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Infinite rank spinor and oscillator representations

Steven V Sam� and Andrew Snowden��

Abstract. We develop a functorial theory of spinor and oscillator representations parallel to
the theory of Schur functors for general linear groups. This continues our work on developing
orthogonal and symplectic analogues of Schur functors. As such, there are a few main points
in common. We define a category of representations of what might be thought of as the infinite
rank pin and metaplectic groups, and give three models of this category in terms of: multilinear
algebra, diagram categories, and twisted Lie algebras. We also define specialization functors to
the finite rank groups and calculate the derived functors.
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1. Introduction

This paper is a continuation of [17,18]. Let us briefly recall the setup and motivation.
The theory of polynomial representations of GLn.C/ is closely tied to the theory
of polynomial functors, or equivalently, the theory of polynomial representations
of the infinite general linear group GL1.C/. The main important property is that
polynomial functors can be evaluated on a vector space, and this evaluation is an exact
functor. When one attempts to generalize this theory to the orthogonal and symplectic
groups, a few complications arise. In [17], we introduced an analogue of the category
of polynomial functors for these groups along with an evaluation functor; however, it
fails to be right-exact (or left-exact, depending on the conventions used). In [18], we
compute the higher derived functors on simple objects. In fact, the calculation of the
Euler characteristic of these functors appeared in the literature much earlier in [10],
though not under this setup.

While this accounts for all finite-dimensional representations of the orthogonal
and symplectic groups, there is an issue remaining: the orthogonal group has a
double cover, the pin group, which has many more finite-dimensional representations

�S. S. was partially supported by a Miller research fellowship and NSF grant DMS-1500069.
��A. S. was supported by NSF grants DMS-1303082 and DMS-1453893.
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(in some sense, the representations that factor through the orthogonal group only
account for “half” of them), the so-called spinor representations.

The purpose of this paper is to develop an analogous functorial theory for spinor
representations. In fact, when dealing with spinor representations from a multilinear
perspective, aswe do in this paper, it becomes transparent that there is a parallel theory
of oscillator representations (which are infinite-dimensional) for the symplectic Lie
algebra, so we develop them both simultaneously. Furthermore, it will follow that the
correct version of a symplectic Lie algebra on an odd-dimensional space to use here is
the orthosymplectic Lie superalgebra of a symplectic space with 1 odd variable (the
finite-dimensional representation theory of this Lie superalgebra is semisimple, unlike
the stabilizer Lie algebra of a maximal rank alternating form on a 2nC1 dimensional
space, and also unlike most other finite-dimensional classical Lie superalgebras).

As in [17], the first step is to construct a category of “infinite rank” spinor (or
oscillator) representations and evaluation functors to the representation categories in
finite rank. The idea of working with tensor categories of representations of infinite
rank Lie algebras previously appeared in [13] and [14]. We give three different
models for these categories: one in terms of multilinear algebraic constructions, one
in terms of diagram categories, and one in terms of finite length modules over a
twisted Lie (super)algebra. The latter interpretation allows us to use intuition from
commutative algebra and there is an advantage in using modules which are not finite
length (see [12] for this line of inquiry in the case of orthogonal and symplectic
groups). In particular, we use this interpretation to construct explicit projective
resolutions for the simple objects in the infinite rank category.

We then calculate the homology of these complexes after applying the evaluation
functor. As in [18], this calculation proceeds by interpreting the homology groups
as Tor groups for certain modules over a Lie algebra which is the nilpotent radical
in a larger classical Lie (super)algebra (coming from a Howe dual pair), and this Tor
is calculated using the “geometric technique” explicated in [22]. One difference is
that in [18], the nilpotent radical is always abelian, so that one is strictly dealing with
commutative rings. As a side product, we find analogues of determinantal ideals
in the universal enveloping algebras of free 2-step nilpotent Lie (super)algebras and
calculate their minimal free resolutions in §5.4.

Finally, some of the results in this paper are foreshadowed by existing
combinatorial results. The universal character ring for symplectic and orthogonal
groups developed in [10] provide alternative bases for the ring of symmetric functions
which behave very similarly to the Schur functions. In fact, there is a third such
basis with the same multiplication structure constants (see [20, Theorem 6] which
summarizes [7]). This paper shows that this basis comes from an analogous theory
of universal character ring for spinor representations (or oscillator representations),
see also [8] for an elaboration on the combinatorics.
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1.1. Background and notation. We always work over the complex numbers C.
V denotes the category of polynomial representations ofGL1, see [16, §§5,6] for its
basic properties and other equivalent categories. We will freely make use of Schur
functors S�; for background, the reader might consult [4, §6]. The symmetric group
on n letters is denoted Sn.

We will also make use of standard partition notation, see [16, §1] for basic
definitions. The transpose of a partition � is denoted ��. Let Q�1 be the set
of partitions with the following inductive definition. The empty partition belongs
toQ�1. A non-empty partition � belongs toQ�1 if and only if the number of rows
in � is one more than the number of columns, i.e. `.�/ D �1 C 1, and the partition
obtained by deleting the first row and column of �, i.e. .�2 � 1; : : : ; �`.�/ � 1/,
belongs to Q�1. The first few partitions in Q�1 are 0, .1; 1/, .2; 1; 1/, .2; 2; 2/.
Define Q1 D f� j �� 2 Q�1g. We write Q�1.2i/ for the set of � 2 Q�1 with
j�j D 2i , and similarly we defineQ1.2i/.

The significance of these sets are the following decompositions (see [11, §I.A.7,
Ex. 4,5]): Vi�Sym2.E/� D M

�2Q1.2i/

S�.E/;
Vi�V2

.E/
�
D

M
�2Q�1.2i/

S�.E/: (1.1)

Remark 1.1. Each partition in Q�1 is a union of certain hook partitions which are
determined by their first part a. So alternatively, they can be specified by a strictly
decreasing sequence a1 > a2 > � � � > ar . So the total number of partitions� 2 Q�1
with�1 � n is 2n. In particular, the total number of partitions� 2 Q1 with `.�/ � n
is also 2n.

Given a partition �, let rank.�/ D maxfi j �i � ig denote the size of its main
diagonal. Given two vector spaces E;F , let E ] F denote the Z=2-graded vector
space with even part E and odd part F .

Finally, ı is usually used to denote the highest weight of the spinor representation
(so implicitly ı depends on the rank of the group, but will usually be clear from
the context). Similarly, � will be used to denote the highest weight of the oscillator
representation.

Acknowledgements. We thank Robert Laudone for carefully going through the
formulas in §2 and pointing out some scalar errors that were originally present.

2. Infinite rank spinor representations

2.1. Basic definitions. Let W D C1 D
S
n�1

Cn, let W� D
S
n�1

.Cn/� be its re-

stricted dual, and put
V DW˚W�; V D V˚ C:
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We let e be a basis vector for the one dimensional spaceC inV. We put an orthogonal
form ! on V by

!..v; f /; .v0; f 0// D f 0.v/C f .v0/:

We extend this to an orthogonal form, also called !, to V by setting !.e; e/ D 1 and
!.e; v/ D 0 for all v 2 V. Put

g D
V2
.V/ D

V2
.W/˚ .W˝ e/˚ .W˝W�/˚ .W� ˝ e/˚

V2
.W�/:

We regard g as Z-graded, with W of degree 1, W� of degree �1, and e of degree 0.
We define elements of g as follows.
� For v;w 2W we let xv;w D v ^ w and xv D v ˝ e.
� For v 2W and ' 2W� we let hv;' D v ˝ '.
� For '; 2W� we let y'; D ' ^  and y' D ' ˝ e.
Define a map g! gl.V/ as follows. Suppose u 2W � V. Then

xv;wu D 0; xvu D 0; hv;'u D '.u/v;

y'u D '.u/e; y'; u D  .u/' � '.u/ :

We define the action on � 2W� in an analogous manner:

xv;w� D �.w/v � �.v/w; xv� D ��.v/e; hv;'� D ��.v/';

y'� D 0; y'; � D 0:

We also put

xv;we D 0; xve D v; hv;'e D 0; y'e D �'; y'; e D 0:

Then g is closed under the Lie bracket on gl.V/ and so is a Lie algebra. It preserves
the orthogonal form on V, and can be rightfully called so.21C 1/. We call V the
standard representation of g. A representation of g is algebraic if it appears as a
subquotient of a finite direct sum of tensor powers of the standard representation. The
category of algebraic representations is denoted Rep.g/ and is studied in [17, §4]. It
is a symmetric monoidal abelian category.

Now let �n D
VnW, and let � D

L
n�0�

n be the exterior algebra on W. For
v 2W, we let Xv be the operator on � given by

Xv.w/ D v ^ w:

The operatorsXv andXw supercommute, that is,XvXwCXwXv D 0. For ' 2W�,
we let Y' be the operator on � given by

Y'.v1 ^ � � � ^ vn/ D

nX
iD1

.�1/i�1'.vi /v1 ^ � � � ^bvi ^ � � � ^ vn:
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The operators Y' and Y also supercommute and XvY' C Y'Xv D '.v/. We let

Hv;' D XvY' I

this is the usual action of the element v' 2 gl.W/ on �. Finally, defineD by

D.v1 ^ � � � ^ vn/ D .�1/
nv1 ^ � � � ^ vn:

ThenD supercommutes with all Xv and all Y' .
Define a representation � of g on � as follows:

�.xv;w/ D XvXw ; �.xv/ D
1p
2
XvD; �.hv;'/ D Hv;' �

1
2
'.v/;

�.y'/ D
1p
2
DY' ; �.y'; / D Y'Y :

We leave it to the reader to verify that this is a well-defined representation.
Alternatively, one can use [4, §20.1], specifically the map in [4, (20.6)] (here we
make the identifications W D W˝ e �

V2V and W� D W� ˝ e �
V2V). This

is the spinor representation of g.
The map V! End.�/ defined by v 7! Xv and ' 7! Y' and e 7! 1p

2
D is a map

of g-representations (see [4, Proof of Lemma 20.16]). It follows that the map

V˝�! � (2.1)

given by v ˝ x 7! Xvx and ' ˝ x 7! Y'x and e ˝ x 7! 1p
2
Dx is a map of

g-representations.
A representation of g is spin-algebraic if it appears as a subquotient of a finite

direct sum of representations of the form

T n D V˝n ˝�:

Let Repspin.g/ denote the category of spin-algebraic representations of g. It is an
abelian category, and is naturally a module over the tensor category Rep.g/, i.e. we
have a bifunctor given by tensor product

˝WRep.g/ � Repspin.g/! Repspin.g/: (2.2)

2.2. Weyl’s construction. Pick a basis e1; e2; : : : for W and let e�1 ; e�2 ; : : : be the
dual basis of W�. Also set e�i D e�i and put e0 D e. Let t be the diagonal torus
in gl.W/ � g, which is spanned by the hi D hei ;e�i . Let X be the lattice of integral
characters of t of finite support: X consists of all maps t! C which send each hi to
an integer, and all but finitely many hi to 0. We identify X with the set of sequences
.a1; a2; : : :/ of integers with ai D 0 for i � 0. The magnitude of an element .ai /
of X is

P
i jai j. The magnitude of an algebraic representation of gl.W/ or g is the

maximum magnitude of a weight in it.
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Let X 0 be the set of characters t ! C such that each hi is sent to a half-integer
(and not an integer) and hi is sent to �12 for i � 0. Then X 0 is isomorphic to the
set of sequences .a1; a2; : : :/ where ai is a half-integer and ai D �12 for i � 0.
The set X 0 is not a group under addition, but one can add elements of X and X 0 and
get an element of X 0; in fact, X 0 is an X -torsor. Let �0 2 X 0 be the sequence .ai /
with ai D �12 for all i . We define the magnitude of an element � 2 X 0 to be the
magnitude of � � �0.

