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Abstract. We introduce and study some affine Hecke algebras of type ADE, generalising the
affine Hecke algebras of GL. We construct irreducible calibrated representations and describe
the calibrated spectrum. This is done in terms of new families of combinatorial objects equipped
with actions of the corresponding Weyl groups. These objects are built from and generalise the
usual standard Young tableaux, and are controlled by the considered affine Hecke algebras. By
restriction and limiting procedure, we obtain several combinatorial models for representations
of finite Hecke algebras and Weyl groups of type ADE. Representations are constructed by
explicit formulas, in a seminormal form.
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1. Introduction

1. The symmetric group is the Weyl group of the irreducible root system of type A.
In this paper, we will consider irreducible root systems of simply-laced types. The
simply-laced types are the types A, D and E, and we will call “of type ADE” any
object associated to such aroot system (for example: Weyl group, finite Hecke algebra,
affine Hecke algebra,. . .).

One goal of this paper is to provide a whole class of combinatorial models for
representations of finite Hecke algebras and Weyl groups of type ADE. We will
mostly work at the level of some affine Hecke algebras of type ADE and actually
construct irreducible (calibrated) representations of these affine Hecke algebras.
Representations of finite Hecke algebras are then obtained simply by restriction,
and representations of Weyl groups are obtained by a limiting procedure.

Another goal of this paper is to introduce and study some affine Hecke algebras (of
type ADE). The combinatorial constructions presented here are controlled by those
affine Hecke algebras, and this is a first motivation to consider them. We emphasize
their fundamental role by introducing them as the starting point of our study. These
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affine Hecke algebras generalise in a natural sense the affine Hecke algebra of GL.
As for GL, they are associated to reductive groups (of type ADE) which are not
semisimple, and they are obtained by extending the root lattice increasing the rank
by one.

As an independent motivation to consider these affine Hecke algebras, we show
that they admit a certain distinguished central element such that, equating this central
element to 1, we obtain affine Hecke algebras associated to semisimple groups (the
most studied cases). This way, the affine Hecke algebras introduced here can also be
seen as a tool to study the more standard affine Hecke algebras. This will be more
detailed below in paragraph 3. We note that, for example, we cover the affine Hecke
algebras of type D studied in [12,32] (see Section 3.7).

Main ingredients in the construction are new sets of combinatorial objects
equipped with actions of the corresponding Weyl groups. These combinatorial
objects are built from and generalise the usual Young tableaux associated to (skew)
partitions. Representations are constructed by explicit formulas, generalising the
seminormal representations of the symmetric group associated to (skew) partitions.

For each type (A, D or E), our construction depends on a chosen vertex of the
corresponding Dynkin diagram. The classical construction for the symmetric group
with the usual partitions then corresponds to type A with the chosen vertex being an
extremity of the Dynkin diagram. So, already for the symmetric group, we obtain
new combinatorial constructions: those associated to a vertex which is not one of the
two extremities of the Dynkin diagram.

2. The classical approach to the representation theory of the symmetric group
involves the combinatorial notion of partitions and associated standard tableaux. A
classical explicit realisation of the irreducible representations is often referred to as
the “seminormal form” and was already given by A. Young [34] (see also [30]). In
this realisation, a distinguished (“‘seminormal”) basis of the irreducible representation
spaces is indexed by standard tableaux and is such that a certain set of commuting
elements, the Jucys—Murphy elements, acts as diagonal matrices [19].

Analogues of the seminormal representations of the symmetric group have been
given explicitly, using combinatorial constructions, in many other situations. We
refer to [1-7,9,10,15,16,20-23,25,26,31,33]. In all these situations, analogues of
Jucys—Murphy elements are present and act semisimply in the representations.
The combinatorial constructions originate in an identification of the sequences of
eigenvalues of these Jucys—Murphy elements with combinatorial objects (in the
spirit of the work of A. Okounkov and A. Vershik for the symmetric group [24]).
We note that all these situations have a type A flavour and that the combinatorics is
related to the classical one (one considers for example strict tableaux, multi-tableaux
or up-down tableaux).

In most of the situations quoted above, an “affine” version of the algebras under
consideration controls the eigenvalues of these Jucys—Murphy elements, and in turn
the combinatorics involved. The “affine” algebras controlling the Jucys—Murphy
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elements of the symmetric group and of the finite Hecke algebra of type A are
actually particular examples of affine Hecke algebras (degenerate, or graded, for the
symmetric group). They are affine Hecke algebras associated to GL(n). In general,
affine Hecke algebras are associated to root data coming from algebraic reductive
groups, and a well-known motivation is that their representation theory forms a part
of the representation theory of reductive groups defined over p-adic fields.

An affine Hecke algebra comes equipped with a distinguished commutative
subalgebra. In the case of GL(n), the Jucys—Murphy elements of the symmetric
group and of the finite Hecke algebra of type A are obtained as images (in a well-
chosen quotient) of well-chosen generators of this commutative subalgebra. This is
the reason for the fact that representations of affine Hecke algebras of GL (n) appear
in the study of these Jucys—Murphy elements. In fact, in this setting, only a part of the
representation theory of affine Hecke algebras is used. Namely, the representations
involved are the ones in which the elements of the distinguished commutative
subalgebra act semisimply. Such representations are called calibrated (sometimes
also completely splittable [13,29], or in another context, homogeneous [14]).

For the affine Hecke algebras of GL, the irreducible calibrated representations
are classified and described combinatorially in terms of skew partitions [3,4,26]
(see also [29]). In the degenerate case, by restriction to the symmetric group, one
recovers the so-called “skew” representations. They were introduced and studied
for example in [17,28], originally in connections with the Littlewood—Richardson
rule. In the non-degenerate case, one obtains by restriction the analogues of skew
representations for the finite Hecke algebra of type A, whose decompositions into
irreducibles also involve Littlewood—Richardson coefficients [26].

Calibrated representations were classified in [27] for affine Hecke algebras
associated to the weight lattice of a root system of arbitrary type. Here, we will follow
a different line of generalisation by considering different affine Hecke algebras. As
far as affine Hecke algebras are concerned, we generalise the construction for the
affine Hecke algebra of GL in terms of skew partitions. Besides, our point of view on
the affine Hecke algebras considered here is also that, in the spirit explained above,
they are algebraic structures controlling some sort of combinatorics, that we apply to
representations, in this case, of finite Hecke algebras and Weyl groups of type ADE.

3. We will now describe in more details the main objects and the organisation of
the paper. We first introduce some affine Hecke algebra of type ADE (Section 3).
Given an irreducible root system R of type ADE, we take an arbitrary vertex v of the
Dynkin diagram of R, and construct an affine Hecke algebra H (R, v). The algebra
H(R,v) is associated to a free Z-module, denote L ,, obtained by extending the
root lattice of R by one dimension; the action of the Weyl group on it depends on the
choice of v.

An important step is the choice of a basis of Lg,. This will be the key to
the combinatorial approach, as explained later. We also use this basis to work out
explicitly a finite presentation by generators and relations of the algebra H(R, V).
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This presentation helps to see that the algebra H(R,v) contains several (up to 3)
distinguished subalgebras isomorphic to affine Hecke algebras of GL, and further
how they are “glued” together. It reflects a certain covering, depending on v, of the
Dynkin diagram of R by several (up to 3) subdiagrams of type A.

It turns out that the free Z-module Lg, contains a distinguished element,
denoted Ag,, invariant under the action of the Weyl group. Furthermore, the
quotient module Lg /Z AR turns out to coincide with the following one: the root
lattice Qg extended by adding the fundamental weight w, corresponding to the
vertex v. In other words, we have the exact sequence of Z-modules:

0— ZARy — Lry — Qryv+ Zw, — 0.

The Z-module Q gy + Zwy, included between the root lattice and the weight lattice,
automatically gives rise to an affine Hecke algebra, that we denote H (R, v), which
now corresponds to a semisimple group, unlike H(R,v). It follows from our
construction that H (R, v) is isomorphic to the quotient of H (R, V) over a relation
Cry = 1, where Cg, is a central element of H(R,v) corresponding to ARg,.
Therefore, we will obtain informations on the representation theory of H (R, V)
immediately from our results on H (R, v). This could be an independent motivation
for considering the algebras H(R, v).

We note that, varying R and v, we obtain with Qg + Zw, all the Z-modules
(for types ADE) included between the root lattice and the weight lattice, with the
following exceptions: the root lattice of type A, and the weight lattice of type D,
with 7 even. To sum up, the algebras H (R, v), when R and v vary, exhaust the set of
affine Hecke algebras of type ADE associated with semisimple root data, with these
two exceptions.

4. A crucial notion in our study is that of an action and a truncated action of the
Weyl group on sequences of numbers (Section 4). These sequences are identified
with characters of the commutative subalgebra of H(R,v), and this is done using
the basis of Lg, chosen earlier. One goal will be to determine the characters
appearing in calibrated representations (i.e. the calibrated spectrum) and to interpret
them as combinatorial objects. The sequences form the intermediary step between
characters and combinatorial objects. The action of the Weyl group of R is explicitly
calculated on the chosen basis and is then translated as an action of the Weyl group
on sequences (and later on tableaux). This action generalises the permutation action
of the symmetric group.

Roughly speaking, the truncated action on a given sequence consists in “killing”
the action of some simple reflections. It is not an action of the Weyl group anymore,
however the important property is that the braid relations are still satisfied. This
allows us to define a notion of orbits under this truncated action. Some of these
truncated orbits will parametrise the representations constructed later.

The new combinatorial objects, the tableaux of type (R,v), are defined in
Section 6. The action of the Weyl group is described explicitly, in a combinatorial
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way. A new feature of the action of the Weyl group, compared to the usual action
of the symmetric group on tableaux, is that not only boxes are exchanged, but some
of them sometimes also move to a different position. This results in the possibility
that, starting from a tableau of type (R, v), one obtains, after applying an element of
the Weyl group, something which is not a tableau of type (R, v). This leads us to
the notion of admissibility for a standard tableau of type (R, v), the precise definition
being that its truncated orbit must contain only standard tableaux of type (R, V).
Examples are given for several choices of R and v.

Representations of H (R, v) are constructed in Section 7 with the help of standard
tableaux of type (R, v). The representations are parametrised by admissible truncated
orbits and the representation spaces have a basis indexed by the elements of a
given admissible truncated orbits (by admissibility, these are standard tableaux of
type (R,v)). The action of the generators is given explicitly (in a “seminormal”
form) and the representations are irreducible and calibrated.

As a corollary of the construction of representations associated to admissible
truncated orbits, we obtain a complete description of the calibrated spectrum
of H(R,v). Roughly speaking, the calibrated spectrum is the set of characters
of the commutative subalgebra of H(R, v) which support a calibrated representation.
The result is that the calibrated spectrum of type (R, v) is in bijection with the set of
admissible standard tableaux of type (R, v). In a sense, this sums up the interpretation
of these combinatorial objects in terms of representation theory. We note that we do
not prove that we obtained all irreducible calibrated representations

It is immediate to determine which representations pass to the quotient and
become irreducible calibrated representations of H(R,v). This property is seen
directly on the standard tableaux. A description of the calibrated spectrum of the
quotient algebra H (R, v) also follows immediately from its description as a quotient
of H(R,v) by a central element, together with general considerations on the calibrated
spectrum of a quotient affine Hecke algebra. It is described as a subset of the set
of admissible standard tableaux of type (R, V), namely those satisfying a condition
on their contents given explicitly, and related to the expression of the fundamental
weight corresponding to v in terms of simple roots.

5. We make connections with the classical situation of GL(n). Among the
algebras H(R,v), the affine Hecke algebra of GL(n) appears when one takes R =
Ap—1 and v an extremity of the Dynkin diagram. In this case, the Z-module Lg, is
the usual free Z-module with basis €1, . . ., €, equipped with the permutation action
of the symmetric group (the simple roots are €;+; — ¢; and €; is the basis vector
added to the root lattice). The distinguished invariantis €; 4 - - - 4+ €, and the quotient
algebra H (R, v) is the affine Hecke algebra associated to the weight lattice (that is,
associated to SL(n)).

For GL(n), our notion of tableaux of type (R, V) coincides evidently with the
usual notion of Young tableaux associated to skew shapes. The truncated action
in this case is defined as follows. Consider the simple transposition exchanging i
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and i + 1. Then its action on a given standard tableau is “killed” if i and i 4 1 are
adjacent. A fact underlying the representation theory of the symmetric group is that
this process respects the braid relations, a result that we generalise to any type (R, V).
We check that, with our definitions, a truncated orbit for GL(n) contains all standard
tableaux of a given skew shape. Moreover, here any standard tableau is obviously
admissible. To sum up, our construction recovers, for GL(n), the constructions
of [3,4,26]. In this situation, the general result concerning the quotients H (R, V)
becomes that the representations passing to the affine Hecke algebra of SL(n) are
those corresponding to shapes such that the product of the contents of all boxes is
equal to 1.

From the point of view of representation theory, the notion of being of the
same shape for two standard tableaux is replaced, for a general type (R, V), by the
notion of belonging to the same truncated orbit. In this sense, the (admissible)
truncated orbits replace the usual skew shapes. We note that the notion of shape is
not relevant anymore since the boxes can move under the action of the Weyl group.
This emphasizes the importance of the truncated action which was used to define
the truncated orbits, and whose properties ultimately rely on the fact that the braid
relations are preserved. Furthermore, the truncated action is necessary to define the
notion of admissibility which could not have been defined using the full action of
the Weyl group. We note that the notion of admissibility was not present (or, more
precisely, is trivial) in the classical GL(n) situation.

