continue the discussion from Remark 1.2 above. One might ask

whether there is a q-deformation of Lusztig’s symmetric structure that produces

a natural braiding on maximally singular Soergel bimodules, agreeing under the

quantum algebraic Satake equivalence with the standard braiding on Uq.sln/-

representations. We consider this a very interesting question (the answer did not

appear obvious)!

1.3. Addendum: further study of the q-deformation. As mentioned above, the

exotic realization of affine slnC1 is something of a mystery. There is currently no

known geometric or representation-theoretic explanation for this q-deformed Cartan

matrix; it was fabricated by the author solely to make quantum algebraic Satake

work. However, since this paper originally appeared, the exotic realization has taken

on importance in other ways, and we would like to advocate that it is a fundamental

object well worth studying, above and beyond the results of this paper. We briefly

discuss two recent applications.

The geometric Satake equivalence is a categorical explanation for a numerical

concurrence first observed by Lusztig: that certain multiplicities attached to the

Kazhdan–Lusztig basis of (a singular version of) the Hecke algebra in affine type

agreed with multiplicities in the category of representations of the Langlands dual

Lie group. Geometric Satake solves this mystery by declaring that the categories

which govern these multiplicities are in fact equivalent.

A similar numerical concurrence is related to the parabolic Kazhdan–Lusztig

basis of the affine Hecke algebra, rather than the singular Kazhdan–Lusztig basis.

The multiplicities here are related to the rational representation theory of the

corresponding algebraic group in finite characteristic, at least for sufficiently large

characteristic. This relationship goes under many names: Lusztig’s conjecture,

Andersen’s conjecture, James’ conjecture. The categorical equivalence which

would explain this numerical concurrence has appeared (outside of type A, only

conjecturally) in recent work of Riche–Williamson [38], which contains an excellent

introduction to the topic and many additional references. These same multiplicities

are also related to the representation theory of quantum groups at roots of unity.

In this case, the numerical equality has been a theorem for some time, due to the

work of many: Kazhdan, Lusztig, Kashiwara, Tanisaki, Soergel, etcetera. A quantum

Riche–Williamson conjecture would give an equivalence of categories between tilting

modules in the trivial block of the quantum group Uq.slnC1/ at a root of unity, and a

parabolic version of the diagrammatic category of Soergel bimodules coming from
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the exotic realization of affine slnC1. For sl2 this was proven already by Andersen–

Tubbenhauer [1], to which we refer the reader for a further introduction to this topic.

The general case is under investigation.

We were careful to refer to the “diagrammatic category of Soergel bimodules”

in the previous paragraph, instead of just the category of Soergel bimodules.

This diagrammatic category was constructed in [12], and agrees with Soergel’s

algebraic definition when Soergel bimodules behave well (e.g. for reflection faithful

representations). For arbitrary realizations, it is the diagrammatic category that

is the appropriate generalization. The reflection representation of affine slnC1 in

finite characteristic, and its exotic realization at a root of unity, are certainly not

faithful, so that the diagrammatic category is the category whose multplicities agree

with those in the affine Hecke algebra, not Soergel’s category. However, it is still

well worth asking: what does the algebraic category of Soergel bimodules look

like? What does it categorify? When q is specialized to a 2m-th root of unity,

the exotic realization factors through the finite complex reflection group G.m; m; n/,

and Soergel bimodules in this setting appear to be related to this complex reflection

group.

An early investigation of this story is currently underway between the author and

Benjamin Young. We study the exotic NilCoxeter algebra, the algebra generated

by Demazure operators when q is specialized to a 2m-th root of unity. Unlike the

case of generic q, this is a finite dimensional algebra, which we can present by

generators and relations (at least for small n, so far). It appears to be an entirely new

algebra, with an unfamiliar Poincaré polynomial and even a surprising dimension! For

example, the exotic NilCoxeter algebra for G.2; 2; 3/ is 36 dimensional, even though

G.2; 2; 3/ Š S4 only has size 24. We expect these exotic NilCoxeter algebras to be

extremely interesting. They have desirable properties: a unique longest element, for

instance. This longest element can be used to define a Frobenius extension structure

between the polynomial ring of the exotic realization and the subring of polynomials

invariant under the action of G.m; m; n/. This Frobenius extension structure, in turn,

is essential to the study of Soergel bimodules.

1.4. Organization of the paper. In §2 we define a 2-category Fund�.sl2/ by

generators and relations, using the language of planar diagrammatics. We

similarly define a graded 2-category mSBSBim.sl2/. Then we define a 2-functor

Fund�.sl2/ ! mSBSBim.sl2/, and prove that it is essentially surjective (up to

grading shift) and fully faithful (onto degree zero 2-morphisms). In §3, we repeat the

same process for sl3. These two sections constitute the real mathematical content of

this paper (which is quite easy). They are presented in a vacuum, as it were, without

any reference to Soergel bimodules, perverse sheaves, or representation theory, and

thus are accessible without any background.

In the subsequent chapters we fill in the details, eventually connecting this

computational result to geometric Satake. In §4 we give an introduction to the
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diagrammatic approach to Rep.g_/. We also describe the group � and the notion

of �-graded-monoidal categories and �-2-categories. In §5 we give background on

singular Soergel bimodules, and state the Soergel Satake equivalence. Between these

two chapters, both sides of the algebraic Satake equivalence described in §2 and §3

will be explained.

Finally, in §6 we explain how to connect Soergel Satake to geometric Satake. This

takes place in three steps, with two being very straightforward, and the last relying

upon the difficult work of Soergel and Härterich.

With the exception of §6, everything is already written with the q-deformation

built in. This leads to a host of complications when defining Soergel bimodules. As

a result, §5 is not the easiest introduction to Soergel bimodules in general, though it

does provide an in-depth introduction to the subtleties involved when dealing with

“odd-unbalanced” realizations, such as the exotic affine realization of sln.

This paper is organized with two audiences in mind: the neophyte and the expert.

For the neophyte with little to no experience with geometric Satake, we suggest

reading the paper in order. We hope that the concrete, combinatorial approach

will make it readable, and the hands-on experience of §2 and §3 will help when

trying to understand the more abstract approaches. The paper should be entirely

accessible until §6. We do assume the reader is familiar with the technology of

planar diagrammatics for 2-categories with adjunction: an introduction can be found

in [30, Section 2]. The expert who is more interested in the connection from geometric

Satake to Soergel Satake and then to algebraic Satake is welcome to skip directly

to §6, only backtracking when indicated for several definitions.

Acknowledgements. The author is extremely grateful to Geordie Williamson,

George Lusztig, Pavel Etingof, Roman Bezrukavnikov, Joel Kamnitzer, and Shrawan

Kumar for a variety of useful discussions.

2. The diagrammatic approach: sl2

Most of the material in this chapter can be found in [8]. We include it as a warm-up

for the more complicated case of sl3, and sln in the sequel.

In this chapter, let � D f0; 1g denote the group Z=2Z. Let the set S D fb; rg be

an �-torsor, and assign the elements colors: blue to b and red to r .

We also assign names and colors to proper subsets I ¨ S . We abusively let r

(resp. b) denote the singleton subset frg ¨ S . Let ; denote the empty set, to which

we assign the color white.

Notation 2.1. In this chapter and the next, we will define several 2-categories with

similar presentations. The objects will form a finite set, and each object will have an

assigned color. There will be a set of generating 1-morphisms, with the property that
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for any two colors s1; s2 there is at most one generating 1-morphism from s1 to s2.

Therefore, a 1-morphism can be represented uniquely by the (non-empty) sequence

x D s1s2 : : : sm of colors through which it passes (though not all sequences of colors

are permitted). We read 1-morphisms from right to left, so that x has source sm and

target s1. The identity 1-morphism of an object s is thus also denoted s. We represent

a composition of 1-morphisms diagrammatically as a sequence of dots on the line,

separating regions of different colors.

Example 2.2. The 1-morphism brbrbr in the 2-category Fund�
q below:

For the rest of this chapter we fix a ZŒq˙1�-algebra k. In order to connect these

results to representation theory we will set k D Q.q/, or k D C with q D 1.

However, the algebraic Satake equivalence is defined in more generality.

2.1. Webs. Background on this material can be found in [19, 44]. More specifics

on this particular 2-colored version can be found in [9, Section 2] or [8, Section 4].

Definition 2.3. Let Fund�
q D Fund�

q .sl2/ (also known as the 2-colored Temperley–

Lieb category) be the k-linear 2-category defined as follows, using Notation 2.1. It has

objects S D fr; bg, and has generating 1-morphisms rb and br . Thus Example 2.2

gives a 1-morphism in Fund�
q .

The 2-morphisms are generated by colored cups and caps. More precisely, there

is a cap map brb ! b and a cup map b ! brb, as pictured below, as well as the

corresponding maps with the colors switched.

There are two types of relations, which also hold with the colors switched. Recall

that Œ2� D q C q�1.

The Isotopy relation:

= = (2.1)

The Circle relation:

=�Œ2� (2.2)

This ends the definition.

The existence of cups and caps, together with (2.1), is equivalent to the statement

that the 1-morphisms rb and br are biadjoint. There is an action of � on Fund�

which permutes the colors.
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Definition 2.4. A crossingless matching is an isotopy class of colored 1-manifold with

boundary embedded in the planar strip, without any closed components, providing a

matching of boundary points.

Example 2.5. A crossingless matching in Hom.brbrbrbrbrb; brbrbrbrb/:

Claim 2.6. Each morphism space Hom.x; y/ has a basis over k given by crossingless
matchings.

Now we define another 2-category.

Definition 2.7. Let Rep�
q D Rep�

q .sl2/ denote the following full sub-2-category

of Cat. The objects are in bijection with �, where 0 is identified with the category

of even Uq.sl2/ representations, and 1 with odd Uq.sl2/ representations. The

1-morphisms are (functors arising from) tensor products with finite dimensional

Uq.sl2/ representations, and the 2-morphisms are all natural transformations

(i.e. Uq.sl2/-morphisms between tensor products).

Now we fix an identification of � with S . There is a 2-functor from Fund�
q to

Rep�
q which on objects sends S to �. It sends both 1-morphisms rb or br to the

tensor product with the standard representation V . The cups and caps are sent to

inclusions and projections respectively between V ˝V and the trivial summand ƒ2V .

These inclusions and projections are unique up to scalar; one chooses the scalars so

that (2.1) holds. For any such choice of scalars, it turns out that (2.2) will also hold.

Claim 2.8. Suppose that k D Q.q/. For any identification of S with �, this 2-functor
is well defined and fully faithful.

The proofs of these claims are well known, and are reasonable exercises for the

uninitiated. The result also holds when k D C, q D 1, and Uq.sl2/ is replaced

by sl2. A similar claim holds when k D ZŒq; q�1�, for the correct integral form

of Uq.sl2/.

2.2. Singular Soergel diagrams. For another introduction to this material, see [8,

Section 5]. We now make a mild assumption on k: that the ideal generated by 2

and Œ2� is the unit ideal (c.f. Demazure Surjectivity in [8, Section 3.3]).

Definition 2.9. Let SBSBimq D SBSBimq.sl2/ be the graded k-linear 2-category

defined as follows, using Notation 2.1. The objects are proper subsets I ¨ S , and

the generating 1-morphisms are fr;; ;r; b;; ;bg.

Example 2.10. The 1-morphism b;r;r;b;:

In the drawing above, we placed an orientation on the dots consistent with the rule

that the right-hand color contains the left-hand color. This orientation is redundant
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information, but helps to make 2-morphisms easier to describe. Similarly, we will

color the strands in our pictures by the color which is added or subtracted by the

1-morphism.

The 2-morphisms are generated by oriented cups and caps (again, the orientation

itself is redundant). There are cap maps ;b; ! ; and b;b ! b, as well as cup

maps in the other direction, as pictured below. There are also maps with blue and

red switched.

We place a grading on the 2-morphisms, where clockwise cups and caps have

degree C1, and anticlockwise cups and caps have degree �1. The relations between

2-morphisms are listed below (with the color-switched versions assumed). They are

all homogeneous.

The Isotopy relation:

= =

==

(2.3)

The Empty Circle relation:

= 0 (2.4)

The Cartan relations:

= 2 (2.5a)

= �Œ2� (2.5b)
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The Forcing relations:

+ = 2 (2.6a)

+= +�Œ2� Œ2� (2.6b)

This ends the definition.

The existence of cups and caps, together with (2.3), is equivalent to the statement

that the 1-morphisms b; and ;b are biadjoint. There is an action of � on Fund�

which permutes the colors; however, this is special to the sl2 case.

2.3. The equivalence.

Definition 2.11. Let mSBSBimq denote the full sub-2-category ofSBSBimq whose

objects are fr; bg. In other words, we allow 1-morphisms and 2-morphisms which

contain the color white, but their right-hand and left-hand colors must be either red

or blue.

Definition 2.12. Let F be the 2-functor Fund�
q ! mSBSBimq defined as follows.

On objects, it sends red to red and blue to blue. On 1-morphisms, it sends rb 7! r;b

and br 7! b;r . On 2-morphisms, it acts as below. Visually, the map on 2-morphisms

takes a crossingless matching and widens each strand into a white region, with its

boundary oriented anticlockwise.

Claim 2.13. The 2-functor F is well defined, and its image consists of degree 0 maps.

Proof. The isotopy relation in Fund�
q follows from the isotopy relations inSBSBimq .

The circle relation in Fund�
q follows from the Cartan relations in SBSBimq.

Definition 2.14. A 2-functor G from a k-linear 2-category C to a k-linear graded

2-category D is a degree-zero equivalence if the following properties hold.

� G induces a bijection between the objects.

� G induces an isomorphism HomC.x; y/ ! Hom0
D

.G.x/;G.y// to the

morphisms of degree 0.

� Homk
D

.G.x/;G.y// D 0 for all k < 0.
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� Every 1-morphism inD is isomorphic to a direct sum of grading shifts of G.x/

for some 1-morphism x in the Karoubi envelope Kar.C/; i.e. G is essentially
surjective up to grading shift.

Theorem 2.15. Suppose that the ideal generated by 2 and Œ2� in k is the unit ideal.
Then the 2-functor F is a degree-zero equivalence.

This is one of the main results of [8, Section 4], where its proof is dispersed

throughout many pages. We will sketch the proof after some more material.

2.4. Singular Soergel diagrams and polynomials. Let us introduce some im-

portant notation for certain 2-morphisms in SBSBimq . Let ˛b (resp. ˛r ) denote

a clockwise blue (resp. red) circle. These are endomorphisms of the identity

1-morphism ;. Therefore we have a homomorphism from the polynomial ring

R D kŒ˛b; ˛r � to End.;/, which is a graded homomorphism provided we set the

degree of ˛b to be C2. We use this homomorphism to replace disjoint unions of

circles by “boxes” (labeled with polynomials).

= ˛2
b
˛r

We define endomorphisms b and r of R by the formulas

b.˛b/ D �˛b; b.˛r / D ˛r C Œ2�˛b (2.7a)

r.˛b/ D ˛b C Œ2�˛r ; r.˛r/ D �˛r : (2.7b)

In particular, b2 D r2 D 1. This action on linear terms is a q-deformation of the

reflection representation of the affine Weyl group of sl2.

We can define subrings Rb and Rr of invariant polynomials. In [8, Section 5.2.1]

it is shown how to define a map from Rb to the endomorphism ring of the identity

1-morphism b. Thus we can place a box labeled by a polynomial within a blue region

as well, provided the polynomial is invariant under the operator b.