Let p � g be the parabolic subalgebra spanned by the h’s and y’s and let n
be the nilpotent subalgebra spanned by the y’s. Let also b � g be the Borel
subalgebra spanned by the y’s and hei ;e�j where j < i . Call a non-zero vector of a
g-representation a highest weight vector if it is annihilated by b.

The space T n inherits a grading from the grading of �.
Proposition 2.1. LetM be a non-zero g-submodule of T n.
(a) M \ V˝n ˝�0 ¤ 0.
(b) If M is simple, then it contains a unique, up to scalar, highest weight vector.

The weight of this vector has magnitude n.

Proof. (a) The grading on T n makes it into a filtered p-module:

F 0T n � F 1T n � F 2T n � F 3T n � � � �

where F iT n D
P
j�i V˝n ˝

Vj W. The associated graded module is V˝n ˝ �,
with n acting trivially on � and in the usual way on V.

We now claim that M \ F rT n ¤ 0, for each r � 0. This is clear for r � 0.
Suppose that M \ F rC1T n ¤ 0; we will show that M \ F rT n ¤ 0. Since V˝n
contains non-zero vectors annihilated by n, the above discussion shows that we can
pick non-zero v 2 M \ F rC1T n which is killed by n in the associated graded.
If v 2M \ F rT n, there is nothing to do, so assume otherwise and write

v D
X

cI;J .ei1 ˝ � � � ˝ ein/˝ .ej1 ^ � � � ^ ejrC1/

where i1; : : : ; in are integers and 0 < j1 < � � � < jrC1. For any X 2 n, we have
Xv 2 F rT n, and we can pick X so that Xv is non-zero: let X D ye�

j
where j 2 J

and cI;J ¤ 0. So M \ F rT n ¤ 0 and so by induction, M \ F 0T n ¤ 0. This
completes the proof.

(b) For each n, the span of the tensors built out of e1; : : : ; en; e�1 ; : : : ; e�n is a
simple submodule ofM for the subalgebra so.2nC 1/ (assuming it is non-zero), so
the uniqueness of a vector annihilated by b\ so.2nC 1/ (i.e. highest weight vector)
follows by generalities of representation theory. Furthermore, this vector will be the
same for each n, provided that n is large enough for this submodule to be non-zero.
Furthermore, from the discussion above, this vector belongs to V˝n ˝ �0. The
action of gl.W/ on V˝n ˝ �0 is the usual action tensored with �1

2
times the trace
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character. Since b \ gl.W/ is a Borel subalgebra of gl.W/, the weight of this vector
has magnitude n by [17, Proposition 4.1.8].

Let ti WT n ! T n�1 be the map given by applying the mapV˝�! � from (2.1)
to the i th factor. An important property of these maps is that ti tj C tj ti is induced
from the map V˝n ! V˝.n�2/ given by pairing the i th and j th factors. (To prove
this, it suffices to treat the n D 2 case, where it follows from an easy calculation
using the formulas defining (2.1).) Define T Œn� to be the intersection of the kernels
of the ti . This is stable under the action of Sn � g. Finally, define

�� D HomSn.M�; T
Œn�/

whereM� is the irreducible representation of Sn indexed by �.
To analyze ��, we first need to understand the finite-dimensional case. So let V

be an 2nC 1-dimensional orthogonal space and define �.n/
�

in an analogous way.

Lemma 2.2. Let ı be the highest weight for �.n/. If `.�/ � n then �.n/
�

is an
irreducible representation of Spin.V / of highest weight �C ı.

Proof. This follows from the presentation of the moduleM in [19, Proposition 4.8].
More specifically, letE be an n-dimensional vector space and setA D Sym.E˝V /.
We have a degree 1 A-linear GL.E/ � Spin.V /-equivariant map

E ˝�.n/ ˝ A! �.n/ ˝ A

which is induced by inclusionE˝�.n/ ! �.n/˝E˝�.n/which is t WE ! �.n/˝E

tensored with the identity on �.n/. The quotient of this map is the moduleM which
has a GL.E/ � Spin.V /-equivariant decomposition

M D
M
�

`.�/�n

S�E ˝�.n/� :

The Cauchy identity says that A D
L
� S�E ˝ S�V . Taking the S�E-isotypic

component of the presentation ofM then gives us

�.n/ ˝ S�=1V ! �.n/ ˝ S�V ! �
.n/

�
! 0

where S�=1V denotes the skew Schur functor. So�.n/
�

is the quotient of S�.V /˝�.n/
by the image of the maps ti . To get it as the kernel of the maps ti , we can translate
by taking duals.

Proposition 2.3. As � ranges over all partitions, the representations �� are a
complete irredundant set of simple objects of Repspin.g/.



152 S. Sam and A. Snowden

Proof. Let W.n/ be the span of e1; : : : ; en, and define W.n/
� similarly. As above, we

have a representation �.n/
�

of g.n/ Š so.2n C 1/, which is simple by Lemma 2.2.
Since �� D

S
n�1�

.n/

�
and g D

S
n�1 g

.n/, it follows that �� is irreducible for g,
and hence is a simple object of Repspin.g/. By the definition of�� and semisimplicity
of Sn, we have a decomposition

T Œn� D
M
j�jDn

M� ˝�� (2.2a)

as a representation of Sn � g, and so every constituent of T Œn� (as a g-representation)
is isomorphic to some ��. We have an exact sequence

0! T Œn� ! T n ! .T n�1/˚n; (2.2b)

and so (by induction) every simple constituent of T n is one of T Œm� for somem � n,
and thus of the form �� with j�j � n. Since every simple object of Repspin.g/ is
a constituent of some T n, it follows that every simple object is of the form �� for
some �.

Under the action of the diagonal torus, the characters of S�.V/˝� are linearly
independent, and in the Grothendieck group of Repspin.g/, we have

ŒS�.V/˝�� D Œ���C
X
j�j<j�j

c��Œ���

for some coefficients c��. So the characters of the �� are linearly independent, and
hence they are pairwise non-isomorphic.

Corollary 2.4. Every object of Repspin.g/ has finite length.

Proof. The simplicity of �� and (2.2a) shows that T Œn� is finite length. The se-
quence (2.2b) then inductively shows that T n is finite length. Since every object is a
quotient of a finite sum of T n’s, the result follows.

Proposition 2.5. We have the following:

Homg.��; T
n/ D

(
M� if n D j�j;
0 otherwise:

Proof. By Proposition 2.3, every constituent of T n is of the form �� with j�j � n.
Thus if j�j > n, there are no non-zero maps �� ! T n. Now suppose that j�j < n.
Then the image of a non-zeromap�� ! T n has non-zero intersectionwithV˝n˝�0
by Proposition 2.1. Furthermore, the weight of the highest weight vector of �� with
respect to b has magnitude j�j < n which contradicts Proposition 2.1(b). Thus,
again, there are no non-zero maps �� ! T n. Finally, suppose n D j�j. Using
the sequence (2.2b) we see that Homg.��; T

n/ D Homg.��; T
Œn�/, and the result

follows from (2.2a).
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2.3. Diagram category. A spin-Brauer diagram between a set L and L0 is a triple
.U; �; f / where
� U is a subset of L equipped with a total order,
� � is a (partial) matching on L n U ,
� f is a bijection L n .U [ V.�//! L0. Here V.�/ is the vertex set of � .
We just write � for such diagrams, and think of the vertices in U as circled. Here we
have drawn an example of a spin-Brauer diagram:

� D

� � � � �

� � � � � � ı � ı

We have not indicated the total ordering on the elements of U in this drawing.
Suppose � is a spin-Brauer diagram and � 0 is obtained by switching the two
consecutive elements i; j 2 U in the total order. Let � 00 be the spin-Brauer diagram
obtained by removing i and j from U in � , and placing an edge between them. The
Clifford relation is � C � 0 D � 00. Similar types of diagrams were considered by
Koike [9].

The downwards spin category, denoted .d�/, is the following C-linear category.
The objects are finite sets L and Hom.d�/.L;L0/ is the quotient of the vector
space spanned by the spin-Brauer diagrams by the Clifford relations. Given
.U; �; f / 2 Hom.d�/.L;L0/ and .U 0; � 0; f 0/ 2 Hom.d�/.L0; L00/, define their
composition to be .U [ f �1.U 0/; � [ f �1.� 0/; g/ where g is the restriction of
f 0f to L n .U [ f �1.U 0/ [ V.�/ [ V.f �1.� 0///. To give a sense of this with our
example above, if

� 0 D

� �

� � � � ı

then the composition � 0� is obtained by first concatenating the diagrams
� �

� � � � ı

� � � � � � ı � ı

and then simplifying to get the diagram

� 0� D

� �

� � � � � ı ı � ı
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The upwards spin category is .u�/ D .d�/op. A representation of .d�/ is aC-linear
functor F W .d�/! Vec. Let Mod.d�/ (resp., Modf.d�/) denote the abelian category
of all (resp., finite length) representations of .d�/.