6. Finally, in a last part (Section 8), the restriction to finite Hecke algebras (of
type ADE) is considered. The representations, indexed by admissible truncated
orbits, are already constructed. We also obtain representations of Weyl groups (of
type ADE) by a limiting procedure in the formulas for the action of the generators.
We consider the obtained representations as analogues of the skew representations
of the symmetric group and of the finite Hecke algebra of type A. We note that,
corresponding to a given type R, we obtain several different families of combinatorial
constructions (depending of the vertex v).

The obtained representations of finite Hecke algebras and Weyl groups are not
irreducible in general. Nevertheless, we obtain a sufficient condition for these
representations to be irreducible, which is expressed combinatorially in terms of
tableaux. We name this property as “to be of level 1”7 since it corresponds to
considering representations which pass to a certain “cyclotomic” quotient of level 1.
The term cyclotomic for these quotients, and the ones of higher levels, is motivated
by the remark below.

Again to clarify the connections with the GL(n) situation, we note that the
cyclotomic quotients (of any level) exactly coincide, in the GL (n) situation, with the
well-studied Ariki—Koike algebras [1], also called cyclotomic Hecke algebras. Then
the property of being of level 1 for a classical tableau is simply that its shape must
be a usual partition (not skew). It is well known that in this case, the corresponding
representations of the finite Hecke algebra of type A (or of the symmetric group) are
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irreducible. This is the property we generalise to any type (R,v). We note that a
further property in the GL(n) situation is that all irreducible representations of the
finite Hecke algebra are obtained as such level 1 representations, or equivalently, the
cyclotomic quotients of level 1 are isomorphic to the finite Hecke algebra. This is
not true anymore for a general type (R,v) and the understanding of the algebraic
structure of the cyclotomic quotients of any level (analogues of the Ariki—Koike
algebras) would require a further study.

2. Preliminaries on root data and affine Hecke algebras

2.1. Root data. Let R be a finite reduced root system and fix {@;};=1,. » a set of
simple roots for R. We denote by Q g the root lattice:

n
Or =P Za; .
i=1

We denote by RY the dual root system of coroots of R and we identify coroots in RY
with elements of Homz (Q g, Z) via the natural pairing between roots and coroots.

Let T be a finitely-generated free Z-module with a given inclusion Qg € T of
Z-modules. Assume moreover that we have elements ¥ € Homg/(T,Z), fora € R,
such that the set of maps {@" }4cR , restricted to Q g, forms the dual root system RV .
The data Qg € T and RY C Homg/(T, Z) form a root datum.

By extension of scalars, the coroots aV are R-linear forms on R ®z T'. To each
root @ € R is associated the reflection r,, in R ®z T given by

re(x):=x —a¥(x)a foranyx e R®z T. 2.1

The group generated by r,, o € R, isidentified with the Weyl group Wy (R) associated
to R. Let r1,...,r, be the reflections in Wy(R) corresponding to the simple roots
ai,...,o, and let m;; be the order of the element r;7; in Wo(R) (we have m;; = 1).
The group Wy (R) is generated by s1, ..., s, and a set of defining relations is

(rirj)™7 =1 fori,j=1,....n.

The Weyl group Wy (R) acts on T via Formula (2.1) since oV (x) € Z if x € T and
OrCT.

Example 2.1. The free Z-module Pr := Homgz(Q gv, Z) is called the weight lattice
and is naturally identified with a subset of R ® 7z Q r. Namely, the weight lattice Pg
consists of elements w € R ®z Qg such that ¥ (w) € Z for any « € R. The
fundamental weights w1, . . ., w, associated to the set of simple roots {o; };i—1,... ., are
defined by o, (w;) = 8,7, i, j = 1,...,n. We then have

PR =éZa)i .

i=1
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We have obviously Qg € Pg. Let L be a Z-module such that Qp € L C Pg.
By definition of Pg, the restrictions of the maps a¥ to L belong to Homgz (L, Z).
So finally, for such a Z-module L, the natural inclusions Qg € L and RY C
Homgz (L, Z) form a root datum.

2.2. Affine Hecke algebras. As we will only consider irreducible simply-laced types,
we only give the definition of one-parameter (affine) Hecke algebras.

Finite Hecke algebras. Let g be an indeterminate. The finite Hecke algebra Hy(R)
is the associative C[g, ¢ ~!]-algebra with unit generated by elements g1, ..., g, with
the defining relations:

g =(q—q Mg +1 fori € {1....n},
8igi&i--- =8&j8i&j--- fori,j €e{l,...,n}withi # j. (2.2)

m;j terms m;; terms

For any element w € Wy(R), let w = 14, ... 74, be areduced expression for w
in terms of the generators ry,...,7,. We define gy 1= g4, ... 8a, € Ho(R). This
definition does not depend on the reduced expresion for w and and it is a standard
fact that the set of elements

{gw, w € Wo(R)} (2.3)
forms a C[q, ¢~ ']-basis for Hy(R) (e.g. [8]). The specialization of the algebra Hy(R)
at ¢ = %1 is the group algebra C Wy (R).

Affine Hecke algebras. Let (Q R € T, RY C Homg(T, Z)) be a root datum as
before. The affine Hecke algebra, denoted by H(R, T'), associated to the root datum
is the associative C[g, g ~!]-algebra with unit generated by elements

g1,...,8n and X*, xeT,

subject to the defining relations X° = 1, X*X* = X*+* for any x,x’ € T, and
Relations (2.2) together with

» XX xni®)
giX* = XTWyg = (q—q ) ———. (24)
1 — X~
forany x € T andi = 1,...,n. It follows from (2.1) that the fraction in the

right hand side above is a polynomial in the (commuting) generators X ¥ x'eT.
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Explicitly, we have

0 if o/ (x) =0,
o (x)-1
X* _ xri) X* Y x e if @ (x) € Zso,
Y v_a k=0
1 — X —aiv(x)—l
—X7IO N xR if oY (x) € Zo.
k=0

We record here the special cases of Formula 2.4 that will be sufficient for the sequel:
giX* =X g ifa)(x)=0 and g X'g = XY ifa)(x)=-1, (2.5)

where we used that gi_1 =gi—(g—q™).
The following set of elements is a C[g, ¢~ ']-basis of H(R, T) (e.g. [18]):

{X*gw. x € T and w € Wp(R)}. (2.6)

It follows in particular that the (multiplicative) group formed by elements X*, x € T,
of H(R, T) can be identified with the (additive) group 7. It follows also that the
subalgebra generated by g1, ..., g, is isomorphic to the finite Hecke algebra Hy(R).

Remark 2.2. An affine Hecke algebra H(R,T) is finitely generated and finitely
presented. Indeed, let §;,...,8; € T be elements spanning 7" over Z. Then, it
is obvious that H(R, T) is generated by g1, ..., g, together with X+ X«
Moreover, it is straightforward to check that, fori = 1, ..., n, the set of relations (2.4),
where x € T, is implied by the set of relations (2.4), where x € {61, ..., 0}

Parabolic root subdata. Let & be a parabolic root subsystem of R corresponding
to asubset Sp C {1,...,n}. Let Tp C T be a free Z-submodule of T containing
the simple roots «; for i € Sp. Then T» contains the whole root lattice of J and
the restrictions to T of the maps «¥, & € P, give an inclusion of the dual root
system £V in Homz (Tp, Z). Thus

(Qp € Tp, P¥ C Homy(Tp, 7))

is a root datum to which an affine Hecke algebra H (P, Tp) is associated. It follows
at once from the definitions that the subalgebra of H(R, T') generated by g;,i € S,
and X*, x € Tgp, is a quotient of H(J, T»). From the knowledge of the basis (2.6),
we have that this subalgebra is actually isomorphic to H (P, Tp).

Quotient root data. Let / be a Z-submodule of T such that I C ker(a") for any
@ € R; in other words, any element of / is fixed by the Weyl group Wy(R). In

particular Qg N I = {0}. We note [x] the class of an element x € T in the quotient
T/I.
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Then Qr > o — [a] € T/I gives an inclusion Qg € T/I. Further, by
assumption, the maps @, @ € R, factor through 7'/I and yield an inclusion RY C
Homgz(T'/1,7Z). Assume moreover that 7/1 is a free Z-module. Thus

(Qr € T/I, RY C Homz(T/1,Z)) 2.7)

is a root datum to which an affine Hecke algebra H(R, T/I) is associated. It foll-
ows from the definitions that H(R,T/I) is a quotient of H(R, T), the surjective
morphism being given on the generators by H(R,T) > g; — gi € H(R,T/I)
and H(R,T) > X* — X € H(R,T/I). Again, from the knowledge of the
basis (2.6), it follows that H(R, T/I) is isomorphic to the quotient of H(R, T') over
the relations X* = 1 for x € /. Note moreover that the elements X*, x € [, are
central in H(R, T).

2.3. Calibrated spectrum of affine Hecke algebras. In all the paper, we will
consider only finite-dimensional representations of affine Hecke algebras.

Let (QR C T, RY C Homg(T, Z)) be a root datum and H (R, T) the associated
affine Hecke algebra. We denote C(q) H(R, T) := C(q) ®cjq,4-1] H(R,T).

Definition 2.3. A representation V' of the affine Hecke algebra C(q)H(R,T) is
called calibrated if the elements X*, x € T, act as diagonalizable endomorphisms
of V.

Recall that the (additive) Abelian group T is identified with the (multiplicative)
Abelian group formed by elements X*, x € T. The set Hom(7, C(g)™) is the set
of (multiplicative) group homomorphisms from 7" to C(g)* (i.e. the set of C(g)-
characters of 7).

Definition 2.4. We denote by C-Spec(H (R, T)) the set of elements y €
Hom(T, C(q)™) such that there exist a calibrated representation V of C(q)H(R,T)
and a non-zero vector v € V satisfying

X*(w) = y(X*)v foranyx €T.

We call the set C-Spec(H (R, T')) the calibrated spectrum of the affine Hecke algebra
H(R,T).

In other words, the calibrated spectrum C-Spec(H(R,T)) is the subset of
Hom(T, C(g)*) consisting of all the characters of T appearing when we decompose
the calibrated representations of C(q)H (R, T) as direct sums of characters of T
(note that by definition a calibrated representation of C(q) H(R, T) is semisimple as
a representation of 7).

We consider a quotient root datum as in (2.7). For later use, we formulate below
the general result relating the calibrated spectrum of the quotient affine Hecke algebra
H(R, T/I) with the calibrated spectrum of H(R, T).
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Proposition 2.5. We have:
C—Spec(H(R, T/I)) = {)( € C—Spec(H(R, T)) such that y(X*) = 1 forx € I} .

Proof. Werecall that H(R, T /1) is the quotient of H(R, T') by the relations X* = 1
forx el.

Let V be a calibrated representation of C(¢)H(R,T/I). By composition with
the canonical surjective morphism from H(R, T) to its quotient H(R,T/I), the
representation V' can be seen as a representation of C(g) H(R, T'), which is obviously
calibrated. The characters y of 7" appearing in this representation satisfy y(X*) =1
for x € I. This proves the inclusion from left to right.

Next, let IV be a calibrated representation of C(q) H(R, T) and let {vq,..., vy}
be a basis of V' of common eigenvectors for elements X*, x € T. Each vector v;
corresponds to a character y; € C-Spec(H (R, T)) as in Definition 2.4. Order the

basis vectors such that, for some k > 0, the characters y; fori € {1,...,k} satisfy
xi(X*) = 1forall x € I, and the characters yx+1,..., xn do not.
Let W be the subspace of V' spanned by the vectors vg 41, ..., vy. Itiseasy to see

that W coincides with the subspace spanned by all vectors v — X*(v), where v € V
and x € I. This way, we see that W is stable by H(R, T) since elements X*, x € I,
are central in H(R,T). Therefore, if non-zero, V/W becomes a representation
of C(q)H(R,T), obviously calibrated (a basis of common eigenvectors is formed
by v + W, ..., vr + W). Moreover, the elements X*, x € [, act as the identity on
V/W, so that VV/ W becomes a calibrated representation of C(¢)H(R,T/I). This
proves the inclusion from right to left. O

Remark 2.6. The set of characters in Hom(7'/I,C(g)*) is naturally a sub-
set of Hom(7,C(g)*). The proposition can be formulated equivalently as
C—Spec(H(R, T/I)) = C—Spec(H(R, T)) N Hom(7'/1,C(g)*). Besides, we
note that the proof can be made shorter if we assume that all characters in
C—Spec(H (R, T)) appear in irreducible calibrated representations of H(R, T'). This
will turn out to be true for the algebras to which we will apply the proposition (see
Proposition 7.5). A

Characters and sequences. Let B = (Jy, ..., §x) be an ordered Z-basis of the free
Z-module T. Let Seqy, := (C (q)x)k be the set of sequences of k elements in C(g)
all different from 0.

As B is a basis of T, a character of T is uniquely determined by its values on
elements of B. Therefore, the set of characters Hom(7, C(g)*) is identified with the
set of sequences Seqy, by the following bijection

Hom(T,C(q)*) 3 x <«— (x(X°),.... x(X%)) € Seqy . (2.8)

This identification depends on the choice of the ordered basis B.
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Definition 2.7. We denote C-Eig(8) the subset of Seq; consisting of sequences
corresponding to characters in the calibrated spectrum of H(R,T), via the
identification (2.8).

Thus, for any ordered basis B of 7', the identification (2.8) restricts by definition
to

C-Spec(H(R.T)) «— C-Eig(8),

and identifies the calibrated spectrum C-Spec(H (R, T')) with the set C-Eig(:B). To
save space, we omit to indicate the algebra H(R, T) in the notation C-Eig(8). This
should not cause any confusion as it will always be clear which affine Hecke algebra
we will be considering.

