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Some unitary representations of Thompson’s groups F and T
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Abstract. In a “naive” attempt to create algebraic quantum field theories on the circle, we
obtain a family of unitary representations of Thompson’s groups T and F for any subfactor. The
Thompson group elements are the “local scale transformations” of the theory. In a simple case
the coefficients of the representations are polynomial invariants of links. We show that all links
arise and introduce new “oriented” subgroups

�!
F < F and

�!
T < T which allow us to produce

all oriented knots and links.
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1. Introduction

This paper is part of an ongoing effort to construct a conformal field theory for every
finite index subfactor in such a way that the standard invariant of the subfactor, or
at least its quantum double, can be recovered from the CFT. There is no doubt that
interesting subfactors arise in CFT nor that in some cases the numerical data of the
subfactor appears as numerical data in the CFT. But there are supposedly “exotic”
subfactors for which no CFT is known to exist, the first of which was constructed by
Haagerup in a tour de force in [1, 14]. But in the last few years ideas of Evans and
Gannon (see [8]) have made it seem plausible that CFT’s exist for the Haagerup and
other exotic subfactors constructed in the Haagerup line (see [20]). This has revived
the author’s interest in giving a construction of a CFT from subfactor data.

The most complete way to do this would be to extract form the subfactor the
Boltzmann weights of a critical two-dimensional lattice model then construct a
quantum field theory from the scaling limit of the n-point functions. Looking
at the monodromy representations of the braid group one would then construct a
subfactor as in the very first constructions of [15]. This “royal road” is paved with
many mathematical difficulties and it is probably impossible to complete with current
technology except in the very simplest examples.
�The author is supported by the NSF under Grant No. DMS-0301173.
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There are alternatives, however, to using the scaling limit of the n-point functions.
The algebraic (Haag–Kastler [7, 12, 13]) approach has been quite successful in
understanding some aspects of conformal field theory; [9, 10,24]. After splitting the
CFT into two chiral halves, this approach predicts the existence of “conformal nets”:
von Neumann algebras A.I / on the Hilbert space H, associated to closed intervals
I � S1, and a continuous projective unitary representation ˛ 7! u˛ of DiffS1, onH,
satisfying four axioms:

(i) A.I / � A.J / if I � J
(ii) A.I / � A.J /0 if I \ J D ;
(iii) u˛A.I /u�1˛ D A.˛.I //
(iv) �.Rot.S1// � ZC [ f0g

Here by Rot.S1/ we mean the subgroup of rotations in Diff.S1/ . Rot.S1/ may
be supposed to act as an honest representation which can therefore be decomposed
into eigenspaces (Fourier modes). The eigenvalues, elements of OS1 D Z, are the
spectrum � of the representation.

There may or may not be a vacuum vector � in H which would be fixed by the
linear fractional transformations in Diff.S1/ , and would be cyclic and separating for
all the A.I /.

TheA.I / can be shown to be type III1 factors so subfactors appear by axiom (ii)
as A.I 0/ � A.I /0 where I 0 is the closure of the complement of I .

Non-trivial examples of such conformal nets were constructed in [29, 31] by the
analysis of unitary loop group representations [26]. These examples can be exploited
to construct many more.

On an apparently completely different front, the study of subfactors for their own
sake led to the development of “planar algebras” which in their strictest form [16]
are an axiomatization of the standard invariant of a subfactor but by changing the
axioms slightly they yield an axiomatization of correspondences (bimodules) in the
sense of Connes [5], and systems of such. The most significant ingredient of a
planar algebra is the existence of a positive definite inner product which is interpreted
diagrammatically. More precisely a planar algebra is a graded vector spaceP D .Pn/
of vector spaces where n is supposed to count the number of boundary points on a
disc into which the elements of Pn can be “inserted”. Given a planar tangle - a finite
collection of discs inside a big (output) disc, all discs having boundary points and all
boundary points being connected by non-crossing curves called strings, the insertion
of elements of P into the internal discs produces an output element in Pn, n being
the number of boundary points on the output disc.

If P0 is one-dimensional the map hx; yi D
x

y*
defines a sesquilinear map

from Pn � Pn to C and this is the inner product.
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The idea of obtaining a “continuum limit” by letting the number of boundary
points on the discs fill out the circle has been around for over 20 years but this
paper is the first one to take a concrete, though by no means big enough, step in that
direction. Planar algebra is an abstraction of the notion of (planar) manipulations of
the tensor powers of a given finite dimensional Hilbert space (thus in some sense a
planar version of [25]), and our constructions below of limit Hilbert spaces are really
versions, aimed at a scaling rather than a thermodynamic limit, of von Neumann’s
original infinite tensor product- [30]. Background for this point of view is detailed
in [17].

Given the difficulty of following the royal road using the scaling limit, we are
trying to construct the local algebras A.I / directly from a planar algebra. A well
known idea in physics is the block spin renormalization procedure [4]. Here one
groups the spins in a block on one scale and replaces the blocks by spins of the same
kind on a coarser scale. Hamiltonians (interactions) between the spins and blocks
of spins are chosen so that the physics on the block spin scale resembles the physics
on the original scale. This procedure is tricky to implement but we shall use the
idea. For, however one plays it, in constructing a continuum limit one must relate the
Hilbert space on one scale to the Hilbert space on a finer scale. It is this relation that
we are trying to produce using structures suggested by planar algebra.

More precisely, given a planar algebraP , for a choice of n points onS1, calledBn,
we will associate the Hilbert space Hn D Pn , and for an inclusion Bn � Bm we
will use planar algebra data to group boundary points into blocks and construct a
projection fromHm ontoHn. Alternatively we are defining isometries ofPn intoPm
and the Hilbert spaceH of the theory will then be the direct limit of theHn.

The first embeddings of Pn into Pm will work for any finite subsets of S1 by
simply adding points using an essentially trivial element of the planar algebra. We
will briefly describe these embeddings as they are a simplified template for what
follows. In particular one obtains projective unitary representations of Diff.S1/ (and
coherent local algebras if desired). But this construction fails to be of any interest for
two essential reasons. The first is that the unitary representations are independent of
the planar algebra data used. The second is more serious- the action of Diff.S1/ is
hopelessly discontinuous.

We have no answer to the discontinuity problem. In a sense it would be surprising
if we did since our input is entirely kinematic. We have not constructed any
Hamiltonian, local or otherwise, and we have done nothing to cause positivity of
the energy. We hope to construct dynamics in a forthcoming paper.

On the other hand we have managed to take into account more of the planar
algebra structure and with it we have been led to unitary (projective) representations
of Thompson’s groups of PL homeomorphisms of S1 and Œ0; 1� which play the role
of Diff.S1/ in our not yet continuum limit. The idea is to use an element of R 2 Pn
for n > 2 to embed Hilbert spaces associated with finitely many points into each
other by grouping together n � 1 “spins” on one scale into a single spin on a more
coarse scale. This is just what is done in block spin renormalisation.
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Although this block spin idea does not introduce dynamics, we will see that
it does produce interesting unitary representations of T and F . In particular
these representations do depend on the planar algebra data used to construct them.
A perhaps surprising byproduct arises if one uses “crossings” from the Conway knot-
theoretic skein theory and knot polynomial theory. For then the coefficient of the
“vacuum vector” in the representation is an unoriented link. One of our main results
is that all unoriented links arise in this way.

Thompson group elements are often defined by pairs of bifurcating rooted planar
trees with the same number of leaves. There is a simple construction of the link from
the pair of trees. The stabilization move (canceling carets; see [3]) corresponds to
adding a distant unknot to the link. But a pair of trees with no canceling carets is in
fact a well defined description of a Thompson group element and the algorithm we
give, which produces a Thompson group element from a link, will not introduce any
spurious unknots.

So, at least for unoriented links, the Thompson group F is just as effective at
producing links as the braid groups.

But one may use simpler planar algebras, the simplest possible being that of
an index 2 subfactor. A natural choice of R then gives representations that are
in fact linearized permutation representations (quasi-regular representations). The
stabilizers of the vacuum in these representations are subgroups

�!
F < F and

�!
T < T

which we call the oriented Thompson groups since a certain surface constructed from
them is always orientable. Sapir and Golan in [27] have shown the delightful result
that
�!
F is in fact a copy of Thompson’s group F3 inside F.D F2/!
Since this paper was first written we have found a more elegant and general

construction of the Thompson group representations; see [22]. But this construction
completely obscures the underlying geometric intuition so we are happy to publish
this original approach.

2. Some notions of planar algebra

A planar algebra P is a vector space Pn, graded first and foremost by N [ f0g and
admitting multilinear operations indexed by planar tangles T which are subsets of the
plane consisting of a large (output) circle containing smaller (input) circles. There are
also non-intersecting smooth curves called strings whose end points, if they have any,
lie on the circles where they are called marked points. Elements of P are “inserted”
into the input circles with an element of Pn going into a disc with n marked points,
and the result of the operation specified by the tangle is in Pk where there are k
marked points on the output circle. In order to resolve cyclic ambiguities, each of the
circles of T comes with a privileged interval between marked points which we will
denote in pictures by putting a $ sign near that interval.
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Here is an example of a planar tangle:

$

Output circle

Input circles

Strings

$

$

$

Marked points

The result of the operation indexed by T on elements of P is denoted
ZT .v1; v2; : : : ; vn/ where there are n input discs. See [16] for details. The
operation ZT depends only on T up to smooth planar isotopy so one has a
lot of freedom drawing the tangles, in particular the circles may be replaced by
rectangles when it is convenient. Tangles may also be “labelled” by actually writing
appropriately graded elements of P inside some of the internal circles.

