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Abstract. We determine the Jordan–Hölder decomposition multiplicities of projective and cell
modules over periplectic Brauer algebras in characteristic zero. These are obtained by developing
the combinatorics of certain skew Young diagrams. We also establish a useful relationship with
the Kazhdan–Lusztig multiplicities of the periplectic Lie supergroup.
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1. Introduction

The periplectic Brauer algebra Ar was introduced by Moon in [7] in the study of
invariant theory of the periplectic Lie superalgebra. More recently, Kujawa and Tharp
developed a diagram calculus for this algebra, which is a non-trivial adaptation of
the diagrammatic approach to the Brauer algebra. This was exploited by the first
author in [2] in order to determine the blocks of Ar over fields of characteristic zero.
An important tool was the study of the periplectic Brauer algebra in the framework
of standardly based algebras of [4]. This study also showed that, excluding some
exceptional cases of low dimension or low characteristic of the base field,Ar is either
quasi-hereditary or admits a quasi-hereditary 1-cover.

As a standardly based algebra, Ar admits cell modules, which are precisely
the standard modules when Ar is quasi-hereditary. In this paper, we calculate the
Jordan–Hölder decomposition multiplicities of these cell modules in characteristic
zero. The cell modules are labelled by partitions and the simple modules by non-
empty partitions. The multiplicities for Ar do not depend explicitly on r and our
main result is stated in the following theorem.

Theorem 1. Let � be the set of skew Young diagrams which are either zero or such
that their maximal connected outer rim hooks satisfy the property that

� the width of the hook is one bigger than the height;
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� no box in the hook is strictly above the line going through the diagonal of the left
most box (for the diagonal for which such a condition makes sense);

and such that the skew Young diagram obtained after removing the outer rim hooks
is again in � . We have

ŒW.�/ W L.�/� D

(
1 if � � � and �=� 2 �;
0 otherwise:

We also obtain a description of the Cartan decomposition matrix of Ar .

Theorem 2. With � the set of skew Young diagrams of Theorem 1 and � 0 the set
consisting of the conjugates of the diagrams in � , we have

ŒP.�/ W L.�/� D

(
1 if there exists � with � � � � �, �=� 2 � and �=� 2 � 0;
0 otherwise:

Our description of the decomposition multiplicities is very different from the
corresponding result for the ordinary Brauer algebra in [3, 6]. In the latter case,
the decomposition multiplicities are given in terms of parabolic Kazhdan–Lusztig
polynomials of typeDwith respect to amaximal parabolic subalgebra of typeA. Also
the proof is very different. The most intricate part of our proof is actually proving
equivalence between several descriptions of the set of skew Young diagrams � .
One essential tool remains, as for Brauer algebras, the restriction of modules
from Ar to Ar�1 in connection with the action of a Jucys–Murphy type element
of Ar . However, the resulting information is far less conclusive and elegant than
the “translation principle” used in [3, 6]. Nevertheless, we demonstrate how the
decategorifications of the restriction functors relate to an infinite Temperley–Lieb
algebra.

Recently, the decomposition numbers for the periplectic Lie superalgebra were
determined in [1]. These are described in terms of an arrow diagram calculus. In
an appendix we rewrite the result in Theorem 1 in terms of a very similar arrow
diagram calculus. As a consequence, we find an intimate relation between the two
types of decomposition multiplicities. We rely on this to prove that the non-zero
entries in the Cartan decomposition matrix of Ar in Theorem 2 must be 1, by using
the corresponding result in [1].

The paper is organised as follows. In Section 2 we recall some terminology of
partitions and properties of periplectic Brauer algebras. In Section 3 we derive some
properties of the interplay of the restriction functor and a Jucys–Murphy element, as
introduced in [2]. Section 4 is a purely combinatorial study of the set� of skewYoung
diagrams. In Section 5 we combine the representation theoretic results of Section 3
with the combinatorial ones in Section 4 in order to determine the decomposition
multiplicities for periplectic Brauer algebras. Finally, in Appendix A, we demonstrate
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that the decomposition multiplicities can also be described using the arrow diagram
calculus of [1].

Jonathan Kujawa has informed us that he and Ben Tharp independently obtained
a description of the cell multiplicities of the periplectic Brauer algebra, which will
appear soon.

2. Preliminaries

For the entire paper we fix an algebraically closed field k of characteristic zero. We
use the canonical inclusion Z � k of unital rings.

2.1. Partitions.

2.1.1. Wewill identify a partitionwith itsYoung diagram, usingEnglish notation. For
instance, the partition .3; 1/ is represented by the diagram . Each box or node
in the diagram has coordinates .i; j /, meaning that the box is in row i and column j .
The above diagram has boxes with coordinates .1; 1/, .1; 2/, .1; 3/ and .2; 1/. The
content of a box b in position .i; j / in a Young diagram is con.b/ WD j � i 2 Z.
The content of each box in the Young diagram of .3; 1/ is displayed as 0 1 2

-1 . Any
box with content q will be referred to as a q-box. We will occasionally also need the
value i C j for a box in position .i; j /. We refer to that value as the anticontent of
the box.

2.1.2. For any partition �we define the set of partitionsA.�/, resp.R.�/, containing
all partitions which can be obtained from � by adding an addable box, resp. removing
a removable box. For any q 2 Z, we consider the subset A.�/q of A.�/, consisting
of the partitions obtained by adding a q � 1-box. Similarly, the partitions in R.�/q
are obtained by removing a q-box. With this convention we have

� 2 A.�/q , � 2 R.�/q�1:

Obviously the sets A.�/q and R.�/q are either empty or contain precisely one
element.

2.1.3. We denote the empty partition by¿. On the other hand, the empty set will be
denoted by ;. This means that we have

R.�/q D

(
f¿g if q D 0;
; if q ¤ 0:
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2.2. The periplectic Brauer algebra. The periplectic Brauer algebraAr was intro-
duced in [7]. In [5], a diagrammatic description of the algebra was developed.
In particular, Ar has a k-basis of ordinary Brauer diagrams, but multiplication is
complicated by appearance of minus signs. In the current paper we do not need the
diagrammatic description directly, although we rely on results of [2] which heavily
exploited the diagrammatic rules of [5]. Hence we do not repeat the diagrammatic
description here. It was proved in [5, Theorem 4.3.1] that the simple Ar -modules
Lr.�/ are labelled by the set of partitions

ƒr D f� ` r � 2i j 0 � i < r=2g:

In [2, Theorem 3], it was proved that Ar admits an interesting standardly based
structure, where the latter is a generalisation of cellular algebras introduced in [4].
In particular, Ar has cell modules Wr.�/, labelled by partitions in the set

Lr D f� ` r � 2i j 0 � i � r=2g:

When � ¤ ¿, the module Wr.�/ has simple top Lr.�/ and the radical of Wr.�/
only has simple constituentsLr.�/with j�j > j�j. The projectiveAr -modules admit
a filtration with sections given by cell modules. Moreover, the multiplicities in this
filtration satisfy the following twisted Humphreys-BGG reciprocity relation

.Pr.�/ W Wr.�// D ŒWr.�
0/ W Lr.�

0/�; for all � 2 ƒr and � 2 Lr ; (2.1)

where�0 denotes the conjugate of a partition�. In particular, determining the Jordan–
Hölder multiplicities of the cell modules, henceforth referred to as cell multiplicities,
also determines the Jordan–Hölder multiplicities of the indecomposable projective
modules. Concretely, the Cartan decomposition matrix can be expressed as

ŒPr.�/ W Lr.�/� D
X
�2Lr

ŒWr.�/ W Lr.�/� ŒWr.�
0/ W Lr.�

0/�; (2.2)

for �; � 2 ƒr .
Note that the above discussion implies in particular that, when r is odd (and hence

Lr D ƒr ), the algebra Ar is quasi-hereditary, with standard modules given by cell
modules.