3. Affine Hecke algebras H(R,v) and H (R, v)

3.1. Labellings of Dynkin diagrams. From now on, let R be an irreducible root
system of simply-laced type (thatis, R = A,,n > 1l,or R = D,,n > 4,or R = E,,
n = 6,7,8). We consider the labelling of vertices of the Dynkin diagram of R as
shown in Figure 1 and refer to it as the “standard” labelling.

{
4

A, (n > 1)

—_
S)
B}
|
—_
B

1

2

>—4
1 3 4 5
E, (n=26,7,38): ﬁ— e
2

Figure 1. “Standard” labelling of Dynkin diagrams of type ADE

New labelling of the Dynkin diagram. We choose a vertex of the Dynkin diagram
of the root system R and denote it by v. Given R and v, we fix once and for all a
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new labelling of the set of vertices of the Dynkin diagram of R such that (as shown
in Fig. 2):

L]

First, the distinguished vertex v is labelled by 1.

Then, (1,2,...,1) is the shortest path from v to an extremity of the Dynkin
diagram.

If v is not itself an extremity, then (1,2,...,1") is the shortest path from v to
another extremity of the Dynkin diagram.

Finally, in type D or E, there is a trivalent vertex. Up to interchanging the two
first paths, we can assume that this trivalent vertex is already labelled by k for
1 <k <Il—1. Then(l,...,k,k+1,...,1”) is the shortest path from v to the
third extremity of the Dynkin diagram. o

Remark 3.1. We make the following remarks/conventions:

By convention, if R = A,, we consider that [ = k = [”, that is, in the partition
above, we have {k + 1,...,["} = 0.

If v is itself an extremity, then we consider that [’ = 1, that is, in the partition
above, we have {2,...,l'} =0

It can happen that k = 1. This happens whenever v is a trivalent vertex, that
is, when R = D, (respectively, R = FE,) and v is the vertex labelled by 3
(respectively, by 4) in the standard labelling.

We will make no distinction between a vertex and its label in the new labelling.

We denote by Vertg the set of vertices of the Dynkin diagram of R. The new labelling
results in the following partition of the set Vertg:

VertR={1,...,k,k—|—1,...,l}|_|{2,...,l_'}Ll{k—|—1,...,&}. (3.1
14 2 v=1 2 k k+1 l
~— ———————o o — —e
k+1

I

Figure 2. New labelling of the Dynkin diagram
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It will be very convenient to use the following notations:

b—1:=b—1, forb=2,...,0,
1:=1,k:=k and (3.2)
= c—li=c—1, forc=k+1,...,1".

The new labelling of the Dynkin diagram induces a new labelling of the simple
roots of R, of the simple coroots of R, of the simple reflections of Wy(R) and of the
generators of Hy(R), by the set Vertg as in (3.1). They are now respectively denoted

o }ieVertR ) {aiv}ichrtR s {ri}ieVertR , 18 }iEVertR .

We recall that, for i, j € Vertg, we have o (o;) = 2 and, fori # j, a}’(oe,-) =-1
if the vertices i and j are connected by an edge, while oe]Y (aj) = 0 otherwise.

3.2. Extensions of the root lattice.

The Z-module L g y. We extend the root lattice Q  into a larger free Z-module by
adding a vector denoted ey, which we set to be Z-linearly independent from Q g.
Thus, we consider the following free Z-module:

LR,V = Z8R,v S QR . (33)

The coroots are maps from Q g to Z and we extend them to maps from L g , to Z by
setting:
-1 ifi=1,
fori € Vertr, o (ery) := 3.4)
0 otherwise.
This defines an inclusion RY C Homgz (L Ry, Z) which, together with the natural
inclusion Qg C L, forms a root datum as defined in Section 2.1.

The basis Bg,y. We set, using notations (3.2),
8o :=¢ery and §; ;=681 +«;, fori € Vertg. (3.5)
This defines recursively a set of vectors {§; } jevert zu{0}- More explicitly, we have:

8g =e6ryv+a1+-+ag, fora =0,1,...,1,
8p =eRy+o1 Fop+-Fap, forb=2,....1, (3.6)
SQZ{;‘R’V—FQI+"'+(Xk+akil+"'+ag, f0rC=k—|—1,...,l”.

It follows at once that the set {3} } j evert U0} iS a Z-basis of the free Z-module Lg .
We will always use in the following the basis {J;} jeverizufo} that we will order as
follows:

BR,V = (50,51, ey e ,81, 8;, Cen ,8&, 5k+1, e ,8&) . (3.7)

We emphasize that we consider B, as an ordered basis.
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3.3. Action of the Weyl group on 8g,. From Formulas (3.5)-(3.6), it is straight-
forward to calculate the action of the simple reflections r;, i € Vertg, of the Weyl
group Wy (R) on elements of the basis Bg . It results in the following formulas:

ri(8i—1) =98; and r;(8;) = 8;i—1, fori € Vertg, (3.8)
and

r2(8p) =8 + 6, —61 forb=2,....1", (3.9)
12(8q) =84 +02—61 fora=2,...,1,

rk+1(8¢) = 8¢ + Sk1 — Ok forc=k+1,...,1", (3.10)
rké(Sa)=8a+8k£—5k fora=k+1,...,1, '
r;(Sg):(?g—l-S;—Sl fOI‘C:k+1,...,ZN, (311)
ra(8p) =8p + 82— 81 forb=2,... .1 (ifk =1). '

Finally, if the action of a simple reflection r; on a basis element §; is not specified
above, it means that it is trivial:

ri(6;) =68;, otherwise. (3.12)

Note that the second line in (3.11) is present only when k = 1. If k > 1 then r4,

acts trivially on 8 forb =2,...,1".

3.4. The affine Hecke algebra H(R,v). Given R and v as before, we denote by
H(R,v) the affine Hecke algebra associated to the root datum (Q RC Lry, RV C
Homgz (LR, Z)) defined in Section 3.2.

From the general definition of affine Hecke algebras, the algebra H(R,v) is
generated by g;, i € Vertg, and X*, x € Lg,, subject to the defining relations
as recalled in Section 2. We will make more explicit the relations by considering
generators of H (R, v) associated to the basis Bg y of the Z-module Lg .

We define

X, := X% forj e Vertg U{0}.

Since Bg,y is a basis of Lg,, the affine Hecke algebra H (R, v) is generated by the
following elements:

gi, I € Vertg and inl, j € Vertg U {0} .

Due to Remark 2.2, the set of defining relations for H (R, v) can be reduced to a finite
set of relations involving the generators above. We first have the relations involving
only the generators g;, i € Vertg, which are given in (2.2). We also have the relations
involving only the generators X ;, j € Vertg U {0}:

XiX; =X;X; foranyi,j € Vertg U {0}. (3.13)
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Then we have the relations between generators g;,i € Vertg and X, j € Vertgr U{0}.
They are given in a uniform manner by Relation (2.4), where x runs over the basis
elements in B . Using the action of Wy (R) on the basis Bg,, calculated in (3.8)—
(3.12), we give them explicitly. Note that only the formulas in (2.5) are used. First,
corresponding to (3.8), we have:

giXi—1g8i = X;, fori e Vertg. (3.14)

Then, corresponding successively to (3.9)—(3.11), we have:

22Xpg2 = XpXoX{! forb=2,....1, (3.15)
22Xa82 = XoXo X! fora=2,...,1, '
Sk1Xe8kt1 = X X Xt fore =k +1,....,1", .16
gLiXagkglzXanng_l fora=k+1,...,1, '
82Xcg2 = X Xo X7 fore =k +1,...,1", 317
22Xp82 = XpXo X7 forb=2,....0'(ifk =1). '

Again, the second relation in (3.17) is present only if k = 1. Lastly, there are cases
where g; and X ; commute. It happens if and only if r;(§;) = §;. To give the precise
list, let € be the set consisting of pairs (i, j), wherei € Vertg and j € Vertg U{0},
such that:

o first, j ¢ {i,i — 1};
¢ second, (i, j) is not one of the pairs appearing in left hand sides of (3.15)—(3.17).
Then we have:

giXj=X;gi, forany(i,j)e€P. (3.18)
Note in particular that g; Xo = Xog; if i # 1.

Remark 3.2. We will see in the next subsection that the first set of relations (3.14)
occurs inside subalgebras isomorphic to affine Hecke algebras of GL. Vaguely
speaking, the remaining relations (3.15)—(3.18) can be seen as “mixed” relations
expressing how these subalgebras are “glued” together to form H(R,v). Besides,
Relations (3.14)—(3.18) (or equivalently, Relations (3.8)—(3.12)) will be interpreted
combinatorially in Section 6, in terms of an action of the Weyl group on some
combinatorial objects to be introduced later.

3.5. Subalgebras isomorphic to H(GL y +1).

The case R = Ay and v an extremity. Let N > 0. We consider the particular
situation where R = Ay and v is an extremity of the Dynkin diagram (say, v = 1
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in the standard labelling of Fig. 1). In this case, the new labelling of the Dynkin
diagram of Fig. 2 coincides with the standard one:

1 2 N -1 N

In this case, we have {2,....0'} = {k + 1,...,l:”} = @, thatis, !’ = 1 and /" =
k = 1. The ordered basis 84,1 in (3.7) of the Z-module L 4,1 reads

Baya1 = (80,61,....8n),

where 6; = g4 1 + o1 + -+ fori =0,1,..., N. The Weyl group here is the
symmetric group Sx 41 and it acts by permuting the §;’s: the simple reflection r;,
i €{l,..., N}, exchanges §; and §;_1.

With the presentation of the preceding subsection, the algebra H(An, 1) is
generated by elements (to avoid confusion later, we rename the generators: g; ~»> 0;
and X; ~ Y;)

o1, on, YELYEL L YE

and the relations between generators o; and Y; are (Relations (3.15)—(3.17) are not
present here):

0;Yi_10;, =Y%; fori e {1,...,N},
0, Y; =Yjo0; fori e{l,...,N},j€{0,1,...,N}suchthat j £i —1,i.
(3.19)
This algebra is the usual affine Hecke algebras of GL (N + 1) and will thus be denoted
in the following by H(GL y+1).

Distinguished subalgebras of H(R,v). We return now to the general setting of
H(R,v). We use below the general property on parabolic root subdata recalled in
Section 2.

We set:

Pr={1.2,....0}, P={1.2.....0"}, Py:={l... kk+1...1"}.

(3.20)

Let u € {1,2,3}. We consider the following subset of Vertg (i.e. of simple roots)
and the following submodule of Lg ,:

Pu and Zer, P @ Zaj ,

JE€Py
and we denote by #,, the corresponding subalgebra of H(R,V):

Hu = (X5, g . XF (G ePw)). (3.21)
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For u = 1,2, 3, we have that J,, is isomorphic to H(GL, +1), where [, is equal to
[, 1" and [” respectively. The isomorphisms are given on the generators by

H1 = H(GLy11)
00 a=1,....0), (3.22)
X, — Y, (a=0,1,....,1),
Hy = H(GLyp 1)
g1 o1 and gp—>o0p (b=2,....1"), (3.23)
Xg—Y, (@=0,1) and Xp =Y, (b=2,....0,
H3 = H(GL[//+1)
gar> 0, (a=1,...,k) and g, > 0c (c=k+1,....1"), 324
Xa=>Ys (@=0,1,....k) and X+ Y, c=k+1,....1").

3.6. The quotient affine Hecke algebra H (R, v) of H(R, v).

Invariant for the action and quotient root datum. Recall that v is a chosen vertex
of the Dynkin diagram of R, which is labelled by 1 in the new labelling. The
corresponding simple root is oy (in the new labelling that we always use). Let w,
be the fundamental weight corresponding to «;. This is the element of R ®7z Qg
determined by o) (wy) = 1 and &’ (w,) = 0 for i € Vertg\{l}. As an element of
R ®7z QRr, the fundamental weight w, can be written as

1
o = Z ni o, (3.25)

ieVertg

where nj, j € Vertg U {0}, are integers such that ng > 0 and GCD{nj, j €
Vertg U {0}} = 1. We then define:

AR,\, = NnoERy + Z n;o; € LR,v . (3.26)
i€Vertg

Lemma 3.3. (1) The element Ag, € L, is invariant under the action of Wo(R).
(2) The quotient module Lg,/ZAR, is isomorphic as a Wy(R)-module to
QR + Za)v-

Proof. (i) By definition of the fundamental weight w, and its expression (3.25),

we have:
oy neg ifi=1,
fori € Vertg, a-v( Zn,a,) =§ 0

' \ievertg 0  otherwise.

