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Lie algebras and torsion groups with identity
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To my teacher Leonid A. Bokut on his 80th birthday.

Abstract. We prove that a finitely generated Lie algebra L such that (i) every commutator in
generators is ad-nilpotent, and (ii) L satisfies a polynomial identity, is nilpotent. As a corollary
we get that a finitely generated residually-p torsion group whose pro-p completion satisfies a
pro-p identity is finite.
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1. Introduction

In 1941 A. G. Kurosh formulated a Burnside-type problem for algebras [19]. Let A
be an associative algebra over a field F. An element a € A is said to be nilpotent if
a" @ = 0 for some n(a) > 1. An algebra A is said to be nil if every element of A is
nilpotent.

The Kurosh Problem. Is it true that a finitely generated nil algebra is nilpotent?

Examples by E. S. Golod [5] (see also the far reaching examples from [22]) showed
that this is not always the case. However the Kurosh Problem has positive solution
in the class of algebras satisfying a polynomial identity (PI-algebras).

Let f(x1, X2, ..., Xn)beanonzero element of the free associative F-algebra. We
say that an algebra A satisfies the polynomial identity f = 0if f(a1,a2,...,am) =0
for arbitrary elements ay,as, ..., a, € A.

One of the high points of the theory of PI-algebras was the solution of the Kurosh
Problem (I. Kaplansky [14], J. Levitzki [21], A. I. Shirshov [30]) in the following
form: Let A be an associative algebra generated by elements ay,...,a,. Let S be
the multiplicative semigroup generated by the elements a;, . .., a,. Suppose that an
arbitrary element of S is nilpotent. Then the algebra A is nilpotent.

Now let L be a Lie algebra over a field F. As above, for a nonzero element
f(x1,x2,...,Xxy) of the free Lie algebra we say that L satisfies the identity f = 0
if f(ai,az,...,an) = 0 for arbitrary elements a1, as,...,an € A, see [2].
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An element a € L is said to be ad-nilpotent if the linear operator
ad(a): L - L,x — [x,d]

is nilpotent.

A subset S C L is called a Lie set if, for arbitrary elements a,b € S, we have
[a,b] € S. For a subset X C L, the Lie set generated by X is the smallest Lie
set S{X) containing X . It consists of X and of all iterated commutators in elements
from X.

Theorem 1.1. Let L be a Lie algebra satisfying a polynomial identity and generated
by elements ay, ...,an. If an arbitrary element s € S{ay,...,ay) is ad-nilpotent
then the Lie algebra L is nilpotent.

This theorem has implications in group theory: Let p be a prime number.
A group G is said to be residually-p if there exists a family of homomorphisms
¢i © G — G; into finite p-groups G; such that (1), Ker(¢;) = (1).

Let Z, be the field of order p. Consider the group algebra (Z,)[G] and its
fundamental ideal w spanned by all elements 1 — g, g € G. Itis easy to see that the
group G is residually-p if and only if ();..; w' = (0). The Zassenhaus filtration is
defined as -

G=G>Gy >

where G; = {g € G | 1—g € w'}. Then[G;,G;] € G;; and each factor G;/ G, 41
is an elementary abelian p-group. Hence

L,(G)=EDGi/Gin

i>1
is a Lie algebra over Z .

Theorem 1.2. Let G be a residually- p finitely generated torsion group such that the
Lie algebra L ,(G) satisfies a polynomial identity. Then G is a finite group.

Let g(x1,x2,...,Xm) be a nonidentical element of the free pro-p group
(see [3,29]) on the set of free generators xi, xp,...,X;,. We say that a pro-p
group G satisfies the identity g = 1 if g(a;,az,...,a,) = 1 for arbitrary elements
ai,as,...,ay, € G.

Theorem 1.3. Let G be a residually- p finitely generated torsion group such that its
pro-p completion G ; satisfies a nontrivial identity. Then G is a finite group.

Remark. The examples of infinite residually-p groups due to E. S. Golod [5],

R. I. Grigorchuk [6], and N. Gupta-S. Sidki [8] are finitely generated and torsion.
The results above significantly extend the positive solution of the Restricted

Burnside Problem [38,39] and the work of [40] on compact torsion groups. They

were announced in [41,42] but no detailed proof followed. Meanwhile they were

used in numerous papers. Therefore I feel compelled to present a detailed proof.
The proof essentially uses the ideas and techniques from [38,39].
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2. The case of zero characteristic

In this section we assume that char F' = 0. This assumption allows us to avoid major
difficulties but also miss major applications.

Kostrikin Lemma (A. I. Kostrikin [16], [17, Lemma 2.1.1]). Let L be a Lie algebra,
a € L,ad(a)" = 0. If4 <n < char F (here zero characteristic is viewed as 00),
then

ad (bad(a)"™")" ' =0

for an arbitrary element b € L.

Choose anonzeroelements € S = S{aq,...,an). Theelement s is ad-nilpotent.
Repeatedly using the Kostrikin lemma we can assume that ad(s)3 = 0.

Recall that a linear algebra over a field F of characteristic # 2 is called a Jordan
algebra if it satisfies the identities:

J1) xoy=youx;
(12) (x*oy)ox =x%0(yox).

If A is an associative algebra then A = {4,a0b = %(ab + ba)} is a Jordan
algebra. For more information on Jordan algebras see [9,25,43].

We will use a construction of a Jordan algebra from [4] which is a refined version
of the Tits—Kantor—Koecher construction [13,15,32,33].

Let L be a Lie algebra over a field of characteristic # 2, 3. Lets € L, ad(s)> = 0.
Define a new operation a o b = [a,[s,b]], a,b € L. Then the vector space K =
{a € L | a ad(s)? = 0} is an ideal of the algebra (L, o).

Theorem 2.1 ([4]). The factor algebra (L,0)/K is a Jordan algebra.

Foraset X = {x1, x2,...},let FJ(X) denote the free Jordan algebra (see [9,25,
43]). Consider also the free associative algebra F (X ). Let ¢p be the homomorphism
¢ FJ(X) - F(X)™, x = x, x € X. An element lying in the kernal ker ¢, is
called an S-identity. A Jordan algebra J is said to be P/ if there exists an element
f(x1,...,x,) € FJ{X) that is not an S-identity such that f(ay,...,a,) = 0 for
all elements ay,...,a, € J.

For elements x, y, z of a Jordan algebra J, define their triple product {x, y,z} =
(xy)z + x(yz) — y(xz). Anelement a € J is called an absolute zero divisor if
a’? =0and {a, J,a} = (0).

A Jordan algebra that does not contain nonzero absolute zero divisors is called
nondegenerate. The smallest ideal Mc(J) such that the factor algebra J/ Mc(J) is
nondegenerate is called the McCrimmon radical of J.
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Lemma 2.2. Let J be a Jordan algebra with PI such that every element of J is a
sum of nilpotent elements. Then J = Mc(J).

Proof. Let J # Mc(J). Then without loss of generality we will assume that the
algebra J is nondegenerate. Moreover, since a nondegenerate Jordan algebra is a
subdirect product of prime nondegenerate Jordan algebras (see [37]), we will assume
that the algebra J is prime and nondegenerate.

In [36] it was shown that a prime nondegenerate PI-algebra J has nonzero center

Z(J) = {Z € J | (za)b = z(ab) for arbitrary elements a, b € J}

and the ring of fractions J = (Z(J) \ {0})71J is either a simple finite dimensional
algebra over the field Z = (Z(J)Y\{0)~1Z(J) or else an algebra of a symmetric
nondegenerate bilinear form. In both cases the algebra 7 has a nonzero linear trace

J —> Z such that the trace of a nilpotent element is zero. Since every element
of 7 is a sum of nilpotent elements it follows that t(J ) = (0), a contradiction that
finishes the proof of the lemma. O

Lemma 2.3. The Jordan algebra J= (L, o)/ K is McCrimmon radical, i.e. J=Mc(J).

Proof. By our assumption, the Lie algebra L satisfies a nontrivial polynomial identity.
Passing to the full linearization of this identity (see [43]) we can assume that the
identity looks like

Y aoxoad(Xo(1)) - ad(Xo(m) = 0,

o€ESy,

where not all coefficients o, € F are equal to 0. This implies that

Z OQTQOR(CZU(I)) tee R(aa(n)) =0

o€Sy,

for arbitrary elements ag, a1, ...,a, € J, where R(a) : x — xa denotes the multi-
plication operator in J.

It is easy to see that the element Y g @caoR(ag(1)) - R(ag(n)) is not an
S-identity. Hence J is a PI-algebra.

The Lie algebra L is spanned by the Lie set S = S{a, ..., a,). For an arbitrary
elementa € S leta = a 4+ K be its image in the Jordan algebra J. The ¢th power
of @ in J is a ad([s,a])’~! + K, which implies that the element & is nilpotent. By
Lemma 2.2 J = Mc(J), which finishes the proof of Lemma 2.3. O

Following A. I. Kostrikin [16,18], we call an element a of a Lie algebra L a
sandwich if (i) ad(a)?> = 0 and (ii) ad(a) ad(b) ad(a) = O for an arbitrary element
bel.

If char F' 5 2 then (i) implies (ii).
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If a is a nonzero absolute zero divisor of the Jordan algebra J and char F # 2,3
then for the nonzero element b = a ad(s)? we have ad(bh)? = ad(s)? ad(a)? ad(s)>.
Hence L ad(b)?> C{a, J,a}ad(s)> = (0). Hence, b is a sandwich of the Lie algebra L.

To summarize, we showed that if L = (ay, ..., a,;) is a nonzero Lie algebra over
a field F of zero characteristic, every element of the Lie set S = S{ay,...,am,) is
ad-nilpotent, and if L satisfies a nontrivial polynomial identity, then L contains a
nonzero sandwich.

Lemma 2.4. Let L = {(ay,...,an) be a finitely generated Lie algebra such that an
arbitrary element of the Lie set S{ay, . . . ,an) is ad-nilpotent. Let I be an ideal of L
of finite codimension. Then I is finitely generated as a Lie algebra.

Proof. The finite dimensional Lie algebra L/I is spanned by a Lie set for which
every element in the set is ad-nilpotent. By the Engel-Jacobson theorem [10] the Lie
algebra L /1 is nilpotent. In other words, there exists kK > 1 such that Lk c1.

Suppose that every commutator p in ay, ..., d,; of length < k is ad-nilpotent of
degree at most ¢, i.e. ad(p)’ = 0. Let N = ktm¥. In [41, Lemma 2.5] it is shown
that every product ad(a;, ) ---ad(a;, ), 1 <iy,...,ixy < m, can be represented as

ad(a;,)---ad(aiy) = Y _vjad(p;).
J

where the v;’s are (possibly empty) products of the ad(a;)’s and the p;’s are

commutators inday, . .., a, of length > k. Each summand on the right hand side has
the same degree in each a; as the left hand side.
It follows now that the algebra L¥ is generated by commutators p in ajy, ..., dp,

such that k < length(p) < 2N.

We have dimF(L/Lk) < 0o. Let by,...,b, € I be a basis of I modulo L*.
Now the algebra [ is generated by by, ..., b, and by all commutators pinay,...,an
such that k < length(p) < 2N, which proves the lemma. O

Recall that an algebra L is called just infinite if it is infinite dimensional but every
nonzero ideal of L is of finite codimension.

Lemma 2.5. Let L be an infinite dimensional Lie algebra generated by elements
ai,...,am such that an arbitrary element from S{ai,...,am) is ad-nilpotent.
Then L has a just infinite homomorphic image.

Proof. Let I} C I, C --- be an ascending chain of ideals of infinite codimension.
We claim that the union / = |J; /; also has infinite codimension. Indeed, if
dimg (L /1) < oo then by Lemma 2.4 the ideal / is generated by a finite collection of
elements, hence [ is equal to one of the terms in the ascending chain, a contradiction.

By Zorn’s lemma the algebra L has a maximal ideal J of infinite codimension.
The factor algebra L /J is just infinite, which proves the lemma. O
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Now we are ready to finish the proof of Theorem 1.1 in the case of char F' = 0.

Let L be a Lie algebra satisfying the assumptions of the theorem. In view of
Lemma 2.5 without loss of generality we will assume the algebra L to be just infinite.

We proved that L contains a nonzero sandwich. Recall that an algebra is called
locally nilpotent if every finitely generated subalgebra is nilpotent. A. N. Grishkov [7]
proved that in a Lie algebra over a field of zero characteristic, an arbitrary sandwich
generates a locally nilpotent ideal. Since the Lie algebra L is just infinite it follows
that L contains a locally nilpotent ideal I of finite codimension. By Lemma 2.2
the algebra I is finitely generated, hence nilpotent and finite dimensional. This
contradicts the assumption that the algebra L is infinite dimensional and proves the
theorem.

3. Divided polynomials

The main Theorem 1.1 is valid for Lie algebras over an arbitrary ground field F'. The
applications to Theorems 1.2, 1.3 use only the case when the ground field F is finite.

We will show that without loss of generality, we can assume that the field F
is infinite. Indeed, let F’ be an infinite field extension of F. The Lie algebra
L’ = L ®F F’ is generated by the same elements a1, ..., a;, as L and an arbitrary
element s € S{ai,...,an,) is ad-nilpotent in L’. Since the Lie algebra L satisfies a
polynomial identity, it satisfies a nontrivial multilinear identity f(x1,...,x,) =0
(see [2]). Then the Lie algebra L’ also satisfies the identity /' = 0.

From now on we assume that char F = p > 0 and the field F is infinite.
Let L(X) be the free Lie F-algebra on the set of free generators X = {x1,..., X}
in the variety of algebras satisfying the identity f = O (see [2]). Let P be the set of
all commutators in X and letn : P — N be a function. Let J be the ideal of L{X)
generated by | e p L(X) ad(p)"®.

Our aim is to show that the algebra L' = L{X)/J is nilpotent. Suppose that this
is not true. Letting deg(x;) = 1, 1 <i < m, we define a gradation of L’ by positive
integers.

We say that a graded infinite dimensional algebra is graded just infinite if every
nonzero graded ideal of it is of finite codimension.

Lemma 3.1. The algebra L' has a graded just infinite homomorphic image L.

The proof follows the proof of Lemma 2.5 (verbatim).