2.3. Somepreliminary results on cellmultiplicities.Wewill always assume r 2Z�2.
By [2, equation (4.11)], we have the following reinterpretation of a lemma in [2]:
Lemma 2.3.1 ([2, Lemma 7.2.2]). For � 2 Lr and � 2 ƒr , we have
(i) ŒWr.�/ W Lr.�/� D 0 unless � � �, and

(ii) ŒWr.�/ W Lr.�/� D ŒWi .�/ W Li .�/�, for i D j�j.
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Combining some results in [2] also yields the following statement.

Proposition 2.3.2. For � ` r -2 and � 2 ƒr , we have

ŒWr.�/ W Lr.�/� D

˚
1 if � is obtained from � by adding a rim 2-hook ;

1 if � D �;
0 otherwise.

Proof. The case where � is obtained from � by adding a rim 2-hook is [2,
Proposition 7.2.6]. The case � D � is discussed in Section 2.2. It thus only remains
to prove the vanishing of other multiplicities for � ¤ �. By Lemma 2.3.1(i), it
suffices to consider the case � � �, so � ` r .

Assume first that � is obtained from � by adding two boxes which are neither in
the same row nor same column. Their contents must thus differ by at least 2, which
yields a contradiction by [2, Corollary 6.2.7].

Finally assume that � is obtained from � by adding a rim 2-hook . In this case,
the combination of [2, Lemma 7.2.3] and [2, Corollary 4.3.3] proves the vanishing,
concluding the proof.

3. The restriction functor

The algebra Ar�1 is a subalgebra of Ar , see [2, 2.1.7]. We denote by

Resr W Ar -mod ! Ar�1-mod;

the restriction functor corresponding to this embedding Ar�1 � Ar .
In [2, Section 6.1] a Jucys–Murphy (JM) element xr 2 Ar was introduced. By

[2, Lemma 6.1.2], all elements of the subalgebra Ar�1 of Ar commute with xr .
For any Ar -module M , the Ar�1-module ResrM thus naturally decomposes into
generalised eigenspaces for xr . We write

ResrM D
M
˛

M˛;

whereM˛ is the Ar�1-submodule ofM on which .xr � ˛/ acts nilpotent.

3.1. Restriction of cell modules.
Lemma 3.1.1 ([2, Corollary 5.24]). For any � 2 Lr , we have a short exact sequence

0!
M

�2R.�/

Wr�1.�/! ResrWr.�/!
M
�2A.�/

Wr�1.�/! 0:

The left term vanishes if � D ¿, the right term vanishes if � ` r .
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By [2, Lemma 6.2.5], or [2, 5.2.5 and Theorem 6.2.2], we can strengthen this
result to include the action of xr as follows.
Proposition 3.1.2. For any � 2 Lr , we have ResrWr.�/ D

L
q2ZWr.�/q . For any

q 2 Z, we have a short exact sequence

0!
M

�2R.�/q

Wr�1.�/! Wr.�/q !
M

�2A.�/q

Wr�1.�/! 0:

In particular, the special case � ` r yields

Lr.�/q D

(
Lr�1.�/ if R.�/q D f�g;

0 if R.�/q D ;:
(3.1)

Corollary 3.1.3. Fix arbitrary � 2 Lr and q 2 Z.
(i) For � 2 A.�/q , we have ŒWr.�/q W Lr-1.�/� D 1.

(ii) For � 2 A.�/qC1, we have ŒWr.�/q�1 W Lr-1.�/� D

(
1 if R.�/q�1 ¤ ;;

0 otherwise:

Proof. Consider � as in part (i). Proposition 3.1.2 implies

ŒWr.�/q W Lr-1.�/� D 1C
X

�2R.�/q

ŒWr�1.�/ W Lr�1.�/�:

If there exists � 2 R.�/q , then � is obtained from � by adding a rim 2-hook q
q-1 . This

in turn implies ŒWr�1.�/ W Lr�1.�/� D 0 by Proposition 2.3.2. This proves part (i).
Now consider � as in part (ii). Proposition 3.1.2 implies

ŒWr.�/q�1 W Lr-1.�/� D
X

�2R.�/q�1

ŒWr�1.�/ W Lr�1.�/�C
X

�2A.�/q�1

ŒWr�1.�/ W Lr�1.�/�:

(3.2)
By Lemma 2.3.1(i), we have ŒWr�1.�/ W Lr�1.�/� D 0 unless � D �, for any
� ` r � 1. However, as � 2 A.�/qC1 and � 2 A.�/q-1, we find � ¤ �. Hence,
the second term on the right-hand side of (3.2) vanishes. Thus if R.�/q�1 D ;, the
left-hand side of (3.2) must indeed vanish. If R.�/q�1 ¤ ;, then R.�/q�1 D f�g,
with � obtained from� by adding the rim 2-hook q-1 q . Proposition 2.3.2 thus implies
ŒWr�1.�/ W Lr�1.�/� D 1, which concludes the proof of part (ii).

3.2. Restriction of simple modules. The previous subsection completely deter-
mines the restriction from Ar to Ar�1 of the simple cell modules Wr.�/ D Lr.�/

with � ` r , see equation (3.1). In this section we will obtain some partial information
of the restriction toAr of the simplemodulesLrC1.�/with � ` r�1. TheseLrC1.�/
are generally not cell modules.
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Lemma 3.2.1. Assume that � ` r has no addable q C 1-box and � 2 R.�/q , then

ŒLrC1.�/qC1 W Lr.�/� D 1:

Proof. As � 2 A.�/qC1, Corollary 3.1.3(i) implies

ŒWrC1.�/qC1 W Lr.�/� D 1:

It remains to be proved thatLr.�/ cannot be a subquotient ofMqC1, forM the radical
ofWrC1.�/. By Proposition 2.3.2, theArC1-moduleM is the direct sum of all simple
modules LrC1.�/ D WrC1.�/ with � ` r C 1 obtained by adding a rim 2-hook
to �. If Lr.�/ appears in LrC1.�/qC1 for such a �, then, by equation (3.1), � can be
obtained from � by removing a q C 1-box. This is impossible as, by assumption, �
has no addable q C 1-box.

Lemma 3.2.2. Assume that � 2 R.�/q for � ` r and that � has a removable
q � 1-box, then

ŒLrC1.�/q�1 W Lr.�/� D 1:

Proof. By assumption, � 2 A.�/qC1 and R.�/q�1 ¤ ;, so Corollary 3.1.3(ii)
implies

ŒWrC1.�/q�1 W Lr.�/� D 1:

It remains to be proved that Lr.�/ cannot be a subquotient of Mq�1, for M the
radical of WrC1.�/. By Proposition 2.3.2, the ArC1-module M is the direct sum
of all simple modules LrC1.�/ D WrC1.�/ with � ` r C 1 obtained by adding
a rim 2-hook to �. If Lr.�/ appears in LrC1.�/q�1 for such a �, then, by
equation (3.1), � can be obtained from � by removing a q � 1-box. On the other
hand, by working via �, � is obtained from � by first removing a q-box and then
adding . In order for the two procedures to yield identical content, the latter rim
2-hook would have to be q-1 q . However, for any partition, it is impossible to add q-1 q

directly after removing a q-box.

3.3. Decategorification of the restriction functor. Consider the abelian category

CA D
M
r�2

Ar -mod;

on which we have the exact functors

R WD
M
r�3

Resr and E WD
M
r�4

e.r/� D
M
r�4

HomAr
.Are

.r/;�/:

Here e.r/ is an idempotent in Ar , introduced as c�r�2 in [2, Section 4.4], with the
property e.r/Are.r/ Š Ar�2. In particular, e.r/� is an exact functor from Ar -mod
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to Ar�2-mod which sends the simple module Lr.�/ to 0 if � ` r , or to Lr�2.�/
if j�j < r .