From the action of a;/ on ery set in (3.4), it follows that oziv (ARry) = 0 for any
i € Vertg.
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(ii) We define a Z-linear map ¢ from Lg, to Qg + Zw, by:
eryt>—w, and Lry>a;+—>o; € Or + Zw, (i € Vertg) . (3.27)

As o) (ery) = o (—w,) for i € Vertg, we have that ¢ is an homomorphism of
Wo(R)-modules. Moreover, it is obviously surjective. It remains to check that the
kernel of ¢ coincides with ZApg ,. By construction, we have ¢(Ag,) = 0. On the

other hand, let x := cep,y + ZieVertR ciaj € Lg . We have:

cn; )
¢(X) = —cwy + § cioy =0 &< ¢; = n—l fori € Vertg.
i€Vertg 0

cn;

In particular, it implies that € Z for all i € Vertg, and thus that nC_o € 7

no

since by assumption, we have GCD{n j. J € Vertp U {0}} = 1. We conclude that
c

X = —ARy € ZARy. O
no

Remark 3.4. As v runs over the set of vertices of the Dynkin diagram of R, the
Z-module Q g+ Zw, varies among the set of Z-modules L suchthat Qgp € L C Pg.
The index of Qr in Qr + Zw, is the integer ny appearing in (3.25). We give the
complete list for the values of n¢, depending on R and v (this follows from the explicit
formulas for the fundamental weights, see e.g. [11]);

e Let R = A,. Theindex of Qg in Prisn + land Pr/Qr = Z/(n + 1)Z. Ifv
is the vertex i in the standard labelling of Fig. 1, we have that

n+1

"= GG+ )

In particular, Q g + Zw, is the weight lattice Pg for any i prime ton 4 1. And it
can never be the root lattice Q g since ny is always different from 1.

e Let R =D, (n > 4). The index of Qg in Pgris4 and Pr/Qr = Z/4Z if n is
oddand Pr/QRr =~ Z /27 x Z /27 if n is even. If v is the vertex i in the standard
labelling of Fig. 1, we have

ifi € {3,...,n}andi is even,
ifi €{3,...,n}and i is odd,
ifi € {1,2} and n is even,
itfi € {1,2} and n is odd.

ng =

A0~

Moreover, if n is even, the following three submodules of index 2 of Pgr: Qr+Z w1,
OR + Zw, and QR + Zws are different.
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e Let R=E, (n = 6,7,8). The index of Qg in Pg is, respectively, 3, 2 and 1,
when n is 6, 7 and 8. If v is the vertex i in the standard labelling of Fig. 1, we have
1 ifi =2,4, 1 ifi=1,3,4,6,
R=E5:n0= ll. R=E7:n0= ll'
3 ifi =1,3,5,6; 2 ifi =2,5,7;
if R = Eg then ny is always 1.
So in fact, all Z-modules L with Qg € L C Pp are obtained, with two exceptions,
which are the root lattice when R = A, and the weight lattice when R = D,, and n
is even. We also note that, for a given R, different choices of v can produce the same
Z-modules; for example, in type Eg, the Z-module Q r + Zw, is the root lattice for
any v.

The algebra E(R, v). The Z-module Q g + Zw, satisfies Qr € Qr+Zw, C Pg,
and so, as recalled in Example 2.1, it defines a root datum. We define H (R, V) to be
the corresponding affine Hecke algebra associated to Qg + Zw,.
We set:
Cry = X2Rv e H(R,V). (3.28)
The following is a corollary of Lemma 3.3, where we apply the general setting of
quotient root data recalled in Section 2.

Corollary 3.5. (1) The element CRr, is central in H(R, V).
(2) The quotient of H(R, V) over the relation Cgr = 1 is isomorphic to H(R,V).
It is desirable to express Cg,y in terms of the generators X, j € Vertg U {0},

of H(R,v) that we are using. To do this, we need to decompose the element Ag , in
the basis Br, of Lg,. Recall that

AR,v = noERy + Z n; o,

ieVertg

where n;, j € Vertg U {0} are as explained after (3.26). It is straightforward,
using (3.5), to check that

ARy = ZKij WhereKJ-:nj—Zni, (3.29)
Jj€VertgU{0} j=i—1
and where the sum in the expression for k ; is taken overi € Vertg satisfying j = i—1.
For example, kg = no—ny, k1 =ny—ny—nyifk > landk; =ny—ny—npy—ny
ifk = 1. N
To sum up, the central element Cg , of H(R, v) is given in terms of the generators
by:
Cryv =[] X} . (3.30)
Jj€VertgU{0}

where the powers «; are given in (3.29), and the affine Hecke algebra H(R,v) is the

quotient of H (R, v) over the relation [ [ cver xutoy X }Cj =L
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Example 3.6. Let R = Ay and v = 1 in the standard labelling. The resulting affine
Hecke algebra is H(GLy+1); see Section 3.5. In this case, the application of the
formulas above yields the following expression for the central element:

Caya=Yo¥i.. Yy,

since the fundamental weight w, is given by w, = ﬁ (Nozl +(N-1oz+-- -—|—aN).
So here, the algebra H(An, 1) is the quotient over YoY; ... YNy = 1. Itis the affine
Hecke algebra associated to the weight lattice P4, , or in other words, the affine

Hecke algebra associated to SLy 1.

3.7. An example for type D. Here we work out an example explicitly and show
how to recover in our setting the affine Hecke algebra of type D considered in [12,32].
Let R = D, withn > 4 and v be the vertex n in the standard labelling of Fig. 1. The
new labelling of the vertices of the Dynkin diagram is:

From Section 3.4, the affine Hecke algebra H (R, v) is generated by

*1 *1 *1
gly'--agn—lygn—l and X() 5"‘7Xn—1?Xn—1’

and the defining relations between the g;’s and the X;’s are written explicitly as
follows:

{giXi-18i = XiYi=1,.n—1.  8n=1Xn—2&n—1 = Xn—1, (3.31)

gn—1Xp-18n-1 = Xp1Xn—1X, 5 = gn-1 Xn—18n-1, (3.32)

{giX; = X;gi}i=1,.n—2 . {giX; =X;g i=n—1n1 . (3.33)
]G{O,Jl—l,g}\{l—l,l} j=0 ..... m

The fundamental weight corresponding to the vertex v is, in terms of simple roots,

oy =01+ -+ o+ %(an—l + on-1)
and therefore, the element A g , reads here:
ARy =2¢Ry + 200 + -+ + 2002 + tp—1 + tn—1 = Sp—1 + Sn—1 .
So we obtain that the central element Cr,, € H(R,v) is given here by

Cry = Xn_ng.
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Finally, the affine Hecke algebra H (R, v) is the quotient of H (R, v) over the relation
Xu—1 = X, !,. Thus a presentation of H (R, V) can be given in terms of generators
81,---+8n—1.8n—1 and Xo, ..., X,—1, and the defining relations are (3.31) with

X,—1 replaced l;)(n__l1 and (3.33) (indeed, (3.32) is then automatically satisfied).

As a conclusion, the affine Hecke algebra H (R, v) in this example coincides with
the affine Hecke algebra of type D studied in [12,32] (we indicate that one has to
rename the generators as follows: g,—1 ~ Ty, & ~ Tp—; and X; ~ Xn__1 j).

4. Action and truncated action of the Weyl group on sequences

We fix R and v as in the preceding section. We defined a free Z-module Lz, on
which the Weyl group Wy(R) acts, with ordered basis

Bry = (50,51,...,...,5,, 830 500, ak;ls,:) . @.1)

We recall that the ordering of the elements of Bg, is relevant . The action of
the simple reflections r;, i € Vertg, on the basis elements is given explicitly in
(3.8)—(3.12).

4.1. Sequences and truncated operators. We define Seqp , := (C (q)x)lvenRPrl
and we label the elements of a sequence S € Seqg, in the following way, in
accordance with the labelling of elements of the ordered basis Bg y:

S = (so,sl,...,...,sl, $2, ..., 80, Sk+1,---,511)- 4.2)

We will use the notation c¢;(S) := s; for j € Vertg U {0}. It will be sometimes
visually convenient to write a sequence S € Seqg , as an array as follows:

Sk+1, .- Y|

52 Sk
S0, 51, 52 T : (4.3)

S22, .., N -

Truncated operatorsr;,i € Vertg, onsequences. We recall from Section 2.3 that
the choice of the ordered basis 8r, of Lg, determines a bijection between the set
of characters Hom(L Ruws (C(q)x) and the set Seqg . The labelling of elements of a
sequence S € Seqg , was made such that the corresponding character y s is given by

xs(X%) =c;(S), forj € Vertg U{0}.

The Weyl group Wy (R) acts on Ly, and in turn on characters of L g, . Namely,
for y € Hom(Lg,v, C(¢)*) and w € W (R), the character w(y) is given by

w((X*) = X(Xw_l(x)) , forx eLgy.
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Definition 4.1. Let S € Seqp , corresponding to the character ys of Lgy.
(i) For w € Wy(R), we define w(S) to be the sequence in Seqg , corresponding
to the character w(ys).

(ii) Let 0 be a symbol. For i € Vertg, we define the truncated operator r; on
Seqg,, U {0} by:

0 if ¢;(S) = ¢T2¢ci_1(S) ,
7(0):=0 and T;(S):= fei(S) =71 8). 4 4
ri(S) otherwise.
We note that, for any aq, ...,a, € Vertg and S € SeqR,v, we have by definition:
Tay - Tay(S) #0 = Tg,...74,,(S) =ra, ...74,(S). 4.5)

4.2. Properties of truncated operators and truncated orbits.
Lemma 4.2. Leti, j € Vertg and S € Seqg . We have

() _ ci(ri(8)
ci-1(8)  ci—1(r;(8))
ci(r; (S c;(ri (S
(580 _ ens) wn
ci1(rj(8))  cj—1(ri(S))
Proof. Leti, j € Vertg and let § € Seqg . Let x5 be the character corresponding
to S. We recall that §; — §;_; = «;. Therefore, by definition, we have

ifmij =2, (4.6)

ci(S) o
= xs(X%).
ci—1(S)
The lemma then follows from the fact that r; (;) = «; if m; ; = 2 and rj(o;) =
r,'(ozj) ifm,',j = 3. O

Proposition 4.3. Let i, j € Vertg and S € Seqg . We have:
@ ifmi; =20 Tirp(§) #0 = 0&{r;(S), 7 (S)};
(i) ifmij =3 TrTi(S) #0 = 0¢{7;(S). 7i(S), 7ir;(S), 757 (S)} .

Proof. (i) Assume m; j = 2. From the definitions, we have 7;7; (S) # 0 if and

e ci(ri(8)) 42 . . .
only if 7;(S) # 0 and —————~ # ¢~ ~. The assertion of item (i) follows then
ci—1(rj(S))
from (4.6).
(ii) Assume m; ; = 3. From the definitions, we have 7;7,7; (S) # 0 if and only
if

i(rjni(S) , xo
ci—1(rjri(8))
From (4.7), the last condition is equivalent to 7 (S) # 0. Moreover, it also follows

from (4.7) that, if 7; (S') # 0and7;(S) # 0,then7,;7;(S) # 0 & 7;7;(S) #0. O

7i(S)#0 and 7;7;(S)#0, and
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As a consequence of the proposition, we obtain that the braid relations are satisfied
by the truncated operators.

Corollary 4.4. The operatorsT;, i € Vertg, on the set Seqg , U {0} satisfy:

FirjTi... = T;rirj... fori,j € Vertg withi # j . 4.8)

m;; terms m;; terms

Proof. By definition, the braid relations are satisfied by the operators r;, i € Vertg,
on Seqg - Due to the remark (4.5) after Definition 4.1, it remains to check that, for
any i, j € Vertg withi # j, we have

7iriri... 8)=0 & 7,;17;... (§)=0. 4.9)
N — —
m;; terms m;j terms
This is an immediate consequence of Proposition 4.3. O

Truncated orbits of sequences. For any element w € Wy(R) in the Weyl group,
let w = rgq, ...rq, be areduced expression for w in terms of the simple reflections
ri,i € Vertg. We then define

W =Tg ...Tay,

Due to Corollary 4.4, the element w does not depend on the reduced expression
chosen for w. By convention w := IdSeqR’VU{O} ifw=1.

Definition 4.5. For S € Seqp ,, we define
Os :={S’ €Seqg, | $" = W(S) forw € Wy(R) },

and we call Og the truncated orbit of S .

Note that by definition § € Og and 0 ¢ Os. Moreover, we have, for § € Seqg ,
and w € Wy(R),
W(S) #0 — w ' (w(S))=S5:

this is immediate from Definition 4.1 if w is a simple reflection, and in general,
it follows at once by induction on the length of w. As a direct consequence, for
S.8’ € Seqp,,. we have either O5 = Qg or Os N Og = .

Remarks 4.6. (i) For § € Seqp , the truncated orbit O is a subset of the orbit
of S under the action (not truncated) of Wy(R). More precisely, the Wy (R)-orbit
of § is partitioned into truncated orbits. In particular, the truncated orbits are finite
sets, namely, |Os| < |Wo(R)| for any S € Seqg

(ii) The truncated orbit O of a sequence S € Seqg , as defined in Definition 4.5
coincides with the set of all S’ € Seq Ry Which can be obtained by repeated
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applications of the truncated operators 7;, i € Vertg. In other words, an alternative
definition of Og could be

Os = {S’ €Seqr, | 8" =T7a4,...Tq,(S)form >0anday,....am € VertR}.
This is a direct consequence of Corollary 4.4 together with the fact that if
7i(7i(S)) # 0
thenTi(T,-(S)) =S.

4.3. Explicit formulas for the action of Wy(R) on sequences. The action of the
simple reflections r;, i € Vertg, of the Weyl group Wy(R) on a sequence S can be
read off directly from Formulas (3.8)—(3.12). For complete explicitness and due to
their central role in the rest of the paper, we write down the formulas.

Let S € Seqg , written as an array as in (4.3) and let i € Vertg. The sequence
ri (§) is given by the following procedure:

 First, in S, we exchange s; and s;—;. The resulting sequence is r; (S') whenever i
is not one of the following label: 2, 2, k + 1, k + 1.

e Now, if i € {2, 2, k + 1, k + 1}, it means that the sequence, in the array

representation (4.3), “ramifies” after s;_; (we read a sequence from left to right).
Then the rule to calculate r; (S) is as follows. We still exchange s; and s;_;. Then
after the ramification, in the branch which contained s; nothing more happens,
while all coefficients in the other branches, after the ramification, are multiplied
by i .

