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Multifraction reduction I: The 3-Ore case

and Artin–Tits groups of type FC
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Abstract. We describe a new approach to the word problem for Artin–Tits groups and, more

generally, for the enveloping group U.M / of a monoid M in which any two elements admit a

greatest common divisor. The method relies on a rewrite system RM that extends free reduction

for free groups. Here we show that, if M satisfies what we call the 3-Ore condition about

common multiples, what corresponds to type FC in the case of Artin–Tits monoids, then the

system RM is convergent. Under this assumption, we obtain a unique representation result for

the elements of U.M /, extending Ore’s theorem for groups of fractions and leading to a solution

of the word problem of a new type. We also show that there exist universal shapes for the van

Kampen diagrams of the words representing 1.
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1. Introduction

The aim of this paper, the first in a series, is to describe a new approach to the

word problem for Artin–Tits groups, which are those groups that admit a finite

presentation hS j Ri where R contains at most one relation of the form s : : : D t : : :

for each pair of generators .s; t / and, if so, the relation has the form sts : : : D t st : : :,

both sides of the same length. Introduced and investigated by J. Tits in the 1960s,

see [2], these groups remain incompletely understood except in particular cases, and

even the decidability of the word problem is open in the general case [4,22].

Our approach is algebraic, and it is relevant for every group that is the enveloping

group of a cancellative monoid M in which every pair of elements admits a greatest

common divisor (“gcd-monoid”). The key ingredient is a certain rewrite system

(“reduction”) RM that acts on finite sequences of elements of M (“multifractions”)

and is reminiscent of free reduction of words (deletion of factors xx�1 or x�1x).

In the current paper, we analyze reduction in the special case when the monoid M
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satisfies an assumption called the 3-Ore condition, deferring the study of more general

cases to subsequent papers [11,14,16].

When the approach works optimally, namely when the 3-Ore condition is satisfied,

it provides a description of the elements of the enveloping group U.M/ of the

monoid M that directly extends the classical result by Ø. Ore [31], see [5], which

is the base of the theory of Garside groups [17,21] and asserts that, if M is a gcd-

monoid and any two elements of M admit a common right multiple, then every

element of U.M/ admits a unique representation a1a�1
2 with right gcd.a1; a2/ D 1.

Our statement here is parallel, and it takes the form:

Theorem A. Assume that M is a noetherian gcd-monoid satisfying the 3-Ore
condition:

Any three elements of M that pairwise admit a common right multiple
.resp., left multiple/ admits a global common right multiple .resp., left
multiple/.

(i) The monoid M embeds in its enveloping group U.M/ and every element
of U.M/ admits a unique representation a1a�1

2 a3a�1
4 : : : a˙1

n with an 6D 1,
right gcd.a1; a2/ D 1, and, for i even .resp., odd/, if x divides aiC1 on the left
.resp., on the right /, then x and ai have no common right .resp., left/ multiple.

(ii) If, moreover, M admits a presentation by length-preserving relations and
contains finitely many basic elements, the word problem for U.M/ is decidable.

The sequences involved in Theorem A(i) are those that are irreducible with respect

to the above alluded rewrite system RM (more precisely, a mild amendment bRM

of it), and the main step in the proof is to show that, under the assumptions, the

system RM is what is called locally confluent and, from there, convergent, meaning

that every sequence of reductions leads to a unique irreducible sequence.

The above result applies to many groups. In the case of a free group, one recovers

the standard results about free reduction. In the case of an Artin–Tits group of

spherical type and, more generally, of a Garside group, the irreducible sequences

involved in Theorem A have length at most two, and one recovers the standard

representation by irreducible fractions occurring in Ore’s theorem. But other cases

are eligible. In the world of Artin–Tits groups, we show

Theorem B. An Artin–Tits monoid is eligible for Theorem A if and only if it is of
type FC.

The paper is organized as follows. Prerequisites about the enveloping group of a

monoid and gcd-monoids are gathered in Section 2. Reduction of multifractions is

introduced in Section 3 as a rewrite system, and its basic properties are established.

In Section 4, we investigate local confluence of reduction and deduce that, when the

3-Ore condition is satisfied, reduction is convergent. In Section 5, we show that,

when reduction is convergent, then all expected consequences follow, in particular
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Theorem A. We complete the study in the 3-Ore case by showing the existence of

a universal reduction strategy, implying that of universal shapes for van Kampen

diagrams (Section 6). Finally, in Section 7, we address the special case of Artin–Tits

monoids and establish Theorem B.

Acknowledgements. The author thanks Pierre-Louis Curien, Jean Fromentin,

Volker Gebhardt, Juan González-Meneses, Vincent Jugé, Victoria Lebed, Jon

McCammond, Luis Paris, Friedrich Wehrung, Bertold Wiest, Zerui Zhang, Xiangui
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2. Gcd-monoids

We collect a few basic properties about the enveloping group of a monoid

(Subsection 2.1) and about gcd-monoids, which are monoids, in which the divisibility

relations enjoy lattice properties, in particular greatest common divisors (gcds) exist

(Subsection 2.2). Finally, noetherianity properties are addressed in Subsection 2.3.

More details can be found in [17, Chap. II].

2.1. The enveloping group of a monoid. For every monoid M , there exists a

group U.M/, the enveloping group of M , unique up to isomorphism, together with

a morphism � from M to U.M/, with the universal property that every morphism

of M to a group factors through �. If M admits (as a monoid) a presentation hS j RiC,

then U.M/ admits (as a group) the presentation hS j Ri.

Our main subject is the connection between M and U.M/, specifically the

representation of the elements of U.M/ in terms of those of M . The universal

property of U.M/ implies that every such element can be expressed as

�.a1/�.a2/�1�.a3/�.a4/�1 � � � (2.1)

with a1; a2; : : : in M . It will be convenient here to represent such decompositions

using (formal) sequences of elements of M and to arrange the latter into a monoid.

Definition 2.1. If M is a monoid, we denote by FM the family of all finite sequences

of elements of M , which we call multifractions on M . For a in FM , the length of a

is called its depth, written kak. We write ¿ for the unique multifraction of depth

zero (the empty sequence) and, for every a in M , we identify a with the depth one

multifraction .a/.

We use a; b; : : : as generic symbols for multifractions, and denote by ai the

i th entry of a counted from 1. A depth n multifraction a has the expanded form

.a1; : : : ; an/. In view of using the latter to represent the alternating product of (2.1),

we shall use = for separating entries, thus writing a1= � � � =an for .a1; : : : ; an/. This

extends the usual convention of representing �.a/�.b/�1 by the fraction a=b; note
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that, with our convention, the left quotient �.a/�1�.b/ corresponds to the depth three

multifraction 1=a=b. We insist that multifractions live in the monoid M , and not in

the group U.M/, in which M need not embed.

Definition 2.2. For a; b in FM with respective depths n; p > 1, we put

a � b D

(
a1= � � � =an=b1= � � � =bp if n is even;

a1= � � � =an�1=anb1=b2= � � � =bp if n is odd;

completed with ¿ � a D a � ¿ D a for every a.

Thus a � b is the concatenation of a and b, except that the last entry of a is

multiplied by the first entry of b for kak odd, i.e. when an corresponds to a positive

factor in (2.1). It is easy to check that FM is a monoid and to realize the group U.M/

as a quotient of this monoid:

Proposition 2.3. (i) The set FM equipped with � is a monoid with neutral
element ¿. It is generated by the elements a and 1=a with a in M . The
family of all depth one multifractions is a submonoid isomorphic to M .

(ii) Let ' be the congruence on FM generated by .1; ¿/ and the pairs .a=a; ¿/

and .1=a=a; ¿/ with a in M , and, for a in FM , let �.a/ be the '-class of a.
Then the group U.M/ is (isomorphic to) FM =' and, for every a in FM , we
have

�.a/ D �.a1/ �.a2/�1 �.a3/ �.a4/�1 � � � (2.2)

Proof. (i) The equality of .a � b/ � c and a � .b � c/ is obvious when at least one

of a, b, c is empty; otherwise, one considers the four possible cases according to the

parities of kak and kbk. That FM is generated by the elements a and 1=a with a

in M follows from the equality

a1= � � � =an D a1 � 1=a2 � a3 � 1=a4 � � � � (2.3)

Finally, by definition, a � b D ab holds for all a; b in M .

(ii) For every a in M , we have a � 1=a D a=a ' ¿ and 1=a � a D 1=a=a ' ¿,

so �.1=a/ is an inverse of �.a/ in FM ='. By (2.3), the multifractions a and 1=a

with a in M generate the monoid FM , hence FM =' is a group.

As ' is a congruence, the map � is a homomorphism from FM to FM =', and its

restriction to M is a homomorphism from M to FM ='.

Let � be a homomorphism from M to a group G. Extend � to FM by

��.¿/ D 1 and ��.a/ D �.a1/ �.a2/�1 �.a3/ �.a4/�1 � � �

By the definition of � , the map �� is a homomorphism from the monoid FM to G.

Moreover, we have ��.1/ D 1 D ��.¿/ and, for every a in M ,

��.a=a/ D �.a/�.a/�1 D 1 D ��.¿/;

��.1=a=a/ D �.1/�.a/�1�.a/ D 1 D ��.¿/:
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Hence a ' a0 implies ��.a/ D ��.a0/, and �� induces a well-defined

homomorphism O� from FM =' to G. Then, for every a in M , we find �.a/ D

��.a/ D O�.�.a//. Hence, � factors through �. Hence, FM =' satisfies the universal

property of U.M/.

Finally, (2.2) directly follows from (2.3), from the fact that � is a (monoid)

homomorphism, and from the equality �.1=a/ D �.a/�1 for a in M .

Hereafter, we identify U.M/ with FM ='. One should keep in mind that Prop. 2.3

remains formal (and essentially trivial) as long as no effective control of ' is obtained.

We recall that, in general, � need not be injective, i.e. the monoid M need not embed

in the group U.M/.

We now express the word problem for the group U.M/ in the language of

multifractions. If S is a set, we denote by S� the free monoid of all S -words, using "

for the empty word. To represent group elements, we use words in S [S , where S is a

disjoint copy of S consisting of one letter s for each letter s of S , due to represent s�1.

The letters of S (resp., S) are called positive (resp., negative). If w is a word in S [S ,

we denote by w the word obtained from w by exchanging s and s everywhere and

reversing the order of letters.

Assume that M is a monoid, and S is included in M . For w a word in S , we

denote by Œw�C the evaluation of w in M , i.e. the element of M represented by w.

Next, for every word w in S [ S , there exists a unique finite sequence .w1; : : : ; wn/

of words in S satisfying

w D w1 w2 w3 w4 � � � (2.4)

with wi 6D " for 1 < i 6 n (as w1 occurs positively in (2.4), the decomposition

of a negative letter s is ."; s/). We then define Œw�C to be the multifraction

Œw1�C= � � � =Œwn�C. Then we obtain:

Lemma 2.4. For every monoid M and every generating family S of M , a word w

in S [S represents 1 in U.M/ if and only if the multifraction Œw�C satisfies Œw�C ' 1

in FM .

Proof. For w; w0 in S�, write w �C w0 for Œw�C D Œw0�C. Let � be the congruence

on the free monoid .S [ S/� generated by �C together with the pairs .ss; "/ and

.ss; "/ with s 2 S . For w a word in S [ S , let Œw� denote the �-class of w. By

definition, w represents 1 in U.M/ if and only if w � " holds. Now, let w be an

arbitrary word in S [ S , and let .w1; : : : ; wn/ be its decomposition (2.4). Then, in

the group U.M/, we find

Œw� D Œw1� Œw2��1 Œw3� Œw4��1 � � � by (2.4)

D �.Œw1�C/ �.Œw2�C/�1 �.Œw3�C/ �.Œw4�C/�1 � � � by definition of �

D �.Œw1�C=Œw2�C=Œw3�C= � � � / by (2.2)

D �.Œw�C/ by definition of Œw�C.
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Hence w � ", i.e. Œw� D 1, is equivalent to �.Œw�C/ D 1, hence to Œw�C ' 1 by

Prop. 2.3(ii).

Thus solving the word problem for the group U.M/ with respect to the generating

set S amounts to deciding the relation Œw�C ' 1, which takes place inside the ground

monoid M .

2.2. Gcd-monoids. The natural framework for our approach is the class of gcd-

monoids. Their properties are directly reminiscent of the standard properties of the

gcd and lcm operations for natural numbers, with the difference that, because we

work in general with non-commutative monoids, all notions come in a left and a right

version.

We begin with the divisibility relation(s), which play a crucial role in the sequel.

Definition 2.5. If M is a monoid and a; b lie in M , we say that a is a left divisor
of b or, equivalently, that b is a right multiple of a, written a 6 b, if ax D b holds

for some x in M .

The relation 6 is reflexive and transitive. If M is left cancellative, i.e. if ax D ay

implies x D y, the conjunction of a 6 b and b 6 a is equivalent to b D ax with x

invertible. Hence, if 1 is the only invertible element in M , the relation 6 is a partial

ordering. When they exist, a least upper bound and a greatest lower bound with

respect to 6 are called a least common right multiple, or right lcm, and a greatest
common left divisor, or left gcd. If 1 is the only invertible element of M , the right

lcm and the left gcd a and b are unique when they exist, and we denote them by a _ b

and a ^ b, respectively.

