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An introduction to diagram groups

Anthony Genevois

Abstract. To every semigroup presentation P D h†jRi and every baseword w 2 †C can be
associated a diagram group D.P ; w/, defined as the fundamental group of the Squier com-
plex S.P ; w/. Roughly speaking, D.P ; w/ encodes the lack of asphericity of P . Examples of
diagram groups include Thompson’s group F , the wreath product Z o Z, the pure planar braid
groups, and various right-angled Artin groups. This survey aims at summarising what is known
about the family of diagram groups.

1. Introduction

Defined by J. Meakin and M. Sapir (unpublished), and first investigated by V. Kilibar-
da in her thesis [55], diagram groups have been mainly promoted by V. Guba and M.
Sapir, in particular through their monograph [45]. Since then, many articles have been
dedicated to the understanding of which groups can be described as (subgroups of)
diagram groups and which properties can be deduced from such a description. Per-
spectives on the subject include computational problems, such as the word, conjugacy,
and commutation problems [45,47], finiteness properties [24], homology [49], order-
ability [50,67], median geometry [24,33,34], Hilbertian geometry [2], and negatively
curved geometry [32, 36].

In this survey, our goal is to organise in a coherent and essentially self-contained
way what is known about the family of diagram groups.

In Section 2, we first present three different, but equivalent, descriptions of dia-
gram groups: as a way to encode the lack of asphericity of a semigroup presenta-
tion (Section 2.1); as a two-dimensional analogue of free groups, where words are
replaced with diagrams over semigroup presentations (Section 2.2); and finally as
second fundamental groups of directed 2-complexes (Section 2.3). Next, we record
explicit examples of diagram groups in Section 2.4, including Thompson’s group F ,
its commutator subgroup F 0, the wreath product Z o Z, the pure planar braid groups,

2020 Mathematics Subject Classification. Primary 20F65; Secondary 05C25, 57M07.
Keywords. Diagram groups, semigroup diagrams, Squier complexes, directed 2-complexes,
Thompson groups, median graphs, CAT(0) cube complexes.



A. Genevois 2

and various right-angled Artin groups. Most properties satisfied by diagram groups
are listed in Section 2.5, sometimes accompanied with ideas of proofs.

In Section 3, we are mainly concerned with algorithmic and computational aspects
of diagrams. In Section 3.1, we show how one can compute efficiently presentations
of diagram groups. Sections 3.2 and 3.3 essentially deal with the combinatorics of
semigroup diagrams, with a focus on the conjugacy problem in Section 3.2 and on
centralisers in Section 3.3. In Section 3.4, we show how to determine efficiently
whether an element of a diagram group belongs to the commutator subgroup. Finally,
in Section 3.5, we exploit the point of view given by directed 2-complexes in order to
adapt the well-known foldings of Stallings from free groups to diagram groups. This
allows us to solve the membership problem for some specific subgroups.

In Section 4, we consider diagram groups from a more geometric perspective.
After a crash course on median geometry in Section 4.1, we show in Section 4.2
that diagram groups naturally act on median graphs. This geometry allows us to
extract some valuable information about diagram groups regarding finiteness prop-
erties, once combined with a combinatorial version of Morse theory (Section 4.3);
Hilbert space compression (Section 4.4); and acylindrical hyperbolicity (Section 4.6).
The structure of hyperplanes in the nonpositively curved cube complexes whose fun-
damental groups are the diagram groups is studied in Section 4.5, with applications
to residual finiteness and subgroup separability. Finally, in Section 4.7, we introduce
diagram products, a version of diagram groups with coefficients coming from a fam-
ily of groups indexed by the alphabet of the underlying semigroup presentation. We
show that these products naturally act on quasi-median graphs, and we exploit this
geometry in order to extract some information on the structure of diagram products.

We conclude this survey by describing various possible generalisations of diagram
groups; most of them are already available in the literature (Section 5) and by listing
several open questions and problems that we find appealing (Section 6), with the hope
that this could motivate future works on diagram groups.

2. A first taste

2.1. Diagram groups as lack of asphericity

Let P D h†jRi be a semigroup presentation, i.e., an alphabet † and a collection of
relations R of the form u D v, where u; v are positive and non-empty words written
over†. In the sequel, we will always assume that R does not contain obvious redund-
ancy; i.e., if u D v is in R, we will assume that v D u is not in R. In particular, R

does not contain a relation of the form u D u. As an example, we can take

P D ha; b j ab D ba; a D a2i:
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The presentation P is said to be aspherical if, given two positive words p;q 2†C
representing the same element in the semigroup, there is essentially a unique way to
derive q from p by applying relations in R. Depending on the meaning one gives to
such a uniqueness, one may obtain distinct notions of asphericity. For instance, the
words abba and bab represent the same element in the semigroup given by P D
ha; b j ab D ba; a D a2i, a natural derivation being

abba! baba! baab ! bab:

However, such a derivation is far from being unique. For instance, instead of applying
the relation ab D ba to the first half of abba and next to the second half, we can apply
the relation to the second half of the word and next to the first half

abba! abab ! baab ! bab:

Even worse, we can apply a relation and next undo what we have just did, e.g.,

abba! bab ! baab ! bab ! bba! bab:

However, we do not consider such variations as being essentially different from our
initial derivations. In order to formalise this idea, we use some algebraic topology.

Definition 2.1. Let P D h†jRi be a semigroup presentation. The Squier square com-
plex S.P / is the complex whose vertices are the positive words written over†; whose
edges Œa; u D v; b� connect two words aub and avb if one can be obtained from the
other by applying a relation

u D v
from R; and whose squares

Œa; u D v; b; p D q; c�

bound the 4-cycles given by edges

Œa; u D v; bpc�; Œa; u D v; bqc�; Œaub; p D q; c�; Œavb; p D q; c�:

Then, one says that our presentation P is aspherical if the fundamental group of
each connected component of the correspond Squier square complex is trivial. Thus,
the fundamental groups of the connected components of S.P / encode the lack of
asphericity of P . These groups are our diagram groups.

Definition 2.2. Let P Dh†jRi be a semigroup presentation andw 2†C a baseword.
The diagram group D.P ; w/ is the fundamental group �1.S.P /; w/ of the Squier
square complex S.P / based at w.
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Figure 1. The complex S.P ; ad/ where P D ha; b; c; x; y j a D b; b D c; c D a; x D yi.

This is the shortest definition one can get of diagram groups, and it already allows
us to construct examples. For instance, the diagram group given by Figure 1 is a free
group of rank two. However, Definition 2.2 does not explain why we are focusing on
semigroup presentations instead of monoid or group presentations, and its formulation
has nothing to do with diagrams, so the terminology we are using remains mysterious.
These points will be clarified in the next section.

2.2. Diagrammatic representation

Let P D h†jRi be a semigroup presentation. Given two positive wordsw1;w2 2†C
representing the same element in the semigroup given by P a derivation from w1

to w2, or equivalently a path in the Squier complex S.P / from w1 to w2, can be
encoded by a diagram over P . For instance, if P D ha; b j ab D ba; a D a2i, then
the derivation

abba! baba! baab ! bab ! abb

can be represented by the diagram

a

b a

a

a

a

ab b

b

b

The diagram is constructed as follows. We start with a top path (oriented from
left to right) labelled by our initial word abba. The first step abba ! baba in our
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derivation applies the relation ab D ba to the first half of the word abba, so we glue
a 2-cell to our path with a boundary which is the disjoint union of a top path ab and a
bottom path ba. Similarly, following the second step baba! baab in our derivation,
we glue a 2-cell with a boundary which is the disjoint union of a top path ba and
a bottom path ab. So far, we have a diagram with two 2-cells, whose top path is
labelled by abba, and whose bottom path is labelled by baab. Following the third
step baab ! bab of our derivation, we glue a 2-cell with a boundary which is the
disjoint union of a top bath labelled aa and a bottom path labelled a. Finally, we glue
a fourth 2-cell corresponding to the fourth step bab ! abb from our derivation.

Formally, a diagram of a semigroup presentation P D h†jRi is a planar oriented
graph � whose oriented edges are labelled by letters from † such that

• � has a unique source and a unique sink;

• the boundary of every cell is a disjoint union of two oriented paths, referred to as
the top and bottom paths of the cell;

• for every cell, if u and v denote the labels of its top and bottom paths, then u D v
or v D u belongs to R.

By definition, a diagram comes with a fixed embedding in the plane. Two diagrams
only differing by an isotopy of the plane are considered as identical. In the sequel,
orientations of edges in diagrams will be clear from our embeddings (from left to
right) so they will not be specified.

Our diagrams are the analogues of the semigroups of van Kampen diagrams for
groups. In particular, two positive words w1; w2 2 †C represent the same element of
the semigroup given by P if and only if there exists a diagram � over P with

top.�/ D w1 and bot.�/ D w2:

Thus, every path in the Squier complex S.P / from some vertex w1 to another
vertex w2 can be represented by a diagram over P whose top and bottom words,
respectively, are w1 and w2. Notice that two paths can be represented by the same
diagram. For instance, the diagram given above also represents the path

abba! abab ! baab ! baba! abb:

Clearly, the paths represented by a given diagram � correspond to the different ways
one has to construct� by gluing 2-cells successively. In our example, we can glue the
top left cell first and next the top right cell, or we can glue the top right cell first and
next the top left cell. These two possibilities correspond to the two paths we gave.

It is worth noticing that all the paths encoded by a diagram are pairwise homo-
topic. However, two homotopic paths may not be represented by the same diagram.
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In a square complex, two paths in the one-skeleton are homotopy equivalent if
and only if one can be obtained from the other by a sequence of elementary moves,
namely, flipping a square and adding or removing a backtrack (see Figure 2).

It is clear that flipping a square does not modify the diagram representing our path.
However, adding or removing a backtrack does modify the diagram. This motivates
the following definition.

Definition 2.3. Let P D h†jRi be a semigroup presentation and � a diagram over
P . A dipole in� is the data of two cells �1; �2 �� such that bot.�1/D top.�2/ and
such that �1; �2 correspond to a relation of R and its inverse. One reduces the dipole
by identifying the paths top.�1/ and bot.�2/.

For instance, the blue diagram above contains a dipole, namely, the two right cells.
Reducing the dipole provides the red diagram. It is worth noticing that the diagram
associated to a path with a backtrack necessarily contains a dipole. However, the con-
verse is not true, as shown by the blue diagram above.

Figure 2. Flipping a square and removing/adding a backtrack.
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Figure 3. Product of diagrams over P D ha; b j ab D ba; a D a2i.

Proposition 2.4. Let P be a semigroup presentation. Two paths in the Squier complex
S.P / having the same endpoints are homotopy equivalent if and only if the diagrams
over P representing them have the same reduction.

Here, the reduction of a diagram refers to the diagram obtained after reducing
all the dipoles. A priori, the diagram thus obtained could differ depending on the
order we are following when reducing the dipoles. It turns out not to be the case; see
[45, Theorem 3.17]. Thus, the reduction of a diagram is well defined.

Proposition 2.4 immediately implies the following corollary.

Corollary 2.5. Let P be a semigroup presentation. The map that sends a path in
S.P / to its diagram over P induces an isomorphism from the fundamental group-
oid of S.P / to the diagram groupoid D.P / whose elements are the diagrams over
P up to dipole reduction and whose product sends any two diagrams �1; �2 with
bot.�1/; top.�2/ labelling by the same word to the diagram �1 ı �2 obtained by
gluing �2 below �2.

Here, we think as a groupoid as a set endowed with a product only partially defined
but satisfying basically the same axioms as groups: the product, when it is defined,
is associative; there are neutral elements (not unique); and every element admits a
unique inverse. The example to keep in mind is the fundamental groupoid of a topo-
logical space: its elements are the oriented paths up to homotopy, and the product
between two paths ˛; ˇ is well defined when the terminal point of ˛ coincides with
the initial vertex point of ˇ in which case the product is just the concatenation of ˛
and ˇ. Neutral elements are single points and the inverse of an element is obtained
by reversing the orientation. In D.P /, the neutral elements are the diagrams with no
2-cells and the inverse of a diagram is given by its mirror image (along a horizontal
axis). See Figure 3.

As a particular case of Corollary 2.5, given a semigroup presentation P D h†jRi
and a baseword w 2 †C, the diagram group D.P ; w/ can be described as the set of
.w; w/-diagrams over P (i.e., the diagrams whose top and bottom paths are labelled
by w) up to dipole reductions endowed with the concatenation product.
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2.3. Diagram groups as two-dimensional free groups

There is an analogy between our previous description of diagram groups and the con-
struction of free groups. Elements of free groups are words (which can be thought
of as linear objects) up to reductions xx�1 D 1 (corresponding to dipole reductions),
which we concatenate together (similarly to concatenations of diagrams). The analogy
can be pushed further. In the same way that free groups can be described as funda-
mental groups of graphs, diagram groups can be described as second fundamental
groups of directed 2-complexes. This point of view was developed in [49] and will be
crucial in Section 3.5. However, since it will not be essentially used elsewhere and is
rather technical, the present section can be skipped in a first reading.

Definition 2.6. A directed 2-complex is the data of a directed graph � , a set of 2-cells
F , two maps top, bot sending each 2-cell to a directed path in � , and a map � W F ! F

such that

• for every f 2 F , bot.f / and top.f / are non-empty and have common initial and
terminal vertices;

• � is a fixed-point free involution satisfying top.�.f // D bot.f / and bot.�.f // D
top.f / for every f 2 F .

For instance, given a semigroup presentation P , a diagram � over P is naturally
a directed 2-complex (drawn on the plane). If the top and bottom paths of � have
the same label, then one can identify top.�/ with bot.�/ in order to obtain another
directed 2-complex (drawn on the sphere).

Mimicking the construction of a cellular 2-complex from a group presentation,
one can also associate a directed 2-complex X.P / to our semigroup presentation
P D h†jRi. Namely, X.P / has a single vertex, one directed edge for each generator
in †, and, for each relation u D v in R, we add two 2-cells whose top and bottom
paths are, respectively, labelled by u; v and v; u.

Now, our goal is to define a second fundamental groupoid of a directed 2-complex.
Roughly speaking, it is given by homotopy classes of 2-paths (i.e., paths of paths)
endowed with the usual concatenation.

Definition 2.7. Let X be a directed 2-complex. A 1-path is a directed path in the
underlying directed graph. An elementary transformation of a 1-path ˛ is the replace-
ment of a subsegment ˇ � ˛ which coincides with the bottom path of some 2-cell �
with top.�/. A 2-path is a finite sequence of 1-paths such that each 1-path is obtained
from the previous one by an elementary transformation.

One should think of an elementary transformation as pushing a 1-path ˛ through
a 2-cell having its bottom path in ˛. Observe that, given a semigroup presentation P ,
a 2-path in the directed 2-complex X.P / is naturally encoded by a diagram over P .
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Definition 2.8. Let X be a directed 2-complex. Two 2-paths are elementary equival-
ent if they are of the form

˛1; : : : ; ˛r ; �bot.�/�; �top.�/�; �bot.�/�; ˇ1; : : : ; ˇs;

˛1; : : : ; ˛r ; �bot.�/�; ˇ1; : : : ; ˇs

for some 2-cell � , or

˛1; : : : ; ˛r ; ˛bot.�/ˇbot.�/; ˛top.�/ˇbot.�/; ˛top.�/ˇtop.�/; ˇ1; ˇs

˛1; : : : ; ˛r ; ˛bot.�/ˇbot.�/; ˛bot.�/ˇtop.�/; ˛top.�/ˇtop.�/; ˇ1; ˇs

for some 2-cells �; �. Two 2-paths are homotopy equivalent if one can pass from one
to the other by a sequence of elementary equivalences.

In other words, the first elementary equivalence tells us that pushing a 1-path
through a 2-cell and next through its inverse amounts to doing nothing. The second
elementary equivalence tells us that, given two 2-cells �1; �2 having their bottom
paths in our 1-path � and disjoint, pushing ˛ through �1 and next through �2 amounts
to pushing ˛ through �2 and next through �1.

As previously mentioned, a 2-path in the directed 2-complex X.P / associated to
a semigroup presentation P is naturally encoded by a diagram over P . It should be
clear from our definition that any two homotopy equivalent 2-paths are encoded by
the same diagram modulo dipole reduction.

Definition 2.9. Let X be a directed 2-complex. The second fundamental groupoid
…2.X/ of X is the set of 2-paths up to homotopy equivalence endowed with con-
catenation. Given a 1-path ˛, the fundamental group �2.X; ˛/ is the set of 2-paths
starting and ending at ˛ up to homotopy equivalence endowed with concatenation.

Observe that neutral elements of…2.X/ are 2-paths reduced to single 1-paths and
that the inverse of a 2-path is the same 2-path but read in the reversed order.

Interestingly, second fundamental groups of directed 2-complexes define the same
class of groups as diagram groups [49, Theorem 4.3].

Theorem 2.10. For every semigroup presentation P , the map that sends a 2-path in
X.P / to the diagram encoding it induces a groupoid isomorphism …2.X.P // !
D.P /. Conversely, every directed 2-complex X can be turned into the directed 2-
complex associated to a semigroup presentation P such that …2.X/ and D.P / are
isomorphic.

The first assertion should be clear from what we already said. We refer to [49] for
more information on the second assertion.
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2.4. Examples of diagram groups

The simplest diagram group is given by the semigroup presentation

P D ha; b; c j a D b; b D c; c D ai:

The connected component S.P ; a/ containing a of the Squier complex S.P / is just
a 3-cycle with vertices a; b; c, so D.P ; a/ is infinite cyclic. From this example, it is
possible to construct new diagram groups by combination.

Proposition 2.11 ([55]). Free products of diagram groups are diagram groups.

Proof. Let I be a set. For every i 2 I , let Pi WD h†i jRi i be a semigroup presentation
and wi 2 †Ci a baseword. Without loss of generality, we assume that the alphabets
†i are pairwise disjoint. Set

Q WD
�
¹oº t

G
i2I

†i

ˇ̌̌̌ G
i2I

Ri t ¹o D wi ; i 2 I º
�
:

Then, D.Q; o/ is isomorphic to the free product �i2ID.Pi ; wi / because S.Q; o/
coincides with the disjoint union of the S.Pi ; wi / together with the new vertex o
which is adjacent to all the wi .

Thus, free groups are diagram groups. By applying the construction above, a group
freely generated by a set I can be represented as the diagram group given by the
semigroup presentation

ho; ai ; bi ; ci .i 2 I / j o D ai ; ai D bi ; bi D ci ; ci D ai .i 2 I /i

and the baseword o.

Proposition 2.12 ([55]). Direct sums of finitely many diagram groups are diagram
groups.

Proof. Fix an integer n � 1, and, for every 1 � i � n, let Pi WD h†i jRi i be a semig-
roup presentation and wi 2 †Ci a baseword. Without loss of generality, we assume
that the alphabets †i are pairwise disjoint. Set

Q WD
� nG
iD1

†i

ˇ̌̌̌ nG
iD1

Ri

�
and w WD w1 � � �wn. Then, D.Q; w/ is isomorphic to D.P1; w1/˚ � � � ˚D.Pn; wn/
because S.Q; w/ coincides with the (2-skeleton of the) product S.P1; w1/ � � � � �
S.Pn; wn/.
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Thus, free abelian groups of finite ranks are diagram groups. By applying the
construction above, if

P D ha; b; c j a D b; b D c; c D ai;

then D.P ; an/ is free abelian of rank n.
Comparing Proposition 2.12 with Proposition 2.11, it is natural to ask whether dir-

ect sums of infinitely many diagram groups are still diagram groups. The construction
used in Proposition 2.12 does not work anymore, but one can apply a trick.

Proposition 2.13 ([47]). Directs sums of countably many diagram groups are dia-
gram groups.