Si—1

We show explicitly the outcome of the above procedure, when i € {2, 2, k + 1,
k + 1}. For clarity, we consider first the situation k > 1. Then we have:

Sk+1, .- ey, 8]
S1, e Sk »
r2(8) = | s0.52. §, 5 Skls woon S .
—S82, ..., —Sp
s1 S1
(4.10)
ra(S) =
§2 S2
= . =5
Sgs S;s 51 k+1 > s Sll
50,52, 51 25 e ceey 51 ks S%S S;S ,
—Sk+1, ---5 TSI
S r— s ——
R P 17 1 1

4.11)
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rk+1(8) =

Sk ]
S0,81, 520 --- cees Sk41 Sk+1 Sk+1

4.12)

and rg41(8) is similar to (4.12), by exchanging the role of {k + I,...,/} and
k+1,....017.
If k = 1 the situation is more symmetrical. We have :

51, e, S
52 52
r(S)=1s0,82, 52> - TSI (4.13)
2 - 0’ 2 Sl: Sl: ) .
S2 52
—S52, ... ey —Sy
S1 S1

and r,(S), r2(S) are obtained similarly, by permuting the role of {2,...,/},
2,....1} ancf{%,...,l:”}.

5. Classical placed skew shapes and tableaux

In this section, let N € Z.. We define the combinatorial notion of placed skew
shapes and their associated tableaux. We note that we use the short terminology
“tableaux (of size N)” for tableaux associated to placed skew shapes (of size N).

5.1. Definitions.

Skew diagrams. Let A - N be a partition of N, thatis, A = (A1, ..., ;) is a family
of integers suchthat A.; > A, > ---> A; >0and A; +---+A; = N. We say that A
is a partition of size N and set |A| := N.

A pair (x, y) € Z? is called a node. For anode # = (x, y), the classical content
of 0 is denoted by cc() and is defined by cc(6) := y — x .

The (Young) diagram of A = (41,...,A;) is the set of nodes (x, y) such that
x e{l,...,l}and y € {1,...,Ax}. The diagram of A will be represented in the
plan by a left-justified array of / rows such that the j-th row contains A; nodes for
all j = 1,...,] (a node will be pictured by an empty box). We number the rows
from top to bottom. We identify partitions with their diagrams and say that (x, y) is
anode of A, or (x, y) € A, if (x, y) is a node of the diagram of A.
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A skew partition consists of two partitions y, A such that, as sets of nodes, y C A.
We denote it by A/u. The skew diagram of A /u consists of the sets of nodes which
are in A and not in u. For example,

is the skew diagram corresponding to A/ with A = (4,4,2,2) and u = (3,2). We
sometimes put dots at some empty positions and we mark with x the point in Z? with
coordinate (1, 1) (we omit the symbol x only when u is empty and when the top left
box is in position (1, 1), which corresponds to a usual diagram). It will be convenient
to also call a skew diagram any set of nodes (possibly with non-positive coordinates)
which is the translated of a skew diagram along the diagonal. The size | S| of a skew
diagram S is the number of nodes in S.

The connected components of a skew diagram S are the minimal subsets of nodes
Ci,...,Cs C Ssuchthat S = CyU---UC, (disjoint union) and two nodes ¢; and 6
do not lie in the same diagonal nor in adjacent diagonals if 6; € C; and §; € C;
with i # j. In the example above, the skew diagram consists of the two connected

components EH and HH .

We say that two skew diagrams are equivalent if one is obtained from the other by
translating some connected components along the diagonal. For example, we have

— X e e e . —

and

Placed skew shapes. Let g be an indeterminate.

A placed skew diagram I' consists of an integer d € Z~¢, a d -tuple of non-empty
skew diagrams I';, ...,y and a d-tuple of elements y1,...,ys € C(g)\{0} such
that y; # q?%yj forany i # j anda € Z. We write T = {(Fl,yl),...,(Fd,yd)}.

A placed skew diagram I' = {(Fl, Y1), ..., (L4, yd)} will be represented by a
d-tuple of skew diagrams I'y, ..., 'y with each place y1, ..., y; written above each
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corresponding skew diagram. The size |I'| of the placed skew diagram T is the total
number of nodes, that is, |I'| = [';]| 4+ -+ + |['y|. For example,

Y1 V2

« [+ [

L] L

represents a placed skew diagram of size 7.

We say that two placed skew diagrams of the form {(I"y, y1)} and {(I'1, y])} are
equivalent if y| = y1¢>* for some a € Z and I'; is equivalent (as a skew diagram)
to the translated of I'y by a steps to the left if a > 0, and by —a steps to the right if
a < 0. For example, we have

Y1 V19~
‘ ~ ‘ ~ x - , (5.1

where we noticed that, by equivalence under translation along the diagonal, translating
a skew diagram to the left is equivalent to translating vertically downward. Note also
thatif y; = y| then {(I'1,y1)} and {(T'}, y1)} are equivalent if and only if I'; and I'}
are equivalent as skew diagrams.

Then two placed skew diagrams

{Ty). . Ca v} and {(TLyD. .. (T va))

are said to be equivalent if d = d’ and there is some permutation 7 such that

{Ta.va)} ~ {Tra) V)

fora = 1,...,d. Note that the size of placed skew diagrams is conserved by the
equivalence relation.

Definition 5.1. A placed skew shape (of size N ) is an equivalence class of placed
skew diagrams (of size N).

Tableaux. A placed node is a pair (6, y), where § € Z?isanodeandy € C(q)\{0}.
A placed skew diagram can be seen as a set of placed nodes. A placed skew shape
can also be seen as a set of placed nodes, up to equivalence as described above.

A tableau (of shape I') is a bijection between the set of placed nodes of some
placed skew shape I' and the set {0, 1,..., || — 1}. Tt is represented by filling the
placed nodes of the skew diagrams representing I' by numbers 0, 1, ..., |[T'| — 1. The
size |T| of a tableau T is the size of its shape.
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Remark 5.2. One could define a tableau as a filling of the placed nodes of a placed
skew diagram. Then our notion of tableaux corresponds to considering this definition
up to equivalence, the equivalence being naturally induced from the equivalence of
placed skew diagrams (the nodes are translated with their numbers in them). We
will in all the paper consider placed skew diagrams and associated tableaux up
to equivalence, very often without mentioning it anymore. For example, all our
graphical representations of tableaux in later examples are to be considered up to
equivalence.

A tableau is standard if the numbers ascend along rows and down columns in
every skew diagram. The notion of being standard or not for a tableau is well-defined
since compatible with the equivalence relation on placed skew diagrams.

The g-content, or simply the content, of a placed node 8 = (0,y) is
c(0) = yq*>*® = yg20=) where # = (x,y). Let T be a tableau and, for
i =0,1,...,|T|—1,1et 8; be the placed node with numberi. We setc;(T) := c(8;)
fori =0,1,...,|T| — 1. The contents c;(T) are well-defined since, for a placed
node of a placed skew diagram, its content is conserved by the equivalence relation
of placed skew diagram (see example (5.1)).

We call (Co(T )....cir—1(T )) the sequence of contents of 7 and denote it by
Seq(T). For example, the tableau

Y1 V2

X . l ’
[o]2]5s

6]

[&]w

is standard and its sequence of contents is

Seq(T) = (y19™ 2, y1q*. v1. v2. v247 % 14>, v24°).

For a placed skew shape I', we denote by STab(I") the set of standard tableaux of
shape I', and we set

STab(N) := {standard tableaux of size N} .

5.2. Standard tableaux and sequences of contents. Recall that Seq := (C (q)X)N.
We recall the following characterization of standard tableaux in terms of their
sequences of contents and we sketch a proof (see, for example, [26, Lemma 2.2
and parts of Theorem 4.1]).

Proposition 5.3. The set STab(N) is in bijection with the set of sequences
(ai,...,an) € Seqy satisfying:

Joranyi,j =1,...,N withi < j,
ifa; = aj then{a;q*,a;q >} C{ait1,...,a;-1}.

(*)
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Proof. We define a map ¢ from the set STab(/N) to the set Seq, by
STab(N) > T +—— Seq(T) € Seqy - (5.2)

For any T € STab(N), the sequence ¢(T) satisfies Condition (x) because the
following configurations DD , EH and B:‘ can not appear in a skew diagram

i1 ]i2

and because, in a standard tableau, whenever appears, we must have i; <

i3 | is

i2, i3 < i4.

Next, we construct by induction on N a map y from the set of sequences in Seq
satisfying Condition (%) to the set STab(V) such that i o ¢ and ¢ o i are identity
maps.

a
Let N = 1. We define ¢ by mapping a; € C(g)™ to the standard tableau { }
1

We obviously have that ¢ o ¥ is the identity map and moreover that ¥ (a;) is the
unique element of STab(1) with sequence of contents (a;). Therefore, we also have
that i o ¢ is the identity map of STab(1).

Now we fix (ai,...,an) € Seqy with N > 1 satisfying (x). Assume by
induction that we have a unique element T N-1) ¢ STab(N — 1) with sequence of
contents (ay,...,any—1). We construct below a standard tableau T such that T is

obtained from 7V~ by adding a placed node with the number N in it and with
content ay. We treat several cases. For each case, it is straightforward to check
that T is the unique element of Tab(N ) with the required property. This implies, by
induction hypothesis, that T is the unique element of STab(N ) with content string
(ay,...,an). Then, setting ¥ (ay,...,ay) := T, we conclude that y o ¢ and ¢ o Y
are identity maps.

Case (1) Assume that, foranyi = 1,..., N —1,wehavea; ¢ {¢ %ay,an.q?an}.
To construct T, we add a new connected component in one of the diagrams
of TV ifay = g?ba; forsomei € {1,...,N — 1} and some b € Z; otherwise

an
wesetT=T(N_1)U{ }
Case (2) Assume that there are some i, j € {1,..., N — 1} such thata; = ¢ 2an
anda; = g?ay. We choose the largest i and j with this property. Then one of the

diagrams of T (V=1 ¢ontains a part of the form n , where there is no box in the

position marked by the dot. To construct T, we add a placed node with number N in
the position marked by the dot.

Case (3) Assume that, for any j € {l,...,N — 1}, we have a; # g*an, and that
there is some i € {1,..., N — 1} such that @; = g 2ay. Then, by Condition (%),
we have a; # ay for any j € {l,...,N — 1}. We claim that we can assume
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that T @ =D contains a part of the form - - , where there is no box above @ in the
@ .

same column and no box in the next column to the right of [i]. Indeed, as a; # ay
forany j € {1,..., N — 1}, the positions just above i |and just to the right of [ | must
be both empty. In turn, as T (V=1 js a tableau, every position above [i | in the same
column must be empty as well, and so must be every position below the line of [ |in
the column right to it. As moreover a; # g?ay forany j € {1,..., N —1}, we have
that, if there is a box, say , in the next column to the right of @ then it must lie
not lower than the second line above [i]. Therefore we can translate the connected
component containing | ¥ | one step to the south-east and thus we have T (N=1) of the
desired form. Finally, to construct T, we add a placed node with number N in the
position just to the right of | i | in the same line.

Case (4) Assume that there is some i € {1,..., N — 1} such that a; = g?ay, and
that, for any j € {1,..., N — 1}, we have a; # q~2ay. This situation is equivalent
to Case (3) by reflection through the main diagonal. O

Corollary 5.4. Two standard tableaux are the same if and only if their sequences of
contents coincide.

5.3. Calibrated spectrum of H(GL x+1). We consider the affine Hecke algebra
H(GLy+1) (corresponding to R = Ay and v an extremity); see Section 3.5. We use
the ordered basis B4,,,1 = (80, 81,....dn) of the Z-module L 4,1 to describe the
calibrated spectrum. As explained in Section 2.3, given the basis 84,1, a character
in the calibrated spectrum C—Spec(H (GL N+1)) is identified with a sequence of
eigenvalues in C-Eig(B4,,1) C Seqy ;-

We have the following description of the calibrated spectrum of the affine Hecke
algebras H(GL y+1) proved in [26] (see also [3,4]). We will use it as a first step to
prove a generalisation for general (R, v) in Section 7.2.

Theorem 5.5. The calibrated spectrum C—Spec(H (GL N+1)) is in bijection with the
set of standard tableaux of size N + 1. More precisely, we have

C-Eig(Bay,1) = {Seq(T) | T € STab(N + 1)} . (5.3)

The inclusion from right to left follows from an explicit construction [26] of
calibrated representations of C(q)H(GLN+1). This construction is going to be a
special case of the construction in Section 7 for arbitrary (R, v). A proof of the other
inclusion can be found in [26, “Step 4” of the proof of Theorem 4.1].
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6. Tableaux of type (R, v) and admissibility

In this section, we come back to our general setting, where we fix R and v as in
Sections 3—4.

6.1. Tableaux of type (R,v). Let T be a tableau of size N + 1 and m €
{0,1,...,N}. We denote by T ¥ the tableau of size m + 1 obtained from T by
keeping only the placed nodes containing 0, 1, ..., m.

Definition 6.1. A tableau of type (R, V) is a triplet (T 1, T 2, T 3) such that:

e Ty, T, and Tj; are tableaux of size, respectively, [ + 1,1’ + 1 and {” + 1;

o Tfl and T%l coincide;

T fk and T i’k coincide.

A tableau (T'1,T,, T 3) of type (R,v) is standard if T 1, T, and T 3 are standard.

We set:
STab(R,v) := {standard tableaux of type (R, v)} .

For a tableau T = (T 1, T», T 3) of type (R, V), we define the contents of T as

follows:
ca(T) :=c¢c4(TH), fora=0,1,...,1,

ep(T) :=cp(T2), forb=2,....1, (6.1)
ce(T) :=cc(T3), forc=k+1,...,1".

We define the sequence of contents T, and denote it by Seq(7), to be the following
ordered collection of the contents of T':

(co(T),cl(T),...,...,cl(T),c;(T),...,CL/(T),ckH(T),...,CLL(T)) . (6.2)

Thus, the sequence of contents Seq(7T') is naturally a sequence in Seqg , as defined
in Section 4. In particular, if S = Seq(T'), then we have c;(S) = c;(T) for any
j € Vertg U {0}.