For a finite set L, put KL D V˝L ˝�. Given a spin-Brauer diagram .U; �; f /

between L and L0, consider the sequence of maps

KL !KLnU !KLn.U[V.�// !KL0 ;

defined as follows. The first map applies the map V˝�! � to the tensor factors
indexed by U , in order (according to the total order on U ). The second map applies
the pairing V˝2 ! C to the tensor factors indexed by the edges of � . The third map
is induced by the bijection f . One readily verifies that the above definition gives K

the structure of a C-linear functor .d�/! Repspin.g/.
In [17, (4.2.5)], we defined .db/ (resp., .ub/), which in our current notation is

the subcategory of .d�/ (resp., .u�/) where we only use spin-Brauer diagrams with
U D ¿. This has a symmetric monoidal structure using disjoint union q. Clearly,
q extends to a bifunctor .db/ � .d�/ ! .d�/. Using [17, (2.1.14)], we get a
convolution tensor product

q#WModf.db/ �Modf.d�/ ! Modf.d�/; (2.3)

Theorem 2.6. The kernel K induces mutually quasi-inverse anti-equivalences
between Modf.d�/ and Repspin.g/. Moreover, under this equivalence, the tensor
product in (2.3) corresponds to the tensor product in (2.2).

Proof. We apply [17, Theorem 2.1.11], so we need to check its two hypotheses.
Write Kn for Kn evaluated on the set f1; : : : ; ng. The first hypothesis is that
HomSn.M�;Kn/ is irreducible; this follows from Proposition 2.3. The second
hypothesis is a converse statement thatHomRepspin.g/.��;Kn/ is a nonzero irreducible
representation of Sn; this follows from Proposition 2.5. The compatibility with tensor
products is [17, Proposition 2.1.16].

Proposition 2.7. For every partition �, the representation S�.V/˝� is an injective
object of Repspin.g/, and is the injective envelope of the simple ��.

Proof. We can use an argument similar to the proof of [17, Proposition 3.2.14].

Corollary 2.8. For every n � 0, T n is an injective object of Repspin.g/.

Proof. We have a decomposition T n D
L
�; j�jDn.S�.V/˝�/˚ dimM� .
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2.4. Universal property. Consider pairs of categories .A;B/ where A is a sym-
metric monoidal abelian category and B is an A-module, i.e. we have a biadditive
bifunctor ˝WA � B ! B equipped with the appropriate extra structure (e.g. an
associator).

Suppose that .A0;B 0/ is a second pair. By a functor F W .A;B/ ! .A0;B 0/

we mean a symmetric tensor functor F1WA ! A0 and a functor F2WB ! B 0 of
A-modules, both of which are additive. We say that F is left-exact if both F1
and F2 are. Let LEx˝..A;B/; .A0;B 0// denote the category whose objects are left-
exact functors .A;B/! .A0;B 0/ and whose morphisms are natural transformations
compatible with the extra structure.

Suppose that A 2 A and !WSym2.A/ ! C is a symmetric bilinear form
on A. If A has infinite direct sums, we can form the Clifford algebra Cl.A/ as
the usual quotient of the tensor algebra on A (see [4, §20.1]). We can then speak
of Cl.A/-modules in B. Even if A does not have infinite direct sums, we can still
define the notion of a Cl.A/-module in B: it is an object B of B equipped with a
morphism t WA˝ B ! B such that the two maps

f; gWA˝ A˝ B ! B

given by

f .x˝y˝m/ D t .x˝ t .y˝m//C t .y˝ t .x˝m//; g.x˝y˝m/ D !.x; y/m

agree. We let T .A;B/ be the categorywhose objects are tuples .A; !;B; t/ as above.
We write .A;B/ for an object of T .A;B/ when there is no danger of confusion.

Given .A;B/ 2 T .A;B/, define K.A/W .db/! A by L 7! A˝L and similarly,
define K.B/W .d�/ ! B by L 7! A˝L ˝ B . For an object M of Modf.ub/ and an
object N of Modf.u�/, define (using [17, (2.1.9)]) objects of A and B, respectively,

SM .A/ DM ˝
.db/ K.A/; SN .B/ D N ˝

.d�/ K.B/:

Then .M;N / 7! .SM .A/; SN .B// is a left-exact tensor functor .Modf.ub/;Modf.u�//!
.A;B/.

Theorem 2.9. Giving a left-exact tensor functor

.Rep.g/;Repspin.g//! .A;B/

is the same as giving an object of T .A;B/. More precisely, let M be the object
of Modf.ub/ corresponding to V in Rep.g/ and let N be the object of Modf.u�/
corresponding to � in Repspin.g/. Then the functors

LEx˝..Modf.ub/;Modf.u�//; .A;B//! T .A;B/; .F1; F2/ 7! .F1.M/; F2.N//
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and

T .A;B/! LEx˝..Modf.ub/;Modf.u�//; .A;B//;

.A;B/ 7! ..M;N / 7! .SM .A/; SN .B///

are mutually quasi-inverse equivalences.

Proof. Same proof as [17, Theorem 3.4.2].

2.5. Twisted Lie algebras. Let a D C1 ˚ Sym2.C1/, with the usual GL1
action. Define a bracket on a by Œ.v; f /; .v0; f 0/� D .0; vv0/, where v; v0 2 C1
and f; f 0 2 Sym2.C1/. This bracket is “graded-anticommutative” in that it is
anti-commutative in even degrees and commutative in odd degrees. Let U.a/ be its
universal enveloping algebra, defined in the obvious manner. We only consider a- or
U.a/-modules with compatible polynomial GL1 action.
Theorem 2.10. We have an equivalence of abelian categoriesModU.a/ ' Mod.u�/.
Under this equivalence, the simple U.a/-module S� corresponds to �� if we make
the identificationModf.u�/ D Repspin.g/ from Theorem 2.6.

Proof. LetFB be the groupoid of finite sets, and letModFB be the category of functors
FB! Vec. Schur–Weyl duality induces a symmetric monoidal equivalence between
ModFB and the category of polynomialGL1-representations (see [16, (5.4.5)]). LeteU 2 ModFB be defined as follows: eUS has a basis consisting of elements eU;�
where U is a subset of S equipped with a total order and � is a perfect matching
on S n U . Let U be defined as follows: US is the quotient of eUS by the relations
eU;� C eU 0;� D eU 00;�0 , where U 0 is obtained from U by switching (in the order)
two consecutive elements i and j , U 00 is U n fi; j g, and � 0 is � together with the
additional edge .i; j /.

We claim that U.a/ corresponds to U under Schur–Weyl duality. Under
this equivalence, the space a D C1 ˚ Sym2.C1/ corresponds to the functor
M WFB! Vec given by

MS D

(
C if S has cardinality 1 or 2;
0 otherwise;

where C is the trivial representation. Now, if V;W 2 ModFB then, by definition, we
have

.V ˝W /S D
M

SDAqB

VA ˝WB :

It follows that .TM/S (where T is the tensor algebra) has for a basis the set of
partitions of S into sets of size 1 and 2, together with a total order on the pieces of the
partition. Now, U.a/ is obtained from T.a/ by killing

V2
.a2/, the anti-symmetric
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part of .a1 ˝ a2/ ˚ .a2 ˝ a1/, and identifying Sym2.a1/ with a2 in the natural
way. Under Schur–Weyl, the first two relations correspond to ignoring the ordering
on 2-element sets; thus the quotient of TM by these relations yields eU. Further
quotienting by the Schur–Weyl dual of the third relations gives U. This proves the
claim that U.a/ corresponds to U.

We now claim that ModU is equivalent to Mod.u�/. Let e.u�/ be the category
whose objects are finite sets and whose morphisms are spin-Brauer diagrams. Then
ModeU is equivalent to Mode.u�/; this can be proved following the reasoning in
[17, §2.4]. From this, the claim easily follows: imposing the Clifford relations on
e.u�/ amounts to passing from eU to U.

Corollary 2.11. Let c��;� be the Littlewood–Richardson coefficient. We have

dimExti .��; ��/ D
X
�D��;

2iDj�jCrank.�/

c��;� :

Proof. If K� is the minimal free resolution of C over U.a/, then

Ki D U.a/˝
M
�D��;

2iDj�jCrank.�/

S�

(see Proposition 4.7 below). Then K� ˝ S� gives a minimal free resolution of the
simple U.a/-module S�. Applying HomU.a/.S�;�/ kills the differentials in this
complex, and we get the sum written above.

Remark 2.12. Let a0 be the super vector space C1j1Œ1�˚ Sym2.C1j1/. This has
a natural bracket, defined similarly to the one on a, that gives a0 the structure of a
Lie superalgebra. The category of a-modules is equivalent to a certain category of
a0-modules, and in this way one can connect Repspin.g/ to representations of a0.

2.6. Half-spinor representations. Put

g D
V2
.V/ D

V2
.W/˚ .W˝W�/˚

V2
.W�/;

Then g � g is a Lie subalgebra,V � V is stable by g, and thus a representation, called
the standard representation. A representation of g is algebraic if it is a subquotient of
a finite direct sum of tensor powers of the standard representation. We write Rep.g/
for the category of such representations.

The restriction of the action to g preserves the natural Z=2-grading on �, and
so � splits into a sum of two subrepresentations �C (the even piece) and �� (the
odd piece), the half-spinor representations of g. The action of the h’s preserves the
Z-grading on �. By restriction, we get maps of g-modules

V˝�C ! ��; V˝�� ! �C;

both of which are surjective.
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A representation of g is spin-algebraic if it appears as a subquotient of a finite
direct sum of representations of the form

T
n
D V˝n ˝�:

The space T n breaks up into a sum T
n;C
˚ T

n;�, where T n;˙ D V˝n ˝�˙. Any
spin-algebraic representation appears as a subquotient of a finite direct sum of the
representations T n;C (and similarly for T n;�). We write Repspin.g/ for the category
of spin-algebraic representations of g. It is an abelian category, and is naturally a
module over the tensor category Rep.g/, i.e. we have a bifunctor given by tensor
product

˝WRep.g/ � Repspin.g/! Repspin.g/:

Proposition 2.13. Any non-zero g-submodule of T n;C has magnitude n and any
non-zero g-submodule of T n;� has magnitude nC 1.

Proof. The proof is similar to the proof of Proposition 2.1, but with the following
statements: any non-zero submodule of V˝n ˝ �C intersects V˝n ˝ �0, and any
non-zero submodule of V˝n ˝�� intersects V˝n ˝�1.