Left-divisibility admits a symmetric counterpart, with left multiplication

replacing right multiplication. We say that a is a right divisor of b or, equivalently,

that b is a left multiple of a, denoted a e6 b, if b D xa holds for some x. We then

have the derived notions of a left lcm and a right gcd, denoted e_ and ê when they

are unique.

Definition 2.6. A gcd-monoid is a cancellative monoid with no nontrivial invertible

element, in which any two elements admit a left gcd and a right gcd.

Example 2.7. Every Artin–Tits monoid is a gcd-monoid: the non-existence of

nontrivial invertible elements follows from the homogeneity of the relations, whereas

cancellativity and existence of gcds (the latter amounts to the existence of lower

bounds for the weak order of the corresponding Coxeter group) have been proved

in [3] and [18].

A number of further examples are known. Every Garside monoid is a gcd-

monoid, but gcd-monoids are (much) more general: typically, every monoid defined

by a presentation hS j RiC where R contains at most one relation s : : : D t : : : and

at most one relation : : : s D : : : t for all s; t in S and satisfying the left and right
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cube conditions of [8] and [17, Sec. II.4] is a gcd-monoid. By [17, Sec. IX.1.2], this

applies for instance to every Baumslag–Solitar monoid ha; b j apbq D bq0

ap0

iC.

The partial operations _ and ^ obey various laws that we do not recall here. We

shall need the following formula connecting right lcm and multiplication:

Lemma 2.8. If M is a gcd-monoid, then, for all a; b; c in M , the right lcm a _ bc

exists if and only if a _ b and a0 _ c exist, where a0 is defined by a _ b D ba0, and
then we have

a _ bc D a � b0c0 D bc � a00: (2.5)

with a _ b D ba0 D ab0 and a0 _ c D a0c0 D ca00.

We skip the easy verification, see for instance [17, Prop. II.2.12]. To prove and

remember formulas like (2.5), it may be useful to draw diagrams and associate with

every element a of the monoid M a labeled edge a . Concatenation of edges is

read as a product in M (which amounts to viewing M as a category), and equalities

then correspond to commutative diagrams. With such conventions, (2.5) can be read

in the diagram below.
b c

a a0 a00

b0 c0

Lemma 2.9. If M is a gcd-monoid and ad D bc holds, then ad is the right lcm of a

and b if and only if 1 is the right gcd of c and d .

Proof. Assume ad D bc D a _ b. Let x right divide c and d , say c D c0x and

d D d 0x. Then ad D bc implies ad 0x D bc0x, whence ad 0 D bc0. By definition

of the right lcm, this implies ad 6 ad 0, whence d 0 D dx0 for some x0 by left

cancelling a. We deduce d D dx0x, whence x0x D 1. Hence c and d admit no

non-invertible common right divisor, whence c ê d D 1.

Conversely, assume ad D bc with c ê d D 1. Let ad 0 D bc0 be a common

right multiple of a and b, and let e D ad ^ ad 0. We have a 6 ad and a 6 ad 0,

whence a 6 e, say e D ad 00. Then ad 00 6 ad implies d 00 6 d , say d D d 00x,

and similarly ad 00 6 ad 0 implies d 00 6 d 0, say d 0 D d 00x0. Symmetrically, from

ad D bc and ad 0 D bc0, we deduce b 6 ad and b 6 ad 0, whence b 6 e, say

e D bc00. Then we find bc D ad D ad 00x D bc00x, whence c D c00x and d D d 00x.

Thus, x is a common right divisor of c and d . Hence, by assumption, x is invertible.

Similarly, we find bc0 D ad 0 D ad 00x0 D bc00x0, whence c0 D c00x0, and, finally,

ad 0 D ad 00x0 D adx�1x0, whence ad 6 ad 0. Hence ad is a right lcm of a

and b.

Lemma 2.10. If M is a gcd-monoid, then any two elements of M admitting a common
right multiple .resp., left multiple/ admit a right lcm .resp., left lcm/.
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Proof. Assume that a and b admit a common right multiple, say ad D bc. Let

e D c ê d . Write c D c0e and d D d 0e. As M is right cancellative, ad D bc

implies ad 0 D bc0, and e D c ê d implies c0 ê d 0 D 1. Then Lemma 2.9 implies

that ad 0 is a right lcm of a and b. The argument for the left lcm is symmetric.

When the conclusion of Lemma 2.10 is satisfied, the monoid M is said to admit
conditional lcms. Thus every gcd-monoid admits conditional lcms.

Remark 2.11. Requiring the absence of nontrivial invertible elements is not essential

for the subsequent developments. Using techniques from [17], one could drop this

assumption and adapt everything. However, it is more pleasant to have unique gcds

and lcms, which is always the case for the monoids we are mainly interested in.

2.3. Noetherianity. If M is a monoid, we shall denote by M inv the set of invertible

elements of M (a subgroup of M ). We use < for the proper left divisibility relation,

where a < b means ax D b for some non-invertible x, hence for x 6D 1 if M is

assumed to admit no nontrivial invertible element. Symmetrically, we use e< for the

proper right divisibility relation.

Definition 2.12. A monoid M is called noetherian if < and e< are well-founded,

meaning that every nonempty subset of M admits a <-minimal element and a

e<-minimal element.

A monoid M is noetherian if and only if M contains no infinite descending

sequence with respect to < or e<. It is well known that well-foundedness is

characterized by the existence of a map to Cantor’s ordinal numbers [27]. In the

case of a monoid, the criterion can be stated as follows:

Lemma 2.13. If M is a cancellative monoid, the following are equivalent:

(i) The proper left divisibility relation < of M is well-founded.

(ii) There exists a map � from M to ordinal numbers such that, for all a; b in M ,
the relation a < b implies �.a/ < �.b/.

(iii) There exists a map � from M to ordinal numbers satisfying, for all a; b in M ,

�.ab/ > �.a/ C �.b/; and �.a/ > 0 for a … M inv: (2.6)

We skip the proof, which is essentially standard. A symmetric criterion holds for

the well-foundedness of e<, with (2.6) replaced by

�.ab/ > �.b/ C �.a/; and �.a/ > 0 for a … M inv: (2.7)

We shall subsequently need a well-foundedness result for the transitive closure of left

and right divisibility (“factor” relation), a priori stronger than noetherianity.
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Lemma 2.14. If M is a cancellative monoid, then the factor relation defined by

a � b , 9x; y . xay D b and at least one of x; y is not invertible /: (2.8)

is well-founded if and only if M is noetherian.

Proof. Both < and e< are included in �, so the assumption that � is well-founded

implies that both < and e< are well-founded, hence that M is noetherian.

Conversely, assume that a1 � a2 � � � � is an infinite descending sequence with

respect to � and that < is well-founded. For each i , write ai D xiaiC1yi with xi

and yi not both invertible. Let bi D x1 � � � xi�1ai . Then, for every i , we have

bi D biC1yi , whence biC1 6 bi . The assumption that < is well-founded implies

the existence of n such that yi (which is well-defined, since M is left cancellative)

is invertible for i > n. Hence xi is not invertible for i > n. Let ci D ai yi�1 � � � y1.

Then we have ci D xi ciC1 for every i . Hence cn e> cnC1 e> � � � is an infinite

descending sequence with respect to e<. Hence e< cannot be well-founded, and M is

not noetherian.

A stronger variant of noetherianity is often satisfied (typically by Artin–Tits

monoids).

Definition 2.15. A cancellative monoid M is called strongly noetherian if there exists

a map � W M ! N satisfying, for all a; b in M ,

�.ab/ > �.a/ C �.b/; and �.a/ > 0 for a … M inv: (2.9)

As N is included in ordinals and its addition is commutative, (2.9) implies (2.6)

and (2.7) and, therefore, a strongly noetherian monoid is noetherian, but the converse

is not true.

An important consequence of strong noetherianity is the decidability of the word

problem.

Proposition 2.16. If M is a strongly noetherian gcd-monoid, S is finite, and .S; R/

is a recursive presentation of M , then the word problem for M with respect to S is
decidable.

Proof. First, we observe that, provided S does not contain 1, the set of all words

in S representing an element a of M is finite. Indeed, assume that � W M ! N

satisfies (2.9) and that w represents a. Write w D s1 � � � s` with s1; : : : ; s` 2 S .

Then (2.9) implies �.a/ >
PiD`

iD1 �.si / > `, hence w necessarily belongs to the

finite set S�.a/.

Then, by definition, M is isomorphic to S�=�C, where �C is the congruence

on S� generated by R. If w; w0 are words in S , we can decide w �C w0 as follows.

We start with X WD fwg and then saturate X under R, i.e. we apply the relations of R

to the words of X until no new word is added: as seen above, the �C-class of w is

finite, so the process terminates in finite time. Then w0 is �C-equivalent to w if and

only if w0 appears in the set X so constructed.
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Prop. 2.16 applies in particular to all gcd-monoids that admit a finite homogeneous

presentation .S; R/, meaning that every relation of R is of the form u D v where u; v

are words of the same length: then defining �.a/ to be the common length of all

words representing a provides a map satisfying (2.9). Artin–Tits monoids are typical

examples.

Remark 2.17. Strong noetherianity is called atomicity in [15], and gcd-monoids that

are strongly noetherian are called preGarside in [24].

The last notion we shall need is that of a basic element in a gcd-monoid. First,

noetherianity ensures the existence of extremal elements, and, in particular, it implies

the existence of atoms, i.e. elements that are not the product of two non-invertible

elements.

Lemma 2.18 ([17, Cor. II.2.59]). If M is a noetherian gcd-monoid, then a subset
of M generates M if and only if it contains all atoms of M .

Proof. Let a 6D 1 beong to M . Let X WD fx 2 M n f1g j x 6 ag. As a is

non-invertible, X is nonempty. As < is well-founded, X has a <-minimal element,

say x. Then x must be an atom. So every non-invertible element is left divisible

by an atom. Now, write a D xa0 with x an atom. If a0 is not invertible, then, by

the same argument, write a0 D x0a00 with x0 an atom, and iterate. We have a e> a0,

since x is not invertible (in a cancellative monoid, an atom is never invertible),

whence a e> a0 e> a00 e> � � � . As e< is well-founded, the process stops after finitely

steps. Hence a is a product of atoms. The rest is easy.

Definition 2.19. A subset X of a gcd-monoid is called RC-closed (“closed under

right complement”) if, whenever X contains a and b and a_b exists, X also contains

the elements a0 and b0 defined by a _ b D ab0 D ba0. We say LC-closed (“closed

under left complement”) for the counterpart involving left lcms.

Note that nothing is required when a _ b does not exist: for instance, in the free

monoid based on S , the family S [ f1g is RC-closed. Lemma 2.18 implies that, if M

is a noetherian gcd-monoid, then there exists a smallest generating subfamily of M

that is RC-closed, namely the closure of the atom set under the right complement

operation associating with all a; b such that a _ b exists the (unique) element a0

satisfying a _ b D ba0.

Definition 2.20 ([7]). If M is a noetherian gcd-monoid, an element a of M is

called right basic if it lies in the closure of the atom set under the right complement

operation. Left-basic elements are defined symmetrically. We say that a is basic if it

is right or left basic.

Even if its atom family is finite, a noetherian gcd-monoid may contain

infinitely many basic elements: for instance, in the Baumslag–Solitar monoid

ha; b j ab D ba2iC, all elements a2k
with k > 0 are right basic. However, this

cannot happen in an Artin–Tits monoid:
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Proposition 2.21 ([12,20]). A (finitely generated) Artin–Tits monoid contains finitely
many basic elements.

This nontrivial result relies on the (equivalent) result that every such monoid

contains a finite Garside family, itself a consequence of the result that a Coxeter

group admits finitely many low elements. Typically, there are 10 basic elements in

the Artin–Tits monoid of type eA2, namely 1, the 3 atoms, and the 6 products of two

distinct atoms.

3. Reduction of multifractions

Our main tool for investigating the enveloping group U.M/ using multifractions

is a family of partial depth-preserving transformations that, when defined, map a

multifraction to a '-equivalent multifraction, which we shall see is smaller with

respect to some possibly well-founded partial order. As can be expected, irreducible

multifractions, i.e. those multifractions that are eligible for no reduction, will play an

important role.

In this section, we successively introduce and formally define the reduction

rules Ri;x in Subsection 3.1, then establish in Subsection 3.2 the basic properties of

the rewrite system RM , and finally describe in Subsection 3.3 a mild extension bRM

of RM that is necessary for the final uniqueness result we aim at.

3.1. The principle of reduction. In this article, we only consider multifractions a,

where the first entry is positive. However, to ensure compatibility with [11] and [16],

where multifractions with a negative first entry are also considered, it is convenient

to adopt the following convention:

Definition 3.1. If a is a multifraction, we say that i is positive (resp., negative) in a

if �.ai / (resp., �.ai /
�1) occurs in (2.1).

So, everywhere in the current paper, i is positive in a if and only if i is odd.

Let us start from free reduction. Assume that M is a free monoid based on S .