Sketch of proof. For every i � 1, let Pi WD h†i jRi i be a semigroup presentation and
wi 2 †Ci a baseword. Without loss of generality, we assume that the alphabets†i are
pairwise disjoint. Following Proposition 2.12, what we would like to do is to consider
the infinite word w WD w1w2 � � � and to apply derivations on the wi independently
according to the Pi , respectively. However, infinite words are not allowed. The trick
is to introduce a new letter x0 in the alphabet and to “hide” the infinite part of our w
inside x0. More precisely, set

Q WD
�
¹xi ; i � 0º t

G
i�1

†i

ˇ̌̌̌ G
i�1

Ri t ¹xi�1 D xiwi ; i � 1º
�
:

The claim is that D.Q; x0/ is isomorphic to
L
i�1D.Pi ; wi /. For every i � 1, the

derivations of the form

x0!x1w1!� � �! xiwi � � �w1 ! � � � ! xiwi � � �w1„ ƒ‚ …
derivation in Pi applied to wi

! xi�1wi�1 � � �w1!� � �! x0

correspond to the elements of the factor D.Pi ; wi / in our direct sum.

Thus, a free abelian group of countable rank is a diagram group. By applying the
construction above, it can be represented as the diagram group given by the semigroup
presentation

hx; a; b; c j a D b; b D c; c D a; anx D anC1x.n � 0/i

and the baseword x.

Proposition 2.14 ([47]). If G is a diagram group, then so is G o Z.

Recall that the wreath product A oB of two groups A;B is the semidirect productM
B

A Ì B;
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where B acts on the direct sum by permuting the factors according to the action on
itself by left multiplication.

Sketch of proof. Let P Dh†jRi be a semigroup presentation andw 2†C a baseword
such thatG coincides with the diagram groupD.P ;w/. Let a;b; s be three new letters
that do not belong to †. Set

Q WD h† t ¹a; b; sº j R t ¹a D asws; b D swsbºi:

The letter s can be thought of as a separation letter. It prevents us from applying a
relation from R to two adjacent w. This letter can be removed when no relation from
R can be applied to a subword of some w � � �w overlapping between two copies of w.

The claim is that D.Q; aswsb/ is isomorphic to D.P ; w/ oZ. For every diagram
� over Q, let �.�/ denote the number of .b; bsws/-cells in � minus the number of
.bsws; b/-cells in �; it is worth noticing that �.�/ depends only on the class of �
modulo dipole reduction. One gets a morphism � WD.Q; aswsb/� Z. For instance,
the diagram „ associated to the derivation

aswsb �����!
bDswsb

aswsswsb �����!
aswsDa aswsb

is sent to 1 under �. For every i � 0, D.Q; aswsb/ contains a copy Di of D.P ; w/
whose elements correspond to the derivations of the form

aswsb �����!
bDswsb

� � � �����!
bDswsb

a.sws/i�1swsb ! � � � ! a.swsi�1/swsb„ ƒ‚ …
derivation in P applied to the rightmost w

�����!
swsbDb

� � � �����!
swsbDb

aswsb:

Similarly, for every i < 0, D.Q; aswsb/ contains a copy Di of D.P ; w/ whose
elements correspond to the derivations of the form

aswsb �����!
aDswsa � � � �����!aDswsa asws.sws/i�1b ! � � � ! asws.sws/i�1b„ ƒ‚ …

derivation in P applied to the leftmost w

�����!
swsaDa � � � �����!swsaDa aswsb:

Clearly, eachDi lies in the kernel of �. In fact, one can show thatDi generate ker.�/.
Therefore, D.Q; aswsb/ decomposes as

hDi ; i 2 Zi Ì h„i:

In order to conclude, it suffices to verify that hDi ; i 2 Zi decomposes asM
i2Z

Di
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and that
„ �Di �„�1 D DiC1

for every index i 2 Z.
It is worth noticing that D.Q; ab/ is isomorphic to D.Q; aswsb/ because ab

and aswsb belong to the same connected component of the Squier complex S.P /.
Therefore, D.Q; ab/ can also be taken as a description of D.P ; w/ o Z as a diagram
group.

Thus, the wreath product Z o Z is a diagram group. By applying the construction
above, it can be represented as the diagram group given by the semigroup presentation˝

a; b; p1; p2; p3 j p1 D p2; p2 D p3; p3 D p1; a D ap1; b D p1b
˛

and the baseword ab.
Let us mention two last group operations preserving diagram groups. First, given

two groups A and B , let A � B denote the group given by the (relative) presentation˝
A;B; t j Œa; tnbt�n� D 1 for all a 2 A, b 2 B , and n � 0˛:

As an alternative description [34, Example 4.29], A � B can be described as the sub-
group hA;B; yxi in .A �Z/ � .B �Z/, where x (resp., y) denotes a generator of the
left (resp., right) factor Z. For instance, the group

Z � Z D ha; b; t j Œa; tnbt�n� D 1; n � 0i

coincides with the kernel of the morphism F2 � F2� Z that sends each generator to
1 (sometimes referred to as the Bestvina–Brady group of F2 � F2).

Proposition 2.15 ([45]). The �-product of two diagram groups is again a diagram
group.

Sketch of proof. Let

P1 D h†1jR1i and P2 D h†2jR2i

be two semigroup presentations. Without loss of generality, we assume that †1 \
†2 D ;. Fix two basewords w1 2 †C1 and w2 2 †C2 . The claim is that, given the
semigroup presentation

Q WD ˝†1 t†2 t ¹pº j R1 tR2 t ¹w1 D w1p;w2 D pw2º
˛
;

the diagram group D.Q; w1w2/ coincides with

D.P1; w1/ �D.P2; w2/:
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More precisely,D.Q; w1w2/ naturally contains copiesD1 andD2 ofD.P1; w1/ and
D.P2; w2/, corresponding to applications of derivations in P1 and P2 to w1 and w2.
Then, an isomorphism

D.P1; w1/ �D.P2; w2/! D.Q; w1w2/

is obtained by sendingD.P1;w1/ toD1,D.P2;w2/ toD2, and the generator t to the
diagram „ associated to the derivation

w1w2 ������!
w1Dw1p

w1pw2 ������!
pw2Dw2

w1w2:

Thus, the group Z � Z previously mentioned is a diagram group, and, by apply-
ing the construction above, it can be described as the diagram group given by the
semigroup presentation˝

a1; a2; a3; b1; b2; b3; p j a1 D a2; a2 D a3; a3 D a1; a1 D a1p;
b1 D b2; b2 D b3; b3 D b1; b1 D pb1

˛
and the baseword a1b1.

Next, given two groupsA andB , letA�B denote the group given by the (relative)
presentation

hA;B; t j Œa; b� D Œa; tbt�1� D 1 for all a 2 A; b 2 Bi:

For instance,
Z�Z D ha; b; t j Œa; b� D Œa; tbt�1� D 1i:

Proposition 2.16 ([31]). The �-product of two diagram groups is again a diagram
group.

Proof. Let P1D h†1jR1i and P2D h†2jR2i be two semigroup presentations. With-
out loss of generality, we assume that†1 \†2 D ;. Fix two basewordsw1 2†C1 and
w2 2 †C2 . The claim is that, given the semigroup presentation

Q WD ˝†1 t†2 t ¹x; yº j R1 tR2 t ¹w1x D w1y; xw2 D yw2º
˛
;

the diagram group D.Q; w1xw2/ coincides with

D.P1; w1/�D.P2; w2/:

The key observation is that the Squier complex S.Q; w1xw2/ contains two natural
copies (of the two-skeleton) of S.P1; w1/ � S.P2; w2/, which we denote by

S.P1; w1/xS.P2; w2/ and S.P1; w1/yS.P2; w2/:
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Observe that the two copies of S.P1; w1/ span (the two-skeleton of) a product S.P1;
w1/ � Œ0; 1�; and similarly for S.P2; w2/. Thus, we get a decomposition of S.Q;
w1xw2/ as a graph of spaces which implies that D.Q; w1xw2/ decomposes as the
fundamental group of graph of groups with two vertices, both labelled byD.P1;w1/�
D.P2;w2/, and two edges, respectively, identifying the two copies ofD.P1;w1/ and
D.P2; w2/. Hence, the relative presentation

hA1; B1; A2; B2; t j ŒA1; B1� D ŒA2; B2� D 1; tB1t�1 D B2i;

whereA1;A2 (resp.,B1,B2) are two copies ofA (resp., ofB), which can be simplified
as the presentation given above for A�B .

As an application, we can describe our group Z�Z as the diagram group given
by the semigroup presentation˝

a1; a2; a3; b1; b2; b3; x; y j a1 D a2; a2 D a3; a3 D a1; a1x D a1y;
b1 D b2; b2 D b3; b3 D b1; xb1 D yb1

˛
and the baseword a1xb1.

Given an integer n � 1, the planar braid group Tn, also referred to as the twin
group or the group of flat braids, is the fundamental group of®

.x1; : : : ; xn/ 2 Rn j 8i; #¹j j xj D xiº � 1
¯ı
SnI

i.e., the configuration space of n (unordered) points moving in R, where collisions
between two points, but no more, is allowed. Elements of Tn can be represented as
planar braids subject to the following relations:

The planar braid group Tn turns out to be naturally isomorphic to the right-angled
Coxeter group˝

�1; : : : ; �n�1 j �2i D 1 .1 � i � n � 1/; Œ�i ; �j � D 1 .ji � j j � 2/
˛
:

The kernel of the natural morphism Tn ! Sn is the pure planar braid group PTn.
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Proposition 2.17 ([23, 36]). For every n � 1, the pure planar braid group PTn is
isomorphic to D.Pn; x1 � � � xn/, where

Pn WD
˝
x1; : : : ; xn j xixj D xjxi .1 � i < j � n/

˛
:

The isomorphism between the diagram group D.Pn; x1 � � � xn/ and the planar
braid group PTn is illustrated in the following diagram. It shows that every diagram
over Pn with top path labelled x1 � � � xn is naturally dual to a planar braid. The cor-
respondence is clearly compatible with the group structures.

x1

x1

x1x1

x1
x2

x2
x2

x2

x2

x3

x3
x3

x3

x3

It is worth noticing that diagram groups given by the same semigroup presentation
Pn as in Proposition 2.17 but with different basewords lead to interesting variations.
For instance, D.Pn; x

r1
1 � � � xrnn / corresponds to the group of the pure planar braids

with r1 C � � � C rn strands, coloured with n colours such that there are ri strands
coloured with the i th colour, such that no two strands with the same colour are allowed
to cross.

Now, let us turn probably to the most famous example of diagram group, namely,
Thompson’s group F . There are many possible definitions of F . The shortest is the
following:F is the group of the increasing piecewise linear homeomorphisms Œ0;1�!
Œ0; 1� whose breakpoints of the derivative have dyadic coordinates and whose slopes
are integer powers of 2. We refer to [15] for more information on Thompson’s groups.

Proposition 2.18 (Kilibarda–Guba [55]). The diagram group D.P ; x/, where

P WD hx j x D x2i;

is isomorphic to the Thompson group F .

The key observation is that a diagram � over P with no dipoles decomposes as
the concatenation of two diagrams �C ��� where the 2-cells of �C (resp., ��) are
labelled by the relation x ! x2 (resp., x2 ! x). The following figure illustrates how
to associate an element of F from an element of D.P ; w/ both in terms of pairs of
trees and of piecewise linear homeomorphisms.
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In the right part of the figure, one should think of a 2-cell from the top part of the
diagram as a map Œ0; 1�! Œ0; 2� defined by x 7! 2x and of a 2-cell from the bottom
part of the diagram as a map Œ0; 2�! Œ0; 1� defined by x 7! x=2. This is a particular
case of the construction mentioned in Section 6 after Question 6.13.

Clearly, the arguments above generalise to every Thompson’s group Fn (defined
from n-adic numbers instead of 2-adic numbers). Thus, the diagram groupsD.Pn; x/
given by

Pn WD hx j x D xni
is isomorphic to Fn for every n � 2.

Interestingly, there turns out to exist (algebraically) simple diagram groups.

Proposition 2.19 ([47]). Given the semigroup presentation

P WD ˝x; ai ; bi .i � 1/ j x D x2; ai D aiC1x; bi D xbiC1 .i � 1/˛;
the diagram group D.P ; a1b1/ is isomorphic to the commutator subgroup F 0 of
Thompson’s group F .

Recall that the elements in F 0 coincide with the homeomorphisms Œ0; 1�! Œ0; 1�

fixing pointwise neighbourhoods of 0 and 1. In terms of pairs of trees, the elements
in F 0 correspond to the pairs .T1; T2/ such that the leftmost leaves of T1 and T2 have
the same dyadic representations, and same thing for the rightmost leaves of T1 and
T2. Here, the dyadic representation of a vertex in a planar 2-regular rooted tree refers
to the digits associated to it when we label the root by ;, its left child by 0, its right
child by 1, the left child of 0 by 00, the right child of 0 by 01, the left child of 1
by 10, etc. For instance, the leftmost leaves of the top and bottom trees in the figure
below have 00 as dyadic representatives. However, the leftmost leaves of the top and
bottom trees in the figure above have 0 and 00 as dyadic representatives; therefore,
the element of F represented does not belong to the commutator subgroup F 0. (See
also Example 3.26 below for an equivalent description of F 0 in F .)

The figure below shows how to associate a pair of trees, and a fortiori an element
of F , to every diagram with no dipole over the presentation given by Proposition 2.19.
The key observation is that such a diagram corresponds to a derivation starting with
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the moves

a1 ! a2x ! a3xx ! � � � ! arx
r�1 and b1 ! xb2 ! xxb3 ! � � � ! xs�1bs

and ending with the moves

arx
r�1 ! ar�1xr�2 ! � � � a1 and xs�1bs ! xs�2bs�1 ! � � � ! b1:

This is why the leftmost (resp., rightmost) leaves in the top and bottom trees have the
same dyadic representation.

a1

a1

a2

b1

b1

b2x x

x
x

x

Let us end this section by mentioning a last interesting families of groups. Given a
(simplicial) graph � , the right-angled Artin group A.�/, also referred to as partially
commutative group, is given by the presentation˝

u 2 V.�/ j Œu; v� D 1; ¹u; vº 2 E.�/˛;
where V.�/ andE.�/ denote the vertex- and edge-sets of � . Because diagram groups
include Z and are stable under direct sums and free products, we already know that
many right-angled Artin groups are diagram groups. However, not every right-angled
Artin group is a diagram group, and the question of which right-angled Artin groups
are diagram groups is still open; see Question 6.11.

An easily recognisable family of right-angled Artin groups that are diagram groups
is the following. Recall that a graph � is an interval graph if there exist an n � 1 and
a collection C of intervals in ¹1; : : : ; nº such that C is the vertex-set of � and such
that two intervals are connected by an edge whenever they are disjoint.

Proposition 2.20 ([33]). If � is a finite interval graph, thenA.�/ is a diagram group.

More precisely, if our interval graph � is given by a collection C of intervals in
¹1; : : : ; nº, then the diagram group given by the baseword x1 � � �xn and the semigroup
presentation˝

x1; : : : ; xn; aI ; bI ; cI .I 2 C/ j xI D aI ; aI D bI ; bI D cI .I 2 C/
˛
;



An introduction to diagram groups 19

where xI is a shorthand for xi1xi2 � � � xis if I D ¹i1 < i2 < � � � < isº, is naturally
isomorphic to the right-angled Artin group A.�/.

Another source of examples can be found in [50]. As a particular case of interest.

Proposition 2.21 ([50]). Right-angled Artin groups over finite trees are diagram
groups.

In fact, one can prove something stronger. One can prove that, if � is either a finite
interval graph or a finite tree, then a graph product of diagram groups over � is again
a diagram group. Recall that, given a (simplicial) graph � and a collection of groups
G D ¹Gu j u 2 V.�/º indexed by the vertices of � , the graph product �G is given by
the (relative) presentation˝

Gu; u 2 V.�/ j ŒGu; Gv� D 1; ¹u; vº 2 E.�/
˛
;

where ŒGu; Gv� D 1 is a shorthand for Œa; b� D 1 for all a 2 Gu and b 2 Gv . Notice
that graph products of infinite cyclic groups coincide with right-angled Artin groups.

2.5. First properties of diagram groups

So far, we have described diagram groups from several perspectives in Sections 2.1,
2.2, and 2.3, and we have shown in Section 2.4 that there exist many interesting groups
that turn out to be diagram groups. Now, the natural question is what can we learn
from the fact that a given group can be described as a diagram group? In this section,
our goal is to show that, despite the fact that the family of diagram groups is very
broad, being a diagram groups turns out to be quite restrictive; or, in other words, it
provides valuable information on the group. As a complement of the previous section,
this will also allow us to give examples of groups that are not diagram groups.

For the statements below, we include ideas of proofs, following the arguments
given in the original articles. However, as it will be explained in Section 4, some of
these arguments based on the combinatorics of diagrams follow almost for free from
the median geometry described in Section 4.2.

Let us first explain that diagram groups are torsion-free, which already prevents
many groups from being diagram groups.

Theorem 2.22 ([45, 55]). Diagram groups are torsion-free.

Let P D h†jRi be a semigroup presentation. A diagram � over P is reduced if
it does not contain any dipole. Assuming that� is spherical (i.e., if its top and bottom
paths have the same label), one says that � is absolutely reduced if �n is reduced for
every n � 1. A key property is that every reduced spherical diagram � decomposes
(up to dipole reduction) as ‰ ı �0 ı ‰�1 for some absolutely reduced diagram �0

[45, Lemma 15.10]. We emphasise that ‰ may not be spherical.
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Consequently, given a baseword w 2 †C and a reduced diagram � 2 D.P ; w/,
we decompose � as ‰ ı�0 ı ‰�1 for some absolutely reduced diagram �0. Then,
�n is trivial in D.P ; w/ if and only if so is �n0 in D.P ; w0/, where w0 denotes the
word labelling the top and bottom paths of �0. But �0 is absolutely reduced, so �n0
is trivial if and only if �0 is itself trivial, which amounts to saying that � is trivial.
Thus, we have shown that the only torsion element in D.P ; w/ is the trivial element.

Theorem 2.23 ([47]). In diagram groups, nilpotent and polycyclic subgroups are free
abelian and undistorted when they are finitely generated.

We refer to Sections 3.3 and 4.2 for elements of proofs.
As a consequence of Theorem 2.23, there are no interesting examples of nilpotent

or polycyclic diagram groups. For instance, the fundamental group of the Klein bottle
or the Heisenberg groups are not diagram groups. Nevertheless, there are metabelian
but not abelian diagram groups, such as Z o Z; as well as solvable diagram groups
of arbitrary lengths, such as ..Z o Z/ o Z/ � � � o Z. The absence of distortion given by
Theorem 2.23 also allows us to discard non-amenable groups from diagram groups,
such as most Baumslag–Solitar groups.

Theorem 2.24 ([32]). A diagram group with no Z2 is locally free.

The proof of this proposition is fundamentally based on the median geometry that
will be described in Section 4.2. The idea is as follows. Let D.P ; w/ be a diagram
group with no Z2 and letM.P ;w/ denote the median graph on which it acts naturally.
Given a finitely generated subgroup H � D.P ; w/, we want to prove that H is free.
We can assume without loss of generality that H is freely irreducible. The trick is to
choose carefully some hyperplane J in M.P ; w/ such that no two H -translates of
J are transverse and the H -stabiliser of J is trivial. Thus, the orbit H � J induces
an arboreal structure on M.P ; w/ and H acts on the dual tree (non-trivially and)
with trivial edge-stabilisers. This implies that H splits over the trivial group, which
amounts to saying that H is either trivial or infinite cyclic, as desired. Of course, the
difficulty is to choose the good hyperplane J , and this is where we use the assumption
that there is not Z2 in D.P ; w/.

It follows from Theorem 2.24 that free groups are the only hyperbolic groups
that are diagram groups. In particular, surface groups are not diagram groups. Never-
theless, it is worth mentioning that surface groups are subgroups of diagram groups.
Indeed, the complement graph P7 of the path P7 of length seven (i.e., the graph whose
vertices are the vertices of P7 and whose edges connect two vertices whenever they
are not adjacent in P7) is an interval graph, so it follows from Proposition 2.20 that
the right-angled Artin group A.P7/ is a diagram group. This group contains A.Cn/
for every n � 5, where Cn denotes the cycle of length n [16, Corollary 4.4]; and a
fortiori every surface group [16, Corollary 4.5]. (Here, by a surface group, we mean
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the fundamental group of an orientable closed surface of genus � 2.) As a corollary,
it follows that subgroups of diagram groups may not be diagram groups themselves.