We define T Œn� to be the intersection of the kernels of the maps T n ! T
n�1.

This breaks up as T Œn�;C ˚ T Œn�;�, where T Œn�;˙ is the intersection of the kernels of
maps T n;˙ ! T

n�1;�. Define

�� D HomSn
�
M�; T

Œn��
; �

˙

� D HomSn
�
M�; T

Œn�;˙�
Note that �� D �

C

� ˚�
�

� .
To analyze �˙

�
, we first need to understand the finite-dimensional case. So let V

be a 2n-dimensional orthogonal space, and define �.n/;˙
�

in an analogous way.

Lemma 2.14. Let ı˙ be the highest weight for �.n/;˙. If `.�/ � n then �.n/;˙
�

is
an irreducible representation of Spin.V / of highest weight �C ı˙.

Proof. Same as the proof of Lemma 2.2 except that we use [19, Proposition 4.2].

Proposition 2.15. The representations�˙� are a complete irredundant set of simple
objects of Repspin.g/.

Proof. The proof is similar to the proof of Proposition 2.3.
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Let f˙g be the category with objects labeled C and � and no non-identity
morphisms. Define Modf.d�/�f˙g in the same way as Modf.d�/ and define a
representation K of .d�/ � f˙g by

K.L;C/ D

(
V˝L ˝�C if #L is even;
V˝L ˝�� if #L is odd;

K.L;�/ D

(
V˝L ˝�� if #L is even;
V˝L ˝�C if #L is odd:

On morphisms of .d�/ � f˙g, K is defined using the maps ti as in the definition
of K . Then:
Theorem 2.16. The kernel K induces mutually quasi-inverse anti-equivalences
betweenModf.d�/�f˙g and Rep

spin.g/, as tensor categories.

Proof. Similar to the proof of Theorem 2.6.

Consider a pair of categories .A;B/ as in §2.4. DefineT .A;B/ to be the category
whose objects are tuples .A; !;BC; B�; t / where .A; !;BC ˚ B�; t / 2 T .A;B/
and the morphism t decomposes as A˝ BC ! B� and A˝ B� ! BC. In other
words,BC˚B� is aZ=2-gradedmodule over Cl.A/. Themorphisms in this category
are defined in a way similar to those in T .A;B/.
Theorem 2.17. The data of a left-exact tensor functor .Rep.g/;Repspin.g// to .A;B/
is the same as an object of T .A;B/.

Proof. Similar to the proof of [17, Theorem 3.4.2].

3. Infinite rank oscillator representations

3.1. Transpose duality. All of the objects constructed in §2 can be thought of as
representations of GL.W/, and so belong to the category Rep.GL/ described in
[17, §3.1]. We can use the transpose duality functor [17, (3.3.8)] to define an auto-
equivalence on Rep.GL/ which sends the simple object V�;� to V��;�� and which is
an anti-symmetric monoidal equivalence in each variable.

In particular, we can apply this equivalence to the objects constructed in §2 to get
a completely parallel theory of oscillator representations. In the rest of the section,
we state the relevant results and omit the proofs since they follow from duality.

3.2. Basic definitions. LetW D C1 and let W� be its restricted dual and put

V DW˚W�; V D C ] V:

Thus V is a Z=2-graded vector space; in fact, we regard it as Z-graded with
deg.C/ D 0 and deg.W/ D 1 and deg.W�/ D �1. As before, we let e be a
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basis vector of C. We put a form ! on V by

!..v; f /; .v0; f 0// D f 0.v/ � f .v0/:

We extend this to a supersymmetric form, also called !, to V by !.e; e/ D 1 and
!.e; v/ D 0 for all v 2 V. Put

g D osp.1j21/ Š Sym2.V/
D Sym2.W/˚W˚ .W˝W�/˚W� ˚ Sym2.W�/;

We name some elements of g:
� For v;w 2Wwe let xv;w D vw 2 Sym2.W/ � g and xv D v˝ e 2W˝C � g;
� For v 2W and ' 2W� we let hv;' D v ˝ ' 2W˝W� � g;
� For'; 2W�we lety'; D' 2 Sym2.W�/ � g andy'De˝ ' 2 C˝W � g.

Define a map g! gl.V/ as follows. Suppose u 2W � V. Then

xv;wu D 0; xvu D 0; hv;'u D '.u/v;

y'u D '.u/; y'; u D  .u/' C '.u/ :

We define the action of � 2W� in an analogous manner:

xv;w� D �.w/v C �.v/w; xv� D �.v/; hv;'� D �.v/';

y'� D 0; y'; � D 0:

We also set

xv;we D 0; xve D v; hv;'e D 0; y'e D '; y'; e D 0:

Then g is closed under the Lie superbracket on gl.V/ and so is a Lie superalgebra.
It preserves the form ! on V which is why we have called it osp.1j21/. We call V
the standard representation of g. We say that a representation of g is algebraic if
it appears as a subquotient of a finite direct sum of tensor powers of the standard
representation.

Let rn D SymnW, and let r D
L
n�0 r

n be the symmetric algebra onW. For
v 2W, we let Xv be the operator on r given by

Xv.w/ D vw:

The operators Xv and Xw commute. For ' 2 W�, we let Y' be the operator on r
given by

Y'.v1 � � � vn/ D

nX
iD1

'.vi /v1 � � �bvi � � � vn:
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The operators Y' and Y also commute and XvY' � Y'Xv D �'.v/. We let

Hv;' D XvY' I

this is the usual action of the element v' 2 gl.W/ on r. Finally, defineD by

D.v1 � � � vn/ D .�1/
nv1 � � � vn:

ThenD supercommutes with all Xv and all Y' .
We now define a representation � of g on r, as follows:

�.xv;w/ D XvXw ; �.xv/ D XvD; �.hv;'/ D Hv;' �
1
2
'.v/;

�.y'/ D DY' ; �.y'; / D Y'Y :

We leave it to the reader to verify that this is a well-defined representation. This is
the oscillator representation of g.

The map V! End.r/ defined by v 7! Xv and ' 7! Y' and e 7! D is a map of
g-representations. It follows that the map

V˝r ! r

given by v ˝ x 7! Xvx and ' ˝ x 7! Y'x and 1 ˝ x 7! Dx is a map of
g-representations.

We say that a representation of g is osc-algebraic if it appears as a subquotient of
a finite direct sum of representations of the form

T n D V˝n ˝r:

We write Reposc.g/ for the category of osc-algebraic representations of g. It is an
abelian category, and is naturally a module over the tensor category Rep.g/, i.e. we
have a bifunctor given by tensor product

˝WRep.g/ � Reposc.g/! Reposc.g/:

3.3. Weyl’s construction (infinite case). Let ti WT n ! T n�1 be the map given by
applying the mapV˝r ! r to the i th factor. An important property of these maps
is that ti tj � tj ti is induced from the map V˝n ! V˝.n�2/ given by the symplectic
pairing on the i th and j th factors. Define T Œn� to be the intersection of the kernels
of the ti . This is stable under the action of Sn � g. Finally, define

r� D HomSn.M�; T
Œn�/

where M� is the irreducible representation of Sn indexed by �. We now have a
number of results that are analogous to those in §2.2.
Proposition 3.1. As � ranges over all partitions, the representations r� are a
complete irredundant set of simple objects of Reposc.g/.
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Corollary 3.2. Every object of Reposc.g/ has finite length.
Proposition 3.3. Any non-zero g-submodule of T n has magnitude n.

Proposition 3.4. We have the following:

Homg.r�; T
n/ D

(
M� if n D j�j;
0 otherwise:

3.4. Diagram category. An osc-Brauer diagram between a set L and L0 is a triple
.U; �; f / where
� U is a subset of L equipped with a total order on U ,
� .�; f / is a directed Brauer diagram on .L nU/qL0, i.e. � is a directed matching
on L nU and f WL n .U [ V.�//! L0 is a bijection. Here V.�/ is the vertex set
of � .

We just write � for such diagrams, and think of the vertices in U as circled. The
main difference between osc-Brauer diagrams and spin Brauer diagrams is that the
matching on L is directed. Pictorially, we may represent this as follows

� D

� � � � �

� � � � � � ı � ıvv

where we have used an arrowhead to denote a direction for the edge in the matching.
Suppose � is an osc-Brauer diagram and � 0 is obtained by switching the two

consecutive elements i < j of U in the total order. Let � 00 be the spin-Brauer
diagram obtained by removing i and j from U in � , and placing a directed edge
from i to j . The Weyl relation is � � � 0 D � 00.

The downwards oscillator category, denoted .dr/, is the following C-linear
category. The objects are finite sets. The set Hom.dr/.L;L0/ is the quotient of
the vector space spanned by the osc-Brauer diagrams by the Weyl relations and by
the relation � D .�1/n� 0 if � 0 is a directed Brauer diagram obtained from � by
reversing the orientation on n different edges in the matching. Given .U; �; f / 2
Hom.d�/.L;L0/ and .U 0; � 0; f 0/ 2 Hom.d�/.L0; L00/, define their composition to
be .U [ f �1.U 0/; � [ f �1.� 0/; g/ where g is the restriction of f 0f to L n .U [
f �1.U 0/[V.�/[V.f �1.� 0///. The upwards oscillator category is .ur/ D .dr/op.
A representation of .dr/ is a linear functor F W .dr/! Vec. We let Modf.dr/ denote
the abelian category of finite length representations of .dr/.

Define a representationK of .dr/ byKL D V˝L˝r. An osc-Brauer diagram�
betweenL andL0 induces a map KL !KL0 by using the usual recipe on the Brauer
part, and using the maps V˝n˝r ! V˝.n�1/˝r on the U part, with the ordering
on U specifying the order of these maps.
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In [17, (4.2.11)], we defined .dsb/, which in our current notation is the subcategory
of .dr/ where we only use osc-Brauer diagrams with U D ¿. This has a symmetric
monoidal structure using disjoint unionq. Clearly,q extends to a bifunctor .dsb/�
.dr/! .dr/. Using [17, (2.1.14)], we get convolution tensor products

q�WModf.dsb/ �Modf.dr/ ! Modf.dr/; (3.1)

Theorem 3.5. The kernel objectK induces mutually quasi-inverse anti-equivalences
between Modf.dr/ and Reposc.g/. Furthermore, in both cases, the tensor product
in (3.1) is taken to the natural tensor product

˝WRep.g/ � Reposc.g/! Reposc.g/;

Proposition 3.6. For every partition �, the representation S�.V/˝r is injective in
Reposc.g/, and is the injective envelope of the simple r�.
Corollary 3.7. For every n � 0, T n is an injective object of Reposc.g/.