A multifraction on M is a finite sequence of words in S . Then every element of the

enveloping group U.M/, i.e. of the free group based on S , is represented by a unique

freely reduced word in S [ S [28], or equivalently, in our context, by a unique freely

reduced multifraction a, meaning that, if i is negative (resp., positive) in a, the first

(resp., last) letters of ai and aiC1 are distinct.

The above (easy) result is usually proved by constructing a rewrite system

that converges to the expected representative. For a; b in FM , and for i negative

(resp., positive) in a and x in S , let us declare that b D a � Di;x holds if the first
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(resp., last) letters of ai and aiC1 coincide and b is obtained from a by erasing these

letters, i.e. if we have

ai D xbi and aiC1 D xbiC1 (i negative in a);

or ai D bix and aiC1 D biC1x (i positive in a):
(3.1)

Writing a ) b when b D a � Di;x holds for some i and x and )� for the reflexive–

transitive closure of ), one easily shows that, for every a, there exists a unique

irreducible b satisfying a )� b, because the rewrite system DM so obtained is

locally confluent, meaning that

If we have a ) b and a ) c, there exists d satisfying b )� d

and c )� d .
(3.2)

If we associate with a multifraction a a diagram of the type a1 a2 a3 . . .

(with alternating orientations), then free reduction is illustrated as in Fig. 1.

case i negative in a:

: : :
bi

x x

biC1

: : :
ai aiC1

case of i positive in a:

: : :
bi

x x

biC1

: : :
ai aiC1

Figure 1. Free reduction: b D a � Di;x holds if b is obtained from a by erasing the common

first letter x (for i negative in a) or the common last letter x (for i positive in a) in adjacent

entries: a is the initial light grey path, whereas b is to the colored shortcut.

Let now M be an arbitrary cancellative monoid. The notion of an initial or final

letter makes no sense, but it is subsumed in the notion of a left and a right divisor: x

left divides a if a may be expressed as xy. Then we can extend the definition of Di;x

in (3.1) without change, allowing x to be any element of M , and we still obtain a well

defined rewrite system DM on FM for which Fig. 1 is relevant. However, when M

is not free, DM is of little interest because, in general, it fails to satisfy the local

confluence property (3.2).

Example 3.2. Let M be the 3-strand braid monoid, given as ha; b j aba D babiC,

and let a D a=aba=b. One finds a � D1;a D 1=ab=b and a � D2;b D a=ab=1, and

one easily checks that no further division can ensure confluence.

In order to possibly restore confluence, we extend the previous rules by relaxing

some assumption. Assume for instance i negative in a. Then a � Di;x is defined if x

left divides both ai and aiC1. We shall define a � Ri;x by keeping the condition that x

divides aiC1, but relaxing the condition that x divides ai into the weaker assumption

that x and ai admit a common right multiple. Provided the ambient monoid is a

gcd-monoid, Lemma 2.10 implies that x and ai then admit a right lcm, and there

exist unique x0 and bi satisfying aix
0 D xbi D x _ai . In this case, the action of Ri;x

will consist in removing x from aiC1, replacing ai with bi , and incorporating the
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remainder x0 in ai�1, see Fig. 2. Note that, for x left dividing ai , we have x0 D 1

and ai D xbi , so we recover the division Di;x. The case of i positive in a is treated

symmetrically, exchanging left and right everywhere. Finally, for i D 1, we stick to

the rule D1;x , because there is no 0th entry in which x0 could be incorporated.

Definition 3.3. If M is a gcd-monoid, a; b belong to FM , and i > 1 and x 2 M

hold, we say that b is obtained from a by reducing x at level i , written b D a � Ri;x ,

if we have kbk D kak, bk D ak for k 6D i � 1; i; i C 1, and there exists x0 satisfying

for i negative in a: bi�1 D ai�1x0; xbi D aix
0 D x _ ai ; xbiC1 D aiC1;

for i > 3 positive in a: bi�1 D x0ai�1; bi x D x0ai D x e_ ai ; biC1x D aiC1;

for i D 1 positive in a: bi x D ai ; biC1x D aiC1:

We write a ) b if a � Ri;x holds for some i and some x 6D 1, and use )� for

the reflexive–transitive closure of ). The rewrite system RM so obtained is called

reduction.

As is usual, we shall say that b is an R-reduct of a when a )� b holds, and

that a is R-irreducible if no rule of RM applies to a.

case i negative in a: case i positive in a:

: : :

ai�1
ai aiC1

bi�1 bi
biC1

xx0 + : : :

ai�1
ai aiC1

bi�1 bi
biC1

xx0 + : : :

Figure 2. The rewriting relation b D a�Ri;x : for i negative in a, we remove x from the beginning

of aiC1, push it through ai using the right lcm operation, and append the remainder x0 at the

end of the .i �1/st entry; for i positive in a, things are symmetric, with left and right exchanged:

we remove x from the end of aiC1, push it through ai using the left lcm operation, and append

the remainder x0 at the beginning of ai�1. As in Fig. 1, a corresponds to the light grey path,

and b to the colored path. We use small arcs to indicate coprimeness, which, by Lemma 2.9,

characterizes lcms.

Example 3.4. If M is a free monoid, two elements of M admit a common right

multiple only if one is a prefix of the other, so a � Ri;x can be defined only when

a � Di;x is, and RM coincides with the free reduction system DM .

Let now M be the 3-strand braid monoid, as in Example 3.2. Then RM properly

extends DM . For instance, considering a D a=aba=b again and putting b D

a � D1;a D 1=ab=b, the elements ab and b admit a common right multiple, hence b

is eligible for R2;b, leading to b � R2;b D a=ab=1, which restores local confluence:

a � D2;b D a � D1;aR2;b.

More generally, assume that M is a Garside monoid [7], for instance an Artin–Tits

group of spherical type (see Section 7). Then lcms always exist, and can be used at
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each step: the whole of aiC1 can always be pushed through ai , with no remainder

at level i C 1. Starting from the highest level, one can push all entries down to 1

or 2 and finish with a multifraction of the form a1=a2=1= � � � =1. The process stops,

because, at level 1, the only legal reduction is division.

Finally, let M be the Artin–Tits monoid of type eA2, here defined as

ha; b; c j aba D bab; bcb D cbc; cac D acaiC;

and consider a WD 1=c=aba. Both a and b left divide aba and admit a common right

multiple with c, so a is eligible for R2;a and R2;b, leading to a � R2;a D ac=ca=ba

and a � R2;b D bc=cb=ab. The latter are eligible for no reduction: this shows that a

multifraction may admit several irreducible reducts, so we see that confluence cannot

be expected in every case.

The following statement directly follows from Def. 3.3:

Lemma 3.5. Assume that M is a gcd-monoid.

(i) The multifraction a � R1;x is defined if and only if we have kak > 2 and x right
divides both a1 and a2. If i is negative .resp., positive >3/ in a, then a � Ri;x

is defined if and only if we have kak > i and x and ai admit a common right
.resp., left/ multiple, and x divides aiC1 on the left .resp., right/.

(ii) A multifraction a is R-irreducible if and only if a1 and a2 have no nontrivial
common right divisor, and, for i < kak negative .resp., positive >3/ in a, if x

left .resp., right/ divides aiC1, then x and ai have no common right .resp., left/
multiple.

Remark 3.6. The i th and .i C 1/st ent ries do not play symmetric roles in Ri;x: we

demand that aiC1 is a multiple of x, but not that ai is a multiple of x. Note that,

in Ri;x , if we see the factor x0 of Def. 3.3 and Fig. 2 as the result of x crossing ai

(while ai becomes bi ), then we insist that x crosses the whole of ai : relaxing this

condition and only requiring that x crosses a divisor of ai makes sense (at the expense

of allowing the depth of the multifraction to increase), but leads to a rewrite system

with different properties, see [14].

3.2. Basic properties of reduction. The first, fundamental property of the trans-

formations Ri;x and the derived reduction relation )� is their compatibility with the

congruence ': reducing a multifraction on a monoid M does not change the element

of U.M/ it represents.

Lemma 3.7. If M is a gcd-monoid and a; b belong to FM , then a)� b implies a'b.

Proof. As )� is the reflexive–transitive closure of ), it is sufficient to establish

the result for ). Assume b D a � Ri;x with, say, i negative in a. By definition,

we have xbi D aix
0 D x _ ai in M , whence �.x/�.bi / D �.ai/�.x

0/ and, from

there, �.ai /
�1�.x/ D �.x0/�.bi /

�1 in U.M/. Applying (2.2) and �.1/ D 1, we obtain
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�.1=ai=x/ D �.ai /
�1�.x/ D �.x0/�.bi/

�1 D �.x0=bi=1/, whence 1=ai=x ' x0=bi=1.

Multiplying on the left by ai�1 and on the right by biC1, we deduce

ai�1=ai=aiC1 ' bi�1=bi=biC1

and, from there, a ' b. The argument is similar for i positive in a, replacing

xbi D ai x
0 with bi x D x0ai and 1=ai =x ' x0=bi=1 with ai =x=1 ' 1=x0=bi , leading

to ai�2=ai�1=ai=aiC1 ' bi�2=bi�1=bi =biC1 for i > 3, and to ai=aiC1 ' bi=biC1

for i D 1, whence, in any case, to a ' b.

The next property is the compatibility of reduction with multiplication. The

verification is easy, but we do it carefully, because it is crucial.

Lemma 3.8. If M is a gcd-monoid, the relation )� is compatible with multiplication
on FM .

Proof. It suffices to consider the case of ). By Prop. 2.3(i), the monoid FM is

generated by the elements c and 1=c with c in M , so it is sufficient to show that

b D a � Ri;x implies c � a ) c � b, 1=c � a ) 1=c � b, a � c ) b � c, and

a � 1=c ) b � 1=c. The point is that multiplying by c or by 1=c does not change the

eligibility for reduction because it removes no divisors.

So, assume b D a � Ri;x with kak D n. Let a0 WD c � a and b0 WD c � b. In the

case i > 2, we find a0
i D ai and x divides a0

iC1 D aiC1, so a0
� Ri;x is defined, and

we have b0 D a0
� Ri;x . In the case i D 1, we find x e6 a0

1 D ca1 and x e6 a0
2 D a2,

so a0
� Ri;x is defined, and we have b0 D a0

� Ri;x.

Put now a0 WD 1=c � a and b0 WD 1=c � b. We have a0 D 1=c=a1= � � � =an and,

similarly, b0 D 1=c=b1= � � � =bn. We find now (in every case) a0
iC2 D ai and x

divides a0
iC3 D aiC1, so a0

� RiC2;x is defined, and b0 D a0
� RiC2;x follows.

Then let a0 WD a�c and b0 WD b �c. If n is negative in a, we have a0 D a1= � � � =an=c

and b0 D b1= � � � =bn=c, whence b0 D a0
� Ri;x. If n is positive in a, we find

a0 D a1= � � � =anc and b0 D b1= � � � =bnc, and b0 D a0
� Ri;x again: we must have

i < n, and everything is clear for i 6 n � 2; for i D n � 1, there is no problem as

x 6 aiC1, i.e. x 6 an, implies x 6 a0
n D anc. So, we still have b0 D a0

� Ri;x .

Finally, put a0 WD a � 1=c and b0 WD b � 1=c. If n is negative in a, we have

a0 D a1= � � � =an=1=c and b0 D b1= � � � =bn=1=c, whence b0 D a0
� Ri;x directly.

Similarly, if n is positive in a, we find a0 D a1= � � � =an=c and b0 D b1= � � � =bn=c,

again implying b0 D a0
� Ri;x . So the verification is complete. (Observe that the

treatments of right multiplication by c and by 1=c are not exactly symmetric.)

A rewrite system is called terminating if no infinite rewriting sequence exists,

hence if every sequence of reductions from an element leads in finitely many steps to

an irreducible element. We easily obtain a termination result for reduction:

Proposition 3.9. If M is a noetherian gcd-monoid, then RM is terminating.
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Proof. Using � for the factor relation of (2.8), we consider for each n the anti-

lexicographic extension of � to n-multifractions:

a �n b , 9i 2 f1; : : : ; ng .ai � bi and 8j 2 fi C 1; : : : ; ng .aj D bj //:

(3.3)

Then, if a; b are n-multifractions, a ) b implies b �n a. Indeed, b D a � Ri;x

with x 6D 1 implies bk D ak for k > i C 2, and biC1 � aiC1: if i is negative in a,

then biC1 is a proper right divisor of aiC1 whereas, if i is positive in a, then it is

a proper left divisor. In both cases, we have bi � ai , whence b �n a. Hence an

infinite sequence of R-reductions starting from a results in an infinite �n-descending

sequence.

If M is a noetherian gcd-monoid, then, by Lemma 2.14, � is a well-founded partial

order on M . This implies that �n is a well-founded partial order for every n: the

indices i possibly occurring in a �n-descending sequence should eventually stabilize,

resulting in a �-descending sequence in M . Hence no such infinite sequence may

exist.

Corollary 3.10. If M is a noetherian gcd-monoid, then every '-class contains at
least one R-irreducible multifraction.

Proof. Starting from a, every sequence of reductions leads in finitely many steps

to an R-irreducible multifraction. By Lemma 3.7, the latter belongs to the same

'-class as a.