Decomposition of the restriction functors with respect to the eigenvalues of the
JM elements xr then yields exact functors Rq for each q 2 Z, so R Š ˚qRq and
Rq.M/ DMq . Let GA denote the Grothendieck group of CA. The image in GA of a
moduleM will be denoted by ŒM �. Similarly, ŒF � 2 Endk.GA/ denotes themorphism
induces by an exact functorF . We find the following analogue of [1, Corollary 4.4.6].
Proposition 3.3.1. For any p; q 2 Z with jp � qj > 1, we have

ŒRq�2 D 0; ŒRq�ŒRp� D ŒRp�ŒRq� and ŒRq�ŒRq˙1�ŒRq� D ŒE�ŒRq�:

These are the defining relations of the infinite Temperley–Lieb algebra TL1.0/, up
to the appearance of ŒE�.

Proof. By Section 2.2, we have a basis fŒWr.�/� j � 2 ƒrg of the Grothendieck
group of Ar . In particular, the set

fŒWr.�/� j r 2 Z�2 ; � 2 Lrg

spans GA. Proposition 3.1.2 implies that

ŒRq�
�
ŒWr.�/�

�
D

X
�2R.�/q

ŒWr�1.�/�C
X

�2A.�/q

ŒWr�1.�/�;

where the last term is interpreted as zero when � ` r . By Lemma 2.3.1(ii), we have

ŒE�ŒWr.�/� D
(
ŒWr�2.�/� if j�j < r;
0 if � ` r:

It thus suffices to check that these equations are consistent with the proposed relations.
We cannot remove two q-boxes from or add two q � 1-boxes to a partition. It is

also impossible to remove a q � 1-box just after adding a q-box, or to add a q-box
just after removing a q � 1-box. This implies that ŒRq�2 D 0. The other relations are
similarly checked by tracking the possibilities of adding and removing boxes with the
appropriate content to a partition.

4. The set of skew Young diagrams

By a skew Young diagram � we mean a collection of boxes which can be interpreted
as the difference of a Young diagram� and a Young diagram � � �, denoted by�=�.
Any skew Young diagram has infinitely many such interpretations. Note especially
that, whenever possible, we do not fix the position of the boxes in the plane in contrast
to Young diagrams.
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In this section, we will introduce a set of skew partitions with three different
descriptions, two iterative and one in terms of decompositions into hooks. All three
descriptions will be essential to prove that this set of skew partitions determines the
decomposition multiplicities of periplectic Brauer algebras in the following section.
In Appendix A, we will derive a fourth description of the set, to demonstrate the
connection with the recently developed arrow diagram calculus of [1].

4.1. Terminology and procedures on skew diagrams. In diagrams, we will use
the terms “below”, “above”, “left of”, and “right of” in the strict sense. A box b is
thus above a box c if they are in the same column and b is in a row i while c is row j
with j > i .

4.1.1. Disjoint and connected diagrams. A skew Young diagram is connected if
it is does not consist of two disjoint diagrams. Two diagrams are disjoint if there is
no box of the first diagram which shares a side with a box of the second diagram.

4.1.2. Addable and removable boxes. An addable, resp. removable, box for a skew
Young diagram is a box which can be added to, resp. removed from, the diagram
such that the outcome is still a skew Young diagram.
� A d-addable box b of � is an addable box such that there are no boxes in � to the
right of or below b.

� A d-removable box b 2 � is a removable such that there are no boxes in � to the
right of or below b.

� A u-addable box b of � is an addable box such that there are no boxes in � to the
left of or above b.

� A u-removable box b 2 � is a removable box such that there are no boxes in � to
the left of or above b.

4.1.3. Content. From each interpretation as the difference of two Young diagrams,
a skew Young diagram inherits (anti)content for its boxes. We will generally
choose an arbitrary normalisation, by fixing the content of one box, which then
determines the content of all other boxes. A box with content p will be referred
to as a p-box. In Example 4.1.5 we display a skew diagram with its contents for
one normalisation. This skew diagram can be interpreted as the difference of the
partition .5; 5; 5; 3; 1; 1/ and .3; 2; 2/. The latter interpretation would of course lead
to a different normalisation of the content.

4.1.4. Hooks. A hook is a skew diagram which has (for an arbitrary normalisation
of its content) no two boxes with same content. We will refer to the unique box in
a hook with maximal, resp. minimal, content as the maximal, resp. minimal, box of
the hook. Unless specified otherwise, we will always assume hooks to be connected.
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The height ht./ of a hook  is the number of rows it has boxes in. The width
wd./ is the number of columns it has boxes in. The size (number of boxes) of a
hook satisfies

size./ D ht./C wd./ � 1: (4.1)

Example 4.1.5. The skew Young diagram

8 9
6 7 8
5 6 7

2 3 4
1
0

has 3 u-removable boxes, with content 2, 6 and 8, as well as 3 d-removable boxes, with
content 0, 4 and 7. In the following diagram we draw all d-addable, resp. u-addable
boxes which would lead to connected diagrams, and label them by d, resp. u:

u X
u TestTestd
TestTestTest

u TestTestTest
TestTestTestd
Testd

u Test
X d

There are infinitely many more addable boxes, which are simultaneously u- and
d-addable, they lead to non-connected diagrams when added on. Examples of these
are the two boxes marked X .
Definition 4.1.6. Let � be an arbitrary skew diagram, with fixed content. For any
q 2 Z, we define skew diagrams Pq.�/, Pq.�/, Eq.�/, Eq.�/ as follows.
(i) If � has a u-removable q-box b2 and allows a d-addable q-box b1, we set

Pq.�/ WD � [ fb1gnfb2g. In all other cases, we set Pq.�/ D ¿.
(ii) If Pq.�/ allows no d-addable q C 1-box, we set Pq.�/ D Pq.�/, otherwise we

set Pq.�/ D ¿.
(iii) If � has a u-addable q � 1-box b2 and, furthermore, � [ fb2g has a d-addable

q-box b1, we set Eq.�/ WD � [ fb1; b2g. In all other cases, we set Eq.�/ D ¿.
(iv) If Eq.�/ allows no d-addable q � 1-box, we set Eq.�/ D Eq.�/, otherwise we

set Eq.�/ D ¿.

4.1.7. Loosely speaking, Pq.�/ is obtained from � by “pushing down” all q-boxes
one position along the diagonal, if that is possible. On the other hand, Eq.�/ is
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obtained from � by “extending” � with a q � 1-box on the upper rim and a q-box on
the lower rim, if that is possible.

4.2. Iterative descriptions. We define sets of skew Young diagrams by making use
of the procedures introduced in Definition 4.1.6. To apply these procedures we have
to choose an arbitrary normalisation of the content in each step. The definition of the
sets are not influenced by this as we will always consider the procedures for arbitrary
q 2 Z. In particular, we stress that the sets are to be considered as sets of skew
Young diagrams which have no fixed normalisation of content or position in space.

Definition 4.2.1. The set ‡ of skew Young diagrams is determined by the following
three properties:
� We have ¿ 2 ‡ .

� If � 2 ‡ , we have Pq.�/ 2 ‡ , for any q 2 Z.

� If � 2 ‡ , we have Eq.�/ 2 ‡ , for any q 2 Z.

Definition 4.2.2. The set ‡ of skew Young diagrams is determined by the following
three properties:
� We have ¿ 2 ‡ .

� If � 2 ‡ , we have Pq.�/ 2 ‡ , for any q 2 Z.

� If � 2 ‡ , we have Eq.�/ 2 ‡ , for any q 2 Z.

Clearly we have ‡ � ‡ .

Example 4.2.3. We have E1.¿/ D E1.¿/ D 0 1 . Furthermore

E3
�
0 1

�
D

2 3
0 1

; E3
�
0 1

�
D ¿ and E-1

�
0 1

�
D E-1

�
0 1

�
D

0 1
-2 -1 :

Applying Eq for other values of q yields either ¿ or disconnected skew diagrams
consisting of two diagrams of shape .