Theorem 2.25 ([50]). Diagram groups are bi-orderable, hence locally indicable.

Recall that a group G is (bi-)orderable if there exists a total order � and G such
that, for all a;b; c 2G, if a � b, then ac � bc (and ca � cb). A group is locally indic-
able if all its finitely generated subgroups surject onto Z. Locally indicable groups are
automatically orderable, but the converse does not hold. However, bi-orderable groups
are locally indicable.

It has been first proved in [67] that diagram groups are orderable. (See also Corol-
lary 4.47 below.) Both [67] and [50] use the same strategy: first, they construct a
“universal” group containing all the diagram groups; and next they show this univer-
sal group is (bi-)orderable. The universal groups are however very different in the
two articles. In [67], this is a braid group on infinitely many strands. In [50], this is a
well-chosen diagram group which turns out to split as a semi-direct product between
a right-angled Artin group and Thompson’s group F .

Observe that, as an immediate consequence of Theorem 2.25, no finitely gener-
ated diagram group can be simple. This contrasts with the fact that the commutator
subgroup F 0 of Thompson’s group F , which is simple but not finitely generated, is a
diagram group (Proposition 2.19).

Corollary 2.26 ([45]). Every diagram groupG satisfies the unique extraction of roots
property; i.e., for all a; b 2 G and k � 1, if ak D bk , then a D b.

This a consequence of the orderability ofG. Indeed, given some a; b2G satisfying

ak D bk for some k � 1;
it is clear that a < b implies that

ak D a � � � aa < a � � � ab < a � � � bb < � � � < b � � � bb D bk;
which would contradict that ak D bk; and similarly for b < a. Therefore, we must
have a D b, as desired. Nevertheless, it is possible and instructive to prove directly
Corollary 2.26 thanks to the combinatorics of diagrams. See [45, Theorem 15.25] for
more details.

Let us record a couple of nice consequences of the unique extraction of roots
property. Given a diagram group G and two elements a; b 2 G,

• if Œam; bn� D 1 for some m; n ¤ 0, then Œa; b� D 1;

• if am D bn for some m; n ¤ 0, then there exist c 2 G and k; ` � 0 satisfying
km D `n such that a D ck and b D c`.

See [45, Corollaries 15.27 and 15.28] for more details.
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Proposition 2.27 ([45]). Every element of a diagram group G has only finitely many
roots. More precisely, if a; b 2 Gn¹1º satisfies

a D bk for some k ¤ 0;
then jkj does not exceed half the number of cells in a reduced diagram representing a.

We refer to Section 3.2 for a proof of the proposition.
We conclude this section with some information on homology groups of diagram

groups. The main result in this direction is the following theorem.

Theorem 2.28 ([49]). Homology groups over Z of diagram groups are free abelian.

Some elements from the proof of the theorem are given in Section 3.1. Inter-
estingly, with some restrictions on the underlying semigroup presentations, further
information can be extracted from the proof of the following theorem.

Theorem 2.29 ([49]). Let P be a finite and complete presentation of a finite semig-
roup. A diagram group over P has a rational Poincaré series.

Recall that the Poincaré series of a group G is the series

PG.t/ WD
X
n�0

rnt
n;

where rn denotes the rank ofHn.G;Z/ for every n� 0. Complete semigroup present-
ation will be defined in Section 3.1.

As a particular case of Theorem 2.28, abelianisations of diagram groups are free
abelian (also proved in [45]; see Corollary 3.5 below). This contrasts with Pride’s
result from [60]: for every abelian group A which is a finite or countably infinite
direct product of cyclic groups, there exists a diagram group G such that

ŒG;G�=ŒŒG;G�;G� ' A:

3. Algorithmic and computational properties

3.1. Computation of presentations and homology groups

In this section, we are concerned with the following problem: given a semigroup
presentation P WD h†jRi and a baseword w 2 †C, how can we compute efficiently
a presentation for the diagram groupD.P ;w/? Or equivalently, how can we compute
efficiently a presentation for the fundamental group of the Squier square complex
S.P ; w/? We describe here the solution proposed in [45, Chapter 9]. See also Sec-
tion 4.5 for a decomposition of diagram groups as fundamental groups of graphs of
groups.
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The starting idea is simple. We want to fix, in our Squier square complex S.P ;w/,
an orientation of the edges and a spanning tree T .P ; w/ so that˝

oriented edges in S.P ; w/ j edges in T .P ; w/ are trivial

the boundary of a square is trivial
˛

defines a presentation of our diagram groupD.P ; w/. As an illustration, consider the
semigroup presentation

P WD ha; b; c; x; y j a D b; x D y; c D ax; c D bxi:

Draw the Squier complex S.P ; c/, orient the edges, and choose a spanning tree
as illustrated in the diagram below. One gets the presentation

hp; q; r; s; u; v j u D q D r D s D 1; qrsp D 1i

of the diagram group D.P ; c/, which can be simplified as hv j i.
ax

xb

ay

by

a

p

v

u

r

sq

The difficulty is to find an automatic procedure constructing a spanning tree. This
is why we restrict ourselves to complete semigroup presentations, which we define
now.

Let P D h†jRi be a semigroup presentation. Given two positive words w1;w2 2
†C, we write w1 ! w2 if w2 can be obtained from w1 by applying a (an ordered)
relation of R, i.e., if we can write w1 D aub and w2 D avb for some u D v in
R. We emphasise that, because v D u does not belong to R, w1 ! w2 does not
necessarily imply w2 ! w1. We denote by

?�! the reflexive-transitive closure of!,
i.e., given two words u; v 2 †C, we write u

?�! v if there exist w1; : : : ; wn 2 †C
satisfying u! w1 ! � � � ! wn ! v. The presentation P is complete if the relation
?�! is confluent (i.e., if u

?�! a and u
?�! b, then there exists v such that a

?�! v and
a
?�! v) and terminating (i.e., every sequence w1! w2! � � � eventually terminates).

For instance, the presentation hx j x2 D xi is complete but not the presentation hx j
x D x2i because x ! x2 ! x3 ! � � � does not terminate.
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From now on, we assume that our semigroup presentation P D h†jRi is com-
plete. As a consequence, every positive word w 2†C has a unique reduced form, i.e.,
a positive word Nw 2 †C such that w

?�! Nw and such that there is no u 2 †C such
that Nw! u. (Because

?�! is terminating, such a word exists; and because
?�! is conflu-

ent, such a word is unique.) However, a derivation from a word to its reduction may
not be uniquely defined. What we want to do is to define a canonical way to reduce
words and to define our spanning tree in the Squier square complex as the union of
all the paths given by these reductions. These canonical reductions are defined by the
elementary moves associated to the following edges in our Squier complex.

Definition 3.1. An oriented edge .u; `! r; v/ in S.P / is a principal left edge if the
following conditions hold:

• each proper prefix of the word u` is reduced;

• ` is the longest suffix of u` which is the left side of a relation in R;

• if there is a relation ` D r 0 in R with r ¤ r 0, then r is smaller than r 0 in the
ShortLex order.

Here, we think of the letters in † as totally ordered (say, following the left-right
order when we write the presentation P ) so that positive words are naturally totally
ordered by the corresponding ShortLex order, namely, given w1; w2 2 †C, we write
w1 � w2 if w1 is shorter than w2 or if w1; w2 have the same length and w1 is smaller
than w2 with respect to the lexicographic order given by our total order on †.

Let us illustrate with an example how to reduce a word by following the pattern
given by the previous definition (which seems to be difficult to digest, but which
turns out to quite natural when we understand how it works). So, let us consider the
semigroup presentation

P WD ha; b j a3 D a; a3 D a2; ba3 D a3bi;

which is complete. The word aba3ba4 is not reduced.

• Identify the smallest prefix of aba3ba4 that is not reduced. This is aba3.

• Identify the longest suffix of aba3 that can be modified by applying a relation.
This is ba3.

• Observe that
ba3 D a3b

is the only relation having ba3 as its left side, so this is the relation we have to
apply.

Thus, the first step in our derivation from aba3ba4 to its reduction is aba3ba4 !
a4b2a4. Our new word is again not reduced, so another step is necessary.
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• Identify the smallest prefix of a4b2a4 that is not reduced. This is a3.

• Identify the longest suffix of a3 that can be modified by applying a relation. This
is a3.

• We have two relations having a3 as their left sides, namely, a3 D a and a3 D a2.
Compare the right sides a and a2 with respect to the ShortLex order. Since a is
shorter than a2, the relation we must apply is a3 D a.

Thus, the second step in our derivation is a4b2a4 ! a2b2a4. Keeping applying the
procedure, we eventually find

aba3ba4 ! a4b2a4 ! a2b2a4 ! a2ba3ba! a5b2a! a3b2a! ab2a;

which is the canonical reduction we are looking for.
The union of all the principal left edges given by Definition 3.1 defines a spanning

forest in our Squier complex, as previously claimed [45, Lemma 9.4], which allows
us to deduce the following statement.

Theorem 3.2 ([45]). Let P D h†jRi be a complete semigroup presentation and w 2
†C a baseword. The diagram group D.P ; w/ admits the following presentation. The
generators are the triples .u; `! r; v/, where .` D r/ 2 R, urv D w mod P , u is a
reduced word, v 2†C, .u; `! r; v/ is not a principal left edge. The defining relations
are all the relations of the form

.u; `! r; vsw/ D .u; `! r; vtw/.urv;s!t;w/;

where .s D t / 2R and the edge .urv; s! t;w/ is not a principal left edge; or of the
form

.u; `! r; vsw/ D .u; `! r; vtw/

if .urv; s ! t; w/ is a principal left edge.

Here, we use the notation ab D b�1ab. It is worth mentioning that the presentation
given by Theorem 3.2 is in general not optimal since the second type of relations
allows us to decrease the number of generators. It is possible to extract a presentation
with a minimal number of generators (which turns out to coincide with the rank of the
abelianisation) but at the cost of a more technical statement. We refer the interested
reader to [45, Theorem 9.8].

An interesting consequence of Theorem 3.2 is that diagram groups over complete
semigroup presentations are examples of LOG groups.

Definition 3.3. Let � be a directed graph and � W E.�/! V.�/ a labelling map. The
LOG group �.�/ is given by the presentation˝

V.�/ j a D b�.a;b/; .a; b/ 2 E.�/˛:
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LOG stands for Labelled Oriented Graph. It is worth noticing that not all diagram
groups are LOG. Indeed, it is clear that every LOG group surjects onto Z (it suffices
to send all the generators to 1), but we know from Proposition 2.19 that the commut-
ator subgroup F 0 of Thompson’s group F is a simple diagram group. Thus, F 0 is a
diagram group but not an LOG group. We also deduce that F 0 cannot be described
as a diagram group over a complete semigroup presentation, so we lost some gener-
ality when restricting ourselves to complete semigroup presentation. Nevertheless, as
shown by Lemma 3.6 below, it turns out that every diagram group can be described
(more or less explicitly) as a retract inside some diagram group over a complete semig-
roup presentation, so it is also possible to compute presentations of diagram groups
over incomplete semigroup presentations thanks to the techniques developed in this
section (see [45, Lemma 9.11] and the related discussion).

Example 3.4. Consider the semigroup presentation P D hx j x2 D xi, which is
complete. Notice that the principal left edges in S.P ; x/ are the edges of the form
.1; x2 ! x; xn/, n � 0, where 1 refers to the empty word. A direct application of
Theorem 3.2 shows that D.P ; x/, which is isomorphic to the Thompson group F
according to Proposition 2.18, admits a presentation whose generators are the triples
.x; x2 ! x; xn/ for n � 0, and whose relations are

.x; x2 ! x; xpx2xq/ D .x; x2 ! x; xpxxq/.x;x
2!x;xq/; p; q � 0:

Setting si WD .x; x2 ! x; xi / for every i � 0, one gets the infinite presentation

hs0; s1; : : : j snC1 D ssmn ; n > m � 0i:

The presentation can be simplified as a finite presentation; see [45, Example 9.10] for
details.

Let us mention a theoretical application of Theorem 3.2, namely, the following
corollary.

Corollary 3.5. Diagram groups have free abelianisations.

Lemma 3.6. Every diagram group is a retract of a diagram group over a complete
semigroup presentation.

Recall that, given a group G, a subgroup H � G is a retract if there exists a
morphism � W G ! H that restricts to the identity on H .

Proof of Lemma 3.6. Let P D h†jRi be a semigroup presentation. We fix a total
order on † with no infinite decreasing sequence and order the positive words in †C

by using the corresponding ShortLex order. Up to replacing some u D v in R with
v D u, we assume that, for every u D v in R, v is smaller than u with respect to the
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ShortLex order. Let R0 denote the collection of all the relations u D v such that v is
smaller than u with respect to the ShortLex order and such that uD v mod P . Notice
that R � R0.

Observe that P 0 WD h†jR0i is complete. Indeed, the fact that our initial order on
† has no infinite decreasing sequence implies that the corresponding ShortLex order
has no infinite decreasing sequence either. Moreover, for every w 2 †C, there exists
a unique ShortLex-minimal word Nw 2 †C among all the positive words equal to w
mod P ; and, for all u; v 2 †C satisfying w

?! u and w
?! v, we have u! Nw and

v ! Nw by definition of R0. Thus, P 0 is terminating and confluent.
Fix a baseword w 2 †C. Because a (reduced) diagram over P is also a (reduced)

diagram over P 0, there is an obvious injective morphismD.P ;w/!D.P 0;w/. From
now on, we identify D.P ; w/ with its image in D.P 0; w/. For every u D v in R0 but
not in R, we know that u D v mod P , so there must exist a diagram �.u; v/ with its
top path labelled u and its bottom path labelled v. Define a mapD.P 0;w/!D.P ;w/

by sending a diagram over P 0 to the diagram over P obtained by replacing each two-
cell labelled by u D v with .u D v/ 2 R (resp., with .v D u/ 2 R) with a copy of
�.u; v/ (resp., �.u; v/�1). We can verify that this map is a well-defined morphism;
see [45, Theorem 7.7] for more details. Moreover, this morphism is clearly the identity
on D.P ; w/.

Proof of Corollary 3.5. We know that diagram groups over complete semigroup pres-
entations are LOG groups, and clearly LOG groups have free abelianisations. There-
fore, it follows from Lemma 3.6 that the following observation is sufficient to con-
clude the proof of our corollary.

Fact 3.7. Let G be a group and H � G a retract. The abelianisation of H embeds
into the abelianisation of G.

Let ˛ W G ! Gab denote the abelianisation map of G and let � W G ! H be a
retraction. The restriction of ˛ to H yields a morphism H ! Gab, which factors
through ' W H ab ! Gab. Let g 2 H ab be an element in the kernel of '. Fix a pre-
image Ng of g in H . By definition of ', ˛. Ng/ is trivial. In other words, Ng belongs to
ŒG;G�. Hence

Ng D �. Ng/ 2 Œ�.G/; �.G/� D ŒH;H�;
which implies that g is trivial in H ab. Thus, we have proved that ' W H ab ! Gab is
injective.

As already mentioned in Section 2.5, Corollary 3.5 can be generalised by showing
that homology groups of diagram groups are free abelian. The strategy is similar in the
spirit of the proof of Corollary 3.5. We refer to [49] for more details and only sketch
the argument below (in the language of diagrams instead of directed 2-complexes).
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Figure 4. A collapsible scheme. Collapsible cells in red, redundant cells in green, essential cells
in blue.

Given a semigroup presentation P D h†jRi and a baseword w 2 †C, we need
a classifying space for the diagram group D.P ; w/. We already know that D.P ; w/
is the fundamental group of the Squier square complex S.P ; w/, but this complex is
not contractible in general. However, by adding natural higher-dimensional cubes to
it, it turns out to be contractible.

Definition 3.8. The Squier cube complex SC.P / is the cube complex whose vertices
are the words in †C; whose (oriented) edges can be written as .a; u! v; b/, where
u D v or v D u belongs to R, connecting the vertices aub and avb; and whose n-
cubes similarly can be written as .a1; u1 ! v1; : : : ; an; un ! vn; anC1/, spanned by
the set of vertices ®

a1w1 � � � anwnanC1 j wi D vi or ui
¯
:

Given a word w 2 †C, we denote by SC.P ; w/ the connected component of SC.P /
containing the vertex w.

Observe that S.P / coincides with the two-skeleton of SC.P /, so our diagram
group D.P ; w/ remains isomorphic to the fundamental group of SC.P ; w/. Each
connected component of the Squier cube complex is contractible. This can be proved
directly [24, Theorem 3.10] or can be deduced from its nonpositive curvature described
in Section 4.2. Anyway, the key point is that SC.P ; w/ yields a classifying space for
the corresponding diagram group D.P ; w/.

Next, observe that, given a group G, if H � G is a retract then the homology
groups of H are retracts of the homology groups of G, so it follows from Lemma 3.6
that we can focus on diagram groups over complete semigroup presentations. So,
let P D h†jRi be a complete semigroup presentation and fix a baseword w 2 †C.
Similarly to what we did for S.P ; w/ above, we can use the completeness of P in
order to extract from SC.P ; w/ the essential part that encodes the homology.

Formally [49] defines a collapsible scheme on SC.P ; w/ (see Figure 4); see [49,
Section 9] for a precise statement. Roughly speaking, this is a partition of the cubes of
SC.P ; w/ into three categories: contractible, redundant, and essential cubes. Under
reasonable assumptions, it is possible to successively collapse contractible cubes by
pushing inside a codimension-one face that is redundant. At the end of the process,
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one gets a homotopy equivalent cube complex E.P ; w/ containing only the initial
essential cubes.

Thanks to a well-chosen collapsible scheme, it is proved in [49] that E.P ; w/ is
as small as possible. More precisely, in each dimension n, the nth homology group
of E.P ; w/ (which is also the nth homology group of D.P ; w/ since E.P ; w/ and
SC.P ; w/ are homotopy equivalent) is freely generated by the n-cubes.

3.2. Word and conjugacy problems

As already mentioned, every diagram over a semigroup presentation admits a unique
reduction (i.e., a diagram with no dipole). Therefore, in order to determine whether
a given diagram represents the neutral element in the corresponding diagram group,
it suffices to reduce its dipoles, in whatever order, and to look at if 2-cells survive at
the end of the process. If so, the diagram represents a non-trivial element; otherwise,
it represents the neutral element. Moreover, this word problem can be solved very
efficiently.

Theorem 3.9 ([45]). Let P D h†jRi be a semigroup presentation and w 2 †C a
baseword. Fix finitely many .w; w/-diagrams �1; : : : ; �r over P . There exists an
algorithm that decides, given a product of n diagrams �i , whether it represents the
trivial element in D.P ; w/ with time complexity O.n2 log2 n/.

In order to solve the conjugacy problem, we need to introduce some terminology.

Definition 3.10. Let P be a semigroup diagram. The sum �1 C�2 of two diagrams
�1; �2 over P is the diagram obtained by identifying the sink-vertex of �1 with the
source-vertex of �2. A diagram is simple if it does not decompose as the sum of two
diagrams. Clearly, every diagram admits a unique decomposition as a sum of simple
diagrams. A spherical diagram is normal if all the diagrams in its decomposition as a
sum of simple diagrams are spherical.

Definition 3.11. Let P be a semigroup presentation and � a diagram. If � decom-
poses as the concatenation�1 ı�2, then the diagram�2 ı�1, when well defined, is
a cyclic shift of �.

We emphasise that �1 ı�2 is a decomposition of � on the nose, not up to dipole
reduction. As an illustration, given the two diagrams �, � below, � is a cyclic shift
of � (see Figure 5).

Indeed, � decomposes as .A�1 C ".x// ı .".x/ C A/, where ".x/ denotes the
.x; x/-diagram with no 2-cell and where A denotes the .x; x2/-diagram with a single
2-cell; and � D .".x/ C A/ ı .A�1 C ".x//. Notice that the diagram � above is
neither simple nor normal. However, its cyclic conjugate � is simple.
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Figure 5. A diagram � over P WD hx j x D x2i and a cyclic shift �.