Thus, when Corollary 3.10 is relevant, R-irreducible multifractions are natural

candidates for being distinguished representatives of '-classes.

Remark 3.11. Prop. 3.9 makes the question of the termination of RM fairly easy.

But it would not be so, should the definition be relaxed as alluded in Remark 3.6.

On the other hand, as can be expected, noetherianity is crucial to ensure termination.

For instance, the monoid M D ha; b j a D babiC is a non-noetherian gcd-monoid,

and the infinite sequence 1=a=a ) 1=ab=ab ) =1=ab2=ab2 ) � � � shows that

reduction is not terminating for M .

Our last result is a simple composition rule for reductions at the same level.

Lemma 3.12. If M is a gcd-monoid and a belongs to FM , then, if i is negative
(resp., positive) in a, then .a � Ri;x/ � Ri;y is defined if and only if a � Ri;xy

.resp., a � Ri;yx/ is, and then they are equal.

We skip the proof, which should be easy to read on Fig. 3: the point is the rule

for an iterated lcm, as given in Lemma 2.8, and obvious on the diagram.

In Def. 3.3, we put no restriction on the parameter x involved in the rule Ri;x .

Lemma 3.12 implies that the relation )� is not changed when one restricts to

rules Ri;x with x in some distinguished generating family, typically x an atom

when M is noetherian.
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: : : : : :

ai�1

bi�1

ci�1

ai

bi

ci

aiC1

biC1

ciC1

x0

y0

x

y

Figure 3. Composition of two reductions, here for i negative in a.

3.3. Reducing depth. By definition, all rules of RM preserve the depth of multi-

fractions. In order to possibly obtain genuinely unique representatives, we introduce

an additional transformation erasing trivial final entries.

Definition 3.13. If M is a gcd-monoid, then, for a; b in FM , we declare b D a � R�

if the final entry of a is 1, and b is obtained from a by removing it. We write a )b b

for either a ) b or b D a � R�, and denote by )b � the reflexive–transitive closure

of )b . We put bRM WD RM [ fR�g.

It follows from the definition that an n-multifraction a is bR-irreducible if and

only if it is R-irreducible and, in addition, satisfies an 6D 1. We now show that the

rule R� does not change the properties of the system. Hereafter, we use 1n (often

abridged as 1) for the n-multifraction 1= � � � =1, n factors.

Lemma 3.14. If M is a gcd-monoid and a; b belong to FM , then a )b� b holds if
and only if a )� b � 1p holds for some p > 0.

Proof. We prove using induction on m that a )bm
b implies the existence of p

satisfying a )� b � 1p . This is obvious for m D 0. For m D 1, by definition, we

have either a ) b, whence a )� b � 10, or b D a � R�, whence a )� b � 1p with

p D 1 for kak odd and p D 2 for kak even. Assume m > 2. Write a )bm�1
c )b b.

By induction hypothesis, we have a )� c � 1q and c )� b � 1r for some q; r . By

Lemma 3.8, we deduce c � 1q )� b � 1r � 1q , whence, by transitivity, a )� b � 1r � 1q ,

which is a )� b � 1p with p D q C r (resp., p D q C r � 1) for r even (resp., odd).

Conversely, we have b D .b �1p/ � .R�/p for kbk even and b D .b � 1p/ � .R�/p�1

for kbk odd, so a )� b � 1p implies a )b � b in every case.

Lemma 3.15. Assume that M is a gcd-monoid.

(i) The relation )b � is included in ' and it is compatible with multiplication.

(ii) The rewrite system bRM is terminating if and only if RM is.

Proof. (i) Assume a )b � b. By Lemma 3.14, we have a )� b � 1p for some p.

First, we deduce a ' b � 1p , whence a ' b owing to (2.3). Next, let c be an arbitrary

multifraction. By Lemma 3.8, a )� b � 1p implies c � a )� c � b � 1p , whence

c � a )b � c � b. On the other hand, a )� b � 1p implies a � c )� b � 1p � c. An easy

induction from 1=1=x � R2;x D x=1=1 yields the general relation 1p � c )� c � 1q

with q D p for p and kck of the same parity, q D p C 1 for p even and kck odd,
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and q D p � 1 for p odd and kck even. We deduce a � c )� b � c � 1q, whence

a � c )b � b � c.

(ii) As RM is included in bRM , the direct implication is trivial. Conversely,

applying R� strictly diminishes the depth. Hence an bRM -sequence from an

n-multifraction a contains at most n applications of R� and, therefore, an infinite
bRM -sequence from a must include a (final) infinite RM -subsequence.

We conclude with a direct application providing a two-way connection between

the congruence ' and the symmetric closure of )b �. This connection is a sort of

converse for Lemma 3.15(i), and it will be crucial in Section 5 below.

Proposition 3.16. If M is a gcd-monoid and a; b belong to FM , then a ' b holds if
and only if there exist r > 0 and multifractions c0; : : : ; c2r satisfying

a D c0 )b� c1 �(b c2 )b � � � � �(b c2r D b: (3.4)

Proof. Write a � b when there exists a zigzag as in (3.4). As )b � is reflexive and

transitive, � is an equivalence relation. By Lemma 3.15(i), )b � is included in ',

which is symmetric, hence � is included in '. Next, by Lemma 3.15 again, )b � is

compatible with multiplication, hence so is �. Hence, � is a congruence included

in '. As we have 1 � R� D ¿ and, for every a in M ,

a=a � R1;aR�R� D ¿; 1=a=a � R2;aR�R�R� D ¿;

the relations 1 � ¿, a=a � ¿ and 1=a=a � ¿ hold. By definition, ' is the

congruence generated by the pairs above, hence � and ' coincide.

Using the connection between )� and )b �, we deduce

Corollary 3.17. If M is a gcd-monoid and a; b belong to FM , then a ' b holds if
and only if there exist p; q; r > 0 and multifractions d 0; : : : ; d2r satisfying

a � 1p D d 0 )� d 1 �( d 2 )� � � � �( d 2r D b � 1q : (3.5)

Proof. Assume that a and b are connected as in (3.4). Let n D max.kc0k; : : : ; kc2rk/

and, for each i , let d i be an n-multifraction of the form ci � 1m. By Lemma 3.14,

c2i )b � c2i�1 implies c2i )� c2i�1 � 1p for some p, whence, by Lemma 3.8,

d 2i )� c2i�1 � 1q for some q. As )� preserves depth, the latter multifraction must

be d 2i�1. The argument for d 2i )� d 2iC1 is similar.

4. Confluence of reduction

As in the case of free reduction and of any rewrite system, we are interested in the case

when the system RM and its variant bRM are convergent, meaning that every element,
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here, every multifraction, reduces to a unique irreducible one. In this section, we first

recall in Subsection 4.1 the connection between the convergence of RM and its local

confluence (4.2), and we show that RM and bRM are similar in this respect. We thus

investigate the possible local confluence of RM in Subsection 4.2. This leads us to

introduce in Subsection 4.3 what we call the 3-Ore condition.

4.1. Convergence, confluence, and local confluence. A rewrite system, here on FM ,

is called confluent when

If we have a )� b and a )� c, there exists d satisfying b )� d

and c )� d
(4.1)

(“diamond property”), and it is called locally confluent when

If we have a ) b and a ) c, there exists d satisfying b )� d

and c )� d .
(4.2)

By Newman’s classical Diamond Lemma [19,29], a terminating rewrite system is

convergent if and only if it is confluent, if and only if it is locally confluent. In the

current case, we saw in Prop. 3.9 and Lemma 3.15 that, under the mild assumption

that the ground monoid M is noetherian, the systems RM and bRM are terminating.

So the point is to investigate the possible local confluence of these systems. Once

again, RM and bRM behave similarly.

Lemma 4.1. If M is a gcd-monoid, then bRM is locally confluent if and only if RM is.

Proof. Assume that RM is locally confluent. To establish that bRM is locally

confluent, it suffices to consider the mixed case b D a � Ri;x, c D a � R�. So

assume that a � R� and a � Ri;x are defined, with x 6D 1. Let n D kak. The

assumption that a � R� is defined implies an D 1, whereas the assumption that

a � Ri;x is defined with x 6D 1 implies that x divides aiC1 (on the relevant side),

whence aiC1 6D 1. So the only possibility is i C 1 < n. Then we immediately check

that a �R�Ri;x and a �Ri;xR� are defined, and that they are equal, i.e. (4.2) is satisfied

for d D a � R�Ri;x .

Conversely, assume that bRM is locally confluent, and we have a ) b and a ) c.

By assumption, we have b )b � d and c )b � d for some d . By Lemma 3.14, we

deduce the existence of p; q satisfying b )� d � 1p and c )� d � 1q and, as )�

preserves depth, we must have p D q, and d � 1p provides the expected common

R-reduct.

Thus we can summarize the situation in

Proposition 4.2. If M is a noetherian gcd-monoid, the following are equivalent:

(i) The rewrite system bRM is convergent;

(ii) The rewrite system RM is convergent;

(iii) The rewrite system RM is locally confluent, i.e. it satisfies (4.2).
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4.2. Local confluence of RM . In order to study the possible local confluence of RM ,

we shall assume that a multifraction a is eligible for two rules Ri;x and Rj;y , and try

to find a common reduct for a � Ri;x and a � Rj;y . The situation primarily depends

on the distance between i and j . We begin with the case of remote reductions

(ji � j j > 2).

Lemma 4.3. Assume that both a � Ri;x and a � Rj;y are defined and ji � j j > 2

holds. Then a � Ri;xRj;y and a � Rj;yRi;x are defined and equal.

Proof. The result is straightforward for ji � j j > 3 since, in this case, the three

indices i � 1, i , i C 1 involved in the definition of Ri;x are disjoint from the three

indices j � 1, j , j C 1 involved in that of Rj;y and, therefore, the two actions

commute.

The case ji � j j D 2 is not really more difficult. Assume for instance i negative

in a and i D j C 2 (see Fig. 4). Put b WD a � Ri;x and c WD a � Rj;y . By definition

of Ri;x, we have bj C1 > aj C1 and bj D aj , so y 6 aj C1 implies y 6 bj C1, and

the assumption that a � Rj;y is defined implies that b � Rj;y is defined. Similarly, we

have ciC1 D aiC1 and ci D ai , so the assumption that a � Ri;x is defined implies that

c � Ri;x is defined too. Then we have b � Rj;y D c � Ri;x D d , with

di�3 D ai�3y0; ydi�2 D ai�2y0 D y _ ai�2; ydi�1 D ai�1x0;

xdi D aix
0 D x _ ai ; xdiC1 D aiC1:

The argument for i positive in a is symmetric.

: : :

aj �1

dj �1

aj

dj

ai�1

di�1

ai

di

aiC1

diC1

yy0 xx0 : : :

Figure 4. Local confluence of reduction for j D i � 2 (case i negative in a): starting with the

light grey path, if we can both push x through ai at level i and y through ai�2 at level i � 2,

we can start with either and subsequently converge to the colored path.

We turn to ji �j j D 1. This case is more complicated, but confluence can always

be realized.

Lemma 4.4. Assume that both a � Ri;x and a � Rj;y are defined and i D j C 1

holds. Then there exist v and w such that a � Ri;xRi�1;v and a � Ri�1;yRi;xRi�2;w

are defined and equal.

Proof. (See Fig. 5.) Assume i negative in a. Put b WD a � Ri;x and c WD a � Ri�1;y .

By definition, there exist x0; y0 satisfying

bi�2 D ai�2; bi�1 D ai�1x0; xbi D aix
0 D x _ ai ; xbiC1 D aiC1;

ci�2 D y0ai�2; ci�1y D y0ai�1 D y e_ ai�1; ciy D ai ; ciC1 D aiC1:
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As ai is ci y and aix
0 D xbi is the right lcm of x and ai , Lemma 2.8 implies the

existence of x00, u, and v satisfying

bi D uv with cix
00 D xu D x _ ci and yx0 D x00v D y _ x00: (4.3)

Let us first consider c. By construction, x left divides ciC1, which is aiC1, and

x _ ci exists. Hence c � Ri;x is defined. Call it d . The equalities of (4.3) imply

di�2 D ci�2 D y0ai�2; di�1 D ci�1x00; di D u; diC1 D biC1:

Next, by (4.3) again, v right divides bi , and we have

y0bi�1 D y0ai�1x0 D ci�1yx0 D ci�1x00v; (4.4)

which shows that v and bi�1 admit a common left multiple, hence a left lcm. It

follows that b � Ri�1;v is defined. Call it e. By definition, we have

ei�2 D v0bi�2 D v0ai�2; ei�1v D v0bi�1 D ve_bi�1; eiv D bi ; eiC1 D biC1

(the colored path in Fig. 5).

ai

di�1

x biC1

aiC1

ci
u

ci�1

y0 y v

ai�1

x0

bi�1
ai�2

w

v0

ei�1

x00

ci�2

bi

Figure 5. Local confluence for j D i � 1 (case i negative in a): starting with the grey path, if

we can both push x through ai at level i and y through ai�1 at level i �1, then we can start with

either and, by subsequent reductions, converge to the colored path. (A zigzag representation of

multifractions is preferable here).