Definition 2.0.1. Given a planar tangle T all of whose internal circles are labelled
by v1; v2; : : : ; vn we call ZT .v1; v2; : : : ; vn/ the element of Pk which it defines. If
k D 0 and the dimension of P0 is one, this may be identified with a scalar using the
rule that Z.empty tangle/ D 1.

Planar tangles can be glued in an obvious way along input circles and the
operations ZT are by definition compatible with the gluing.

Planar algebras come in many varieties according to further decorations of the
planar tangles such as oriented strings, labelled strings, coloured regions. These
decorations are incorporated by further grading of the vector spaces Pn. Perhaps the
easiest such decoration is a shading, where the regions of the tangle are shaded or
unshaded in such a way that adjacent regions have opposite shadings. This forces
the number of boundary points of each circle to be even so for historical reasons the
grading then becomes half the number of marked points. This can cause confusion
for which we apologise. When T is shaded, the $ signs may be in shaded or unshaded
regions. Even in the shaded case it can be cumbersome to drag along all the shadings
and ˙ signs. So when it suits us we will ignore them and trust that the reader can
fill in the details by copying the instances where we do, out of necessity, consider the
shadings carefully.

For connections with physics and von Neumann algebras, planar algebras will
have more structure, namely an antilinear involution � on each Pn compatible with
orientation reversing diffeomorphisms acting on tangles. If dimP0 D 0 we get a
sesquilinear inner product hx; yi on each Pn given in the introduction.

A planar algebra will be called positive definite if this inner product is.
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In order to accommodate knot-theoretic applications wewill not in general restrict
to the situation where the Pn are finite dimensional and h ; i is positive definite.

Our planar algebras will all have a parameter ı which is the value of a
homologically trivial closed string which may be removed from any tangle with
multiplication by the scalar ı.

Two examples of planar algebras should bementioned. The first is the Temperley–
Lieb algebra TL (which has its origins in [28] though its appearance here should
properly be attributed to [23], via [2]; see also [18])whichmay be shaded or unshaded.
A basis of TLn consists of all isotopy classes of systems of non-crossing strings
joining 2n points inside the disc. The planar algebra operations are the obvious
gluing ones with the rule that any closed strings that may be formed in the gluing
process are discarded but each one counts for a multiplicative factor of ı. This planar
algebra is positive definite iff ı � 2.

The second examples of planar algebras which we will use are the spin planar
algebras. For fixed integer Q � 2 one considers f1; 2; : : : ;Qg as a set of “spins”.
The shaded planar algebra P spin is then defined by P spin

0;C D C, P spin
0;� D CQ and for

n � 1, P spin
n;˙ D CnQ (using half the number of marked boundary points). Shaded

tangles then give contraction systems for spin configurations as explained in [16]-one
sums over spins in regions not touching the output disc. This kind of planar algebra is
what is used in several 2 dimensional statistical mechanical models such as the Ising,
Potts and Fateev–Zamolodchikov models. It is important to note that closed strings
have parameter either one or Q depending on whether they enclose an unshaded or
shaded region respectively.

The various tangles may be used to endow a planar algebra with a large number of
algebraic structures such as filtered algebras, graded algebras and tensor categories.
We will be interested only in two such structures and their representations, the
rectangular and affine categories.

Definition 2.0.2. The rectangular category Rect.P/ of a planar algebra will be the
(linear) category whose objects are N[ f0g (along with other decorations according
to shading etc.) and whose set of morphisms from n to m is the vector space PnCm,
with composition according to the following concatenation tangle read from top to
bottom (which makes each P2n into an algebra):

Composition of x 2 Mor.5; 3/ with y 2 Mor.3; 7/:

$
x

y

$

$

A representation of Rect.P/ will be called a rectangular representation.



Some unitary representations of Thompson’s groups F and T 7

A planar algebra always admits a privileged rectangular representation:
Definition 2.0.3. The regular representation of the planar algebra P is the one with
Vn D Pn for all n and the action being just concatenation of rectangular tangles.

The regular representation has aP0-valued invariant inner product given by hx; yi
as below,

*$

$

y

x

where we have been careful to close the tangle with strings to the left as we will be
dealing with a non spherically invariant planar algebra below.

In the subfactor (shaded) case everything is graded by the shading so the above
definitions are not quite adequate. The spaces Mor.m; n/ are zero unless m and n
are equal mod 2, but Mor.m; n/ is always equal, as a vector space, to PmCn

2
. So we

set Vn D

(
Pn=2 if n � 0
P.nC1/=2 if n � 1

.mod 2/. The action of a morphism x in the even

parity case is given by:

$

v

x

$

$

and in the odd parity case by:

$

v

x

$

$
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Remark 2.0.4. Thus for instance if v 2 P1 is regarded as an element of V1, the
subrepresentation W of the regular representation spanned by v will have Wn D 0

whenever n is even.
We now consider the annular version of the representation theory.

Definition 2.0.5. The affine category Aff.P/ is the (linear) category whose objects
are sets Nm ofm points on the unit circle in C (along with other decorations according
to shading etc) and whose vector space of morphisms from Nm to Nn is the set of linear
combinations of labelled tangles (with marked boundary points Nm [ Nn) between
the unit circle and a circle of larger radius modulo any relations in P which occur
within contractible discs between the unit circle and the larger circle. Composition
of morphisms comes from rescaling and gluing the larger circle of the first morphism
to the smaller circle of the second.

Use of Nm adds to clutter so we will abuse notation by using just m for an object
of Aff.P/ withm points, though when we need it later on we will be quite careful to
specify what sets of S1 we are talking about.

One needs to be careful with this definition (see [11, 19]). In a representation of
Aff.P/, morphisms may be changed by planar isotopies without affecting the action,
but the isotopies are required to be the identity on the inner and outer circles. Thus
the tangle of rotation by 360 degrees does not necessarily act by the identity in a
representation of Aff.P/.

The representations we will consider of Aff.P/ are called lowest weight modules
and may be defined as in [19] by taking a representationW of the algebra Mor.n; n/
for some n (the “lowest weight”) and inducing it in the obvious way. This may cause
problems with positive definiteness but it is known that subfactor planar algebras
possess a host of such representations. The vector spaces Vk of such a lowest weight
representation are zero if k � n and spanned by diagrams consisting of a vector
w 2 W inside a disc with n marked points, surrounded by a labelled planar tangle
of P with k marked points on the output circle if k > n.

Here is a vector w in a V6 created by the action of an affine morphism on v in the
lowest weight space V2: and the action of a morphism in Aff.P/ on it:

w= v

R

S
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and here is a diagram with the action of a morphism in Mor.6; 3/ on it:

R

v

R

S

R

R
R

As with rectangular representations the planar algebra itself defines an affine
representation simply by applying annular labelled tangles to elements of P but now
the representation is irreducible and plays the role of the trivial representation.

In the TL case which is what we will mostly consider, irreducible lowest weight
representations are parametrized by their lowest weight (the smallest n for which Vn
is non-zero), and a complex number of absolute value one which is the eigenvalue
for the rotation tangle. The case n D 0 is exceptional and the rotation is replaced by
the tangle which surrounds an element v of V0 by a circular string (two strings in the
shaded case). This v is an eigenvector for this tangle and there are some restrictions
on the eigenvalue �-see [19, 21]. The case where � D ı is precisely the trivial
representation. In this case the vector v 2 V0 is the empty diagram so never features
in pictures.

3. The Hilbert spaces

3.1. One-box version. Let P D fPng be an unshaded positive definite planar alge-
bra. Suppose we are given an element R 2 P1 with R�R D 1. Suppose we are also
given an affine representation V D fVng of P with lowest weight space Vk .

With no more data than this we can make a naive construction of a Hilbert space
“continuum” limit.

Definition 3.1.1. IfF is the directed set of finite subsets of S1, directed by inclusion,
define the direct system of Hilbert spaces F 7! VF for F 2 F , with inclusion
maps �F2

F1
(for F1 � F2) defined by the following affine tangles:

R

R

R
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In this example there are 3 points in F1 and 6 in F2. The points in F1 are to be
joined to themselves on the outside boundary by radial straight lines, and the points
in F2 nF1 are attached to an instance ofR. SinceR�R D 1 these �’s define isometric
embeddings of VF1

into VF2
which are obviously compatible with inclusions. Thus

the direct limit of these Hilbert spaces can be itself completed to form a Hilbert space
H D limF 2F VF .

This Hilbert space H obviously carries a projective unitary representation of
Diff.S1/ and one can define local algebras A.I / in such a way that the first three
properties of a conformal net defined in the introduction are satisfied. But the situation
is caricatural. The Hilbert space is not separable and the action of the diffeomorphism
group is hopelessly discontinuous.