Theorem 3.12 ([45]). Let P D h†jRi be a semigroup presentation and w 2 †C
a baseword. If the semigroup P has a solvable word problem, then the conjugacy
problem in the diagram group D.P ; w/ is solvable.

It is worth noticing that a diagram group given by a semigroup presentation with
unsolvable word problem may have an unsolvable conjugacy problem; see [45, Exam-
ple 15.22]. Let us describe the main ingredients needed in order to solve the conjugacy
problem in practice. The first step is to reduce the problem to simple absolutely
reduced diagrams.

Lemma 3.13 ([45, Lemma 15.14]). Let P be a semigroup presentation and � a
spherical diagram over P . There exist diagrams ˆ;� such that � D ˆ ı� ı ˆ�1,
up to dipole reduction, and with � normal and absolutely reduced. Moreover, � can
be chosen with a number of 2-cells bounded above by the number of 2-cells of �.

We emphasise that � must be a spherical diagram but its top and bottom paths
may have distinct labels than the top and bottom paths of �. Recall from Section 2.5
that a spherical diagram � is absolutely reduced if �n is reduced for every n � 1.

Lemma 3.14 ([45, Lemma 15.15]). Let P be a semigroup presentation and�;� two
normal and absolutely reduced diagrams over P . Decompose � (resp., �) as a sum
�1C � � � C�m (resp., �1C � � � C�n) of simple diagrams. For every 1� i �m (resp.,
1 � j � n), let xi (resp., yj ) be the words labelling the top and bottom paths of �i
(resp., �j ). Assume that there exists some ‚ such that

� D ‚ ı � ı‚�1;

up to dipole reduction. Then, m D n and � decomposes as a sum �1 C � � � C �m
where each �i is a .yi ; xi /-diagram satisfying

�i D ‚i ı �i ı‚�1i ;

up to dipole reduction.

Next, we can solve the conjugacy problem for simple absolutely reduced diagrams
thanks to the next lemma. In its statement, we denote by Shift.�/ the set of all the
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shift

�1 �2

shift

normal and absolutely
representativesreduced

Figure 6. Two .x; x/-diagrams over hx; j x D x2i that are not conjugate.

diagrams that can be obtained from � by a sequence of cyclic shifts. (It is worth
mentioning that a cyclic shift of a cyclic shift may not be a cyclic shift of the initial
diagram.)

Lemma 3.15. Let P be a semigroup presentation. Two simple and absolutely reduced
spherical diagrams �1; �2 are conjugate if and only if

Shift.�1/ D Shift.�2/:

Putting everything together, the conjugacy problem is solved as follows. Let P D
h†jRi be a semigroup presentation and w 2 †C a baseword. We fix two .w; w/-
diagrams �1; �2 over P and we would like to determine whether or not �1 and �2
are conjugate in D.P ; w/.

(1) For i D 1; 2, write �i as ˆi ı �i ı ˆ�1i , where �i is normal and abso-
lutely reduced. (Which is possible according to Lemma 3.13, and can be done
algorithmically.)

(2) Decompose �i as a sum �1i C � � � C�ni

i of simple diagrams.

(3) If n1 ¤ n2, it follows from Lemma 3.14 that �1 and �2 are not conjugate.

(4) Otherwise, check whether Shift.�j1/D Shift.�j2/ for every 1� j � n1 D n2.
(This can be done algorithmically according to [45, Lemma 15.21].)

(5) According to Lemma 3.15, �1 and �2 are conjugate if and only if all the
equalities hold.

As a simple illustration, we can show that the two smallest reduced .x; x/-diagrams
over P D hx j x D x2i are not conjugate in D.P ; x/ (see Figure 6).
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It is worth mentioning that the tools developed in order to solve the conjugacy
problem turn out to be also useful to help proving some of the statements mentioned
in Section 2.5. For instance, see Proposition 2.27.

Proof of Proposition 2.27. Let �; � be two spherical reduced diagrams satisfying
�D �k for some k � 1. We assume that� and � contain at least one 2-cell. Accord-
ing to Lemma 3.13, we can write � as ˆ�0ˆ�1 and � as ‰�0‰�1 for some normal
absolutely reduced diagrams �0 and �0. Moreover, we can choose � with a number
of 2-cells bounded above by the number of 2-cells of �. Let

�0 D �10 C � � � C�m0 and �0 D �10 C � � � C �n0
be the decompositions of �0 and �0 as sums of simple diagrams. We have

�10 C � � � C�m0 D .ˆ�1‰/ ı .�10 C � � � C �n0 /k ı .ˆ�1‰/�1:

As a consequence of Lemma 3.14, nDm andˆ�1ˆ decomposes as a sum�1C � � � C
�n such that �i0 D �i ı .� i0/k ı��1i for every 1 � i � n. Fix an index 1 � i � n
such that �i0 contains at least one 2-cell. We deduce from Lemma 3.15 that

Shift.�i0/ D Shift..� i0/
k/;

which implies that �i0 and .� i0/
k have the same number of 2-cells. Because the num-

ber of 2-cells of .� i0/
k coincides with k times the number of 2-cells of � i0, it follows

that k is at most half the number of 2-cells of �i0, and a fortiori of �0 and finally
of �.

3.3. Commutation problem

Centralisers in diagram groups are rather well understood. More precisely, see the
following theorem.

Theorem 3.16 ([45]). Let P D h†jRi be a semigroup presentation, w 2†C a base-
word, and g 2 D.P ; w/ an element. One can represent g as

� � .�n1

1 C � � � C�nr
r / � ��1;

where � is some .w; u1 � � � ur/-diagram and where each �i is a simple absolutely
reduced .ui ; ui /-diagram with h�i i either trivial or a maximal cyclic subgroup in
D.P ; ui /. Then, the centraliser of g coincides with®

� � .�1 C � � � C�r/ � ��1 j �1 2 C1; : : : ; �r 2 Cr
¯
;

where Ci WD h�i i if �i is non-trivial and Ci WD D.P ; ui / otherwise.
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As a consequence, the centraliser of an element in a diagram group is always
isomorphic to the product of a free abelian group of finite rank with finitely many
diagram groups given by the same semigroup presentation but possibly different base-
words.

Example 3.17. Let P be the semigroup presentation hx j x D x2i and g 2 D.P ; x/
the element represented by the following diagram:

e. /x e. /xC C ГГ 1–�

H

By applying Theorem 3.16, we deduce that the centraliser of g in D.P ; x/ is®
� � .ˆC�n C‰/ � ��1 j ˆ;‰ 2 D.P ; x/; n 2 Z

¯
:

In particular, the centraliser is isomorphic to F �Z� F . Notice that, inD.P ; x/ and
a fortiori in F , all the centralisers are isomorphic to Zm � F n for some m; n � 0.

Theorem 3.16 has a lot of interesting applications. The rest of the section is essen-
tially dedicated to them.

Corollary 3.18 ([47]). In diagram groups, abelian subgroups are free.

Proof. Let H be an abelian subgroup in a diagram group G. Our goal is to show
that H is residually infinite cyclic; i.e., for every non-trivial h 2 H , there exists a
morphism ' W H ! Z satisfying '.h/ ¤ 0. This implies that H embeds into a direct
product of (infinitely many) cyclic groups. Such a product being free abelian, the
desired conclusion follows.

So, let h 2 H be a non-trivial element. Decompose h as

� � .�n1

1 C � � � C�nr
r / � ��1;

where � is some .w; u1 � � � ur/-diagram and where each �i is a simple absolutely
reduced .ui ; ui /-diagram with h�i i either trivial or a maximal cyclic subgroup in
D.P ; ui /. Because h is non-trivial, at least one of the �i is non-trivial, say, �k .
According to Theorem 3.16, the centraliser CG.h/ of h is®

� � .�1 C � � � C�r/ � ��1 j �1 2 C1; : : : ; �r 2 Cr
¯
;

where Ci WD h�i i if �i is non-trivial and Ci WD D.P ; ui / otherwise. The restriction
to H of the morphism ' W CG.h/! h�ki defined by

� � .�1 C � � � C�r/ � ��1 7! �k

satisfies '.h/ ¤ 1. This concludes the proof of our corollary.
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We saw with Propositions 2.20 and 2.21 that many right-angled Artin groups are
diagram groups. As another application of Theorem 3.16, we can show that there are
also many right-angled Artin groups that are not diagram groups.

Corollary 3.19 ([47]). Let � be a triangle-free graph. If � contains an induced cycle
of odd length � 5, then the right-angled Artin group A.�/ is not a diagram group1.

Sketch of proof. Given a triangle-free graph � with an induced cycle of odd length
� 5, assume for contradiction that A.�/ is a diagram group, say, D.P ; w/ for some
semigroup presentation P D h†jRi and some baseword w 2 †C.

Any spherical diagram over P can be conjugate to a sum of spherical diagrams,
and the number of non-trivial components depends only on the element of D.P ; w/
we are looking at. Say that an element of D.P ; w/ is monocomponent if it has only
one such component. Given two monocomponent elements g1; g2 2 D.P ; w/, we
write g1 � g2 whenever there exist a .w; xuyvz/-diagram � and simple absolutely
reduced .u; u/- and .v; v/-diagrams ‰1 and ‰2 such that

g1 D � � .".x/C‰1C ".yvz// � ��1 and g2 D � � .".xuy/C‰2C ".z// � ��1:
It can be verified that � is transitive and antisymmetric, and that any two commuting
monocomponent elements that do not belong to the same cyclic subgroup are �-
comparable. See [47] for details.

Now, let s0; : : : ; s2n 2D.P ;w/ denote the generators ofA.�/ given by an induced
cycle of odd length � 5. It follows from the description of centralisers in right-angled
Artin groups [64] that the centraliser of each si is hsi�1; si ; siC1i ' Z � F2; in par-
ticular, its centre is infinite cyclic. We deduce from Theorem 3.16 that the si are
monocomponent.

Assume without loss of generality that s0 � s1. We cannot have s1 � s2 since
otherwise this would imply that s0 � s2, which is impossible since s0 and s2 do not
commute. Therefore, we have s2 � s1. Similarly, we cannot have s3 � s2 since other-
wise we would have s3 � s1 and s3 would commute with s1. Hence, s2 � s3. Iterating
the argument, we find that

s0 � s1; s1 � s2; s2 � s3; : : : ; s2n�1 � s2n; s2n � s0:
It follows that s2n commutes with s1 since s2n � s1, a contradiction.

1Reference [47, Theorem 30] only proves that a right-angled Artin group defined by a cycle
of odd length� 5 is not a diagram group, but the proof can be repeated without any modification
to deduce our corollary. In fact, our statement is not optimal either, [47, Theorem 30] proves
that a diagram group does not contain elements g0; : : : ; g2n such that gi commutes with giC1

for every i 2 Z2nC1, such that the centraliser of each gi has a cyclic centre, and such that gi

and giC1 do no belong to the same cyclic subgroup for every i 2 Z2nC1.
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An interesting consequence of Theorem 3.16 is that nilpotent subgroups in dia-
gram groups must be abelian (and a fortiori free abelian according to Corollary 3.18).
This assertion will follow from the next statement.

Theorem 3.20 ([47]). For subgroup in a diagram group, the centre and the commut-
ator subgroup intersect trivially.

Proof. Let P D h†jRi be a semigroup presentation, w 2 †C a baseword, and H a
subgroup of D.P ; w/. Assume that the centre of H contains a non-trivial element
h 2 H ; otherwise, there is nothing to prove. Decompose h as

� � .�n1

1 C � � � C�nr
r / � ��1;

where � is some .w; u1 � � � ur/-diagram and where each �i is a simple absolutely
reduced .ui ; ui /-diagram with h�i i either trivial or a maximal cyclic subgroup in
D.P ; ui /. For any two a; b 2 H , it follows from Theorem 3.16 that we can write

a D � � .A1 C � � � C Ar/ � ��1 and b D � � .B1 C � � � C Br/ � ��1;

where, for each 1 � i � r , Ai and Bi belong to h�i i if �i is non-trivial and to
D.P ; ui / otherwise. Then

Œa; b� D � � .ŒA1; B1�C � � � C ŒAr ; Br �/ � ��1:

Observe that, for every 1 � i � r such that �i is non-trivial, ŒAi ; Bi � must be trivial.
Consequently, a product of commutators of elements in H decomposes as

� � .C1 C � � � C Cr/ � ��1;

where each Ci is trivial if �i is non-trivial. This implies that h cannot be written as a
product of commutators in H .

Corollary 3.21 ([47]). Nilpotent subgroups in diagram groups are abelian.

Proof. For every k � 2, a k-step nilpotent group always contains a 2-step nilpotent
group. But being a 2-step nilpotent group precisely means that its commutator sub-
group is non-trivial and contains in its centre. Thus, it follows from Theorem 3.20 that
nilpotent subgroups in diagram groups are 1-step nilpotent, i.e., abelian.

It is worth noticing that, even though diagram groups do not contain interesting
nilpotent groups, they may contain interesting solvable groups. For instance, we saw
in Section 2.4 that the wreath product Z oZ, which is metabelian, is a diagram group;
as well as the iterated wreath product ..Z o Z/ o � � � / o Z. In fact, it is contained in
many diagram groups. It is proved in [47] that a diagram group D.P ; w/ contains
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a subgroup isomorphic to Z o Z if and only if there exist words x; y; z such that
D.P ; z/ ¤ ¹1º and the equalities

w D xy; x D xz; y D zy
hold modulo P . This includes, for instance, Thompson’s group F .

We saw with Corollary 3.18 that abelian subgroups in diagram groups are neces-
sarily free. In fact, we can be more precise and describe the structure of abelian
subgroups in terms of diagrams.

Theorem 3.22 ([47]). Let P D h†jRi be a semigroup presentation and w 2 †C a
baseword. For all pairwise commuting elements g1; : : : ; gm 2 D.P ; w/, there exist a
.w; v1 � � � vn/-diagram � and .vj ; vj /-diagrams �j such that

gi D � � .�pi1

1 C � � � C�pin
n / � ��1 for some pi1; : : : ; pin 2 Z

for every 1 � i � m. Moreover, the diagrams�1; : : : ;�n can be chosen either trivial
or simple and absolutely reduced.

As a consequence, one can show that abelian subgroups in diagram groups are
undistorted.

Corollary 3.23 ([47]). In diagram groups, finitely generated abelian subgroups are
undistorted.

Proof. Given a diagram group, let A be a finitely generated abelian subgroup. Fix
a finite generating set ¹g1; : : : ; gmº in A. According to Theorem 3.22, there exist a
.w; v1 � � � vn/-diagram � and .vj ; vj /-diagrams �j such that

gi D � � .�pi1

1 C � � � C�pin
n / � ��1 for some pi1; : : : ; pin 2 Z

for every 1 � i � m. Moreover, we can choose the diagrams�1; : : : ;�n either trivial
or simple and absolutely reduced. Let AC denote the abelian subgroup freely gener-
ated by®
� � .".u1 � � �uk�1/C�kC".ukC1 � � �un// � ��1 j 1 � k � n with �k non-trivial

¯
:

It suffices to show that AC is undistorted in our diagram group in order to conclude.
So, let H be a finitely generated subgroup containing AC. On the one hand, if j � j
denotes the word length of AC given by our free basis, then it is clear that

jaj � 2#.�/ � #.a/ � jaj �max¹#.�i /; 1 � i � nº C 2#.�/

for every a 2 AC. And, on the other hand, if we fix a generating set ¹s1; : : : ; srº ofH
and a shortest representative m D m.s1; : : : ; sr/ of a given element a 2 AC, then

#.a/ D #.m/ � length.m/ �max¹#.si /; 1 � i � rº:
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Thus, the length inH of an element in AC is bounded below by its length in AC. This
concludes the proof of our corollary.

3.4. Membership problem for the commutator subgroup

Let P D h†jRi be a semigroup presentation and w 2 †C a baseword. Our goal
in this section is to describe a natural morphism ˛ W D.P ; w/ ! A.P / from our
diagram group D.P ; w/ to some free abelian group A.P / whose kernel coincides
with commutator subgroup of D.P ; w/. The motivation being to solve efficiently the
membership problem for the commutator subgroup ofD.P ;w/ in terms of diagrams,
as soon as the word problem is solvable in P .

So, let A.P / denote the free abelian group generated by M �R �M, where M

denotes the monoid given by P . Given a diagram� over P , we associate to each cell
� of � an element �.�/ of M �R �M as follows. The top and bottom paths of �
meet at two points: a source �.�/ and a sink �.�/. All the oriented paths in � from
the source of � to �.�/ are labelled by positive words representing the same element
in the monoid M; let `.�/ denote this element. Similarly, all the oriented paths in
� from �.�/ to the sink of � are labelled by positive words representing the same
element in the monoid M; let r.�/ denote this element. If � is labelled by the relation
uD v with .uD v/2R (resp., .vD u/2R), then we set �.�/ WD .`.�/;uD v; r.�//
(resp., �.`.�/; v D u; r.�//). Finally, we define

˛.�/ WD
X

� cell of�

�.�/ 2 A.P /:

Let us consider an explicit example in order to illustrate our definition. Take the
presentation

P WD ˝x; ai ; bi .i � 1/ j x D x2; ai D aiC1x; bi D xbiC1.i � 1/˛
from Proposition 2.19 and the following diagram �:

a

x

x
x

x x

1

a1

a2

b1

b1

b2
�1 �2

�3 �4

�6
�5

First of all, observe that aixn D a1 and xnbi D b1 mod P for all i; n � 1. Indeed,
we have

aix
n D aiC1xnC1 D aiC1x D ai mod P
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for all i; n � 1, and

a1 D a2x D a2 D a3x D a3 D � � � mod P :

We argue similarly for the equality mod P with b1. This allows us to deduce that

�.�5/ D �.1; a1 D a2x; xb1/ D �.1; a1 D a2x; b1/ D ��.�1/;
�.�6/ D �.a2x; b1 D xb2; 1/ D �.a1; b1 D xb2; 1/ D ��.�2/;

and
�.�4/ D �.a2x; x D x2; b2/ D �.a2; x D x2; b1/ D ��.�3/:

Therefore,
˛.�/ D �.�1/C � � � C �.�6/ D 0:

Coming back to the general case, the main result of interest for us is the following.

Proposition 3.24 ([45]). Let P D h†jRi be a semigroup presentation and w 2 †C
a baseword. The kernel of ˛ WD.P ;w/! A.P / coincides with the commutator sub-
group of D.P ; w/.

We emphasise that ˛ is not surjective in general, so we cannot identify A.P /

with the abelianisation of D.P ; w/. In fact, A.P / is usually much bigger than the
abelianisation.

An idea to prove Proposition 3.24 is the following. If P is a complete semigroup
presentation, then Theorem 3.2 provides a presentation ofD.P ;w/. Given an element
� in the kernel of ˛, we write it as a product of generators from our presentation, say,
� D ˆ1 � � �ˆn. Using the fact that

0 D ˛.�/ D ˛.ˆ1/C � � � C ˛.ˆn/;

we deduce that � can be written as a product of commutators. This argument shows
that Proposition 3.24 holds for complete semigroup presentation. The general case is
then deduced thanks to Lemma 3.6. See [45, Theorem 11.3] for a detailed proof.

Example 3.25. Thanks to Proposition 3.24, we deduce that the diagram � from our
previous example belongs to the commutator subgroup of the corresponding diagram
group. This is not surprising since the diagram group coincides with F 0, a simple
group. Nevertheless, it can easily verified thanks to Propositions 3.24 and 2.19 that
F 0 is perfect.