Consider the adjoint embedding .. — Endg (L), a — ad(a). Let A’ be the
associative subalgebra of Endg (L) generated by the image of L. The algebra A’
is graded and we assume that L € A’ (). Let I be a maximal graded ideal of the
algebra A’ such that L NI = (0), A = A’/I, L € A If J is a nonzero graded
ideal of the algebra A then the ideal J N L has finite codimension in L. From the
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Poincaré-Birkhoff-Witt theorem it follows that the factor algebra A/J is nilpotent
and finite dimensional. We have proved that the algebra A is graded just infinite.
To summarize, we assume that:

(1) the graded Lie algebra L is generated by elements s1, ..., s, of degree 1; every
element from the Lie set S = S(s1,..., S5 is ad-nilpotent;

(2) L satisfies a polynomial identity;
(3) L is graded just infinite.

We fix also a graded just infinite associative enveloping algebra A of L. The algebra A
is a homomorphic image of the subalgebra (ad(L)) € Endg (L)

Forelementsay,...,a; € Llet|ay,as, ..., a;]denote their left-normed commut-
ator by [--- [a1, az], as), ..., ax]. We also denote [a, b, b, ..., b] = [ab¥].
k

Lemma 3.2. Let I be an ideal of L, s € S, k > 2, [Is¥] = (0). Suppose that the
Lie algebra L satisfies an identity of degree n. Then the subalgebra [ Sk_l] satisfies
an identity of degree < n.

Proof. Let L satisfy an identity
Z Uy [xo,xa(l), . ,x(,(n_l)] =0,
gES,—1
where oy € F, 1 = 1. For the variables xq, x1, ..., Xx,_1 choose values xo = s,
x1=a€l,x;=a; € [Isk_l],2§i <n —1. Then
Z O‘a[[S, a]’aO'(Z)’ LI 7a0(fl—1)] = 09
oeH

where o runs over the stabilizer H of 1 in S,—;. It follows now that the Lie algebra
[1s%—1] satisfies the identity

Z Olg[x(),x(,(z), .. ,xU(n_l)] =0
oeH

of degree n — 1. This finishes the proof of the lemma. O

Lemma 3.3. Let I be anideal of L, s € L, [Is¥] = (0), k > 2. Then for any integer
t > 2 and any elements ay,...,ay € I, N = kt — 1, we can write the operator
ad([a15571]) - - - ad([an s5~1)) as a linear combination of operators of the type

-2

P’ ad(s)*! 1_[ (ad(a;+;)ad(s)F~1) P”
j=0

where P', P" are products of ad(ay), ..., ad(ay,), ad(s), which may be empty.
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Proof. By the Jacobi identity

ad ([a1s¥7']) - -ad ([ans* 1))
=) +ad(s)” ad(a) ad(s)”* ---ad(s)/¥~" ad(an) ad(s)’V,

and in each summand 0 < jo, j1,...,jv <k—1,jo+ -+ jy = (k = 1)N. If,
in each segment j;, ju+1...., ju+s—1 of length t, at least one term is < k — 2, then
Ju+ o+ Juti—1 < (k—=1)t — 1. Summing all k segments we get jo + -+ Jjnv <
k((k — 1)t — 1) < (k — 1)(kt — 1), a contradiction that proves the lemma. O

Lemma 3.4. There exist elements c1,...,c, € S and integers m > 1, N > 1 such
that:

(1) [Li,cl,cz, ..., cr] # (0) for arbitraryi > 1;
) [L™,c1,¢2,...,¢r,ci] =) forl <i <r;
(3) for arbitrary elements ay,...,ay € [L™,c1,...,cr] we have

ad(aq)---ad(ay) = 0.
Proof. Choose a nonzero element s € S. For an arbitrary i > 1 choose a minimal
integer k(i) > 1 such that [L's*®] = (0). Since the Lie algebra L is graded just
infinite it follows that each power of L has zero centralizer. Hence k(i) > 2. We
have k(1) > k(2) > ---. There exists a sufficiently large integer m; such that

ki =k(m)=kim +1)=---.

In other words, [L™1s%1] = (0), [L!s¥171] # (0) for any i > 1.

Now suppose that we have found / elements s; = s, 52, ...,5; € S and 2/ integers
ki,....k; >2;1 <m; <my <--- < m; with the following properties:
(1) s € [Lmimisk =gkl g < <

@) [Lmisht kT iki — o), 1< < 0
(3) for an arbitrary i > 1 we have [L"sf‘_1 ---sfl_l] # (0).
Claim 3.5. For arbitrary 1 <i, j <1 we have [s;,s;] = 0.

kj_l—l

Proof. Indeed, leti < j. Thens; € [me'—lsllq_1 syl

]. We will show that

iy ki—1 ki_1—1
[Lm_/ lsll ...Sjj_l Si] — (0)
By the inductive assumption on i + j the element s; commutes with s; y1,...,5;1.
Hence

ki_1—1

mj_yki=1
[L™=1s) ;0

Si] — [Lmj—]sllcl_l ...slki ...] = 0,

which proves the claim. O
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Case 1. Suppose that there exists an element s’ € S™ =[S, S, ..., S] such that

mj

[ A N A A L)

for any i > 1. Denote s;41 = [s's] kit lkl .

mjyq1 > my and k41 > 2 such that

As above we find integers

[[Lm/-Hsk]—l sf’ 1] k1+1] 0),

l+1
i k1—1 k;— 1k1+1 1
[L S S 1 # 0
foranyi > 1. The elements sy, ..., s;+1 and the integers my, ..., mjy1; k1, ... k141

satisfy the conditions (1), (2), and (3) above.
Case 2. Now suppose that for an arbitrary element s’ € S™ there exists an integer
i(s") > 1 such that
i(s7) J1—1 k-1 k k 1
[[L70sy ™ e T  fssy T s ] = ().
Since $™ spans L™ it follows that for an arbitrary elementa € [L™! slfl_l lk’ "
there exists i (a) > 1 such that

[[Li(a)sllq—l --'Slkl_l],a] — (0). )
Lett = 2ky---k;—1. Choose 2t —1 elements ay,...,d2;—1 € [L””sk1 L. sf’ 1].
Let g = max{i(ay).1 < pu <2t —1,my}.

Our immediate aim will be to show that

[Lq,al,...,a,] = (0).

Denote t; = 2k ~-~k1—1 sotg = t. Welett; = 1. From Claim 3.5 it follows that
forany 1 <i <[, L; [quk‘ ! --s]fj_l] is a subalgebra of L. Let Lo = LY.

J
Claim 3.6. For t; arbitrary elements by, . . ., b,j e {ay,...,a;} we have
[Lj,bl,...,btj] = (0).
Proof. To prove the claim, we will use reverse induction on j = 0,...,[. For

j =1l wehave f; = 1 and [L;,q;] = [L‘Is]fl_1 sf’ ' ai] = (0) by the choice
of g. Now suppose that the assertion is true for j, 1 < j <[. We have t;_; =
k;j(; +1) — 1. By Claim 3.5 an arbitrary element a € [quk‘ -1 lk’ 1] can

kl 1]

k;
be represented as a = [as ] where a’ € [qullCl L. Lj_;. Let

b, = [bhsfj_l],bh € L;_;. Weapply Lemma 3.3 to the algebra L;_1+ Fsjandits
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ideal L, _;. By Lemma 3.3 ad(by) - - - ad(b; j_l) is a linear combination of operators
tj —1

P’ ad(s;)ki ! ( [1i=0 ad(®;,,, ad(s; )k ~1)) P”. By the induction assumption

t;i—1

Lj_lP’ad(sj)kf_l( []ad®,,) ad(sj)kf—l)
n=0
tj—1 t—1
CLj, ad(sj)kf_l( [ ad(bl{JrM)ad(sj)kf_l) = L; [ ad(®itn).
w=0 n=0
which finishes the proof of Claim 3.6. O
In particular, for j = 0 we have
[Lq,al,az,...,at] = (0).
Now,
[Lq7 [Laa17a27 . "7a2l’—l]:| g Z[Lq7ai]7”' 7aiM7L’aj]7' "7aju]7

where in each summand ¢ + v = 2¢ — 1. If u > ¢ then
[L9.ai.....a;,] = (0)].
If v > ¢ then
[Lq,ai,...,aiM,L,ajl,...,aj,,] C [Lq,ajl,...,aju] = (0).
Since the power L? has zero centralizer it follows that
[L,al,az,...,aZ,_l] = (0).
We showed that in case 2, the elements
ClyevesCr = SlyevesS1 5 8200ees82 5uueySyene,S]

——
ki—1 ko—1 k;—1

and the integers m = m;, N = 4k --- k; — 3 satisfy the conditions of the lemma.

Let the algebra L satisfy an identity of degree n. We will show that enlarging
the system s1,...,57; k1,..., k1 > 2; 1 <m; <--- < m; we will encounter case 2
in < n — 2 steps.

The subalgebra I; = [Lmislfl_l, ... ,sfijl_l] is an ideal of

[Lmi—lslfl_l, e sfi]l_l]
k; mi_ k-1 ki_1—1 . S

and [/;s;'] = (0). If [L™i=ts]h " -ees,t ] satisfies an identity of degree n;_
then by Lemma 3.2 the algebra [ L™ slf‘ B sffll ~!] satisfies an identity of degree
< nj—1. This implies that / < n — 2 and finishes the proof of the lemma. O
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Let E be the associative commutative F-algebra presented by the countable set of
generators e;, [ > 1, and relations ei2 = 0,7 > 1. Ordered products e, = ¢;, ---e;,,

= {i; < ip < --- < i} form a basis of the algebra E. Notice that we don’t
consider empty products and therefore the algebra E does not have 1.

We will start with a short overview of the rest of the proof of Theorm 1.1. The
crucial role is played by the “linearized” Lie algebra L=LgQ r E. In Section 3,
we define divided polynomials: a generalization of usual Lie polynomials that make
sense in the context of the Lie algebra L. A divided polynomial is regular if it is
not identically zero on any ideal [m = m ®r E, m > 1. We use Lemma 3.4
to establish existence of a regular divided polynomial whose every value is divided
ad-nilpotent of degree k > 3. Then we use Kostrikin-type arguments [16,17,42] to
reduce k to 3.

In Section 4, we show how such regular divided polynomials give rise to a family
of quadratic Jordan algebras. This result is new only for p = 2 or 3. For p > 5,
it follows from [4]. Using structure theory of quadratic Jordan algebras [26], we
establish existence of a regular Jordan polynomial, every value of which is an absolute
zero divisor. These references are an essential (hidden) part of the proof. This Jordan
polynomial gives rise to a regular divided polynomial whose every value is divided
ad-nilpotent of degree 2, i.e. is a sandwich (see [17,20]).

In Sections 5 and 6, we further push the envelope and construct a regular
divided polynomial whose every value generates a nilpotent ideal in an associative
enveloping algebra to reduce the problem to the case when the associative enveloping
algebra A satisfies a polynomial identity and finish the proof using structure theory
of Pl-algebras.

For an arbitrary (not necessarily associative) F-algebra A and its Lie algebra o of
derivations D = Der(A) denote A=A®rE,D = DQFE. Clearly, DcC Der(A)
Leti € N and let D = Zn D ® e, where the sum is taken over all ordered subsets

of 7 that contain i. Clearly, D; < D, D; = (0), (AD;)(AD;) = (0), and
D=y D.
i

Let 2 be a finite family of elements of D such that:

(Ul) every element d € Q lies in some ideal 51

(U2) [d1,d>] = 0 for arbitrary elements d4, d» € 2.

Consider the following linear operator on A

Uk () = Zdl"‘dk

where the summation runs over all k-element subsets of 2.
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We further define Uy (2) = Id. Clearly, U1 (R2) = ) cq d-
We have k!Ur(R2) = (D _4eqd )¢ and if the characteristic of the field exceeds k

then
1 k
Ur(Q) = F( > d) .
de
Hence the operators Uy play the role of divided powers.
The following properties of the operators Uy (£2) are straightforward (see also

[39,41]).

Lemma 3.7.
m

() (@b)Un () = Y (aUi(2)) (bUn—i (Q))

i=0
for arbitrary elements a,b € A, m > 0;

(2) The operator
o0
A> A4, a— ZaU,-(Q)
i=0
is an automorphism of the algebra A. We remark that the sum > 2o ali(R) is
finite;

(3) For an elementa € A let R (a) denote the operator of right multiplication by a.
Then

m
R(@Un(Q)) = > (1) U(Q)R(@)Un—i (Q):
i=0
@) U @U;(Q) = (/) Ui ().
Remark. This lemma will be primarily applied to Lie algebras where the oper-
ator R(a) of right multiplication by an element a is the adjoint operator ad(a).

An arbitrary element a € A can be uniquely represented as a = ) a, where
ar € A ® e,. We call it the standard decomposition of a.

Let X be a countable set and let / be an ideal of a Lie algebra L. Consider
the set Map(X,IN) of mappings X — I = I ®F E. Consider also M) =
Map(Map(X, I~) I~) In other words, if f € M(I) and we assign values from T to
variables from X then f takes values in I.

Let Lie(X) be the free Lie algebra on the set of free generators X. Consider the
free product L *x Lie(X). Let (X) be the ideal of the algebra L * Lie(X) generated
by X. An arbitrary element from (X') gives rise to an element from M (7).

We will define a subset U(I) € M(I) that we will call the set of divided
polynomials defined on /:

(DP1) All elements from (X) lie in U(1);
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(DP2) suppose that a divided polynomial w does not depend on any variables except
X1,...,Xr. Werepresent this factas w = w(xy,...,x,). Ifvy,...,v, € U(I), then
w(vy,...,vr) € U() as well. If w = w(xy,...,x,) and v; = v;(V1,..., Ym),
1 <i < r,are homogeneous divided polynomials of degrees deg, (w), deg,, (v;) in
each variable, then w(vy, ..., v,) is a homogeneous divided polynomial of degrees
57 deg,, (w) - deg,, (vi) in yi, 1 <k < m;

(DP3) letw = w(x1,...,x,) € U(I). Suppose that:

(i) for arbitrary elements a, b, a,,...,a, € T, we have
[w(a,az, ...,ar),w(b,az,...,a,)] =0;
(ii) w is linear in x1, which means that
w(aa + Bb,as,...,a;) = aw(a,as,...,a;) + Bw(b,as,...,a;)
for arbitrary @, 8 € E;a,b,as,...,a, € T and
w(l ®ep,az,...,a4;) C I Qer+1 Qe E.

Then for an arbitary & > 0 the function w’ = xg adgckl] (w), where w' is defined
as

w'(ag,ay,....ay) = agUp(RQ), Q ={ad(w(aiz.az,....ar)}x,

where a; = Zﬂ air in the standard decomposition of the element a;, is a
divided polynomial defined on /.