3.5. Universal property. Consider categories A and B as in §2.4. Suppose that
A 2 A and ! W Sym2.A/! C is an alternating bilinear form on A. If A has infinite
direct sums, we can form the Weyl algebra W.A/ as the usual quotient of the tensor
algebra on A. We can then speak of W.A/-modules in B. Even if A does not have
infinite direct sums, we can still define the notion of a W.A/-module in B: it is an
object B of B equipped with a morphism t WA˝ B ! B such that the two maps

f; g W A˝ A˝ B ! B

given by

f .x˝y˝m/ D t .x˝ t .y˝m//� t .y˝ t .x˝m//; g.x˝y˝m/ D !.x; y/m

agree. We let T 0.A;B/ be the category whose objects are tuples .A; !;B; t/ as
above. We write .A;B/ for an object of T 0.A;B/ when there is no danger of
confusion.

Given .A;B/ 2 T 0.A;B/, define K.A/ W .dsb/ ! A by L 7! A˝L and
similarly, define K.B/ W .dr/ ! B by L 7! A˝L ˝ B . For an object M of
Modf.usb/ and an object N of Modf.ur/, define

SM .A/ DM ˝
.ub/ K.A/; SN .B/ D N ˝

.ub/ K.B/:

Then .M;N / 7! .SM .A/; SN .B// defines a left-exact tensor functor�
Modf.usb/;Modf.ur/

�
! .A;B/:

Theorem 3.8. To give a left-exact tensor functor .Rep.g/;Reposc.g// to .A;B/ is
the same as giving an object of T 0.A;B/. More precisely, letting M be the object
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of Modf.usb/ corresponding to V in Rep.g/ and letting N be the object of Modf.ur/
corresponding to r in Reposc.g/, the functors

LEx˝
��
Modf.usb/;Modf.ur/

�
; .A;B/

�
! T 0.A;B/; .F1; F2/ 7!

�
F1.M/; F2.N/

�
and

T 0.A;B/! LEx˝
��
Modf.usb/;Modf.ur/

�
; .A;B/

�
;

.A;B/ 7!
�
.M;N / 7!

�
SM .A/; SN .B/

��
are mutually quasi-inverse equivalences.

3.6. Twisted Lie algebras. Let a be the twisted Lie algebra C1 ˚
V2
.C1/ with

the Lie bracket Œ.v; f /; .v0; f 0/� D .0; v ^ v0/. This is Z-graded with deg.C1/ D 1
and deg.

V2
.C1// D 2. We only consider a-modules with a compatible polynomial

GL1-action.

Theorem 3.9. We have an equivalence of abelian categories ModU.a/ ' Mod.ur/.
If we make the identificationModf.ur/ D Reposc.g/ from Theorem 3.5, then the simple
U.a/-module S� is sent to r�.

Corollary 3.10. We have

dimExtiReposc.g/.r�;r�/ D
X
�D��;

2iDj�jCrank.�/

c��;� :

3.7. Oscillator-spin duality. The following result is an extension of orthogonal-
symplectic duality [17, (4.3.4)].

Theorem 3.11. We have an asymmetric monoidal equivalence of pairs of categories�
Rep

�
so.21C 1/

�
;Repspin

�
so.21C 1/

��
'
�
Rep

�
osp.1j21/

�
;Reposc

�
osp.1j21/

��
:

Proof. Given .A;B/, let A� be the symmetric monoidal abelian category obtained
from A by swapping the symmetry � on A for �� . Then there is an obvious
equivalence T .A;B/ ' T 0.A�;B/. Now we get the first equivalence, by using the
universal properties Theorem 2.9 and Theorem 3.8.

3.8. Half-oscillator representations. Put

g D sp.21/ Š Sym2.V/
D Sym2.W/˚ .W˝W�/˚ Sym2.W�/:
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Then g � g is a Lie subalgebra, and V � V is stable by g, and thus a representation,
called the standard representation. A representation of g is algebraic if it is a
subquotient of a finite direct sum of tensor powers of the standard representation. We
write Rep.g/ for the category of such representations.

The action of g on r preserves the natural Z=2-grading, and so r splits into a
sum of two subrepresentations rC and r�, the half-oscillator representations of g.
The action of the h’s preserves the Z-grading on r. We have maps of g-modules

V˝rC ! r�; V˝r� ! rC;

both of which are surjective.
A representation of g is osc-algebraic if it appears as a subquotient of a finite

direct sum of representations of the form

T
n
D V˝n ˝r:

The space T n breaks up as a sum T n;C˚T n;�, and any osc-algebraic representation
appears as a subquotient of a finite direct sum of the representations T n;C

(and similarly for T n;�). We write Reposc.g/ for the category of osc-algebraic
representations of g. It is an abelian category, and is naturally a module over the
tensor category Rep.g/, i.e. we have a bifunctor given by tensor product

˝ W Rep.g/ � Reposc.g/! Reposc.g/:

We define T Œn� to be the intersection of the kernels of the maps T n ! T
n�1.

This breaks up as T Œn�;C ˚ T Œn�;�. Define

r
˙

� D HomSn.M�; T
Œn�;˙

/:

The representationsr˙ are a complete irredundant set of simple objects of Reposc.g/.
We define a representation K of .dr/ � f˙g by

K.L;C/ D

(
V˝L ˝rC if #L is even;
V˝L ˝r� if #L is odd;

K.L;�/ D

(
V˝L ˝r� if #L is even;
V˝L ˝rC if #L is odd:

Theorem 3.12. The functors defined by K give mutually quasi-inverse anti-
equivalences betweenModf.dr/�f˙g and Rep

osc.g/.

Consider a pair of categories .A;B/ as in §2.4. Define T 0.A;B/ to be the
category whose objects are tuples .A; !;BC; B�; t / where .A; !;BC ˚ B�; t / 2
T 0.A;B/ and the morphism t decomposes as A˝ BC ! B� and A˝ B� ! BC.
In other words, BC ˚ B� is a Z=2-graded module over W.A/.
Theorem 3.13. Giving a left-exact tensor functor .Rep.g/;Repspin.g//! .A;B/ is
the same as giving an object of T 0.A;B/.
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Finally, we have osc-spin duality:
Theorem 3.14. We have asymmetric monoidal equivalences of pairs of categories�

Rep
�
so.21/

�
;Repspin

�
so.21/

��
'
�
Rep

�
sp.21/

�
;Reposc

�
sp.21/

��
:

4. Invariant theory

The goal of this section and the next is to extend the results of [18] to the categories
that we just defined.

4.1. Spinors. LetE be a vector space of dimensionm and define a supersymmetric
orthogonal form Q! on the Z=2-graded vector space

QE D C ] .E ˚E�/
by

Q!
�
.c; e; f /; .c; e0; f 0/

�
D cc0 C f 0.e/ � f .e0/:

The Lie superalgebra osp. QE/ Š osp.1j2m/ has a natural Z-grading supported on
Œ�2; 2�:

osp. QE/ D Sym2.E�/˚E� ˚ gl.E/˚E ˚ Sym2.E/:

Let V be a vector space of dimensionN with a nondegenerate symmetric bilinear
form. The tensor product of the two forms is a nondegenerate supersymmetric bilinear
form on

V ˝ QE D V ]
�
V ˝ .E ˚E�/

�
;

and we get an embedding

so.V / � osp. QE/ � osp.V ˝ QE/ Š osp.N j2mN/:

Let W be a maximal isotropic subspace of V . Then W ] .E ˝ V / is a maximal
isotropic subspace of V ˝ QE. As a vector space, the superspinor representation of
osp.V ˝ QE/ is

M D Sym.E ˝ V /˝
�^
.W /:

We can identify � D
V�
.W / with the spinor representation of Pin.V /, the double

cover of the orthogonal group O.V /. Consider the action of osp. QE/ on M. The
action of Sym2.E/ is multiplication by the so.V /-invariant polynomials Sym2.E/ �
Sym2.E ˝ V / and the action of E comes from the natural inclusion � � V ˝�:

E ˝ Symi .E ˝ V /˝� � E ˝ V ˝ Symi .E ˝ V /˝�
! SymiC1.E ˝ V /˝�:
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There is a non-degenerate bilinear form on the spinor representation M which is
preserved by osp.V ˝ QE/. The actions of E� and Sym2.E�/ are adjoint to the
actions of E and Sym2.E/ under this bilinear form, and the action of gl.E/ is
the usual one tensored with N=2 times the trace function (the even subalgebra of
osp. QE/ is so.E ˚E�/ and the action of this subalgebra ignores �, and is described
in [5, §8.2]). Let ı be the highest weight of �. Given a partition �, which we
interpret as a dominant weight of Pin.V /, let V�Cı be the irreducible highest weight
representation of Pin.V / with highest weight �C ı, and set

M� D HomPin.V /.V�Cı ;M/:

Note that g�.E�/ D E� ˚ Sym2.E�/ is a subalgebra of osp. QE/ Š osp.1j2m/ and
hence act on M. Define lowest-weight to mean annihilated by the lower-triangular
part g�.E�/. Let M� be the subspace of M killed by g�.E�/, i.e. the space of
lowest-weight vectors. Then we have a multiplication map

m W U.g�.E//˝M� !M:

Proposition 4.1.

(a) m is surjective.

(b) As a representation of gl.E/ � Pin.V /, we have

M� D
M

2`.�/�dimV

S�.E/˝ V�Cı :

(c) M is a semisimple .osp. QE/ � Pin.V //-module, and decomposes as

M D
M
�

2`.�/�dim.V /

M� ˝ V�Cı ;

whereM� is a simple lowest-weight representation andM� ŠM� if and only
if � D �.

Proof. (a) Say an element ofM has degree d if it lives in Symd .E˝V /˝
V�
.W /.