Example 3.26. Let P D hx j x D x2i be the semigroup presentation naturally associ-
ated to Thompson’s group F . Because P has a single relation and because the monoid
defined by P contains exactly two elements, namely, 1 and x, let us say that the
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abelian group A.P / is freely generated by ¹1; xº2. Given a reduced diagram � over
P , observe that the top cell is sent to .1; 1/ under �, that the bottom cell is sent to
�.1; 1/ under �, and that no other cell is sent to ˙.1; 1/. We refer to a cell sent to
˙.1; x/ as left, to a cell sent to ˙.x; 1/ as right, and to a cell sent to ˙.x; x/ as
internal. Remember that the cells of � labelled by x D x2 (resp., x2 D x) are called
positive (resp., negative); this convention is compatible with the sign of the image of
a cell under �. We have

˛.�/ D # of pos. left cells
� # of neg. left cells

.1; x/ C # of pos. right cells
� # of neg. right cells

.x; 1/

C # of pos. internal cells
� # of neg. internal cells

.x; x/:

Thus, � belongs to the commutator subgroup of D.P ; w/ if and only if � has the
same number of positive and negative left cells and the same number of positive and
negative right cells. (The number of positive and negative cells is the same; these two
equalities automatically imply that � has the same number of positive and negative
internal cells as well.)

3.5. Foldings and closed subgroups

The method of folding graphs [65] has been quite influential in the study of free groups
and has been generalised in various directions. Interestingly, thinking of a diagram
groups as second fundamental groups of directed 2-complexes, foldings appear natur-
ally in a similar way. This allows us, in particular, to solve the membership problem
for some subgroups.

First of all, let us recall how to solve the membership problem in free groups
thanks to folding. In other words, given a free group F and elements g; h1; : : : ; hn 2
F , we want to determine whether or not g belongs to the subgroupH WD hh1; : : : ; hn.
We fix a free basis s1; : : : ; sr of F and we think of F as the fundamental group of
a bouquet � of r circles, each oriented and labelled by a generator si . To H , we
associate a bouquet �0 of n circles, each subdivided and labelled by a generator hi .
Observe that both � and �0 have a distinguished vertex.

Now, we fold �0. More precisely, if two edges of �0 share an endpoint and have
the same image in�, then we identify it. After finitely many folds �0!� � �!�k , one
gets a graph �k with a locally injective map � W �k ! � such that H coincides with
the image under � of the fundamental group of �k in the fundamental group of �.
(The basepoints defining the fundamental groups being the distinguished vertices.)
The key property is that an element of F belongs to H if and only if the reduced
word w representing it is accepted by �k , i.e., there is a loop in �k based at the
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Figure 7. Foldings for hab�1a; abab�1; a2b�1i in ha; b j i.

distinguished vertex which is labelled by w. As an illustration, one deduces from
Figure 7 that ba�1b�2aba�2 belongs to hab�1a; abab�1; a2b�1i, but ba�3b2 does
not.

This method for finite graphs can be naturally adapted to finite directed 2-com-
plexes. This has been done by V. Guba and M. Sapir in the late 1990s (unpublished),
but it first appeared in print in [43].

Let P D h†jRi be a semigroup presentation and w 2 †C a baseword. We think
of the diagram group D.P ; w/ as the second fundamental group of the directed 2-
complex X.P / based at the 1-path labelled by w. See Section 2.3 for the relevant
definitions. We fix some spherical diagrams�;�1; : : : ;�n 2D.P ;w/, and we would
like to know whether � belongs to the subgroup H WD h�1; : : : ; �ni.

To H we associate the directed 2-complex X0 obtained by identifying all the top
and bottom paths of the �i to a single segment. Topologically, X0 can be thought of
as a bouquet of 2-spheres pairwise intersecting along a fixed segment. Observe that
there is a natural morphism of directed 2-complexes X0!X.P / and that both X.P /

and X0 have a distinguished 1-path. A folding refers to the following operation: if one
sees two cells in X0 sharing their top or bottom paths and having the same image in
X.P /, then we identify them. After finitely many folds X0 ! � � � ! Xk , one gets a
directed 2-complex Xk with a locally injective morphism Xk ! X.P /.

Define the closure Cl.H/ ofH as the subgroup ofD.P ;w/ given by the diagrams
accepted by Xk , i.e., the image of the second fundamental group of Xk based at
its distinguished 1-path under the morphism Xk ! X.P /. (It can be shown that
the closure of a subgroup does not depend on a particular choice of generators.) By
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construction, the closure of H contains H , but, contrary to the case of free groups, it
can be bigger. One can say that the closure of a subgroup is itself a diagram group, but
subgroups of diagram groups may not be diagram groups themselves, so there must
exist subgroups properly contained in their closure. In fact, it is easy to construct
subgroups distinct from their closures. Indeed, if � is a diagram decomposing as a
sum of two spherical diagrams�1C�2, then the closure of h�i contains�1C ".u2/
and ".u1/C�2, where each ".ui / denotes the trivial diagram having the same label
as the top and bottom paths of �i . Indeed, when identifying the top and bottom paths
of �, we do not get a topological sphere, but a pointed sum of two spheres due to
the cut-point separating �1 and �2 in �. It is conjectured that this phenomenon
is essentially the only obstruction for a subgroup to coincide with its closure. See
[41, Conjecture 3.11] for a precise statement.

In conclusion, for every diagram group, there exists an algorithm that decides,
given spherical diagrams �; �1; : : : ; �n, whether or not � belongs to the closure
of the subgroup h�1; : : : ; �ni. In particular, the membership problem is solvable for
closed subgroups (i.e., subgroups that coincide with their closures).

4. Median geometry

4.1. Crash course on median geometry

In this preliminary section, we record some basic definitions and results related to
median graphs that will be used in the next sections.

Definition 4.1. A connected graph X is median if, for all vertices x1; x2; x3 2 X ,
there exists a unique vertex m 2 X satisfying

d.xi ; xj / D d.xi ; m/C d.m; xj / for all i ¤ j:

We refer to this vertex m as the median point of x1; x2; x3.

Examples include of course simplicial trees, the median point of a triple of vertices
corresponding to the centre of the tripod they delimit. A product of median graphs is
still median, so the product of trees is also median graphs. This includes in particular
(one-skeleta of) cubes of arbitrary dimensions (see Figure 8).

A fundamental idea is that the geometry of a median graph is essentially encoded
in the combinatorics of its hyperplanes.

Definition 4.2. Let X be a median graph. A (an oriented) hyperplane J is an equi-
valence class of (oriented) edges with respect to the transitive closure of the relation
that identifies two (oriented) edges when they are opposite sides of a 4-cycle.
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Figure 8. Examples of median graphs and median points.
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Figure 9. Hyperplanes in a median graph and its cube-completion. The red hyperplane is trans-
verse to the green and yellow hyperplanes. Green and yellow hyperplanes are tangent.

• If XnnJ denotes the graph obtained from X by removing all the edges of J ,
then a connected component of XnnJ is a half-space. Two subsets A;B � X are
separated by J if they lie in distinct half-spaces delimited by J .

• Two hyperplanes J1 and J2 are transverse if there exist two intersecting edges
e1 � J1 and e2 � J2 that span a 4-cycle.

• They are tangent if there exist two intersecting edges e1 � J1 and e2 � J2 that do
not span a 4-cycle.

See Figure 9 for a few examples.

The previous claim is mainly motivated by the following statement.

Theorem 4.3 ([62]). Let X be a median graph. The following assertions hold:

• Every hyperplane J separates X . More precisely, XnnJ has exactly two connec-
ted components, which turn out to be convex.

• A path in X is a geodesic if and only if it crosses each hyperplane at most once.

• The distance between two vertices x; y 2 X coincides with the number of hyper-
planes separating x; y.
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In geometric group theory, median graphs are better known as CAT.0/ cube com-
plexes.

Definition 4.4. A cube complex is nonpositively curved if the links of its vertices are
flag simplicial complexes.

Recall that the link of a vertex x is the complex whose vertices are the (half)edges
starting from x and whose simplices are given by edges that span a cell. Typically,
the link of a vertex should be thought of as a small ball around the vertex, endowed
with the cellular structure induced by the whole complex. A complex is flag if, for all
n � 1, any nC 1 vertices span an n-simplex if and only if they are pairwise adjacent.

s

s
s

v

v

link. /
. /link

The terminology is justified by the fact that a cube complex, when endowed by the
length metric extending the Euclidean metrics of its cubes, is locally CAT.0/ exactly
when it is nonpositively curved [44,56]. As a consequence, a cube complex endowed
with the same metric is CAT.0/ if and only if it is simply connected and nonpositively
curved. We refer to [9] for more information on CAT(0) geometry. It turns out that
CAT.0/ cube complexes and median graphs define essentially the same objects. More
precisely, see the following theorem.

Theorem 4.5 ([17, 40, 61]). A graph is median if and only if its cube-completion is
simply connected and nonpositively curved.

Here, given a graphX , its cube-completion refers to the cube complexX� obtain-
ed by filling with cubes all the subgraphs isomorphic to one-skeleta of cubes.

Usually, hyperplanes are thought of slightly differently in cube-completions of
median graphs: they are thought of as unions of midcubes. See Figure 9. The termino-
logy related to hyperplanes in median graphs can be easily adapted for this alternative
point of view.

The following observation can be thought of as a consequence of the CAT(0)ness
of the cube complexes under consideration, but it can also be proved directly thanks
to the combinatorics of hyperplanes.

Proposition 4.6. Cube-completions of median graphs are contractible.

For more information on median graphs, or equivalently CAT(0) cube complexes,
we refer to [30, 63].
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4.2. Median geometry of diagram groups

In this section, we show that diagram groups act on median graphs. These median
graphs can be described in several equivalent ways. For now, we give a direct and
explicit definition and postpone more conceptual characterisations.

Definition 4.7. Let P be a semigroup presentation. Let M.P / denote the graph
whose vertices are the diagrams over P modulo dipole reduction and whose edges
connect two diagrams whenever one can be obtained from another by right-concatena-
tion by an atomic diagram (i.e., a diagram with a single 2-cell).

In other words, the vertices are given by reduced diagrams and one passes from a
vertex to a neighbour by gluing below a 2-cell. In the sequel, vertices of M.P / will
be often thought of as reduced diagrams (see Figure 10 below).

One easily verifies that two diagrams belong to the same connected component
of M.P / if and only if their top paths have the same label. Given a word w 2 †C,
we denote by M.P ; w/ the connected component of M.P / containing the diagrams
whose top paths are labelled by w.

Notice that the diagram group D.P ; w/ naturally acts on M.P ; w/ by left multi-
plication.

It is worth noticing that, since edges ofM.P / are labelled by atomic diagrams, the
paths in M.P / are naturally labelled by the diagrams obtained by concatenating the
atomic diagrams given by the edges along the path. Whether such a diagram is reduced
characterises the geodesics in M.P /. More precisely, see the following lemma.

Lemma 4.8. Let P be a semigroup presentation, w 2 †C a baseword, and ˆ;‰ 2
M.P ; w/ two vertices. A path

ˆ;ˆ ı�1; ˆ ı�1 ı�2; : : : ; ˆ ı�1 ı � � � ı�n D ‰

is a geodesic if and only if the diagram �1 ı � � � ı�n is reduced. As a consequence,
the distance between ˆ and ‰ in M.P ; w/ coincides with the number #.ˆ�1‰/ of
2-cells in the reduction of ˆ�1‰.

Figure 10. A piece of M.P ; x3/ for P D hx j x D x2i.
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Proof. It is clear that any path from ˆ to ‰ must have length at least #.ˆ�1‰/, and
that there exists at least one such path of this length. So, the distance between ˆ and
‰ inM.P ;w/ coincides with #.ˆ�1‰/. Therefore, our path is a geodesic if and only
if �1 ı � � � ı�n D ˆ�1‰ with n D #.ˆ�1‰/. The only possibility is that there is no
dipole in �1 ı � ı�n, which amounts to saying that �1 ı � � � ı�n is reduced.

The following theorem is the main result of this section.

Theorem 4.9 ([24]). Let P be a semigroup presentation and w 2 †C a baseword.
Then, M.P ; w/ is a median graph, locally of finite cubical dimension, on which
D.P ; w/ acts freely. The action is cocompact if and only if Œw�P is finite.

Here, we use the notation

Œw�P WD
®
m 2 †C j m D w mod P

¯
:

We are going to give two proofs of Theorem 4.9. The first one verifies that every triple
of vertices admits a unique median point thanks to the description of the geodesics
provided by Lemma 4.8; and the second proof applies the characterisation of median
graphs provided by Theorem 4.5.

First proof of Theorem 4.9. Let �0; �1; �2 be three reduced diagrams representing
three vertices of M.P ; w/. Up to conjugating by �0, we can assume without loss of
generality that �0 has no cell. (Notice that this operation may modify the baseword
w.) Let � be the biggest common prefix of �1 and �2. (Given two diagrams ˆ;‰,
one says that ˆ is a prefix of ‰ if ‰ decomposes as a concatenation ˆ ı � for some
diagram � .) The fact that� is a common prefix of�1 and�2 implies that� belongs
to geodesics from �0 to �1 and from �0 to �2. And the maximality of this prefix
assures that, if we decompose�1 (resp.,�2) as� ı �1 (resp.,� ı �2), then �1 ı ��12
is reduced. This implies that � also belongs to a geodesic between �1 and �2. Thus,
� provides a median point for �0; �1; �2.

If „ is a median point of �0; �1; �2, then „ must be a common prefix of �1
and�2, and consequently a prefix of�. Decompose� as„ ı�. Because„ belongs
to a geodesic between �1 and �2, the concatenation .� ı �1/�1.� ı �2/ must be
reduced. In other words, � cannot have any cell, hence „ D �.

Second proof of Theorem 4.9. According to Theorem 4.5, it suffices to show that the
cube-completion M�.P ; w/ is simply connected and nonpositively curved.

We begin by describing the cubes inM�.P ;w/. A thin diagram is a sum of atomic
diagrams (see Definition 3.10). Given a diagram � 2 M.P ; w/ and thin diagram ‰

with top label equal to the bottom label of �, the vertices ¹� ı‰0 j ‰0 prefix of ‰º
span an n-cube if ‰ has n cells. One can show that all the cubes in M�.P ; w/ are of
this form.
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As a consequence, given a vertex � 2 M�.P ; w/, if w denotes the bottom label
of � then the link of � is isomorphic to the simplicial complex whose vertices are
the subwords of w which are part of a relation from R and whose simplices are
given by pairwise disjoint subwords. Clearly, such a complex is flag, soM�.P ; w/ is
nonpositively curved.

Now, let us show that every compact subcomplex in M�.P ; w/ is contractible.
More precisely, given a finite set of vertices S , we claim that the subcomplex spanned
by xS WD ¹� j 9� 2 S; � prefix of �º is contractible. According to Lemma 4.8, xS
coincides with the union of all the geodesics from the trivial diagram to the vertices
in S . Fix a reduced diagram � 2 xS with a maximal number of cells (which amounts
to saying that the distance from the trivial diagram to � is maximal). Decompose �
as the concatenation �0 ı � where � is a thin diagram containing all the cells of �
whose bottom paths lie in the bottom path of �. (In other words, � is the maximal
thin suffix of �.) If � has n cells, let �1; : : : ; �n denote the diagrams obtained from
� by removing a single cell from � . Then

xS D Sn¹�º [ ¹�1; : : : ; �nº„ ƒ‚ …
DWR

[ ¹�0 ı �0 j �0 prefix of �º„ ƒ‚ …
n-cube

:

Thus, xS deformation retracts onto xR. During the replacement, observe that the fol-
lowing quantity: 

maximal number of cells
of a diagram in S

;
number of vertices with a
maximal number of cells

!
;

ordered with respect to the lexicographic order, decreases. Therefore, the process has
to stop after finitely many steps. Necessarily, the final step corresponds to the situation
where our set of vertices is reduced to the trivial diagram.

Interestingly, the median geometry of diagram groups can replace the combinat-
orics of diagrams in some arguments. We record some of examples below.

Second proof of Theorem 2.22. Let P D h†jRi be a semigroup presentation and let
w 2†C be a baseword. A finite-order isometry of a median graph has to stabilise (the
one-skeleton of) a cube (for instance, combine [66, Lemma 2.1.3] with [5]). Because
cube-stabilisers are vertex-stabilisers for the action ofD.P ;w/ onM.P ;w/, the fact
that D.P ; w/ acts freely on M.P ; w/ immediately implies that D.P ; w/ is torsion-
free.

Proof of a weak version of Theorem 2.23. If a group acts properly on a median graph,
then its finitely generated abelian subgroups are automatically undistorted [18, Corol-
lary 6.B.5] and its polycyclic subgroups are automatically virtually abelian [18, Corol-
lary 6.C.8].
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Second proof of Proposition 2.27. Let P D h†jRi be a semigroup presentation and
w 2 †C a baseword. Given an isometry of a median graph, if no power inverts a
hyperplane (i.e., stabilises the hyperplane but swaps the two halfspaces it delimits),
then it acts as a translation on a bi-infinite geodesic lines [52]. Because D.P ; w/ acts
onM.P ;w/with no inversion, it follows that a non-trivial element g 2D.P ;w/ does
act as a translation on some bi-infinite geodesic. This amounts to saying that there
exists a diagram � and a geodesic Œ�; g�� from � to g� such that the concatenation[

n2Z

bn � Œ�; g��

is a geodesic. Observe that the translation length �.g/ of g is

d.�; g�/ D #.g/:

Now, if a; b 2 D.P ; w/n¹1º and k ¤ 0 are such that a D bk , then

#.a/ D �.a/ D jkj � �.b/ D jkj � #.b/;

which implies that
jkj � #.a/=2:

As already mentioned, there are several equivalent but more conceptual view on
the median graph given by Definition 4.7. Below, we record three of them.

Cayley graph of the diagram groupoid. Let P D h†jRi be a semigroup present-
ation. Recall from Section 2.2 that the diagram groupoid D.P / is defined as the set
of diagrams over P up to dipole reduction endowed with the concatenation of dia-
grams. Because every diagram can be constructed by adding one 2-cell at a time, the
atomic diagrams generate the groupoid D.P /. It follows directly from Definition 4.7
that M.P / coincides with the Cayley graph of D.P / with respect to the generating
set given by the atomic diagrams, i.e., the graph whose vertices are the elements of
D.P / and whose edges connect one element to another if one can be obtained from
the other by right-multiplying by a generator.

This observation is compatible with our analogy between diagram groups and free
groups.

Free groups Diagram groups

Letters 2-cells

Free generators Atomic diagrams

Words Semigroup diagrams

Cancellations Dipole reductions
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From this perspective, Cayley graphs of free groups with respect to free bases
correspond to Cayley graphs of diagram groupoids with respect to atomic diagrams.
Then, the arboreal geometry of free groups becomes the median geometry of diagram
groups.

Remark 4.10. Pushing further this analogy, one could say that free groups have nat-
ural boundaries, which can be described both as infinite words and as geodesic rays in
their trees; and ask whether there is a counterpart for diagram groups. It turns out to
the case: one can define boundaries of diagram groups both as infinite semigroup dia-
grams and as geodesic rays in their median graphs. Such a boundary coincides with
the usual boundary of median graphs: the Roller boundary. See [36, Proposition A.3]
for more details.

Universal cover of the Squier cube complex. It turns out that (cube-completions
of) our median graphs can be constructed directly from the Squier cube complexes
(as defined by Definition 3.8). More precisely, see the following proposition.

Proposition 4.11. Let P D h†jRi be a semigroup presentation. The map that sends
a semigroup diagram over P to the labels of its bottom path induces a universal cover
M�.P /! SC.P /.

The proposition is essentially immediate from the definitions of the spaces in-
volved, it is clear that the map M�.P / ! SC.P / induces isomorphisms between
links of vertices, so it is a covering map, and we already saw that each connected
component of M�.P / is simply connected.

From directed 2-complexes to cube complexes. One can naturally associate to every
directed 2-complex X a cube complex Sq.X/, namely, the cube-completion of the
graph whose vertices are 1-paths in X and whose edges connect two 1-paths whenever
one can be obtained from the other by an elementary transformation. Observe that, if
P is a semigroup presentation and if X.P / is the associated directed 2-complex,
then Sq.X.P // coincides with the Squier cube complex SC.P /. It turns out that the
cube-completion M�.P / can also be constructed from a directed 2-complex.