One crucial fact about these rings is that Rb � R is a Frobenius extension.

Roughly, this means that R is free as an Rb-module, and that the functors of induction

and restriction between R-modules and Rb-modules are biadjoint. Part of the data

of a Frobenius extension is an Rb-linear map @bW R ! Rb, in this case defined by

the formula

@b.f / D
f � b.f /

˛b

:

Moreover, R has dual bases (as an Rb-module) faig and fa�
i g with respect to @b , in

the sense that

@b.aia
�
j / D ıij :
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(These dual bases are not part of the data of a Frobenius extension.) There is a

canonical “coproduct” element �b D
P

i ai ˝a�
i living in R ˝Rb R, independent of

the choice of dual bases. We often use Sweedler notation �b D �b.1/ ˝ �b.2/. One

invariant of a Frobenius extension is the product �b D �.1/�.2/ D
P

i ai a
�
i 2 R,

which in this case is equal to ˛b . We provide more detail on Frobenius extensions

in §5.4.

The values of @s.˛t / for s; t 2 S are encoded in a Cartan matrix, yielding

precisely the q-deformed affine Cartan matrix of sl2, given in (1.2). These values are

also evident from the Cartan relation (2.5).

Note that @b is surjective, because it is Rb-linear and @b.aia
�
i / D 1. This relied

on our assumption that the ideal in k generated by 2 and Œ2� contains the unit. After

all, @b.˛b/ D 2 and @b.˛r / D �Œ2�, so that this ideal comprises all the scalars in the

image of @b .

Now we give an alternate description of SBSBimq.

Definition 2.16. Let SBSBimq denote the 2-category with objects and 1-morphisms

as in Definition 2.9. The 2-morphisms will be generated by cups and caps, as well

as boxes. A box appearing in a region labeled I � S is labeled by a polynomial

in RI , and has degree equal to the degree of that polynomial (with the convention

deg ˛b D 2). Boxes add and multiply as polynomials do. In addition to the isotopy

relation (2.3) we have the following relations.

= =˛b ˛r : (2.8a)

=f f when f 2 Rb: (2.8b)

=f @b.f / : (2.8c)

= �b : (2.8d)

In this last equation, �b is meant to represent the action of R˝Rb R inside End.;b;/,

by placing �.1/ in the white region on the left, and �.2/ in the white region on the

right. Equation (2.8b) guarantees that this action is well defined.

In [8] it is shown that this definition of SBSBimq is equivalent to the one in

Definition 2.9. It is also a reasonable exercise for the reader.
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Now we define the singular Soergel 2-category.

Definition 2.17. Let SSBimq D SSBimq.sl2/ denote the following full sub-2-

category of Cat. The objects are proper subsets of S , where I ¨ S is identified with

the category of graded RI -modules (using the notation R; D R). The 1-morphisms

are summands of (grading shifts of) iterated induction and restriction functors,

between Rb- or Rr -modules and R-modules. The 2-morphisms are all natural

transformations (i.e. homogeneous bimodule maps).

There is a 2-functor from SBSBimq to SSBimq which is the identity on objects.

It sends b; to the restriction functor (with a grading shift by 1), and ;b to the

induction functor. The cups and caps are sent to units and counits of adjunction.

Claim 2.18. Suppose that k D Q.q/, or that q D 1 and k is a field of characteristic
¤ 2. Then this 2-functor is well defined and fully faithful.

See [8, Section 5.2.2 and Corollary 5.30] for more details.

2.5. Sketch of proof. Let us quickly sketch the proof of Theorem 2.15 given

in [8, Section 4]. There are three main facets of the argument. One uses idempotent

decompositions (or the algebraic theory of Frobenius extensions) to prove essential

surjectivity up to grading shift. One uses considerations on the Grothendieck

group to determine the graded dimension of morphism spaces. Finally, one uses

a diagrammatic argument to show that F is full.

The fact that R is free over Rb says that the Rb-bimodule R should split into

copies of the Rb-bimodule Rb. In SBSBimq, this amounts to the fact that b;b

is isomorphic to several copies of b (with grading shifts). One way to prove this

splitting is to construct an idempotent decomposition of the identity of b;b. This is

obtained by rotating (2.8d) by 90 degrees. When 2 is invertible, this can be realized

more concretely by rotating (2.6a) by 90 degrees and dividing by 2.

Any 1-morphism in mSBSBimq which alternates between red and blue,

i.e. r;b;r; : : : ;b, is clearly in the image of F . Any other 1-morphism must

contain either b;b or r;r . By the above paragraph, one can replace b;b with b after

taking summands, and similarly with r;r . Therefore, any object is a direct sum of

alternating 1-morphisms, proving the essential surjectivity up to grading shift.

Using standard representation theory or combinatorics, one knows the dimension

of the space of crossingless matchings between any two colored sequences x and y

in Fund�
q . Using the fact that SSBimq categorifies the Hecke algebroid with its

standard trace, one knows the (graded) dimension of morphism spaces between any

two objects in mSBSBimq . From this one can deduce that there are no morphisms

of negative degree between alternating 1-morphisms, and that the maps in degree

zero are the correct size for F to induce isomorphisms. (Note that the proof in [8]

does not use precisely the same argument: it uses Theorem 2.15 to prove that

SSBimq categorifies the Hecke algebra, not the other way around. Instead, one

proves computationally that F is faithful.)
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Thus we need only show that F is full onto maps of minimal degree. This is

a purely diagrammatic argument, the details of which are not particularly relevant.

First one proves that any closed diagram (i.e. a diagram in the endomorphism ring

of an identity 1-morphism) reduces to a polynomial (in R or Rb or Rr , depending

on the color of the boundary). Obviously any diagram with a non-trivial polynomial

is not of minimal degree, so we can assume our diagram has no closed subdiagrams.

Now we wish to show that blue regions are only adjacent (crossing white regions) to

red regions, which would imply that one could deformation retract the white regions

into a crossingless matching, and the diagram is in the image of F . However, if there

are two separate blue regions separated by a white region, then “fusing” them

would yield a morphism of lower degree. (This argument is analogous to the one

made in [8], which passes through a separate diagrammatic calculus to achieve the

same result.)

3. The diagrammatic approach: sl3

In this chapter, let � D f0; 1; 2g denote the group Z=3Z. Let the set S D fb; r; yg

be an �-torsor, and assign the elements colors: blue to b, red to r , and yellow to y.

The action of C1 2 � acts in alphabetical order to send b to r , r to y, and y to b.

We call this color rotation.

We also assign names and colors to proper subsets I ¨ S . We abusively let r

(resp. b, g) denote the singleton subset frg ¨ S . Let ; denote the empty set, to

which we assign the color white. To pairs we associate the natural compound color:

purple p to fr; bg, green g to fb; yg, and orange o to fr; yg. Therefore, the action

of C1 2 � sends p to o, o to g, and g to p (reverse alphabetical order, unfortunately).

For the rest of this chapter we fix a ZŒq˙1�-algebra k. In order to connect these

results to representation theory we will set k D Q.q/, or k D C with q D 1.

However, the algebraic Satake equivalence is defined in more generality.

3.1. Webs. Background on this material can be found in [29] or [5].

Definition 3.1. Let Fund�
q D Fund�

q .sl3/ (also known as the 2-category of

colored sl3 webs) be the k-linear 2-category defined as follows, using Notation 2.1.

It has objects fo; g; pg (i.e. I � S of size 2), and has generating 1-morphisms from

any color to any different color.

Example 3.2. The 1-morphism pogogp: .

The 2-morphisms are generated by colored cups and caps, and by trivalent vertices.

More precisely, there is a cap map sts ! s and a cup map s ! sts for any two
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colors s; t . There is a trivalent vertex ogpo ! r , and another trivalent vertex

opgo ! r , as pictured below.

The relations are as follows; they hold for every valid coloring. Recall that Œ2� D

q C q�1 and Œ3� D q2 C 1 C q�2.

The Isotopy relations:

= = (3.1)

= (3.2)

The Circle relation:

= Œ3� (3.3)

The Bigon relation:

=�Œ2� (3.4)

The Square relation:

= + (3.5)

This ends the definition.

The existence of cups and caps, together with (3.1), is equivalent to the statement

that the 1-morphisms po and op are biadjoint. The cyclicity relation (3.2) states

that all 2-morphisms are cyclic with respect to these biadjunctions. Together, this

allows one to unambiguously define the various trivalent vertices appearing above as

rotations of the generating trivalent vertices. There is an action of � on Fund� by

color rotation.

Definition 3.3. A non-elliptic web is an isotopy class of colored trivalent graph with

boundary embedded in the planar strip, which may have interior hexagons, octagons,

et cetera, but may have no interior squares or bigons.
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Example 3.4. A non-elliptic web in Hom.opgpgpopogo; opgpogopgo/:

Claim 3.5. Each morphism space Hom.x; y/ has a basis over k given by non-elliptic
webs.

Now we define another 2-category. Note that there is a bijection between � and

the set of central characters of SL3.

Definition 3.6. Let Rep�
q D Rep�

q .sl3/ denote the following full sub-2-category

of Cat. The objects are in bijection with �, where each � 2 � is identified

with the category of Uq.sl3/ representations having central character �. The

1-morphisms are (functors arising from) tensor products with finite dimensional

Uq.sl3/ representations, and the 2-morphisms are all natural transformations

(i.e. Uq.sl3/-morphisms between tensor products).

Now we fix an identification of � with fo; g; pg. Say we identify o with the

trivial character, g with the character of V!1
, and p with the character of V!2

. There

is a 2-functor from Fund�
q to Rep�

q which on objects sends fo; g; pg to �. The

1-morphisms go, pg, and op all correspond to tensoring with V D V!1
, while their

biadjoints correspond to tensoring with V � D V!2
. The cups and caps correspond

to inclusion and projection between V ˝ V � and the trivial summand. The trivalent

vertex opgo ! o corresponds to projection from V ˝3 to the trivial summand ƒ3V .

These projections and inclusions are unique up to scalar; one chooses the scalars

so that (2.1) and (3.4) hold. For any such choice of scalars, it turns out that (3.3)

and (3.5) also hold.

Claim 3.7. Suppose that k D Q.q/. For any identification of S with �, this
2-functor is well defined and fully faithful.

One again, the proofs of these claims are well known (also see [29]), and are

worthwhile exercises. The result also holds when k D C, q D 1, and Uq.sl3/ is

replaced by sl3. A similar claim holds when k D ZŒq; q�1�, for the correct integral

form of Uq.sl3/.

3.2. Polynomials. Our next goal is to define a 2-category SBSBimq.sl3/, in similar

fashion to SBSBimq.sl2/. However, because polynomials are slightly more complex

for sl3 than sl2, we choose to discuss them first in this section. Again, we need a mild

assumption on k in order for the inclusion of an invariant subring to be a Frobenius

extension. In this case, the assumption that 3 is invertible will suffice.
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Let R D kŒ˛r ; ˛b; ˛y� be a polynomial ring in 3 variables, graded so that linear

terms have degree C2. We define an action of three operators b; r; y on R as follows:

b.˛b/ D �˛b; b.˛r / D ˛r C ˛b; b.˛y/ D ay C q�1˛b; (3.6a)

r.˛b/ D ˛b C ˛r ; r.˛r/ D �˛r ; r.˛y/ D ˛y C q˛r ; (3.6b)

y.˛b/ D ˛b C q˛y ; y.˛r / D ˛r C q�1˛y ; y.˛y/ D �˛y : (3.6c)

In particular, each operator is an involution, and the reader can check that .br/3 D

.by/3 D .ry/3 D 1. This is a q-deformation of the reflection representation of the

affine Weyl group of sl3. Note that, unlike the case of sl2, there is no color symmetry

in this action, so the colors are not interchangeable.

Let I ¨ S , and let RI denote the subring of polynomials invariant under all

reflections in I . For s 2 S we let @sW R ! Rs be defined as before, via the formula

@s.f / D
f � s.f /

˛s

: (3.7)

This entirely describes the action of the reflection on the linear terms. The values

of @s.˛t / for s; t 2 S can be encoded in the q-deformed affine sl3 Cartan matrix.
0
@

2 �1 �q�1

�1 2 �q

�q �q�1 2

1
A : (3.8)

The reader should confirm that @s and @t do not satisfy the braid relation! In

particular, one has

@b@r@b D @r@b@r ; (3.9a)

q@b@y@b D @y@b@y; (3.9b)

q�1@r@y@r D @y@r@y : (3.9c)

Either @b@y@b or @y@b@y will define a Frobenius structure map R ! Rg , but there

is no particular reason a priori to choose one over the other. The choice we make will

lead to some convenient formulas.

Definition 3.8. For each I ¨ S we will define a set of positive roots ˆI , in such a

way that ˆI � ˆJ whenever I � J . We have ˆ; D ;, and ˆs D f˛sg for s 2 S .

For doubletons, we have

ˆp D f˛b; ˛r ; b.˛r/ D ˛r C ˛bg; ˆg D f˛b; ˛y ; b.˛y/ D ˛y C q�1˛bg;

ˆo D f˛r ; ˛y; r.˛y/ D ˛y C q˛rg:

We call the union of these positive roots the finite positive roots of S . Let �I
J denote

the product of the roots in ˆJ which are not in ˆI .

For later reference, we let cs;t denote the coefficient of ˛s in the third root of ˆs;t .

Thus cr;b D cb;r D cy;b D cy;r D 1, while cb;y D q�1 and cr;y D q.



82 B. Elias

Definition 3.9. For each I ¨ J ¨ S we will define a map @I
J W RI ! RJ . These

maps are compatible in that @J
K ı@I

J D @I
K whenever I ¨ J ¨ K ¨ S . In particular,

we need only define the map @I
J when I and J differ by a single element; this will

define all @I
K uniquely by the comptability requirement, once we check that this is

consistently defined. For each s 2 S we choose @;
s D @s as defined above. Then we

choose

@b
p D @b@r ; @r

p D @r@b; @b
g D q@b@y;

@y
g D @y@b; @r

o D q�1@r@y; @y
o D @y@r :

The compatibility relations follow from (3.9).

Note that @s@t D cs;t@
s
s;t .

Claim 3.10. The maps @I
J W RI ! RJ equip the ring extension RJ � RI with

the structure of a Frobenius extension. For any choice of dual bases, one has
�I

J D
P

i aia
�
i . In particular, this implies that @I

J .�I
J / is an integer, equal to the

rank of the extension.

This claim is not difficult to prove, by explicitly constructing dual bases. We

invite the reader to check that whenever s 2 S and I is a doubleton containing s, one

has @s
I .�s

I / D 3. When performing such computations, one should make use of the

twisted Leibniz rule
@s.fg/ D @s.f /g C s.f /@s.g/:

Once again, the fact that one has a Frobenius extension relies upon the fact that @s
I is

surjective, which was implied by our assumption that 3 is invertible.

For more information on choosing structure maps for collections of Frobenius

extensions, see Sections §5.4 and §5.5.

Before moving on to the diagrammatic definition of singular Bott–Samelson

bimodules, we state some remarkable identities which will play a role in the algebraic

Satake equivalence, and which will generalize in some sense to sln.

Claim 3.11. The following identities hold. They are defined in a color-symmetric
way, but each case should be checked individually.