If w is a homogeneous divided polynomial of degrees deg, (w) in x1,...,xy,
then w’ is a homogeneous divided polynomial of degrees 1, k - deg, (w), 1 =i =<r,
in xg,Xx1,X2,...,Xp.

An element of M (1) lies in U(/) if and only if starting with elements from (X)
and using rules (DP2)—(DP3), it can be shown to be a divided polynomial.

A divided polynomial from U(/) is a homogeneous divided polynomial if and
only if starting with homogeneous elements from (X) and applying rules (DP2)-
(DP3) to homogeneous polynomials, it can be shown to be a homogeneous divided
polynomial.

Let’s recall the definition of a polynomial map of vector spaces. Let V, W be
vector spaces over an infinite field F' and let

f:VxeeexV =>W, (vi,...,vm) = f(v1,...,0p) € W.

m
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If f is multilinear then it is said to be a polynomial of degrees (1,1,...,1) in
V1,...,Up. Letd; > 1,i = 1,...,m. We say that f is a homogeneous polynomial
map of degrees (d1,...,dmy) in vy, ..., Uy if:

(1) ford; = 1 f islinear in v;;
(2) for d; > 2 we have

/ 14 /
f(v17‘~"vl‘—l’vi+vl'7vi+1a~-'9vm)_f(vla"‘7Ui—lvviavi+lv""vm)
1
_f(v11~--7vi—lvvi7vi+11"-7vm)
d;—1
2 !/ "
= fk(v11~--yvi—lvvisvi1vi+17--'1vm)’
k=1
where fr(vi,...,0i—1,0;,0],Vit1,...,VUn) is ahomogeneous polynomial map
: / 7
of degrees dy,...,di—1.k.di —k,diy1,....dpn in vy, .. 01,0, 0], V41,
.y U

Now recall the definition of a full linearization of a homogeneous polynomial
map f of degrees dy > 1,...,dy, > 1in vy,...,v,. Forevery 1 <i < m
choose d; elements v;1,...,vig, € V. Let 1 C {vj1,...,v;q,} be a nonempty
subset. Denote

fn = f(vly-‘-,Ui—l,ZU,Ui.H,...,Um).

VET

The mapping
Ai(f) =Y (g

[E 4
S{vit,esvia; }

is called the linearization of f with respect to v;. The mapping

Ai(f)(vl""5vi_19vi1’"'7vidiivi+17"'7vm)

is multilinear in v;q, ..., Vid; -
Consecutively applying linearizations with respect to all variables, we get the full

linearization f : V x---xV — W. Clearly ]f”vis a multilinear map.
N — —

Yitid;
Lemma 3.8. For an arbitrary homogeneous divided polynomial w € U(I)
(1) the full linearization W of w lies in L * Lie(X);
(2) the span of all values of w on Tis equal to the span of all values of W on T.

Proof. (1) We will use induction on the number of steps (DP2)—(DP3) needed to
construct the divided polynomial w.
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Ifvy,...,v,, ware homogeneous divided polynomials, then the full linearization
of w(vy,...,v,) is a linear combination of values w(vy,...,0;) in appropriate
variables.

Let w = xg adgckl](v), where v = wv(x1,...,Xx,) in a homogeneous divided

polynomial satisfying the conditions (DP3)(i), (ii). Since we can linearize variables
in an arbitrary order, let’s start with the variable x;. Then

Axl(w)(x()?yls-'-’ykax27'-'1xr)
= xpad(v(y1,x2,...,xr)) - -ad(V(Vg, X2, ..., Xxr)).

This completes the proof of assertion (1).

(2) We will prove part (2) of the lemma in a slightly more general context of
polynomial maps of spaces. Consider again vector spaces V, W and a homogeneous
polynomial map

fiVxeexV W, (x1,...,%m) = f(x1,....,xm) €W, x; € V.
——————
m
Let f have degrees d; > 1,...,d, > 1 with respect to xq,...,X,. Choose

x;,x; e V,1 <i < m. Consider

f(xl,.--,xi—l,xf +X,{/,Xi+1,-.-,xm)— f(xlw--axi—17xl{,xi+1,--"xm)
_f(xlv-~-axi—1’xl{/9xl'+lv'-"xm)
di—1
= Z fj(Xl,...,Xi_l,.xl{,xl{/,xl'_{_],...,Xm),
j=1

where the summand f; has degree j in x/ and degree d; — j in x;’. The homogeneous
polynomial mappings f; are called partial linearizations of f.

Consider the finite system ¥ of homogeneous polynomial maps from V to W
that are obtained from f by repeated partial linearizations. Let Q2 C V be a family
of elements with the following property:

if g(x1,...,x,) € ¥ and g has degree > 2 in Xx;, then for an arbitrary

elementv € Q wehave g(V,...,V,v,V,...,V) = (0). (%)
i—1 r—i

We claim that for an arbitrary element g(x1,...,x,) € ¥,

g(span€2,...,span Q) C spanf(Q,...,Q).

Applying this inclusionto f = w, 2 = | J;5,(/ ® ¢; + I ® ¢; E), we will prove
part (2) of Lemma 3.8.
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If g is multilinear, then g = ]7 In any case, without loss of generality, we
assume that the claim is true for all partial linearizations of g. But modulo partial
linearizations the mapping g is multilinear. More precisely,

g(span €2, ..., span 2)
C span(g(vy,...,0r),0; € Q) + Zg’(spanQ, ...,span2),

where g’ are partial linearizations of g. Since g has degree > 2 with respect to at
least one variable, we conclude that g(vq, ..., v,) = 0. In particular,

span f(span2,...,span Q) = span(f(vl, V2,...),V; € Q).
If f is a homogeneous divided polynomial and Q2 = {a Q e¢;,a € L,i > 1}, then

condition (x) is clearly satisfied, which completes the proof of assertion (2). O

The following lemma is a linearization version of the celebrated Kostrikin
Lemma ([16], [17, Lemma 2.1.1]).

Lemma 3.9. Let L be a Lie algebra. Let Q C Der(L) ® E be a finite family
of elements satisfying the conditions (Ul), (U2). Suppose that m > 1 and for an
arbitrary k > m, we have U (2) = 0.

(1) Let m > 2. Then for arbitary elements a,b € L, we have

[aUm—l (), bUn—1 (Q)] = 0.

(2) Now suppose thatm > 4. Leta € Z, a =Y ax be a standard decomposition,
T
and Q' = {a; Up—1(2)} 5. Then Up (') = 0fork > m — 1.

Proof. (1) We have 2m — 2 > m. Adjoint operators are right multiplications in
Lie algebras. Hence Lemma 3.7(3) is applicable. By Lemma 3.7(3),

0=ad(blUam2(Q)) = Y £Ui(Q)ad(b)U; ().
i+j=2m—2
It implies

Un—1(Q) ad(0)Up—1 () = Y Ui (R) ad(b)U;(Q) = 0.

i>m
orj=m

By Lemma 3.7(3), (4), we have
[Cl Um-1(£2), bUm—1 (Q)] = aUp-1(2) ad (bU;n—1(2))
= aUp—1(2) ad(0)Upn—1(2)
=0,

which completes the proof of the assertion (1).
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(2) We will show that
ad(al Un—1 (Q)) U ad(ak Un—1 (Q)) =0

for arbitrary elements aq,...,a; € L, k > m — 1. Without loss of generality we
will assume k = m — 1.
By Lemma 3.7(3) and (4) the left hand side is a linear combination of operators

Uiy (R2) ad(a)U;, (R) - - - Ui, _, (R2) ad(am—-1) Ui, _, (£2),

where 0 < ig,i1,...,im—1 <m —1landig 4+ iy + -+ im_1 = (m —1)2.

Suppose that U;,(2) ad(ay)---ad(am-1)U;,,_, () # 0 and the m-tuple
(io,i1,...,Im—1) is lexicographically maximal with this property.

We claim that none of the indices iy, i1, .. ., i;—1 are equal to 0. Indeed, if one of
the indices is equal to 0, then all other indices have to be equal tom —1. Since m > 4 it
follows that there exists £,0 < ¢t < m—1, suchthati, = i;+1 = m—1. Now from (1)
it follows that U;, (2) ad(ar+1)U;, () = Up-1(2) ad(@r+1)Um-1(2) = 0, a
contradiction.

Since (m — 2)m < (m — 1)? it follows that at least one index i;, 0 <t <m — 1,
is equal to m — 1. All of the indices iy,...,i,—1 are smaller than m — 1. Indeed,
suppose that iy = m — 1, 1 <t < m — 1. We have i;_; > 1 by the above. Now
Lemma 3.7(3) implies

0 =ad(a,Uj,_,+;,(R) = Y +U;(Q)ad(a)U;(Q)
i+j=i[_1 +i[

and therefore

Ui, (Q)ad(a)U;, (Q) = Y +U;(Q) ad(a)U; (),

i>i[

j<m—1
which contradicts lexicographical maximality of (ig, ..., im—1).
We have proved thatip =m — 1,i; =i, = -+ = i,—1 = m — 2. Now our aim

will be to show that
Um—1(2) ad(a1)Upm—2(R2) = 0.

Since (m — 1) 4+ (m — 3) > m, Lemma 3.7(3) implies that
Un—1(2) ad(@1)Un—3(2) — Upn—2(2) ad(a1) Un—2(£2)
+ Un—3(2) ad(a1)Upm—1(£2) = 0.

Multiplying the left hand side by U;(£2) on the right and taking into account
Lemma 3.7(4), we get

(m = 2)Upn—1(2) ad(a1) Upn—2(2) — (m — 1)Upn—2(2) ad(a1) Up-1(£2) = 0.
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On the other hand Lemma 3.7(3) implies that
Un-1(2) ad(@1)Un—2(2) — Up—2(R2) ad(a1) Upm—1(£2) = 0.
The system of equations implies
Um—-1(R2) ad(a1)Up—2(2) = 0,
which completes the proof of the lemma. O

Definition 3.10. We say that a divided polynomial w(xy,...,x,) defined on L*,
s > 1, is regular if for an arbitrary i > s we have w(L', ..., L) # (0).

By Lemma 3.8(2), a homogeneous divided polynomial w is regular if and only if
its full linearization is regular.

Lemma 3.11. There exist integers m > 1,N > 1 and a regular homogeneous
divided polynomial w(x1, ..., X;) defined on L™ such that w satisfies the conditions
in (DP3) and x¢ adgl] (w) = 0 holds identically on L™ forallt > N.

Proof. Consider the elements cq,...,¢, € S and integers m > 1, N > 1 of
Lemma 3.4. By property (2), for an i > m the subspace L; = [L!,cy,...,c/]isa
subalgebra of L. By (3) this subalgebra is nilpotent, say, of degree d(i), d(m) >
d(m+1) > ---. This sequence stabilizes at some step,d = d(k) =d(k+1) =---.
Thus L¢ = (0) and L&~ 5 (0) for any i > m. Let

WXy, ..., X4-1) = [[xl,cl,...,cr],[xz,cl,...,cr],...
...,[xd_l,cl,...,cr]] € L x Lie(X).

The divided polynomial w is regular and linear in x;. For arbitrary elements
az,...,a4—1 € L* we have

[w(LF. az.....a4-1). w(LF.az.....ag_1)] = (0)

because the left hand side lies in L,‘f. Hence the divided polynomial w satisfies the
condition (DP3). Therefore the divided polynomial xg adgﬁ (w) is defined on LK
forany ¢t > 1. For ¢t > N the polynomial xg adgf (w) is identically zero on Lk by
Lemma 3.4(3). This finishes the proof of the lemma. O

Letg > 1 be aminimal integer with the following property: there exists anm > 1
and a regular homogeneous divided polynomial w = w(xy,..., x,) defined on L™,
linear in x1, such that:

(i) for arbitrary elements a, b, as,...,a, € L™ we have

[w(a,az, ...,ar),w(b,ag,...,ar)] = 0;

(i) L™ adgf (w) = (0) holds identically on L™ forall 1 > q. Clearly, g < N.
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Lemma 3.12. ¢ < 3.

Proof. Suppose that ¢ > 4. Consider the divided polynomial v(xo, x1,...,X,) =
X0 adgcql_l](w) defined on L™. In view of the minimality of ¢, the divided
polynomial v is regular. _ _

By Lemma 3.9(1) for arbitrary elements a, b € L™; ay,...,a, € L™ we have

[v(a,al,...,ar),v(b,al,.--,ar)] = 0.

We proved that the divided polynomial y adgcqo_ 1] (v(xo, ..., x,))is defined on m.
If g > 4, then by Lemma 3.9(2), this divided polynomial is identically zero, which
contradicts the minimality of ¢ and finishes the proof of the lemma. 0

Lemma 3.13. Let L be a Lie algebra. Let Q C Lbea Jinite family of elements such
that ad(S2) satisfies the assumptions (U1), (U2). Suppose that U>(ad(§2)) = 0. Then
a =2y pecq b is a sandwich of the Lie algebra L.

Proof. We have ad(a)? = U1(ad(2))U; (ad($2)) = 2U(ad(2)) = 0. By Lem-
ma 3.7(3) for an arbitrary element ¢ € L we have
ad(cU>(ad(£2))) = ad(c)Uz(ad(£2)) — U1 (ad(£2)) ad(c) Ui (ad(£2))
+ U2(ad(£2)) ad(c),

which implies ad(b) ad(c) ad(b) = 0 and completes the proof of the lemma. O

In what follows, we will use the subsequent lemma.

Lemma 3.14. Let L be a Lie algebra. Let 2 = {ay,...,a,} C L be a finite family
of elements. Let @ = QU ---UQs = QU+ UQ) be two disjoint decompositions.

Denote
bk=2ai, Cg=2aj.
a; €Q a; e

Denote also
ad[Q2, Q] = Span(ad[a;,a;].1 <i,j <n).

Suppose that ifa;, a lie inthe same Q. or in the same 2, then ad(a;) ad(a ;) = 0.
Then ) ad(bk,)ad(br,) = ) ad(cg,)ad(ce,) mod ad[2, Q], where both sums
run over all 2-element subsets {k1,k2} € {1,...,s} and {€1,4>} < {1,2,...,t},
respectively.