Now, merging eiv D bi with bi D uv in (4.3), we deduce ei D u D di . On

the other hand, we saw in (4.4) that y0bi�1, which is also di�1v, is a common left

multiple of v and bi�1, whereas, by definition, v0bi�1, which is also ei�1v, is the left

lcm of v and bi�1. By the definition of a left lcm, there must exist w satisfying

y0 D wv0 and di�1 D wei�1: (4.5)

From the left equality in (4.5), we deduce di�2 D y0ai�2 D wv0ai�2 D wei�2.

Hence e is obtained from d by left dividing the .i � 2/nd and .i � 1/st entries by w.

This means that e D d � Ri�2;w holds, completing the argument in the general case.
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In the particular case i D 2, j D 1, the assumption that R1;y is defined implies

y e< ai�1, which, with the above notation, implies y0 D 1. In this case, we necessarily

have w D v0 D 1, so that R1;v is well defined, and the result remains valid at the

expense of forgetting about the term Ri�2;w , which is then trivial.

Finally, the case i positive in a is addressed similarly.

Remark 4.5. Note that, in Lemma 4.4, the parameters v and w occurring in the

confluence solutions depend not only on the initial parameters x; y, but also on the

specific multifraction a.

The last case is i D j , i.e. two reductions at the same level. Here an extra

condition appears.

Lemma 4.6. Assume that a � Ri;x , and a � Ri;y are defined, with i negative
.resp., positive/ in a, and ai ; x, and y admit a common right .resp., left/ multiple.
Then a � Ri;xRi;v and a � Ri;yRi;w are defined and equal, where v and w are defined
by x _ y D xv D yw .resp., x e_ y D vx D wy/.

Proof. (See Fig. 6.) Assume i negative in ai . Put b WD a � Ri;x and c WD a � Ri;y .

By assumption, aiC1 is a right multiple of x and of y, hence x _ y exists, and aiC1

is a right multiple of the latter. Write z D x _ y D xv D yw.

The assumption that a � Ri;x and a � Ri;y are defined implies that both x and y

left divide aiC1, hence so does their right lcm z. On the other hand, by associativity

of the lcm, the assumption that x, y, and ai admit a common right multiple implies

that z and ai admit a right lcm. Hence a � Ri;z is defined. By Lemma 3.12, we

deduce a � Ri;z D a � Ri;xRi;v D a � Ri;yRi;w .

The case of i positive in a is symmetric. The particular case i D 1 results in no

problem, since, if x and y right divide a1, then so does their left lcm z.

: : :

ai�1

ai
aiC1

di

diC1

y0 y
xx0

ai�1

di�1

: : :

Figure 6. Local confluence for i D j (case i negative in a): if a global common multiple

of x, y, and ai exists and x and y cross ai , then so does their right lcm.

Remark 4.7. Inspecting the above proofs shows that allowing arbitrary common

multiples rather than requiring lcms in the definition of reduction would not really

change the situation, but just force to possibly add extra division steps, making some

arguments more tedious. In any case, irreducible multifractions are the same, since

a multifraction may be irreducible only if adjacent entries admit no common divisor

(on the relevant side).
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4.3. The 3-Ore condition. The results of Subsection 4.2 show that reduction of

multifractions is close to be locally confluent, i.e. to satisfy the implication (4.2): the

only possible failure arises in the case when a � Ri;x and a � Ri;y are defined but the

elements x, y, and ai admit no common multiple. Here we consider those monoids

for which such a situation is excluded.

Definition 4.8. We say that a monoid M satisfies the right (resp., left) 3-Ore
condition if

three elements of M pairwise admit a common right .resp., left/ multiple,

then they admit a common right .resp., left/ multiple.
(4.6)

Say that M satisfies the 3-Ore condition if it satisfies the right and the left 3-Ore

conditions.

The terminology refers to Ore’s Theorem: a (cancellative) monoid is usually

said to satisfy the Ore condition if any two elements admit a common multiple,

and this could also be called the 2-Ore condition, as it involves pairs of elements.

Condition (4.6) is similar, but involving triples. Diagrammatically, the 3-Ore

condition asserts that every tentative lcm cube whose first three faces exist can

be completed. The 2-Ore condition implies the 3-Ore condition (a common multiple

for a and a common multiple of b and c is a common multiple for a; b; c), but the

latter is weaker.

Example 4.9. A free monoid satisfies the 3-Ore condition. Indeed, two elements a; b

admit a common right multiple only if one is a prefix of the other, so, if a; b; c pairwise

admit common right multiples, they are prefixes of one of them, and therefore admit

a global right multiple.

Merging Lemmas 4.3, 4.4, and 4.6 with Prop. 4.2, we obtain

Proposition 4.10. If M is a noetherian gcd-monoid satisfying the 3-Ore condition,
then the systems RM and bRM are convergent.

It turns out that the implication of Prop. 4.10 is almost an equivalence: whenever (a

condition slightly stronger than) the convergence of RM holds, then M must satisfy

the 3-Ore condition: we refer to [11] for the proof (which requires the extended

framework of signed multifractions developed there).

Before looking at the applications of the convergence of RM , we conclude this

section with a criterion for the 3-Ore condition. It involves the basic elements of

Def. 2.20.

Proposition 4.11. A noetherian gcd-monoid M satisfies the 3-Ore condition if and
only if it satisfies the following two conditions:

if three right basic elements of M pairwise admit a common right multiple,
then they admit a common right multiple.

(4.7)

if three left basic elements of M pairwise admit a common left multiple,
then they admit a common left multiple.

(4.8)
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Proof. The condition is necessary, since (4.7) and (4.8) are instances of (4.6).

Conversely, assume that M is a noetherian gcd-monoid M satisfying (4.7). Let X

be the set of right basic elements in M . We shall prove that M satisfies the right

3-Ore condition. Let us say that O.a; b; c/ holds if either a; b; c have a common

right multiple, or at least two of them have no common right multiple. Then (4.7)

says that O.a; b; c/ is true for all a; b; c in X , and our aim is to prove that O.a; b; c/

is true for all a; b; c in M . We shall prove using induction on m the property

O.a; b; c/ holds for all a; b; c with a 2 Xp , b 2 Xq , c 2 Xr

and p C q C r 6 m.
(Pm)

As O.a; b; c/ is trivial if one of a; b; c is 1, i.e. when one of p; q; r is zero, the first

nontrivial case is m D 3 with p D q D r D 1, and then (4.7) gives the result.

So .P3/ is true.

Assume now m > 4, and let a; b; c satisfy a 2 Xp , b 2 Xq , c 2 Xr with

p C q C r 6 m and pairwise admit common right multiples. Then at least one

of p; q; r is > 2, say r > 2. Write c D zc0 with z 2 X and c0 2 Xr�1. By

assumption, a _ c is defined, so, by Lemma 2.8, a _ z exists and so is a0 _ c0,

where a0 is defined by a _ z D za0. Similarly, b _ z and b0 _ c0 exist, where b0 is

defined by b _ z D zb0 (see Fig. 7). Then a; b, and z pairwise admit common right

multiples and one has p C q C 1 < m so, by the induction hypothesis, they admit a

global common right multiple and, therefore, a0 _ b0 is defined.
c

a

b0b

a0

z c0

Figure 7. Induction for Prop. 4.11: Property .PpCqC1/ ensures the existence of the left cube,

Property .PpCqCr�1/ that of the right cube.

On the other hand, as X is RC-closed, a 2 Xp implies a0 2 Xp: indeed,

assuming a D x1 � � � xp with x1; : : : ; xp 2 X , Lemma 2.8 implies a0 D x0
1 � � � x0

p

with x0
i and zi inductively defined by z0 D z and xi _ zi�1 D zi�1x0

i D xizi for

1 6 i 6 p. As X is RC-closed, xi 2 X implies x0
i 2 X . Similarly, b 2 Xq implies

b0 2 Xq . So a0; b0, and c0, belong to Xp; Xq, and Xr�1. We saw that a0 _ b0 exists.

On the other hand, the assumption that a _ c and b _ c exist implies that a0 _ c0 and

b0 _ c0 do. As we have p C q C .r � 1/ < m, the induction hypothesis implies that

a0; b0; c0 admit a common right multiple d 0, and then zd 0 is a common right multiple

for a; b; c. Hence .Pm/ is true. And, as X generates M , every element of M lies

in Xp for some p. Hence the validity of .Pm/ for every m implies that M satisfies

the right 3-Ore condition.
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A symmetric argument using left basic elements gives the left 3-Ore condition,

whence, finally, the full 3-Ore condition.

It follows that, under mild assumptions (see Subsection 5.2 below), the 3-Ore

condition is a decidable property of a presented noetherian gcd-monoid.

Remark 4.12. A simpler version of the above argument works for the 2-Ore condition:

any two elements in a noetherian gcd-monoid admit a common right multiple (resp.,

left multiple) if and only if any two right basic (resp., left basic) elements admit one.

5. Applications of convergence

We now show that, as can be expected, multifraction reduction provides a full control

of the enveloping group U.M/ when the rewrite system RM is convergent. We

shall successively address the representation of the elements of U.M/ by irreducible

multifractions (Subsection 5.1), the decidability of the word problem for U.M/

(Subsection 5.2), and what we call Property H (Subsection 5.3).

5.1. Representation of the elements of U.M/. The definition of convergence

and the connection between the congruence ' defining the enveloping group and

R-reduction easily imply:

Proposition 5.1. If M is a noetherian gcd-monoid and RM is convergent, then every
element of U.M/ is represented by a unique bR-irreducible multifraction; for all a; b

in FM , we have
a ' b ” cred.a/ D cred.b/; (5.1)

where cred.a/ is the unique bRM -irreducible reduct of a, and, in particular,

a represents 1 in U.M/ ” a )b �
¿: (5.2)

The monoid M embeds in U.M/, and the product of U.M/ is determined by

�.a/ � �.b/ D �.cred.a � b//: (5.3)

Proof. By Prop. 4.2, the assumption that RM is convergent implies that bRM is

convergent as well, so cred is well defined on FM and, by Cor. 3.10, every '-class

contains at least one bRM -irreducible multifraction. Hence, the unique representation

result will follows from (5.1).

Assume a ' b. By Prop. 3.16, there exists a zigzag c0; : : : ; c2r connecting a to b

as in (3.4). Using induction on k > 0, we prove ck )b � cred.a/ for every k. For k D 0,

the result is true by definition. For k even, the result for k follows from the result

for k � 1 and the transitivity of )b �. Finally, assume k odd. We have ck�1 )b � ck

by (3.4) and ck�1 )b � cred.a/ by induction hypothesis. By definition of cred, this
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implies cred.ck�1/ D cred.ck/ and cred.ck�1/ D cred.a/, whence cred.ck/ D cred.a/.

For k D 2r , we find cred.b/ D cred.a/. Hence a ' b implies cred.a/ D cred.b/. The

converse implication follows from Lemma 3.15. So (5.1) is established, and (5.2)

follows, since, because ¿ is bR-irreducible, the latter is a particular instance of (5.1).

Next, no reduction of RM applies to a multifraction of depth one, i.e. to an element

of M , hence we have cred.x/ D x for x 6D 1 and cred.1/ D ¿. Hence x 6D y implies
cred.x/ 6D cred.y/, whence �.x/ 6D �.y/. So the restriction of � to M is injective,

i.e. M embeds in U.M/.

Finally, (5.1) implies �.a/ D �.cred.a//, and (5.3) directly follows from � being a

morphism.

Merging with Prop. 4.10, we obtain the following result, which includes item (i)

in Theorem A in the introduction:

Theorem 5.2. If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then
every element of U.M/ is represented by a unique bRM -irreducible multifraction.
The monoid M embeds in the group U.M/, and (5.1), (5.2), and (5.3) are valid
in M .

We now quickly mention a few further consequences of the unique representation

result. First, there exists a new, well defined integer parameter for the elements

of U.M/:

Definition 5.3. If M is a gcd-monoid and RM is convergent, then, for g in U.M/,

the depth kgk of g is the depth of the (unique) bRM -irreducible multifraction that

represents g.

Example 5.4. The only element of depth 0 is 1, whereas the elements of depth 1

are the nontrivial elements of M . The elements of depth 2 are the ones that can be

expressed as a (right) fraction a=b with a; b in M , etc. If M is a Garside monoid, and,

more generally, if U.M/ is a group of right fractions for M , every element of U.M/

has depth at most 2. When U.M/ is a group of left fractions for M , then every

element of U.M/ has depth at most 3, possibly a sharp bound: for instance, in the

Baumslag–Solitar monoid ha; b j a2b D baiC, the element b�1a�1b is represented

by the irreducible multifraction 1=ab=b and it has depth 3. On the other hand, a

non-cyclic free group contains elements of arbitrary large depth.

Question 5.5. Does there exist a gcd-monoid M such that RM is convergent and the

least upper bound of the depth on U.M/ is finite > 4?