The action of g�.E�/ strictly decreases the degree of an element, so if an element v
is not in M�, there exists x 2 g�.E�/, such that xv ¤ 0 has smaller degree. By
adjointness, v can be generated by xv, and by induction on d , xv can be generated
by M�. Now, using the decomposition U.osp. QE// D U.g�.E�// ˝ U.gl.E// ˝
U.g�.E// which comes from the Poincaré–Birkhoff–Witt theorem, we see that every
element that can be generated by M� using U.osp. QE// can be done so using just
U.g�.E//.
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(b) First, g�.E/ D E� ˚ Sym2.E�/ and the action of Sym2.E�/ is only on
Sym.E ˝ V /. The kernel of this action is the space of harmonic polynomials
discussed in [5, Theorem 9.1]. Explicitly, it has a decompositionM

2`.�/�dimV

S�.E/˝ S�.V /:

To take the kernel by the action of E� on S�.E/˝ S�.V /, we need to compute the
kernel of

S�.E/˝ S�.V /˝�!
M
�

S�.E/˝ S�.V /˝�

using the maps t discussed in §2.2. From Lemmas 2.2 and 2.14, we deduce that the
kernel is S�.E/˝ V�Cı .

(c) It follows immediately from (a) and (b) that M has a decomposition as above
where M� is a lowest-weight representation generated by S�.E/. If M� were
reducible, then it would have lowest-weight vectors besides S�.E/; however, the
decomposition ofM� is multiplicity-free, so this does not happen.

Remark 4.2. The decomposition in (c) is a special case of the one in [1, TheoremA.1]
when N is even.

4.2. Oscillators. Now define an orthogonal form !0 on

E 0 D C˚E ˚E�

by
!0..c; e; f /; .c0; e0; f 0// D cc0 C f 0.e/C f .e0/:

The Lie algebra so.E 0/ Š so.1C 2m/ has a natural Z-grading supported on Œ�2; 2�:

so.E 0/ D
V2
.E�/˚E� ˚ gl.E/˚E ˚

V2
.E/:

If N is even, let U be a symplectic vector space of dimension N . If N is odd,
let U be a superspace of dimension .1jN � 1/ with a superorthogonal form (so the
odd part is a symplectic space in the usual sense).

For uniformity of notation, we write osp.U / for the Lie (super)algebra preserving
the form onU . We also letMp.U / denote themetaplectic cover of the Lie supergroup
OSp.U /. Rather than define these groups precisely, we just need to know that the
half-oscillator representations of §3.8 always appear together, that is, there is a
nontrivial element in Mp.U / that takes one to the other (so this is only an issue
when N is even). The tensor product of !0 with this orthosymplectic form gives an
orthosymplectic form on U ˝E 0, and we get an embedding

osp.U / � so.E 0/ � osp.U ˝E 0/ Š

(
osp.2mC 1j.2mC 1/.N � 1// N odd;
sp.2mN CN/ N even:
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LetW be a maximal isotropic subspace of U (now just thought of as an ungraded
vector space). ThenW ˚ .E ˝ U/ is a maximal isotropic subspace of U ˝E 0. We
identify r D Sym.W / with the oscillator representation of osp.U /. As a vector
space, the oscillator representation of osp.U ˝E 0/ is

N D Sym.E ˝ U/˝ Sym.W /:

This can be analyzed in the same way that M was analyzed in §4.1, so we omit the
proofs and just state the analogous results.

Let � be the highest weight of the oscillator representationr. Given a partition �,
which we interpret as a dominant weight ofMp.U /, set

N� D HomMp.U /.V�C�;N/:

Note that g.E�/ D E� ˚
V2
.E�/ is a subalgebra of so.E 0/ and hence acts on N.

Let N� be the subspace of N annihilated by g.E�/. Then we have a multiplication
map

m W U.g.E//˝N� ! N:

Proposition 4.3.
(a) m is surjective.
(b) As a representation of gl.E/ �Mp.U /, we have

N� D
M

2`.�/�dimV

S�.E/˝ V�C�:

(c) N is a semisimple .so.E 0/ �Mp.U //-module, and decomposes as

N D
M
�

2`.�/�dim.V /

N� ˝ V�C�;

where N� is a simple lowest-weight representation and N� Š N� if and only
if � D �.

4.3. Koszul complexes. Let g.E/ D E ˚
V2
.E/ be the free 2-step nilpotent Lie

algebra on E. As a vector space, its universal enveloping algebra is (for the second
equality, one can use (1.1) together with the Pieri rule [16, (3.10)])

U
�
g.E/

�
D Sym.E/˝ Sym

�V2
.E/

�
D

M
�

S�E:

The Chevalley–Eilenberg complex K.g.E//� of g.E/ is given by K.g.E//i D
U.g.E// ˝

Vi g.E/ and is a projective resolution of the trivial module C. But
this resolution is not minimal, i.e. the entries of the differentials do not belong to the
augmentation ideal of U.g.E//.
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Proposition 4.4. The terms of the minimal subcomplex K.g.E//� of K.g.E//� are

K.g.E//i D U.g.E//˝
M
�D��;

2iDj�jCrank.�/

S�E:

Proof. This follows from either [6] or [21].

We have a natural surjection of algebras U.g.E//! Sym.E/.

Lemma 4.5. TorU.g.E//i .Sym.E/;C/ D
Vi
.
V2
.E//.

Proof. Consider the symmetric algebra S D Sym.E ˚
V2
.E//. Let I be the

ideal generated by
V2
.E/. Then S=I D Sym.E/ as a vector space. Since I is

linear, it is generated by a regular sequence, and so TorSi .S=I;C/ D
Vi
.
V2
.E//.

The Poincaré–Birkhoff–Witt theorem gives a GL.E/-equivariant flat family with
generic fiber U.g.E// and special fiber S . This degeneration takes the quotient
map U.g.E// ! Sym.E/ to S ! S=I . The dimension of Tor modules is upper
semicontinuous for flat families, so we have

dimC TorU.g.E//i

�
Sym.E/;C

�
� dimC TorSi .S=I;C/:

Since TorS� .S=I;C/ is multiplicity-free as a GL.E/-representation, and the
equivariant Euler characteristic is preserved in flat families, we get an isomorphism
of GL.E/-modules TorU.g.E//i .Sym.E/;C/ Š TorSi .S=I;C/.

Finally, let � be the spinor representation of so.E 0/. Then g.E/ is a nilpotent
subalgebra of so.E 0/ and we can calculate the homology of the restriction of� using
Kostant’s theorem:
Proposition 4.6. As a gl.E/-representation, we have

TorU.g.E//i .�;C/ D
î �

Sym2.E/
�
˝ C.� 12 ;:::;� 12 /:

In particular, there is an acyclic GL.E/-equivariant complex of free U.g.E//-
modules with terms U.g.E//˝

Vi
.Sym2.E//.

Proof. We follow the exposition of Kostant’s theorem from [15, §2.1]. In that
notation, set � to be the highest weight of �, which in coordinates, is the sequence
.1
2
; : : : ; 1

2
/ (this has length m D dimE) and � D .2m�1

2
; 2m�3

2
; : : : ; 1

2
/. Then

Tori .�;C/ is a sumof representations of gl.E/whose highestweights� are dominant
and of the form w.�C �/ � � for w in the Weyl group of type Bm (i.e. the group of
signed permutations of sequences of length m).

First, we claim that this happens if� is of the form .��mC 1
2
; : : : ;��1C

1
2
/where

� 2 Q1 and in this case `.w/ D j�j=2; this follows from [19, Proof of Lemma 4.6].
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Second, the total number of � is 2m (the size of the Weyl group of so.E 0/ divided by
the Weyl group of gl.E/), and the total number of � 2 Q1 with `.�/ � m is also 2m
(Remark 1.1). Using (1.1), we get the result up to duality; since � Š ��, we can
finish using Poincaré duality on Tor.

For the last part, we can use this Tor calculation to build an acyclic complex of
free U.g.E//-modules with terms Tori .�;C/ ˝ U.g.E//. Now twist the complex
by C. 12 ;:::; 12 /.

If we apply transpose duality to g.E/, we get the free 2-step nilpotent Lie
superalgebra on E: g�.E/ D E ˚ Sym2.E/. As a vector space, its universal
enveloping algebra is

U
�
g�.E/

�
D

�^
E ˝ Sym

�
Sym2.E/

�
D

M
�

S�E: (4.1)

The above calculations for g.E/ immediately give calculations for g�.E/:
Proposition 4.7. The minimal free resolution K.g�.E//� of C over U.g�.E// has
terms

K.g�.E//i D U.g�.E//˝
M
�D��;

2iDj�jCrank.�/

S�E:

Proposition 4.8. There is a free resolution F� of r with terms Fi D U.g�.E// ˝Vi
.
V2
.E//.

Recall the map m W U.g�.E//˝M� !M defined in §4.1.
Proposition 4.9. If 2 dimE � dimV , then as representations of GL.E/, both
U.g�.E//˝M� andM have finite multiplicities and are isomorphic. In particular,
m is an isomorphism,M is a free module overU.g�.E//, andTorU.g

�.E//
i .M;C/ D 0

for i > 0.

Proof. Since m is surjective by Proposition 4.1(a), it suffices to show that their
characters are the same, and we use Œ�� to denote characters. From [19,
Proposition 4.8] and Proposition 4.1(b), we have

ŒM�� D ŒSym.E ˝ V /�
X
i�0

.�1/i
X
˛D˛�

2iDj˛jCrank.˛/

ŒS˛E ˝��:

Multiply both sides by ŒU.g�.E//�. Then the right hand side becomes X
i�0

.�1/i ŒK.g�.E//i �
!
ŒSym.E ˝ V /˝�� D ŒSym.E ˝ V /˝�� D ŒM�;

where in the first equality, we used that K.g�.E//� is a resolution of C
(Proposition 4.7). In conclusion, ŒU.g�.E//˝M�� D ŒM�, so we are done.
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Corollary 4.10. In K.Repspin.so.21C 1///, we have

ŒS�.V/˝�� D
X
˛;ˇ

c�˛;ˇ Œ�ˇ �:

Similarly, in K.Reposc.osp.1j21///, we have

ŒS�.V/˝r� D
X
˛;ˇ

c�˛;ˇ Œrˇ �:

Proof. It suffices to prove this for V with dimV finite, but sufficiently large. Pick E
with dimE � 0 and keep dimV � 2 dimE. From Proposition 4.9, we get
ŒU.g�.E// ˝M�� D ŒM�. Then S�.V/ ˝ � is the coefficient of S�E in M D

Sym.E ˝ V /˝� using the Cauchy identity Sym.E ˝ V / D
L
� S�.E/˝ S�.V /

[16, (3.13)]. The desired sum is the coefficient of S�E in U.g�.E//˝M� (use (4.1)
and Proposition 4.1).