We also find
P2
�

2 3
0 1

�
D P2

�
2 3

0 1

�
D

3
0 1 2

:

Other d-addable boxes of 2 3
0 1

have either content bigger than 3 or lower than 0,
meaning there can never be a corresponding u-removable box, so Pq yields ¿ for
q ¤ 2. We also find that Pq acting on 3

0 1 2
yields ¿, for all q 2 Z. On the other

hand, we have

E5
�

3
0 1 2

�
D

4 5
3

0 1 2
and E-1

�
3

0 1 2

�
D

3
0 1 2

-2 -1
:
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We also have

E5
�

2 3
0 1

�
D

4 5
2 3

0 1
; E5

�
2 3

0 1

�
D ¿;

E1
�

2 3
0 1

�
D E1

�
2 3

0 1

�
D

1 2 3
0 1 2

;

E-1
�

2 3
0 1

�
D E-1

�
2 3

0 1

�
D

2 3
0 1

-2 -1
;

while Eq for other values of q yields either ¿ or disconnected diagrams.
Example 4.2.4. The connected non-zero diagrams in ‡ , or in ‡ of size up to 6 are
given by

TestTest; TestTest
TestTest ; Test

TestTestTest ;
TestTestTest
TestTestTest ;

TestTest
TestTest

TestTest
;

TestTest
Test

TestTestTest
;

Test
TestTestTest

TestTest
;

Test
TestTest

TestTestTest
;

Test
Test

TestTestTestTest
:

Lemma 4.2.5. For an arbitrary skew Young diagram � D �.0/, assume that, for all
i > 0, we have a skew Young diagram �.i/ and Fi of the form Eq or Pq , for various
q 2 Z, such that �.i/ D FiC1.�

.iC1//, for i 2 N. Then we must have �.j / D ¿,
for some j 2 N.

Proof. Assume we have such a chain �.i/ D FiC1.�
.iC1//, such that we never have

�.j / D ¿. Under those assumptions, each occurrence of Pq preserves the number of
boxes and Eq strictly increases them. Hence, there can only be a finite number of Fi
equal to some Eq . We take i0 2 N0 such that all Fi are of the form Pq when i > i0.
It suffices to prove the claim with � replaced by �.i0/.

We can thus assume that, for each i > 0, we have Fi D Pq , for some q 2 Z. The
action of Pq (because it does not send the diagrams to ¿) leaves the two (unique)
boxes with minimal and maximal content invariant, and strictly pushes down other
boxes. It then follows that all skew Young diagrams �.i/ are contained within the
rectangle determined by those two extremal boxes, so we can only push down finitely
many boxes, a contradiction.

4.3. Description in terms of rim hooks.

4.3.1. Consider an arbitrary connected skew Young diagram �. Take the collection
of all boxes b 2 � such that b is the right-most box in � with content con.b/. This
collection forms a hook, which we denote by �.0/. The diagram �n�.0/ is again a
skew Young diagram, possibly disconnected. We construct the outer hooks of each
connected component, as above, yielding a set of hooks f�.1/; : : : ; �.l/g. We remove
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them from �n�.0/ and proceed as above. Hence, we construct a set of rim hooks
(where we consider them as fixed in space) which together form �. This set will be
denoted by C.�/. The set C.�/ of a disconnected skew partition is just the union of
the corresponding sets for its components.

4.3.2. One hook �1 is nested in another hook �2 if each lower and right side of a
box in �1 is shared with another box in �1 or �2. We define a covering of a skew
partition � to be a decomposition of � into (connected) hooks, such that any two
hooks are either disjoint or nested.

4.3.3. By construction, C.�/ as defined in 4.3.1 is a covering of � in the sense
of 4.3.2. Moreover, one immediately verifies that a covering is unique. Assume
for instance that � is connected and has some covering C . Take any box b in �.0/
(as defined in 4.3.1). It must belong to some hook  in C . The boxes in �.0/ with
content con.b/˙ 1 cannot belong to hooks in C which allow a nesting with a hook
containing b. Thus it follows that �.0/ �  , hence they are equal and �.0/ 2 C . One
proceeds iteratively and obtains that C already coincides with C.�/.
Definition 4.3.4. Let �0 be the set of all (connected) hooks  which satisfy the
following two conditions:
� (HW-condition) We have wd./ D ht./C 1;
� (D-condition) The anticontent of the minimal box in  is the minimal value of the
anticontents of the boxes in  . Equivalently, no box in  lies strictly above the
positive diagonal drawn from the minimal box.

Let � be the set of skew diagrams �, where each hook in its covering C.�/ belongs
to �0.

Note that, by equation (4.1), the HW-condition immediately implies that any hook
in �0 has an even number of boxes.
Example 4.3.5. The unique hook with 2k boxes, for k 2 N, such that there are never
more than two boxes on the same row or column, and such that the minimal box is
alone in its column, will be referred to as a staircase. The staircases of size 2, 4 and 6
are given by

TestTest; TestTest
TestTest ;

TestTest
TestTest

TestTest
:

All staircases belong to �0. They correspond to those elements in �0 where the
D-condition is only just satisfied.

We will require the following elementary property of the set � .
Lemma 4.3.6. Let �; � be skew diagrams, where � is obtained from � by adding two
boxes in a column of � such that no boxes in � are above or left from the added
boxes. Then at most one of the skew diagrams �; � is in � .
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Proof. We start by observing that any hook in C.�/ is contained in a hook in C.�/.
Indeed, there are three possibilities for the outer rim hook �.0/. Either it is the same
as �.0/, it is �.0/ together with the lower of the added boxes, or it is �.0/ with both
added boxes. In the third case, all other hooks in the coverings of � and � coincide.
In the second case, one of the connected outer rim hooks in �n�.0/ will consist
of the second added box together and an outer rim hook of �n�.0/, while al other
elements C.�/ and C.�/ will be identical. In the first case, one removes the rim
hook �.0/ D �.0/ and applies the above procedure to �n�.0/ and �n�.0/.

Assume first that the two added boxes belong to different elements ofC.�/, which
implies that either C.�/ or C.�/ contains hooks of odd sizes. As all elements of �0
must be of even size, � and � cannot both be in � .

Now we assume that the two added boxes belong to the same element  2 C.�/.
Hence,  is obtained from some ı 2 C.�/ by adding two boxes in the same column
such that no boxes in ı are above or left of the added boxes. This means that the two
boxes are added to ı in such a way that either
(a) one of them is the minimal box in  ;

(b) one of them is the maximal box in  , with the maximal box in ı below the added
boxes.

In case (a), the D-condition in  is clearly violated, so � 62 � . In case (b) the
HW-condition of either  or ı must be violated, so either � 62 � or � 62 � .

4.4. Equivalence of the three descriptions.
Theorem 4.4.1. We have ‡ D ‡ D � .

This theorem follows from the subsequent Propositions 4.4.3 and 4.4.6, and the
obvious inclusion ‡ � ‡ .
Lemma 4.4.2. If � 2 � , then both Eq.�/ and Pq.�/ are in � , for all q 2 Z.

Proof. Set � D Pq.�/ and restrict to the non-trivial case � ¤ ¿. Denote
by b1; : : : ; br the q-boxes of �, ordered from top left to bottom right. Thus Pq
will delete the box b1 and add a new box brC1 on the q-diagonal below br . Note
that since brC1 is an addable box, � contains a q � 1-box ar directly below br and
a q C 1-box cr directly to the right of br . Since � is a skew shape, the same holds
for boxes ai and ci next to the box bi for 1 � i < r . As � 2 � , it can be covered
by nested hooks. Thus there are hooks 1; : : : ; r such that the box bi is contained
in i for all i . Since these hooks only share faces with hooks in which they are either
nested or that are nested inside them, this implies that also ai and ci are contained
in i for all i . This is evident for ar and cr and then follows successively for all
others. Thus we can easily cover � by hooks by leaving all hooks except 1; : : : ; r
unchanged and for each i , we delete the box bi and add the box biC1. As we do not
touch the minimal and maximal boxes of i the HW-condition remains satisfied and
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as we only push boxes down the diagonal, also the D-condition remains satisfied. So
the covering of � is by hooks of �0 and thus proves the claim.