The following inequalities show that, when it exists, the depth behaves like a

sort of gradation on the group U.M/. They easily follow from the definition of the
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product on FM and can be seen to be optimal:

kg�1k D

(
kgk or kgk C 1 for kgk odd,

kgk or kgk � 1 for kgk even,
(5.4)

max.kgk � khk#; khk � kgk#/ 6 kghk 6

(
kgk C khk � 1 for kgk odd,

kgk C khk for kgk even,
(5.5)

with n# standing for n if n is even and for n C 1 if n is odd. By the way, changing the

definition so as to ensure kg�1k D kgk seems difficult: thinking of the signed

multifractions of [11], we could wish to forget about the first entry when it is

trivial, but this is useless: for instance, in the right-angled Artin–Tits monoid

ha; b; c j ab D ba; bc D cbiC, if a=bc=a represents g, then g�1 is represented

by b=a=c=a, leading in any case to kg�1k D kgk C 1.

In the same vein, we can associate with every nontrivial element of U.M/ an

element of M :

Definition 5.6. If M is a gcd-monoid and RM is convergent, then, for g

in U.M/nf1g, the denominator D.g/ of g is the last entry of the bR-irreducible

multifraction representing g.

Then the usual characterization of the denominator of a fraction extends into:

Proposition 5.7. If M is a gcd-monoid and RM is convergent, then, for every g

in U.M/ with kgk even .resp., odd/, D.g/ is the 6-smallest .resp., e6-smallest/
element a of M satisfying kgak < kgk .resp., kga�1k < kgk/.

We skip the (easy) verification.

5.2. The word problem for U.M/. In view of (5.2) and Lemma 2.4, one might

think that reduction directly solves the word problem for the group U.M/ when RM

is convergent. This is essentially true, but some care and some additional assumptions

are needed.

The problem is the decidability of the relation )�, i.e. the question of whether,

starting with a (convenient) presentation of a gcd-monoid, one can effectively decide

whether, say, the multifraction represented by a word reduces to 1. The question

is not trivial, because the existence of common multiples need not be decidable in

general. However, we shall see that mild finiteness assumptions are sufficient.

If S is a generating subfamily of a monoid M , then, for a in M , we denote

by `S .a/ the minimal length of a word in S representing a.

Lemma 5.8. If M is a noetherian gcd-monoid, S is the atom set of M , and `S .x/ 6 C

holds for every right basic element x of M , then, for all a; b in M such that a _ b

exists, we have
`S .a _ b/ 6 C.`S.a/ C `S .b//: (5.6)
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Proof. Let X be the set of right basic elements in M . Assume that a; b are elements

of M such that a _ b exists. Let p WD `S .a/, q WD `S .b/. Then a lies in Sp

(i.e. it can be expressed as the product of p elements of X), hence a fortiori in Xp ,

since S is included in X . Similarly, b lies in Xq. Now, as already mentioned in the

proof of Prop. 4.11, a straightforward induction using Lemma 2.8 shows that, if a

and b lie in Xp and Xq and a _ b exists, then one has a _ b D ab0 D ba0 with

a0 2 Xp and b0 in Xq . We conclude that a _ b lies in XpCq , and, therefore, we have

`S .a _ b/ 6 C.p C q/.

Lemma 5.9. Assume that M is a strongly noetherian gcd-monoid with finitely many
basic elements. Let S be the atom set of M . Then, for all i and u in S�, the
relation “Œw�C � Ri;Œu�C is defined” is decidable and the map “w 7! Œw�C � Ri;Œu�C”
is computable.

Proof. By [15, Thm. 4.1], M admits a finite presentation .S; R/: it suffices, for all s; t

such that s and t admit a common right multiple in M , to choose two words u; v such

that both su and tv represent s _ t in M and to put in R the relation su D tv.

By definition, Œw�C � Ri;Œu�C is defined if and only if calling .w1; : : : ; wn/ the

decomposition (2.4) of w, the elements Œu�C and Œwi �
C admit a common multiple,

and Œu�C divides ŒwiC1�C (both on the relevant side). As seen in the proof of

Prop. 2.16, the set of all words in S that represent ŒwiC1�C is finite, hence we can

decide Œu�C 6 ŒwiC1�C (resp., Œu�C e6 ŒwiC1�C) by exhaustively enumerating the

class of wiC1 and check whether some word in this class begins (resp., finishes)

with u. Deciding the existence of Œu�C _ Œwi �
C is a priori more difficult, because

we do not remain inside some fixed class. However, by Lemma 5.8, Œu�C _ Œwi �
C

exists if and only if, calling C the sup of the lengths of the (finitely many) words that

represent a basic element of M , there exist two equivalent words of length at most

C.`.u/ C `.wi // that respectively begin with u and with wi . This can be tested in

finite time by an exhaustive search.

Finally, when Œw�C �Ri;Œu�C is defined, computing its value is easy, since it amounts

to performing multiplications and divisions in M , and the word problem for M is

decidable.

Proposition 5.10. If M is a strongly noetherian gcd-monoid with finitely many basic
elements and atom set S , then the relations Œw�C )� 1 and Œw�C )b� ¿ on .S [ S/�

are decidable.

Proof. For a in FM , consider the tree Ta, whose nodes are pairs .b; s/ with b a reduct

of a and s is a finite sequence in N � S : the root of Ta is .a; "/, and the sons of .b; s/

are all pairs .b � Ri;x; s_.i; x// such that b � Ri;x is defined. As S is finite, the

number of pairs .i; x/ with x in S and b � Ri;x defined is finite, so each node in Ta

has finitely many immediate successors. On the other hand, as M is noetherian, RM

is terminating and, therefore, Ta has no infinite branch. Hence, by König’s lemma,
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Ta is finite. Therefore, starting from a word w in S [ S and applying Lemma 5.9, we

can exhaustively construct TŒw�C . Once this is done, deciding Œw�C )� 1 (or, more

generally, Œw�C )� Œw0�C for any w0) is straightforward: it suffices to check whether 1

(or Œw0�C) occur in TŒw�C , which amounts to checking finitely many �C-equivalences

of words.

The argument for bRS is similar, mutatis mutandis.

Then we can solve the word problem for U.M/:

Proposition 5.11. If M is a strongly noetherian gcd-monoid with finitely many basic
elements and RM is convergent, the word problems for U.M/ is decidable.

Proof. Let S be the atom set of M . Then Prop. 5.10 states the decidability of the

relation Œw�C )b � ¿ for words in S [ S . By (5.2), this relation is equivalent to

Œw�C ' 1, hence, by Lemma 2.4, to w representing 1 in U.M/.

Merging with Prop 4.10, we deduce the second part of Theorem A in the

introduction:

Theorem 5.12. If M is a strongly noetherian gcd-monoid satisfying the 3-Ore
condition and containing finitely many basic elements, the word problem for U.M/

is decidable.

5.3. Property H. We conclude with a third application of semi-convergence involv-

ing the property introduced in [10] and called Property H in [13] and [25]. We say

that a presentation .S; R/ of a monoid M satisfies Property H if a word w in S [ S

represents 1 in U.M/ if and only if one can go from w to the empty word only

using special transformations of the following four types (we recall that �C is the

congruence on S� generated by R):

– replacing a positive factor u of w (no letter s) by u0 with u0 �C u,

– replacing a negative factor u of w (no letter s) by u0, with u0 �C u,

– deleting some length two factor ss or replacing some length two factor st with vu

such that sv D tu is a relation of R (“right reversing” relation Õ of [10]),

– deleting some length two factor ss or replacing some length two factor st with uv

such that vs D ut is a relation of R (“left reversing” relation Ôof [10]).

All special transformations replace a word with another word that represents the same

element in U.M/, and the point is that new trivial factors ss or ss are never added:

words may grow longer (if some relation of R involves a word of length > 3), but,

in some sense, they must become simpler, a situation directly reminiscent of Dehn’s

algorithm for hyperbolic groups, see [13, Sec. 1.2] for precise results in this direction.

Let us say that a presentation .S; R/ of a gcd-monoid M is a right lcm presentation
if R contains one relation for each pair .s; t / in S �S such that s and t admit a common

right multiple and this relation has the form sv D tu where both sv and tu represent
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the right lcm s_t . A left lcm presentation is defined symmetrically. By [15, Thm. 4.1],

every noetherian gcd-monoid admits (left and right) lcm presentations. For instance,

the standard presentation of an Artin–Tits monoid is an lcm presentation on both

sides.

Proposition 5.13. If M is a gcd-monoid and RM is convergent, then Property H is
true for every presentation of M that is an lcm-presentation on both sides.

Proof (sketch). Assume that .S; R/ is the involved presentation. Let w be a word

in S [ S . Then w represents 1 in U.M/ if and only if Œw�C )� 1 holds, where we

recall Œw�C is the multifraction Œw1�C=Œw2�C=Œw3�C= � � � assuming that the parsing

of w is w1w2w3 � � � . So the point is to check that, starting from a sequence of positive

words .u1; : : : ; un/ and s in S , we can construct a sequence .v1; : : : ; vn/ satisfying

Œv1�C= � � � =Œvn�C D Œu1�C= � � � =Œun�C � Ri;s

(assuming that the latter is defined) by only using special transformations. This is

indeed the case, as we can take (for i negative in a) vk D uk for k 6D i � 1; i; i C 1,

and

vi�1 D ui�1s0; sui Õ vis0; uiC1 �C sviC1;

where Õ is the above alluded right reversing relation that determines a right lcm [10,

17].

Corollary 5.14. If M is a noetherian gcd-monoid satisfying the 3-Ore condition,
then Property H is true for every presentation of M that is an lcm-presentation on
both sides.

By Prop. 7.1 (below), every Artin–Tits monoid of type FC satisfies the 3-Ore

condition, hence is eligible for Cor. 5.14: this provides a new, alternative proof of the

main result in [13].

Remark 5.15. If M is a noetherian gcd-monoid and S is the atom family of M ,

then M admits a right lcm presentation .S; Rr/ and a left lcm presentation .S; R`/

but, in general, Rr and R` need not coincide. Adapting the definition of Property H

to use Rr for Õ and R` for Ômakes every noetherian gcd-monoid M such that RM

is convergent eligible for Prop. 5.13.

6. The universal reduction strategy

When the rewrite system RM is convergent, every sequence of reductions from a

multifraction a leads in finitely many steps to red.a/. We shall see now that, when the

3-Ore condition is satisfied, there exists a canonical sequence of reductions leading

from a to red.a/, the remarkable point being that the recipe so obtained only depends

on kak.



Multifraction reduction I: the 3-Ore case 215

In Subsection 6.1, we establish technical preparatory results about how local

irreducibility is preserved when reductions are applied. The universal recipe is

established in Subsection 6.2, with a geometric interpretation in terms of van Kampen

diagrams in Subsection 6.3. Finally, we conclude in Subsection 6.4 with a few (weak)

results about torsion.

6.1. Local irreducibility.

Definition 6.1. If M is a gcd-monoid, a multifraction a on M is called i -irreducible
if a � Ri;x is defined for no x 6D 1.

An n-multifraction is R-irreducible if and only if it is i -irreducible for every i

in f1; : : : ; n � 1g. In general, i -irreducibility is not preserved under reduction.

However we shall see now that partial preservation results are valid, specially in the

3-Ore case.

Lemma 6.2. Assume that M is a gcd-monoid and b D a � Ri;x holds.

(i) If a is j -irreducible for some j 6D i � 2; i; i C 1, then so is b.

(ii) If a is .i � 2/-irreducible and b � Ri�2;z is defined, then, for i negative
(resp., positive) in a, we must have bi�1 D x0 e_ u (resp., x0 _ u), where x0

and u are defined by aix
0 D xbi (resp., x0ai D bix

0) and zu D bi�1

(resp., uz D bi�1).

Proof. (i) The result is trivial for j 6 i � 3 and j > i C 2, as bj D aj and

bj C1 D aj C1 then hold.

We now consider the case j D i � 1, with i > 4 negative in a. Assume that a

is .i � 1/-irreducible and b � Ri�1;y is defined (Fig. 8). Our aim is to show y D 1.

By construction, we have bi�1 D ai�1x0 with aix
0 WD x _ ai . By Lemma 2.8, the

assumption that y e_ bi�1 exists implies that y e_ x0 and y0 e_ ai�1 both exist where y0

is determind by y0x0 D x0 e_ y. On the other hand, the equality ai x
0 D xbi shows

that aix
0 is a common right multiple of x0 and bi , hence a fortiori of x0 and y.

By definition of y0, this implies y0 e6 ai . Hence a � Ri�1;y0 is defined. As a is

.i � 1/-irreducible, this implies y0 D 1, which implies y e6 x0. Thus y is a common

right divisor of x0 and bi . By definition, ai x
0 is the right lcm of x and ai , hence, by

Lemma 2.9, x0 ê bi D 1 holds. Therefore, the only possibility is y D 1, and b is

.i � 1/-irreducible.

For i D 2, the argument is similar: the assumption that y right divide b1 implies

that y0 right divides a1, as well as a2, and the assumption that a is 1-irreducible

implies y0 D 1, whence y D 1 as above. Finally, for i positive in a, the argument is

symmetric, mutatis mutandis.