The second formula follows from the first one by applying transpose duality.

Proposition 4.11. Wehave an injective resolution��!F.�/� inRepspin.so.21C1//
where

F.�/i D
M
�D��

2iDj�jCrank.�/

S�=�V˝�; (4.1a)

and an injective resolution r� ! F.�/� in Reposc.osp.1j21// where

F.�/i D
M
�D��

2iDj�jCrank.�/

S�=�V˝r: (4.1b)

Proof. The first resolution is obtained by taking the dual of the resolution in [19,
Remark 4.9] and taking the limit dimV !1. The second resolution is obtained by
applying transpose duality (see §3.1) to the first one.

5. Derived specialization

5.1. Modification rule. ApplyingTheorem2.9 to the spinor representation ofPin.N /,
we obtain a left-exact specialization functor

�N WRepspin.so.21C 1//! Rep.Pin.N //:

Now let Sp.N / be the usual symplectic group if N D 2n is even, and the
orthosymplectic group OSp.1j2n/ if N D 2n C 1 is odd. Let Mp.N / be its
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metaplectic cover. Applying Theorem 3.8 to the oscillator representation, we obtain
a left-exact specialization functor

�N WReposc.osp.1j21//! Rep.Mp.N //:

The goal of this section is to calculate the right derived functors of �N on the simple
objects �� and r�. Write C spin and Cosc in place of Repspin.so.21 C 1// and
Reposc.osp.1j21//.
Definition 5.1. Let n D bN=2c, so that N 2 f2n; 2n C 1g. Given a partition ˛
with more than n parts, let R˛ be a border strip of length 2`.˛/ � N � 1 if it
exists, and let c.R˛/ be the number of its columns. Then we set ˇ D ˛ n R˛ ,
and jN .˛/ D jN .ˇ/C c.R˛/ and �N .˛/ D �N .ˇ/. If it does not exist, we define
jN .˛/ D1 and leave �N .˛/ undefined.
Remark 5.2. We can rephrase this border strip rule in terms of a Weyl group action
on ˛� using � D �1

2
.N C 1;N C 3;N C 5; : : : / and the Weyl group W.BC1/.

More specifically, if �N .˛/ is defined, then there exists a unique w 2 W.BC1/ so
that w.˛� C �/ � � D �N .˛/�, and we have `.w/ D jN .˛/. If �N .˛/ is undefined,
then there exists a non-identity w so that w.˛� C �/ � � D ˛�. This is shown in
[18, Proposition 3.5] when N D 2n C 1 is odd, and the same proof applies when
N D 2n is even (the definitions of �2nC1 and j2nC1 given here coincide with the
definitions of �2n and i2n given in [18, §3.4]).
Proposition 5.3. The modification rule above calculates the Euler characteristic
of the derived specialization: in K.Spin.N //, we have

P
i�0.�1/

i ŒRi�N��� D
.�1/jN .�/ŒV�N .�/Cı �.

Proof. We will use the Weyl group description in Remark 5.2. The Grothendieck
group of C spin is isomorphic to the ring of symmetric functions ƒ in such a way
that the injective module S� ˝� corresponds to the Schur function s�. For each �,
define s�

�
by

s�� D
X
�D��

.�1/.j�jCrank.�//=2s�=�: (5.0a)

This is the basis (with the same notation) defined in [20, (4.1)]. By taking the Euler
characteristic of (4.1a), we deduce that the simple objects �� map to the basis s�

�
.

Write er D s1r and e�r D s�1r D er � er�1. Write e�r for the column vector
.e�r ; e

�
rC1 C e

�
r�1; e

�
rC2 C e

�
r�2; : : : /

T . Applying the involution !� [20, (5.17)] to
the determinantal formula [20, Proposition 12], we get

s�� D det
h
e�
�
�
1

e�
�
�
2
�1
� � � e�

�
�

`
�.`�1/

i
(5.0b)

where ` D `.��/ D �1, and we have taken the first ` entries from each row e�
�
�

i
�.i�1/

to get a square matrix. If 2`.�/ � N , this formula is also valid for the character
of V�Cı if we interpret er as the character of

Vr CN ˝�.
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Finally, we need to understand what happens when 2`.�/ > N . We haveVr CN Š
VN�r CN as representations of Spin.N /, which implies that er D eN�r

in K.Spin.N //. In particular, e�r D �e�NC1�r , where we interpret e�r D 0 for
r < 0, and e�r D �e�NC1�r in K.Spin.N //. In particular, the operations of replacing
e�
�
�

i
�.i�1/

with �e�
NC1��

�

i
C.i�1/

and rearranging rows of (5.0b) corresponds to the

action ofW.BC1/ on ���� as described in Remark 5.2. Each of these two types of
swaps introduces a negative sign to the determinantal formula, which is exactly the
sign function on W.BC1/. This finishes the proof.

5.2. Spinors. Maintain the notation from §4. Recall that N D dimV .
Theorem 5.4. We have

TorU.g
�.E//

i .M;C/ D
M

jN .�/Di

S�.E/˝ V�N .�/Cı

as representations of GL.E/ � Pin.V /.
We defer the proof to §6.2 and §6.3.

Corollary 5.5. We have

Hi .g�.E/IM�/ D
M
�

jN .�/Di
�N .�/D�

S�.E/:

Proof. This is obtained from Theorem 5.4 by taking the V�Cı -isotypic component.

Corollary 5.6. The right-derived functors of �N WC spin ! Rep.Pin.V // on simple
objects are

.Ri�N /.��/ D

(
V�N .�/Cı if i D jN .�/;
0 else:

Proof. From (4.1a), we have an injective resolution 0! �� ! F.�/� ! 0 in C spin

where
F.�/i D

M
�D��

2iDj�jCrank.�/

S�=�.V/˝�:

Recall that
K.g�.E//i D

M
�D��

2iDj�jCrank.�/

S�.E/

and thatM D Sym.E˝V /˝Vı as aGL.E/-representation. So when we apply �N ,
we replace V by V , and we see that F.�/� is the dual of the S�E-isotypic component
ofK.g�.E//�˝U.g�.E//M. The homology of the latter is computed by Theorem 5.4,
so we get the desired result.
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5.3. Oscillators. Maintain the notation from §4. Since (4.1a) and (4.1b) have the
exact same form, we conclude that the modification rule described in Definition 5.1
also calculates the Euler characteristic of the derived specialization from Cosc:

Proposition 5.7. We have an identity of characters
P
i�0.�1/

i ŒRi�Nr�� D
.�1/jN .�/ŒV�N .�/C��.

Theorem 5.8. We have

TorU.g.E//i .N;C/ D
M

jN .�/Di

S�.E/˝ V�N .�/C�

as representations of GL.E/ �Mp.V /.
We defer the proof to §6.4 and §6.5.

Corollary 5.9. We have

Hi .g.E/IN�/ D
M
�

jN .�/Di
�N .�/D�

S�.E/:

Proof. This is obtained from Theorem 5.8 by taking the V�C�-isotypic component.

Corollary 5.10. The right-derived functors of �N WCosc ! Rep.Mp.N // on simple
objects are given by

.Ri�N /.r�/ D

(
V�N .�/C� if i D jN .�/;
0 else:

Remark 5.11. In Corollary 5.5 and 5.9, we see examples of modules where the
homology with respect to a parabolic subalgebra is multiplicity-free with respect to
the action of the Levi subalgebra. This is consistent with the guess that these modules
are Kostant modules in the sense of [3, §5.2], i.e. they have resolutions by direct
sums of parabolic Verma modules. We did not attempt to make the combinatorial
translation for N� to apply [3, Theorem 5.15], and we could not find a reference for
the Lie superalgebra case, so we have not tried to resolve this guess.

5.4. Determinantal ideals. Maintain the notation from §4.

Proposition 5.12. N¿ is the quotient of U.g.E// by the left ideal generated byVNC1
.E/. As a representation of GL.E/, we have

N¿ D
M

`.�/�N

S�.E/:
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Proof. The first statement follows from Corollary 5.9.
For the second statement, note that U.g.E// degenerates to Sym.E/ ˝

Sym.
V2

E/ Š
L
� S�.E/. The ideal structure of this latter algebra is worked

out in [2, Theorem 4.2]. In particular, it is shown that S�.E/ is in the ideal generated
byS�.E/ if� � � and the number of odd length columns of� is at least the number of
odd length columns of �. The latter condition is vacuous when � D .12n/, so proves
our claim when N is odd. When N is even, it is enough to know that

VNC1
.E/

generates
VNC2

.E/ in U.g.E//. If this were not true, then
VNC2

.E/would appear
in H2.g.E/IN¿/, but this is ruled out by direct inspection using Corollary 5.9.

In particular, we may think of N¿ as the quotient by a “determinantal ideal”.
The minimal free resolution over U.g.E// is very close to the classical cases, as
discussed in [22, §6]: the connection is that a closely related modification rule
describes the minimal free resolution in the classical case, see [18, Remark 3.7].
Explicitly, for every representation S�.E/ which appears in H�.g.E/IN¿/, � has
the following form: there exists r � 0 and a partition ˛ with `.˛/ � r such that
� D .r C ˛1; : : : ; r C ˛r ; r

N ; ˛
�
1; ˛

�
2; : : : / (here rN just means r repeated N times).

This S�.E/ appears exactly once and in homological degree r.r C 1/=2C j˛j.
We have a parallel story for M¿ using instead Corollary 5.5:

Proposition 5.13. M¿ is the quotient of U.g�.E// by the left ideal generated byVNC1
.E/. As a representation of GL.E/, we have

M¿ D
M

`.�/�N

S�.E/:

As representations of GL.E/, we have Hi .g.E/IN¿/ Š Hi .g�.E/IM¿/ since
their combinatorial descriptions are the same.

6. Geometric constructions

In this last section, we use some geometric constructions and prove the remaining
unproven statements from the previous section.