� Let I; J � S be two distinct doubletons, with intersection s. Then

@s
I .�s

J / D Œ3� D q2 C 1 C q�2: (3.10)

� Let I D fs; tg be a doubleton with complement u 2 S . Let �
s;t
I denote the

product of the roots in ˆI which are not in ˆs or ˆt ; this is none other than
the third root in ˆI , either b.˛r /, b.˛y/, or r.˛y/. Then

@u.�
s;t
I / D �Œ2� D �.q C q�1/: (3.11)

� For any s; t; u 2 S distinct we have

cs;uct;u D 1: (3.12)

Proof. These are straightforward exercises.
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3.3. Singular Soergel diagrams. We now define SBSBimq.sl3/ analogously to

the sl2 case in Definition 2.16.

Definition 3.12. Let SBSBimq D SBSBimq.sl3/ be the graded k-linear 2-category

defined as follows, using Notation 2.1. The objects are proper subsets I ¨ S . There

is a generating 1-morphism between two colors if and only if one contains the other

and their sizes differ by one.

Example 3.13. The 1-morphism b;roygb;: .

In the drawing above, we placed an orientation on the dots consistent with the rule

that the right-hand color contains the left-hand color. This orientation is redundant

information, but helps to make 2-morphisms easier to describe. Similarly, we will

color the strands in our pictures by the color which is added or subtracted by the

1-morphism.

The 2-morphisms are generated by oriented cups and caps (again, the orientation

itself is redundant) and boxes, as well as crossings. Within a region colored I one

can place a box labeled by a polynomial in RI . There are crossing maps ;bp ! ;rp

as pictured below. More generally, there are crossing maps ;sI ! ;tI for any

doubleton I D fs; tg � S .

We place a grading on the 2-morphisms as follows. A clockwise cup between ;

and s 2 S has degree C1, while a clockwise cup between s and fs; tg has degree C2.

Anticlockwise cups have the opposite degree. Upward-oriented crossings have

degree 0. Note however that one can use cups and caps to draw a crossing with

the arrows pointing either down or sideways. By computation, a downward-oriented

crossing also has degree 0, while a sideways-oriented crossing has degree C1. Boxes

have degree given by the degree of the polynomial.

The (homogeneous) relations given below are in terms of the Frobenius structures

defined above. As a result, they will not be invariant under color rotation! For

illustrative purposes, however, we choose specific colors to exemplify relations.

One has the isotopy relations as well as all the relations of (2.8), with the obvious

modification

= = =˛b ˛r ˛y (3.13)
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We also have the analogous relations for the other Frobenius extensions.

=f @b
p.f / (3.14a)

=
�b

p (3.14b)

=f f when f 2 Rp (3.14c)

= �b
p (3.14d)

We have a number of relations analogous to the Reidemeister II move.

= (3.15a)

= @�p (3.15b)

= �r;b
p (3.15c)

These relations require some explanation. The symbol @�p in (3.15b) represents

the element

@�p D @b.�r
p.1// ˝ �r

p.2/ D �b
p.1/ ˝ @r .�b

p.2// 2 Rb ˝Rp Rr :

Meanwhile, the symbol �
r;b
p is the product of the roots in ˆp which are not in

either ˆb or ˆr , which in this particular case is the linear term b.˛r /.

We pause to note a consequence of the preceding relations, which is akin

to (3.15b).

=f �b
p.1/

@r .f�b
p.2/

/ (3.15d)
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The relations above are actually completely general, for any compatible system

of Frobenius extensions. See [13] for more details. The final relations below are

specific to our particular circumstance.

= +

= +

= +

q�1

q

(3.16)

To compare these relations to our choice of Frobenius structure, the reader should

note the following fact. Take the RHS of each equation, and apply a cap to each of

the four walls of the diagram, to obtain diagrams with 3 bubbles each. The cubic

polynomial obtained is precisely �I for the doubleton color I appearing on the LHS.

Said another way, the coefficient of the diagram with colors s; t and more connected

components colored s is cs;t .

This ends the definition. The diagrams which arise in this fashion are called

singular Soergel diagrams.

There is also a “boxless” definition analogous to Definition 2.9, though it is less

convenient. In this alternate definition, the 2-morphisms are given purely in terms of

oriented colored 1-manifolds, and boxes containing polynomials are defined in terms

of these diagrams. One reason we find the definition above to be more convenient is

that boxes should be thought of as “colorless” for the purpose of many proofs.

Each relation above used at most two colors, just as the relations for sl2 (in the

version of Definition 2.16) used at most one color. This follows the general principle

that relations amongst Soergel bimodules are governed by the relations which appear

for finite parabolic subgroups.

Let us pause to note one consequence of these relations.

Claim 3.14. For any two colors, we have an equality exemplified as below.

= cr;b
(3.17)

The scalar cr;b was given in Definition 3.8.



86 B. Elias

Proof. We summarize the proof of [8, Claim 6.5]. By applying (3.15b) to the

right half of the LHS, and then sliding polynomials and using (3.15a), one obtains

the endomorphism of rpr given in Sweedler notation by @r@b�r
p.1/

˝ �r
p.2/

D

cr;b@r
p�r

p.1/
˝ �r

p.2/
2 Rr ˝Rp Rr . For any basis of Rr over Rp, only a single term

can survive the application of @r
p for degree reasons, and this is the term which pairs

against the unit in the dual basis. Thus @r
p�r

p.1/
˝ �r

p.2/
D 1 ˝ 1.

Now we define the singular Soergel 2-category.

Definition 3.15. Let SSBimq D SSBimq.sl3/ denote the following full sub-2-

category of Cat. The objects are proper subsets of S , where I ¨ S is identified with

the category of graded RI -modules (using the notation R; D R). The 1-morphisms

are summands of (grading shifts of) iterated induction and restriction functors,

between RI -modules and RJ -modules for I � J . The 2-morphisms are all natural

transformations (i.e. homogeneous bimodule maps).

There is a 2-functorG fromSBSBimq toSSBimq which is the identity on objects,

sending downwards arrows to restriction functors (with grading shifts) and upwards

arrows to induction functors. The cups and caps are sent to units and counits of

adjunction. An upwards crossing is sent to the natural isomorphism between iterated

induction functors. The grading shift on the restriction functor from RI to RJ is

`.J / � `.I /, where `.p/ D `.g/ D `.o/ D 3, `.r/ D `.b/ D `.y/ D 1, and

`.;/ D 0; this is the length of the longest element in the corresponding parabolic

subgroup of the affine Weyl group.

Claim 3.16. Suppose that k D Q.q/, or that q D 1 and k is a field of character-
istic ¤ 2; 3. Then G is well defined and fully faithful.

The proof of this fact is a long algorithmic computation, and can be found in the

appendix.

3.4. The equivalence.

Definition 3.17. Let mSBSBimq denote the full sub-2-category of SBSBimq

defined as follows. The objects are fo; g; pg. The 1-morphisms are generated

by I sJ whenever I; J are doubletons with I \ J D s. The 2-morphisms are full.

In other words, our diagrams may contain any color, but the right-hand and left-hand

colors must be in fo; g; pg, and the bottom and top boundaries do not contain the

color white.

Definition 3.18. Let F be the 2-functor Fund�
q ! mSBSBimq defined as follows.

On objects, it acts as the identity. On 1-morphisms, it sends go 7! gyo, og 7! oyg

and so forth. On 2-morphisms, it acts as below.
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Claim 3.19. The 2-functor F is well defined, and its image consists of degree 0 maps.

Proof. The isotopy relations in Fund�
q follow from the isotopy relations in

mSBSBimq . We check the remaining relations for a specific coloration, but the

computation for other colorations is almost identical.

Apply F to the LHS of the circle relation (3.3) to obtain a clockwise circle inside

a anticlockwise circle. By (3.14b) and (3.14a), the result is multiplication by @r
p.�r

o/.

By (3.10), this is Œ3�.

Apply F to the LHS of the bigon relation (3.4).

= =

The first equality arises from (3.15c), and the second from (3.15a), while the

polynomial in the box is �
b;y
g . Evaluating the red circle with (2.8c), one obtains

@r.�
b;y
g /, which by (3.11) is �Œ2� as desired.

Apply F to the LHS of the square relation (3.5).

= +cy;b cb;y

The equality arises from relation (3.16). By applying (3.15a) several times, this

becomes

+cy;b cb;y

after which we apply (3.17) to each side to obtain

+cy;bcr;b cb;ycr;y

Now the result follows from (3.12).
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Remark 3.20. Most people would agree that representation theory is the “easy” side

of the geometric Satake equivalence, while perverse sheaves or Soergel bimodules

are the “hard” side, at least in terms of the requisite background. Computationally,

however, we like to argue that SBSBimq is in some sense “easier” to work with than

Fundq , because the relations are more local. For example, the generating trivalent

vertex is sent byF to a composition of several simpler maps, and the bigon and square

relations each follow (after applying F) from a sequence of relations on subdiagrams.

Theorem 3.21. Suppose that 3 is invertible in k. Then the 2-functor F is a degree-
zero equivalence.

Proof. This proof follows a similar diagrammatic argument to the sl2 case, but is

quite a bit more complicated. It can be found in the appendix.

4. Representations and sln-webs

The goal of this chapter is to give some general introduction to the 2-category of

representations of a complex semisimple Lie algebra g. The focus will be on the

algebraic, generators and relations approach. We feel as though the literature is

lacking an introduction of this form, though another similarly-focused introduction

can be found in [5].

When we eventually apply this technology to geometric Satake, we will be

applying it to the case of the Langlands dual g_. However, in the interest of making

this chapter more readable, we stick with g until §4.3.

4.1. Some algebraic philosophy. Let Rep D Rep.g/ denote the monoidal category

of finite dimensional representations of g, and let Repq D Rep.Uq.g// denote its

q-deformation.

The category Rep is semisimple, which implies that for any two irreducibles V�

and V� one has Hom.V�; V�/ D ı��C. In other words, describing morphisms

between arbitrary objects (given a decomposition into irreducibles) is a trivial task.

A semisimple category over C is determined up to equivalence by its Grothendieck

group, reinforcing the fact that the morphisms do not play an essential role.

However, Rep has a monoidal structure, and a semisimple monoidal category is

not determined by its Grothendieck ring (see, for instance, [14, Problem 1.42.8 and

following]). As such, we should study its morphisms in more detail.

Goal 4.1. Describe the morphism spaces Hom.V�1
˝ � � � ˝ V�d

; V�1
˝ � � � ˝ V�e /

for any sequences of irreducible representations, along with the structures of vertical
(i.e. usual) and horizontal (i.e. monoidal) composition.

This appears to be an incredibly difficult problem, and it remains open for almost

all g. A more tractable approach is to study Fund D Fundg, the full monoidal
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subcategory whose objects are tensor products V!i1
˝ � � � ˝ V!id

of fundamental

representations. Every irreducible is a summand of such a tensor product, so that

the idempotent closure or Karoubi envelope Kar.Fund/ is isomorphic to Rep. An

introduction to Karoubi envelopes can be found in [2], or on Wikipedia. Here are

three main goals in the algebraic study of Fund and Rep, with a discussion of the

known results.

Goal 4.2. Describe the monoidal category Fund by generators and relations.

The language of description tends to be planar diagrammatics. Of course, the

presentation will depend on a choice of generating morphisms (just as our category

Fund came from a choice of generating objects), but choices can be made so that the

relations take on a nice form.

� When g D sl2, Fund is isomorphic to the Temperley–Lieb category [42], which

was given a diagrammatic interpretation by Kauffman [23]. The diagrams

involved are called crossingless matchings.

� When g has rank 2, a presentation for Fund was found by Kuperberg [29].

His term for the diagrams, webs, has become standard, so that crossingless

matchings can also be called sl2-webs.

� When g D sln, a conjectural presentation for Fund due to Morrison [37] (and

Kim [27] for n D 4) was recently proven by Cautis–Kamnitzer–Morrison [5],

in terms of sln-webs.
� Outside of these cases, a presentation for Fund is unknown.

In this paper we rely only on the description of Fund.sln/ by sln-webs, as well as

an analogous description of a nice subcategory of Soergel bimodules. However, to

motivate the introduction of Fund, we should at least explain how one would complete

this approach into a solution to the original problem, Goal 4.1.

Let � D
P

ai !i be a decomposition of a dominant integral weight � as a sum of

fundamental weights !i , so that ai 2 N. Let V D V!i1
˝ � � � ˝ V!id

be some tensor

product where each fundamental representation V!i
appears ai times. Then V� is

a summand of V with multiplicity one, so that there is some canonical idempotent

eV 2 End.V / which projects to V�. In the literature, such idempotents are often

called clasps.

Goal 4.3. Using the algebraic description of Fund from the previous goal, give a
(possibly recursive) formula for eV .

� When g D sl2, the clasps are known as Jones–Wenzl projectors [22, 43], and

several recursive formulas [4,43] and a closed formula [36] are known.

� When g has rank 2, a recursive formula for clasps was found by Kim [27].

� The author [7] has recently conjectured a recursive formula for clasps when

g D sln, proven to hold for n � 4.

� Outside of these cases, nothing is known.
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Goal 4.3 is too naive, so we replace it by Goal 4.4 below (though it seems

unlikely that one could solve the former without the latter). Consider the finite set X�

consisting of all tensor products of fundamental representations whose fundamental

weights add up to � (they are all isomorphic). For any two V; W 2 X�, there

is a 1-dimensional space of maps V ! W which factor through the common

summand V�.

Goal 4.4. Find a family '�, consisting of maps 'V;W W V ! W for each V; W 2 X�,
such that 'V;W factors through V�, and such that 'W;X ı 'V;W D 'V;X for all
V; W; X 2 X�.

Note that 'V;V is none other than the clasp eV . Together, the family '� gives a

canonical identification of V� as a common summand of each object in the family X�.

Given a presentation of a monoidal category and an intertwining family ' (such

as '�), it is a trivial operation to produce a presentation of the partial Karoubi

envelope, where the image of ' is formally added as a new object. In the literature

(e.g. [25]), such a planar calculus which describes morphisms in a partial Karoubi

envelope is called a thick calculus, or perhaps a thicker calculus (with the thickest

calculus being the entire Karoubi envelope). Adding '� for each dominant weight �,

we obtain a solution to Goal 4.1.

This need not be the end of the story, as the thick calculus may itself have a number

of interesting formulas and consequences, and this may simplify the presentation.

For example, the 3j and 6j symbols and theta networks in sl2 representation theory

are computations within the thick calculus. For more about these topics, see [16] and

the references it contains.

One additional feature of the known diagrammatic presentations is that they are

easily adapted to the study of quantum group representations. A q-deformation of the

sln-web algebras discussed above will yield a description of Fundq, tensor products

of fundamental representations of Uq.sln/. When q is specialized to a root of unity

(with Uq.sln/ denoting the Lusztig form), representations of Uq.g/ are no longer

semisimple; Kar.Fundq/ will no longer be equivalent to Repq, being equivalent to

the category of tilting modules instead. By understanding which denominators in the

formulas for clasps will vanish at a root of unity, one can address the behavior of these

tilting modules in an algebraic manner. Of course, this is already known using abstract

representation theory, but knowing the clasps explicitly will still yield measurable

gains. In the broader context of Soergel bimodules, computing the denominators in

analogous idempotents is of great interest in modular representation theory.

4.2. Monoidal-graded categories.

Definition 4.5. (c.f. [15]) Let H be a finite abelian group. A monoidal category C is

H -graded-monoidal if there are subcategories C� for � 2 H , for which C D ˚�2HC� ,

and for which C� ˝ C� � C�� .
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Definition 4.6. The fundamental group �.g/ is defined as ƒwt=ƒrt, the quotient of

the weight lattice by the root lattice. We also denote it �.