(ii) Assume that a is .i �2/-irreducible and b �Ri�2;z is defined. We first assume

i > 4 negative in a. By definition, z is a left divisor of bi�1, say bi�1 D zu. By

construction, bi�1, which is ai�1x0, is a right multiple of x0 and u, hence x0 e_u exists
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and it right divides bi�1, say bi�1 D v.x0 e_ u/. Then v is a left divisor of ai�1. By

construction, v left divides z, hence the assumption that b � Ri�2;z is defined, which

implies that z and ai�2 admit a common right multiple, a fortiori implies that v and

ai�2 admit a common right multiple. It follows that a � Ri�2;v is defined. As a is

assumed to be .i � 2/-irreducible, this implies v D 1, hence bi�1 D u e_ x0.

For i > 5 positive in a, the argument is symmetric. Finally, for i D 3, v is

a common right divisor of a1 and a2, and the 1-irreducibility of a implies v D 1,

whence b2 D u _ x0 again.

ai

ai�3

ai�2
z u .D ci�1/

ai�1 x0

v

y0

y

x biC1

aiC1

bi .D ci /

z0 ci�2

ci�3

Figure 8. Preservation of irreducibility, proofs of Lemmas 6.2 and 6.3, here for i negative in a;

the colored part is for Lemma 6.3.

Lemma 6.3. Assume that M is a gcd-monoid satisfying the 3-Ore condition and
c D a � Ri;xRi�2;z holds. If a is .i � 1/- and .i � 2/-irreducible, then c is .i � 1/-
irreducible.

Proof. (See Fig. 8 again.) Put b WD a � Ri;x. By Lemma 6.2(i), the .i � 1/-

irreducibility of a implies that of b. However, as i � 1 D .i � 2/ C 1, Lemma 6.2(i)

is useless to deduce that b � Ri�2;z is .i �1/-irreducible. Now, assume that c � Ri�1;y

is defined with, say, i negative in a. Define x0 and u by aix
0 D xbi and zu D bi�1.

By construction, we have ci�1 D u. The existence of c � Ri�1;y implies y e6 ci and

the existence of y e_ u. Next, x0 and bi admit a common left multiple, namely xbi ,

hence a fortiori so do x0 and y. Finally, u and x0 admit a common left multiple,

namely bi�1. As M satisfies the 3-Ore condition, y, x0, and u admit a common left

multiple, hence y e_ x0 e_ u exists. As a is also .i � 2/-irreducible, Lemma 6.2(ii)

implies bi�1 D x0 e_ u. Thus y e_ bi�1 exists, hence b � Ri�1;y is defined. As b is

.i � 1/-irreducible, we deduce y D 1. Hence c is .i � 1/-irreducible.

As usual, the argument for i positive in a is symmetric (and i D 3 is not special

here).

6.2. The recipe. Our universal recipe relies on the existence, for each level, of a

unique, well defined maximal reduction applying to a given multifraction.
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Lemma 6.4. If M is a noetherian gcd-monoid satisfying the 3-Ore condition, for
every a in FM and every i < kak negative .resp., positive/ in a, there exists xmax

such that a � Ri;x is defined if and only if x 6 xmax .resp., x e6 xmax/ holds.

Proof. Assume i negative in a and let X WD fx 2 M j a � Ri;x is definedg. Let

x; y 2 X . By definition, x and y both left divide aiC1, so x _ y exists, and it left

divides aiC1. On the other hand, by assumption, x _ ai and y _ ai exist. By the

3-Ore condition, .x _ y/ _ ai exists, whence x _ y 2 X .

Put Y WD fy j 9x2X .xy D aiC1/g. As M is noetherian, there exists a

e<-minimal element in Y , say ymin. Define xmax by xmaxymin D aiC1. By construction,

xmax lies in X , so x 6 xmax implies x 2 X . Conversely, assume x 2 X . We saw

above that x _ xmax exists and belongs to X . Now, by the choice of xmax, we must

have x _ xmax D xmax, i.e. x 6 xmax.

The argument for i > 3 positive in a is similar. For i D 1, the result reduces to

the existence of a right gcd.

Notation 6.5. In the context of Lemma 6.4, we write a � Rmax
i for a � Ri;xmax for

i < kak, extended with a � Rmax
i WD a for i > kak. Next, if i is a sequence of

integers, say i D .i1; : : : ; i`/, we write a � Rmax
i for a � Rmax

i1
� � � Rmax

i`
.

In this way, a � Rmax
i is defined for every positive integer i . One should not

forget that, in this expression, Rmax
i depends on a and does not correspond to a

fixed Ri;x. Note that, for every a with kak > 2, we have a � Rmax
1 D a � D1;a1êa2

.

By Lemma 6.4, a multifraction a � Rmax
i is always i -irreducible: a is i -irreducible if

and only if a D a � Rmax
i holds.

The next result shows that conveniently reducing a multifraction that is i -

irreducible for i < m leads to a multifraction that is i -irreducible for i 6 m,

paving the way for an induction.

Lemma 6.6. Assume that M is a gcd-monoid satisfying the 3-Ore condition and a

is an n-multifraction that is i -irreducible for every i < m. Put

†.m/ D .m; m � 2; m � 4; : : : ; 2/

.resp., .m; m � 2; : : : ; 1// for m even .resp., odd/. Then a � Rmax
†.m/

is i -irreducible
for every i 6 m.

Proof. Put a0 WD a and ak WD ak�1
� Rmax

m�2kC2
for k > 1. We prove using induction

on k > 0

ak is i -irreducible for i D 1; : : : ; m with i 6D m � 2k. (Hk)

By assumption, a0, i.e. a, is i -irreducible for every i < m. Hence .H0/ is true.

Next, we have a1 D a � Rmax
m . By Lemma 6.2(i), the i -irreducibility of a for

i < m implies that a1 is i -irreducible for i D 1; : : : ; m � 1 with i 6D m � 2. On the

other hand, the definition of Rmax
m implies that a1 is m-irreducible. Hence .H1/ is

true.
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Assume now k > 2. By .Hk�1/, ak�1 is i -irreducible for i D 1; : : : ; m with

i 6D m � 2k C 2. Then, as above, Lemma 6.2(i) and the definition of Rmax
m�2kC2

imply that ak is i -irreducible for i D 1; : : : ; m with i 6D m � 2k; m � 2k C 3.

Now, ak D ak�2
� Rmax

m�2kC4
Rmax

m�2kC2
also holds and, by .Hk�2/, ak�2 is both

.m � 2k C 2/- and .m � 2k C 3/-irreducible. Then Lemma 6.3 implies that ak is

.m�2kC3/-irreducible. Thus, ak is i -irreducible for i D 1; : : : ; m with i 6D m�2k.

Hence .Hk/ is true.

Applying .Hk/ for k D b.mC1/=2c, which gives m�2k < 1, we obtain that ak ,

which is a � Rmax
†.m/

, is i -irreducible for every i 6 m.

Building on Lemma 6.6, we now easily obtain the expected universal recipe.

Proposition 6.7. If M is a noetherian gcd-monoid satisfying the 3-Ore condition,
then, for every n-multifraction a on M , we have

red.a/ D a � Rmax
U.n/; (6.1)

where U.n/ is empty for n 6 1, and is .1; 2; : : : ; n�1/ followed by U.n�2/ for n > 2.

Proof. An induction from Lemma 6.6 shows that, for kak D n and † as in

Lemma 6.6,

a � Rmax
†.1/R

max
†.2/ � � � Rmax

†.n�1/ (6.2)

is i -irreducible for every i < n, hence it must be red.a/. Then we observe that the

terms in (6.2) can be rearranged. Indeed, the proof of Lemma 4.3 shows that, as

partial mappings on FM , the transformations Ri;x and Rj;y commute for ji � j j > 3

(we claim nothing for ji � j j D 2). Applying this in (6.2) to push the high level

reductions to the left gives (6.1).

Thus, when Prop. 6.7 is eligible, reducing a multifraction a amounts to performing

the following quadratic sequence of algorithmic steps:

for p WD 1 to bkak=2c do

for i WD 1 to kak C 1 � 2p do

a WD a � Rmax
i .

In particular, a represents 1 in U.M/ if and only if the process ends with a trivial

multifraction (all entries equal to 1).

By the way, the proof of Prop. 6.7 shows that, for every n0-multifraction a with

n0 > n, the multifraction a � Rmax
U.n/

is i -irreducible for every i < n.

6.3. Universal van Kampen diagrams. Applying the rule of (6.1) amounts to

filling a diagram that only depends on the depth of the considered multifraction. For

instance, we have for every 6-multifraction a the universal recipe

red.a/ D a � Rmax
1 Rmax

2 Rmax
3 Rmax

4 Rmax
5 Rmax

1 Rmax
2 Rmax

3 Rmax
1 ;

and reducing a corresponds to filling the universal diagram of Fig. 9.
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Things take an interesting form when we consider a unital multifraction a, i.e. a

represents 1 in U.M/. By (5.2), we must finish with a trivial multifraction, i.e. all

arrows a0
i in Fig. 9 are equalities.

a1 a2 a3 a4 a5 a6

a0
6

a0
5

a0
4

a0
3

a0
2

a0
1

R1 R2 R3 R4 R5

R1 R2 R3

R1

Figure 9. The universal diagram for the reduction of a 6-multifraction: choosing for each

colored arrow the maximal divisor of the arrow above that admits an lcm with the arrow on the

left and filling the diagram leads to a0 D red.a/. The nine reductions correspond to the grey

tiles. The diagram shows that one can go from a to a0 by iteratively dividing and multiplying

adjacent factors by a common element.

If .�; �/ is a finite, simply connected pointed graph, let us say that a multifraction a

on a monoid M admits a van Kampen diagram of shape � if there is an M -labeling

of � such that the outer labels from � are a1; : : : ; an and the labels in each triangle

induce equalities in M . This notion is a mild extension of the usual one: if S is

any generating set for M , then replacing the elements of M with words in S and

equalities with word equivalence provides a van Kampen diagram in the usual sense

for the word in S [ S then associated with a.

It is standard that, if a is unital and M embeds in U.M/, then there exists a van

Kampen diagram for a, in the sense above. However, in general, there is no uniform

constraint on the underlying graph of a van Kampen diagram, typically no bound

on the number of cells or of spring and well vertices. What is remarkable is that

Prop. 6.1 provides one unique common shape that works for every multifraction of

depth n.

Definition 6.8. We define .�4; �/ to be the pointed graph below, and, for n > 6

even, we inductively define .�n; �/ to be the graph obtained by appending n � 2

adjacent copies of �4 around .�n�2; �/ starting from �, with alternating orientations,

and connecting the last copy of .�4; �/ with the first one, see Fig. 10.

�
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One easily checks that �n contains 1
4
n.n � 2/ � 1 copies of �4, and 1

2
n.n � 3/ � 1

interior nodes, namely 1
8
n.n � 2/ � 1 wells, 1

8
.n � 2/.n � 4/ springs, and 1

4
n.n � 2/

four-prongs.

a1

a2 a3

a4

�

�4

a1

a2

a3 a4

a5

a6
�

�6

a1

a2

a3

a4 a5

a6

a7

a8
�

�8

Figure 10. The universal graph �n, here for n D 4; 6; 8: for every unital n-multifraction a, there

is an M -labeling of �n with a on the boundary; �n is obtained by attaching n � 2 copies of �4

around �n�2, so five copies of �4 appear in �6, eleven appear in �8, etc. (the �4-tiling does not

correspond to the reduction tiles of Fig. 9).

Proposition 6.9. If M is a noetherian gcd-monoid that satisfies the 3-Ore condition,
then every unital n-multifraction a on M admits a van Kampen diagram of shape �n.

Proof (sketch). We simply bend the diagram of Fig. 9 so as to close it and obtain

a diagram, which we can view as included in the Cayley graph of M , whose outer

boundary is labeled with the entries of a. There are two nontrivial points.

First, we must take into account the fact that the n=2 right triangles (which are

half-copies of �4) are trivial. The point is that, if unital multifractions a; b satisfy

a � R1;x1
� � � Rn�1;xn�1

D b with bn�1 D bn D 1, then the number of copies of �4

can be diminished from n � 1 to n � 2 in the first row (and the rest accordingly).

Indeed, we easily check that bn D 1 is equivalent to an D xn�1, whereas bn�1 D 1

is equivalent to x�1
n�2an�1 e6 an, enabling one to contract

an�1 an

Rn�1 Rn

xn�1 xn

into

an�1

an D xn
Rn�1 Rn

xn�1
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Second, we must explain how the two graphs �4 of the penultimate row in

Fig. 9 can be contracted into one. This follows from the fact, established in [11,

Lemma 6.14], that, if c1= � � � =c4 and d1= � � � =d4 label two copies of �4 with a common

fourth vextex (from �) and we have c2 D d3 and c4 D d1, then c1=c2=d3=d4 label

one copy of �4. Thus we can contract

c4 d1

d3

c1

c2

c3 d2 d4 into c1

d1

c2

d3

One easily checks that what remains is a copy of �n.

6.4. Application to the study of torsion. The existence of the universal reduction

strategy provides a powerful tool for establishing further properties, typically for

extending to the 3-Ore case some of the results previously established in the 2-Ore

case. Here we mention a few (very) partial results involving torsion. It is known [6,9]

that, if M is a gcd-monoid satisfying the 2-Ore condition, then the group U.M/ is

torsion free.

Conjecture 6.10. If M is a noetherian gcd-monoid satisfying the 3-Ore condition,
then the group U.M/ is torsion free.