Graphical representation. We will represent a tableau T = (T 1, T 5, T 3) of type
(R, v) by a triplet made of the usual representations of T, T and T 3 with the
following convention:

e in T 1, the numbers in the placed nodes are denoted 0, 1, ... .k, k +1,...,[;
 in T 5, the numbers in the placed nodes are denoted 0, 1,2, ...,1’;

* in T 3, the numbers in the placed nodes are denoted 0, 1, ...k, kK +1,... l:”

With this convention and according to Definition 6.1, if two placed nodes of T contain
the same label, they coincide. Thus, for any j € Vertg U {0}, the content c;(T') is
the content of the placed node of T containing the label ;.



404 L. Poulain d’Andecy

Remarks 6.2. (i) Assume that we have {2,...,]'} = @, thatis, I’ = 1. By
definition, T, is completely determined by T 1, namely T, = T fl. In this situation,
we will omit to represent T 5.

(i) Similarly, assume that we have {k +1,...,1"} = @, thatis!” =k =[. In
this situation, T3 = T by definition and we will omit to represent T 3.

(iii) Assume that we are in the GL y 41 situation, that is, R = Ay and v is an
extremity of the Dynkin diagram. Then both assumptions of items (i) and (ii) are
satisfied, and a tableau of this type is simply a tableau as in Section 5.

6.2. Action of Wy(R) on STab(R, v) and admissible standard tableaux. Let

S = (so,sl,...,...,s;, §2, ..., 80, sk+1,...,sM) € Seqpg.y-
We define
Sll=(S0,S1,...,S]), S21=(S(),S1,S;,..., L/),
(6.3)
S3 1= (80,51 Sk>Skt1s---,517),

and call them the substrings of §. Note that they appear naturally in the array
representation (4.3) of §'.

Assume that the sequence § is a sequence of contents § = Seq(7'), for a tableau
T = (T,T,, T3)oftype (R, v). Then, the substrings S 1, S », S 3 are, respectively,
the sequences of contents of the tableaux T |, T, T 3. According to Proposition 5.3
and Corollary 5.4, we have:

* asequence S € Seqg, is the sequence of contents of a standard tableau of type
(R,v) if and only if the three substrings S 1, S5, S 3 satisfy the Condition (x) of
Proposition 5.3;

* a standard tableau of type (R,v) is uniquely characterised by its sequence of
contents.

From now on, we very often identify a standard tableau T of type (R, v) with
its sequence of contents Seq(7') € Seqg,. Recall that we have, for i € Vertg,
operators r; and truncated operators 7; on Seqg,. We will abuse notation and
write r; (T') and 7; (T') instead of r; (Seq(T)) and7; (Seq(T)). We will also write O
for Oseq(r) and call it the truncated orbit of 7.

We stress that, by definition, r; (T') (and 7; (T ) if not 0) is a sequence in Seqg . It
does not have to be a sequence of contents of a tableau of type (R, v), and in general,
it is not. Therefore, we make the following definition.

Definition 6.3. A standard tableau T € STab(R, v) of type (R, v) is called admissible
if its truncated orbit @7 only consists of sequences of contents Seq(7T’) with T’ €
STab(R,v). We set:

ASTab(R,v) := {T € STab(R, v) such that T is admissible} .

If T € STab(R,v) is admissible, then @7 is called an admissible truncated orbit of
type (R, v).
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The action graphically. The action of the operators r; (or7;),i € Vertg, onatableau
T = (T,,T,, T3)oftype (R, V) is interpreted graphically as follows. This is a direct
reformulation of the explicit action given in Subsection 4.3. Let u € {1,2,3}. To
give how T, is transformed by the action of r;, there are three different situations to
consider:

e If T, contains two placed nodes containing respectively i and i — 1, then they are
exchanged.

e If T, contains neither a placed node containing i nor a placed node containing
i — 1, then nothing happens in T ,,.

e If T, contains a placed node containing i — 1 but no placed node containing i,
then, first, the placed node with i — 1 moves to the diagonal with content ¢; (T );
second, all the placed nodes o with numbers greater than i — 1 move such that
each ratio c(a)/c;—1(T') (i.e. the axial distance) is conserved.

Note that the third situation only occursif i € {2,2,k + 1,k 4 1}.

Finally, we note that the procedure above gives 7; (T') when it is different from 0,
and moreover, it is very easy to determine when 7;(7T) = 0: this happens if and
only if the placed nodes containing i and i — 1 are in adjacent diagonals in the same
diagram.

Remark 6.4. Starting from T € STab(R,v) and its graphical representation, we
note that there is no ambiguity in the graphical representation of r;(T) if the
sequence r; (T) corresponds again to a standard tableau of type (R,v) (because
then it corresponds to a unique one, as recalled earlier). If r; (T') is not a sequence of
contents of a standard tableau of type (R, v), we can still interpret it and draw it as a
sequence of placed nodes but there is no canonical way to do it (because fixing the
content of a placed node only fixes the diagonal to which it belongs). In this situation,
this ambiguity is not important since only the fact that r; (T ) does not correspond to
a standard tableau is relevant and this is easily seen from any representation of r; (T')
(see examples below).

6.3. Examples of tableaux and truncated orbits.

(a) R = A, and v = 1 in the standard labelling. This is the situation correspond-
ing to GLy, 4+ as in Section 3.5. The Weyl group is the symmetric group S,+;. We
already noted in Remark 6.2 that, in this situation, a tableau of type (R, v) is a usual
tableau (of size n 4 1) as in Section 5. For any i € Vertg = {1,...,n}, the action
of r; on a tableau T is given simply by exchanging the placed nodes with number i
andi — 1.

In this particular situation, the shape of a tableau remains invariant under the
action of the Weyl group S, +1. Recall that, given a placed skew shape T, the set
STab(T') is the set of standard tableaux of shape I'. The following is a reformulation,
in our setting, of classical combinatorial properties of tableaux.
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Proposition 6.5. Let I be a placed skew shape and T € STab(I'). We have:
Or = STab(T') .

In particular, every standard tableau is admissible and the admissible truncated
orbits are parametrised by placed skew shapes.

Proof. Let T be a placed skew shape of size n + 1 and T a standard tableau of
shape I'.

Let w € Sp,41 such that w(T) # 0. We need to prove that w(T) is standard
(it is obviously a tableau of shape I'). Assume that this is not true. Write
w(T) = Tq,, -..Ta,(T), where 14, ...7q, is a reduced expression of w in terms
of ry,...,ry. Take p suchthatr,, | ...74,(T)is standard and 7, ...74, (T) is not.
ThenTy,_, ...74, (T) is a sequence satisfying Condition () in Proposition 5.3 and
Ta, .--Ta,(T) is not. This is possible only if ¢4, (T) = qizcap_l(T). However,
this implies 7, ... 74, (T) = 0, and in turn w(7T') = 0, which is a contradiction.

Now let T’ € STab(T"). It remains to show that T’ € @r. We will use induction
on n. If n = 0 this is immediate. Assume that n > 0. Let # (respectively, 0")
be the placed node of T (respectively, T') containing n. As T is standard, # must
be the rightmost node of its line and the lowest node of its column, and similarly
for @’. In particular, # and @’ can not be in adjacent diagonals, and therefore
c(0') # q*2c(0). Recall that T ¥7=1 denotes the standard tableau of size n obtained
from T by removing @, and T"V"~! the one obtained from T’ by removing 6’

e« If @ = 0’ then TV"! and T"V"~! are of the same shape and, by induction
hypothesis, there is w € S, such that w(T¥"~') = T"¥"~!, and in turn such that
w(T)=T'.

e If @ # 0’ then we proceed in three steps:

— First, note that @’ is a placed node of T =1 Which is the rightmost node of its
line and the lowest node of its column. So there exists a standard tableau of
the same shape than T =1 withn —1in 6’ By induction hypothesis, we can
obtain it from 7V} by applying w; for some w; € Sj,.

— Then, inw; (T), the number 7 is contained in @ andn—1in@’. So7,w;(T) # 0,
and in 7, w; (T'), the number 7 is contained in 6.

— Finally, 7,,w; (T)¥*~! is of the same shape than T’ ¥"=1 and therefore, by

induction hypothesis, we have T = uTz(TnuTl (T)L”_l) for some w, € S,,.

We conclude that T' = w, 7wy (T).

This concludes the verification of @y = STab(I') and the proof of the proposition.
O
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(b) R = D,, (n = 4) and v = 1 in the standard labelling. The new labelling of
the vertices of the Dynkin diagram is (with [ = n — 1):

1

3

For n = 5, we show two examples of standard tableaux of type (R, V):

§ Y1
x - [2]3]
[o]1]4

where 1,2 € C(g)* are two places, and so satisfy by definition y, # y;¢?“ for
any a € Z. The associated sequences of contents are

4 qu )/16] 4 qu » Y2
g > yungt. T, and | y1.714% r14”,
719 ¥14°

Ex

V1 V1 V2 V1
3

Let n = 4. We note that we are in the setting of the example in Section 3.7.
We show graphically an example of a truncated orbit of an element of STab(R, v),
which turns out to be admissible (see also Example 8.6). To save space, we omit to
indicate the place y;, which is constant here, and we omit the curly brackets. The
non-indicated actions of 71,72,73,73 give 0.

( :

o) < (eef™ o) = (6™ i

¢73 ¢_2

(6570 2 (™ 70
(6™ )

73

llw |
SN——

o [ =

( x - [ofi]2]3] < -[of1]2] )

X
3
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()R =E, (n=6,7,8) and v = 3 in the standard labelling. The new labelling
of the vertices of the Dynkin diagram is (with [ = n — 2):

2 1 2 3 l

|lw

We show an example of a standard tableau of type (R, v):

Y1 Y1
~(lgge ) {g

The associated sequence of contents is

Y1
0 1@}

L a2 ndt
Seq(T) = y1.ng™ 719~y e :
viq

The substrings are S1 = (y1,v19%. y197 2, v19*. v1), S2 = (y1,¥14%. y1¢~2) and
S3 = (y1. 192, y197 2, y19*) and they satisfy Condition (%) of Proposition 5.3.

We show graphically the action of the operators 7;, i € {2,3,4,2,3}, on the
element T considered above (71 (T') = 0). In every tableaux below, the node with 0
has coordinates (1,1). Again, the place y;, which is constant here, and the curly
brackets are omitted. As can be seen graphically, 7> (T') is a sequence of placed nodes
which is not a tableau. Therefore, the truncated orbit @7 is not admissible (and thus
neither are the standard tableaux appearing in it).

o
N

3] [o] 2@
). ). BIT)- . [0
i

7N /'

2f) &
’ = < ’
2 2|3

/T [ZAN

o] [o]2]  [o]
1], [o]1]2] I EIR FY R Y
3 [2]4

=

<
I

=)
—_
IS

NE
N

A
[SE -]
N
w
NE
=
(=]

=
[ofi[2]4] .

[m]o
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In terms of sequences, we have:

Seq(T) =

4 —4
2 viq . Y1 ) _ —6 Vi, Y14
(yl,qu{m g ) — ()/1,)/161 e .y ) :

_ 1
Y14 2 )/1¢I2

and, in T;(Seq(T)), the substrings

1. v19 2 q v vig™ and (1,172 7178 m)

do not satisfy Condition (x) of Proposition 5.3 and therefore do not correspond to
any standard tableau.

(d) R = A3 and v = 2 in the standard labelling. In the following examples, we
exhibit phenomenons which were obviously not present in the classical situation of
GL,+1 (example (a)). Namely, we first show in an example that the values of the
places have an influence on the size or the admissibility of a truncated orbit. In a
second example, we show an admissible standard tableau T such that r; (T') = r;(T)
for different 7, j.

The new labelling of the vertices of the Dynkin diagram is:

* ——————0
2 1 2

We take two places y1, 2 € C(g)* so that, by definition, y, # y1¢% forany a € Z.

Consider the sequence S = (yl, Y1972, vz ) (it corresponds to a standard tableau
V2

of type (R, v) shown below). We have:

o V2 T2 yiq—?
S =|rirq ", ~— |yva, D5,
V2 Y1 Y24

Assume first that y; 'y2 ¢ {y14*%, y2q**}acz, which is equivalent, by assumption
on y1, Y2, to y» # £y1q® for any a € Z. Then, a new place is created, and a
graphical representation is:

ooy noory\ o ooy ooy Vs
7 efig o) (g ol oo
1]
In this case, it can be checked that this is part of an admissible truncated orbit
containing 12 elements.
Now assume that y, = £y;¢4¢ for some a € Z (a is odd if y» = y14%). Then

Y1 1 y22 = y1¢** and therefore, in this situation, no new place is created. Instead, the
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placed nodes with 2 has to move in the diagram with place y;. Below, we only show
how the second tableau (with numbers 0,1,2) is transformed by 7, in the situation,
respectively,a = —2,a = —1,a =0anda = 1.

{Vl V2 Y1 Y2 Y1 V2 Y1 V2
ORI T T T B TS
2]

We see at once that we have a non-admissible situation for ¢ = —1. It can be
checked, as before, that for any other values of a, we have an admissible truncated
orbit. However, now, the truncated orbit still contains 12 elements if and only if
a # —2,0. If a = 0 then the truncated orbit contains 6 elements while if ¢ = —2
the truncated orbit only contains 3 elements.

Indeed, we have in general

-1,2.2
— V1 V24
r2(8) = | v1. 72, ! 32
Y14
and so it coincides with7,(S) if @ = —2. We write the truncated orbit whena = —2,
that is when y, = —y;¢ 2 (The non-indicated actions of 71 , 72,72 give 0):
_2 _qu_Z 2,72 _2 qu—Z T — qu_z
Yi."14q | ~— Y1,—N9q o] < "9 "Y1 5
—Y1q viq viq

7. Construction of representations of H(R, v) and H (R, V)

7.1. Representations of H(R,v). We recall that the generators of the affine Hecke
algebra H(R,v) are g;, i € Vertg, and X;—’l, j € Vertg U {0}.