Definition 4.12. A rooted 2-tree is a directed 2-complex with a distinguished 1-path
˛ which can be described as a union of directed 2-complexes X0 � X1 � � � � such
that

• X0 coincides with the 1-path ˛;

• for every n � 0, XnC1 is obtained from Xn by adding new 2-cells whose bottom
paths are pairwise disjoint, except possibly at their endpoints; and such that, for
each new cell, its top path lies in Xn but its bottom path must be a simple arc
meeting Xn only at its endpoints.
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Among directed 2-complexes, there is a natural notion of covers and every direc-
ted 2-complexes (with a distinguished 1-path) admits a (unique) universal cover. This
cover is a rooted 2-tree and it is constructed as follows. Let X be a directed 2-complex
with a distinguished 1-path ˛.

• Let X0 denote the directed 2-complex reduced to a single 1-path, which we endow
with a map �0 W X0 ! X that sends isomorphically X0 to ˛.

• Assume that Xn and �n W Xn ! X are constructed for some n � 0. If there exist
a 1-path � �Xn and a 2-cell � �X such that the top path of � is �n.�/ and such
that no 2-cell of Xn is sent to � under �n, then we constructed XnC1 by gluing a
new 2-cell along � and extend �n by sending this new cell to � .

Possibly after infinitely many steps, one gets a rooted 2-tree zX and a (covering) map
� W zX ! X. We refer to [49] for more details.

Proposition 4.13. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. Let X.P / denote the directed 2-complex associated to P with w as its distin-
guished 1-path. The cube complex M�.P ; w/ is naturally isomorphic to Sq.AX.P //.

A possible description of the universal cover AX.P / is the following. Take all the
reduced diagrams over P with top labels w and glue them along their top paths � .
Each time two diagrams �1 and �2 have a common prefix � (i.e., each time �1 and
�2 decompose as concatenations �1 D � ı �1 and �2 D � ı �2), identify the two
copies of �. The directed 2-complex one gets is precisely AX.P /, with � as its root.
Observe that � and any 1-path ˛ in AX.P / delimit a unique diagram �.˛/ � AX.P /.
The map ˛ 7! �.˛/ yields the isomorphism

Sq.AX.P //!M�.P ; w/

from the proposition.

4.3. Morse theory and finiteness properties

Recall that, given an n � 0, a group is of type Fn if it admits a classifying space with
only finitely many k-cells for k � n. It is of type F1 if is of type Fn for every n � 0;
or equivalently if it admits a classifying space with only finitely many cells in each
dimension. A group is of type F if it admits a classifying space with only finitely
many cells. It is worth noticing that a group is of type F1 (resp., of type F2) if and
only if it is finitely generated (resp., finitely presented).

Since universal covers of Squier cube complexes are contractible, as cube-comple-
tions of median graphs, one gets explicit classifying spaces for diagram groups, which
allows us to deduce various finiteness properties. As an immediate application, we
have the following proposition.
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Proposition 4.14. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. If only finitely many words in †C equal w modulo P , then the diagram group
D.P ; w/ is of type F .

Proof. The Squier cube complex S.P ; w/ defines a classifying space of D.P ; w/
with only finitely many cells.

For instance, the proposition applies to all the diagram groups associated to the
semigroup presentations˝

x1; : : : ; xn j xixj D xjxi .1 � i < j � n/
˛
; n � 1;

including to the pure planar braid groups given by Proposition 2.17. It is worth noti-
cing that not every diagram group satisfies good finiteness properties. For instance,
the groups Z o Z and Z � Z given in Section 2.4 are finitely generated but not finitely
presented. As a more elementary example, it is not difficult to see that the diagram
group D.P ; x/, where

P D hx; a; b; c j x D xa; a D b; b D c; c D ai;

is a free abelian group of infinite rank. Of course, this group is not finitely generated.
Even though the Squier cube complex contains infinitely many cells in each di-

mension, it is possible to deduce good finiteness properties of the corresponding
diagram groups by extracting from the cube complex a compact core. A general result
illustrating this assertion is the following.

Theorem 4.15 ([24]). Diagram groups given by finite presentations of finite semig-
roups are of type F1.

Let us illustrate the proof in the particular case of the diagram group D.P ; x/
where P WD hx j x D x2i. So, we want to show that D.P ; x/ is of type F1 thanks
to its action on the cube-completion M�.P ; x/ of M.P ; x/. We cannot deduce what
we want to prove directly from M�.P ; x/ because there are infinitely many orbits of
cells. The trick is to truncate the complex at some height.

More formally, given a polyhedral complex X , a map f W X ! R is a Morse
function if the following conditions hold:

• f is affine on each polyhedron;

• f is never constant on a cell of positive dimension;

• f .X .0// is discrete in R.

Typically, one should think of a Morse function as a height function.
In our cube complex M�.P ; x/, we have a natural Morse function at our dis-

posal; it suffices to extend the map M.P ; x/! N that sends a vertex represented
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by an .x; xn/-diagram to n. This Morse function h W M�.P ; x/! RC is D.P ; x/-
equivariant, soD.P ; x/ preserves the sublevels h�1.Œ0;k�/, k � 0. Moreover, because
P is a finite presentation, all these actions are cocompact. Thus, we would like to
replace the Squier cube complex with the quotient under D.P ; x/ of a well-chosen
sublevel. Unfortunately, there is no guarantee that such a sublevel is contractible, con-
trary to the Squier complex, so it is not clear in general that our new complex will be
a classifying space.

This is where Morse theory enters the game, whose philosophy claims that under-
standing the topology of a polyhedron complex is equivalent to understanding the
topology of the (sub)levels of a Morse function.

Proposition 4.16 ([7]). LetX be an n-connected polyhedron complex and f WX!R

a Morse function. Assume that there exists some h0 2 R such that the descending link
of every vertex of height � h0 is n-connected. Then, f �1..�1; h0�/ is n-connected.

Here, the descending link of a vertex refers to the subcomplex of the link given by
the edges connecting our vertex to vertices of lower heights. The proposition can be
easily understood for n D 1. So, let  be a loop in our sublevel f �1..�1; h0�/ and
let us show that  is homotopically trivial in f �1..�1; h0�/. Because X is simply
connected by assumption, there must be a disc D2! X bounded by  . However, this
discD may not lie in our sublevel. Nevertheless, pick a vertex x of maximal height �
h0 onD. Because x has maximal height and because Morse functions are not constant
on cells of positive dimensions, we can draw onD a small loop � around x lying in the
descending link link#.x/ of x. Because link#.x/ is simply connected by assumption,
there is a small discD0 in link#.x/ bounded by � . Replacing withD0 the subdisc ofD
delimited by � allows us to push down D. By iterating the process, we eventually get
a disc bounded by  inside f �1..�1; h0�/, proving that  is homotopically trivial in
f �1..�1; h0�/. Thus, f �1..�1; h0�/ is indeed simply connected.

� � �

Thus, in order to show that our diagram group D.P ; x/ is of type Fn for every
n � 1, it suffices to verify that descending links of vertices in M�.P ; x/ get more
and more connected when the height increases. This is usually the delicate point, we
need to describe the descending links of vertices and to prove that they are highly
connected.
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Let � be an .x; xk/-diagram representing a vertex x of height k in M�.P ; x/. In
order to connect x to a vertex of lower height, we need to glue on bot.�/ a negative
cell (i.e., a 2-cell labelled by the relation x2 D x); and a collection of such gluings
spans a simplex in the descending link of x exactly when they are performed on
pairwise disjoint subsegments of bot.�/. Thus, the descending link of a vertex of
height k in M�.P ; x/ is isomorphic to the simplicial complex Ik

• whose vertices are the subintervals Œi; i C 1� � Œ1; k�, i 2 N;

• whose simplices are collections of pairwise disjoint subintervals.

One can naturally reconstruct IkC3 from a cone over IkC1 (whose apex corresponds
to the vertex Œk C 2; k C 3� of IkC3) by gluing a cone over Ik � IkC1 (whose apex
corresponds to the vertex ŒkC 1; kC 2� of IkC3). This observation allows us to prove
by induction that Ik is n-connected for every k � 3.nC 2/.

Thus, given an n � 0, we know that D.P ; x/ acts freely, properly, and cocom-
pactly on the sublevel h�1.Œ1; 3.n C 2/�/ in M�.P ; x/, which is n-connected. We
conclude that D.P ; x/ is of type Fn, as desired. The argument easily generalises to
the semigroup presentation hx j x D xri, r � 2. We leave the details as an exercise
for the interested reader.

We conclude this section by mentioning the consequence of Theorem 4.15.

Corollary 4.17. Every diagram group over a finite semigroup presentation embeds
into a diagram group of type F1.

Proof. Let P D h†jRi be a finite semigroup presentation and w 2 †C a baseword.
Set

Q WD ˝† t ¹xº j R t ¹x D x2; a D b .a; b 2 †/º˛:
Every (reduced) diagram over P also defines a (reduced) diagram over Q, so there is
an obvious injective morphismD.P ;w/ ,!D.Q;w/. Clearly, the semigroup defined
by Q is finite, so Theorem 4.15 implies that D.Q; w/ is of type F1.

4.4. Hilbert space compression

Roughly speaking, the Hilbert space compression of a metric space is a number
between zero and one which quantifies the compatibility between the geometry of
the space with the geometry of Hilbert spaces. The smallest the compression is, the
highest the distortion of an embedding into a Hilbert space must be.

Definition 4.18. Let f W X ! Y be a Lipschitz map between two metric spaces. The
compression of f is the least ˛ > 0 for which there exists a constant C > 0 such that

C � d.x; y/˛ � d.f .x/; f .y// for all x; y 2 X:
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The Hilbert space compression of X is the least compression of a Lipschitz map
from X to a Hilbert space. By extension, the Hilbert space compression of a finitely
generated group is the Hilbert space compression of its Cayley graphs (constructed
from finite generating sets).

Interestingly, median graphs always admit good Lipschitz embeddings into Hil-
bert spaces with compression bounded below.

Theorem 4.19 ([14,58]). The Hilbert space compression of a median graph is always
� 1=2. Moreover, it is equal to 1 when the cubical dimension is finite.

Let us justify the first assertion. Given a median graphX , let H denote the Hilbert
space given by the `2-summable maps ¹hyperplanes of Xº ! R endowed with the
`2-norm. For every hyperplane J in X , we denote by ıJ the map that sends J to 1
and all the other hyperplanes to 0. Given a basepoint o 2 X , we claim that the map
ˆ W X ! H defined by

x 7!
X

J separates o and x

ıJ

induces a Lipschitz embedding with compression� 1=2. Indeed, for all vertices x;y 2
X , if we denote by m the median point of ¹x; y; oº and by W.�j�/ the set of the
hyperplanes separating two given vertices, we have

ˆ.x/ �ˆ.y/ D
X

J2W.ojm/
ıJ C

X
J2W.mjx/

ıJ �
X

J2W.ojm/
ıJ �

X
J2W.mjy/

ıJ

D
X

J2W.mjx/
ıJ �

X
J2W.mjy/

ıJ ;

hence

kˆ.x/ �ˆ.y/k22 D #W.mjx/C #W.mjy/ D #W.xjy/ D d.x; y/:

This concludes the proof of our claim.
As an immediate consequence of Theorem 4.19, it follows that the Hilbert space

compression of a finitely generated diagram group D.P ; w/ is � 1=2 if its orbits in
the median graph M.P ; w/ are quasi-isometrically embedded; and is even equal to 1
if, in addition, the cubical dimension of M.P ; w/ is finite. For instance, we have the
following proposition.

Proposition 4.20. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. If only finitely many words in †C are equal to w modulo P , then the Hilbert
space compression of D.P ; w/ is equal to 1.

Proof. Our assumptions imply D.P ; w/ acts on M.P ; w/ properly and cocompact-
ly. Therefore, the Hilbert space compression of D.P ; w/ coincides with the Hilbert
space compression of M.P ; w/, which is equal to 1 according to Theorem 4.19.
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As a consequence of the description of the graph metric of M.P ; w/ given in
Section 4.2, it is clear that the orbits of a finitely generated diagram group D.P ; w/
are quasi-isometrically embedded if and only if the following property is satisfied.

Definition 4.21. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. The diagram groupD.P ;w/ satisfies the Burillo property if it is finitely gener-
ated and if every word-metric given by a finite generating set is bi-Lipschitz equivalent
to the diagram metric #.�/, i.e., the map that sends each element of D.P ; w/ to the
number of 2-cells in a reduced diagram representing it.

Thus, we deduce the following statement.

Proposition 4.22 ([2]). A diagram group satisfying the Burillo property has Hilbert
space compression � 1=2.

Examples of diagram groups satisfying the Burillo property include the pure planar
braid groups and various right-angled Artin groups (according to Proposition 4.20),
Thompson’s group F [13], the wreath product Z o Z [2], and Z � Z [33]. (All these
examples are thought of as diagram groups by taking the semigroup presentations
given in Section 2.4.) So far, no example of a finitely generated diagram group that
does not satisfy the Burillo property appears in the literature.

Proposition 4.22 only gives lower bounds on Hilbert space compression. Comput-
ing the exact value of the Hilbert space compression may be subtle and goes beyond
the scope of this survey. Nevertheless, let us mention that Thompson’s group F has
Hilbert space compression 1=2 [2] and that the wreath product Z oZ has Hilbert space
compression 2=3 (see [4]).

The proof of Proposition 4.22 given in [2] does not use median geometry, but
it turns out to be the exact translation of the argument presented above through the
correspondence between median graphs and rooted 2-trees described in Section 4.2.
Let us describe the argument as presented in [2].

Let P D h†jRi be a semigroup presentation and w 2 †C a baseword. We glue
together all the reduced diagrams over P with top labelw along their top paths � ; and,
for any two diagrams �1; �2, if � is a common prefix of �1; �2, then we identify
the two copies of � in �1 and �2. Let T .P ; w/ denote the resulting object. Let
H denote the Hilbert space given by the formal sums of 2-cells in T .P ; w/ endowed
with the `2-norm. For every g 2D.P ;w/, there is a unique copy of a reduced diagram
representing g having � as its top path. Let„.g/ denote the formal sum of the 2-cells
contained in this copy. Then

k„.g/ �„.h/k22 D #.g�1h/ for all g; h 2 D.P ; w/:
Thus, if D.P ; w/ satisfies the Burillo property, then g 7! „.g/ defines a Lipschitz
map D.P ; w/! H with compression 1=2.
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An explicit bijection between the 2-cells in T .P ;w/ and the hyperplanes inM.P ;
w/ can be described as follows. A diagram� over P is minimal if it contains a single
2-cell having its bottom path in the bottom path of �. If �� denotes the diagram
obtained from � by removing this 2-cell, then Œ�; ��� defines an edge in M.P /,
and we denote by J.�/ the hyperplane containing this edge. It turns out that the map
� 7! J.�/ induces a bijection from the reduced minimal diagrams over P to the
hyperplanes in M.P / [32, Proposition 2]. For every 2-cell � in T .P ; w/, let �.�/
denote the smallest diagram in T .P ; w/ containing � and having � as its top path.
The minimality assures that �.�/ is minimal, and the map � 7! J.�.�// yields the
desired bijection from the 2-cells of T .P ; w/ to the hyperplanes of M.P ; w/.

Remark 4.23. In this section, we have focused on Hilbert space compressions of
groups, but one can define the equivariant Hilbert space compression of a finitely
generated groupG as the least compression of a Lipschitz map fromG (endowed with
the word length given by a finite generating set) to a Hilbert space on which G acts
by affine isometries. Everything that has been said about Hilbert space compressions
in this section also holds for equivariant compressions.

4.5. Hyperplanes in Squier’s cube complex

In this section, we focus on the combinatorics of hyperplanes in Squier cube com-
plexes. In particular, this will allow us to prove that some diagram groups are linear
over Z, have finite asymptotic dimension, or satisfy some Tits alternative depending
on their underlying semigroup presentations. We begin by recalling some terminology
and results from [53].

Definition 4.24. Let X be a nonpositively curved cube complex.

• A hyperplane is one-sided if its two orientations coincide. Otherwise, it is two-
sided.

• A hyperplane J self-intersects if there exist a vertex o2X and two neighbours a,
b2X such that the edges Œo; a�; Œo; b� span a square and are both transverse to J .

• A hyperplane J self-osculates if there exist a vertex o 2 X and two neighbours
a; b 2 X such that the edges Œo; a�; Œo; b� do not span a square and are both trans-
verse to J .

• Two hyperplanes inter-osculate if they are both transverse and tangent.

The cube complex X is conspicial2 if all its hyperplanes are two-sided and if it does
not contain self-intersections, self-osculations, nor inter-osculations.

2This property is called A-special in [53], shortened as special in the recent literature. In
order to minimise conflicts with the everyday language, we propose to use the Latin word con-
spicial which is close to special both semantically and phonetically.



A. Genevois 56

Let us motivate this definition. Given a nonpositively curved cube complex X ,
let �X denote its crossing graph, i.e., the graph whose vertices are the hyperplanes
of X and whose edges connect two hyperplanes whenever they are transverse. Fix a
basepoint o 2 X . Also, we assume that the hyperplanes of X are two-sided and fix an
orientation on the hyperplanes of X . A loop in X .1/ based at o can be thought of as
a sequence of oriented edges, to which we can associate a formal word written over
¹hyperplanes of Xº˙1 (an oriented edge e being sent to the hyperplane it crosses or
its inverse depending on whether the orientations of e and the hyperplane agree). This
correspondence induces a well-defined morphism

AX W �1.X; o/! A.�X/

to the right-angled Artin group A.�X/. (See Section 2.4 for a definition of right-
angled Artin groups.) In full generality, we do not know anything about the morphism
AX . It may be even trivial. However, it turns out to be injective as soon as X is
conspicial [53, Theorem 4.2]. Thus, fundamental groups of conspicial cube complexes
inherit all the properties satisfied by right-angled Artin groups and are stable under
taking subgroups. This includes, for instance,

• being linear over Z (and, as a consequence, being residually finite);

• satisfying a strong Tits alternative, namely, every subgroup either is free abelian
or contains a non-abelian free subgroup.

If moreover the conspicial cube complex is compact, then its fundamental group
is nicely embedded into the corresponding right-angled Artin groups: it defines a
convex-cocompact subgroup. This allows us to strengthen the residual finiteness previ-
ously mentioned and to deduce that convex-cocompact subgroups in our fundamental
group are separable [53, Corollary 7.9].

A natural question to ask now is: when are Squier cube complexes conspicial?

Proposition 4.25 ([33]). Let P D h†jRi be a semigroup presentation and w 2 †C
a baseword. The Squier cube complex SC.P ; w/ is conspicial if and only if the fol-
lowing conditions are satisfied:

• there are no words a; b; p 2 †C such that w D ab, a D ap, and b D pb modulo
P with Œp�P ¤ ¹pº;

• there are no words a;u;v;w;b;p;q; � 2†C such thatwD auvwb, auD au.v�/,
and wb D .�v/wb modulo P with uv D p; vw D q in R.

Here, Œp�P denotes the set of all the words in†C equal to p modulo P . It is worth
noticing that, if the condition from the first item fails, then

¹apnb j n � 0º � Œw�P I
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and, if the condition from the second item fails, then

¹au.v�/mv.�v/nwb j n;m � 0º � Œw�P :

Consequently, if we know that Œw�P is finite, then it follows immediately from the
proposition that our Squier cube complex is conspicial.

Corollary 4.26. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. If Œw�P is finite, then SC.P ; w/ is conspicial.

Corollary 4.26 applies to the right-angled Artin groups and pure planar braid
groups from Section 2.4. It does not apply to the group Z � Z, but Proposition 4.25
holds anyway. It is worth mentioning that not all diagram groups can be described as
fundamental groups of conspicial cube complexes. Thompson’s group F is such an
example since it is not even residually finite.

In Corollary 4.26, the Squier cube complex is conspicial but also compact. There-
fore, this allows us to deduce that convex-cocompact subgroups in the corresponding
diagram group are separable. (Recall that, given a group G, a subgroup H is separ-
able if, for every non-trivial h 2 H , G has a finite-index subgroup not containing h.)
One instance of this assertion is given by the following corollary.