Proof. Tt is easy to see that

> "ad(by,) ad(by,) = Y ad(cy,) ad(ce,)
= Z ad(a;)ad(a;) mod ad[Q2, Q]. O

1<i<j<n
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4. Jordan algebras

Let J be a vector space over a field F' (of arbitrary characteristic) with two quadratic
mappings J — J, x — x2,and Q : J — Endp(J). For elements x,y,z € J
denote

xoy=(x+yP-x>=y% {xy.z}=y(Q0 +2) - 0(x) - 0().

Following K. McCrimmon [24] we say that (J, x — x2, Q) is a quadratic Jordan
algebra if it satisfies the identities

ML) {x,x,y} =x%0y;

(M2) (yQ(x))ox = (y ox)Q(x);
(M3) x?Q(x) = (x?)*;
M4) x*Q(»)0(x) = (yQ(x))*;
(M3) Q(x*) = Q(x)%;
(M6) Q(yQ(x)) = Q(x)Q(y)Q(x);
and all their partial linearizations.
We reiterate the assumption made at the beginning of Section 3: all algebras are
considered over an infinite field F' of characteristic p > 0.
Letw’ = w/(x1,..., x,—1) be aregular homogeneous divided polynomial defined

on L™ such tl}gt w’ is linear in x; and satisfies all the assumptions of (DP3). Moreover,
assume that L™ adgckl] (w") = 0 holds identically for k > 3. If there exists s > m such

that x, adgczl](w/ ) holds identically on L3 then our goal of constructing a sandwich
valued regular homogeneous divided polynomial has been achieved. We assume
therefore that the divided polynomial w(xy,...,x;) = X, adE?l] (w’) is regular.

The divided polynomial w satisfies both assumptions of (DP3): it is clearly linear
in x, and for arbitrary elements a, b,ay,...,a,—1 € L~m, we have

[a adEczl] w'(ay,...,ar—1).b adgczl] w'(ay,..., a,_l)] =0

by Lemma 3.9(1).
Choose ay,...,a, € L™ anddenote @’ = w'(ay,...,ar—1),a = w(ay,...,a,).
Denote
ad®l(a") = (adgckl] w(ay,....ar—1).

If a, =) arx is the standard decomposition, then we denote
ad®l(q) = (adgckr] w)(ay,...,a,) = Zad(am1 ad?l(a")) - -~ ad(a, r, ad?(a")),

where the sum runs over all k-element sets (71, ..., 7g).
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Notice that ad[¥! (a) = 0 for k > 3. Indeed, by Lemma 3.7(3), the equalities
ad(a,n; adPl(a’)) = 0 and ad(dyx, ad*(a’)) = 0 imply

ad® (@) ad(arx;) ad(a’) = ad(a’) ad(a,;) ad®(a), (%)

ad®(a") ad(a,;) ad?(a’) = 0, (%)

respectively.
We have

ad¥(a) = Z + adl!)(a’) ad(a,x,) ad2) (@) - - ad(ay 5, ) adl*+11(a"),

where 0 <iy,...,ik4+1 <2,i1+---+ix41 = 2k. Ifatleastonei,, 1 <u <k+1,

is equal to 0, then all other i,,, v # u, are equal to 2. In this case, the product is equal

to 0 by (). Suppose that all i, # 0. Then all i,,, except two, are equal to 2. These

two are equal to 1. Since k + 1 > 4, we have at least two degrees i,, that are equal

to 2. Using (x), we can move two operators adl?! (a’) together and then use ().
Consider the subspaces

K, ={x¢€ L™ | xad®(a) = 0} and K, = Z(Lm ®e + L"e) N K,
i
and the factor space J, = m /K.

Letx = ) _ x, be the standard decomposition of an element x € L™ Define

X2 =g Z ad(xy,) ad(xy,) + K,

where the sum runs over all 2-element sets (771, 72). The order of the factors in
ad(xy, ) ad(xy,) is irrelevant since [a, L™] € K,. Define further

yO(x) =y ad[z] (a) Zad(xnl) ad(xnz) + K,

Again, the order of factors in ad(x,, ) ad(xy,) is irrelevant since
y ad®(a) ad(L™) C K,.
Linearizing the above operations, we get x o y = [[a, x], y] + K, for x, y € J,,
and {x, y,z} = [y ad®(a), x,z] + K, forx, y,z € J.

Lemma 4.1. (1) The element u = y; adll(q) ad(y») adl(q)... ad(ys) adls1(a),
where ¥1,...,ys € L™ i1 + -+ is > 5 + 2, is equal to 0;

(2) An operator adl(a) ad(y1) - -~ ad(ys) adls+1l(q), for yi,...,ys € L™ iy +
<o Ligy1 =8+ 3, isequal to 0 on L™;
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(3) Consider an operator
v = ad[il](a) ad(y1)---ad(yy) ad[iSJf‘](a),

where y1,...,ys € L™, i1 + -+ 4+ is41 > s + 2. Suppose that there exists
1 <k <s—2suchthatiyy, = ixyr = 0, in other words

v= ---ad(yr) ad(ye+1) ad(ig2) -+ -

Then v is zero on L™.

Proof. To prove (1) we will use induction on s. If s = 1 then u = y; ad[il](a),
i1 > 3. Henceu = 0.

Let s > 2. If iy > 3 then again u = 0. If iy < 1 then choosing y’1 =
y1 ad(a) ad(y,) we can use the induction assumption. Therefore we let i; = 2.
If i, = 0 then choosing y] = i ad®(a) ad(y,) ad(y3) we again use the induction
assumption. Let i, = 1. Then by Lemma 3.7(3) we have

ad?(a) ad(y,) ad(a) = ad(a) ad(y,) ad®(a),
the case that has already been considered. Finally, if i, = 2 then
ad?!(a) ad(y,) ad?(a) = 0,

again by Lemma 3.7(3), which finishes the proof of part (1).
To prove (2) we consider the element

o adlitl(@) ad(y1) -+ - ad(ys) adls+11(a)

and use part (1). _ _
Consider now an operator v = adlil(q) ad(yq)---ad(ys) adls+11(4) and suppose
that

v = v ad(yx) ad(y+1) ad(yr42)v",
where

o' = ad(@) ad(y1) -~ ad(yx—1) ad (@),
v = adlk+31(q) ... adls+11(q).
By part (2) if v # 0on L™ then i +otipg < tk—D)4+2=k+1, igy1+---+

is+1 <(s—k—-2)+2=s5—k. However, iy +---+ip +igsr3+---+isy1 = 5+2,
a contradiction that finishes the proof of the lemma. 0

Lemma 4.2. Let Q be a finite family of commuting elements from L such that
every element from Q2 lies in one of the ideals L ® e, + Ley. Denote for brevity
Uk (ad(Q)) = ad*(Q) and suppose that ad®(Q) = ad*(Q) = 0. Then for
arbitrary elements y1, y, € L we have

ad(y; ad?(Q)) ad(y, ad?(Q)) = ad? (Q) ad(y1) ad(y>) ad?(Q).
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Proof. By Lemma 3.7(3) we have
ad(y; ad?(Q)) = ad(y;) ad?(Q) — ad"(Q) ad(y) ad(Q) + ad®(Q) ad(y1).
i = 1,2. By Lemma 3.7(4) we have also
ad1(Q) ad(Q) = 2ad?(Q),
adl(Q) ad?(Q) = ad?(Q) ad(Q) = 3adP?(Q) = 0.
Again by Lemma 3.7(3) we have
ad(y; ad®!(Q)) = ad(y;) ad®1(Q) — ad" (Q) ad(y;) ad?(Q)
+ ad?l(Q) ad(y;) ad(2) — ad®l(Q) ad(yy) = 0.
which implies
ad1(Q) ad(y;) ad?(Q) = ad?(Q) ad(y;) ad ().
Similarly, ad(y; ad*/(€2)) = 0 implies ad®(Q2) ad(y1) ad?(€2) = 0. Hence,
ad(y1 ad®()) ad(y, ad?(Q))
= (ad(y;) ad?(Q) — ad"(Q) ad(y1) ad(Q)
+ ad?l(Q) ad(y1)) (ad(y2) ad? (Q)
— ad'(Q) ad(y,) ad'/(Q) + ad® (2) ad(y»))
= —ad(Q) ad(y1) ad" (Q) ad(y,) ad?(Q)
+ 2ad'(Q) ad(y1) ad? () ad(y,) ad!(Q)
+ad(Q) ad(y1) ad(y2) ad? ()

— ad?(Q) ad(y1) ad(Q) ad(y,) ad'(Q2)
= ad?(Q) ad(y;) ad(y2) ad? (),

which proves the lemma. O

Lemma 4.3. (1) The operations x — x? and Q are well defined on J,;

(2) Let f : I x .- x L™ — L™ be a homogeneous polynomial map, and let
f(x1,...,xn) be its full linearization. Suppose that

f(Lm ® e; +Zm€i,zm,...,zm) CL"®e; +Zm€i

foralli.
Then, if an arbitrary value of f lies in K}, then an arbitrary value of f lies in K.
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Proof. (1) Choose arbitrary elements x, y € L™andz',z € K,. We need to show
that (y +z')Q(x+2z) = yQ(x) and (x +2)?> = x2. Letx = Y x, be the standard
decomposition of the element x. We have z/ Q (x) = z’ ad?(a) > ad(xy,) ad(xy,)+
K, = 0sincez’ € K, € K. Hence (y +z')Q(x +z) = yQ(x + z). Furthermore,
it is easy to see that

YO +2) = yO(x) + y ad?l (@) ad(x) ad(2) + yQ(z) mod Kq.
By Lemma 4.2, for an arbitrary standard component x, of the element x, we have
ad® () ad(x,;) ad(z) ad®(a) = ad(x,; ad® (a)) ad(z ad®(a)) = 0,

sincez € KJ,. Hence y ad®l(a) ad(x;) ad(z) € K, and y ad® (@) ad(x) ad(z) € K,.
Let us show that yQ(z) = 0. We have z = zy + --- + z;, where
zi € (L™ ®e; + Zmei) N K;.

Letz; = ) . Zin bethe standard decomposition of the element z;. Thenz = )z,
Zx = )_; Zin, is the standard decomposition of the element z. Consider the family
of elements 2 = {z;}; » and two decompositions 2 = | J Q;, Q; = {ziz}», and
Q=U,Q,, Q) ={ziz}i. By Lemma 3.14, we have

y ad!?! (a) Z ad(zx,) ad(zx,)
= yad?(a) Z ad(z;)ad(z;) mod y ad? () ad(L™).
1<i<j<s
Recall that y ad?(a) ad(zm) C K,. The element y ad?(a)ad(z;) ad(z j) lies in
L™ ® e; + L™e; and
y ad?(a) ad(z;) ad(z;) ad®l(q) = y ad(z; ad®(a)) ad(z; ad®(a)) = 0
by Lemma 4.2. Hence, y ad®(a) ad(z;) ad(z;) € K,. This implies yQ(z) = 0.

Now let us show that (x +2)? = x2. We have (x +2)? = x?+a ad(z) ad(x) +z2
mod K. For an arbitrary standard component x,

aad(z) ad(xy) adl! (a) = —zad(a) ad(xy) adl?! (a)
= —zad®(a) ad(x,;) ad(a)
=0
by Lemma 3.7(3). Hence a ad(z) ad(x;) € K, and a ad(z) ad(x) € K,.

Let us show that z2 = 0. We have z?> = a ) ad(zr,)ad(zz,) + Ks. By
Lemma 3.14,

a Z ad(zy,) ad(zy,) = a Z ad(z;)ad(z;) mod a ad(zm) C K,.

1<i<j<s



Lie algebras and torsion groups with identity 313
As above,

aad(z;)ad(z;) adl?! (a) = —z; ad(a) ad(z,) adl?! (a)
= z; ad? (a)ad(z;)ad(a)
=0
by Lemma 3.7(3). Hence aad(z;)ad(z;) € K, and a )_ad(zz,)ad(zx,) € K.
This completes the proof of part (1).

(2) Now let f : L™ x--x L™ — L™bea homogeneous polynomial map with
the full linearization f. By Lemma 3.8(2), for polynomial maps, the F'-linear span
of all values of f is equal to the F-linear span of all values of f. Hence, we need
to show that f(L™,...,L™) C K,. Since L™ =) ;(L™ ® e; + L™e;), it follows
that f(Zm, .. .,Zm) =), f(L"®e + Zme,-,Zm, o ,Z’”). By our assumption,
f(L"®e; +Zmei,Z'", e Zm) CK,N(L"®e; —I—Zmei) C K,. This completes
the proof of assertion (2). ]

The following proposition is a linearized an quadratic version of the construction
in [4].
Proposition 4.4. J, = (J,,x — x2, Q) is a quadratic Jordan algebra.

Since the ground field is infinite partial linearizations of the identities (M 1)—(M®6)
follows from these identities (see [9,43]).

We will translate the identities (M 1)—-(M6) into the language of Lie algebras. The
identities (M1)—(M6) translate as

M1) x ad? (a)ad(x)ad(y) = aad(a adl?! (x))ad(y) mod K,
M2) yad?(a)ad®(x) ad(a) ad(x) = —a ad(x) ad(y) ad?(a) ad? (x)
= yad([a, x]) ad®(a) ad® (x) mod K,,
M3) aad(x)ad®(a) ad®(x) = a ad®(a ad®!(x)) mod K,,
(M4) g ad? (x) adl?! (a) adl?! () adl?! (a) adl! (x)
= a ad?(y ad®(q) ad®!(x)) mod K,,

M5) y ad?(a) ad®(a ad® (x)) = y ad®(a) ad®(x) ad? (@) ad? (x) mod K,,
(M6) zad? (a) ad?! (y ad?! (a) ad?! (x))

= z ad®(a) ad®(x) ad® (a) ad?! (y) ad? (@) ad? (x) mod K,.
Remark. In the formulas above, we have operators ad?(x), ad? (a ad[z] (x))
adl? (y ad®(a) ad?(x)) acting on elements from the space Fa + Lm adl2 l(a).
In the definition of Jordan operations on J, = Lm/K above, we noticed

that (Fa + L adl? (a)) ad(ﬁ”) C K,. Hence for an arbitrary element
u € {x,aad[z](x),yad[z](a) ad[Z](x)}, the operator ad[z](u) is understood as



314 E. Zelmanov

> ad(u;)ad(uj), where u = Y u; is the standard decomposition, the sum runs
over all 2-element sets (i, j) and the order of factors in ad(u;) ad(u ;) is irrelevant
modulo K.