Now set � D Eq.�/ and assume again � ¤ ¿. As in the previous situation we
use labels a1; : : : ; ar for the boxes on the q � 1-diagonal of � and b1; : : : ; br for
those on the q-diagonal. That the number of boxes is the same is due to the fact that
procedure Eq implies that there is a u-addable box a0 and a d-addable box brC1. So
we also find that every ai is directly below bi , for 1 � i � r . As brC1 is d-addable
to �, this also implies that there is a q C 1-box cr to the right of br , which in turn
implies that such a box ci exists for to the right of every bi for 1 � i � r . As before
denote by 1; : : : ; r the hooks in the covering of � such that bi is contained in i .
The same argument as above gives that also ai and ci are contained in i . We can
thus modify the hooks in the same way and delete bi from i and add biC1 to i .
In contrast to the previous situation this leaves b1 and a0 as the only boxes in � not
contained in a hook. If the box directly above b1 is not contained in � we just add
these two as a 2-hook TestTest, nested inside 1 by construction. If the box directly
above b1 is contained in �, it is also contained in a hook 0 nested inside 1. In this
case we add both boxes to this hook 0 which still satisfies both the HW-condition
and the D-condition on the hooks. Thus the claim is also proved in this case.

This lemma implies immediately the following statement.
Proposition 4.4.3. We have ‡ � � .

Now we start the proof of the inclusion � � ‡
Lemma 4.4.4. Take ı 2 �0 nested in  2 �0. Assume that  has a d-removable
q-box, but no d-addable qC 1-box, and that ı contains a q-box. Then the q-box in ı
is d-removable and either
(i) ı allows no d-addable q C 1-box and contains the shape q+1

q-1 q ; or

(ii) ı contains no q C 1-box, but contains the shape q-1 q .

Proof. As  has a d-removable q-box, but no d-addable q C 1-box,  must contain
a qC1-box above its q-box, but no qC2-box right of the qC1-box. The D-condition
then implies that the q-box cannot be minimal, so there must also be a q � 1-box left
of the q-box. Hence  contains the shape

q+1

q-1 q ;

without a q C 2-box to the right of the q C 1-box. Any q-box in ı is thus clearly
d-removable.

Assume first that ı contains a q-box, but allows no d-addable qC 1-box. Just like
we did for  we can show that ı contains q+1

q-1 q , which means we are in situation (i).
Now assume that ı contains a q-box, and also has a d-addable q C 1-box. We

prove that the two conditions in (ii) are satisfied. If ı would contain a q C 1-box
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above its q-box, then it needs to contain a q C 2-box right of this q C 1-box in order
to allow a d -addable q C 1-box. However, as ı is nested in  , this would require 
to have a q C 2-box right of its q C 1-box, which is not the case, a contradiction. In
particular we find that the q-box in ı is the maximal box. As ı cannot just be one box,
there must be a q � 1-box. As the q � 1-box below the q-box in ı already belongs
to  , this must be the q � 1-box left of the q-box.

Proposition 4.4.5. If � 2 � has a d-removable q-box but no d-addable q C 1-box,
then one of the following is true

(i) � D Pq. Q�/ for some Q� 2 �;

(ii) � D Eq. Q�/ for some Q� 2 �;

(iii) � has a d-addable q � 1-box and the highest q-box in � is maximal in its hook
in C.�/.

Proof. Let 0 be the hook in C.�/ containing the d-removable q-box, 1 the hook
containing the q-box in the column left of the d-removable one, until we reach k
containing the left-most q-box in �.

(a) Assume first that, for each j , its q-box is d-removable and that each j has no
d-addable qC 1-box. By Lemma 4.4.4, each q-box in � has a qC 1-box above it and
a q � 1 box to its left. We thus easily find that � D Pq. Q�/ for some skew diagram Q�
with a covering by hooks, which are either hooks of �, or of the form Qj with
j D Pq. Qj /. If Q� would not be in � , there should be a Qj which does not satisfy
the D-condition. This would imply in particular that j contains a q C 2-box right
of its q C 1-box, contradicting the assumption that j has no d-addable q C 1-box.
This means we are in situation (i).

(b) Now assume that the assumption in (a) is not satisfied. Lemma 4.4.4 implies
that there is a j which contains no q C 1-box. Note that such a j cannot have a
hook with q-box nested within, hence j D k. Lemma 4.4.4 implies further that k
contains a q � 1-box left of the q-box. By the D-condition, there is no q � 2-box to
the left of this q � 1-box. It thus follows that � D Eq. Q�/ for some skew diagram Q�.
As above it follows that for j < k, we have j D Pq. Qj / for �0 hooks Qj 2 C. Q�/.
Furthermore, there is a hook Qk 2 C. Q�/ with k D Eq. Qk/ which by construction is
in �0. AsC. Q�/ consists of the Qj , for 0 � j � k, along with some elements ofC.�/,
we find Q� 2 � .

Now assume that � allows no d-addable q � 1-box, by definition we then have
� D Eq. Q�/ and we are in situation (ii). If � allows a d-addable q � 1-box, we are in
situation (iii).

Proposition 4.4.6. We have � � ‡ .
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Proof. By Lemma 4.2.5, it suffices to prove that, for any � 2 � , we can find Q� 2 � ,
such that � D Pq. Q�/ or � D Eq. Q�/ for some q 2 Z. Now consider arbitrary � 2 � .
Proposition 4.4.5 already provides Q� except in the following situations:
(a) for every q 2 Z for which � contains a d-removable q-box, � allows a d-addable

q C 1-box;
(b) for every q 2 Z for which � contains a d-removable q-box but no d-addable

q C 1-box, � has a d-addable q � 1-box and the highest q-box in � is maximal
in its hook in C.�/.

In case (a), � must be a staircase, which can be obtained from a smaller staircase
by applying E. Assume therefore that � is as in (b). Take q the minimal value for
which � has a d-removable q-box but no d-addable qC1-box. Then take the maximal
r < q such that � has a d-removable r-box but no d-addable r � 1-box. Note that r
must exist by the HW-condition of elements in �0. The rim hook 0 in C.�/ which
contains the d-removable q-box must contain the shape

q+1

q-1 q
q-3q-2

� � �q-4
� � �

r+1

r-2r-1 r

(4.2)

where there is no qC 2-box right of the qC 1-box. If � contains no other q-boxes, �
is clearly of the form Pq. Q�/ for some Q� 2 � , so we assume existence of more q-boxes.
Define 1 2 C.�/ as the hook containing the q-box next to the one displayed. As 1
is in �0 and must be nested in 0 we find it must contain the r � 1-box immediately
above the displayed r � 2-box.
(I) If there are no further q-boxes in � then assumption in (b) implies that the q-box
in 1 is the maximal one. The HW-condition on 1 then implies that there is no box
to the left of the r�1-box in 1. Since the r�2-box below the r�1-box in 1 already
belongs to 0, it follows that 1 is a staircase starting at its r � 1-box and ending at
its q-box. In particular, there can be no r � 2-box in � next to the r � 1-box in 1.
It then follows that � D Er. Q�/ for some skew diagram Q�. Note that by construction
there is a covering of Q� by hooks which consists of hooks which are already in �,
except for Q1, which is obtained from 1 by removing its r � 1 and r-box; and Q0,
which is obtained from 0 by pushing upwards its r-box. As the latter does not break
the D-condition we find Q� 2 � .
(II) If there is another q-box in �, not yet in 0 or 1, we consider the hook 2 2 C.�/
containing it. As 2 is nested in 1, it follows that 1 contains a qC 1-box above its
q-box. The HW-condition on 1 then implies that its r �1-box cannot be its minimal
box and thus there is a r � 2-box left of the r � 1-box. All of the above then implies
that 1 also contains a shape (4.2). Furthermore, if there would be a qC 2-box in 1
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right of its qC 1-box, this would contradict its nesting inside 0 as we already know
that 0 has no q C 2-box right of its q C 1-box. In conclusion, the hook 1 satisfies
all the properties of 0 that we have used above.