Let @ be an admissible truncated orbit in Seqg,. By Definition 6.3 of
admissibility, the orbit (@ consists only of elements of the form Seq(7T) with
T € STab(R,v); we identify T and Seq(T).

Let Vp be a C(g)-vector space with basis {vr }reco and set vg := 0. We define
linear operators g;, i € Vertg, and XJ“.—LI, j € Vertg U {0}, on Vg by setting, for any
T €0,

Xj(vr) =c;(T)vr, forj € Vertg U{0}; (7.1)
o (g=qHe(T) qci(T)—q 'ci—1(T) .
SO =0 e T e —aa) @ forie Vﬁ(’;t’;)

Note that ¢;(T') # ¢;—1(T) forany T € STab(R, V).
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Proposition 7.1. Formulas (7.1) and (7.2) define a representation of C(q)H (R, V)
on V.

Proof. We shall check that the defining relations of the algebra H (R, v) are satisfied
by the operators g;,i € Vertg, and X fl, j € Vertg U {0}, on V. First note that the
commuting relation X; X; = X; X; forany i, j € Vertg U {0} is obviously satisfied.
Note also that the operators X;, j € Vertg U {0}, are invertible since c;(T) # 0
for any 7 € STab(R,v). We organize the remaining verifications in three steps.
To save space, we denote during the proof CJT- :=c;(T) forany T € O and any
j € Vertg U {0}.

1. Recall the subalgebras #,, u = 1,2,3, of H(R,v) defined in Section 3.5
which are isomorphic to H(GL y) for some N. We consider first a defining relation
of H(R,v) involving only generators lying inside one of these subalgebras .
Let T € O. Then Formulas (7.1)—(7.2) only involve the contents of the standard
tableaux T, inside T and moreover, they coincide with the known formulas for
the representations of H(GL,) given in [26]. We conclude that we already know
that such defining relations are satisfied on V. In particular, this takes care of the
relations g7 = (¢—q~')gi +1fori € Vertg,and g;g,; g = g;gig; fori, j € Vertg
such that m; ; = 3. Therefore we do not repeat the calculations necessary to check
these relations (instead, we refer to [26]; see also [1,9] for similar calculations).

2. Now we will check the defining relations involving only generators g;, i €
Vertg. Due to step 1, it is enough to check the ones which are not already relations
inside one of the subalgebras J,,, u = 1,2,3. In particular, only some defining
relations of the form g;g; = g;g; remain to be checked. We are going to check all
defining relations of the form g;g; = g, g;.

Leti, j € Vertg suchthatm; ; = 2,andlet T € @. A direct calculation gives:

_(q—qHel ((g—q7Ne] gel —g71el
8i8i(vr) = =7 7 71 VTt — 3 1 UnmD
G —Cia C; — ¢ cf —cl_,
gelh —g el ((g— g~ i D gD _ q—lcr;_({)
4+ i—1 J e + J j o
of —¢f i@ _ @ D R @ VR |
i —Ci-1 ¢ =l i _nd

Note that this equation is always valid since, first, if 7;(T) = 0 then 7;7;(T) = 0
as well and the second line above is in this case equal to 0; and second, thanks to
Lemma 4.2, we have

ri(T) T

S Sint (7.3)
ICTCO RS '
j J

since m; ; = 2 (in particular, the denominators are different from 0). Using (7.3) in
ri (T)

the above formula for g;g;(vr), we can replace each c;f T by CJT. and each ¢ i1
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by c]T._l. Moreover, from Proposition 4.3, we have 7;7;(T) = 7;7;(T). By
exchanging 7 and j, it is now immediate that g, g; (vr) = gig, (vr).

3. Itremains to check the defining relation of H (R, v) involving both generators g;
and X;. They are given in general by Relations (2.4). Due to step 1, it would be
enough to check the ones which are not relations inside one of the subalgebras #,,,
u = 1,2, 3. Nevertheless, we will check them in a uniform way by proving that the
following relation is satisfied on Vg, for i € Vertg and j € Vertg U {0},

X, — xri@p)

_X._Xr,f((g_/‘) L _ 1 J
8idkj gi=(@—q) | — x—o

(7.4)
First, recall that, by definition of the action of the Weyl group on sequences (Section 4),
we have X’i(‘g/)(vT) = c:.i(T)vT forany T € . Then recall that o; = 8; — §;—1 for
any i € Vertg and thus that X % = X; ;X'

Let T € . We apply the right hand side of (7.4) on vt and find:

(5. i (T)
X — xriG)) T _ (i
—1\ A _ —N T ) j
@—a )=y ) =l—q) 77— 1.

i i—1

On the other hand, we have

(g —q el gel —q~'cl
giX;(vr) = CJT.(T—Tt.vT + ZT—TZI’WI‘(T) ,
i

C; —Ci, ¢ —Cia
while,
. (¢—qa e qci —q7'ciy rpa)
Xr’(&’)gi(vT) — ﬁc;( )-vT + ZT_—T”C]' *UR(T) -
i —ci ¢ — G

We have riz(T ) = T and then, putting together the last three calculations, we check
easily that Relation (7.4) applied on vr is satisfied. O

7.2. Calibrated spectrum of H(R,v). We use the ordered basis

Bro = (8081, oo 818 By B b))
of the free Z-module L g, to identify the calibrated spectrum C—Spec(H (R, v)) with
the set C-Eig(Br,v), as explained in Section 2.3.

We recall that X; := X 8 and that an element of C-Eig(Br.v) is a sequence of
eigenvalues for these generators of H(R,v). Therefore an element of C-Eig(Bgr.v)
is naturally a sequence S € Seqpg , such that there is a calibrated representation V'
of H(R,v) and a non-zero vector v € V satisfying

X;(vs)=c;(S)vs, forj e Vertg U{0}. (7.5)
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Theorem 7.2. The calibrated spectrum of H(R,V) is in bijection with the set
ASTab(R, V) of admissible standard tableaux of type (R,v). More precisely, we
have

C-Eig(Br,) = {Seq(T) | T € ASTab(R,v)} . (7.6)

Proof. 1. We first show that C-Eig(Br,) C {Seq(T) | T € STab(R,v)}. Let
S € Seqg, with substrings S'1, 82, §3 and assume that § € C-Eig(Bgr,). Let V
be a calibrated C(g) H(R, v)-module and vg € V a non-zero vector such that (7.5)
is satisfied.

Let u € {1,2,3} and consider the subalgebra C(g)#,, which is isomorphic
to C(q)H(GLy,+1), where [ := [, [ := I’ and [3 := ["; see Section 3.5. We
consider V' as a module for C(g)#,. The module V is calibrated as a C(q)y-
module. We now use Theorem 5.5, where the calibrated spectrum of C(g)#, is
described.

Equation (7.5) restricted to generators X ; in ¢, involves only the substring S,
of §. It follows immediately from the inclusion of #,, in H(R,v) and Theorem 5.5
that there is a standard tableau T, € STab(/,, + 1) such that Seq(T,) = S .

We thus obtained a triplet (T 1, T », T 3) satisfying the conditions of Definition 6.1,
due to the intersections of the subalgebras #,. Moreover, S, = Seq(T,),
u =1,2,3. We conclude that we have a standard tableau T = (T, T,,T3) of
type (R, v) such that § = Seq(T).

2. We prove now that T is admissible. To do so, we shall show that, fori € Vertg
such that 7; (S) # 0, we have r; (S) € C-Eig(Br,,). Indeed, due to the first part of
the proof this will imply that r; (S) is the sequence of contents of a standard tableau
of type (R, v). In turn, this implies that the truncated orbit of 7' is admissible (and
sois T).

So, let i € Vertg such that 7;(S) # 0. For brevity, we set during the proof
c}s :=c;(S) and c;f ®) .= Ccj (r,- (S)) for j € Vertg U {0}. Let v’ be the following
vector of V': s

v = gi(os) — A9 (1.7)

i Ci1

First, we have vy # 0. Indeed, by the assumption7; (S) # 0, we have clS #* qizcls_1
and therefore

(g—q ")c? _
415 g tg—g
G — G

So v = 0 would contradict the relation gi2 =14+ (q—-q YHg.
Now, in order to show that r; (S) is indeed in C-Eig(Br,,), we are going to prove
that:

18yl for j € Vertg U{0}. (7.8)

Xj(vg) =cj
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Let j € Vertg U {0}. First, recall that, by definition of the action of Wy(R) on
sequences (Section 4), we have X" @, )(vs) = c;.i (S)vs, and also that X% =
Xi1 X i_l since o; = 6; —8;—1. We calculate, using the defining relation between g;
and X,

e _oxniG) _x
X;gi(vs) =g X"CD(vs)— (¢ —¢q 1)?_0‘]

(! ) _ Cf )ClS

(vs)

i (S -
=i ®giws) — (g — g H 15— vs
G —Cia
S.S
(s ¥
=g +(q—q 1)—CSJ_C’S Us -

i i—1

Combining this calculation with Formula (7.7) for v:g, we obtain the desired
Formula (7.8).

3. The first two steps show that C-Eig(Bgr,) C {Seq(T) | T € ASTab(R,v)}.
The reverse inclusion is an immediate consequence of the construction of
representations Vy, for admissible truncated orbits @ of type (R, V), in Section 7.1.
Indeed, for any T € ASTab(R,v), the defining formula (7.1) for the action of the
generators X ; shows that Vi, is calibrated and that Seq(7 ) € C-Eig(Br.,). O

7.3. Representations and calibrated spectrum of H (R, v). The algebra H (R, V)
was defined in Section 3.6. We recall that we have a central element Cgr , in H(R, v):

CR,V = XARvV = 1_[ X;(J y (79)
Jj€VertgU{0}

where Ag,, is an element of the Z-module Lg , invariant under the action of the
Weyl group Wp(R). The powers «; are the coeflicients of the expansion of Ag , in
the basis Br,y. They are given in (3.29).

Then the algebra H (R, V) is the quotient of H(R, V) over the relation Cg, = 1.
We showed that in fact H (R, v) is an affine Hecke algebra associated to the sublattice
OR + Zw, of the weight lattice.

Definition 7.3. (i) Let S € Seqg,. We define:

AS) = [ ci($) . (7.10)

Jj€VertgU{0}

(i) We define a subset of admissible standard tableaux of type (R, v):

ASTab(R,v) := {T € ASTab(R, V) such that A(T) = 1} .
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As we show in the proposition below, it follows directly from the definitions
that A(S) is actually an invariant for the action of the Weyl group Wy(R) on
sequences.

Proposition 7.4. Let S € Seqg . We have A(w(S)) = A(S) for any w € Wy(R).
In particular, the value A(S) is constant along the truncated orbits.

Proof. Recall from Section 4.1 that to the sequence S € Seqg, corresponds a
character ys € Hom(Lg,.C(gq)*) of the Abelian group L g, which is identified
with the group formed by elements X*, x € Lg,. Then, the definition of A(S)
becomes

A(S) = xs(Cry) = x5 (XARY)

From the definition of the action of Wy (R) on sequences, we have, for w € Wy(R),
Aw(S)) = zs(x* AR,

The result then follows from the fact that A g , is invariant under the action of Wy(R).
O

Let O be a truncated orbit in Seqg ,. The proposition allows to define:
A(O) := A(S), whereS €0.

Proposition 7.5. (i) Let O be an admissible truncated orbit of type (R, v). Then
Vo passes through the quotient and becomes a representation of H(R,v) if
and only if A(Q) = 1.

(ii) The calibrated spectrum of H (R, V) is in bijection with ASTab(R, v).

Proof. Let @ be an admissible truncated orbit of type (R, v). From the definitions and
Formula (7.1) giving the action of the generators X ; on Vp, it follows immediately
that

Cryv(vr) = A(T)vr = A(O)vr, foranyT € 0.

So the central element Cg , acts on Vg by multiplication by A(@). Item (i) follows.
Item (ii) is a direct consequence of the general result stated in Proposition 2.5. [

Examples 7.6. (1) We consider again the example of the affine Hecke algebra
H(GLy+1); see Section 3.5. We recall from Section 6.3 that in this situation, the
admissible truncated orbits are parametrised by placed skew shapes of size N + 1
and the notion of standard tableaux is the classical one. Moreover, we have seen
in Example 3.6 that we have C4,,,1 = YoY1...Yn. Therefore, in this case, A(T)
is simply the product of the contents of the placed nodes of a standard tableau T .
Obviously here, A(T') only depends on the shape of T .

The quotient algebra H (A, 1) is the affine Hecke algebra associated to the weight
lattice, thatis, the affine Hecke algebra associated to SL y 41. Propositions 7.1 and 7.5
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then provide a construction of representations of H (A, 1) associated to placed skew
shapes I of size N + 1 such that the product of the contents of the placed nodes of I’
isequal to 1.

(2) We consider the example of Section 3.7. Here we have Cgr, = X,—1X,—1
and therefore A(T) = c;—1(T )cy—1(T) for a standard tableau T of this type. For
example, for the admissible orbit @ showed in Section 6.3(b) (for n = 4), we find
A(O9) = y?q®. So the representation Vg passes through the quotient to become a
representation of H (R,v) if and only if the place y; is equal to ¢ ~*.

7.4. Minimal idempotents and irreducibility. We recall that standard tableaux of
type (R, v) are characterized by their sequence of contents. Let 9 be an admissible
truncated orbit in Seqg , and let T € O. We define the following elements of
C(qg)H(R,v):

Xj —Cj(T/)
L c(T)—c AT
Er = 1_[ ) ¢j(T)—c;(T) |- .10
JEeVertpU{0}  \c; (T )#c;(T)

We have, on the representation Vyp, that:
ET(UT) =vr and ET(UT/) =0ifT' €0 \ {T} .