Let x,y € L™, x = > w Xz, ¥y = Y .y the standard decompositions. At
first, we will prove the identities (M1)—(M6) under the additional assumption that
[xﬂ’i7x7fj] = [yl'[’yfj] =0,

ad(xy;) ad(x,,j) ad(xz, ) = ad(yr,) ad(y,) ad(y-;) =0

foralli, j, k.
More precisely, let L be the Lie algebra presented by generators aj, ..., d,,
X1s+..,Xs, Y1,-.., s and the following relations:

[1d(a:), 1d(a;)] = [1d(x;), 1d(x;)] = [1d(yk), ld(yk)] = (0),

where Id(a; ), Id(x;), Id(yx) denote the ideals generated by a;, x;, yi respectively,
l1<i<n1=<j<s1=<k<=<t;laj.a;] =0,1=<1i, j < n; the operators
ad®(q) = >_ad(a;,)---ad(a;, ), where the sum is taken over all k-element subsets
of {1,2,...,n}isequal to O for k > 3.

Denotea = Y /_; ai, x = ) j_; X;.
Remark. The generators aj,...,a, should not be confused with elements
ai,...,ar € L™ used to define a’ = w'(ay,....ar,—1),a = w(ay,...,a,) above.

In the algebra Ly, define linear operators

ad®(a) = Z ad(a;) ad(a;),

1<i<j<n

ad? (x) = Z ad(x;) ad(x;),

1<i<j<s
adPl(y) =} ad(y;)ad(y),
1<i<j<t
ad?(q ad® (x)) = Z ad(a; ad? (x)) ad(a; ad?(x)),
1<i<j<n
adl?! (y adl?! (a) adl?! (x)) = Z ad(y; adl?! (a) adl! (x))ad(y; adl?! (a) adl! (x))
1<i<j<t
and consider the elements
M1) (x ad®(a) ad(x)ad(y) —aad(a ad®(x)) ad(y) ad®(a),
M2) (y adl? (a) adl?! (x)ad(a) ad(x) + a ad(x) ad(y) ad®(a) ad® (x)) adl? (a),
M3') (a ad®(x) ad (a) ad® (x) — a ad® (a ad? (x))) ad? (),
M4 (a ad®(x) ad®(a) ad? () ad® (a) ad® (x)
—aad? (y adl? (a) adl? (x))) adl? (a),



Lie algebras and torsion groups with identity 315

M5 (y adl! (a) ad?l (¢ ad®? (x)—y adl! (a) adl?l (x) adl! (a) adl! (x)) adl?l (a),
M6') (z ad? (a) ad® (y ad® (a) ad® (x))

— zad? (a) adl?! (x) adl?! (a) adl?! () adl?! (a) ad®?! (x) ad?! (a).

Now, consider the Lie algebra L that is obtained from L, by imposing additional
relations:
[xi,x;]=0,1<i,j<s [yi.yj]=0 1<i,j<r

[Lo.Xi\. Xy, Xis | = [Lo. ¥j1. Vo, ¥is] = (0),

forall 1 <iy, iz, iz <s,1< ji, a2, j3 <t.

We will show that the elements (M1')-(M6') are equal to zero in the Lie
algebra L.

Lemma 4.5. [¢ ad'?(x), a] + [x ad®?(a), x] € [Lo. a. al.

Proof. If p # 2 then ad?(x) = %ad(x)z, ad?l(q) = %adz(a), which makes the
assertion of the lemma obvious.
Let p = 2. Denote ¢’ = a;,a"” = aj, x' = xp, x" = x,. We will show that

[a/’xl’x//’a//] + [a//’xl’x//’a/] — [x/’a/’a//’x//] + I:x//’a/,a//’xl].

Indeed,

[a/7x/7x//’a//] + [a//,x/,x//,a/]
— [[a/’xl]’ [x//’a//]] _"_ [al’xl’a//’x//] + [[a//’xl]’ [x//’a/]] + [a//’x/’a/’x//]
= [[@ ] T+ [ [ )
since
[a/,x/’a//] + [a//’x/’a/] — [[a/’a//]’x/] — 0
Similarly,
[x/’a/’a//’x//] + [x//’al’a//“x/] — I:I:x/,a/]’ [a//’x//]] + I:I:x//7a/j|’ [a//’x/]]’
which finishes the proof of the lemma. O

Now (M1’) immediately follows from Lemma 4.5 since Lo ad(a)? ad(y) € K,.
The Ilatter inclusion follows from the following argument. The equality (see
Lemma 3.7(3))

0 = ad(y ad*(a))
= ad(y) ad!! (a) — ad(a) ad(y) adl! (a) + ad?! (a)ad(y) ad?! (a)
— adP(a) ad(y) ad(a) + ad*(a) ad(y)
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implies ad? () ad(y) ad?(a) = 0. Hence,
Load(a)?ad(y) ad®?(a) € Ly ad® (a) ad(y) ad®(a) = 0.

Let us prove (M2'). From ad®(x)ad(a)ad(x) = ad(x)ad(a)ad?(x) and
ad®l(q) ad(x) ad(a) = ad(a) ad(x) ad®!(a) (see Lemma 3.7(3)), it follows that

y adl?! (a) adl?! (x)ad(a)ad(x) =y adl?! (a) ad(x) ad(a) adl?! (x)
= yad(a) ad(x) ad® (a) ad® (x)
= y ad([a, x]) adl?! (a) ad?! (x),

since ad(a) ad®!(a) = 3adPl(a) = 0.
Now we will prove (M3’). We have

adl?! (a adl! (x)) = Z ad(a; adl?! (x))ad(a; adl?! (x)),

where the sum is taken over all 2-element subsets (i, j). By applying Lemma 4.2 to
Q ={xX1,....Xm}, Y1 = a;, y2 = a;, we get

ad(a; ad®(x)) ad(a; ad? (x)) = ad® (x) ad(a;) ad(a,) ad® (x).
Hence,
" ad(a; adP(x)) ad(a; ad® (x)) = ad®! (x)( 3" ad(a;) ad(a j)) ad?(x)
= ad?(x) ad® (a) ad? (x)

as claimed.
Let us prove (M4’). We have

ad®(y ad®(a) ad? (x)) = Z ad(y; ad®(a) ad®(x)) ad(y; ad®(a) ad? (x)).
By Lemma 4.2, with Q = {x1,..., X}, we get

ad(y; ad®l(a) ad?)(x)) ad(y; ad? (@) ad® (x))
= ad? (x) ad(y; adl?! (a))ad(y; adl?! (a)) adl?! (x).
Again, by Lemma 4.2 with Q = {ay,...,a,}
ad(y; ad®(@)) ad(y; ad® (@) = ad®)(a) ad(y1) ad(y;) ad?(a).
Finally, we get
ad?(y ad?(a) ad® (x)) = ad® (x) ad®(a) ad??(y) ad? (a) ad?(x),

as claimed.
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We will now prove (M5’). We have already shown above that by Lemma 4.2, we

have
ad® (g ad? (x)) = ad®® (x) ad?(a) ad? (x),

which implies the claim.
To prove (M6), we need only to recall the equality

adl! (y adl?! (a) adl?! (x)) = ad? (x) adl?! (a) adl?! ) adl! (a) ad? (x)

that was proved above.
Since the elements (M1')—(M6') are equal to zero in Ly, it follows that in the
algebra Ly, the elements of (M1”)—(M6') are linear combinations of

(1) expressionsinux;’s, y;’s,z,az,...,a, involving atleast one commutator [xi, xj],
1<i,j<sor[y,y,1=<i,j=t,

(2) expressions involving ad(x;,)ad(x;,) ad(x;;) or ad(y;,)ad(y,,)ad(y;;), 1 <
i1,i2,i3 <s,1< jl,j27j3 <.

Moreover, since the relations of the algebra L{) are homogeneous in x;’s, y;’s, and in

the total number of generators dq, . . ., d,, it follows that the presentations of (M1’)—

(M6') as linear combinations of (1), (2) preserve the degrees in x;’s, y;’s, and the

total degree inay, ..., a,.

Now we consider arbitrary elements x,y € L™ and drop the assumptions on
components of standard decompositions of x,y. Let x = Xz, + - + Xg,, ¥ =
Yoy + o0+ Ve, ar = a1 + -+ + a,, be the standard decompositions of x, y, a;
respectively. Thena = Y "_, a;, where a; = ay; adPl(a").

The mapping

ai — ar; ad® ('), Xj = Xn; Ve = Yy, 1<i<n 1=<j<s 1<k=t,
extends to a homomorphism L6 — Lm, Moreover, the operators

adl? (a), adl? (x), adl? (»), adl?! (a adl?! (x)), adl?! (y adl? (a) adl?! (x))
project to the similar operators on Lm, by Lemma 3.14.

Hence, the elements (M1/)—~(M6') of L™ are linear combinations of
(1) expressions in X;, y¢;, d1, ..., a, involving at least one commutator (X, , xn_/]
or [y, yz;1,
(2) expressions involving ad(xy;) ad(xx ) ad(xz, ) or ad(ys;) ad(yz;) ad(y, ).
These presentations, as linear combinations of (1) and (2), preserve the degrees in

Xz;'S, Ve ’s and the total degree in ay, ..., a,.
Replacing ad(a;) in these expressions by

ad(a,; ad®(a")) = ad(a,i) ad® (@) — ad(a’) ad(a,;) ad(a’) + ad®! (a’) ad(ay;)
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we get expressions whose degree in a’ exceeds the total degree in the other variables
Xuis Ve 2, Ari by 1. In case (1), we merge two elements Xy, Xy, OF Yr;, Vi together.
Hence, the degree in a’ exceeds the total degree in the other elements by 2. The only
property of the element a that was used in Lemma 4.1 was ad*!(a) = 0 for k > 3.
We have ad*l(a’) = 0, k > 3. Hence, we can apply Lemma 4.1 to the element a’. By
Lemma 4.1(1), these expressions are equal to zero. In case (2), we only need to refer
to Lemma 4.1(3). We proved that the expressions (M1')-(M6') are equal to 0, which
means that the expressions (M1)—(M6) are equal to 0 modulo K/,. By Lemma 4.3(2),
they are equal to 0 modulo K, which finishes the proof of Proposition 4.4.
Let us consider basic examples of quadratic Jordan algebras.

Example 1. Let A be an associative algebra. Let yQ(x) = xyx; x,y € A. Then
the vector space A with the operators x — x2 and x — Q(x) is a quadratic Jordan
algebra, which is denoted as A,

Example 2. Let A be an associative algebra with an involution * : A — A. Then
H(A,%) ={a € A|a* = a} is a subalgebra of the quadratic Jordan algebra 4.

Example 3. Let V be a vector space and letg : V — F be a quadratic form with the
associated bilinear form ¢ (v, w) = g(v + w) — ¢(v) — g(w). Fix an element of V'
that we will denote as 1 (a base point) such that g(1) = 1. For arbitrary elements
v, w € V define

v? = qv. hv —q@)1, wQ(v) = q(v. W)v —q(V)w,

where w = ¢g(w, 1)1 — w. These equations make V' a quadratic Jordan algebra. We
will denote it as J(g, 1).

Example 4. Albert algebras of a nondegenerate admissible cubic form on a 27-
dimensional space (see [9,12]).

Powers of elements in a quadratic Jordan algebra J are defined inductively:
we define x! = x; for an even n = 2k we define x" = (xk)z; and for an odd
n = 2k 4+ 1 we define x” = xQ(x¥). For arbitrary integers i > 0, j > 0,k > 0 we
have x! Q(x7) = xI+2/ | x o x/ = 2xI*/ {x! x7 xK} = 2xit/+k,

A quadratic Jordan algebra J is said to be nil of bounded degree n if x” = 0 for
an arbitrary element x € J and if n is a minimal integer with this property.

Just as in §2 we call an element of the free quadratic Jordan algebra FJ(X) an
S-identity if it lies in the kernel of the homomorphism FJ (X) — F (X)), x — x,
where F (X) is the free associative algebra.

We say that a quadratic Jordan algebra J is PI if there exists an element
f(x1,...,xr) € FJ(X) that is not an S-identity and that is identically zero on J.

In this paper, we call an element a of a quadratic Jordan algebra an absolute zero
divisor it Q(a) = 0. This terminology is not standard. (In the standard terminology,
we should have also assumed a # 0 and a®> = 0.) A quadratic Jordan algebra
that does not contain nonzero absolute zero divisors is called nondegenerate. The
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smallest ideal M(J) of a Jordan algebra J such that the factor algebra J/M(J) is
nondegenerate is called the McCrimmon radical of the algebra J. The McCrimmon
radical of an arbitrary quadratic Jordan algebra lies in the nil radical Nil(J)) [25,35].

A nondegenerate quadratic Jordan algebra is said to be nondegenerate prime if
two arbitrary nonzero ideals of J have nonzero intersection.

In [31,37] it is shown that an arbitrary nondegenerate Jordan algebra is a subdirect
product of nondegenerate prime Jordan algebras.

Let Sym,,(x1,...,x,) be the full linearization of x{ in the free Jordan alge-
bra FJ{X).

Lemma 4.6. There exists a function d : N — N such that an arbitrary nondegen-
erate prime quadratic Jordan algebra over a field of characteristic p > 0 satisfying
a Pl of degree n satisfies the identity Sym (X1, - .., Xdm)) = 0.

Proof. Letus notice first that if J is a quadratic Jordan algebra of dimension d then J
satisfies the identity Symd(p_m_l(xl, s Xd(p—1)+1) = 0. Indeed, if eq, ..., eq is
a basis of J then among any d(p — 1) + 1 elements from {e;,...,e;} at least p
elements are equal. This implies the claim.

In [26] it was shown that if J is a nondegenerate prime quadratic Jordan algebra,
then one of the following possibilities holds:

(1) there exists a prime associative algebra A such that
A® T c®,

where Q(A) is the Martindale ring of the quotients of A (see [23]);

(2) there exists a prime associative algebra A with an involution * : A — A, such
that
H(Ag,*) € J C H(Q(A), %)

where Ag is the subalgebra of A generated by elements @ + a™*, aa*,a € A, and
Q(A) is the Martindale ring of quotients of the algebra A (see [23]);

(3) J is a form of an exceptional 27-dimensional Albert algebra over a field F;

(4) J is embeddable in a quadratic Jordan algebra J(gq,vg) of a nondegenerate
quadratic form ¢ with a basepoint vy in a vector space over some extension of
the base field F.