One may remedy the lack of separability by restricting consideration to the
net of finite subsets of a countable set like the rationals but this does not make
things any more continuous. If we restrict to the dyadic rationals we obtain unitary
representations of Thompson’s group T and by restriction to Thompson’s group F .
But we can show that all these representations of F are direct sums of representations
on `2.fsubsets of size k of the dyadic rationals in Œ0; 1�g/ So this construction has
given very little, both from a physical and mathematical point of view.

Undeterred, we will make a similar construction which uses more planar algebra
data than just an element ofP1. This will at least give something on the mathematical
side, namely some interesting representations of the Thompson groups.

3.2. Two-box version.
Definition 3.2.1. LetP D fPn;˙g be a subfactor planar algebra. An elementR 2 P2
will be said to be normalized if

*R

=$

$

R

For instance if dimP1 D 1 one may take any vector v in P2 with hv; vi D ı.

3.2.1. A directed set construction. The construction of the Hilbert space in this
section was inspired directly by the idea of block spin renormalisation where groups
of spins on a lattice at one scale are combined to give blocks which form single spins
on the same lattice at a coarser scale. Mathematically it has proven better to give a
more flexible construction where one does not have to block together all the spins at
once. This approach was suggested by Dylan Thurston.
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An interval Œa; b� � Œ0; 1� is said to be standard dyadic if there are non-negative
integers n; p such that a D p

2n and b D pC1
2n ; see [3].

A partition of a closed interval I will be a (finite) family of closed subintervals
with disjoint interiors whose union is I . And, given two partitions I and J of Œ0; 1�
into closed intervals we say J is a refinement of I , I . J , if for all I 2 I ,

I D
[

J�I;J2J

J

Definition 3.2.2. The directed set D is the set of all partitions of Œ0; 1� into standard
dyadic intervals, with order as above. For each I 2 D we let M.I/ be the set of
midpoints of the intervals I 2 I , and E.I/ to beM.I/[E where E is the set of all
endpoints of intervals in I except 0 and 1.

The relation fŒ0; 1�g . I for I 2 D can be represented as a planar rooted
bifurcating tree in Œ0; 1�� Œ0; 1�whose leaves areM.I/�f1g and whose root is .1

2
; 0/

in a way described in [3]. Thus since a standard dyadic interval is just a rescaled
version of Œ0; 1�, a pair I . J can be represented as a planar forest whose roots are
M.I/ � f0g and whose leaves areM.J / � f1g. We illustrate below:

Tree:

Intervals of I

(0,1/2)

Forest:

J

1/8 1/4 1/2 3/4 7/8

I

Definition 3.2.3. For I . J 2 D we call F I
J the forest defined above.

Note that if I . J and J . K then F I
K is obtained by stacking F J

K underneath
of F I

J .
We will define nets of vector spaces on D using rectangular representations of a

planar algebra as defined in Section 2.
Definition 3.2.4. The element � 2 P1 will be the element given by a tangle with a
single straight line connecting the two boundary points. „ be the subrepresentation
of the regular representation generated by �.

Note that „n D 0 for n even; see 2.0.4.
Definition 3.2.5. Given a planar algebra P we define Cat.P/ to be the category with
objects I for I 2 D and morphisms Mor.I;J / for I . J being labelled planar
tangles of P inside rectangles with marked boundary points E.I/ on the top and
E.J / on the bottom.
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Note that a rectangular representation V of a planar algebra gives a representation
of Cat.P/ by taking Z of labelled tangles.

Now for each I . J in D we complete the diagram F I
J to a labelled tangle

T I
J 2 Mor.I;J / of Cat.P/ inside Œ0; 1� � Œ0; 1� defined by replacing each trivalent

vertex of the forest F I
J by an instance of R, with a vertical straight line joining the

top of the disc containing R to the corresponding common boundary point of two
intervals of J directly below it, and vertical lines connecting all the end points of
intervals of I to those endpoints not connected to discs containing R’s, thus:

$

1/8 1/4 1/2 3/4 7/8

I

J

R

R

R$

$

F I
J �! T I

J

Definition 3.2.6. Given P and a rectangular representation V D .Vn/ of it, and an
element R 2 P2 as above we define the directed system of vector spaces I 7! H.I/
for I 2 D by H.I/ D VjE.I/j and for I . J in D we use the tangle T I

J to define a
map fromH.I/ toH.J / as required by the definition of a directed system.

Note that the functorial property of a directed system is that if I . J and
J . K then T J

K ı T
I
J D T I

K which is true since stacking of the F I
J corresponds to

composition of the tangles in Cat.P/.

Definition 3.2.7. The direct limit vector spaceV D limI2D H.I/ is called the dyadic
limit of V . If P is a subfactor planar algebra, V becomes a pre-Hilbert space since
all the T I

J define isometries. Its Hilbert space completion is called the dyadic Hilbert
spaceHR;V of V .

Thus elements ofV are equivalence classes of elements of
Ì
H.I/withx 2 H.I/

equivalent to y 2 H.J / iff there is a K, I . K and J . K with T I
K .x/ D T

J
K .y/.

The T J
I are all injections so eachH.I/ is a vector subspace of V .

Note that if In is the partition into all standard dyadic intervals of width 2�n,
the sequence H.In/ is cofinal in D . Going from H.InC1/ to H.In/ is supposed
to represent a “block spin renormalization” step where the spins sitting at the points
E.InC1/ are grouped together into spins sitting at the points E.In/.
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3.2.2. Unitary representations of Thompson’s group F from rectangular P-
modules. We will define representations of the Thompson group F on the dyadic
limit of a rectangular representation V of a planar algebra for normalised R ( 3.2.1).
They will extend to unitary representations in the case of a subfactor planar algebra.

Observe first thatF acts on partitions preserving the order, but does not preserveD
since an element of F does not necessarily send a standard dyadic interval to another
one.

Definition 3.2.8. We say J 2 D is good for g 2 F if g.J / 2 D .
And in that case we define the tangle gJ as the rectangular tangle in Mor.J ; g.J //
with straight lines connecting all the points in E.J / to their images under g thus:

g(E(J))

E(J)

Given g 2 F it follows from [3] that there is a J which is good for it. Also
since g does nothing but scale and translate on each J 2 J it follows that g.E.J // D
E.g.J // and g.M.J // DM.g.J //.
Lemma 3.2.9. If J is good for g and J . K then K is good for g and gK ı T J

K is
isotopic as a labelled tangle to T g.J /

g.K/ ı gJ .

Proof. We focus on a fixed interval J 2 J and build the isotopy up interval by
interval. The rectangle in Cat.P/ with J at the top and the various K 2 K whose
union is J at the bottom contains a trifurcating tree whose leaves are alternately
midpoints and endpoints of those K’s. Slide that tree along the two connected
straight line segments connecting the midpoint of J to the midpoint of g.J /. The
tree is now contained as smooth curves in the trapezoid in the bottom rectangle
with J at the top and g.J / at the bottom. Repeat the procedure for each J 2 J to
obtain a lower rectangle with a forest isotopic to that of T J

K and an upper rectangle
containing only vertical straight line segments connecting the points of E.J / at the
top to points at the bottom of the top rectangle. See the second picture in the figure
below. Now stretch and squeeze the bottom of the top rectangle so that the intervals
of J become those of g.J /. Extending that isotopy to the whole picture, the upper
rectangle becomes isotopic to T g.J /

g.K/ .
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3

J         J            J 321

g(K )i

slide

Stretch J’s in the middle

to g(J)’s.

g

T
K

J

K

g(J )1
T

g
J

g(J)

g(K)

J         J            J1 2

Now suppose g 2 F and v 2 H.I/ for some I 2 D . Choose someJ & I which
is good for g. Set �J .v/ D gJ ı T

I
J .v/ 2 H.g.J // where we recall that Cat.P/

acts on the Vn.

Proposition 3.2.10. The element �J .v/ is independent, in the dyadic limit, of J
chosen as above.

Proof. If J 0 is another choice with J 0 & I and which is good for g then there is a
K 2 D with K & J and K & J 0. In the dyadic limit, T g.J /

g.K/ .�J .v// D �J .v/ and
T
g.J 0/
g.K/ .�J 0.v// D �J 0.v/. But by Lemma 3.2.10 and the directed system property

we see that these are both equal to gK.T I
K .v//.

Corollary 3.2.11. Suppose v 2 H.I/ and w 2 H.I 0/ are equal in the dyadic limit.
Then �J .v/ D �J 0.w/ for any appropriate choices of J and J 0 in the dyadic limit.

Proof. By definition there is a K 2 D with T I
K .v/ D T

I0
K .w/. Clearly we may also

assume that K is good for g so by what we have just seen we may use K as both J
and J 0 to calculate �J .v/ and �J 0.w/.
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Definition 3.2.12. For g 2 F and v in the dyadic limit space V D limI2D H.I/ we
define �.g/.v/ D �V;R.g/.v/ by �.g/.v/ D �I.w/ for some choice of w 2 H.I/
for some I 2 D representing v in the dyadic limit.

Proposition 3.2.13. The map g ! �.g/ defined above is a group representation
which preserves the inner product if P is a subfactor planar algebra and hence
extends to a unitary representation of F onH.