Corollary 4.27 ([33]). Let P D h†jRi be a semigroup presentation and w 2 †C a
baseword with Œw�P finite. Fix a .w; x1u1 � � � xnunxnC1/-diagram �. The morphism´

D.P ; u1/ � � � � �D.P ; un/ ! D.P ; w/

.�1; : : : ; �n/ 7! � � .�1 C � � � C �n/ ���1

is injective and its image is a separable subgroup of D.P ; w/.

Let us describe explicitly the morphism AX above in the specific case of our
Squier cube complexes. So, we fix a semigroup presentation P D h†jRi and a base-
word w 2 †C. The oriented edges of SC.P ; w/ can be written as .a; u ! v; b/

when they connect aub to avb; we denote by Œa; u! v; b� the corresponding (ori-
ented) hyperplane. It can be shown that two oriented hyperplanes Œa; u! v; b� and
Œc; p ! q; d �

• coincide if and only if a D c, b D d modulo P and u D p, v D q in †C [33,
Lemma 3.1];

• are transverse if and only if there exists some y 2 †C such that either c D auy
and b D ypd modulo P or d D yub and a D cpy modulo P [33, Lemma 3.2].

LetA.P ;w/ be the right-angled Artin group given by the crossing graph of SC.P ;w/.
The generators of A.P ; w/ are the oriented hyperplanes Œa; u! v; b� where u D v
belongs to R. The map that sends each oriented edge .a; u! v; b/ to the element
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Figure 11. Generators of Z � Z.

Œa; u ! v; b� if u D v belongs to R and to the element Œa; v ! u; b��1 if v D u

belongs to R induces a morphism

A.P ; w/ W D.P ; w/! A.P ; w/:

It is injective as soon as the conditions of Proposition 4.25 are satisfied. This happens
for instance when Œw�P is finite.

Example 4.28. Let us consider the following semigroup presentation:

P WD ˝a1; a2; a3; b1; b2; b3; p j a1 D a2; a2 D a3; a3 D a1; a1 D a1p;
b1 D b2; b2 D b3; b3 D b1; b1 D pb1

˛
:

The diagram group D.P ; a1b1/ is the group Z �Z described in Section 2.4. Accord-
ing to Proposition 4.25, the Squier cube complex SC.P ; a1b1/ is conspicial, so our
morphism A.P ; w1b1/! A.P ; a1b1/ is injective.

Using our previous description of hyperplanes, we find that SC.P ; a1b1/ has
eight hyperplanes

Ai WD Œ1; ai ! aiC1; b1�; Bi WD Œa1; bi ! biC1; 1�;
C WD Œ1; a1 ! a1p; b1�; D WD Œa1; b1 ! pb1; 1�:

Moreover, we find that the crossing graph of SC.P ; a1b1/ is a complete bipartite
graph K4;4, where each vertex of ¹A1; A2; A3; C º is connected by an edge to each
vertex of ¹B1; B2; B3;Dº. In particular,

A.P ; a1b1/ ' F4 � F4:

Then, by using Theorem 3.2 or Proposition 4.30 below, we find that Z � Z is
generated by the three diagrams shown in Figure 11.

For instance, the first diagram corresponds to the loop of edges

.1; a1 ! a2; b1/; .1; a2 ! a3; b1/; .1; a3 ! a1; b1/;
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which implies that our morphism A D A.P ; a1b1/ sends �1 to A1A2A3. Similarly,
we find that

A.�2/ D B1B2B3 and A.�3/ D CD�1:
We conclude that the subgroup hA1A2A3; B1B2B3; CD�1i of

F4 � F4 D hA1; A2; A3; C j i � hB1; B2; B3;D j i

is isomorphic to Z � Z. The embedding can be simplified to an embedding into F2 �
F2; we refer to [33, Example 3.17] for more details.

From a more geometric perspective, it is possible to use the structure of hyper-
planes in the Squier cube complexes in order to construct quasi-isometric embeddings
from diagram groups into product of trees. More precisely, see the following propos-
ition.

Proposition 4.29. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. If D.P ; w/ satisfies the Burillo property and if SC.P ; w/ has finite dimen-
sion d , then D.P ; w/ quasi-isometrically embeds into a product of d trees. As a
consequence, D.P ; w/ has finite asymptotic dimension � d and its Hilbert space
compression is 1.

The last assertion of the proposition follows from the first part but also from [51,
68]. One easily observes that SC.P ; w/ has dimension � d if and only if d is the
smallest integer k for which there exist u1; : : : ; uk 2 †C such that w D u1 � � � uk
modulo P and such that Œui �P ¤ ¹uiº for every 1 � i � k. For instance, SC.P ; w/
is automatically finite-dimensional when Œw�P is finite.

Proof of Proposition 4.29. First of all, we need to introduce some notation and vocab-
ulary.

Let J1 and J2 be two hyperplanes in SC.P ; w/. If they meet inside a square
.a; u! v; b; p ! q; c/ with Œa; u! v; bpc� D J1 and Œaub; p ! q; c� D J2, then
we write J1 � J2. This relation allows us to define the rank of a hyperplane J in
SC.P ; w/ as

rank.J / WD max
®
n � 0 j there exist J1; : : : ; Jn with J1 � � � � � Jn � J

¯
:

Because any two �-related hyperplanes must be transverse, the rank of a hyperplane
lies between 0 and d � 1. By extension, we define the rank of a hyperplane in the
median graph M.P ; w/ as the rank of its image by the covering map M�.P ; w/!
SC.P ; w/.

Thus, we get a colouring of the hyperplanes of M.P ; w/ with d colours given by
the rank such that any two hyperplanes of the same colour cannot be transverse. This
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implies that M.P ; w/ embeds isometrically into a product of d trees (endowed with
the `1-metric), which allows us to conclude sinceD.P ;w/ embeds isometrically into
M.P ; w/ as a consequence of the Burillo property.

Let us describe how M.P ; w/ can be embedded into a product of d trees. For
every 0 � i � d � 1, let Ti denote the graph whose vertices are the connected com-
ponents of the graph obtained by cuttingM.P ;w/ along all the hyperplanes of rank i
and whose edges connect two components whenever they are separated by a single
hyperplane of rank i ; because no two hyperplanes of rank i are transverse, Ti is
a tree; moreover, there is a natural projection M.P ; w/ ! Ti sending a vertex to
the connected component it belongs to, and the distance in Ti between the projec-
tions of two vertices x; y 2 M.P ; w/ coincides with the number of hyperplanes
of rank i separating x and y. Thus, the product of these projections yields a map
M.P ; w/! T0 � � � � � Td�1 such that the distance between the images of two ver-
tices x; y 2M.P ; w/ coincides with the sum over i of the number of hyperplanes of
rank i separating x and y, i.e., the total number of hyperplanes separating x and y,
which is exactly the distance between x and y in M.P ; w/.

We conclude this section by explaining how one can use hyperplanes in order to
decompose Squier cube complexes as graphs of spaces and to compute presentations
of diagram groups. Before stating our decomposition theorem, we need to introduce
some vocabulary.

So, let P D h†jRi be a semigroup presentation and w 2 †C a baseword. A
hyperplane J D Œa; u! v; b� in SC.P ; w/ is left ifD.P ; a/ D ¹1º butD.P ; au/ ¤
¹1º. If so, let pJ ; sJ 2 †C be two words and `J 2 † a letter satisfying

u D pJ `J sJ in †C; D.P ; apJ / D ¹1º

and
D.P ; apJ `J / ¤ ¹1º:

Notice that pJ is just the maximal prefix of u satisfying D.P ; apJ / D ¹1º so that
pJ ; sJ ; `J are uniquely determined. We define similarly vD qJmJ rJ , where qJ ; rJ 2
†C and mJ 2 †, so that

D.P ; qJ / D ¹1º and D.P ; qJmJ / ¤ ¹1º:

Proposition 4.30. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. Let J denote the set of left hyperplanes of SC.P ; w/ and let G .P ; w/ be the
graph of spaces defined by the following:

• the set of vertex-spaces is®
SC.P ; apJ /`JSC.P ; sJ b/;SC.P ; aqJ /mJSC.P ; rJ b/ j JDŒa;u!v;b�2J

¯I
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• to each left hyperplane Œa;u! v;b� 2 J is associated the edge-space SC.P ; a/�
SC.P ; b/;

• the edge-maps are the canonical maps

SC.P ; a/ � SC.P ; b/! SC.P ; a/uSC.P ; b/

and
SC.P ; a/ � SC.P ; b/! SC.P ; a/vSC.P ; b/:

Then, G .P ; w/ defines a decomposition of SC.P ; w/ as a graph of spaces.

As an illustration of the proposition, let us compute a presentation of some dia-
gram groups.

Example 4.31. Let

P D ˝a1; a2; a3; b1; b2; b3; p j a1 D a2; a2 D a3; a3 D a1; a1 D a1p;
b1 D b2; b2 D b3; b3 D b1; b1 D pb1

˛
:

Then, SC.P ; a1b1/ contains four left hyperplanes

Œ1; a1 ! a2; b1�; Œ1; a2 ! a3; b1�; Œ1; a3 ! a1; b1�; Œ1; a1 ! a1p; b1�:

Thus, the vertex-spaces of our graph of spaces will be

a1S.P ; b1/; a2S.P ; b1/; a3S.P ; b1/:

The graph of spaces given by Proposition 4.30 is then

b1S. /P;

b1S. /P;

b1S. /P;

a2

b1S. /P;a3

b1S. /P;a1

b1S. /P;

b1S. /P;

The maps associated to the loop are induced by w0 7! a1w0 and w0 7! a1pw0.
On the other hand, the Squier complex S.P ; b1/ is easy to draw

b1

b2 b3

pb1

pb2 pb3

p b1
2

p b2
2 p b3

2
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In particular, its fundamental group is isomorphic to F1 D hx1; x2; : : : j i.
Thus, D.P ; a1b1/ may be decomposed as the graph of groups illustrated as fol-

lows, where the maps associated to the three edges on the left are identities, and
where the two maps associated to the loop are the identity and the morphism induced
by xi 7! xiC1:

F1

F1

F1F1

F1

F1

F1

Finally, this graph of groups may be simplified into the graph of groups illustrated
as follows, where the maps associated to the left loop are identities and where the
two maps associated to the right loop are the identity and the morphism induced by
xi 7! xiC1:

F1 F1 F1

Thus, we deduce the following presentation of our diagram group D.P ; a1b1/:˝
x1; x2; : : : ; t; h j txi t�1 D xi ; hxih�1 D xiC1 .i � 1/

˛
:

Noticing that xiC1 D hix1h�i for every i � 1, we can simplify the presentation as

Z � Z D ˝a; t; h j Œt; ahi

� D 1 .i � 0/˛;
which is the presentation given in Section 2.4.

4.6. Acylindrical hyperbolicity

A powerful method to study groups, coming from the geometric group theory, is to
look for behaviours of negative curvature. We saw with Theorem 2.24 that there is
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essentially no hyperbolicity in diagram groups, and it can be expected that a similar
phenomenon occurs for relative hyperbolicity (see Conjecture 6.15). Nevertheless,
acylindrical hyperbolicity is sufficiently weak to encompass interesting examples of
diagram groups and sufficiently restrictive to provide valuable information.

Formally, a group G is acylindrically hyperbolic if it admits an action on some
(Gromov-)hyperbolic space X which is both non-elementary (i.e., with an infinite
limit set) and acylindrical (i.e., for every d � 0, there exist L; N � 0 such that
#¹g 2G j d.x;gx/;d.y;gy/� dº �N for all x;y 2X satisfying d.x;y/�L). Acyl-
indrical hyperbolicity can be thought of as a weak phenomenon of negative curvature,
but which nevertheless provides strong restrictions on the structure of the group under
consideration. For instance, consider the following statements:

• Acylindrically hyperbolic groups admit many quotients. This is a consequence of
small cancellation [20] and Dehn fillings [54]. For instance, every acylindrically
hyperbolic group G is SQ-universal (i.e., every countable group embeds into a
quotient of G).

• Acylindrically hyperbolic groups contain many free subgroups. This can also be
seen as a consequence of small cancellation [20] since the normal subgroups
produced are free. But we can also justify this assertion by using the Property
Pnaive [1] or the fact that random subgroups are free [57].

• Acylindrically hyperbolic groups admit many quasimorphisms [8]. In particular,
this implies that the second bounded cohomology group has uncountable dimen-
sion.

• An acylindrically hyperbolic group G does not contain an infinite abelian sub-
group H that is s-normal (i.e., H \ gHg�1 is infinite for every g 2 G) [59]. In
particular, centres of acylindrically hyperbolic groups are finite.

• An acylindrically hyperbolic group does not decompose as the direct sum of two
infinite groups [59].

Diagram groups may or may not be acylindrically hyperbolic. Obvious examples of
acylindrically hyperbolic diagram groups are non-abelian free groups. More interest-
ing examples will be given in this section. On the other hand, free abelian groups,
Thompson’s group F , and the wreath product Z o Z are not acylindrically hyperbolic
(since they do not contain any non-abelian free subgroup). Is it possible to recognise
whether or not a given diagram group is acylindrically hyperbolic?

Even though the median graphs constructed in Section 4.2 are usually not hyper-
bolic, it turns out that there exist efficient methods that allow us to deduce that a group
is acylindrically hyperbolic thanks to an action on a median graph; see [35] and refer-
ences therein. One of these methods is to look for specific isometries that behave like
isometries in hyperbolic spaces. More precisely, see the following statements.
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Figure 12. Diagrams g and g1 from Example 4.34.

Definition 4.32. Let X be a metric space. An isometry g 2 Isom.X/ is contracting if
there exists a basepoint o 2 X such that the map n 7! gn � o induces a quasi-isometric
embedding Z! X ; and if there exists some D � 0 such that the nearest-point pro-
jection on hgi � o of every ball disjoint from hgi � o has diameter at most D.

It turns out that a group acting properly on a metric space with at least one con-
tracting isometry must be either virtually infinite cyclic or acylindrically hyperbolic.
Therefore, a natural problem is to determine when an element of a diagram group
induces a contracting isometry on the corresponding median graph.

Theorem 4.33 ([36]). Let P D h†jRi be a semigroup presentation, w 2†C a base-
word, and g 2 D.P ; w/ a non-trivial absolutely reduced element. Then, g is a con-
tracting isometry of M.P ; w/ if and only if the following conditions are satisfied:

• g1 does not contain any infinite proper prefix (i.e., g1 does not decompose as a
concatenation ˆ ı‰ with ˆ infinite and ‰ non-trivial);

• if � is a reduced diagram with g1 as a prefix, then � differs from g1 by only
finitely many 2-cells.

Roughly speaking, an infinite diagram refers to the object �1 ı�2 ı � � � obtained
by concatenating infinitely many finite diagrams �1; �2; : : : over a given semigroup
presentation. In particular, g1 denotes the infinite diagram obtained by concatenating
infinitely many copies of the diagram g. We refer to [36] for a more formal descrip-
tion.

Example 4.34. Let P D ha; b; p j a D ap; b D pbi and let g 2 D.P ; ab/ be the
spherical diagram illustrated in Figure 12.

Then, g1 clearly contains a proper infinite prefix. Therefore, g is not a contracting
isometry of M.P ; ab/.
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Figure 13. Diagrams g and g1 from Example 4.35.
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Figure 14. The diagram g and its associated infinite diagram g1 from Example 4.36.

Example 4.35. Let P D ha; b; c j a D b; b D c; c D ai and let g 2 D.P ; a2/ be the
spherical diagram illustrated in Figure 13.

Then, g1 is a prefix of the diagram� given by Figure 13, but� contains infinitely
many 2-cells not in g1. Therefore, g is not a contracting isometry of M.P ; a2/.

Example 4.36. Let P D ha; b; c; d j ab D ac; cd D bd i and let g 2 D.P ; ab/ be
the spherical diagram illustrated in Figure 14. Then, the infinite diagram g1 is given
by Figure 14.

We can notice that g1 does not contain a proper infinite prefix and that any dia-
gram containing g1 as a prefix is necessarily equal to g1. Therefore, g yields a
contracting isometry of M.P ; ab/. One easily verifies that D.P ; ab/ is not infinite
cyclic, so D.P ; ab/ is acylindrically hyperbolic.

Theorem 4.33 may be considered as unsatisfying because infinite diagrams cannot
be drawn. For diagrams with only a few cells, the previous examples show that the
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theorem can be applied fairly easily, but for bigger diagrams it gets more delicate. For
instance, consider the semigroup presentation˝

a1; a2; a3; b1; b2; b3; p j a1 D a2; a2 D a3; a3 D a1; a1 D a1p;
b1 D b2; b2 D b3; b3 D b1; b1 D pb1

˛
corresponding to the diagram group Z � Z, and let g be the element given by the
following spherical diagram:

a1

a1

a1

a1

a1

a2

a3

b2

b1

b1

b1

b1

b1

b3

p

p

p

Then, it can be verified that g is a contracting isometry of M.P ; a1b1/, prov-
ing that Z � Z is acylindrically hyperbolic. (In fact, it can be proved that A � B is
always acylindrically hyperbolic when the groups A and B are both non-trivial; see
[36, Example 5.44] for more details.) However, applying Theorem 4.33 becomes pain-
ful. We refer to [36, Proposition 5.39] for an efficient method that allows us to verify
the conditions given by Theorem 4.33 more easily.

Theorem 4.33 only provides a sufficient condition to be acylindrically hyperbolic.
In fact, the diagram group may be acylindrically hyperbolic but with no contracting
isometries in the associated median graph. However, when the action on the median
graph is cocompact, the criterion turns out to provide a necessary and sufficient con-
dition.

Theorem 4.37. Let P Dh†jRi be a semigroup presentation andw 2†C a baseword
with Œw�P finite. There exist words u0; u1; : : : ; um 2 †C and a .w; u0u1 � � � um/-
diagram � such that

D.P ; w/ D � � .D.P ; u0/ �D.P ; u1/ � � � � �D.P ; um// � ��1;
where each D.P ; ui / is trivial, infinite cyclic, or acylindrically hyperbolic.

We already mentioned that acylindrically hyperbolic groups do not split as product
of infinite groups. Theorem 4.37 shows that this is essentially the only obstruction for
a cocompact diagram group to be acylindrically hyperbolic.
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4.7. Diagram products and quasi-median geometry

Diagram products, first introduced in [47], can be thought of as diagram groups with
coefficients, where the coefficients come from some collection of groups (the factors
of the product). Below, we follow the definition given in [31].

Let P D h†jRi be a semigroup presentation and G D ¹Gs j s 2†º a collection of
groups indexed by the letters of our alphabet †. A diagram over .P ;G / is a diagram
� over P such that each edge of � labelled by a letter s 2 † is also labelled by an
element of Gs . In other words, the edges of a diagram are labelled by ¹.s; g/ j s 2
†; g 2 Gsº. Most of the vocabulary introduced in Section 2.2 extends naturally to
such diagrams. Let us record the two major differences.

• In a diagram � over .P ;G /, a dipole refers to two cells �1; �2 satisfying

bot.�1/ D top.�2/

and labelled as follows: the top path of �1 is labelled by .u1; g1/ � � � .um; gm/, its
bottom path is labelled by .v1; 1/ � � � .vn; 1/, and the bottom path of �2 is labelled
by .u1; h1/ � � � .um; hm/ where u1 � � � um D v1 � � � vn or its inverse belongs to R.
One reduces the dipole by removing �1;�2, identifying top.�1/with bot.�2/, and
labelling this path by .u1; g1h1/ � � � .um; gmhm/.

• Let �1; �2 be two diagrams over .P ; G /. If bot.�1/ is labelled by .u1; g1/ � � �
.um; gm/ and top.�2/ by .u1; h1/ � � � .um; hm/, the concatenation �1 ı �2 of
�1 and �2 is the diagram obtained by identifying bot.�1/ with top.�2/ and by
labelling this common path by .u1; g1h1/ � � � .um; gmhm/.