If A®) € J € Q(A)™), then A is a prime associative algebra satisfying an identity
of degree n. Hence the center Z(A) of A is nonzero and the algebra Q(A4) =
(Z(A) \ {0})' 4 is of dimension < [5]* over the field K = (Z(A) \ {0})71Z(A)
(see [28]). Hence the algebra Q(A) satisfies the identity Sym[%]z(p_m_l =0.
Suppose that H(Ag,*) € J € H(Q(A),*). S. Amitsur [1] proved that there
exists a function /(n) with the following property: if an involutive associative algebra
satisfies an identity of degree n with an involution then it satisfies an identity
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of degree < h(n). As we have shown above, the algebra Q(A) in this case has

dimension < [@]2 over its center and satisfies the identity Sym[h(n)]z(p_1)+1 =0.
2

The same argument applies to case (3): the algebra J satisfies the identity

Sym27(p—1)+1 = 0.

Consider now the quadratic Jordan algebra J of a quadratic form g on a vector
space V where vy € V is a basepoint. The quadratic form ¢ can be extended to the
scalar product V ®F E , E=E + F - 1. For an arbitrary elementu € V ®f E
we have u? = q(u, vo)u — q(u)vo. The elements a = q(u, vy), b = q(u) liein E.
Hence a? = b? = 0. For an arbitrary k£ > 1 we have

k — Z aibju,-_,-, ujj €V QrE.
i+j=k

Hence 27~V = (. This implies that the algebra J satisfies the identity Sym, p—2=0
and finishes the proof of the lemma. O

Lemmad.7. Let J be a quadratic Jordan F -algebra that satisfies the identity x™ = 0,

n > 2. Then,

(1) foranarbitrary elementa € J, the elements a
zero divisiors of J ;

(2) if J satisfies the identities x"* = x"t! = ... = x2"~1 = 0, then for an arbitrary
a € J, the element a™~ 1 is an absolute zero divisor of J.

n+1,an+2 .

2n—1
e, a

are absolute

Proof. Fori =n +1,n+2,...,2n — 1, we have Q(x') = Q(x*")Q(x") = 0,
which proves (1).

Suppose now that the algebra J satisfies the identities x*T! = x"*2 = ... =
x2"~1 = 0. Since the ground field F is infinite, the algebra J satlsﬁes also the
following partial linearization of x2”~! = 0 (see [9,43]):

YO 4 X2y 4 Y i y Ty =0,

i+j=2(n—1)
1<i<j<2n—3

n+1

Hence, yQ(x"~!) = 0, which proves assertion of the lemma. O

Let J be a quadratic Jordan algebra, a € J. Define a new structure of a quadratic
Jordan algebra on J via:

2=a0(x), y0*(x) = y0(@)Q(x).
The new quadratic Jordan algebra is denoted as J @ and is called a homotope of J
(see [9,12,25]).
For the quadratic Jordan algebra JT=J® r E and an element a € J~, consider
the subspaces K| = {x € J | x0(a) =0} and K, = Yi(J Qe + Je) N K. It
is easy to see that the subspace K, is an ideal of the algebra J@.
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Remark. If p # 2, then K is also an ideal of J@,

Lemmad.8. Ifb € J and b + K, is an absolute zero divisor of the algebra J @ | K,
then bQ(a) is an absolute zero divisor of the algebra J.

Proof. We have JQ(bQ(a)) = JO*(b)0Q(a) C K,Q(a) = (0), which proves the
lemma. O

Lemma 4.9. Let a be an element of a quadratic Jordan algebra J. Let f : T xex
J— Jbea homogeneous polynomlal map, let f be its full linearization. Suppose
that f(J Qe +Jei, T, .. J) CJQ®e + Je,foralll If an arbitrary value of [
lies in K}, then an arbltmry value of f lies in K,.

The proof is similar to the proof of Lemma 4.3(2).

Let f be an element of the free quadratic Jordan algebra FJ (X ), which is not
an S-identity. Let M = M( f) be the variety of quadratic Jordan algebras satisfying
the identity f = 0 (see [9,11,43]).

Definition. We say that a finite sequence of homogeneous elements %1, iz, ..., h, €

FJ(X) is an absolute zero divisor sequence for M if for an arbitrary quadratic Jordan
algebra J € M:

(i) every value of i, on JT=J® F E is an absolute zero divisor of the algebra .7
(ii) if hg = hg1 = -+ = hy_= 0 identically hold on J, 2 < k < r, then an
arbitrary value of sx_; on J is an absolute zero divisor of J.
Recall that in this section we always assume that char ' = p > 0.

Proposition 4.10. For an arbitrary element f € FJ{(X) that is not an S-identity
the variety M(f) has a finite absolute zero divisor sequence hy,ha, ..., h, with
]’ll =x; € X.

Proof. Let Fpr(X) be the free algebra in the variety M = M( f) on the set of free
generators X . Since the factor algebra of Fps (X) modulo the McCrimmon radical
can be approximated by prime nondegenerate algebras [31,37], Lemma 4.6 implies
that there exists d > 1 such that y = Symy(xy,...,x4) lies in the McCrimmon
radical of Fps(X). Consider the homotope algebra Fys (X )®*a+1) Since an absolute
zero divisor of a Jordan algebra is an absolute zero divisor of every homotope,
it follows that the McCrimmon radical of Fjs(X) lies in the McCrimmon radical
of Fpr(X)®a+1D)_ 1In particular, the element y lies in the McCrimmon radical of
Fa (X)&a+1 and therefore is nilpotent.

Let a®-*a+1) denote the kth power of an element a in the homotope algebra

Fypr(X)®a+1D_ There exists m > 2 such that y™~1:*¢+1) = (. Then xc(l'”-:-,f) =

ym=1.Xa+1) O (x441) =0. This implies that x”¥) =0 holds identically on Fjs (X).
Then by Lemmas 4.7 and 4.8, the sequence
1, 2m—1, 1,
Y Xas100), XY 00 xZIT 0 x I 0 ()

is an absolute zero divisor sequence in M .
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Indeed, since the Jordan algebra Fy (X)) /K y satisfies the identity x™ = 0,
Lemma 4.7(1) implies that the elements

2m—1,y) (m+1,y)
Xd+1 + Ky, ooxghy Ky

are absolute zero divisors in Fa (X)) /K y. By Lemma 4.8, the elements

2 1, +1,
xZIV0m). 1Y 0(y)

are absolute zero divisors of the algebra Fp(X).

If J € M and x(ngl o)== ngr;l’y)Q(y) = 0 hold identically on J,
then for arbitrary elements a;,...,aq € J b = Symy(ay,...,aq), ¢ € J the ith

power c(i’b), m<i <2m—1,liesin Kl’). By Lemma 4.9, we have @b ¢ Kp. In
other words, the Jordan algebra J® / Ky satisfies the identities

xm — xm—H B — x2m—1 — O
By Lemma 4.7(2), for an arbitrary element ¢ € 7, the (m — 1)th power clm=1.b) jg
an absolute zero divisor in J ®) /K;,. By Lemma 4.8, the element ¢~ 19 Q(b) is
an absolute zero divisor of J.

It J e M and x{' "V 0() = 2@ 00) = - = 1 00) = 0
holds identically on J, then using Lemma 4.9 as above, we conclude that the algebra
J®) /Ky satisfies the identities x ! = ... = x2"~1 = (.

Again, by Lemma 4.7(2) and Lemma 4.8, every value of xa(l"jr_lz’y ) Q(y) (and so

on) is an absolute zero divisor of J.

If an algebra .L liesin M and y = Symy(xy,...,xgz) = 0holds identically on J
then the algebra J is nil of bounded index < d. Again by Lemma 4.7 we conclude
that

2 d—1 _2d-1 d 1
X1, X7,...,X » X1 s e e + ,y,xd+1Q(Y)’~--

1, 2m—1, +1,
xf,’i;l Vo). XTIV o). L xE 0(y)
is an absolute zero divisor sequence, which finishes the proof of the proposition. [

Conjecture 4.11. If J is a quadratic Jordan PI-algebra over a field of characteristic
p > 0 then the algebra J is nil of bounded index.

Now let’s come back to the Lie algebra L and the Jordan algebra J, = m /K.
Lemma 4.12. Let b + K, be a nonzero absolute zero divisor of the Jordan algebra
m /Kg4. Then the element b ad®/(a) is a nonzero sandwich of the Lie algebra m.

Proof. Let b = ) b, be the standard decomposition. For an arbitrary element
¢ € L™ we have

(c+ Ka)O(b + Ko) =Y cad®(a) ad(by,) ad(br,) + Ka.
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Hence by Lemma 4.2,

> cad?(a) ad(bs,) ad(bs,) ad?(a)
=Y cad(by, ad?(a)) ad(bs, ad? (a)) = 0.

Let Q = {by, ad®(a)}. We showed that L’”Uz(Q) = (0). By Lemma 3.13 the

element b ad[z] (a) is a sandwich of the Lie algebra m. O
Let j(y1,...,ya) be an arbitrary Jordan polynomial, i.e. an element of the free

Jordan algebra. The polynomial j defines a function_ m /Kg X - x L™ /Kqs —

m / K, and, therefore, a function LMx--x LM —>Tm /K.

Lemma 4.13. Let j(yi.....yq) be a multilinear Jordan polynomial. — There

exists a homogeneous divided polynomial j'(y1,...,yq,X1, ..., Xr) defined on L™,

such that the value j(by,...,by) in the Jordan algebra L™/K, is equal to
Jj'(b1,....bg,a1,...,a;) + Kq. In particular,

j(bl,...,bq)ad[z] w(ai,...,a,) = j’(bl,...,bq,al,...,ar)ad[z]w(al,...,ar).

Proof. We will proceed by induction on the construction of the Jordan polynomial ;.
Let j = «j; + Bj2, where «, 8 € F and ji, j» are multilinear Jordan polynomials,
such that the divided polynomials j|, j; exist. Then we let j' = aj{ + Bj;. Suppose
that j = jjoj,, where j, j, are multilinear Jordan polynomials on disjoint variables.
We have j(bi,...,bg) = [a, j1(b1,....by), j2(b1,...,bg)] + K, and we let

j/(y17---,yq,x1,...,x,)
= [w(XL...,Xr),j{()ﬁ,...,yq,XL...,Xr),jz/(yl,...,yq,xl,...,xr)].

Finally, let j = {J1, j2, j3}, where j1, J», j3 are multilinear Jordan polynomials on
disjoint variables. Arguing as above, we let

i'=1i adEczl] w(X1, ..., Xr), j1s 3]
This completes the proof of the lemma. O

Proposition 4.14. There exist integers k > 1, t > 1 and a homoggneous regular
divided polynomial v deﬁnid on L* such that every value of v on L¥ is a sum of t
sandwiches of the algebra L¥.

Proof. Recall that there exists a homogeneous regular divided polynomial w =
w(xq,...,X,) defined on L™, m > 1, linear in x, and such that:

@ [w(ai,...,ar—1,a),w(ay,...,ar—1,b)] = 0 for arbitrary elements
a,b,ay,...,a,_1 € L™,
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(i) L™ ad!l(w) = 0 holds identically on L™ for ¢ > 3.

For an arbitrary i > m, arbitrary elements ay,...,a, € L consider a =
w(ay., ..., a,) and denote ad®!(q) = adEczr](w(al, e, apy)).

Arguing as in the proof of Lemma 2.3, we conclude that there exists an element
f € FJ({X) such that f is not an S-identity and all quadratic Jordan algebras
Zi/Ka; i>m; ay,...,a, € L satisfy the identity f = 0.

By Proposition 4.10 there exists an absolute zero divisor sequence hy; =
X1,ha, ..., hs of the variety M(f).

If J is an algebra from the variety M(f) suchthat J = Y, I;, I; < J,I? = (0),
then J and J ® E satisfy the same identities. Hence, every value of hg on J is
an absolute zero divisor of J and if iy = --- = hy = 0 identically hold on J, then
every value of s;_; on J is an absolute zero divisor.

Jordan algebras Lm /K, that have been discussed above have this property.
Indeed, 17"/1(' =3y ;li,where [; = L" @ ¢; + Lme; + K./ K,.

For an integer i > m and elements ay,...,a, € i et s(,ag,...,ay)
be a maximal integer j, 1 < j < s, such that h; is not identically zero
on Zi/Ka. If h; = x; is identically zero on Zi/Ka, that is, i = K,, then we
lets(i,ai,...,a;) =0.

Lets(i) = max{s(i,a1,...,a,) | a,...,ar € Z’} Clearly, s(m) > s(m+1) >
-++. Let this decreasing sequence stabilize att = s(k) = sk +1) = ---.

If t+ = 0 then L¥ = K,, which means that Lk adgczl] w(ay,...,a,) = (0) for
arbitrary elements ay,...,a, € L*¥. By Lemma 3.13 every value of w on L* is a
sandwich of the algebra L¥. Therefore assume that 1 > 1.

Let us summarize the above. For arbitrary elements a;,...,a, € Ek leta =
w(ay,...,ar), adl?! (a) = adgczr] w(ay,....ar), Kg = Ek Nker ad? (a). Every value
of the Jordan polynomial /; on the Jordan algebra Lk / K4 is an absolute zero divisor.
For every k’ > k there exist elements ay, ...,d, € L7<’ such that /4, is not identically
zero on L¥ / K4. In particular, the Jordan polynomial /; is regular.

Suppose that i; = h;(y1....,Yq). Let u be the total degree of the homogeneous
Jordan polynomial /,. The full linearization h~t of the polynomial 4, depends on u
variables. An arbitrary value of the polynomial l?; is a linear combination of 2# = £

values of the polynomial /;. Let }Al;/(yl, ..., Yg.X1,...,Xr) be the homogeneous
divided polynomial of Lemma 4.13 defined on 17‘ Letv(y1,...,Yq: X1,...,Xr) =
}Az;(yl, cea Vg X1s e Xp) adgczl_] w(xy,...,Xr).

For arbitrary elements by, ..., by, a1,...,a, € 17‘ we have

he(br.....bg)adZ w(ay,....ar) = v(br,....bg.ar,....ar).
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We claim that the divided polynomial v is regular. Indeed, it was shown above
that for arbitrary k' > k, there exist elements ay,...,a, € L7" such that the Jordan
polynomial /4, is not identically zero on L7" /K,. Lemma 3.8(2) was proved for
arbitrary polynomial maps that include Jordan polynomials. Hence by Lemma 3.8(2),
the linear spans of the sets of values of the Jordan polynomials %, and E on the
Jordan algebra L7" /K, are equal. Hence E is not identically zero on L7‘/ /K,. By
Lemma 4.13, the homogeneous divided polynomial v = izvt adgczr] (w) is not identically
zero on L¥'. This implies regularity of v.