The category Rep D Rep.g/ is �-graded-monoidal (as is Repq). For � 2 �,

let Rep� denote those representations whose irreducible constituents all have highest

weights in the coset �. Clearly the tensor product obeys the group law. From this

monoidal grading one can reconstruct the category of G representations for any

corresponding algebraic group.

Example 4.7. Representations of sl2 or SL2 can be split into even and odd

representations. These can be distinguished by the action of the subgroup f˙1g �

SL2 on these representations. The subcategory of even representations is equivalent

to the category of PSL2-representations.

Remark 4.8. The adverb H -graded modifies the adjective monoidal. One should

not confuse this with other uses of the term graded. For instance, a category is

graded or Z-graded if (by conflating maps of all “degrees”) its Hom spaces can be

enriched in graded vector spaces. Therefore, every (homogeneous) morphism has

an associated degree in Z. On the other hand, every (indecomposable) object in an

H -graded-monoidal category has an associated character in H .

Construction 4.9. It is a trivial operation to take an H -graded-monoidal category and

replace it with a 2-category C which encodes (almost) the same data. Let S be a right

H -torsor. The objects ofCwill be identified with s 2 S , and for � 2 H the morphism

category from s to s� is C� . A 2-category where the objects form an H -torsor,

equipped with a corresponding H action which identifies Hom.s; t / D Hom.s�; t�/,

we will call an H -2-category, for lack of better terminology.

Remark 4.10. The data of an H -2-category C together with a choice of s 2 S

(corresponding to 1 2 H ) and the data of an H -graded-monoidal category C are

equivalent. Philosophically speaking, the difference between them is analogous

to the difference between an algebra and its regular representation. Because C is

monoidal, it acts on itself by tensor product. Under the splitting C D ˚�2HC� , the

action of M ˝ .�/ for any object M can be expressed as an H � H matrix. Each

entry of this matrix is a corresponding 1-morphism in C.

Thus from Rep (resp. Repq) we can construct a �-2-category, which we denote

Rep� (resp. Rep�
q ). It is simple to pass from a diagrammatic description of Rep.g/

(say, by sln-webs) to a diagrammatic description of Rep�. One simply colors each

planar region by an element of �, and imposes the rule that tensoring with V!i
will

shift the color by !i . This is illustrated by the sl2 and sl3 cases in previous chapters.

The reason we switch from graded monoidal categories to 2-categories is that it

makes it easier to compare Rep�
q with SSBimq, which is more naturally a 2-category.

When q D 1, the subcategory mSBSBimq which is the target of the algebraic Satake

equivalence is equivalent to a graded �-2-category, and thus arises from some
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Z-graded �-graded-monoidal category, though this is perhaps an unnatural way of

viewing it.

Remark 4.11. The monoidal category Rep has a symmetric structure. There is no

notion of a symmetric structure on a 2-category, but the corresponding structure on

an �-2-category is not hard to formulate.

4.3. The fundamental group. We return to the setting of geometric Satake, which

cares about representations of g_. We provide several important facts about the

fundamental group � D �.g_/. It is a finite abelian group, so that its Pontrjagin

dual or character group �� is also a finite abelian group, non-canonically isomorphic

to �.

Let � denote the Dynkin diagram of g, and �_ the Langlands dual Dynkin

diagram. Write Gadj or Gsc for the adjoint or simply-connected algebraic groups

for � . Let K D C..t // and O D CŒŒt ��.

Claim 4.12. The following finite abelian groups are all canonically isomorphic, and
will all be denoted �.

� �.g_/.

� �.g/�.

� Z.Gsc/, the center of Gsc.

� �1.Gadj/.

� �0.Gadj.K//, the component group of Gadj.K/.

Let e� denote the affine Dynkin diagram of � , and let 0 denote the affine vertex

(i.e. choose an embedding � ,! e�). Call a vertex v 2 e� removable if e� n v is

isomorphic to � , and let e‚ denote the set of removable vertices. They form a single

orbit under the automorphism group of e� . Let ‚ D e‚ n 0 � � . Identifying

the vertices of �_ and � , we can view ‚ as a subset of �_. It is known that

the fundamental representations of g_ associated to vertices in ‚ are precisely the

miniscule fundamental representations, meaning that their weights form a single Weyl

group orbit.

Claim 4.13. The set e‚ is in canonical bijection with �. That is, it is an �-torsor
with a distinguished element 0.

Essentially, the statement is that the miniscule fundamental weights, together with

the zero weight, enumerate a list of representatives in ƒ_
wt=ƒ_

rt D �.

Remark 4.14. Here, Langlands duality is essential. The miniscule fundamental

weight in type B is precisely the removable vertex from affine type C , and vice versa.

These facts are quite standard, see for instance [46, Chapter 2].
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5. Singular Soergel bimodules

The goal of this chapter is to provide background material on algebraic Soergel theory.

For the connections with geometry, see §6. This background is not essential to the

main theorems.

The exotic realizations of affine sln for n > 2 are examples of “odd-unbalanced”

realizations, as defined in [8], while the ordinary realization of affine sln is odd-

balanced. Being odd-unbalanced adds an additional layer of technicality which

readers uninterested in the q-deformation of geometric Satake can ignore. Because

of this, it may be better for readers to get their first introduction to singular Soergel

bimodules elsewhere, such as in [45]. This paper is the first to use odd-unbalanced

realizations in an essential way, which is why we devote a great deal of effort to

explaining these technicalities.

5.1. Overview. Here is a big picture to keep in mind while reading the nitty-gritty.

Given a (reflection faithful) representation h of a Coxeter group W , one can

consider the polynomial ring R D O.h/. This is a graded ring whose linear terms h�

will be placed in degree 2, equipped with a natural action of W . The letters I; J

will designate subsets of the simple reflections S of W . For any parabolic subgroup

WI � W there is a subring of invariants RI � R. Under mild assumptions, the

ring extension Rs � R is graded Frobenius, meaning that induction and restriction

functors are biadjoint (up to a shift).

Definition 5.1. Let BSBim D BSBimq , the monoidal category of Bott–Samelson
bimodules, be the full subcategory of .R; R/-bimodules whose 1-morphisms are

generated by

Bs D R ˝Rs R.1/

for each simple reflection s 2 S , the composition of restriction with induction and a

shift. The grading shift places 1 ˝ 1 in degree �1.

Definition 5.2. The monoidal category SBim of Soergel bimodules is the Karoubi

envelope of BSBim.

Thus to define SBim one only needs the data of a reflection representation h

satisfying some conditions. Under some additional conditions, Soergel [41] has

proven that SBim has a number of desirable properties: it categorifies the Hecke

algebra, and the Hecke algebra is equipped with a pairing which encodes the graded

dimension of morphism spaces in SBim.

However, our goal is not just to define Soergel bimodules but to find an algebraic

presentation for them. One must first choose a set of generating morphisms. As it

turns out, this arises from a choice of Frobenius structure on the extensions Rs � R

for s 2 S , which boils down to an explicit choice of simple roots in h�. A reflection

representation paired with a choice of simple roots is (essentially) what we call a

simple realization below, the word simple indicating that is corresponds to a choice
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of simple roots. A simple realization can roughly be encoded in a Cartan matrix.

From a simple realization one can define a diagrammatic category by generators

and relations which is equivalent to BSBim. Moreover, for a slightly more general

notion of a simple realization (allowing for non-faithful representations and more)

one can still define this diagrammatic category and prove the categorification results

of Soergel, even when it is no longer equivalent to BSBim. This is shown in [12].

Now return to the original setting of a (reflection faithful) representation h. Under

certain assumptions, whenever WI � WJ are two finite parabolic subgroups, the

ring extension RJ � RI will be graded Frobenius (this is an upgraded version of

Chevalley’s Theorem [21, Chapter 3]). Let `.I / denote the length of the longest

element of WI .

Definition 5.3. Let SBSBim D SBSBimalg, the 2-category of singular Bott–
Samelson bimodules, be defined as follows. The objects are the rings RI for finite

parabolic subgroups WI . The morphism category Hom.RI ; RJ / will be a full

subcategory of .RJ ; RI /-bimodules. The 1-morphisms in SBSBim are generated

by the induction bimodule RI RI
RJ and the restriction bimodule RJ RI

RI .`.J /�`.I //

for the extensions RJ � RI whenever I � J .

Definition 5.4. The 2-category SSBim of singular Soergel bimodules is the Karoubi

envelope of SBSBim.

Thus to define SSBim one only needs the data of a representation h, satisfying

some conditions. Under additional conditions, Williamson [45] has proven that

SSBim has a number of desirable properties: it categorifies the Hecke algebroid,

and the Hecke algebroid is equipped with a pairing which determines the graded rank

of 2-morphism spaces.

To find an algebraic presentation for SBSBim one must choose a set of generating

2-morphisms. Again, this arises from a choice of Frobenius structures on every

extension RJ � RI together with some consistency condition on these structures.

We call this data a Frobenius realization (Definition 3.9). One way to specify a

Frobenius realization is to make an explicit choice of positive roots in h�, which we

call a root realization (Definition 3.8). From a Frobenius realization one can define a

diagrammatic category by generators and relations which is equivalent to SBSBim.

As above, one can generalize the notion of a Frobenius or root realization, and one

should be able to define 2-categories which possess the categorification properties

proven by Williamson, even without being equivalent to SBSBim. This will

eventually be proven in type A in [10]. It was proven for dihedral groups in [8],

and will be proven for affine sl3 in the appendix.

Let ˛s denote the simple root attached to s 2 S . In familiar notions of root

systems (as in, say, Humphreys’ book [21]), a choice of simple roots determines a

choice of positive roots. One definition is that the positive roots are the elements

of the set fs1s2 : : : sd�1.˛sd
/g for each reduced expression w D s1 : : : sd . This set

has redundancies: for example, when mst D 3, one has s.˛t / D t .˛s/. However,
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for more general realizations, the previously redundant descriptions of the same

positive root may differ by a scalar! For instance, using the notation from §3.2, one

has mby D 3 but y.˛b/ D qb.˛y/. This kind of ambiguity can occur whenever

the Cartan matrix of the realization is odd-unbalanced, in which case the choice of

positive roots is a piece of additional data. In a precisely analogous computation, the

Demazure operators attached to simple roots will be used to define the trace maps

for all Frobenius extensions RJ � RI , but they only satisfy the braid relations when

the realization is odd-balanced.

There is not a great deal of complication involved — just keeping track of some

scalars which measure the failure of roots to be well defined! The notion of a root

realization is developed as a natural way to keep track of these scalars. Remember

also that the 2-categories themselves only depend on the representation h, while the

presentation depended on the root realization.

The sections to follow will explore these concepts in more detail, with constant

reference to the exotic realization of affine sln. The one remaining subtlety is that,

unlike the familiar affine Cartan matrix, the exotic affine Cartan matrix is non-

degenerate. This may lead to possible confusion when comparing the exotic and

familiar realizations, which we do our best to forestall. This motivates the discussion

of dual realizations below.

5.2. Simple realizations. Fix a Coxeter group W with a set of simple reflections S ,

and let mst be the order of st , for s; t 2 S . Let k be a commutative ring. We simplify

the discussion somewhat by assuming that k has no 2-torsion. Typical choices for k

are C, Q.q/, and ZŒ�n� for a primitive n-th root of unity �n.

Definition 5.5. A (simple) realization of .W; S/ over k is a free, finite rank k-module h,

together with subsets �_ D f˛_
s j s 2 Sg � h and � D f˛s j s 2 Sg � h� D

Homk.h; k/, called simple coroots and simple roots respectively, satisfying:

(1) h˛_
s ; ˛si D 2 for all s 2 S ;

(2) the assignment

s.v/
def
D v � hv; ˛si˛

_
s

for all v 2 h yields a representation of W .

We will often refer to h as a realization, however the choice of simple roots and

coroots is always implicit.

Note that h� is equipped with a contragredient action of W , for which

s.f / D f � h˛_
s ; f i˛s :

Definition 5.6. Given a realization .h; h�; �_; �/, the dual realization is .h� ; h; �; �_/.

This makes sense, since h�� Š h canonically.

Definition 5.7. The Cartan matrix associated to a realization h is the S �S matrix A

valued in k, with entries as;t D ha_
s ; ˛t i.



96 B. Elias

Note that we did not assume that either � or �_ is a basis, or is even linearly

independent. When �_ is a basis for h, the realization is determined by its Cartan

matrix. However, “enlarging” the representation beyond the span of � may affect the

image of ˛s or ˛_
s in k.

Example 5.8. Let W be a Weyl group equipped with a root system. Then the

familiar reflection representation (with symmetric Cartan matrix, as in [21]) is a

self-dual realization of W over R.

Example 5.9. Let W be an affine Weyl group, with n C 1 simple reflections. It has a

familiar realization over R of rank n C 1 where � forms a basis, while �_ is linearly

dependent. It has a dual realization of rank n C 1 where �_ forms a basis, and � is

linearly dependent. It has a self-dual realization of rank n C 2 where both � and �_

are linearly independent, but neither is a basis.

Claim 5.10. Suppose that the Cartan matrix has invertible (not just non-zero)
determinant in k. Then � and �_ are each linearly independent. As W

representations one has h Š k � �_ ˚ T for some trivial representation T in
the kernel of �. Similarly, one has h� Š k � � ˚ T �.

Proof. The fact that � and �_ are linearly independent is obvious. Let v be a vector

in h which is not in k � �_. Using linear algebra, some vector x 2 k � �_ satisfies

˛s.x/ D ˛s.v/ for all s 2 S . Then v �x is in the kernel of �, so that W acts trivially

on v � x. In this fashion, one can replace any basis for h extending �_ by a basis

where the remaining elements are in the kernel of �.

It is obvious how one equips the base change h ˝k k0 with the structure of a

realization over k0. If �_ spans a free module of rank jS j in h, then it does the same

in h ˝k k0. However, the same can not be said for �. For any Cartan matrix over

a domain k with non-zero non-invertible determinant D, base change to k=D will

lower the rank of the span of �. Therefore, base change does not commute with

duality.

5.3. The exotic realization. In this section we let W be the affine Weyl group

in type fAn, and let k D ZŒq; q�1�. The finite Weyl group Wfin will be embedded

inside W , generated by the first n simple reflections.

Definition 5.11. We define the exotic affine Cartan matrix of slnC1. For n � 2 it has

a form which is exemplified by the case n D 4:

A D

0
BBBB@

2 �1 0 0 �q�1

�1 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �q

�q 0 0 �q�1 2

1
CCCCA

:
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Exotic affine sl2 on the other hand is given by a symmetric Cartan matrix:

A D

�
2 �.q C q�1/

�.q C q�1/ 2

�
:

We call any realization over ZŒq˙1� with this matrix an exotic realization of W .

Obviously, setting q D 1 yields the usual affine Cartan matrix for fAn.

Exercise 5.12. Whenever ast ats D 1, one has sts D t st . Therefore, this matrix

gives a realization of W .

Thus whenever n � 2, specialization of q will not change the order of si sj for

any simple reflections, so that the realization is dihedrally faithful (as in [8]).

Exercise 5.13. The exotic Cartan matrix has determinant 2 � q2 � q�2, which is

non-zero and non-invertible. Therefore, in any base change of the exotic realization,

�_ will be linearly independent.