We can thus proceed iteratively and apply the procedure in (I) in case 2 contains
the highest q-box, or procedure (II) in case there are more q-boxes. In conclusion,
if there are k q-boxes in �, we find that j for 0 � j < k contain a shape (4.2),
while k must be a staircase, and there exists Q� 2 � for which � D Er. Q�/.

5. Cell multiplicities

In this section we determine the cell multiplicities of the periplectic Brauer algebra
completely. We will freely use Theorem 4.4.1 and hence always apply the definition
of � D ‡ D ‡ which is appropriate to the situation.

5.1. Vanishing results.
Lemma 5.1.1. Consider � 2 Lr , � ` r and assume that ŒWr.�/ W Lr.�/� ¤ 0. If
for q 2 Z, we have e� 2 R.�/q , then there exists Q� 2 R.�/q t A.�/q , for which
ŒWr�1. Q�/ W Lr�1. Q�/� ¤ 0.

Proof. By equation (3.1), we have ŒWr.�/q W Lr�1. Q�/� ¤ 0. The result thus follows
from Proposition 3.1.2.

Proposition 5.1.2. Assume that ŒWr.�/ W Lr.�/� ¤ 0, then � � � and �=� 2 ‡ .

Proof. The condition � � � is Lemma 2.3.1(i), so we only prove �=� 2 ‡ . For
r � 5, this follows from [2, Section 9] and Example 4.2.4, so we proceed by
induction on r . By Lemma 2.3.1(ii), we can restrict to the case � ` r . Now assume
that, for � � � ` r , we have ŒWr.�/ W Lr.�/� ¤ 0. Consider an arbitrary pair of
partitions Q�; Q� as in Lemma 5.1.1. Using the induction hypothesis, we find that there
is � 2 ‡ , with Q�= Q� D �.

Firstly assumefirst that Q� 2 R.�/q . Thenwe have� D Q�[fb1g and� D Q�[fb2g,
for q-boxes b1; b2. Consequently, Q� � �, so � [ fb1g D �= Q� is a skew Young
diagram. Moreover, as the box b1 is addable to Q�, there is nothing in Q� to the right
or below b1. This implies in particular that there is nothing in Q�= Q� D � to the right
of or below b1, so b1 is d-addable to �. As � � �, also �=� D .� [ fb1g/nfb2g is
a skew partition. As b2 is addable to Q� it follows that nothing in �= Q� D � [ fb1g is
above or left of b2, so b2 is u-removable from �[fb1g. In conclusion, �=� D Pq.�/,
meaning that �=� 2 ‡ .

Secondly assume that Q� 2 A.�/q . Then we have� D Q�[fb1g and Q� D �[fb2g,
for a q-box b1 and a q�1-box b2. Hence� � Q�, so �[fb2g D Q�=� is a skew diagram.
If there would be a box in � D Q�= Q� above or to the left of b2, it could not be addable
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to Q�, a contradiction. Hence b2 is u-addable to �. We also have � [ fb1; b2g D �=�.
As b1 is addable to Q� it is clearly d -addable to Q�=� D � [ fb1; b2g. Hence,
�=� D Eq.�/.

In both cases, Definition 4.2.1, shows that �=� 2 ‡ .

Corollary 5.1.3. Consider somepartition� andq2Z, with�12R.�/q and�22A.�/q .
For every partition �, we then have the following chains of conclusions

(i) ŒW.�1/ W L.�/� ¤ 0) �=�1 2 ‡ ) �=�2 62 ‡ ) ŒW.�2/ W L.�/� D 0;

(ii) ŒW.�2/ W L.�/� ¤ 0) �=�2 2 ‡ ) �=�1 62 ‡ ) ŒW.�1/ W L.�/� D 0.

Proof. The diagram of �2 is obtained from �1 by adding a rim 2-hook q

q-1 .
Lemma 4.3.6 thus implies that either �=�1 62 ‡ or �=�2 62 ‡ . The conclusion
then follows from Proposition 5.1.2.

Using the above corollary, we can now find a stronger version of Lemma 5.1.1.

Proposition 5.1.4. Consider�2Lr ,� ` r and assume that ŒWr.�/ W Lr.�/�Dk>0.
If for q 2 Z, we have e� 2 R.�/q , then precisely one of the following is true:

(i) there exists Q� 2 R.�/q with ŒWr�1. Q�/ W Lr�1. Q�/� � k, and for any � 2 A.�/q
we have Q�=� 62 ‡ ,

(ii) there exists Q� 2 A.�/q with ŒWr�1. Q�/ W Lr�1. Q�/� � k, and for any � 2 R.�/q
we have Q�=� 62 ‡ .

Proof. We will assume that both �1 2 R.�/q and �2 2 A.�/q exist, the other cases
are easier to deal with. Proposition 3.1.2 and equation (3.1) show that

ŒWr.�/ W Lr.�/� � ŒWr�1.�
1/ W Lr�1. Q�/�C ŒWr�1.�

2/ W Lr�1. Q�/�:

The conclusion thus follows from Corollary 5.1.3.

5.2. The cell multiplicities.
Theorem 5.2.1. For any � 2 Lr and � 2 ƒr , we have

ŒWr.�/ W Lr.�/� D

(
1 if � � � and �=� 2 ‡;
0 otherwise:

We start the proof with the following two lemmata.

Lemma 5.2.2. Consider q 2 Z, Q� � Q� ` r � 1 with Q�= Q� 2 ‡ , and � 2 A. Q�/qC1,
� 2 A. Q�/qC1, such that �=� D Pq. Q�= Q�/. Then we have

ŒWr�1. Q�/ W Lr�1. Q�/� D ŒWr.�/ W Lr.�/�:
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Proof. By assumption in Definition 4.1.6(ii), � does not allow an addable qC1-box.
As Q� 2 R.�/q , Lemma 2.3.1(ii) and Lemma 3.2.1 thus imply that

ŒWr�1. Q�/ W Lr�1. Q�/� D ŒWrC1. Q�/ W LrC1. Q�/� � ŒWrC1. Q�/qC1 W Lr.�/�:

Proposition 3.1.2 implies

ŒWrC1. Q�/qC1 W Lr.�/� D ŒWr.�/ W Lr.�/�C
X

�2R.Q�/qC1

ŒWr.�/ W Lr.�/�:

Since we assume �=� 2 ‡ , part of the chain in Corollary 5.1.3(ii) implies that the
right-hand term vanishes. The two displayed equalities above thus finally yield

ŒWr�1. Q�/ W Lr�1. Q�/� � ŒWr.�/ W Lr.�/�:

In order to prove the weak inequality in the other direction we can of course
restrict to the assumption ŒWr.�/ W Lr.�/� ¤ 0. Proposition 5.1.4 then implies that

ŒWr.�/ W Lr.�/� � ŒWr�1. Q�/ W Lr�1. Q�/�;

which concludes the proof.