By Lemma 4.12 every value of v on L is a sum of £ = 2* sandwiches of the
Lie algebra LK. This completes the proof of the proposition. O

5. Sandwiches in L

Letx € Z, X = ) X the standard decomposition. Suppose that
[Xz.x:] =0 (5.1

for arbitrary m, . As above denote ad¥l(x) = > ad(xy,)---ad(xy, ), where the
sum runs over all k-element subsets (771,..., 7). As we have already noticed in
Lemma 3.7(2), A(x) =1d+ Y p2, ad®l(x) is an automorphism of the algebra L.

Let elements xi,...,xg € L satisfy condition 5.1, A = A(xy)---A(xyz) €
AutL. The following lemma is straightforward.

Lemma 5.1. For arbitrary elements ay, ...,aq € L we have

d
611A®"'®adA—Za1A®"'ai®"'®adA
i=1
+ Za1A®"'®ai"'®aj"‘®adA—"‘:|:al®"'®ad
I<i#j<d

= Z [a1. %oy ® -+ ® [ad, Xo ()]
geESy
+ terms involving at least two elements from one of the sets {x; _}.

A. N. Grishkov [7] showed that in a Lie algebra over a field of zero characteristic a
sandwich generates the locally nilpotent ideal. We will prove an analog of this result
for the algebra L. The proof essentially depends on the following result from [20]:
There exists a function KZ : N — N such that in an arbitrary Lie algebra if
elements ay, ..., a, are sandwiches then the subalgebra (a; --- , a,) is nilpotent of
degree < KZ(n).

Let f(m,n) = KZ((n + 1)™).
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Lemma 5.2. Let [ be an ideal of a Lie algebra L, a € Tj sandwichinT. Let S C L
be a finite set of < n elements. Then the subalgebra of L generated by commutators
[a,by,...,b:], where b; € S, t < m, is nilpotent of degree < f(m,n).

Proof. Consider a commutator

c = [[a,bll,...,bltl], [a,bzl,...,bth],..., [a,bql,...,bqtq]],

where b;; € S,t; <m,1 <i <q,q = f(m,n). Our aim is to show that ¢ = 0.

Let an element b € S occur in the commutator ¢ |b| times. Clearly ) ", ¢ |b] =
t1 + -+ +t;4. Choose |b| new elements xp 1,...,Xp p| in L and replace all |b|
occurrences of b in ¢ by the symmetrized sumin xp 1, ..., Xp p|:

[‘9—\”[3% Z e Xpo (1) Xbo(lbl) -
|b] U€S|b‘

We will get a new expression ¢’ in a,xp ;’s, b € S, 1 < j < |b|. Denote it
¢ =c'(a,xp,....xpp). To show that ¢ = 0 it is sufficient to show that ¢’ = 0.
Indeed, let b = by + - - - + by be the standard decomposition of b. If k < |b|, then ¢
is a sum of expressions, each containing one of the elements b1, . . ., by at least twice.
If k > |b|,thenc =Y c'(a,bi,.... bi,,,), where the sum runs over all |b|-element
subsets of {b1, ..., by}

Let xp; = ) Xpjn, @ = )_ax be the standard decompositions, xpjr = X, i ®

T T

en, Ag =)y @ €x, x;)jn €L,a, el.

Let I(b, j) be the ideal of the Lie algebra L generated by the subset {xpx |-
Suppose at first that for arbitrary b € S, i < j < |b| we have

[1(b. j).1(b. j)] = (0). (5.2)

Then we can consider the automorphism

A(xp) =1d+ Y ad¥(xp ;). 1< j < [b]
k>1

and the automorphism A(b) = A(xp,1)--- A(xp,p). By Lemma 5.1 for arbitrary
elements ay,...,ap| € L we have
a1 A(b) ® -+ @ apA(b) = Y a1 A(D) ® - ® a; ® -+ ® ajp| A(D)
+201A(b)®“'ai ®--Qaj ®-'-a|b|A(b)—--'

= Z [Cll’xb,a(l)] K- ® [alblvxb,c(\bl)}
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Replacing each symmetric set Xp 1, ..., Xp,|p| in the element ¢’ by expressions of the
left hand side types we can represent ¢’ as a linear combination of commutators

[a(bll e Pim, - -aa¢q1 "'¢qm]7

where each ¢;; is one of the automorphisms A(by),..., A(b,),1d. There are
< (n + 1)™ elements ag;q, . .. p;n and all of them are sandwiches in the algebra .
By the choice of ¢ = KZ((n + 1)™) we conclude that

[agri.....01m. ... adg1 - dgm| = 0.

Now we will drop the assumption that

[1(b. /). 1(b. j)] = (0).

LetLie(X) be the free Lie algebra on the set of free generators X = {{x}, ].n}n, {azx}z}-
Let 1(b, j) be the ideal of Lie(X) generated by the set {x;’j,n}ﬂ. Let I =
Db, D, j), 1(b, j)]. Let J be the ideal of Lie(X) generated by all relations
needed to make a = ) _a’ e, a sandwich in the ideal generated by a. So, J is
generated by

[a%. p.ar] + [az. p.az ] [a%. pr. p2,ar] + [ag, p1. p2.ag ],

where p, p1, p2 are arbitrary commutators in X involving at least one element a ;L
Consider the Lie algebra L = Lie(X)/I 4+ J. Since this algebra satisfies
condition 5.2 the element ¢’ computed in the algebra L lies in (I +J)® E. The
ideals I and J are graded with respect to each generator. The element ¢’ has total
degree one with respect to variables {x[’J i }x for each b, j. Since the ideal I does
not contain homogeneous elements having degree one with respect to all {xl’),j,n b it
follows that ¢’ € J ® E. This finishes the proof of the lemma. O

Now, let A4 be an associative enveloping algebra of the algebra L, L < AO| T =
L®rE, A=AQF E.
Lemma 5.3. Let a € L be a sandwich. Then Jor an arbitrary element b € L we

have [a,b]? = 0.

Proof. N. Jacobson [10] noticed that

X1 Xph = D0 Xy Xo(p) = D [XpeXo) -+ Xo(p-n) |-

o€Sp 0€Sp—1

Let b = ) . by be the standard decomposition of the element b. Then [a,b] =
Y xla.bz] and [a,b]? = } {[a,bs,].....[a,by,]}. Each summand on the right
hand side is equal to zero since [[a, by, ], [a, by, ]] = 0, which proves the lemma. [J
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Lemma 5.4. Let I be an ideal of the Lie algebra L. Let a € T be a sandwich in T
such that a? = 0 in the algebra A. Let S C Lbea finite set of < n elements. Then
the associative subalgebra of A generated by commutators [a, by, ..., b;], where
b; € S, t < m, is nilpotent of degree < p(”H)mf(m’n).

Proof. Denote g = p(”H)mﬂm’n). We need to show that an arbitrary product

[a,bll,...,bltl]-~-[a,bq1,...,bq,q],

where b;; € B, t; <m, 1 <i <gq,isequal to0.

Arguing as in the proof of Lemma 5.2 we can reduce the problem to showing
that an arbitrary product (a¢i1---@1m) - (@Pg1 - Pgm) = 0, where ¢;; €
Autd, ¢i;(D) =L, ¢;j(1) =T, #{pj | 1<i <q. 1<j<m}<n+1.

LetY = {agi1 - ¢im,1 <i <gq}, |Y| < (n+ 1)™. An arbitrary element y
from Y is a sandwich in 7 and y? =0in A.

Let L be the Lie algebra generated by Y. By Lemma 5.2 L{ (m.m) — (0). Let
P1, ..., pr beleft normed commutators in Y that form abasisof L1, r < |Y |f(m’”) <
(n + 1)Mf(m,n)_

By Lemma 5.3 for each commutator p; we have pl.p = 0. Now the Poincaré-
Birkhoff-Witt theorem implies the assertion of the lemma. O

6. Proof of Theorem 1.1

Let a Lie algebra L over a field F of characteristic p > 0 and its associative

enveloping algebra A, L € A®), A4 = (L), satisfy the conditions outlined at the

beginning of §3:

(1) L is a graded Lie algebra generated by elements x1, ..., x,, of degree 1; every
element from the Lie set S = S{x1, ..., Xy) is ad-nilpotent;

(2) L satisfies a polynomial identity;
(3) the grading of L extends to A; both algebras L and A are graded just infinite.

Recall thatan element g(x1, . . ., x;) of the free associative algebra is called a weak
identity of the pair (L, A) if g(ay, ..., a,) = Ofor arbitrary elements ay, ...,a, € L.
In particular, every Lie identity of the algebra L can be viewed as a weak identity of
the pair (L, A).

Let k& be a minimal degree of a nonzero weak identity satisfied by (L, 4). Without
loss of generality we can assume that (L, A) satisfies a weak identity

h(x1,...,XE) = X1+ Xk + Z UoXo(1) " Xo(k)-
1#0€Sk

We remark that the pair (Z, Z) satisfies this weak identity as well.
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Let h(xy,....xx) = Zf;l hi(x1,...,%,...,xx)x;. The ideal M of the
algebra A generated by all values of iy (ay,...,ax—1), a; € L is graded nonzero and
therefore has finite codimension in 4. Hence there exists ¢ > 1 such that A4 CcCM.
Denote A = A + F1,

Lemma 6.1. For an arbitrary element a € L we have
Ala C inl ---x,-ta;f, t<d-—1.
Proof. For an arbitrary product of length d we have

/ "
Xip =+ Xig = E ajVihe(pjrs .-\ PjE—1)VF,
J

where ; € F; v/, v7, and pj1....,pjk—1 are monomials and commutators in
generators Xy, . .., X, of total length d.
Let v} = xy, ++-xp,. Then

"o ’ "
via=a + E twjaw;,
t

wherea’ =[x, [Xus, [+ [Xpu,a] -+ ]; w;-l, w;-’t are products in generators of total

4 "
degree equal to the degree of v; and the products w’, are not empty. Hence,

/ /
Xip e Xi,d = Z(vajhk(pj,l,...,pj’k_l)a
J

4

+ Zajv;-hk(pjgl, s Pik—DWaw],.

Jot
Furthermore,
k—1
hk(/Ojl, ces ,Pj,k—l)a/ = h(le, .. -,,Oj,k—ha/) - Zhi(le, cend Pj,k—l)Pji
i=1
k—1
= —Zhi(pjl,. . .,(l/,.. -’pj,k—l)pji'
i=1
We proved that x;, - - - x;,a is a linear combination of elements w’aw”, where w’, w”
are products in x1, ..., X, with the length of w’ less than d. O

)mf(m,n)

Consider the function g(m,n) = p®+!
Lemma 6.2. Let I be an ideal of the algebra L. Let a be a sandwich in Ta;lgi
a? = 0in A. Let a’ = [ay,...,aq), where a; = [a,u;1,..., ui], ui; € L,
i >0,i =1,....d. Let G = g(max;{t; +d — 1},t; + - + 17 + d?T1}).
Then (Aa’)S = (0). In particular, an arbitary element from Id; (a’ )4 generates a

nilpotent ideal in A.
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Proof. Suppose that a’via’---vg—1a’ # 0, where vy,...,vGg—1 are products in
generators Xi,...,X, of lengths [(vy),...,l[(vg—1) respectively. Without loss
of generality we will assume that the vector of lengths (/(vy),...,l(vg—-1)) is

lexicographically minimal. By Lemma 6.1 this implies that [(v;) < d —1, 1 <
i<G-1.
If v = xj, -+ x;, then we denote

[Ua’] — [le, [sz, [ [xjr,(l/] .. ] - (_l)r[a/’xjr,xjr_l, . ’le].
Again by lexicographical minimality we have

avia --vg_1a = a’[vla’] --~[vG_1a’].

Lemma 5.4 is not applicable to the sandwich a’ and elements x1, . . ., x,, because
X1,..., Xy do not lie in L. However, for an arbitrary word v = x, ---x;,,r <d,
we have

[va'] = " [[vinai]. ... [viaaa]].
i
where v;1,...,v;4 are words in x1,..., X, of total length r < d. Hence, at least

one of these words is empty. Now we can apply Lemma 5.4 to the sandwich a and
the set

S = {[a7ul‘17‘~-vui[ialev"'9xjr] |
1<i<d 1<ji,....jp<m 0<r<d}cCL.
By Lemma 5.4 and the choice of the number G, we have a’[via’]---[vg—1a’] = 0,
which proves the lemma. 0

Now our aim is the following:

Proposition 6.3. There exist integers N > 1, s > 1 and a regular divided polyno-
mial v defined on L® such that every value of v on L® generates a nilpotent ideal
in A of degree < N.

Suppose that the algebra L satisfies an identity

f(x()’xl” . 'axl’l—l) = [X(),XI, "‘7xn—1:| + Z aU[x()vxo‘(l)" -wxcr(n—l)]7
1#0€S8,—1

where oy € F and n is the minimal degree of an identity satisfied by L.
Consider the following element of degree n — 1:

J1(x0, X2, ... Xp—1) = [xo,xz, . -,xn—1] + Z ao[XO’xo(z)’ .- ~,Xa(n—1)]

1#0€S,—_|
a(1)=1

= XOH(ad(Xz), cey ad(xn—l))»
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where

H(y2,....yn—1) = Y2+ Yn—1 + Z Os)Yo(2) " YVo(n—1)-
1#0€S,—1
a(1)=1
Lemma 6.4. Let w(xy,...,Xx;) be aregular divided polynomial defined on L®. Then
the divided polynomial

w/(xl,---,xr,yz,---,,Vn—l) = fl(w(xl,---’xr),yz,---,yn—l)

is also regular.

Proof. Chooset > s andelementsay,...,da, € L' such thata’ = w(a,...,ar) #0.
Suppose that for arbitrary elements by, . . ., b,—1 € L' wehave fi(a’, b, ..., by—1)=
0. Leta’ =} a’, bethe standard decomposition, a;, = a; ®ex,a; € L'. Thenthe
assumption above means that for an arbitrary 7 we have fi(al, L', ..., L") =(0).

Choose 7 such that a/. # 0. Let R = (Id,ad(x),x € L) € Endr(L) be the
multiplication algebra of the algebra L. Consider the ideal idy, (aZT) = a_gr R generated
by the element @’ in L.