Exercise 5.14. For the exotic realization of rank n C 1 where �_ is a basis, base

change to q2 D 1 will make � linearly dependent. This is the realization for which

the action of W on h�, after specialization to q D 1, is the reflection representation

of W defined in [21]. In particular, an exotic realization is faithful. There are also

exotic realizations for which base change to q D 1 will yield the other realizations

mentioned in Example 5.9.

Number the simple roots so that � D �fin [ f˛0g, where �fin D f˛1; : : : ; ˛ng

has the usual finite Cartan matrix and ˛0 is the affine simple root. Let si denote the

reflection corresponding to ˛i . Let ˇ D
Pn

iD1 ˛i and ˇ_ D
Pn

iD1 ˛_
i , the highest

finite root and coroot. Let t denote reflection across ˇ, which can be written as

t D s1s2 � � � sn�1snsn�1 � � � s2s1. Let Œn� denote the n-th quantum number in ZŒq˙1�.

Exercise 5.15. The subgroup W 0 generated by s0 and t inside W is the infinite

dihedral group. Let �0 D fˇ; ˛0g and .�_/0 D fˇ_; ˛_
0 g. Then .h; h�; �0; .�_/0/

gives a realization of W 0, having as its Cartan matrix the exotic affine Cartan matrix

of sl2.

In [8] the exotic realization of sl2 was studied in detail. It was shown that the

realization is faithful unless q2 is a root of unity. If q2 is a primitive m-th root of

unity then the kernel of the action is generated by .uv/m (for simple reflections u; v).

Proposition 5.16. After base change, an exotic realization of slnC1 is still faithful
unless q2 is a primitive m-th root of unity, in which case the kernel K is generated
by .s0t /m.

Presumably there is an elegant proof of this fact, but we provide a brute force

proof.

Proof. We assume that q2 is a primitive m-th root of unity in the rest of the proof;

it is an exercise to modify this into a proof of faithfulness when q2 is not a root of
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unity. Our first step is to examine H D K \ ƒrt, those translations within the kernel.

Clearly H is closed under the action of Wfin. We wish to show that H D mƒrt.

The element .s0t /m is translation by the m-th multiple of the highest root. Since

this translation is in H , the entirety of mƒrt is in H . Moreover, .s0t /k 2 H if

and only if k is a multiple of m (by the dihedral result above), meaning that a k-th

multiple of a root is in H if and only if k is a multiple of m.

If � 2 H then si .�/ � � D h�; ˛i i˛i 2 H , which is a multiple of a root.

Therefore h�; ˛i i is a multiple of m for all i , meaning that � 2 mƒwt. Thus

mƒrt � H � mƒwt. Since mƒwt=mƒrt Š Z=.n C 1/Z, there are not many choices

for H : one has H D Hk for some k dividing n C 1, where Hk is generated by mƒrt

and kmƒwt. Moreover, H � ƒrt, which places further restrictions. We seek to show

that k D n C 1, in which case kmƒwt is contained inside mƒrt.

Now consider the element s1s2 : : : s0 D x. A simple computation shows that x

preserves the subspace spanned by f˛2; : : : ; ˛ng [ fq�1˛1 C ˛0 D s1.˛n/g, and that

it acts by a rescaled permutation matrix. From this it is easy to compute that the

order of x is precisely mn. Note that xn is translation by an .n C 1/-st multiple of

a fundamental weight which, because � D Z=.n C 1/Z, is in ƒrt. Let ! be the

fundamental weight with .n C 1/! D xn.

Let d be the greatest common divisor of n C 1 and m, so that n C 1 D da and

m D db. The fact that kmƒwt � ƒrt implies that n divides km, meaning that k D al

for some l dividing d . However, K contains km.!/ D bl.n C 1/! D .xn/bl . By

previous computation, this is impossible unless l D d and k D n C 1. Thus we have

finally proven that H D mƒrt.

Our next step is to examine J , the image of K under the quotient map W ! Wfin

which kills all translations. Clearly J is a normal subgroup of SnC1, which means

that it is trivial or it contains the alternating subgroup AnC1 (or n D 1). If we show

that J is trivial then we have proven the proposition. Thus we aim for a contradiction

when s1s2 2 J (or s1 2 J for n D 1). We sketch the rest of the proof.

Let � denote translation by � 2 ƒrt, and suppose that w� 2 K for w 2 Wfin.

By applying H we may freely shift � by an element of mƒrt. Clearly � … mƒrt,

because Wfin acts faithfully. By a fairly straightforward argument using convolution

and multiplication, one can show that w.�/ � � 2 K, which implies by the result

above that w.�/ � � 2 mƒrt. If this is the case for w D s1 or w D s1s2, it is a

similar argument to show that si .�/ � � 2 mƒrt for all i � n, or in other words, that

� 2 mƒwt. Letting d be the greatest common divisor of n C 1 and m, and a; b as

above, this implies that � 2 bƒrt \ mƒwt. After some manipulation we may assume

that � D .xn/bl for some l dividing d .

Now the result follows from computing s1xnk and s1s2xnk on the subbasis

f˛2; : : : ; ˛ng [ fq�1˛1 C ˛0 D s1.˛n/g, and observing that these operators are never

trivial.
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We conclude this section with a discussion of where the exotic representations

of W can be found in the literature, and some history. This was explained to me by

Lusztig.

There is another “deformation of the Cartan matrix” which may be more familiar

to readers: one with the usual (integral) non-diagonal entries, but replacing the

diagonal entries 2 with v C v�1. (This is a different formal parameter v, not the same

as q!) Warning: this is not a Cartan matrix, in the sense we have defined above. This

deformation, originally found by Killing, was used by Kilmoyer in his thesis [26]

(see also [6]) in finite type to define a representation of the Hecke algebra (with

parameter v) which deforms the usual reflection representation. Analogously, the

v-deformed q-exotic Cartan matrix provides a one-parameter family of affine Hecke

algebra representations.

Kazhdan and Lusztig provide a definition of W -graphs [24], giving v-deformations

of other W representations. In [33], Lusztig gives a number of W -graphs for affine

Weyl groups, using a special left cell; in affine types A and C , these W -graphs can be

observed to have periodicity properties. In [31], it is explicitly described how to take

a periodic W -graph and obtain a one-parameter family of Hecke representations. In

type A, the corresponding family of affine Hecke representations, after passing to

v D 1, is precisely the exotic family of representations of W .

However, our parametrization of this family by the variable q appears to be new.

Accordingly, study of what happens when q is specialized to a root of unity also

appears to be new.

Remark 5.17. There is also a one-parameter family of reflection representations in

affine type C . One might pray that a q-parametrization might exist which gives a

quantum Soergel Satake equivalence.

5.4. Frobenius extensions.

Definition 5.18. A graded (commutative) Frobenius extension of degree d is an

extension of graded commutative rings A � B equipped with a trace map @W B ! A

which is A-bilinear and has degree �d . There must exist bases fbig and fb�
j g of B

as a finite rank free A-module, satisfying @.bib
�
j / D ıi;j .

The choice of dual bases is not part of the structure of a Frobenius extension, but

the choice of trace map is. For any ring extension there are two canonical bimodule

maps: inclusion i W A ! B.d/ of A-bimodules, having degree �d , and multiplication

mW B ˝A B.d/ ! B of B-bimodules, having degree Cd . For a Frobenius extension

there are two additional bimodule maps: trace @W B.d/ ! A of A-bimodules, having

degree �d , and comultiplication �W B ! B ˝A B.d/ of B-bimodules, having

degree Cd . The comultiplication map satisfies �.1/ D �B
A D

P
bi ˝ b�

i , this

element being independent of the choice of dual bases.

Note that for any invertible scalar �, �@ will also define a trace map, producing

a different Frobenius extension structure. One way to “measure” the Frobenius
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structure is by the invariant �B
A D m.�.1// 2 B , the product-coproduct element,

which has degree 2d . Rescaling @ by � will rescale one of the bases in the dual pair

by ��1, and thus will rescale � by ��1. The pair .@; �/ will always satisfy @.�/ D k,

where k 2 N is the rank of the extension. Thus if @ and � are known up to a scalar,

specifying either one will suffice to pin down the Frobenius extension structure.

Let us quickly note that for any Frobenius extension the trace map @ must be

surjective.

Now we define the notion of a Frobenius hypercube, as in [13].

Definition 5.19. Let S be a finite set, and let ` be a function which assigns an integer

to each subset of S . A Frobenius hypercube is data of a (commutative graded)

ring RI for each I � S , and whenever I � J � S , a Frobenius extension RJ � RI

of degree `.J / � `.I /. The trace maps are required to satisfy @J
I @K

J D @K
I whenever

K � J � I .

A partial Frobenius hypercube is the same definition, except restricted to subsets

I � S lying within a certain ideal (under the inclusion partial order). For example,

one might only consider proper subsets of S .

Our goal will be to define a partial Frobenius hypercube attached to a realization,

though this will require slightly more data than the realization itself provides.

5.5. Polynomials and invariants.

Assumption 5.20. The maps ˛s W h ! k and ˛_
s W h� ! k are surjective for each

s 2 S . This assumption is called Demazure surjectivity.

If the row and column corresponding to s in the Cartan matrix each contain

an invertible element of k, then Demazure surjectivity follows immediately. Thus

Demazure surjectivity holds for any exotic realization of slnC1 for n � 2. Demazure

surjectivity for exotic affine sl2 can be guaranteed by assuming that 2 and Œ2� generate

the unit ideal in k (and this is required when � and �_ are bases).

We let R D Sym.h�/. When the simple roots form a basis for h�, this is just a

polynomial ring on the variables ˛s , s 2 S . We give R an even Z-grading, so that

deg.h�/ D 2. There is an action of W on R by ring homomorphisms, extending the

action on the linear terms.

Let Rs denote the invariants of R under s 2 S . There exists an Rs-linear

Demazure operator @sW R ! Rs of degree �2, defined on linear terms by @s D

˛_
s W h� ! k, and satisfying the twisted Leibniz rule @s.fg/ D @s.f /g C s.f /@s.g/.

It can be defined by (3.7).

The Demazure operator @s equips the ring extension Rs � R with the structure of

a graded Frobenius extension (this relies on Demazure surjectivity). The invariant �s

of this extension structure is equal to ˛s . Thus while the rings R and Rs only depend

on the action of W on h�, the Frobenius structure depends on the choice of simple

roots and coroots, and one should think of a simple realization as being the choice of

Frobenius structures on Rs � R for all s 2 S .
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We say that I is finitary when the parabolic subgroup WI � W is finite. Let

RI � R denote the invariants under WI . When I is finitary, the Chevalley Theorem

states that R is free over RI of finite rank (whereas when WI is infinite, RI has

smaller transcendence degree, and the extension has infinite rank). Under some

additional assumptions, RI � R can be given the structure of a Frobenius extension

of degree `.I /, where `.I / is the length of the longest element wI 2 WI .

Claim 5.21. The operators @s satisfy the braid relations up to an invertible scalar.
For any reduced expression wI D s1s2 : : : s`.I/ for wI , one has a composition of
Demazure operators @wI

D @s1
� � � @sd

of degree �`.I /, and this depends on the
reduced expression only up to invertible scalar. Under some additional assumptions
on k, any such map @wI

will equip RI � R with the structure of a Frobenius
extension. Similarly, when J � I are both finitary and some additional assumptions
hold, any reduced expression for wI w�1

J will define an iterated Demazure operator
giving a Frobenius trace RJ ! RI .

Remark 5.22. The statement that a map is a Frobenius trace is none other than the

existence of dual bases, which requires the map to be surjective, and requires a certain

determinant to be invertible. What precisely this determinant is for the various traces

RJ ! RI does not appear to be in the literature, so that we can not make the required

assumptions as explicit as Assumption 5.20. For the case of sl3, the assumptions can

be guaranteed by assuming that 3 is invertible (and this is required when � and �_

are bases).

Exercise 5.23. For the Frobenius trace @
y
g defined in §3.2, find dual bases for Ry

over Rg under the assumption that 3 is invertible.

Definition 5.24. A Frobenius realization is a simple realization equipped with a

choice of Frobenius structure @J
I on RI � RJ for each finitary pair J � I � S . (In

particular, we assume that such a Frobenius structure exists.) The Frobenius trace

R ! Rs must simply be @s , as determined by the simple realization. We require

that @J
I @K

J D @K
I whenever K � J � I . The Frobenius trace @I W R ! RI must be

proportional to @wI
for some reduced expression of wI .

This provides a partial Frobenius hypercube. As the Frobenius trace maps @J
I

are defined up to an invertible scalar, we can specify the structure by choosing the

invariant �J
I . We do this by choosing a set of positive roots.

Definition 5.25. A root realization is a simple realization with the additional choice

of a set of finite positive roots ˆ. It must include the simple roots, and contain

exactly one vector collinear with each element of WI � �I for I finitary. In other

words, whenever w D s1 : : : sd is a reduced expression within a finite parabolic

subgroup WI , then ˆ contains one element proportional to s1s2 : : : sd�1.˛sd
/. Such

an element is a positive root for WI and lives in the subset ˆI � ˆ.

Definition 5.26. Assume that @wI
is a Frobenius trace for some reduced expression

of wI , for each finitary I . Then any root realization will determine a unique Frobenius
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realization for which the invariant �I of the extension RI � R is equal to the product

of the positive roots for WI . The invariant �J
I for RI � RJ is equal to the product

of the positive roots for WI which are not roots for WJ . We call this the associated
Frobenius realization.

Finally, let us note when these scalar ambiguities do not arise. The following is

proven in [8].

Definition 5.27. A simple realization is odd-balanced if, whenever mst is odd for

s; t 2 S , then ast D ats satisfies the algebraic conditions to be equal to �.� C ��1/

for a primitive 2mst -th root of unity �.

Claim 5.28. Whenever a realization is odd-balanced, there is a canonical choice of
positive roots, and the Demazure operators satisfy the braid relations.

5.6. Singular Bott–Samelson bimodules and diagrams. Fix a Frobenius realiza-

tion of .W; S/. One can now define SBSBimalg and SSBim precisely as in §5.1.

One can also define a diagrammatic category SBSBimdiag as in the previous sections

(for sl2 and sl3).

Singular Soergel bimodules were defined by Williamson [45]. When the

realization is reflection faithful (see [45] or the introduction), the category SSBim is

well behaved. It categorifies the Hecke algebroid, an “idempotented” version of the

Hecke algebra (and called the Schur algebroid in [45]). The size of morphism spaces

between singular Soergel bimodules is governed by the standard trace on the Hecke

algebroid; this is known as the Soergel–Williamson Hom formula. When k D C and

the realization is “geometric”, the indecomposable objects in SSBim are (roughly

speaking) the equivariant hypercohomologies of simple perverse sheaves on a Kac–

Moody group, equivariant under various parabolic subgroups, and thus they descend

to the Kazhdan–Lusztig basis of the Hecke algebroid.

The situation is analogous to the discussion of Rep and Fund in the previous

chapter. SSBim is the genuine object of interest, while SBSBim is the combinatorial

replacement. Finding a description of SBSBim by generators and relations has been

elusive in general, and no progress has been made outside of rank 2 and type A.

Rank 2 was accomplished in [8]. Williamson and I have a conjectural presentation

of SBSBim in type A which we hope will shortly be available. Thus the presentation

SBSBimdiag for affine sl3 is joint with Williamson; the proof of its correctness given

in the appendix is original, but similar in style to arguments we attempted together.