Lemma 5.2.3. Consider q 2 Z, Q� � Q� ` r � 1 with Q�= Q� 2 ‡ , and � 2 R. Q�/q�1,
� 2 A. Q�/qC1, such that �=� D Eq. Q�= Q�/. Then we have

ŒWr�1. Q�/ W Lr�1. Q�/� D ŒWr.�/ W Lr.�/�:

Proof. By Definition 4.1.6(iv), the skew diagram �=� allows no d-addable q � 1-
box. Now Q�=� is obtained from �=� by removing a d-removable q-box. The fact
that�=� allows no d-addable q�1-box implies that Q�=� has a d-removable q�1-box.
Consequently, the partition Q� contains a removable q � 1-box. Lemma 2.3.1(ii) and
Lemma 3.2.2 thus imply that

ŒWr�1. Q�/ W Lr�1. Q�/� D ŒWrC1. Q�/ W LrC1. Q�/� � ŒWrC1. Q�/q�1 W Lr.�/�:

Proposition 3.1.2 implies that

ŒWrC1. Q�/q�1 W Lr.�/� D ŒWr.�/ W Lr.�/�C
X

�2A.Q�/q�1

ŒWr.�/ W Lr.�/�

As we assume �=� 2 ‡ , the right-hand term vanishes by part of the chain in
Corollary 5.1.3(i). the above two displayed equations thus imply that

ŒWr�1. Q�/ W Lr�1. Q�/� � ŒWr.�/ W Lr.�/�:

The inequality
ŒWr.�/ W Lr.�/� � ŒWr�1. Q�/ W Lr�1. Q�/�

follows from Proposition 5.1.4, which concludes the proof.
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Proof of Theorem 5.2.1. The vanishing when �=� 62 ‡ is guaranteed by Proposi-
tion 5.1.2, the statement ŒWr.�/ W Lr.�/� D 1 for �=� 2 ‡ can be reduced to
the case � ` r , by Lemma 2.3.1(ii). For r � 5 it follows from [2, Section 9] and
Example 4.2.4, so we proceed by induction on r .

Assume � ` r and �=� 2 ‡ . By Definition 4.2.2, we must have �=� D Pq.�/
or �=� D Eq.�/ for some � 2 ‡ . There always exist partitions Q� and Q� as
Lemma 5.2.2 or Lemma 5.2.3, with Q�= Q� D �. Applying those lemmata hence yields
the induction.

A. Description of � in terms of arrow diagrams

A.1. Arrow diagrams.

A.1.1. Weight diagrams. Following [3, Section 5], to each partition �we associate
an infinite (strictly decreasing) sequence of integers x� defined as

x� D .�1; �2 � 1; �3 � 2; �4 � 3; : : :/:

In analogy with [1, Section 5.1], the weight diagram of � is then given by associating
to each integer i on the real line a white dot if i 62 x� and a black dot if i 2 x�.

Example A.1.2.

(i) For � D .1/, the weight diagram x� is given by

� � � �
�4

�
�3

�
�2

�
�1

ı
0

�
1

ı
2

ı
3

ı
4

� � �

(ii) For � D .3/, the weight diagram x� is given by

� � � �
�4

�
�3

�
�2

�
�1

ı
0

ı
1

ı
2

�
3

ı
4

� � �

(iii) For � D .2; 1/, the weight diagram x� is given by

� � � �
�4

�
�3

�
�2

ı
�1

�
0

ı
1

�
2

ı
3

ı
4

� � �

(iv) For � D .3; 2/, the weight diagram x� is given by

� � � �
�4

�
�3

�
�2

ı
�1

ı
0

�
1

ı
2

�
3

ı
4

� � �
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A.1.3. It is clear that x�0 is obtained from x� by reflecting the diagram with respect
to a vertical line in the middle of 0 and 1, followed by changing the colours of all
dots.

Any assignment of black and white boxes to Z can be interpreted as the weight
diagram of a (uniquely determined) partition if and only if there is a position i 2 Z
such that all dots to its left are black, and a position j 2 Z such that all dots to its
right are white.

A.1.4. wb pairs and arrow pairs. A wb pair of dots in x� is a white dot at
position i 2 Z and a block dot at position j 2 Z, with i < j . Such a pair is an arrow
pair of dots in x� if we further have that
� (hw-condition) the collection of dots in the interval Œi; j � contains precisely one
more white dot than black dots;

� (d-condition) one cannot draw a line to the left of j such that stictly between the
line and position i one has fewer white than black dots.

ExampleA.1.5. Consider theweight diagrams inExampleA.1.2. Inweight diagrams
(i) and (iii), there are no arrow pairs. In weight diagram (ii) there is exactly one arrow
pair, given by the dots in position 1 and 3. In weight diagram (iv) there are two arrow
pairs, one corresponds to positions �1 and 3, the other to �1 and 1.

A.1.6. Arrow diagrams. Similarly to [1, Section 6.2], the arrow diagram for a
partition � consists of the weight diagram, decorated with an arrow from each
white dot to each black dot which together form an arrow pair. It follows from the
definition of arrow pairs that two arrows in an arrow diagram do not intersect, except
possibly in the source (the starting white dot). This can be proved explicitly as in
[1, Lemma 6.2.2].

We call pairs of arrows a and b such that source and target of a lie strictly between
the source and target of b a nested pair of arrows. A pair of arrows a and b which
are not nested and have different sources is called a disjoint pair of arrows. By the
above, a pair a and b of disjoint arrows is automatically a pair such that the source
and target of a are either both left of, or both right of, the source and target of b.
Example A.1.7. The non-trivial arrow diagrams corresponding to the weight
diagrams in Example A.1.2 are given by
(ii) � � � �

�4
�
�3

�
�2

�
�1

ı
0

ı
1

99ı
2

�
3

ı
4

� � �

(iv) � � � �
�4

�
�3

�
�2

ı
�1

99 88ı
0

�
1

ı
2

�
3

ı
4

� � �

A.1.8. For a weight diagram x�, the operation of constructing a new weight diagram
by exchanging two dots which constitute a wb pair will be referred to as flipping a
wb pair.
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For a partition �we define a set of partitions….�/. We have � 2 ….�/ if and only
if x� can be obtained from x� by moving a number of white dots along arrows in the
arrow diagram of � (while the black dot travels in opposite direction). Equivalently,
we can say that x� can be obtained flipping a number of arrow pairs in x�. Note that
the arrows along which boxes will be moved are by assumption automatically such
that any two arrows are either nested or disjoint.
Example A.1.9. For � D .3; 2/, the two weight diagrams of the partitions in ….�/
are given by

� � � �
�4

�
�3

�
�2

�
�1

ı
0

ı
1

ı
2

�
3

ı
4

� � �

and

� � � �
�4

�
�3

�
�2

�
�1

ı
0

�
1

ı
2

ı
3

ı
4

� � �

Hence,…
� �

D
˚

;
	
.

A.2. Decompositionmultiplicities in terms of arrowdiagrams. Nowwe are ready
to derive a fourth description of the set � . The following proposition implies that
decompositionmultiplicities for periplectic Brauer algebras can be described in terms
of the arrow diagram calculus.
Proposition A.2.1. For two partitions �;�, we have � 2 ….�/ if and only if � � �
with �=� 2 � .

We start the proof with the following lemma.
Lemma A.2.2. Let � be any partition and x� its weight diagram. Flipping a wb
pair of dots in positions .lw ; lb/, with lw < lb , yields a weight diagram x�, where �
is obtained from � by removing a rim hook  such that

(i) ht./ is the number of black dots in x� in the interval Œlw ; lb�;

(ii) we have wd./ D lb � lw � ht./C 1;
(iii) with a the anticontent and c the content of the minimal box in  , the anticontent

of the box with content c C i is given by

aC i � 2]fblack dots in Œlw C 1; lw C i �g; for 0 � i � t C s � 2:

Proof. Let s denote the number of black dots in x� in the interval Œlw ; lb�. Denote
by rs�1 < � � � < r0 the positions of these black dots, hence r0 D lb . For simplicity
we set rs D lw . By definition of x� and with j the number of black dots right of lb ,
we have

�jCi D ri C j C i � 1; for 0 � i < s:
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Moving the black dot from r0 to rs can equivalently be interpreted as changing the
position of all the indicated black dots from ri to riC1. Thus �jCi D riC1CjCi�1,
or

�jCi D �jCi � .ri � riC1/; for 0 � i < s (A.1)

and �q D �q for all other q. Thus � � � and the skew diagram �=� has boxes in s
rows. It remains to be checked that the skew shape �=� is indeed a hook with the
right properties.