Proof. Unitarity follows immediately from 3.2.1. To show �.g/�.h/ D �.gh/

observe first that for any J which is good for h and for which h.J / is good for g,
then J is good for gh and it is clear that the composition tangle gh.I/ ıhI is isotopic
to .g ı h/I . But to define �.gh/.v/ take v 2 H.I/ and choose J & I so that it is
good for h and h.J / is good for g. Then

�.g/�.h/.v/ D gh.J /.hJ ı T
I
J .v// D .g ı h/J ı T

I
J .v/ D �.gh/.v/ :

3.2.3. Projective unitary representations of Thompson’s group T from affine
P-modules. Suppose we are also given an affine representation V D fVn;˙g of P
with lowest weight vector  2 V`;˙. Let us use Pn and Vn to denote Pn;C and Vn;C
respectively.

Definition 3.2.14. Let eT be the group of homeomorphisms g of R with g.xC 1/ D
g.x/C 1 which are piecewise affine, differentiable on intervals with dyadic rational
endpoints and with slopes in 2Z.

The map g.x/ 7! g.x/ mod 1 defines a group homomorphism from eT to
Thompson’s groupT as defined in [3]. The kernel is the groupZ acting by translations
by integers on R (which become rotations by multiples of 2� on the circle) and the
extension Z ! eT ! T is central and not split. Another way to think of eT is as
periodic piecewise linear foliations of the strip R � Œ0; 1� with (straight line) leaves
connecting .x; 0/ to .g.x/; 1/. By periodicity such a foliation passes to a foliation of
the annulus which is the quotient of the strip by Z.

Given a normalized element R 2 P2 we will define a Hilbert space H D HV;R
which will carry a unitary representation �V;R of eT for which Z acts by scalars. We
proceed just as for F but with the necessary modifications. Fortunately the directed
set remains the same, only the standard dyadic partitions are now thought of as
partitions of S1, or periodic dyadic partitions of R.

Given I . J in D we define an affine labelled tangle in almost the same way
as just before Definition 3.2.6. Fix 0 < r < R 2 R and circles rfz W jzj D 1g and
Rfz W jzj D 1g as the boundaries of the affine tangle. Suppose I D Œa; b� 2 I and
that I is the union of standard dyadic intervals J 2 SI for J 2 J . Then join re2�ia
toRe2�ia and re2�ib toRe2�ib by radial straight line strings. The region in between
these two strings and the inner and outer circles is then isotopic to a rectangle which
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we fill with exactly the same pattern as in the definition of T I
J in Definition 3.2.6.

Applying this procedure to all the intervals of I we obtain an annular tangle which
we again call T I

J . We illustrate below with the same I . J as in 3.2.6.

$

$

$

Here the crossings between the strings need to be blown up to discs containingR,
as we have done before.

Note that the affine tangle T I
J will always have a straight line string joining r toR.

Definition 3.2.15. Given P and an affine representation V D .Vn/ of it, and an
element R 2 P2 as above we define the directed system of vector spaces I 7! K.I/
for I 2 D by K.I/ D VjE.I/jC1 and for I . J in D we use the tangle T I

J to define
a map from K.I/ to K.J / as required by the definition of a directed system.

(The reason for theC1 in E.I/C 1 is that the points 0 and 1 in Œ0; 1� now play a
role but constitute exactly one more point on S1.)

Note further that an affine representation determines a rectangular one by
restriction and that our directed system is the same as that obtained by restricting Vn
to the rectangular category. In particular the trivial representation of the affine TL
category has 1-dimensional V2 spanned by the image of the empty diagram (“vacuum
vector”) in V0 under a tangle with a single string joining the boundary points. When
restricting from affine to rectangular, this is the vector � which we have used above
in Definition 3.2.4. We will persist in calling it � in the affine context.
Definition 3.2.16. The direct limit vector space V D limI2D KI is called the dyadic
limit of V . IfP is a subfactor planar algebra and the affine representations are Hilbert,
V becomes a pre-Hilbert space since all the T I

J define isometries. Its Hilbert space
completion is called the dyadic Hilbert space KR;V of V .

Construction of the unitary representations �V;R of eT proceeds as for F , with the
necessary modifications.

As beforewe say that an elementI 2 D is good forh 2 eT if fh.I / mod 1 W I 2 Ig
forms a standard dyadic partition of Œ0; 1� and we write h.I/ 2 D for this partition.
To see that such an I exists, suppose that h projects to an element g 2 T . By [3],
g is uniquely represented by a certain pair of bifurcating trees representing standard
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dyadic partitions I and J of Œ0; 1�, the difference from F being that the interval
beginning with 0 in I may map to an interval in J which does not begin with 0.
Since h is a lifting of g, fh.I / mod 1 W I 2 Ig is the same as fg.I / mod 1 W I 2 Ig.

If I is good for h we define the affine tangle hI to be the tangle obtained as
follows:

First connect .0; 0/ to .h.0/; 1/ and all the points .p; 0/ to .h.p/; 1/ for p 2 E.I/
by straight lines in R � Œ0; 1�. Repeat this for all horizontal integer translates to
obtain a periodic pattern of straight line connections. Then take the quotient under
translations by Z to obtain the affine tangle hI . We illustrate for a lifting OC to eT of
the well known element C (see [3]) of T . C , as a map on Œ0; 1� identified with the
circle, is defined by its standard dyadic partition fI; J;Kg with I D Œ0; 1=2�; J D

Œ1=2; 3=4�;K D Œ3=4; 1� with C.I / D K;C.J / D I and C.K/ D J . The picture
below gives the periodic pattern for the lifting of C with OC.0/ D �1=4, followed by
the affine tangle it defines.

3/2

0 1/2 3/4 1 3/2−1/4

0−1/4 1/2 3/4 1

−1/2

−1/2

Here we have indicated the end points of the standard dyadic intervals with small
circles but no such circles for the midpoints.

We assert that Lemma 3.2.9 is true in this context exactly as stated, noting simply
that tangle now means affine tangle. The proof is also the same as Lemma 3.2.9 if
one replaces the pictures by periodic pictures in the strip R � Œ0; 1�. The sliding of
the patterns of R’s from bottom to top and required rearrangement of points can be
done in a Z periodic way so that it passes to the annulus.

Lemma 3.2.9 is the only ingredient for the subsequent results that gave the
existence of representations of F .

Thus we deduce the following:
Theorem 3.2.17. Suppose we are given an affine representation V D .Vn/ of P and
a normalized element R 2 P2. Then for v 2 K.I/ and h 2 eT choose J 2 D with
I . J which is good for h and define

�h.v/ D hJ ı T
I
J .v/ 2 K.h.J //:

Then in the dyadic limit �h.v/ is independent of any choices made and h 7! �h
defines a representation of eT on the direct limit, which in the subfactor case extends
to a unitary representation of the Hilbert space K.
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Remark 3.2.18. It can happen that for an affine representation the rotation of 2�
acts as the identity. These representations are called annular and the ensuing
representations on the dyadic limit pass to the quotient T of eT . This is in particular
the case of the trivial representation.

The central extension for eT is canonically split when restricted to the geometric
inclusions of F inside T . Thus we can talk of the restriction of �V;R to F as a
representation of F . We leave it to the reader to check that, in the case of the
embedding of F inside T as homeomorphisms of the circle fixing the point 1 2 C,
the restriction of �V;R is the representation of F we would get by restricting V to a
rectangular representation of P .

4. Calculation of coefficients

The direct limit of a direct system is not always easy to manipulate. Since
our representations � are unitary we have an alternative access to them through
coefficients, i.e. functions g 7! h�g.�/; �i for vectors �; � in the inner product space
on which � acts. In our representations we always have a privileged (or close) unit
vector� and we restrict ourselves mostly to the coefficient h�.g/�;�iWewill show
in this section that that this coefficient can be calculated in a combinatorial way from
a “dual” picture of a Thompson group element as a pair of binary planar trees. It will
be convenient, even crucial, to give an alternative representation of this pair of trees
as another pair of planar trees which we will describe immediately.

The main result of the section is the formula of Theorem 4.3.2.

4.1. Representation of elements of F as pairs of rooted planar trees. As in [3],
any element of F is given by a pair of bifurcating trees TC and T� as below. Our
convention will be that each standard dyadic interval represented by a leaf of the top
tree TC is sent by the Thompson group element to the interval represented by the leaf
on the tree T� to which it is connected.
Definition 4.1.1. Given TC and T� as above the element of F will be called
g.TC; T�/.

The element g defines TC and T� provided there are no cancelling “carets”;
see [3].

It will be convenient to arrange the two bifurcating trees in R2 so that their leaves
are the points .1=2; 0/; .3=2; 0/; .5=2; 0/; : : : ; ..2N � 1/=2; 0/, with all of the edges
being straight line segments sloping either up from left to right or down from left
to right. TC is in the upper half plane and T� is in the lower half plane. Then
each region between the edges of each tree contains exactly one point in the set
f.1; 0/; .2; 0/; : : : ; .N; 0/g. Let us form a new planar graph � given from the two
trees. The vertices of � are f.0; 0/; .1; 0/; .2; 0/; : : : ; .N; 0/g and the edges are given
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by curves passing once transversally through certain edges of the top and bottom
trees. From the top tree use all the edges sloping up from left to right (which we call
WN edges) and from the bottom tree use all the edges sloping down from left to right
(which we cal WS edges). The figure below illustrates the formation of the graph �
for a pair of bifurcating trees with 5 leaves. We have numbered the vertices of �
with their x coordinates, and we will henceforth use that numbering to label those
vertices.