When the realization is not reflection faithful, the category SSBim is not

well behaved, and will not categorify the Hecke algebroid. An example will be

when k D C and q ¤ ˙1 is a root of unity, where the realization ceases to be

faithful. However, the diagrammatic category SBSBimdiag is still well behaved,

and its morphism spaces always satisfy the Soergel–Williamson Hom formula. The

presentation only encodes maps which occur generically; more morphisms may exist
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between algebraic Soergel bimodules when q is a root of unity, but these morphisms

are not in our diagrammatic presentation.

5.7. Maximally singular Bott–Samelson bimodules. Let us quickly mention the

particular sub-2-category of SBSBim that we will use in this paper. Fix a Dynkin

diagram � . Let .W; S/ be the affine Weyl group of � , so that S D e� , and fix a

Frobenius realization. Let � Š e‚ � S be as in §4.3. Maximal finitary subgroups

have the form I D S n s for s 2 S , and when s 2 e‚ the parabolic subgroup WI is

isomorphic to the finite Weyl group.

Definition 5.29. Let mSSBim, the 2-category of maximally singular Soergel
bimodules, denote the full sub-2-category of SSBim whose objects are subsets of

the form I D S n s, for s 2 e‚.

We can now state the Soergel Satake theorem.

Theorem 5.30 (Soergel Satake). There is a 2-functor F W Rep�.g_/ ! mSSBim.e�/,
which is a degree 0 equivalence.

Henceforth in this chapter we assume .W; S/ is the affine Weyl group in

type A. Then mSSBim has an even better combinatorial replacement than

SBSBim \ mSSBim.

Definition 5.31. Let mSBSBim, the 2-category of maximally singular Bott–
Samelson bimodules, denote the full sub-2-category of SBSBim defined as follows.

� The objects are subsets of the form I D S n s, for s 2 e‚.

� The 1-morphisms are monoidally generated by bimodules of the form

RI RI\J
RJ .`.J / � `.I \ J //, where I D S n s and J D S n t for s ¤ t 2 e‚.

� The 2-morphisms are all graded bimodule maps.

Claim 5.32. The Karoubi envelope of mSBSBim is mSSBim. In other words,
every summand of a singular Bott–Samelson bimodule between maximally singular
parabolic subsets is a summand of a maximally singular Bott–Samelson bimodule.

Remark 5.33. This corresponds, under algebraic Satake, to the fact that all

irreducible representations of sln are summands of tensor products of miniscule

representations. For general affine Weyl groups, more complicated bimodules are

required to produce the non-miniscule fundamental representations.

Indecomposable singular Soergel bimodules are classified numerically, that is,

by their behavior in the Grothendieck group. The proof of this claim is also

numerical, showing that maximally singular Bott–Samelsons also have a certain

upper-triangularity property in the Grothendieck group. For the classification of

indecomposable bimodules, see [45].

Remark 5.34. One might also call the objects of mSBSBim by the name reverse
Bott–Samelson bimodules. This is because, in their original context, Bott–Samelson



104 B. Elias

bimodules are R-bimodules obtained by restricting from R to Rs and inducing back

to R. In other words, we begin at the minimal finitary parabolic subset ;, move

to a subminimal one fsg, and come back to the minimal one. For reverse Bott–

Samelson bimodules we begin at a maximal finitary parabolic subset S n s, move to

a submaximal one S n fs; tg, and return to a (different) maximal one S n t .

We can now state the algebraic Satake theorem. We now reintroduce the

subscript q to indicate that we are taking an exotic affine sln realization.

Theorem 5.35 (Algebraic Satake). There is a 2-functor F W Fund�
q ! mSBSBimq ,

which is a degree 0 equivalence.

6. Reformulating geometric Satake

The reformulation from geometric Satake to Soergel Satake takes the form of three

“replacements”:

� Replacing monoidal categories with 2-categories,

� Replacing the affine Grassmannian with a partial flag variety for the affine

Kac–Moody group,

� Replacing perverse sheaves with their global sections (i.e. their equivariant

hypercohomology).

In the sections to come we will present this flow of ideas for a general complex

semisimple lie algebra g. Nothing used is new or should be unfamiliar to the experts.

The transformation from Soergel Satake to algebraic Satake consists of replacing

each side of the equivalence with a combinatorial additive subcategory. The

technology for this procedure only exists currently in type A. This final replacement

is discussed in greater detail in sections §4.1 and §5.7, but we also mention it briefly

here.

6.1. Geometric Satake. We begin by recalling the results which are packaged

under the name “geometric Satake.” We refer the reader to [18] for better and more

thorough introduction to this topic. We assume for the moment that all categories

are C-linear. For a group H acting on a space X , we let PH .X/ denote the category

of H -equivariant perverse sheaves on X . When two groups H and K act on X , on

the left and right respectively, we write P.H;K/.X/ for the category of biequivariant

perverse sheaves.

Fix T � G a maximal torus in a simple algebraic group, with Lie algebras

h � g. Let G_ (resp. g_) denote the Langlands dual group (resp. Lie algebra).

Let K D C..t // and O D CŒŒt ��. As it is usually stated, geometric Satake is

an equivalence between G_.C/-rep and the category of G.O/-equivariant perverse

sheaves on the affine Grassmannian GrG D G.K/=G.O/.
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This equivalence intertwines the (non-equivariant) hypercohomology functor

with the forgetful functor: the hypercohomology of an irreducible perverse sheaf

is isomorphic, as a vector space, to the underlying vector space of the corresponding

irreducible G_ representation. In this context, the hypercohomology and forgetful

functors are called fiber functors. The cohomological grading on hypercohomology

transforms to the weight grading on the representation (with respect to some naturally-

defined regular semisimple element). More interesting features arise when one

considers the T -equivariant hypercohomology: instead of a vector space, one gets

a graded module over the T -equivariant cohomology of a point, which is the

polynomial ring CŒh�� (graded with deg h� D 2). Taking the quotient by the

augmentation ideal (i.e. killing positive degree polynomials), one obtains the usual

hypercohomology, though other specializations also hold interest. The usual tensor

product on representations is intertwined with a convolution functor on perverse

sheaves, though the geometric proof that convolution is symmetric monoidal is quite

technical.

Remark 6.1. This long remark continues the discussion from the introduction

(Remark 1.1) about the validity of discussing geometric Satake without the symmetric

structure.

Given two semisimple monoidal categories with the same classification of

indecomposables and the same decomposition of tensor products (i.e. the same

Grothendieck ring), when are they equivalent? The answer is encoded in the

associativity isomorphism. If these monoidal categories are also symmetric, then

checking equivalence of symmetric monoidal categories also requires checking the

commutation isomorphism. See [14, Problem 1.42.8 and following] for more details.

The numerical underpinnings of geometric Satake were shown by Lusztig in [32].

The characters of the irreducible perverse sheaves are encoded in Kazhdan–Lusztig

polynomials for the affine Hecke algebroid. According to geometric Satake, these

characters (evaluated at v D 1) should agree with the weight multiplicities in the

corresponding irreducible G_-representation. This was shown by Lusztig, who also

demonstrated the link with orbit closures in the affine Grassmannian. Moreover, these

results already encode a great deal about the monoidal structure on perverse sheaves.

When one convolves two irreducible perverse sheaves, the BBD Decomposition

Theorem [3] implies that the result splits into irreducibles according to its character,

just as the splitting of a tensor product of G-representations is determined by its weight

multiplicities. Thus perverse sheaves form a semisimple monoidal category with the

same Grothendieck ring as G_.C/-representations. The fiber functor (implicit also

in Lusztig’s work) also commutes with the convolution structure, making it easy to

check the associativity isomorphism (note: this argument relies on semisimplicity).

This is done explicitly in Ginzburg’s preprint [18]. With Lusztig’s results and the

Decomposition Theorem in hand, the only further content in Geometric Satake is the

comparison of commutativity isomorphisms. Without this comparison one has only
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an equivalence of (vanilla) monoidal categories; this is what we accomplish in this

paper.

An elementary proof of the commutativity isomorphism was attempted by

Ginzburg in [18], but is not believed to be correct. A correct (and non-elementary)

proof was given by Mirkovic and Vilonen [35], following ideas of Drinfeld. These

results work with a “global approach,” using the fusion product and the Beilinson–

Drinfeld Grassmannian. This is the style also used by Gaitsgory in his quantum

geometric Satake equivalence [17]. The author does not know how the global

approach connects to the Soergel picture.

We do rely on Lusztig’s numerical results, though we do not use the

Decomposition theorem. Instead, we compare two monoidal categories by

looking inside at strictly-monoidal additive subcategories (where the associativity

isomorphism is by definition the identity map). To show two such categories are

equivalent one has no convenient tricks (to the author’s knowledge), but must compare

the morphism algebras in full, as we did above. In essence, we have converted the

questions of decomposition and associativity into a question about morphisms in

this subcategory. The proof we use does not use the Decomposition Theorem or

semisimplicity in any way, relying on Soergel’s categorification results but not on

the Soergel conjecture. In other words, we never need to study indecomposable

singular Soergel bimodules and their numerical properties, only those bimodules

which correspond to tensor products of fundamental representations. This is one

advantage of working directly with generators and relations.

A proof independent of the Decomposition Theorem is required for the quantum

algebraic Satake equivalence (and not just because there is no corresponding

geometry)! After all, when q is a root of unity, the analog of the Soergel conjecture

will fail, and the indecomposable objects will have the “wrong” characters, just as

for representations of the (Lusztig form of the) quantum group at a root of unity.

Nevertheless, tensor products of fundamental representations (and their Soergel

analogs) continue to have the same numerics.

6.2. From monoidal categories to 2-categories. Our first step will be to apply a

sequence of tautologies in order to reformulate geometric Satake as an equivalence of

(strict) abelian 2-categories. In §4.2 it is explained how to begin with representations

of g_ and obtain Rep�, an �-2-category. This will be one side of our equivalence. By

conventional geometric Satake, the geometric category paired with representations

of g_ would be perverse sheaves on GrGadj
in adjoint type. So we begin by extracting

a 2-category from Gadj, after which we will explain how the same data is encoded

within the affine Grassmannian for any G.

Suppose that G D Gadj has adjoint type, so that �0.G.K// is the group � defined

in §4.3. As G.O/ is connected, this is also the component group of GrG . Let Gr0

denote the nulcomponent, i.e. the component associated to the identity in �. Since �

is abelian, conjugation by any element will preserve the nulcomponent G.K/0. Any
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irreducible perverse sheaf is supported on a single component, and perverse sheaves

on different components admit no morphisms or extensions. Convolution will act

on the “component support” of a perverse sheaf precisely via multiplication in �,

so that PG.O/.GrG/ already forms an �-graded monoidal category, from which one

can construct an �-2-category.

We choose to think of this �-2-category in a different way, altering equivariant

structure rather than working on different components. Let us pick an equivariant

perverse sheaf F supported on component � 2 �. Let x 2 G.K/ be an element in

the component �. Then x�F is supported on the nulcomponent Gr0, and the G.O/-

equivariant structure on F produces a natural .x�1G.O/x/-equivariant structure

on x�F . The group .x�1G.O/x/ depends on �, not on the choice of x, so we

call this group G� . Therefore, instead of considering PG.O/.GrG/, we can considerL
PG�

.Gr0/ for all � 2 �.

Example 6.2. Suppose that g D sl4, so that Gadj D PGL4, Gsc D SL4, and

� D Z=4Z. The four subgroups G� � Gadj.K/ are as follows:

G0 D

0
BB@

O O O O

O O O O

O O O O

O O O O

1
CCA ; G1 D

0
BB@

O t�1O t�1O t�1O

tO O O O

tO O O O

tO O O O

1
CCA ;

G2 D

0
BB@

O O t�1O t�1O

O O t�1O t�1O

tO tO O O

tO tO O O

1
CCA ; G3 D

0
BB@

O O O t�1O

O O O t�1O

O O O t�1O

tO tO tO O

1
CCA :

These groups are obtained from G0 by conjugation by a diagonal matrix with entries

.t; : : : ; t; 1; : : : ; 1/. This diagonal matrix is always an element of PGL4.K/, though

not usually an element of SL4.K/. Note that the intersection \�G� is an Iwahori

subgroup, a fact which is special to type A.

Perverse sheaves which are G.O/-equivariant on G.K/=G.O/ have a natural

monoidal structure from convolution. The collection of G� -equivariant perverse

sheaves on the nulcomponent of G.K/=G0 does not have an obvious monoidal

structure (it is a module over the previous monoidal category). However,

by considering the collection of all G�-equivariant perverse sheaves on the

nulcomponent of G.K/=G� for �; � 2 �, one obtains a 2-category where convolution

again makes sense. We denote this 2-category by P.

For mental simplification, we choose to work with P.G� ;G�/.G.K/0/, i.e. bi-

equivariant sheaves on the nulcomponent of G.K/, instead of PG�
.G.K/0=G�/, i.e.

equivariant sheaves on the nulcomponent of the quotient. Because G� orbits on G.K/

are infinite-dimensional, it is difficult to comprehend what is meant by equivariant

perverse sheaves on G.K/. However, in any sense in which such things are defined,

there will be an equivalence between these two categories. We choose the former
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mostly for the notational symmetry, and because it makes the convolution structure

“seem” more natural.

Now let us explain how the same 2-category P can be extracted from any Lie

group G lifting g. The natural map G ! Gadj is a Galois cover with kernel Z, the

center of G. It induces a map G.O/ ! Gadj.O/ whose kernel is also Z, and a map

G.K/ ! Gadj.K/ whose kernel, restricted to the nulcomponent, is also Z. Thus the

induced map GrG ! GrGadj
is an isomorphism on the respective nulcomponents.

Thus the space on which we consider our sheaves does not depend on the choice of

group.

The group � acts on G.K/0 by group automorphisms, for any G. One can still

think of this action as “conjugation” by an element in Gadj.K/, but this automorphism

may be an outer automorphism for G.K/. Thus one still has groups G� D �.G.O//

for each � 2 �. These groups will also be the preimages of the corresponding groups

G� � Gadj.K/0, and their orbits on G.K/ will be the preimages of orbits on Gadj.K/.

Example 6.3. Continuing example 6.2 above, one can define Gk exactly as above for

each 0 � k � 3, with the assumption that one only considers matrices of that form

lying within G. Conjugation by the diagonal matrix with entries .t; : : : ; t; 1; : : : ; 1/

is a (potentially outer) automorphism of G.K/.

Now compare the equivariant categoriesPG�
.G.K/0=G�/. As the group changes,

the space G.K/0=G� is unchanged, but the group which acts G� will be altered

by some central kernel Z. Clearly Z acts trivially, being contained in both G�

and G�. However, Z is in the nulcomponent of any stabilizer, meaning that it will

also act trivially on any equivariant structure. Thus the equivariant category is also

independent of the choice of G.

Taking the sum over all PG�
.G.K/0=G�/, one obtains a 2-category which is

equivalent to P. This 2-category is larger than merely PG.O/.GrG/; those G� which

are genuinely conjugate to G.O/ will encode perverse sheaves on other connected

components, while the ones which are only outer-conjugate will allow for the extra

data.

6.3. From affine Grassmannians to Kac–Moody groups. Consider the Kac–

Moody group Gaff associated to the affine Dynkin diagram e� , as in [28]. This is an

analogue of G.K/. The essential difference is that Gaff has a torus whose dimension

is bigger by two: it has a copy of C� acting on G.K/ by loop rotation (sending

t 7! �t ), and a copy of C� arising from a central extension.

The set of removable vertices e‚ was defined in §4.3; recall that it is a �-torsor.