This follows from Formulas (7.1) defining the action of the generators X; on Vo,
together with the fact that for any two different T, T’ € STab(R, v), there is some
J € Vertg U {0} such that ¢;(T) # c¢;(T").

As operators on Vg, the set { ET }7<c@ is a complete set of pairwise orthogonal
idempotents of End(Vp).

Proposition 7.7. The representations Vg, where O runs over the set of admissible
truncated orbits of type (R, V), are pairwise non-isomorphic irreducible representa-
tions of C(q)H(R, V).

Proof. Let @ and OO’ be two distinct admissible truncated orbits of type (R, V). Let
T € O. From Formulas (7.1), we have first that the vector vy in Vp is a common
eigenvector for the operators X ; with eigenvalues given by Seq(T'), and second that,
in Vg, there is no common eigenvector of the operators X ; with the same eigenvalues.
Indeed, as @ and O’ are disjoint, we have that T’ # T for every T’ € (9, and in
turn, Seq(T") # Seq(T) for every T' € 9’. We conclude that Vg and V- are not
isomorphic.

Let @ an admissible truncated orbits of type (R,v) and W # {0} an invariant
subspace of Vg for the action of C(q)H(R, V).

Let v be anon-zero vector of W. Itis alinear combination of the basis vectors vr,
T € O, of Vi with at least one non-zero coefficient. By applying the idempotents Er
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on v and using that W is stable by C(q) H(R, V), we obtain that vy € W for some
T 0.

Now let i € Vertg such that 7;(T) #% 0. Recall that it means ¢;(T) #
qizci_l(T ). From Formula (7.2), we obtain that the coefficient in front of vz (1)
in g;(vr) is different from 0, and in turn that vz 7y € W. As all elements of
the truncated orbit (@ can be obtained from 7' by repeated applications of truncated
operators 77, i € Vertg, we conclude that vy € W forany T’ € (. This shows that

W = V@ and concludes the proof of the proposition. 0

8. Restriction to finite Hecke algebras and classical limit

8.1. Restriction to Hy(R). We recall that the finite Hecke algebra Ho(R) of type R
is isomorphic to the subalgebra of H(R, V) generated by g;, i € Vertg.

Let V be a representation of C(q)H(R,v). We denote by V" the restriction
of V' to the subalgebra C(g)Ho(R). In particular, for @ an admissible truncated
orbit of type (R, v), the representation V(g‘“ is the restriction of the representation Vg
constructed in the preceding section.

The action of Hy(R) on V(g“ is given explicitly by Formulas (7.2). In general, the
representation V@ﬁ“ is not irreducible. We are going to formulate a sufficient condition
on O so that V(‘;” is an irreducible representation of C (¢) Ho(R) and then interpret it
combinatorially.

Remark 8.1. A particular situation is when in all elements of (9, a single place y;
appears (this will be in particular satisfied for truncated orbits of level 1 to be defined
below). Then the representation V(g“ is given purely in terms of moving boxes in
skew diagrams, and the value of the place is not relevant. Indeed, in Formulas (7.2)
giving the action of the generators g;, we can see that y; disappears by simplification.

Truncated orbits of level 1. We consider the following definition for arbitrary trun-
cated orbits in Seqg ,. However we will use it only for admissible truncated orbits
(the ones corresponding to representations).

Definition 8.2. Let O be a truncated orbit in Seqg . We say that O is of level 1 if
the first coefficient of the sequences in @ remain constant, namely if

co(S) =co(S’), foranyS,S €0.

Proposition 8.3. Let O be an admissible truncated orbit of type (R,v). If O is of
level 1 then Vgn is an irreducible representation of C(q) Ho(R).

Proof. Let O be an admissible truncated orbit of level 1 and set ¢ := co(T") for
T € O. The representation Vp is an irreducible representation of C(g) H(R,v) and
on Vg, the generator X acts as ¢ - Idy,, by assumption on O.
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Let H(R,v)¢ denote the quotient of C(gq)H (R, V) by the relation Xo —c¢ = 0.
Then the representation Vj factors through this quotient and becomes an irreducible
representation of H(R,v). Let m¢ be the canonical surjective map from
C(g)H(R,v) toits quotient H(R, v)¢ and consider the following diagram:

C@QHR.Y) > HR.v)E
U U

C@)Ho(R) =>  Ho(R)

where we denoted Ho(R)¢ := n¢ ((C (q)HO(R)). Considering the restriction to
C(gq)Ho(R), the representation Vé‘“ factors through Hy(R)€, which is a subalgebra
of H(R,v)¢.

We claim that we have in fact Ho(R) = H(R,v)°. Indeed this follows
immediately from 7¢(Xy) = c¢ and the relations X; = g; X;_1g; for i € Vertg
showing that 7¢(X ;) € Ho(R) forany j € VertrU{0}. Therefore V(g“‘ isirreducible
for Ho(R)¢ (since Vp is irreducible for H(R,v)¢) and in turn, is irreducible for
C(g)Ho(R). O

Remarks 8.4. (i) As we just saw in the proof, the quotient H(R, v)° of the affine
Hecke algebra H(R,v) by a relation of the form Xy = c is in fact a quotient of the
finite Hecke algebra Ho(R). This is implied by the first set of defining relations (3.14)
between the generators g; and X;. The other defining relations (3.15)—(3.18) may
imply other relations between the generators g; in H(R, v)¢. So, in general, H(R, v)*©
is a non-trivial quotient of Hy(R). This is related to the fact that, in general, the
irreducible representations obtained in Proposition 8.3 do not exhaust the set of
irreducible representations of C(g)Ho(R). Note however, that one could ask how
much of the set of irreducible representations of C(q) Ho(R) is obtained by fixing R
and varying v.

(ii) The terminology “level 1" in Definition 8.2 refers to the fact that X has only
one eigenvalue in V. Admissible truncated orbits of higher levels would lead to the
study of quotients of H(R,v) by characteristic equations for X of higher degrees
(in some contexts, quotients of this sort are called cyclotomic quotients).

(iii) A particular situation is when H(R,v) is the affine Hecke algebra
H(GLy+1). In this case, it is known that we have H(R,v)¢ = C(g)Ho(R)
(equivalently, all irreducible representations of C(g)Ho(R) are obtained via
Proposition 8.3). Moreover, the quotients of higher levels in this case are well
known: they are the so-called cyclotomic Hecke algebras, or Ariki—Koike algebras [1].

(iv) Finally we note that the converse of Proposition is not true. It is already seen

in the GL 3 situation, where the representation associated to the skew diagram [El ,

restricted to Hy(A>), is an irreducible representation, while X has two different
eigenvalues.
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Combinatorial characterisation of admissible truncated orbits of level 1. Recall
that a placed skew shape is an equivalence class of placed skew diagrams (Section 5).

We will from now on make the following slight abuse of terminology. A skew
partition A/ is a “usual partition” when p is empty. We will say that a placed skew
shape is a usual partition if it is the equivalence class of a placed skew diagram of
the form {(I"y, y1)}, where I'; is the diagram of a usual partition (in particular, there
is a single place; see Remark 8.1).

Let I" be a skew diagram and 6 a node of I". We call 6 a top left node of T if the
positions above 6 in the same column and the positions to the left of 6 in the same
line are all empty. A placed node (8, y) of a placed skew diagram is called a top left
placed node if 0 is a top left node of its diagram. Finally, we note that the notion
of being a top left placed node is compatible with the equivalence relation of placed
skew diagram, and therefore is well-defined for a placed skew shape.

Let T' be a placed skew diagram with a unique top left placed node. It means
that there is only one place: I' = {(I'1, y1)}, and moreover the skew diagram I"y
has only one top left node. Using the equivalence relation, we can translate I'y such
that the top left node moves to position (1, 1) (the place y; may have to change; see
example (5.1)). We thus see that I is equivalent to a placed skew diagram of the
form {(T'{, 1)}, where I'] is the diagram of a usual partition.

As a conclusion, we have explained that a placed skew shape is a usual partition
if and only if it contains a unique top left placed node.

Proposition 8.5. Let O be an admissible truncated orbit of type (R, V). Then O is of
level 1 if and only if for every T = (T1,T>,T3) € O, the shapes of T1, T, and T 3
are usual partitions.

Proof. Assume first thatforevery T = (T 1, T2, T3) € O, theshapesof T1,T,,T3
are usual partitions. Thus, forevery T = (T 1, T 5, T 3) € O, thereis aunique top left
placed node in the shapes of T 1, T ,, T 3. By standardness of T'1, T 5, T 3, the only
possibility for 0 is to be contained in this placed node. This shows that 71 (7)) = 0
forevery T € O (otherwise, in 71 (T'), 0 would be contained in a placed node which
is not top left). As rj is the only simple reflection in Wy(R) which modifies the
position of 0, we conclude that co(7') remains constant along O.

Assume that we have T = (T, T, T 3) € O such that, for some u € {1, 2, 3},
the shape I', of T, is not a usual partition. It means there are at least two top left
placed nodes in T',,. So let @ be the one containing 0 in T, and let 8 be a different
one. It is clear that # and @’ can not lie in the same diagonal of the same diagram,
and therefore c(8) # c(0').

Let T, be a standard tableau of shape T, such that 0 is contained in 6’ (such a
standard tableau exists as @’ is a top left placed node). Let [, + 1 be the size of T',,
(I is 1, 1" or I” depending on u). We have seen in Proposition 6.5 that 7', can be
obtained from T, by repeated applications of truncated operators of the symmetric
group Sy, +1. So we have T, = w(T,) for some w € S;, ;1. The symmetric
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group S, +1 is a subgroup of Wy (R), and so, considering w as an element of Wy (R),
we set T' := w(T).

From the definition of truncated operators, we have that T’ # 0 since we already
had w(T,) # 0. So we obtained T’ € @ such that co(T’) = c(8’). From the fact
that co(T) = c(0) # c(8’), we conclude that @ is not of level 1. O

Example 8.6. We take R = D4 and v = 1 in the standard labelling, as in
Section 6.3(b). We show an example of an admissible truncated orbits of level 1:

(ST, {0 2. (5, ) 2 (. )

1]3
The non-indicated actions of 71,72,73,73 give 0. This truncated orbit gives rise to
an irreducible representation of Hy(D4).

lNO

8.2. Representations of Wy(R) as classical limits. Let T be a tableau of type
(R,v) and, for i € Vertg, let ; = (6;, y;) be the placed node of T with number i.
For i, j € Vertg, we write pl;(T) = pl;(T) if y; = y; and pl;(T) # pl;(T)
otherwise. We recall that tableaux are only considered up to equivalence and we
note that the values of the y;’s are therefore not uniquely defined. Nevertheless, the
property pl; (T) = pl; (T) (or its negation) is well-defined since compatible with the
equivalence relation.

Let @ be an admissible truncated orbit of type (R, v). In this subsection, we will
make the following assumption. If y; and y, are two different places which appear
in an element 7 € O then we assume that:

Y1
(E))(Fil 41, (8.1)

where, for x € C(g), x |q: 4 denotes the evaluation of x at g = +1.

Let V be a representation of the finite Hecke algebra C(q) Ho(R) and let B be
a basis of V. Let M; be the matrix representing the generator g;, i € Vertg, in the
basis 8. Let € € {—1, 1} and assume that the evaluations at ¢ = ¢ of all coeflicients
of M; give complex numbers, and this for all i € Vertg. Then, sending the simple
reflection r;, i € Vertg, to the evaluation of the matrix M; at ¢ = €, we obtain a
complex representation of the Weyl group Wy(R) on a complex vector space with
basis 8. In this situation, we say that the evaluation at ¢ = € of the representation V
in the basis B exists.

Proposition 8.7. Let O be an admissible truncated orbit of type (R, v) satisfying (8.1)
and let € € {—1,1}. The evaluation at ¢ = € of the representation V(g‘“ in the basis
{vr T eo exists, and the action of Wy(R) is given by
* ifpli(T) # pl,_1(T),

ri(vr) = €vr(T) (8.2)
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e ifply(T) = pl;_1(T),

1

1
i) = (cc,-(T) “eiam) T (1 OE cci_l(n)”?f(“) |
(8.3)

where T € O and i € Vertg (we recall that vy := 0).

Proof. The proof is a straightforward verification, consisting in the evaluation at
q = € of the coefficients appearing in Formulas (7.2). We only recall that
ci(T) = y;q*<T) if i is contained in a placed node with place y; and that we
use Condition (8.1) on the places. ]

Regarding Formulas (8.2)—(8.3), we note that if pl;(T) # pl;_;(T) then
7i(T) # 0, and that if pl,(T) = pl,_;(T) then cc;(T) # cc;—1(T) since T is
standard.

Let Up be the representation of the preceding proposition obtained when ¢ is
evaluated at 1, and U, the one obtained at —1. From Formulas (8.2)—(8.3), we see
that:

Uy = Up ®sign,

where sign denotes the signature representation of Wy (R).

Remarks 8.8. (i) A remark similar to Remark 8.1 applies here: when in all
elements of @, a single place y; appears, the representation Ug is given purely
in terms of moving boxes in skew diagrams, and the value of the place y; is not
relevant. Outside of this situation, even though the values of the places do not appear
in Formulas (8.2)—(8.3), these values determine the structure of (; see examples in
Section 6.3.

(i) Condition 8.1 on @ was assumed for simplicity because it allowed us to
perform the evaluation at ¢ = %1 and to obtain Formulas (8.2)—(8.3) as “classical
limits” of representations of Ho(R). Therefore it followed immediately that we
obtained representations of Wy(R). Alternatively, one could define Formulas (8.2)—
(8.3) for any truncated admissible orbit (9, and then check directly that the defining
relations of Wy (R) are indeed satisfied, without any reference to Hy(R).
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