30 1 2 4

To be quite clear the above element of F is linear on each of the following five
standard intervals, which it maps to the next five in the given order:˚�

0; 1
2

�
;
�
1
2
; 3
4

�
;
�
3
4
; 13
16

�
;
�
13
16
; 7
8

�
;
�
7
8
; 1
�	
!
˚�
0; 1
8

�
;
�
1
8
; 1
4

�
;
�
1
4
; 1
2

�
;
�
1
2
; 3
4

�
;
�
3
4
; 1
�	

Definition 4.1.2. Given TC and T� as above , the planar graph � defined above
is called the planar graph of TC; T�, written �.TC; T�/ or �.g/ if there are no
cancelling carets so that the data of the two trees is the same as the data g 2 F .

Observe that the procedure for constructing � actually constructs a rooted tree
�˙.T˙/ with vertices f.0; 0/; .1; 0/; .2; 0/; : : : ; .N; 0/g from a single bifurcating
tree T˙ either in the upper .C/ or lower .�/ half plane with leaves .1=2; 0/, .3=2; 0/,
.5=2; 0/; : : : ; ..2N � 1/=2; 0/.

Note that the graph �.TC; T�/ is also a pair of rooted planar trees, one in the
lower half plane and one in the upper half plane having the same root and the same
leaves. But they are not bifurcating in general, the valence of each vertex being
unconstrained.

Cancelling of carets between TC and T� corresponds to removal of a two-valent
vertex connected only to its neighbour, and the edges connected to it.
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Proposition 4.1.3. The graph� formed above from a pair of bifurcating trees consists
of two trees, �C in the upper half plane and �� in the lower half plane, having the
following properties:

(0) The vertices are 0; 1; 2; : : : ; N .

(i) Each vertex other than 0 is connected to exactly one vertex to its left.

(ii) Each edge can be parametrized by a smooth curve .x.t/; y.t// for 0 � t � 1
with x0.t/ > 0 and either y.t/ > 0 for 0 < t < 1 or y.t/ < 0 for 0 < t < 1.

Proof. This is obvious from the construction of � .

Graphs of the form �˙ are obviously oriented so we may talk of the source and
target of an edge. We will show below how to reconstruct the pair of bifurcating trees
from a pair of rooted planar trees with vertices satisfying the conditions of 4.1.3.

This shows that �.g/ is an equally faithful way of representing elements of the
Thompson group F .
Lemma 4.1.4. Let ‰ be a rooted tree in the upper or lower half plane satisfying
the conditions of Proposition 4.1.3. Then there is a bifurcating tree T˙ such that
‰ D �˙.T˙/ (the plus sign when the root is in the upper half plane and the minus
sign when it is in the lower half plane).

Proof. Wolog we may assume everything is in the lower half plane.
We will work by induction on the number of leaves. So suppose we are given

a ‰� satisfying the conditions of 4.1.3 with N C 1 leaves. Call a vertex of ‰�
terminal if it is not the source of an edge (i.e. it is a leaf).

An edge of a bifurcating tree will be called “WS” if it slopes downwards going
from left to right (West–South) and “WN” if it slopes upwards going from left to
right (West–North).

If j is a terminal vertex then it is the target of a unique edge. The source of that
edge is k for k < j . If k D j � 1 we will call j minimal terminal. If j fails to be
minimal terminal then j � 1 could, by planarity, only be connected to the right to j ,
so j � 1 is terminal. Continuing in this way we obtain a minimal terminal vertex m.
There are then two possibilities for m � 1.
Case 1. Valence of m� 1 is 2. Then if m is deleted m� 1 becomes terminal and in
a neighborhood of m and m � 1 ‰ is as below:

m

m−1
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Removing m and its edge the resulting graph ‰0 still satisfies the conditions
of 4.1.3 so there is by induction a T 0 with ‰0 D ��.T

0/. Observe that the terminal
vertex m � 1 is necessarily in a caret of T 0. We may thus add WS edge to T to
re-insert the vertex m and obtain the desired T�:

m−1

m

where the solid edges are those of T 0 and the dashed edges are the ones added to
obtain T� and ‰.

Case 2. Valence of m � 1 is > 2. In this case there is an edge with source m � 1
connecting it to a vertex k with k > m. By planarity there must be such an edge
connecting m � 1 to mC 1. The situation near m is thus:

m−1

m m+1

Removing m and its edge the resulting graph ‰0 still satisfies the conditions
of 4.1.3 so there is by induction a T 0 with ‰0 D ��.T 0/. There has to be a WS edge
in T betweenm�1 andmC1 so we may add a WN edge to T 0 as in the figure below
re-insert m and obtain the desired T�:

m

m−1 m+1

where the solid edges are those of T 0 and the dashed edges are the ones added to
obtain T� and ‰.

We have essentially given a bijection between two sets counted by the Catalan
numbers which thus almost certainly exists in the literature. The result is so important
to our examples that we have supplied a detailed description of what is an algorithm
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to obtain a Thompson group element from a pair of planar trees with the same set of
leaves and the same root.

4.2. Representation of elements of T as pairs of rooted planar trees. As shown
in [3], an element g of Thompson’s group T can be uniquely represented by a pair T˙
of bifurcating trees whose leaves index the intervals in two elements of D . The only
difference is that for T , gmay send the leftmost interval specified byTC to the interval
of any leaf `0 of T�, the other intervals lining up in cyclic order. Thus the pictures
corresponding to the one we have drawn for F should be drawn on a circle. This is
most readily achieved by identifying the first leaf of TC with `0 and placing T� in the
lower half plane with as many leaves as possible identified with those of TC in cyclic
order. Then join the unattached leaves with curves in the only planar way possible.
We illustrate below with the same T˙ as in the figure before Definition 4.1.2, but
with the third leaf from the left of T� being connected to the first of TC:

�! �!

Thus, exactly as for F , we may also replace the pair T˙ by a pair �˙ of planar
rooted trees drawn in the plane with the same set of vertices on the x axis and with
the root of �C being the same as a marked vertex of ��. In our example above we
get:

XX X X X

and after removing T˙ and cleaning up we get:

XX X X X

where the circled vertex is the root of �C and the vertex of �� with which it is
identified.
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The pair �˙ should really be thought of as on the inside and outside of the circle
obtained by wrapping the x axis around on itself from below. The positive x direction
then becomes the clockwise direction on the circle.

As for F , T˙ can be reconstructed from �˙ so we have a faithful way of
representing elements of T .

4.3. The coefficients h�„;R.g/�; �i for F . We want to explain the relevance of
the graph �.g/ for g 2 F . First we explain a well known correspondence between
planar graphs and four-valent planar graphs. Suppose we have a planar graph � with
vertices V and edges E. Then we may form the medial graph whose vertices are
midpoints of the edges E and whose edges are obtained by connecting the vertices
to adjacent edges around all the polygonal faces of � thus:

One may shade the faces of the medial graph so that the unbounded face is
unshaded. Then the vertices of � are in the shaded faces. This procedure gives a
bijection between planar graphs and four-valent planar graphs (which are actually the
same as generic projections of smooth links in R3 onto R2). If ˆ is the four-valent
planar graph we call �.ˆ/ the graph � and conversely given � we call ˆ.�/ the
medial graph.

The vertices of � are the big black dots and the edges of the medial graph are
thinner. We now want to blow up the crossings of the medial graph and insert R as
we did in 3.2.6. For this we need to know where to put the $ signs ifR is not invariant
under the rotation by � . To achieve this we need � to be edge oriented. If it is we
make the convention that the $ sign always goes to the left. We also need to be able to
insert R�’s instead of R’s at the vertices of ˆ.�/ for which we need a signing of the
edges. We illustrate below, for the previous example, the formation of the labelled
0-tangle from the graph above to which we have given an edge orientation and an
edge signing:

$

R

R

R

R

R

R

R

R

R

*

*

*

*

$

$
$

$

$

$$

$

+

+
+

+−

−

−−

+
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Definition 4.3.1. IfR 2 P2;C is given we call the labelled tangle above theR-tangle
TR.�/ of the edge oriented and edge signed planar graph � .

We use the same notation if R is rotationally invariant and � is not edge-oriented
and/or if � is not edge-signed and R is self-adjoint .

Recall from Definition 3.2.4 that„ is the rectangular representation of the planar
algebra generated by � in the regular representation of P (2.0.3).

Theorem 4.3.2. If R 2 P2;C and TC and T� define an element g 2 F ,

h�„;R.g/�; �i D Z.TR.�.TC; T�///

where the edges of �.TC; T�/ are oriented from left to right and given C signs on
the top and � signs on the bottom.