For any subset of e� one has a corresponding parabolic subgroup of Gaff , so for each

s 2 e‚ one has a parabolic subgroup Ps corresponding to e� n s. Because each

of these parabolic subgroups also contains the affine torus, the extra dimensions

cancel in the quotient space Gaff=Ps , which is isomorphic to Gr_
0 for any s 2 e‚.

However, the structure of Pt -equivariance on Gaff=Ps is stronger than the structure
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of G_
�

-equivariance, because of the larger torus. The central extension C�, being

central, will act trivially on Gaff=Ps , and being connected, will therefore act trivially

on any equivariant structure. However, the loop rotation C� will add new structure.

Thus our new 2-category of interest is the collection of Pt -equivariant perverse

sheaves on Gaff=Ps for various s; t 2 e‚, or alternatively, P.Pt ;Ps/.Gaff/. This

is a souped-up version of the original 2-category, having an extra “dimension” of

equivariant structure.

Note that in type A, because e‚ D e� , the intersection of all the Ps will be precisely

the Borel subgroup. This is analogous to the situation in Example 6.2, where the

intersection of the G� was an Iwahori subgroup.

6.4. From perverse sheaves to bimodules. We now describe some results of

Soergel and Williamson, in order to motivate the theorem of Härterich we shall use.

Recall that the T -equivariant cohomology of a point HT .?/ is naturally

isomorphic to Rfin D CŒh�
fin�, a polynomial ring generated by dual Cartan subalgebra.

We temporarily denote this ring A, not to be confused with the ring R we have used

elsewhere in this paper. For T -spaces with a cellular filtration, passing from the

T -equivariant cohomology HT .X/ to the ordinary cohomology H.X/ is obtained

by tensoring over HT .?/ with the one-dimensional module A=AC D C, by the

localization theorem. There is a natural action of the finite Weyl group Wfin on A, and

the G-equivariant cohomology of a point is AWfin . For the parabolic subgroup PI

associated to I � Sfin, the PI -equivariant cohomology of a point is AI D AWI .

Therefore, given a .PI ; PJ /-equivariant perverse sheaf on G, its equivariant

hypercohomology (i.e. equivariant pushforward to a point) will naturally be a graded

.AI ; AJ /-bimodule.

Theorem 6.4. The functor of equivariant hypercohomology from P.PI ;PJ /.G/ to
graded .AI ; AJ /-bimodules is fully faithful on semisimple objects, for any I; J � S .
(Note that this functor sends higher extensions to bimodule maps of nonzero degree,
as the rings AI are graded homologically.) The images of the semisimple objects are
known as singular Soergel bimodules for Wfin.

Remark 6.5. Unfortunately, this precise version of the theorem does not appear in

the literature, so we will briefly discuss the history and sketch the proof. Soergel first

studied the case PI D PJ D B . A proof using ordinary (rather than equivariant)

hypercohomology is in [39], while its equivariant analog is in [40, Proposition 3.4.4].

The general idea of these proofs is the same. First, one shows that pullbacks and

pushforwards between partial flag varieties (or induction/restriction of equivariance)

is sent by hypercohomology to induction and restriction of bimodules. This implies

that the images of semisimple objects are Soergel bimodules. Next, one uses a parity-

vanishing argument to deduce that the spectral sequence computing morphisms

between hypercohomologies actually degenerates on the first page, implying that

hypercohomology is faithful. Finally, one uses the Soergel Hom formula to
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deduce that the dimensions of morphism spaces agree. For the general case a

similar argument will apply, using Williamson’s generalization of the Soergel Hom

formula [45]; though not in the literature, this proof is known to experts.

The theorem was upgraded to affine Kac–Moody groups by Soergel’s student

Härterich [20]. Now one works with the Kac–Moody group Gaff and its parabolic

subgroups PI for I � S .

Theorem 6.6. The functor of equivariant hypercohomology from P.PI ;PJ /.Gaff/ to
graded .HPI

.?/; HPJ
.?//-bimodules is fully faithful on semisimple objects, for any

I; J � S with WI ; WJ finite. The images of the semisimple objects are known as
singular Soergel bimodules for Waff .

Let Taff denote the torus of Gaff , let T 0 denote the finite torus extended by loop

rotation, and let S denote the set of affine reflections. Then HT 0.?/ is naturally

isomorphic to the polynomial ring R D CŒh�
aff�. This is the ring R we have used

throughout this paper, defined in Example 5.9, or in §5.3 at q D 1. On the other hand

Raff D HTaff
.?/ is a larger ring, corresponding to the self-dual n C 2-dimensional

realization also mentioned in Example 5.9. The subrings HPI
.?/ are isomorphic

to RI
aff , so that HPs .?/ is isomorphic to R

Wfin

aff for any s 2 e‚.

The difference between Raff and R is a polynomial ring in one variable, on

which W acts trivially: namely, HC�.?/ for the central extension. All computations

done in this paper work for Raff as well as for R. Conversely, the theorem above

will apply equally well to bimodules over the subrings of HPI
.?/ which ignore the

central extension. Henceforth, we will work with singular Soergel bimodules for R

rather than for Raff .

The singular Soergel bimodules defined in §5.1 agree with the singular Soergel

bimodules in this theorem. Therefore, the (semisimple part of the) 2-category

of interest, P.Pt ;Ps/.Gaff/, is equivalent to mSSBim, defined in §5.7. In fact,

every perverse sheaf in this 2-category happens to be semisimple (warning: higher

extensions do exist).

Here we see the payoff of having replaced the affine Grassmannian with the

Kac–Moody group. The G.O/-equivariant cohomology of the point is the same

as the G-equivariant cohomology, which is R
Wfin

fin . Meanwhile, the Ps-equivariant

cohomology of the point is R
Wfin

aff , a larger ring. One could not repeat the constructions

of the previous chapters with Rfin, because only one copy of Wfin acts on it, while

for Raff or R there are a number of copies of Wfin inside Waff which can act.

6.5. Combinatorial subcategories. When investigating an additive (monoidal)

category, it may be difficult to compute all the morphisms between indecomposable

objects. However, there may be a class of objects (closed under the tensor

product) for which the computation of morphisms is tractable, and for which every

indecomposable object appears as a summand. We call the corresponding full

subcategory a combinatorial replacement for the original additive category.
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A discussion of this philosophy and the known results for the special case of

Rep.g/ or Rep�.g/ can be found in §4.1. In that section, it is discussed that tensor

products of fundamental representations form a combinatorial replacement in type A,

where the morphisms between such tensor products can be described by sln-webs.

Unfortunately, morphisms between tensor products of fundamental representations

remain undiscovered outside of type A and rank 2. The description of webs for sl2
and sl3 is given explicitly in §2.1 and §3.1 respectively.

The same philosophy applies to perverse sheaves, and in fact was a strong

motivation for Soergel’s original definition of Soergel bimodules. Soergel originally

worked with the finite flag variety, or P.B;B/.G/. Finding irreducible perverse

sheaves is difficult, but the decomposition theorem implies that a given irreducible

perverse sheaf is a summand of the pushforward of the constant sheaf from a

proper resolution of singularities. Schubert varieties in the finite flag variety

have “combinatorial” resolutions known as Bott–Samelson resolutions, and the

corresponding pushforwards are known as Bott–Samelson sheaves. Continuing to

pushforward these sheaves to a point, one obtains the Bott–Samelson bimodules

defined in Remark 5.34 or in [41]. Bott–Samelson bimodules are easy to compute

with, and thus form an excellent combinatorial replacement for perverse sheaves. As

the philosophy in §4.1 points out, returning from an algebraic description of Bott–

Samelson bimodules to a similar description of Soergel bimodules is very difficult,

and amounts to a computation of certain idempotents.

Williamson [45] continued to treat the case of partial flag varieties (or rather,

equivariance under various parabolic subgroups), and defined singular Soergel

bimodules. Singular Bott–Samelson bimodules, defined in §5.1 in terms of induction

and restriction bimodules, form a combinatorial replacement in this context. For the

specific case of P.Ps ;Pt /.Gaff/ in type A, it turns out that there is also a further

replacement which works, discussed in §5.7.

A. Diagrammatic proofs for sl3

In this appendix, our primary goal is to prove the following theorem, which uses

terminology from §5, and recalls the discussion of §5.6.

Theorem A.1. Consider a Frobenius realization of affine sl3 with exotic Cartan
matrix. Let SBSBimdiag denote the 2-category defined in §3.3, and let SBSBimalg

denote the 2-category defined in §5.1. Then SBSBimdiag categorifies the Hecke
algebroid, and satisfies the Soergel–Williamson Hom formula. There is a faithful,
essentially surjective 2-functor GWSBSBimdiag ! SBSBimalg (defined at the end
of §3.3). If the realization is reflection faithful, then G is an equivalence.

Recall that when the realization is reflection faithful, Williamson’s results imply

that SBSBimalg will also categorify the Hecke algebroid, and satisfy the Soergel–
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Williamson Hom formula. Therefore, faithfulness ofG will imply fullness. When the

realization is not even faithful (e.g. when q is a root of unity in k), SBSBimalg will

fail to categorify the Hecke algebroid, and G will not be full. Theorem A.1 clearly

implies Claim 3.16, and the reflection faithful condition explains the restriction on k

given in that claim.

Our second goal is to prove Theorem 3.21, which states that the functor

F W Fund�
q ! mSBSBimq is a degree zero equivalence. This is independent of

the choice of realization (e.g. it still holds when q is a root of unity).

Both results were proven for sl2 in [8]. After setting up and proving some

diagrammatic lemmata, the main arc of the proof is completely analogous to the sl2
case. Like all diagrammatic proofs, it is extremely delicate.

Henceforth, to simplify notation, D will denote the diagrammatic 2-category

SBSBimdiag, and C will denote the algebraic category SBSBimalg. A diagram refers

to a singular Soergel diagram.

A.1. Preliminaries. We recall and amplify our conventions from §3. Let W be the

affine Weyl group of sl3. Let S D fr; b; yg denote the set of primary colors, which

can be combined to form the secondary colors fg; o; pg. The color brown, which

combines all three primary colors, is forbidden as a region label in a diagram. For a

subset K � S , a diagram is said to only have the primary colors in K if every region

label is contained in K.

Definition A.2. Let K ¨ S be a subset of the primary colors. Let D.K/ denote the

2-category defined as in Definition 3.12 except that

� 2-morphisms may only have primary colors in K (this also restricts the objects

and 1-morphisms),

� one only imposes the relations with primary colors in K.

Let C.K/ denote the algebraic subcategory of singular Bott–Samelson bimodules

defined as in Definition 3.15, except that one only allows sets I; J contained in K.

Note that both categories use the same base ring R, defined in §3.2, regardless of

the subset K (we consider polynomials to be colorless).

There is a natural 2-functor �K WD.K/ ! D, which we will eventually show is

fully faithful. At the moment, it is not even clear that �K is faithful, because D

has more relations. We prove this very soon - that relations between diagrams with

extraneous primary colors do not affect diagrams without those primary colors. It is

far less obvious that �K should be full - that diagrams without certain primary colors

on the boundary should be in the span of diagrams without those primary colors

anywhere.

The Dihedral Cathedral [8] is an in-depth study of Soergel bimodules for dihedral

groups. Its appendix treats odd-unbalanced realizations such as the exotic realization

of affine sl3. We will quote this paper for many “two-color” results in this proof, such

as the following proposition.
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Proposition A.3. Let K ¨ S . Then the analogous 2-functor GK is well defined, full,
and faithful from D.K/ to C.K/.

Proof. Observe that any exotic realization of affine sl3 restricts to a reflection faithful

representation of any dihedral parabolic subgroup. Now the result follows from the

Cathedral.

All the relations which define D involve at most two primary colors. Therefore,

Proposition A.3 implies that these relations hold algebraically in C, and the 2-

functor G is well defined. Moreover, GK D G ı �K is faithful, which implies

that �K must be faithful.

The proof that �K is full will comprise the bulk of this appendix, after which

certain categorification considerations will complete the proof of Theorem A.1. It

amounts to a “color-removal algorithm.”

We say that a diagram reduces to another class of diagrams if it can be rewritten,

using the relations, as a linear combination of diagrams in this class. A region is

external if it touches the boundary, and internal otherwise. A diagram has featureless
boundary if it has a single exterior region. A loop is a closed 1-manifold in a diagram

(which may intersect strands of other colors), and may be oriented either clockwise

or anticlockwise.

Proposition A.4. Suppose that K ¨ S . A diagram whose external regions only
contain primary colors in K will reduce to diagrams where every region only contains
primary colors in K.

This is a restatement of the fullness of �K . We now summarize the argument.

Suppose that K D fb; yg. The region colors we wish to remove, namely r; o; p,

we will call “reddish.” Recall that we have also colored the strands in our diagrams,

so that a red strand separates reddish regions from non-reddish regions. Any diagram

without external reddish regions but with some internal reddish region must have

a clockwise red loop. Color-removal is equivalent to the statement that diagrams

without clockwise loops will span all diagrams in D.

A diagram without any crossings or closed 1-manifolds is called a crossingless
matching (with boxes). It is built entirely of cups, caps, and boxes. A crossingless

matching with featureless boundary must be a box. One nice feature of crossingless

matchings on simply-connected domains is that they necessarily have a cup/cap on

the boundary (i.e. two adjacent points connected by a strand). However, this does

not hold true of crossingless matchings on non-simply-connected domains, such as a

configuration of radii on an annulus.

Lemma A.5. Suppose that every region in a diagram (on a simply-connected domain)
is reddish. Then the diagram reduces to a crossingless matching.

Proof. As the primary color red is never removed there can be no red strands, only

blue and yellow strands. These can never cross, lest there exist a brown region. So we
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need only show that any closed loop can be removed. Suppose there is a closed blue

or yellow loop. Choosing an innermost loop (i.e. no loops in its interior; this makes

sense since loops can not cross), we replace it and its interior with a box using (3.14a)

or (3.14b). Repeating this process, we remove all closed components.

To remove a clockwise red loop, one step of the algorithm will be to simplify its

interior. A naive approach would go as follows. Suppose one could remove all closed

loops from the interior of the red loop. Then this interior is a diagram where every

region is reddish, and by the above lemma this interior is a crossingless matching and

must have a cup/cap on the boundary. Applying (3.15) one should be able to pull

this cup/cap out of the yellow loop, reducing the number of strands which intersect

the red loop, and allowing an inductive argument. (Boxes are easy to deal with and

do not complicate the argument overmuch, thanks to (3.15d) and similar relations.)

Although this style of argument is useful, the supposition is too naive. A

complicating feature of the interior is that it may contain numerous anticlockwise red

loops, and anticlockwise loops cannot be removed in general! The resulting reddish

domain is no longer simply connected, and we can not proceed as above. Instead, the

interior of an anticlockwise loop can be simplified, and this is where we must begin

a more sophisticated argument. For this purpose, we prove some lemmata about

Bott–Samelson objects.

A.2. Bott–Samelson objects.

Definition A.6. A BS object in SBSBim is an object of the form ;s1;s2; � � � ;sd ;.

We say that a diagram on the disk has BS boundary if the boundary (read around the

circle) is a BS object.

The following map has an alternating two-color BS boundary, and will be

denoted vk .

vk (A.1)

Pictured is the case k D 6. When k D 0, it looks like below.