We establish below a few simple instances of this conjecture, using the following

observation:

Lemma 6.11. If M is a noetherian gcd-monoid and a; b; x1; : : : ; xp satisfy

ax1 D bx2; ax2 D bx3; : : : ; axp�1 D bxp; axp D bx1; (6.3)

then a D b holds.

Proof. Let � be a map from M to the ordinals satisfying (2.6). By induction on ˛,

we prove

P .˛/ W If a; b; x1; : : : ; xp satisfy (6.3) with min
i

.�.axi// 6 ˛, then we have a D b.

Assume first ˛ D 0. Let a; b; x1; : : : ; xp satisfy (6.3) and mini .�.axi// 6 ˛.

We have �.axi/ D 0 for some i , whence axi D 1, whence a D 1. By (6.3), we

have axi D bxiC1 (with xpC1 meaning x1), whence bxiC1 D 1 and, therefore,

a D b D 1. So P .0/ is true.

Assume now ˛ > 0. Let a; b; x1; : : : ; xp satisfy (6.3) and mini .�.axi// 6 ˛.

By (6.3), a and b admit a common right multiple, hence a right lcm, say ab0 D ba0.

Then, for i 6 p, the equality axi D bxiC1 (with xpC1 meaning x1) implies

the existence of x0
i satisfying xi D b0x0

i and xiC1 D a0x0
i . It follows that
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a0; b0; x0
1; : : : ; x0

p satisfy (the counterpart of) (6.3). Assume first a 6D 1. By

assumption, we have �.axi / 6 ˛ for some i and, therefore, �.xi / D �.a0x0
i�1/ < ˛.

Applying the induction hypothesis to a0; b0; x0
1; : : : ; x0

p , we deduce a0 D b0, whence

a D b by right cancelling a0 in ab0 D ba0. Assume now b 6D 1. By assumption,

we have �.bxi / 6 ˛ for some i and, again, �.xi / D �.a0x0
i�1/ < ˛. Applying the

induction hypothesis, we deduce as above a0 D b0 and a D b. Finally, if both a 6D 1

and b 6D 1 fail, the only possibility is a D b D 1. In every case, a D b holds,

and P .˛/ is satisfied.

Proposition 6.12. If M is a noetherian gcd-monoid satisfying the 3-Ore condition,
then no element g 6D 1 of U.M/ may satisfy g2 D 1 with kgk 6 5, or g3 D 1 or
g4 D 1 with kgk 6 3.

Proof. First, for n odd, .a1a�1
2 a3 � � � an/p D 1 implies .ana1a�1

2 � � � a�1
n�1/p D 1, so

the existence of g satisfying gp D 1 with kgk odd implies the existence of g0 with

kg0k D kgk � 1 satisfying g0p D 1. Hence, the cases to consider are g2 D 1 with

kgk 6 4, g3 D 1 and g4 D 1 with kgk 6 2.

Assume g2 D 1 with kgk 6 4. Let a=b=c=d be the unique R-irreducible

4-multifraction representing g. Then d=c=b=a represents g�1, and g�1 D g together

Prop. 6.7 imply

red.d=c=b=a/ D d=c=b=a � Rmax
1 Rmax

2 Rmax
3 Rmax

1 D a=b=c=d: (6.4)

Because a=b=c=d is R-irreducible, we have c ê d D 1, so applying Rmax
1

to d=c=b=a leaves the latter unchanged. Hence there exist x; y; z in M satisfying

d=c=b=a � R2;xR3;yR1;z D a=b=c=d . Expanding this equality provides x0; y0

and b0; c0 satisfying

cx0 D xc0 .D x _ c/; xb0 D b; y0b0 D cy .D b0 e_ y/;

a D dy; az D dx0; bz D y0c0:

Eliminating a, we obtain dyz D dx0, whence x0 D yz and, eliminating b and x0,

we remain with y0 � b0z D x � c0 . D cyz/ and x � b0z D y0 � c0. Applying

Lemma 6.11 with p D 2 and x1 D b0z, x2 D c0, we deduce y0 D x, whence

c0 D b0z, and, from there, bz D xb0z D xc0 D cx0, which shows that b and c

admit a common right multiple. As, by assumption, a=b=c=d is R-irreducible, the

only possibility is c D 1 and, from there, d D 1. Applying Prop. 6.7, we find

red.1=1=b=a/ D 1=1=b=a � Rmax
2 Rmax

3 Rmax
1 D b=a=1=1 and, merging with (6.4), we

deduce b=a=1=1 D a=b=1=1, whence a D b. As, by assumption, a and b admit no

nontrivial common right divisor, we deduce a D b D 1 and, finally, g D 1.

Assume now g3 D 1 with kgk 6 2. Let a=b be the unique R-irreducible

2-multifraction representing g. Then b=a=b=a represents g�2 and the assumption

g�2 D g plus Prop. 6.7 imply

red.b=a=b=a/ D b=a=b=a � Rmax
1 Rmax

2 Rmax
3 Rmax

1 D a=b=1=1: (6.5)
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Arguing as above, we deduce the existence of x0; y0 and a0; b0 satisfying ax0 D xa0

.D x_a/, b D xb0, a D y0b0, az D bx0, and bz D y0a0. Eliminating a and b, we find

x �b0x0 D y0 �b0z, x �b0z D y0 �a0, x �a0 D y0 �b0x0. Applying Lemma 6.11 with p D 3

and x1 D b0z, x2 D b0z0, x3 D a0, we deduce y0 D x, whence b0x0 D b0z D a0

and, from there, x0 D z. Merging with az D bx0 and right cancelling x0, we deduce

a D b, whence a D b D 1 since aêb D 1 holds, and, finally, g D 1. (An alternative

argument can be obtained by expanding red.a=b=a/ D red.b=a=b/.)

For g4 D 1 with kgk 6 2, we have .g2/2 D 1, whence g2 D 1 by applying the

result above to g2, which is legal by kg2k 6 4. We then deduce g D 1 by applying

the first result to g.

A few more particular cases could be addressed similarly, but the complexity

grows fast and it is doubtful that a general argument can be reached in this way.

7. The case of Artin–Tits monoids

Every Artin–Tits monoid is a noetherian gcd-monoid, hence it is eligible for the

current approach. In this short final section, we address the question of recognizing

which Artin–Tits monoids satisfy the 3-Ore condition and are therefore eligible for

Theorem A. The answer is the following simple criterion, stated as Theorem B in the

introduction:

Proposition 7.1. An Artin–Tits monoid satisfies the 3-Ore condition if and only if it
is of type FC.

We recall that an Artin–Tits monoid M D hS j RiC is of spherical type if the

Coxeter group W obtained by adding to R the relation s2 D 1 for every s in S is

finite. In this case, the canonical lifting � to M of the longest element w0 of W is

a Garside element in M , and .M; �/ is a Garside monoid [15]. Then M satisfies

the 2-Ore condition: any two elements of M admit a common right multiple, and a

common left multiple.

If M D hS j RiC is an Artin–Tits monoid, then, for I � S , the standard parabolic

submonoid MI generated by I is the Artin–Tits monoid hI j RI iC, where RI consists

of those relations of R that only involve generators from I . Then M is of type FC
(flag complex) [1,4,26] if every submonoid MI such that any two elements of I admit

a common multiple is spherical. The global lcm of I is then denoted by �I .

The specific form of the defining relations implies that, for every element a of

an Artin–Tits monoid, the generators of S occurring in a decomposition of a do not

depend on the decomposition. Call it the support Supp.a/ of a. An easy induction

from Lemma 2.8 implies

Supp.a0/ � Supp.a/ [ Supp.b/ for a _ b D ba0: (7.1)
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We begin with two easy observations that are valid for all Artin–Tits monoids:

Lemma 7.2. Assume that M is an Artin–Tits monoid with atom family S .

(i) Assume a 2 M , s 2 S n Supp.a/, and s _ a exists. Write s _ a D au.
Then s 6 u holds.

(ii) Assume a; b 2 M , and s 2 Supp.a/ n Supp.b/ and t 2 Supp.b/ n Supp.a/.
If a and b admit a common right multiple, then so do s and t .

Proof. (i) We use induction on the length �.a/ of a. For �.a/ D 0, i.e. a D 1,

we have u D s, and the result is true. Otherwise, write a D ta0 with t 2 S . By

assumption, we have t 6D s and s _ t exists since s _ a does. By definition of an

Artin–Tits relation, we have s _ t D t sv for some v. Applying Lemma 2.8 to s, t ,

and a0 gives sv _ a0 D a0u, and then applying it to a0, s, and v gives u D u0v0

with u0; v0 (and w) determined by s _ a0 D sw D a0u0 and v _ w D wv0:

s
s

v

u0

v0

w

t a0

u

Then the assumption s … Supp.a/ implies s … Supp.a0/ and, by definition, we have

�.a0/ < �.a/. Then the induction hypothesis implies s 6 u0, whence s 6 u0v0 D u.

(ii) Assume that a_b exists. Starting with arbitrary expressions of a and b, write

a D a1sa2 and b D b1tb2 with neither s nor t in Supp.a1/ [ Supp.b2/. Applying

Lemma 2.8 repeatedly, we decompose the computation of a _ b into 3 � 3 steps:

b0 v

b1 t b2

a1

s

a2

a0

u

By assumption, neither s nor t belongs to Supp.a1/[Supp.b1/, hence neither belongs

to Supp.a0/ [ Supp.b0/. Then (i) implies s 6 u and t 6 v. By assumption, u _ v

exists, hence (by Lemma 2.8 once more) so does s _ t .

Putting things together, we can complete the argument.

Proof of Prop. 7.1. Assume that M is an Artin–Tits monoid with atom set S and M

satisfies the 3-Ore condition. We prove using induction on #I that, whenever I is

a subset of S whose elements pairwise admit common multiples, then �I exists.

For #I 6 2, the result is trivial. Assume #I > 3. Let s 6D t belong to I , and
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put J WD I n fs; tg. Each of #.J [ fsg/, #.J [ ftg/, and #fs; tg is smaller than #I

hence, by induction hypothesis, �J [fsg, which is �J _ s, �J [ftg, which is �J _ t ,

and �fs;tg, which is s _ t , exist. The assumption that M satisfies the 3-Ore condition

implies that �J _ s _ t , which is �I , also exists. Hence M is of type FC.

Conversely, assume that M is of type FC. Put

X WD fx 2 M j 9I � S .�I exists and x 6 �I /g:

For each s in S , we have �fsg D s, hence s 2 X : thus X contains all atoms, and

therefore X generates M . Next, we observe that, for all x; y in X ,

x _ y exists , 8s; t 2 Supp.x/ [ Supp.y/ .s _ t exists/: (7.2)

Indeed, put I WD Supp.x/ [ Supp.y/, and assume first that x _ y exists. Let s; t

belong to I . If s and t both belong to Supp.x/, or both belong to Supp.y/, then

s _ t exists by definition of X . Otherwise, we may assume s 2 Supp.x/ n Supp.y/

and t 2 Supp.y/ n Supp.x/, and Lemma 7.2(ii) implies that s _ t exists as well.

Conversely, assume that s _ t exists for all s; t in I . Then the assumption that M is

of type FC implies that �I exists. Then we have x 6 �I and y 6 �I , hence x _ y

exists (and it divides �I ).

We deduce that the family X is RC-closed. Indeed, assume that x; y lie in X and

x _ y exists. Write x _ y D xy0. By (7.2), s _ t exists for all s; t in Supp.x/ [

Supp.y/. As M is of type FC, this implies the existence of �I , where I is again

Supp.x/ [ Supp.y/, and we deduce that both x and y divide �I . As �I is a Garside

element in MI , this implies that y0 also left divides �I , hence it belongs to X .

Next, assume that x; y; z lie in X and pairwise admit right lcms. By (7.2), we

deduce that s _ t exists for all s; t in Supp.x/ [ Supp.y/, in Supp.y/ [ Supp.z/, and

in Supp.x/ [ Supp.z/, whence for all s; t in J WD Supp.x/ [ Supp.y/ [ Supp.z/.

As M is of type FC, this implies that �J exists. Then x; y; z all divide �J , hence

they admit a common multiple. Hence, X satisfies (4.7). A symmetric argument

shows that X satisfies (4.8). By Proposition 4.11, we deduce that M satisfies the

right 3-Ore condition.

It follows from Theorem A that, if M is an Artin–Tits of type FC, every element

of U.M/ is represented by a unique bR-irreducible multifraction. From there,

choosing any normal form on the monoid M (typically, the normal form associated

with the smallest Garside family [12,20]), this decomposition provides a unique

normal form for the elements of the group U.M/.

Question 7.3.

(i) Is there a connection between the above normal form(s) and the one of [1]?

(ii) (L. Paris) Is there a connection between the above normal form(s) and the one

associated with the action on the Niblo–Reeves CAT(0) complex [23,30]?
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About (ii), J. McCammond (private communication) observed that the involved

normal forms do not merely coincide, but this does not discard the possibility of

a more subtle connection. In any case, understanding the geometrical content of

multifraction reduction seems highly desirable. Preliminary observations in this

direction were proposed by B. Wiest [32].
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