Proof. Given TC; T�, by definition the partition J defined by TC is good for
g.TC; T�/. So if I is the partition with just one interval, the labelled tangle T I

J
may be composed with gJ to give the tangle gJ ı T I

J which gives �.g/.�/ when
applied to � . It consists of a rectangular tangle labelled with R’s with one boundary
point at the top and strings with crossings blown up to include R’s. With the strings
connecting the boundary point at the top and the mid points and end points of the
intervals of g.J / at the bottom. We illustrate below with the element g which we
gave explicitly in Section 4.1:

T

0 1/8       1/4 1/2 3/4 1

g
J

I

J

Now, by the way g is defined from T� and TC, the intervals of g.J / are the
intervals defined by T� so that T I

g.J /.�/ is � viewed as an element of Hg.J /. So
to obtain h�„;R.g/�; �i we need simply attach .T I

g.J //
� to the bottom of gJ ı T I

J
and join the top boundary point to the bottom, to the left of the rectangles so that
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the unbounded region is unshaded. We illustrate below, continuing with the example
from Section 4.1:

10 1/8       1/4 1/2 3/4

Cleaning up and adding the $ data and � data, we obtain:

$

$

$
$$

R

R

R

R

R

R

R

R

*

*

*

*

$

$

$

$

Finally we extract the edge-signed edge-oriented graph of shaded regions (unbounded
region unshaded) which we recognise as �.TC; T�/:

+

+
+

+

−

−

−

−
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4.4. The coefficients h�„;R.g/�; �i for T . All the remarks above pertaining
to h�„;R.g/�; �i for F apply equally to T where we agree to call „ the trivial
affine representation of P with vector � as above. In particular we constructed in
Subsection 4.1 a planar graph consisting of �˙ and if we put negative signs on
the edges of �� and positive ones on the edges of �C, and orient the edges in the
clockwise direction we obtain an edge oriented, edge-signed planar graph �.TC; T�/
from a pair of bifurcating trees (with a marked leaf for T�) defining the element
g 2 F .

The calculation of Theorem 4.3.2 is true for this �.TC; T�/ for g 2 T and the
edge orientations being clockwise. We illustrate below for the element g we have
been using. Note that g is defined by the following two elements I and g.I/ D J
which we give below, with the image of each standard dyadic interval under g placed
directly below that interval:

I D
˚�
0; 1
2

�
;
�
1
2
; 3
4

�
;
�
3
4
; 13
16

�
;
�
13
16
; 7
8

�
;
�
7
8
; 1
�	

J D
˚�
1
4
; 1
2

�
;
�
1
2
; 3
4

�
;
�
3
4
; 1
�
;
�
0; 1
8

�
;
�
1
8
; 1
4

�	
We present a sequence of 5 pictures taking us from the definition of h�„;R.g/�; �i

to the edge-oriented edge signed graph above.

$

π

7π/4

1

13π/8
3π/2

$

$

$

Picture 1. The element � viewed
in K.I/

$

7π/4

13π/8

π/2

π

3π/2

π/4

1

3π/2

π 1$

$

$

Picture 2. �„;R.g/�

$

π/2

π

3π/2

π/4

1

$

$

$

Picture 3. � viewed in K.J /
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1

$

$

$

$

$

$

$

Picture 4. h�„;R.g/�; �i
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Where we note that the blown up crossings in the right part of the picture
contain R� and not R.

$

1

$

$

$
$

$

$

Picture 5. The graph of shaded regions

where we have drawn the picture so that the trees inside and outside the circle are
clearly visible as the trees at the top and bottom of the picture at the end of Section 4.2.

5. Special choices of R

5.1. Dumb choices. The simplest possible choices ofR are the tangles belowwhich
give equivalent results up to symmetry:

δ $ $R= or

Viewed in H.I/, � is, for the second choice of R, just a TL tangle where the
boundary point at the top is connected to the extreme left point (for I) at the bottom,
and all other boundary points at the bottom are connected to their nearest neighbors
(left or right depending on parity), as below:
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This property is invariant under F so we see that the linear span of g� is one
dimensional and defines the trivial representation of F .

Other orbits of the action of F on tangles are easy to analyze also. For instance if
we take the rectangular representation of TL definite by a minimal projection with 6
boundary points altogether we see that the image TL element under a g 2 F is
entirely determined by the image of the point 1

2
under g, the other two boundary

points being automatically connected to the extreme left point at the bottom and
the point to the right (at whatever scale) of g.1

2
/. These vectors, for g; h 2 F ,

are orthogonal iff g.1
2
/ ¤ h.1

2
/ so we see that the representation is just that on

`2.dyadic rationals/. All actions on finite subsets of the dyadics can be obtained
from minimal projections in higher TLn’s. In particular all these representations are
irreducible.

The situation for T is similar. The vacuum vector is fixed by T so defines the
trivial representation. The lowest weight 2 representation (spanned under T by a one
dimensional V2 space, with V0 D 0) is the quasiregular representation on `2.T=F /,
and similarly for higher lowest weights. For eT , one obtains the same representations
except that any character of the the center of eT may be induced (remember that the
central extension eT is split when restricted to F ).

Note that choosing R to be a normalized linear combination of the two choices
above and taking the limit as one coefficient tends to zero we obtain the trivial
representation as the limit along a curve of our representations of F and T .

5.2. Chromatic choices. It is convenient in this section to use the "lopsided" version
of the shaded Temperley Lieb planar algebra T L where closed strings count 1 if they
are unshaded inside and Q if they are shaded inside. Then a T L element in TL0;C
is just a collection of closed strings with the unbounded region unshaded and it is
equal in TL0;C to Q#.shaded connected components/. (The formulae for going between the
lopsided and spherically invariant versions are detailed in [16] in the discussion of
spin models.) We do need to be careful of how tangles with boundary points are
closed, to the left or right.

It is easy to see that if we choose OR to be:

$
−   $R=

then OR is rotationally invariant and, given a planar graph � , the R-tangle TR.�/ 2
TL0;C is exactly the chromatic polynomial of � , in the variable Q. (The chromatic
polynomial Chr�.Q/ of any graph � is the unique polynomial in Q whose value
whenQ is an integer is the number of ways of colouring � withQ colours.)

All this is very well known, e.g. [32].
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In order to use OR to define a representation of F we need to normalize it so
that 3.2.1 is satisfied. Thus we set R D 1p

Q�1
OR and use that choice for the rest of

this subsection. In particular for every rectangular representation V of T L we have
the unitary representations �.g/ D �V;R.g/ of Thompson’s groups F and T (not
just eT because the trivial representation has rotational eigenvalue equal to 1). Recall
the representation„ from Definition 3.2.4 with generating vector � . Note that in this
lopsided version h�; �i D Q.
Proposition 5.2.1. If TC and T� are a pair of bifurcating trees defining an element
of F as explained in 4.1 then

h�.g/�; �i D .Q � 1/�N Chr�.TC;T�/.Q/

Proof. This is visible for integer Q if one uses spin models. Otherwise simply
observe that ZR.�/ 2 TL0;C satisfies the same recursive relations as the chromatic
polynomial.

Remark 5.2.2. The general linear combination of the two TL tangles in the choice
of R will yield the Tutte polynomial of a planar graph.

The same results and notation apply to Thompson’s group T and the graphs of
Section 4.4.

The caseQ D 2 is rather special. Here the chromatic polynomial takes only two
values according to whether � is bipartite or not. And the normalization constant
of OR is 1.
Definition 5.2.3. LetQ D 2:

�!
F D fg 2 F j h�.g/�; �i D 2g

�!
T D fg 2 T j h�.g/�; �i D 2g

Proposition 5.2.4. Both�!F and
�!
T are subgroups and the unitary representations �„

of F and T are the permutation representations on `2.F=
�!
F / and `2.T=

�!
T /

respectively.

Proof. Since h�; �i D 2we have by the Cauchy–Schwarz inequality that g� D � iff g
is in the set specified. Identification of the representations is obvious.

In general the representation �„ is unitary iff

Q 2 f4 cos2 �=nWn D 3; 4; 5; : : :g [ Œ4;1/

and asQ!1 we have by the properties of the chromatic polynomial that for every
g 2 F , h�.g/�; �i tends to 2 for all g 2 G. Thus we have:
Proposition 5.2.5. The trivial representations of F and T are in the weak closure of
the � defined above asQ varies.
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Note that both
�!
F and

�!
T have dual versions

 �
F and

 �
T obtained by changing the

shadings. It is not hard to find elements in
�!
F \
 �
F .

We can easily enumerate the elements of
�!
F (we leave the case of

�!
T to the reader).

For since the graph � is bipartite, if we assign aC sign to the leftmost vertex then all
the other signs are determined. And conversely if one fixes n and gives a sequence
of n signs, any planar graph joining n signed points on a line satisfying 4.1.3 will
give an element of

�!
F . Thus one may choose independently a top and bottom tree �C

and �� whose vertices are coloured by the sequence of signs, satisfying 4.1.3 and
one can reconstruct an element of

�!
F .

Obviously the sequence of signs must begin with C� since the first two vertices
are always connected in both �C and ��. It is easy to check that any sequence of
signs beginning with C� admits at least one pair �C; ��. Determination of exactly
the number of Thompson group elements with a given sequence of signs might not
be easy but it can certainly be calculated. Here is a “designer” element of

�!
F starting

from a sequence of signs:

+  −  +  −  +  −  −  −

+  −  +  −  +  −  −  −

+  −  +  −  +  −  −  −

It is obvious that
�!
F is stable under the “sum” of elements in F and we have the

following observation of Sapir — note that the abelianisation of F is Z2 with the
abelianisation map being g 7! .log2 g0.0/; log2 g0.1//

Proposition 5.2.6.�!F is contained in the kernel of the homomorphismg 7!g0.1/mod 2.