In v0, switching the roles of blue and red would make no difference, as (3.14b),

(2.8b), and (3.13) imply that v0 is equal to the polynomial �p . We continue to denote

the map vk , regardless of which two primary colors are used.
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The diagram v3 is special, which relates to the fact that the order of rb in W

is 3. In [8, Section 6.1.2] it was shown that every vk for k � 4 can be rewritten as

a composition of the maps v3, together with cups and caps. It was also shown that

every vk for k < 3 can be rewritten in terms of crossingless matchings. This can be

seen directly: for k D 2 this is (3.16), for k D 1 this is (3.15c), and for k D 0 this

follows as above.

The following claim is one of the results in the Cathedral.

Claim A.7. Any diagram with at most two primary colors and BS boundary reduces
to a composition of cups, caps, boxes, and the diagram v3. If the BS boundary
is empty (i.e. featureless and white), then the diagram reduces to a box. If the BS
boundary is non-empty then after reduction the diagram will either have a cap/cup
on the boundary, or will be equal to vk for some k � 3 (with boxes allowed in any
white regions).

???
or

???
or

In particular, if the BS boundary does not alternate between the two colors,

but instead has repetition ;b;b;, then there is guaranteed to be a cup/cap on the

boundary as in the first option above. One way to see this is to apply (2.8d) to the

intermediate b;b.

Lemma A.8. Consider the neighborhood of an anticlockwise red loop, with no
reddish regions inside. It can be reduced to a diagram where the red loop is absent
(i.e. every region is reddish), or to a diagram as below for k � 3.

vk (A.2)

Proof. Consider the subdiagram which is the interior of the red loop. The boundary

of this subdiagram can not contain the color green, lest the exterior of the loop

contain a forbidden brown region. Therefore, the boundary of the interior is either

featureless or is a non-empty BS object. Either way, we may apply Claim A.7 to the

interior. When the boundary is featureless, the interior reduces to a box, and then

we may apply (2.8c) or (3.14a) to remove the loop entirely. Otherwise, either the
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interior is vk for k � 3 as desired, or there is a cup/cap on the boundary. In the latter

case, we apply (3.15) to pull the cup/cap out of the red loop, reducing the size of

the Bott–Samelson boundary by 1. By induction, this particular anticlockwise loop

either disappears or has the desired form.

Note that the diagram (A.2) above is an example of a 2-morphism with an

anticlockwise loop which can not be reduced to diagrams without loops. These

kinds of diagrams can appear within the image of F applied to non-elliptic webs

(c.f. Claim 3.5). The non-elliptic condition is equivalent to the condition k � 3.

A.3. Loop and color removal. We work one color at a time.

Lemma A.9. Any diagram reduces to a diagram without clockwise red loops. Any
diagram with featureless reddish boundary reduces to a box.

Proof. Consider the neighborhood of a red loop. Either no other strands intersect it

(i.e. it is featureless), or the strands which intersect it form a non-empty yellow-and-

blue BS object.

Suppose that this BS object has repetition, i.e. ;b;b;. Then applying (2.8d)

and (3.15), we can reduce the number of intersecting strands.

Ergo, up to placing boxes in various regions, we can assume that the intersection

is either empty or an alternating BS object. Like every step of this algorithm, this

procedure is local, and will not interfere with other operations.

Consider the case of an innermost clockwise red loop, and let D denote the

diagram in its interior. Using the above paragraph, we may assume either that the

boundary of D is featureless, or that it consists of an alternating yellow-and-blue BS

object with red added; i.e. it is something like rprorpror read cyclically around the

disk. In the latter case, we assume that there are j copies of p and j copies of o, for
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some j > 0. Meanwhile, D has some number n � 0 of anticlockwise red loops in

its interior, so that its reddish zone appears as below (only red is shown).

The arguments below will also apply to any diagram D with featureless reddish

boundary, regardless of whether or not it was the interior of a clockwise loop.

We now prove by induction that any such diagram D reduces to a diagram where

n D 0, and that if the diagram has featureless boundary then it reduces to a box.

Moreover, if D is the interior of a red loop and n D 0, then it reduces to a diagram

where j D 0, i.e. to the featureless case. This will finish the proof of the Lemma:

when n D j D 0 and D is the interior of a red loop, D reduces to a box which can

be slid out using (2.8b) or (3.14c), and then the loop itself can be eliminated using

(3.13) or (3.14b).

We wish to argue that the diagram in the reddish zone can be reduced to a

crossingless matching on the n-punctured disk (i.e. it has no crossings or closed blue

or yellow loops). The lack of crossings is clear, and any contractible blue or yellow

loop can be removed as in the argument of Lemma A.5. Suppose that n > 0 and

there is a blue or yellow non-contractible loop within the reddish region, and choose

an innermost one.

Its interior is another diagram D0 with featureless reddish boundary, where the

reddish zone is a crossingless matching. Applying the arguments below to D0 will

replace D0 with a box. Then we can repeat with any other non-contractible loops in

a local fashion. Thus we assume that the reddish zone is a crossingless matching.

Consider the base case when n D 0. Then the reddish zone is simply-connected.

If its boundary is featureless then the reddish zone just contains a box. If not, then any

crossingless matching on a simply-connected region has a cup/cap on the boundary.

Using (3.15) will lower j . To be very precise, this will remove one index from

the alternating BS object on the boundary, producing a repetition, which can then

be removed as in the first paragraph; the overall effect is to lower j by one. (This

phenomenon will repeat often enough that we leave it unstated — whenever we

remove a single index from the BS boundary, we say that it lowers j by one, leaving

unstated the fact that one must then remove the repeated color.) This handles the base

case.

Now suppose that n > 1. We can assume by Lemma A.8 that each anticlockwise

red loop has a neighborhood which looks like (A.2) for some k � 3. We call this a
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puncture of size k. We now proceed by induction on the size k of any given puncture,

or the number j of the exterior. We do all our computations within the reddish zone,

treating the interiors of the anticlockwise red loops (the punctures) as black boxes.

Consider what any red (not reddish!) region will look like. Instead of reading

a list of region colors around a boundary, as we have done in previous arguments,

now consider the list of strand colors around the boundary of the region. They must

alternate between red and blue/yellow. If the color blue appears twice (even with

yellow in between) applying (3.14d) will chop the red region into smaller red regions.

If the red region is a bigon, then one can apply (3.15) as usual to pull the cup/cap

either out of the exterior red loop, or into one of the punctures, and use induction.

Thus we can assume each red region is a square, having one blue and one yellow

strand as parallel walls.

The non-reddish parts of this diagram all occur either inside a puncture or outside the

exterior clockwise loop. Thus we can think of red regions as “edges” which connect

punctures or the exterior loop; we will use such a graph below.

Consider what any purple (resp. orange) region will look like. Its boundary

alternates between red and blue strands, and it could be a bigon, square, hexagon,

octagon, etc. We now argue that the diagram will simplify unless the purple region

has at least 6 sides. If it is a bigon, i.e. if a cup/cap is attached to one of the punctures

or the exterior, then applying (3.15) will reduce k or j by one. If it is a square,

connecting two punctures or a puncture with the exterior, then one has a local picture

like

where the two red strands belong to different red loops. Applying (3.16), there are

two terms which remain.
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In the second term, the value of k of each puncture (or j for the exterior) is reduced by

one. In the first term, the two punctures are fused into one puncture, or the puncture

is fused with the exterior loop, and either case reduces n by one.

Finally, if the purple region is a square connecting the exterior with itself or

connecting any puncture with itself, then one has a local picture like

??

The ??? region can be quite complicated, having punctures, additional strands

crossing the red strand, etc. However, once again, applying (3.16) will yield two

terms. In the second term, the value of either j or some k will decrease. In the

first term, either the original exterior loop is split into two smaller loops, or a new

clockwise loop is created within a puncture (containing the ??? region). Either way,

the clockwise loop containing the ??? region will be strictly smaller (by one of our

inductive criteria) than the original loop, and thus will disappear. The remainder will

also have had either j or some k decreased.

Thus induction applies unless every red region is a square and every purple and

orange region is a hexagon or larger. To finish the proof, we make a planar Euler

characteristic argument to prove that this never occurs.

Let nk be the number of punctures with boundary of size k, as above. Let pk

(resp. ok) denote the number of purple (resp. orange) regions with 2k sides, and r

the number of red regions. Contract every puncture into a vertex, and if j > 0 then

contract the outer loop into a vertex, so that one obtains a graph embedded in S2.

Now, each puncture of size k yields a 4k-valent vertex, with 2k red regions, k purple

regions, and k orange regions adjoining. After this contraction, the purple regions

enumerating pk have k adjoining edges, and the red regions are bigons. Therefore,

by counting purple (resp. orange) regions paired with an adjoining vertex, we obtain

X

k

kpk D j C
X

k

knk D
X

k

ok : (A.3)

Counting red regions paired with a vertex, we obtain

2r D
X

k

2knk C 2j; (A.4)

so that r is also equal to the quantity in (A.3).
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Each edge appears adjacent to a single red region, so the number of edges is 2r .

The number of vertices is 1 C
P

nk if j > 0, and
P

nk if j D 0. The number of

regions is r C
P

pk C
P

ok . Thus (when j > 0) we have:

2 D V � E C R D .1 � j / C
X

.1 � k/nk C
X

pk C
X

ok:

When j D 0, the .1�j / term is ignored. Now, by assumption each k � 3. Therefore

X
pk C

X
ok �

1

3

X
.kpk C kok/ D

2

3
.j C

X
knk/;

so that

2 � .1 �
j

3
/ C

X
.1 �

k

3
/nk:

However, .1 � k
3
/ is nonpositive, and the term .1 � j

3
/ is at most one (and disappears

when j D 0). This is a contradiction, and concludes the proof of Lemma A.9.

Corollary A.10. Let K ¨ S . Then �K is full.

Proof. Suppose that K does not contain the primary color red. Then any 2-morphism

between 1-morphisms in D.K/ will have no reddish exterior regions. By removing

all clockwise red loops, we thereby remove the primary color red entirely. The

resulting 2-morphism is in the image of �K .

The lemma essentially gave an algorithm to remove any given innermost clockwise

loop from a diagram. However, the procedure did screw up the topology of the

differently-colored strands which intersected that loop, and thus can create (blue or

yellow) loops as well as destroy them. There does not seem to be an easy way to

deduce that one can remove all clockwise loops of different colors at once, directly

from the lemma. Instead, we use a circuitous route.

A.4. Arguments from categorification.

Lemma A.11. 2-morphisms inD between BS objects are spanned by diagrams where
the only instances of purple (resp. orange, green) have neighborhoods which look
like vk for k � 3.

Proof. Consider a purple region in such a diagram, which must be internal, and its

interior D. Then D is a diagram with featureless reddish boundary, so by Lemma A.9

it reduces to a box. In this fashion, we can assume every purple region is simply

connected, and has no yellowish regions in its neighborhood. This neighborhood is

now a morphism in D.r; b/, and the result follows from the Cathedral.
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Recall that each vk for k > 3 can be rewritten using v3.

BS objects form a monoidal category, which is supposed to categorify the Hecke

algebra H of W . In [12], a diagrammatic category DBS (called D in that paper)

is described by generators and relations (for an arbitrary Coxeter group), which is

meant to encode the morphisms between BS bimodules. In particular, there is a

2-functor I from DBS to D, defined on dihedral parabolic subgroups in [8], whose

1-morphism image consists of the BS objects. The 2-morphism image consists of

those morphisms between BS objects generated by cups and caps, as well as the

map v3.

Proposition A.12. The natural 2-functor I from DBS to D is fully faithful. The
2-functor G is faithful from objects in the image of I .

Proof. Lemma A.11 indicates that I is full. The composition G ı I was shown to

be faithful in [12], so that I must also be faithful, and G must be faithful from the

image.

The wonderful fact about Soergel bimodules and their diagrammatic categories

is that the behavior of morphism spaces is governed by the BS objects.

Corollary A.13. The 2-functor G is faithful. 2-morphism spaces in D satisfy the
Soergel–Williamson Hom Formula [45, Theorem 7.2.2], andD categorifies the Hecke
algebroid.

Proof. This is a quick summary of an argument made almost verbatim in

the Cathedral. Recall the definitions of the Hecke algebra H (resp. Hecke
algebroid H) from [45] or from [8, Section 2.4]. Recall the definition of a

potential categorification of the Hecke algebra (resp. algebroid) from [8, Sections 2.3

and 2.4.3]. Proposition A.3) implies that D categorifies all the relations in H coming

from dihedral parabolic subgroups. As all the relations in H come from finite

parabolic subgroups, we see that D is a potential categorification of H, and therefore

induces a trace map on H. Any trace map on H is determined by its evaluation on

the subalgebroid H, or in other words, the sizes of arbitrary morphism spaces in D

(and their behavior under G) are determined by the morphism spaces between BS

objects. Thus Proposition A.12 implies that G is faithful everywhere, as desired

(c.f. [8, Sections 2.4.3 and 5.4.2]).

Theorem A.1 follows immediately. So does the fact that all clockwise loops can

be removed simultaneously. One may also assume (up to reduction) that every region

in a diagram is simply-connected.

A.5. Proof of Theorem 3.21. Recall the definition of mSBSBim and the functor

F W Fund� ! mSBSBim � D from §3.4. Our goal is to show thatF is a degree zero

equivalence. Much of what needs to be shown is already implied by Theorem A.1.
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It is an exercise in the Hecke algebroid and the basic properties of SSBim to show

that F is essentially surjective up to grading shift.

We wish to show that F is fully faithful in degree zero. However, morphism

spaces in D have a graded dimension governed by the Soergel–Williamson Hom

Formula. The fact that morphisms between 1-morphisms in the image of F are

positively graded, and that their degree 0 morphisms have the correct size, is a purely

numerological one. It was first observed by Lusztig in the seminal paper [32] from

which the idea of Geometric Satake was birthed. Thus it remains to show that F is

full, which is a purely diagrammatic argument.

A diagram representing a morphism in mSBSBim has no exterior white regions.

Consider a given white region. Using Proposition A.4 we can remove any color on

the interior of the white region. This leaves a box, and nothing more. The region

is delineated by k primary-colored strands, with no two of the same color being

adjacent. If k D 1 the region can be removed using (2.8c). If k D 2 the region can

be removed using (3.15b). If k D 3 then a neighborhood of this triangular white

region is precisely F applied to the trivalent vertex

though possibly with a box in the white region. If k > 4 then there must be a repetition

of colors. Using a now-familiar argument, one applies (2.8d) to this repetition, which

splits the white region into two smaller regions. Therefore, we may assume that every

white region is a triangle.

Remove a neighborhood of each white region, and consider the remaining diagram

on the punctured disk. The remaining diagram has no crossings, lest there exist a

brown region. We wish to show that it is in the image of F applied to a diagram

on the punctured disk without any trivalent vertices. In other words, we must show

that every red region has exactly one purple and one orange region adjacent to it (and

something similar for blue and yellow regions). Note that, because of the behavior

of the diagram at the boundary and near each puncture, the regions surrounding the

red region must alternate between orange and purple.

Consider any red region. Exactly as in the proof of Lemma A.9, if it abuts two

purple regions then one may fuse them with (3.14d), splitting the red region into two

smaller regions. This can be repeated until each red region has exactly one purple

and one orange region adjacent to it, as desired.

Therefore, every morphism between objects in mSBSBim is in the span of

diagrams in the image of F , but with boxes in various regions. Only when there are

no boxes will the diagram have degree zero. This concludes the proof of fullness. In

fact, we have proven a slightly stronger statement.

Proposition A.14. Morphism spaces (of arbitrary degree) in mSBSBim between
objects in the image of F are generated by diagrams in the image of F , under the
operation of placing boxes in various regions.
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