For an arbitrary element x € L we have

[ad(x), H(ad(L),...,ad(L"))] € H(ad(L"),... ad(L")).

Hence,
RH(ad(L"),...,ad(L")) € H(ad(L"),...,ad(L"))R.

Now for an arbitrary operator P € R we have

fitaLP, L', ..., L'y =a, PH(L,..., L")
Ca H(L',....,L")R = fi(a,,L',....L")R = (0).

Since the algebra L is graded just infinite it follows that idy, (a_gt) D Lk for sufficiently
large k > r. We proved that fy(L*, ..., L¥) = (0).

The algebra LK is finitely generated by Lemma 2.4. By the induction assumption
on the degree of the identity f we conclude that the Lie algebra L¥ is finite
dimensional. Therefore the algebra L is finite dimensional as well which contradicts
our assumption that the algebra L is graded just infinite, proving the lemma. O

Corollary 6.5. Let ¢ > 1. Choose r + q(n — 2) distinct variables x1, ..., Xr, Yij,
1 <i <q,2<j <n—1. Then the divided polynomial

wg = w(xy,...,x,)H(ad(y11),...,ad(y1,n—1)) -+ H(ad(yg1, . .., ad(yg,n-1))

is regular.
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Lemma 6.6. For arbitrary elements a, b, ...,by—1,c € L we have
[fi(a.by.....by—1).c] €Y Fla.biy.....[bi.cl.....bi, ],
where iy, i3,...,Iiy—1 is a permutation of 2,...,.n—1,2 <k <n—1.

Proof. We have
aH(ad(b), ..., ad(by—1) ad(c) = a ad(c)H(ad(hs), . .., ad(by_1))
+ Y aH(@d(by).....ad([bg.c]). ... ad(by_1)).

Let us represent the polynomial f of minimal degree as

S (X0, x1,...,xXp—1) = Zxo ad(x;) H; (ad(xy). . ... ad(x;). ..., ad(x,_1)).

where H; = H. Then

aad(c)H(ad(by),...,ad(b,—1)) = —c ad(a)H(ad(bs),...,ad(b,—1))
X_: [c,b;]Hi(ad(a), ad(bs), ..., ad(h;), . ..,ad(hn—1))

i=2
€Y Fla.biy.....[by.c].....bi,_,]. O

Lemma 6.7. Let v > 1. Suppose that a divided polynomial w(xy, ..., x,) is defined
on L® and for allt < g(n —2) + v the divided polynomial

[w(xl,...,xr),yl,...,y,,w(xl,...,x,)]

is identically zero on L®. Then for arbitrary elements ay, b;; € L® we have

[wo(ar. bij 1 <k<r1<i<g 2<j<n-1),
L.L,....,L ,LS,...,LS,w(al,...,ar)]=(0)
N ——— —— “~— —
" v

Jor u < gq.
Proof. Applying Lemma 6.6 g times we get

[wq(ak,bij),L,...,L] C [w(al,...,ar),zs,...,zs ]

——

1% q(n—2)

which implies the assertion of the lemma. O
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Lemma 6.8. Let _ _ _
ael and [a,L,...,L.a]=(0)

N———

w
for u < 2d. Then for an arbitrary element b € L the commutator [a, b] generates a

nilpotent ideal in Zofdegree <mé(p—-1)+1

Proof. Recall that the algebra L is generated by m elements x, ..., X;. Suppose
that [a, b]vy[a, b]---vn—1[a, b] # 0, where v; are products of the generators and the
vector of lengths (/(v1), ..., /(vy—1) is lexicographically minimal among all vectors
with this property. Then by Lemma 6.1 /(v;) < d fori =1,...,N — 1.

As above, for a product v = X;,, ..., x;, we denote

[ofa.5]) = st [ [ . [ -1

We have

[a,b]vl ---vN_l[a,b] = [a,b][vl, [a,b]] ---[UN_I[a,b]].

By our assumption the commutators [a, b], [v;[a, b]],1 < i < N—1, commute. There
are < m“ such commutators. Hence at least one commutator [v;[a, b]] occurs > p
times. If b = ) b, is the standard decomposition then [v;[a, b]]? is a sum of
expressions

vila:bao]l.- - [vila. b, 1]}
= 2 [[oi: [a b ] [vila. brgn 1] - [0i] @ by JT] = 0

0ESH—1
Hence [v;[a, b]]? = 0, which finishes the proof of the lemma. O
Lemma 6.9. For an arbitrary sandwich of the algebra L we have a? = 0 in A.

Proof. Recall that the algebra A is a homomorphic image of the subalgebra
(ad(x),x € L) C Endfp(L). _
Hence it is sufficient to show that ad(a)? = O in L. If p > 3 then

Lad(a)? C [Zs,a,a] = (0).

Let p = 2. We have _
[Ls,a,a] = (0).

Since the mapping L — L, x — [x,a, a] is a derivation of L it follows that [L, a, a]
lies in the centralizer of L*. In a graded just infinite algebra L the centralizer of L*
is zero. Hence [Z, a,a] = (0) and again ad(a)? = 0, which finishes the proof of the
lemma. O
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Proof of Proposition 6.3. We will start with the regular divided polynomial
v(X1,...,Xr)
of Proposition 4.14 defined on L*. Every value of v on L* is a sum of ¢ sandwiches
of the algebra L°.
We will construct a sequence of finite sets M; of divided polynomials defined
on L5 i >0.
Let My = {v},

Mig1 = {[w,y1.....yu.w] | w e M;, p<4d(n—2);
Y1, ..., Yy are variables not involved in w}

Let2' > (d — 1)t + 1, w € M;. Let b be a value of the divided polynomial v
on L°. By Proposition4.14,b = by +---+b;, wherefor 1 < j <t,eachelementb;
is a sandwich of the algebra LS. Since 2 > (d — 1)t + 1, it follows that the value ¢
of the divided polynomial w that is obtained by iterating the value b of v lies in
Z;-:l idz (b j)d. By Lemma 6.2 there exists an integer G > 1 such that every value
of the divided polynomial w on L’ generates a nilpotent ideal in A of degree < G.

If at least one divided polynomial in M; is regular, then we are done.

If none of the divided polynomials in M; is regular and i is the minimal integer
with this property then there exists a regular divided polynomial w(xy,...,X,)
defined on L* and an integer ¢ > s such that all the divided polynomials

[w(xl,...,xr),yl,...,yu,w(xl,...,xr)], l<u<4dmn-2),

are identically zero on L.
Consider the regular divided polynomial

Wog(X1,...,xp, i, 1 <0 <2d,2<j <n-—1).
By Lemma 6.7 we have
[waalar,....ar,biy), L.L,...,L L' ....L" w(ay,...,a;)] = (0),
N ——— — — —
W v

n <2d,v < 2d(n —2) for arbitrary elements ay, ..., a,, b;j € L!. We have

2d(n-2)
waa(ar,....ap bij) € Y [wlar.....ar). L',... . L"].
v=1 N
Therefore
[waa(@r,....arbyj), L.L....L wyq(ar,....ar.bj)] = (0)
N —— —
"

for u <2d.
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The divided polynomial

Why (X0, X1, .., Xr, Yij) = [Waa (X1, ... X, ij). X0

is regular. Indeed, regularity of w,, has been established in Corollary 6.5. If the
divided polynomial w, 4 vanishes on some power of L, then some power of L has
a nonzero centralizer. Since the algebra L is graded just infinite, it follows that this
centralizer is of finite codimension. Hence the algebra L is solvable and therefore
finite dimensional, a contradiction. By Lemma 6.8 an arbitrary value of w;, 4 on L
generates a nilpotent ideal in Aof degree < m?(p — 1) + 1. This finishes the proof
of Proposition 6.3. 0

By Proposition 6.3 there exist integers s > 1, N; > 1 and a regular divided
polynomial w defined on L® such that every value of w on L’ generates a nilpotent
idealin Zlvofdegree < Ni. Let f(x1,x2,...,Xx;) € Z*Lie(X) be the linearization of
the divided polynomial w. If / is the degree of w then every value of f in L% isalinear
combination of 2/ values of w. Hence for arA‘Qitrary ai,ds,...da, € L* the element
f(ay...., a,) generates a nilpotent ideal in A of degree < N, = 2/(N; — 1) + 1.

Choose variables x;; € X, 1 <i <r,1 < j < N,. The pair (L, A) satisfies the
system of weak identities

Fy, = {Fn,(xij. yi) = Z S (X16,(1)» X205 (1) - - - » Xro, (1) V1
01,...,0r€SN2
f(xlol 2)> X205(2)s - - - ,Xro,(z))h ***YNy—1

F (10, (2)- X205 (W) - - - Xrop () = 0}
where x;; take values in L® and yy’s are arbitrary products of independent variables
taking values in L. Thus values of yx’s lie in A.

Indeed, these weak identities are satisfied by the pair (Z, /T) It remains to notice
that the pair (L, A) and (L, 4) satisfy the same multilinear weak identities.

Let N be the minimal integer such that (L, A) satisfies the weak identities Fy = 0.

Let a = FN_I(a,'j,bk) 75 0, ajj € LS, 1 <i<r, 1K< ] < N —1;
bx € A. Choose t > max; j deg(a;;). By regularity of the polynomial f, there
exist homogeneous elements ay,...,a, € L' such that f(ai,...,a,) # 0. The
identities Fy = 0 immediately imply the following lemma.

Lemma 6.10. Let b,,c,, € A+ F1. Then
(Zbuf(al,...,ar)cu>a
"

is a linear combination of elements
/ / /
( E by f(aj, ...,ar)cu)a ,
%

wherea' € A, a € {ay,a1x, 1 <k <N—1},a) €f{az,an, 1 <k <N-1},..,
and at least one a; lies in {a;p, 1 <k < N —1}.



336 E. Zelmanov

The ideal I generated by f(ay,...,a,) in A has finite codimension. Let Al cr.

Corollary 6.11. Let u be a homogeneous element of degree > 1. Then for arbitrary
bu,cu € A+ F1 the element

( Z buucu) a
"
is a linear combination of elements
( Z buu’cu) a,
"w

where u’ € A are homogeneous elements, degu’ < degu.

Indeed, from u € A% C [ it follows that

U= Zb;f(al,...,ar)c;,

where b)), ¢}, are homogeneous elements,

.
degb), + degc; + Zdega,- = degu.
i=1

Lemma 6.10 implies that
(Z bub, f(ay,... ,ar)c:,cu) a
JTRY)

is a linear combination of elements

(D bub} fial .. a;)c;cu> a',
L,V

where dega; < dega; forall i and at least for one i, we have dega; < dega;. Hence
for

u = Zb;f(a/l,...,a;)c{,
v

we have degu’ < degu.

Lemma 6.12. Let h(xy,...,xq) be a multilinear element of the free associative
algebra such that for arbitrary homogeneous elements uy, ..., uy; € A of degrees
degu; < I,...,deguy; < | we have h(uy,...,ug) = 0. Then h = 0 holds
identically on A.
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Proof. Letvy,...,vs € Abehomogeneous elements of A suchthat/(vy,...,vy)#0.
Let the total degree Z?zl deg(v;) be minimal among all g-tuples with this property.
At least one element v; has degree > [.

Let us show that the graded just infinite algebra A is graded prime. Indeed,
if Iy, I are nonzero graded ideals of A then A"t C I;, A2 C I, for some integers
ti,to > 1. If I I, = (0) then A"1 2 = (0), a contradiction.

Hence there exists an element b € A such that 4(vy,...,v4)ba # 0.
By Corollary 6.11 the element A(vy,...,v4)ba is a linear combination of
elements /(vy,...,0i—1,0,Vit1,...,Vg)ba’, where degv’ < degv;. This

contradicts the minimality of Ziq=1 deg(v;) and finishes the proof of the lemma. [J

Remark. A nonzeroelement ii(x1, ..., x,) satisfying the hypothesis of Lemma 6.12
exists for an arbitrary finitely generated algebra. Moreover, for an arbitrary associative
algebra A and a finite dimensional subspace V' C A, there exists a multilinear

element h(xy,...,x4) of the free associative algebra such that A(uy,...,ugs) = 0
for all elements uy,...,u, € V. Indeed, it is sufficient to choose an element that is
skew-symmetric in x1, ..., x4, where ¢ = dimg V + 1, for example the element

h(x1,...,xq) = Z (—l)lalxa(l) " Xo(g)-

0€Sy

Proof of Theorem 1.1. 1t is known (see [27]) that a graded prime algebra is prime.
By Lemma 6.12, A4 is a Pl-algebra. The prime PI-algebra A has a nonzero center Z
and the ring of fractions (Z \ {0})~! 4 is a finite dimensional associative algebra over
the field (Z \ {0})~'Z (see [28]). Now the Engel-Jacobson theorem [10] implies
that the algebra A is nilpotent, a contradiction. Thus Theorem 1.1 is proved. O

Proof of Theorem 1.2. Let G be a residually- p finitely generated torsion group. Let
G = Gy > G, > --- be the Zassenhaus filtration. Consider the Lie algebra
Ly,(G) = @;-, Gi/Gi+1. Because of the torsion property of elements of G,
an arbitrary homogeneous element @ € G;/Gj4 of the Lie algebra L p(G) is ad-
nilpotent (see [18,34]).

Consider the subalgebra L of L,(G) generated by G;/G,. If the Lie alge-
bra L ,(G) satisfies a polynomial identity then by Theorem 1.1 the finitely generated
Lie algebra L is nilpotent. This implies that the pro- p completion G ; of the group G
is p-adic analytic and therefore linear (see [3]). Now finiteness of G follows from
theorems of Burnside and Schur [11]. O

Proof of Theorem 1.3. Let Fr be the free pro-p group. Let Fr = Frqy > Fry > ---
be the Zassenhaus filtration of F'r. Suppose that the pro-p completion G ; satisfies
the pro-p identity w = 1, w € Fr, \ Fry4+1, hence w = pfsl w-pf’xr w’, where
each p; is a left normed group commutator of length I;, pSi - [; = n, w’ € Fryy1.
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Considering, if necessary, [w, xo] instead of w, we can assume that » is not a
multiple of p,and w = p--- p,w’, where all commutators p1, ..., p, are of length n.
Let p; be the commutator from the free Lie algebra that mimics the group
commutator p;. Then the Lie algebra L,(G) satisfies the polynomial identity

> i pi = 0. By Theorem 1.2 we conclude that |G| < oco. O
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