Proof. The log of g0.1/ for g given by a pair TC; T� of bifurcating trees is the number
of boundary vertices of TC minus the same number for T�. But each of these vertices
defines an edge of � so log2 g0.1/ must be even.
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In fact
�!
F has a description in terms of the action ofF on subsets of

�!
F . A sequence

of signs as above defines an element of F=
�!
F or a basis element of `2.F=

�!
F /. Given

such a sequence of signs and pair of bifurcating trees we may assign to each left
endpoint of the standard dyadic intervals of the top tree, the number 1 for C and 0
for �. Under the embedding maps of the directed system this function does not
change so in fact we get a function from the dyadic rationals in Œ0; 1� to f0; 1g, i.e. a
subset of the dyadics. The action of the Thompson groups on subsets of the dyadics is
the same, by definition of �.g/ as the action we have thus defined on certain subsets
of the dyadics. Moreover

�!
F is by definition the stabilizer of the sequence of signs

defined by the identity element. This is easily seen to correspond to the subset of all
dyadic rationals in Œ0; 1� whose digit sum is odd when written as a binary expansion.
(Thanks to Sapir for this simplification of a clumsier earlier description).

Golan and Sapir have shown that EF is isomorphic to the Thompson group F3 and
that its commensurator is itself, thus showing that the representation ofF on `2.F= EF /
is irreducible [27].

5.3. Knot-theoretic choices. We will work with the planar algebra C D .Cn/ of
linear combinations of Conway tangles (see [6, 16]) where we identify two tangles
if they differ by a family of distant unlinked unknots. Thus a basis of Cn is the set
of isotopy classes (determined on diagrams by the Reidemeister moves) of Conway
tangles with 2n boundary points and no unknots that can be isotoped to an arbitrarily
small neighborhood of a point on the boundary of the tangle.

C can be made into a �-planar algebra in more than one way but the � structure
we will consider is the one relevant to the Jones polynomial VL.t/ when t is a root
of unity (or the Kauffman bracket when A is a root of unity), i.e. if T is a Conway
tangle as a system of curves with crossings in C, T � is obtained from T by complex
conjugation in C thus:

*
$

$

T= T =

and so if R is as below, R� is as depicted:

$$R= R =*
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For the rest of this section we implicitly make this choice of R. (For A 2 R for
the Kauffman bracket the � is the identity on a crossing as above — this leads to a
different theory for which all links arising as coefficients are alternating — there is
no hope of obtaining all alternating links as coefficients since alternating links have
a simple behaviour when more crossings are added and there are too many of them
for Thompson group elements of a bounded length.) The vector space C0 is infinite
dimensional, spanned by isotopy classes of links with no distant unknots. It is in
fact an algebra under the obvious tangle multiplication, and each Cn has a C0-valued
sesquilinear inner product hS; T i defined by the tangle as in Section 2.

We consider the rectangular representation„ of C-see Definition 3.2.4. Note that
because of our convention with distant unknots, R automatically satisfies 3.2.1 so
that �„ preserves the inner product h ; i.

5.3.1. All unoriented links arise as coefficients of representations. For simplicity,
for the rest of this section, links will be considered the same if they differ by distant
unknots.

Theorem 5.3.1. Given any (unoriented) smooth link L in R3 there is an element
g 2 F such that h�„.g/�; �i D L.

Proof. The proof will proceed by a series of definitions and lesser results.
It is worth pointing out before we begin that the procedure we give for producing

a Thompson group element will not produce any new distant unknots so we could
renormalize our Conway skein planar algebra in such a way as to obtain exactly the
link we begin with, i.e. not up to a distant union of unknots.

We saw in Section 4.3 how to go between 4-valent planar graphs and planar graphs
by shading the regions of the four-valent graph. An unoriented link diagram consists
of an underlying 4-valent planar graph together with crossing data. Moreover, given
the shading, crossings have a sign according to the convention:

−+

Thus a link projection gives an edge-signed planar graph.

Definition 5.3.2. The signed planar graph defined above is called the semidual graph
�.L/ of the link diagram L.
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Here is an illustration of the formation of �.L/:

−

+
+

+

+ −

If � is a signed planar graph the medial link diagram L.�/ is what we called the
R-tangle of � (for our choice ofR) formed by putting crossings on the middles of all
the edges of � . The sign of a crossing is determined by the sign on the edge and the
convention above, where the shaded regions are defined by the vertices of the graph.
Then the crossings are joined around the edges of each face.

Here is an illustration of the formation of the medial link diagram:

−
+

+

+

+

+

−

Any link diagram is thus the medial link diagram of a signed planar graph.
Now consider the following three local moves on signed planar graphs:

Type I

Here a 1-valent vertex and its edge are eliminated. The signs on all the edges are
arbitrary.
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+
+
−

−

Type IIa

Here a 2-valent vertex whose two edges have opposite signs is eliminated along with
those edges, and the vertices at the other ends of the removed edges are fused into
one. All other signs are arbitrary.

+

−
+

−

Type IIb

Here two edges joining the same pair of vertices, with opposite signs, with no other
edges or vertices in between are simply eliminated. All other signs are arbitrary.

Proposition 5.3.3. Two signed planar graphs �1 and �2 give the same link in R3 if
they differ by planar isotopies and any of the above three moves.

Proof. These two moves on the graphs translate type I and II Reidemeister moves on
the knot diagram.

Definition 5.3.4. We say two signed graphs are 2-equivalent if they are as in the
proposition.

Now suppose we are given two bifurcating trees TC and T� with N C 1 leaves
defining an element g of F as in 4.1.1. By our calculation of a coefficient of „ in
Section 4.3, we know that h�„.g/�; �i is a link with a diagram of a special form,
namely the medial link diagram of a signed planar graph satisfying the conditions of
Proposition 4.1.3, with edges in the upper half plane having sign C and edges in the
lower half plane having sign �.

Definition 5.3.5. A planar graph � will be called standard if its vertices are the
points .0; 0/; .1; 0/; .2; 0/; .3; 0/; : : : ; .N; 0/ and each edge e can be parametrized by
a function .xe.t/; ye.t//with x0e.t/ > 0,8t 2 Œ0; 1� and either ye.t/ > 0,8t 2 .0; 1/
or ye.t/ < 0, 8t 2 .0; 1/

Our first goal will be to prove the following result.

Lemma 5.3.6. Any link L is the medial link of a standard edge-signed planar graph.
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Proof. It is trivial that any signed planar graph can be isotoped so that the vertices are
the points .0; 0/; .1; 0/; .2; 0/; .3; 0/; : : : ; .N; 0/. If there are edges of the resulting
graph that lie in the half plane with x � 0 then we may isotope them on the 2-sphere
so that they lie in the other half plane. If the resulting picture contains no edges
that intersect the x axis at points other than vertices of the graph, it is clear that
we may isotope the picture so that it is standard (the edges can even be made to be
semicircles). Thus we only have to show how to change the signed planar graph to
a 2-equivalent one so that the only points of intersection between edges and the x
axis are vertices. Suppose there is an edge e intersecting the x axis between two
vertices, n and n C 1. Then by smoothness we may suppose that e crosses the x
axis transversally and that the picture looks locally as below where we have chosen
aC sign for e for illustration:

+

n n+1

e

Now simply add two vertices between n and nC1 and a semicircular edge between
them, either above or below the x axis, whose sign is opposite to the sign of e, as
below.

+

n n+1

e

+
−

The resulting planar graph is 2-equivalent to the original one. Now the vertices
can be isotoped to become .0; 0/; .1; 0/; .2; 0/; .3; 0/; : : : ; .N C2; 0/. Repeating this
for every edge intersecting the x axis not at vertices, including possibly ones with x
coordinates larger than N , we obtain the desired result.

Now suppose we are given two bifurcating trees TC and T� with N C 1 leaves
defining an element g of F as in 4.1.1. By our coefficient calculation in Section 4.3,
we know that h�„.g/�; �i is a linkwith a diagram of a special form, namely themedial
link diagram of a signed planar graph satisfying the conditions of Proposition 4.1.3,
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with edges in the upper half plane having sign C and edges in the lower half plane
having sign �. Moreover by Lemma 4.1.4, any signed planar graph as we have just
described comes from a pair TC; T�. Thus Theorem 5.3.1 will be proved if we can
show that any standard signed planar graph is 2-equivalent to a graph of the form we
have just described.

The edges of a standard planar graph acquire orientations so that the source vertex
of e has smaller x coordinate than the target vertex of e.

Definition 5.3.7. If � is a signed standard planar graph set

eup D fe 2 e.�/ W ye.t/ > 0 for 0 < t < 1g
and edown D fe 2 e.�/ W ye.t/ < 0 for 0 < t < 1g:

Further define eup
˙

to be those edges in eup with sign ˙1 respectively. Similary
for edown

˙
. Note that

e.�/ D e
up
C .�/ t e

up
� .�/ t e

down
C .�/ t edown� .�/:

Definition 5.3.8. Given a vertex v 2 � , einv and eoutv will be the set of all edges e with
target and source equal to v respectively.

Definition 5.3.9. Astandard signed planar graphwill be calledThompson if eup� .�/ D
; D edownC .�/ and it has the property that jeinv \e

up
C j D je

in
v \e

down
� j D 1 for all vertices

other than .1; 0/.