6.1. Preliminaries. We will need some results from [18]; first we recall some nota-
tion from [18, §2.2]. Let n be a positive integer. Let U be the set of integer sequences
.a1; a2; : : : /. Let � be a partition with `.�/ � n. Given another partition �, we
write .�j�/ for the integer sequence .�1; : : : ; �n; �1; �2; : : : / 2 U. Let S be
the finitary infinite symmetric group; it acts on U and is generated by adjacent
transpositions si which swap the i th and .i C 1/st positions. The length `.w/ of w is
the shortest expression w D si1 � � � si`.w/. Define � D .0;�1;�2; : : : /. We define a
modified action ofS on U by w � ˛ D w.˛ C �/ � �. We say that .�j�/ is regular
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if its stabilizer subgroup under the modified action is trivial. In that case, there is a
unique w 2 S so that w � ˛ is a partition. Define

S1.�/ D f� D �
� such that .�j�/ is regularg

S2.�/ D fpartitions ˛ such that �2n.˛/ D �g:

Lemma 6.1. Let � be a non-zero partition in S1.�/ and let � be the partition
obtained by removing the first row and column of �. Then � also belongs to S1.�/.
Furthermore, letw .resp.w0/ be the element ofW such that ˛ D w�.�j�/ .resp.ˇ D
w0 � .�j�// is a partition. Then a border stripR˛ of length 2`.˛/�2n�1 in ˛ exists
and we have the following identities:

jR˛j D 2`.˛/� 2n� 1 D 2�1 � 1; ˛ nR˛ D ˇ; c.R˛/ D �1C `.w
0/� `.w/:

Proof. This is [18, Lemma 4.13]1, but the reader should be aware that in [18,
Lemma 4.13], the function �2nC1 is used, and the discrepancy comes from the
difference in how it is defined in [18, §4.4].

Proposition 6.2. There is a unique bijection S1.�/ ! S2.�/ under which � maps
to ˛ if there exists w 2 S such that w � .�j�/ D ˛; in this case, `.w/C j2n.˛/ D
1
2
.j�j C rank.�// and �2n.˛/ D �.

Proof. We first define the map S1.�/ ! S2.�/ by induction on j�j. If j�j D 0,
define� 7! � and there is nothing to prove. Otherwise, let � be the partition obtained
from � by removing the first row and column. By Lemma 6.1, � 2 S1.�/ and we
have w0 � .�j�/ D ˇ 2 S2.�/ for a unique choice of w0, and the equality

`.w0/C j2n.ˇ/ D
j�j C rank.�/

2

holds. By Lemma 6.1, this implies

`.w/ � �1 C c.R˛/C j2n.ˇ/ D
j�j C rank.�/

2

where ˇ D ˛ nR˛ . Rearranging this identity we get

`.w/C j2n.˛/ D
j�j C rank.�/

2

as desired. To show that this is a bijection, use the argument in [18, Proposition 3.10].

1There is a typo in the published version: “jR˛j D 2�1 C 1” should be “jR˛j D 2�1 � 1.”
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Let E be a vector space and let X be the Grassmannian of rank n quotients of E.
We have a tautological exact sequence

0! R! E ˝OX ! Q! 0

where Q is the universal quotient bundle. The Borel–Weil–Bott theorem [22, §4.1]
is then:
Theorem 6.3 (Borel–Weil–Bott). Let � be a partition with at most n parts, let � be
any partition and let V be the vector bundle S�.Q/˝ S�.R/ on X .
� Suppose .�j�/ is regular, and write w � .�j�/ D ˛ for a partition ˛. Then

Hi .X IV/ D

(
S˛.E/ if i D `.w/;
0 otherwise:

� If .�j�/ is not regular, then Hi .X IV/ D 0 for all i .

6.2. Proof of Theorem 5.4 in even case N D 2n. Define a sheaf of Lie super-
algebras

g�.E ˝OX / D g�.E/˝OX D .E ˚ Sym2.E//˝OX :

It has a Lie subalgebra g�.R/ � g�.E ˝ OX / where g�.R/ D R ˚ Sym2.R/ as
a vector bundle. If we take the (minimal) Koszul complex for U.g�.R// and base
change to U.g�.E ˝ OX //, then by Proposition 4.7 we get an acyclic complex K�
of U.g�.E ˝OX //-modules with the terms:

Ki D U.g�.E ˝OX //˝
M
�D��

2iDj�jCrank.�/

S�R:

Given a partition � with `.�/ � n, set

F .�/� DK� ˝ S�Q

and M� D H0.F .�/�/. We have a left-exact pushforward functor

p�WU.g�.E ˝OX //-Mod! U.g�.E//-Mod:

Let F.�/� D Rp�.F .�/�/. This is a minimal complex of free U.g�.E//-
modules. The Borel–Weil–Bott theorem implies that M� has no higher cohomology,
so Hi .F.�/�/ D 0 for i ¤ 0 and H0.X IM�/ D H0.F.�/�/ as U.g�.E//-modules;
we denote this common module byM�.
Proposition 6.4.

F.�/i D U.g�.E//˝
M
�

�2n.�/D�
j2n.�/Di

S�E:



Infinite rank spinor and oscillator representations 179

Proof. This follows from Proposition 6.2 and the Borel–Weil–Bott theorem.

Proposition 6.5. M� ŠM� D HomPin.V /.V�Cı ;M/.

Proof. Combining Propositions 5.3 and 6.4, we get that both M� and M�

are representations of GL.E/ such that the multiplicities of each irreducible
representation agree and are finite. By Proposition 4.1, we have a surjection

�� W S�.E/˝ U.g�.E//!M�:

Using Proposition 6.4, we have a minimal presentation

S.�;1NC1�2`.�//.E/˝ U.g�.E//! S�.E/˝ U.g�.E//!M� ! 0:

By Pieri’s rule, S.�;1NC1�2`.�//.E/ appears with multiplicity 1 in S�.E/˝U.g�.E//
and hence does not appear in M�, and so the same is true for M�. In particular,
�� factors through a surjection M� ! M�. Since they are isomorphic as GL.E/-
representations, this surjection is an isomorphism.

6.3. Proof of Theorem 5.4 in odd case N D 2n C 1. Define a sheaf of Lie super-
algebras

g�.E ˝OX / D g�.E/˝OX D .E ˚ Sym2.E//˝OX :

Similarly, define the sheaf of Lie superalgebras g�.R/ D R ˚ Sym2.R/. Using
Proposition 4.8, we can construct an acyclic locally free complex K� whose terms
are:

Ki D U.g�.E ˝OX //˝
M
�2Q�1
j�jD2i

S�R: (6.1)

Given a partition � with `.�/ � n, set

F .�/� DK� ˝ S�Q

and M� D H0.F .�/�/. We have a left-exact pushforward functor

p�WU.g�.E ˝OX //-Mod! U.g�.E//-Mod:

Let F.�/� D Rp�.F .�/�/. This is a minimal complex of free U.g�.E//-modules.
Again, by the Borel–Weil–Bott theorem, Hi .F.�/�/ D 0 for i ¤ 0 andH0.X IM�/ D

H0.F.�/�/ as U.g�.E//-modules; we denote this common module byM�.
Proposition 6.6.

F.�/i D U.g�.E//˝
M
�

�2nC1.�/D�
j2nC1.�/Di

S�E:
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Proof. This follows from [18, Lemma 3.12], but let us explain the translation. First,
�2nC1 and j2nC1, as defined here, are the same as �2n and i2n, as defined in [18, §3.4].
Second, the vector bundle

L
�2Q�1
j�jD2i

S�R used in the definition of Ki in (6.1) is the

same as
Vi
.�/ as defined in [18, Lemma 3.12] because of (1.1).

Proposition 6.7. M� ŠM� D HomPin.V /.V�Cı ;M/.

Proof. Similar to the proof of Proposition 6.5.

6.4. Proof of Theorem 5.8 in even case N D 2n. Define a sheaf of Lie algebras

g.E ˝OX / D g.E/˝OX D .E ˚
V2
.E//˝OX :

It has a Lie subalgebra g.R/ � g.E ˝ OX / where g.R/ D R ˚
V2
.R/ as a

vector bundle. If we take the (minimal) Koszul complex for U.g.R// and base
change to U.g.E ˝OX //, then by Proposition 4.4 we get an acyclic complex K� of
U.g.E ˝OX //-modules with the terms:

Ki D U.g.E ˝OX //˝
M
�D��

2iDj�jCrank.�/

S�R:

Given a partition � with `.�/ � n, set

F .�/� DK� ˝ S�Q

and N� D H0.F .�/�/. We have a left-exact pushforward functor

p�WU.g.E ˝OX //-Mod! U.g.E//-Mod:

Let F.�/� D Rp�.F .�/�/. This is a minimal complex of free U.g.E//-modules.
Again, it follows from the Borel–Weil–Bott theorem that Hi .F.�/�/ D 0 for i ¤ 0

and H0.X IN�/ D H0.F.�/�/ as U.g.E//-modules; we denote this common module
by N�.
Proposition 6.8.

F.�/i D U.g.E//˝
M
�

�2n.�/D�
j2n.�/Di

S�E:

Proof. This follows from Proposition 6.2 and the Borel–Weil–Bott theorem.

Proposition 6.9. N� Š N� D HomMp.V /.V�C�;N/.

Proof. The proof is similar to the proof of Proposition 6.5.
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6.5. Proof of Theorem 5.8 in odd case N D 2nC1. Define a sheaf of Lie algebras

g.E ˝OX / D g.E/˝OX D .E ˚
V2
.E//˝OX :

Similarly, define the sheaf of Lie algebras g.R/ D R˚
V2
.R/. We have a surjection

U.g.R//! Sym.R/ and TorU.g.R//i .Sym.R/;OX / Š
Vi
.
V2
.R// by Lemma 4.5.

This corresponds to a locally free resolution of Sym.R/ over U.g.R//, and if we
base change it to U.g.E ˝ OX // we get an acyclic locally free complex K� whose
terms are:

Ki D U.g.E ˝OX //˝
M
�2Q�1
j�jD2i

S�R:

Given a partition � with `.�/ � n, set

F .�/� DK� ˝ S�Q

and M� D H0.F .�/�/. We have a left-exact pushforward functor

p�WU.g.E ˝OX //-Mod! U.g.E//-Mod:

Let F.�/� D Rp�.F .�/�/. This is a minimal complex of free U.g.E//-modules.
Again, from the Borel–Weil–Bott theorem, we have Hi .F.�/�/ D 0 for i ¤ 0 and
H0.X IN�/ D H0.F.�/�/ as U.g.E//-modules; we denote this common module
by N�.

Proposition 6.10.
F.�/i D U.g.E//˝

M
�

�2nC1.�/D�
j2nC1.�/Di

S�E:

Proof. This is the same as the proof of Proposition 6.6.

Proposition 6.11. N� Š N� D HomMp.V /.V�C�;N/.

Proof. Similar to the proof of Proposition 6.5.
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