Comparing neighbouring rows we immediately have

�jCiC1 D riC1 C j C i D �jCi C 1; for 0 � i < s � 1:

Thus the skew diagram is a connected hook  WD �=�. By the above, we already
know ht./ D s, proving (i). By equation (A.1), the total number of boxes in the
skew shape �=� is equal to

s�1X
iD0

ri � riC1 D r0 � rs D lb � lw :

Part (ii) then follows from equation (4.1).
For the box with content c C i , the anticontent is given by aC i minus twice the

number of rows the box is above the minimal one, which proves part (iii).

Corollary A.2.3. Fix a partition � with weight diagram x�. Removing a rim hook
from � is equivalent to flipping a wb pair in x�.

Consider such a rim hook  with corresponding wb pair p. The wb pair p is an
arrow pair if and only if  is in �0.

Proof. Lemma A.2.2 implies in particular that flipping a wb pair of dots in x�
corresponds to removing a rim hook from �. Using the same arguments one
immediately finds that any rim hook can be obtained this way, i.e. removing a rim
hook always corresponds to flipping a wb pair.

So assume that we flip a wb pair p in positions .lw ; lb/ in x�. By Lemma A.2.2(i)
and (ii) it follows that the rim hook  satisfies

wd./ � ht./ � 1 D lb � lw � 2 ]fblack dots in x� in Œlw ; lb�g:

Hence,  satisfies the HW-condition if and only if p satisfies the hw-condition.
Lemma A.2.2(iii) implies that  satisfies the D-condition if and only if p satisfies the
d-condition.

Lemma A.2.4. Fix a partition � with weight diagram x�. Flipping two disjoint wb
pairs corresponds to removing two disjoint rim hooks. Flipping two nested wb pairs
corresponds to removing two nested rim hooks.
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Proof. Denote the resulting partition after removing the rim hooks by �.
Assume first that the two wb pairs p1 and p2 are disjoint and that p2 is right

of p1. The black dots in the two intervals spanned by the two pairs contain pairwise
different sets of black dots, which implies that their respective rim hooks occupy
pairwise disjoint sets of rows. In addition, the left most black dot involved in the
arrow pair p2, which corresponds to row j 2 Z>0 for some j , will be moved to the
right of the right most black dot in p1, corresponding to some row k with k > j .
Thus we have

�j � .j � 1/ > �k � .k � 1/C .k � j � 1/;

with .k � j � 1/ the number of black dots in between the two. This implies implies
�j C 1 > �k , which translates to the fact that the columns occupied by the rim hook
corresponding to p2 are strictly bigger than the columns occupied by the rim hook
for p1.

Assume now that p1 is nested in p2 and we first flip p2, resulting in a partition �,
and then p1, resulting in �. Then the rim hook corresponding to p1 occupies a subset
of the set of rows of the rim hook corresponding to p2 by construction. This in turn
already implies that the rim hook for p1 cannot occupy a column that is strictly larger
than the columns occupied by the rim hook for p2. In addition the left most black
dot of p1, again assuming this corresponds to a row j , is moved to the right of the
white dot of the arrow pair p2 and to the right of the black dot corresponding to row
j C q. Then it holds �j � .j � 1/ > �jC1 � j . Hence �j C 1 > �jC1, which
implies that the set of columns occupied by the rim hook for p1 is a subset for the
set of columns occupied by the rim hook for p2. That the rim hooks are nested thus
follows from construction and the above considerations about the rows and columns
they occupy.

Proof of Proposition A.2.1. First assume that � 2 ….�/. Denote the arrow pairs
in x� which are flipped to create x� by p1; : : : ; pk , which are labelled such that
l1w < l

2
w < � � � < l

k
w with l iw the position of the white dot in pi . Flipping the pair p1

yields a weight diagram x� for a partition � with �=� 2 �0 by Corollary A.2.3. By
assumption any two arrows are either disjoint or nested. This implies in particular
thatp2; : : : ; pk are still arrow pairs in x� . We can thus proceed iteratively and we find
that � is obtained from � by consecutively removing rim hooks which are in �0. The
fact that all these hooks are either disjoint or nested then follows from Lemma A.2.4.

Now assume that � � � and �=� 2 � . Note that we can obtain � from � by
successively removing hooks from the covering of C.�=�/, obtaining a partition
in each step. Each of these steps will thus correspond to flipping an arrow pair
by Corollary A.2.3. As above it follows that all these pairs in intermediate weight
diagrams are also arrow pairs in x�. Thus one immediately obtains that � 2 ….�/.
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A.3. Multiplicity one property for projective modules. In this section we show
that the multiplicities ŒPr.�/ W Lr.�/�, which are determined by equation (2.2) and
Theorem 5.2.1, are either 1 or 0. We obtain this from results in [1] which we can
now translate to our setting by Proposition A.2.1.
Proposition A.3.1. For any �; � 2 ƒr , we have

ŒPr.�/ W Lr.�/� � 1:

Before proving this we introduce some notions related to the periplectic Lie
superalgebra pe.n/ for n 2 Z�3. This is a Lie superalgebra with underlying
Lie algebra gl.n/. We follow the conventions of [1], so in particular take the
corresponding triangular decomposition of pe.n/, with Cartan subalgebra h Š kn

and h� D h"1; : : : ; "nik. We set

Xn WD f! D

nX
jD1

!j "j j !j 2 Z and !1 � !2 � � � � � !ng � h�:

We work in the category F of finite dimensional integrable modules. The simple
modules are given by S.!/ (up to parity), with highest weight ! 2 Xn. Following
[1, Section 3.1], we have the thick Kacmodule�.!/, for any! 2 Xn. We also denote
the projective cover of S.!/ inF byQ.!/. This module has a filtration with sections
given by thick Kac modules and the corresponding multiplicities .Q.!/ W �.�// do
not depend on the choice of filtration. For any partition � with length bounded by n,
we associate

� D

nX
jD1

�j "j 2 Xn:

By the reformulation of our main result into arrow diagram combinatorics, we see
that cell multiplicities for the periplectic Brauer algebra are special cases of Kazhdan–
Lusztig multiplicities for the periplectic Lie superalgebra as determined in [1].
Lemma A.3.2. Assume r � n, � 2 Lr and � 2 ƒr , then we have
(i) ŒWr.�/ W Lr.�/� D Œ�.�/ W S.�/�;
(ii) ŒWr.�0/ W Lr.�0/� D .Q.�/ W �.�//.

Proof. By Theorem 5.2.1 and Proposition A.2.1, we have

ŒWr.�/ W Lr.�/� D

(
1 � 2 ….�/;

0 otherwise:
(A.2)

On the other hand, by [1, Theorem 6.3.3], we have

Œ�.�/ W S.�/� D

(
1 if � 2 H.�/;
0 otherwise;
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with H.�/ defined in [1, Section 6.2]. It follows immediately that, since the weight
diagram of � in [1, Section 6.2] is identical to x� except that all dots in positions
in Z�-n are changed from black to white, the conditions � 2 ….�/ and � 2 H.�/
are equivalent. (However, we stress that in general H.�/ will have higher cardinality
than….�/, but the “extra” elements are not of the form � with � 2 Lr .) This proves
part (i).

By [1, Theorem 6.3.1], we have

.Q.�/ W �.�// D

(
1 if � 2 N.�/;
0 otherwise:

Using the description of x�0 in A.1.3 it follows that �2N.�/ if and only if �02….�0/.
Part (ii) then follows from equations (A.2) and (2.1).

Proof of Proposition A.3.1. Equation (2.2) and Lemma A.3.2 imply that

ŒPr.�/ W Lr.�/� D
X
�2Lr

.Q.�/ W �.�//Œ�.�/ W S.�/�

�

X
!2Xn

.Q.�/ W �.!//Œ�.!/ W S.�/� D ŒQ.�/ W S.�/�:

The conclusion thus follows from [1, Theorem 8.1.2].
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