Lemma 5.3.10. If g 2 F , �.h�„.g/�; �i/ is Thompson, and if � is Thompson there
is a g 2 F with �.h�„.g/�; �i/ D �

Proof. The condition of being Thompson is just the translation of the fact that the
pair of trees, one in the upper half plane, and one in the lower, satisfy the conditions
of Proposition 4.1.3, with signs as specified.

Definition 5.3.11. The badness TB.�/ of a standard signed planar graph � is

TB.�/ D
X

v2v.�/nf.0;0/g

�
j1 � jeinv \ e

up
jj C j1 � jeinv \ e

down
jj
�
C jeup� j C je

down
C j

Proposition 5.3.12. If TB.�/ D 0 then � is Thompson.

Proof. This is immediate from the definition of TB .

Lemma 5.3.13. Given a signed standard planar graph � with TB.�/ > 0, there is
another one � 0 which is 2-equivalent to it and with TB.� 0/ < TB.�/.
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Proof. Case 1. Suppose there is a vertex v different from .0; 0/with einv D ;. Then v
and the vertex w to the left of it are as below:

v
w

Now add two edges as below to obtain � 0

−w
v

+

TB.� 0/ D TB.�/ � 2 and � 0 is 2-equivalent to � .

Case 2. Suppose � has a vertex v with jeinv j D 1. Wolog we may assume that the
incoming edge to v is up. It may beC or �. Then near v the situation is as below:

v
w

Now add one vertex and three edges as below to obtain � 0 which is clearly standard,
2-related to � and TB.� 0/ D TB.�/ � 1.

+

w
v−
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Case 3. Suppose � has a vertex v with jeinv \ eupj > 1 or jeinv \ edownj > 1. Wolog
suppose it’s jeinv \ eupj > 1. Then near v, � is as below:

f
v

e

where we have labelled by e and f the edges whose positions we will change. In
fact, f may not exist, which changes nothing for the argument. Now add 3 vertices
and 5 edges as below to obtain � 0:

− v

e

f

+
+

− −

� 0 is manifestly standard and a few applications of type I and type II moves show
that � 0 is 2-equivalent to � . And one of the offending top incoming edges at v
has been assigned to another vertex where it is the only top incoming edge. All
edge counts at other vertices are either as they were or do not change TB . Hence
TB.� 0/ D TB.�/ � 1.

Case 4. All vertices except .0; 0/ have 2 incoming edges, one up and one down.
Then since TB.�/ > 0, there must be an edge in eup� [ edownC . Wolog we can assume
it is in eup� . If the target of that edge is v then near v, � looks like:

v
w

−

Herew is the vertex immediately to the left of v and the� sign on the edge connected
to v indicates that it is a negative crossing of the knot, and so, being in the top half
of � , contributes one to TB.�/. We shall alter � by only type I and II moves so that
the offending edge vanishes. To do this, add eight new vertices and 16 new edges to
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produce � 0 as below. It is manifestly still standard and a few applications of type I
and type II moves show it is 2-equivalent to � . But also TB.� 0/ D TB.�/ � 1

since jeup� j has been reduced by one.

+

w

v− − − − −
−−−

+
+++++++

We now have all the ingredients for the proof of Theorem 5.3.1. Given a link
diagram of an unoriented link L, extract the semidual signed planar graph. If
necessary change �.L/ by type I and II moves so that it becomes isotopic to a
standard signed planar graph � . Then use 5.3.13 to reduce TB to zero through a
sequence of 2-equivalent standard signed planar graphs. The resulting graph � 0 is
Thompson and it is the medial graph of a link diagram for L. On the other hand
by 5.3.10 there is an element g 2 F such that �.h�„.g/�; �i/ D � 0.

This ends the proof of Theorem 5.3.1.

Example 5.3.14. We illustrate our method by obtaining an element of F with
h�„.g/�; �i equal to the Borromean rings.

+

+

+
+

+ +

Once the signed planar graph has become standard we have dropped all signs that
are in agreement with the final situation with edges in the upper half plane being +
and edges in the lower half plane being minus.
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5.3.2. All oriented links arise as coefficients of representations. We will show
that all oriented links can be obtained by using the group

�!
F .

A shading of a link diagram determines a surface in R3 whose boundary is the
link-replace the shaded regions by smoothly embedded discs in the plane and use
twisted rectangular strips to join these shaded regions where the crossings are. By
construction the boundary of this surface is the link. This surface may or may not be
orientable. If it is the link itself may be oriented by choosing an orientation of the
surface and orienting the knot as the oriented boundary.

In Theorem 4.3.2 we saw that, for any choice of R, and any pair TC; T� of trees
definingg 2 F , the coefficient h��.g/�; �i is the partition function of a labelled tangle
which is a four-valent planar graph whose planar graph is the graph �.TC; T�/. Thus
if we choose R as in this section, the link h��.g/�; �i is the boundary of a surface
obtained as above from �.TC; T�/. This surface is clearly orientable iff g 2

�!
F . So

if we decree that the shaded region containing the point .0; 0/ in the graph �.TC; T�/
be positively oriented, the link h��.g/�; �i (up to distant unknots) obtains a definite
orientation.

Theorem 5.3.15. Given any oriented smooth link L in R3 there is an element g 2
�!
F

such that h�„.g/�; �i D L.

Proof. It is a well-known fact that any oriented link admits a diagram for which the
surface obtained as above from a shading may be oriented with the link as its oriented
boundary (for instance it follows from the treatment of the HOMFLYPT polynomial
via projections with only triple points in [16]). So we take the first step as for the
proof of Theorem 5.3.1 and isotope such a link diagram for L so that the shaded
regions become what we called a standard edge-signed graph. The standard graph
then obtains a 2-colouring if we colour each vertex according to the orientation of
the region it represents. Now we may follow the proof of Theorem 5.3.1 just making
sure that the element of F that we end up with is in

�!
F . To do this we just need

to make sure the graph is bipartite at every step of the procedure we use to turn the
graph into a graph which is Thompson. This procedure required frequent insertions
of the two canceling edges thus:

+

−
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These insertions may or may not interfere with the 2-colouring. If they do, simply
replace the above insertion by

−

+

−

+

This has the unfortunate effect of adding more distant unknots but since we decided
to ignore them, we are done.

5.3.3. Remarks. Theorem 5.3.1 establishes that the Thompson group is in fact as
good as the braid groups at producing unoriented knots and links. The theorem is the
analogue of the “Alexander theorem” for braids and links.This leads to the following
projects:

(1) Define the F-index of a link as the smallest number of leaves required for an
element of F to give that link, and similarly the T-index. Obviously the T-index is
less than or equal to the F-index and examples show that the inequality may be strict.

Perhaps the best result we have on the F-index is that the .3; n/ torus link has
F-index less than or equal to n C 3. This link may be obtained as hg�; �i where
g D !n, ! being the Thompson group element:

The F-index of the Borromean rings is surely considerably less than the upper bound
of 20 established above.

(2) Prove a “Markov theorem” which determines when two different elements
of F (or T ) give the same knot. It is not hard to give moves on pairs of trees which
effect the Reidemeister moves on the corresponding link diagrams. These moves are
quite likely enough.
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5.4. More quasi-regular examples. By a quasi-regular representation of a discrete
group G we mean the natural unitary representation of G on `2.X/ where G acts
transitively on the setX . In Section 5.2 we unearthed the groups

�!
F and

 �
F (similarly

for T ). This example can be generalized in several ways, even staying within spin
model planar algebras.

5.4.1. More than two spins. We restrict ourselves to the case of F , leaving T to
the reader.

Definition 5.4.1. Let h W X ! X be a function where X is a set with Q elements.
Define the matrix ORh.x; y/ as the matrix of the linear transformation induced by h,
thus

ORh.x; y/ D

(
0 if y ¤ h.x/
1 if y D h.x/ :

Weknow from [2,16] thatmatrices indexed by the set of spins defineR-matrices in
spinmodels. Observe that ORh is normalized (Definition 3.2.1) if

P
y j
ORh.x; y/j

2 D 1

for all x.
We may then fix an element x0 2 X and consider the representation of F

generated by the vector �0 which is the element of P0;C defined by

�0.x/ D

(
1 if x D x0
0 otherwise :

Under the embeddings defined by T J
I where I is the element ofD with two intervals,

the vector T J
I .�0/ is always a basis vector for the usual basis of Pn for spin models

(elementary tensors). Thus F acts on the set of all basis vectors of the dyadic limit
Hilbert space V of 3.2.7.

TheR of Section 5.2 withQ D 2 is what we would obtain from this construction
with jX j D 2 and h exchanging the elements of X .

Now let g 2 F be given by two rooted planar trees �˙ as in Proposition 4.1.3.
Then we define f˙ W fvertices of �˙g ! X by

f˙.x/ D h
d˙.x0;x/

where d˙.x0; x/ is the distance from x0 to x on �˙.

Proposition 5.4.2. If g is as above, then g�0 D �0 ” fC D f�.

Proof. Just follow the discussion after Proposition 5.2.5, taking into account that h
need no longer be an involution. This also allows the enumeration of the stabilizers
of the �0.
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