Definition 4.38. Let P D h†jRi be a semigroup presentation, G D ¹Gs j s 2 †º a
collection of groups, and w 2 †C a baseword. The diagram product D.P ; G ; w/ is
the group whose elements are the diagrams over .P ;G /modulo dipole reductions and
whose product is given by the concatenation.

As an illustration, consider the semigroup presentation PDha;b;c j abDba;acD
ca; bc D cbi and the factors G D ¹Ga D Gb D Gc D Zº. Here is a product of two
diagrams over .P ;G /:

/. ;b 2/. ;a 5 – /. ;c 3

/. ;a 1/. ;b 2 /. ;a 1–

/. ;c 3
/. ;c 1

/. ;b 0

/. ;c 1– /. ;b 0 /. ;a 1

/. ;b 7 /. ;c 1– /. ;c 0

/. ;a 0

/. ;b 2/. ;a 5 – /. ;c 3 /. ;b 2/. ;a 5 – /. ;c 3
/. ;a 1/. ;b 2

/. ;c 3

/. ;a 0

/. ;c 0

/. ;b 0
/. ;b 7

/. ;c 1–

/. ;c 0

/. ;a 0

/. ;a 1/. ;b 9 /. ;a 0

/. ;c 2 /. ;c 0

/. ;a 0

H H

We emphasise that the rightmost diagram is reduced; even though there is a dipole
in the diagram over P obtained by removing the labels coming from the factors, the
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fact that these labels are not all trivial along the path between the two right 2-cells
implies that they do not define a dipole in our diagram over .P ;G /.

In the same way that diagram groups can be described both in terms of diagrams
and as fundamental groups of Squier complexes, it is also possible to describe diagram
products as fundamental groups of specific complexes, which we describe now.

Definition 4.39. Let P D h†jRi be a semigroup presentation and G D ¹Gs j s 2†º a
collection of groups indexed by†. The Squier complex S.P ;G / is the square complex
whose vertex-set is †C with

• an edge .a; u! v; b/ between the words aub and avb whenever .u D v/ 2 R,

• a loop b.g/ based at w D `1 � � � `n 2 †C for every g 2 G.w/ WD G`1
� � � � �G`n

,

• a square delimited by the four vertices aubpc, avbpc, aubqc, and avbqc when-
ever .u D v/; .p D q/ 2 R,

• a triangle delimited by the three loops based at w labelled by g; h; gh 2 G.w/,
• a cylinder between the loops labelled by g 2 G.a/ � G.b/ � G.aub/ and h 2

G.a/ �G.b/ � G.avb/ following the edge .a; u! v; b/, where .u D v/ 2 R.

The reader familiar with complexes of groups should recognise the topological
realisation of a simple complex of groups with the Squier square complex S.P / as
the underlying complex; we refer to [9, Chapter II.12] for more information on simple
complexes of groups. In [47], diagram products are defined as fundamental groups of
such complexes. This point of view is equivalent to the definition presented here.

Proposition 4.40 ([31]). Let P D h†jRi be a semigroup presentation, G D ¹Gs j s 2
†º a collection of groups, andw 2†C a baseword. The diagram productD.P ;G ;w/
is naturally isomorphic to the fundamental group of S.P ;G / based at w.

The proof of Proposition 4.40 is basically the same as the proof of Corollary 2.5.
It can be shown that a diagram product of diagram groups yields a diagram group.
More precisely, see the following theorem.

Theorem 4.41 ([47]). Let P D h†jRi be a semigroup presentation and w 2 †C
a baseword. For every s 2 †, fix a semigroup presentation Ps D h†s j Rsi and a
baseword ws 2 †C. Assume that the alphabets †, †s (s 2 †) are pairwise disjoint.
The diagram productD.P ;G ;w/, where G WD ¹D.Ps;ws/ j s 2 †º, is isomorphic to
the diagram group given by the semigroup presentation�

† t ¹xs j s 2 †º t
G
s2†

†s

ˇ̌̌̌ G
s2†

Rs tR t ¹s D xswsxs; s 2 †º
�

and the baseword w.
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It is worth noticing that some of the examples given in Section 2.4 arise in this
way.

Because diagram groups admit a natural median geometry, it is reasonable to
expect diagram products to admit a median geometry relative to their factors. This idea
is formalised in [31] through quasi-median geometry. (Compare with Remark 4.48
below.)

Definition 4.42. Let X be a connected graph. Given three vertices x1; x2; x3 2 X , a
median triangle is the data of three vertices y1; y2; y3 2 X such that

d.xi ; xj / D d.xi ; yi /C d.yi ; yj /C d.yj ; xj / 8i ¤ j:

Its size is d.y1; y2/ C d.y2; y3/ C d.y3; y1/. The graph X is quasi-median if any
three vertices admit a unique median triangle of minimal size and if the gated hull of
any such median triangle is a product of complete graphs.

Recall that, given a graphX , a subgraph Y �X is gated if, for every x 2X , there
exists some z 2 Y (referred to as the gate or projection) that belongs to at least one
geodesic from x to y for every y 2 Y . Notice that, when there existing, the gate is
unique and it minimises the distance to x from Y . Gatedness should be thought of as
a strong convexity.

In the same way that median graphs can be described as one-skeleta of non-
positively curved cellular complexes, namely, CAT(0) cube complexes, quasi-median
graphs can be described as one-skeleta of CAT(0) prism complexes (where a prism
refers to a product of simplices) [31].

Definition 4.43. Let P D h†jRi be a semigroup presentation and G D ¹Gs j s 2 †º
a collection of groups. Let QM.P ; G / denote the graph whose vertices are the dia-
grams over .P ;G / modulo dipole reductions and whose edges connect two diagrams
if one can be obtained from the other by right-multiplying by a unitary diagram (i.e.,
a diagram that either contains a single cell and all of whose edges have trivial second
coordinates in their labels, or has no cell and a single edge with a non-trivial second
coordinate in its label).
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/. ;a 1 /. ;b 0 /. ;b 0/. ;a 0 /. ;b 0/. ;a 0 /. ;b 0/. ;a 0

/. ;b 0/. ;a 2

/. ;a 1 /. ;b 0

/. ;c 0

/. ;a 2 /. ;b 0

/. ;c 0

/. ;c 0

/. ;b 0/. ;a 0

/. ;c 0 /. ;c 0

/. ;c 0 /. ;c 0

/. ;b 0/. ;a 0 /. ;b 0/. ;a 0

/. ;c 0 /. ;c 0

Figure 15. A piece of QM.P ;G ; ab/ for P D ha;b; c j aD c; b D ci andGa DGb DGc DZ.

One easily sees that two diagrams belong to the same connected component of
QM.P ; G / if and only if the labels in †C (i.e., when the second coordinates are
forgotten) of their top paths are identical. Given a baseword w 2 †C, we denote by
QM.P ;G ; w/ the connected component containing the diagrams whose top paths are
labelled byw in†C. The diagram productD.P ;G ;w/ naturally acts on QM.P ;G ;w/
by left-multiplication (see Figure 15).

Theorem 4.44 ([31]). Let P Dh†jRi be a semigroup presentation, G D¹Gs j s 2†º
a collection of groups, and w 2 †C a baseword. Then, QM.P ; G ; w/ is a quasi-
median graph on which the diagram product D.P ; G ; w/ acts freely. The action is
cocompact if and only if Œw�P is finite and all the groups in G are finite.

The combination of the combinatorics of diagrams and the quasi-median geo-
metry allows us to deduce a lot of information about diagram products. For instance,
consider the following statements.

• A finitely generated diagram product has a solvable word problem if so do its
factor.

• A diagram product is torsion-free if and only if so are its factors.

• Distorted elements in a diagram product belong to products of factors.

• A diagram product of groups acting nicely on median graphs acts nicely on median
graphs [31, Theorems 10.36–10.38].

• The Hilbert space compression of a diagram product is bounded below by the
compressions of its factors [31, Theorem 10.39].
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It is worth noticing that every diagram product D.P ; G ; w/ surjects onto its under-
lying diagram group D.P ; w/ via the map that “forgets” the labels coming from
the factors. Conversely, it is clear that D.P ; w/ embeds into D.P ; G ; w/; it corres-
ponds to the diagrams all of whose edges have labels with trivial second coordinates
(referred to as diagrams over P for simplicity). Therefore, diagram products split as
semidirect products. More precisely, see the following theorem.

Theorem 4.45 ([31]). Let P Dh†jRi be a semigroup presentation, G D¹Gs j s 2†º
a collection of groups, and w 2†C a baseword. The diagram product decomposes as

D.P ;G ; w/ D A.P ;G ; w/ ÌD.P ; w/;
where A.P ;G ; w/ is a graph product whose vertex-groups are isomorphic to groups
in G .

We refer to [31, Theorem 10.58] for an even more precise statement. Recall that,
given a graph � and a collection of groups G D ¹Gu j u 2 V.�/º indexed by the
vertices of � , the graph product �G is

hGu; u 2 V.�/ j ŒGu; Gv� D 1; ¹u; vº 2 E.�/i;
where ŒGu; Gv� D 1 is a shorthand for Œa; b� D 1 for all a 2 Gu and b 2 Gb . Usually,
graph products are described as an interpolation between free products (when � has
no edge) and direct sums (when � is a complete graph).

The strategy to prove the theorem is the following. Let Y denote the subgraph
of M.P ; G ; w/ given by the diagrams over P . Its stabiliser under the action of
D.P ; G ; w/ coincides with D.P ; w/. Also, let J denote the collection of all the
hyperplanes in M.P ;G ; w/ tangent to Y . In a quasi-median graph, a hyperplane is a
class of parallel cliques (i.e., maximal complete subgraphs) instead of parallel edges
in the case of median graphs. To each hyperplane corresponds a rotative-stabiliser,
i.e., the subgroup of its stabiliser that stabilises each of the cliques it contains. Thanks
to a ping-pong lemma, it can be shown that the subgroup generated by the rotative-
stabilisers of all the hyperplanes in J decomposes as the graph product of the rotative-
stabilisers over the crossing graph of J (i.e., the graph whose vertex-set is J and
whose edges connect two hyperplanes whenever they are transverse). This is our
graph product A.P ; G ; w/. One easily verifies that D.P ; w/ normalises and inter-
sects trivially A.P ; G ; w/. The proof is complete once it is shown that A.P ; G ; w/
and D.P ; w/ generate the diagram product.

As an application of Theorem 4.45, it is possible to prove the following theorem,
initially obtained in [50] by using different methods.

Theorem 4.46. Every diagram group G satisfies a short exact sequence

1! R! G ! S ! 1;
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where R is a subgroup of a right-angled Artin group and where S is a subgroup of
Thompson’s group F .

The strategy is as follows. Let P D h†jRi be an arbitrary semigroup presenta-
tion and w 2 †C a baseword. The goal is to prove that D.P ; w/ embeds into the
diagram product D.Q; G ; x/ where Q D hx j x D x2i and where Gx is the free
group F formally generated by the relations in R. The desired conclusion will fol-
low sinceD.Q;G ; x/ splits as a semidirect product of a right-angled Artin group with
Thompson group’s F as a consequence of Theorem 4.45.

In order to construct such an embedding, we fix, for every n � 1, a well-chosen
.xn; x/-diagram �n over Q. Then, we transform a diagram � over P into a diagram
over .Q;G / by replacing each cell of� labelled by a relation uD v with the diagram
�n ı ".f / ı ��1m , where n is the length of u, m the length of v, and ".f / the diagram
reduced to a single edge labelled by .x; f / with f the (inverse of the) generator of F

corresponding to u D v.
Since right-angled Artin groups and Thompson’s group F are locally indicable,

and since locally indicable groups are automatically orderable, Theorem 4.46 imme-
diately implies the following corollary.

Corollary 4.47. Diagram groups are locally indicable, hence orderable.

Remark 4.48. It is worth noticing that one can make a diagram product D.P ;G ; w/
act on a median graph instead of a quasi-median graph. Given a diagram � and a
(possibly empty) collection of edges " in the bottom path of�, let�."/ denote the set
of the diagrams obtained from � by modifying the second coordinates in the labels
of the edges in ". Observe that �."/ defines a coset in the groupoid of the diagrams
over .P ; G /. Let M.P ; G / denote the graph whose vertices are the cosets �."/ and
whose edges connect two cosets ˆ.�/ and ‰.�/ either if ‰ D ˆ and the symmetric
difference between �; � has cardinality one or if ‰ is obtained from ˆ by gluing a
2-cell below ˆ along a path disjoint from � and � is the image of � after the process.
Then, the diagram product D.P ;G ; w/ acts on a connected component M.P ;G ; w/
of M.P ;G / with stabilisers isomorphic to products of factors. In fact, M.P ;G / and
QM.P ;G / are basically subdivisions of a common space, but in practice it turns out
to be easier and more natural to work with the quasi-median graph.

5. Generalisations

5.1. Planar, annular, and symmetric diagram groups

Let P D h†jRi be a semigroup presentation. Given a diagram over P , one can con-
struct a dual picture made of transistors which are connected by wires labelled by
†. See Figure 16. Roughly speaking, a transistor is a black box with top and bottom
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Figure 16. A diagram over ha; b j a D a2; b D b2; ab D bai and its dual picture.

wires such that, if u 2 †C (resp., v 2 †C) is the word obtained by reading from left
to right the labels of its top (resp., bottom) wires, then u D v or v D u belongs to R.

All the terminology introduced in Section 2 for diagrams can be easily adapted
to pictures. For instance, a dipole in a picture refers to two transistors �1; �2 labelled
by u D v and v D u for some relation in R such that bottom wires of �1 and the
top wires of �2 coincide. One reduces the dipole by removing the two transistors and
connecting the top wires of �1 with the bottom wires of �2.

This alternative point of view allows us to generalise diagram groups in several
natural directions. Our initial diagram groups, now referred to as planar diagram
groups, have their elements represented by pictures whose wires do not cross and
are monotonic in the vertical direction. A similar definition on annuli yields annular
diagram groups. And allowing wires to cross in an arbitrary way yields symmetric3

diagram groups. We do not give precise definitions and refer to [25] for more details.
See Figures 17 and 18 for examples of products of annular and symmetric pictures.

Thus, given a semigroup presentation P D h†jRi and a baseword w 2 †C, we
have three nested groups

Dp.P ; w/ � Da.P ; w/ � Ds.P ; w/

given by the corresponding planar, annular, and symmetric diagram groups. As shown
below, for P D hx j x D x2i and w D x, one recovers the three classical Thompson
groups F � T � V .

3In [45], these groups are referred to as braided diagram groups, even though the wires are
not braided but just permuted. We suggest to replace braided with symmetric, and to keep the
initial terminology for the groups considered in Section 5.2.
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Figure 17. A product of annular pictures over ha; b j a D a2; ab D bai.

Annular and symmetric diagram groups are sketched in [45] and further investig-
ated in [25]. Compared to (planar) diagram groups, much less is known about these
groups. Nevertheless, let us record what can be extracted from the existing literature.

Word problem. Similarly to diagrams, every planar, annular, or symmetric picture
admits a unique reduced representative, i.e., reducing the dipoles, whatever the order
we follow, always yields the same picture. See [25]. As a consequence, we have the
following proposition.

Proposition 5.1. Planar, annular, and symmetric diagram groups have solvable word
problems.

Indeed, given a picture representing an element of the group, it suffices to reduce
its dipoles. Once we get a reduced picture, we know that our element is trivial if and
only if the picture is reduced to a collection of vertical wires.

Median geometry. The construction described in Section 4.2 generalises to annular
and symmetric diagram groups [25]. Given a semigroup presentation P , we can con-
struct a median graphMs.P / as follows. The vertices are the symmetric pictures over
P modulo dipole reduction and right-multiplication by a symmetric picture (i.e., a pic-
ture with no transistor). And the edges connect the classes of two pictures when one
can be obtained from the other by adding a transistor at its bottom. The graphMs.P /

turns out to be median, and the symmetric diagram group Ds.P ; w/, given a base-
word w, naturally acts by left-multiplication on the connected component Ms.P ; w/

containing the picture with only vertical wires labelled by the word w. Restricting to
annular pictures, one gets similarly a median graph Ma.P ; w/ on which the annular
diagram group Da.P ; w/ acts. Consequently, Theorem 4.9 generalises as follows.

Theorem 5.2 ([25]). Annular and symmetric diagram groups act properly on median
graphs locally of finite cubical dimension.
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Figure 18. A product of symmetric pictures over ha; b j a D a2; b D b2; ab D bai.

Contrary to planar diagram groups, annular and symmetric diagram groups are
usually not torsion-free, since it is possible to permute the wires. More precisely,
given an annular (resp., a symmetric) diagram group Da.P ; w/ (resp., Ds.P ; w/)
and a picture � with top label w, the subgroup given by the pictures

� �
 

permutation of the
bottom wires of �

!
���1

is always finite (but possibly trivial). We refer to such a subgroup as a permutation
subgroup. In annular diagram groups, permutation subgroups are always cyclic. It
turns out that permutation subgroups are sufficient to understand finite subgroups,
and more generally finitely generated torsion subgroups.

Corollary 5.3. In an annular or symmetric diagram group, every finitely generated
torsion subgroup is contained in a permutation subgroup.

Proof. Because the median graph on which our diagram group acts is locally of finite
cubical dimension, every finitely generated torsion subgroup must fix a vertex [39,
Theorem 4.23]. But it follows from the construction of the median graph that vertex-
stabilisers are permutation subgroups.

It is worth noticing, in view of Corollary 5.3, that annular and symmetric diagram
groups may contain infinite torsion subgroups. For instance, the Houghton groups
described below contain the group of finitely supported permutations of an infinite
set.
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We can also deduce from Theorem 5.2 analogues of Theorem 2.23 and Proposi-
tion 2.27.

Corollary 5.4. In annular and symmetric diagram groups, polycyclic subgroups are
virtually abelian and undistorted.

Proof. If a group acts properly on a median graph, then its finitely generated abelian
subgroups are automatically undistorted [18, Corollary 6.B.5] and its polycyclic sub-
groups are automatically virtually abelian [18, Corollary 6.C.8].

Corollary 5.5. In annular and symmetric diagram groups, an infinite-order element
cannot be an arbitrarily large power.

Proof. If g is an infinite-order element in our annular or symmetric diagram group,
it follows from [52] that it acts as a translation on some bi-infinite geodesic line. Let
kgk denote the length of this translation. If the equality a D bk holds in our group,
where a; b are elements of infinite order, then

kak D kbkk D jkj � kbk � jkj;

since translation length are integers. Thus, jkj cannot be arbitrarily large.

As a consequence, annular and symmetric diagram groups cannot contain Q. This
contrasts with, for instance, the lift xT of Thompson’s group T in Homeo.R/ [6].

Finiteness properties. Even though annular and symmetric diagram groups do not
act freely on their median graphs, the properness of the actions still allows us to
deduce that some diagram groups satisfy good finiteness properties. The easiest case
is when the actions are cocompact, providing an analogue of Proposition 4.14.

Proposition 5.6. Let P D h†jRi be a semigroup presentation and w 2 †C a base-
word. If Œw�P is finite, then the annular and symmetric diagram groups Da.P ; w/
and Ds.P ; w/ are of type F1.

A more interesting result, an analogue of Theorem 4.15 which is proved using the
same strategy based on Morse theory, is the following theorem.

Theorem 5.7 ([26]). Let P D h†jRi be a semigroup presentation and w 2 †C a
baseword. If the oriented graph �a.P / (resp., �s.P /) does not contain an infinite
oriented ray and contains only finitely many sink vertices, then Da.P ; w/ (resp.,
Ds.P ; w/) is of type F1.

Here, �a.P / (resp., �s.P /) is the oriented graph whose vertices are the words
in †C modulo cyclic permutation (resp., modulo permutation) and whose oriented
edges connect a given word aub to a word avb whenever u D v belongs to R.
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Diagram products. Let P D h†jRi be a semigroup presentation, G D ¹Gs j s 2 †º
a collection of groups indexed by †, and w 2 †C a baseword. By labelling the
wires of annular and symmetric pictures with elements from groups in G , one can
naturally extend the definitions from Section 4.7 in order to define annular and sym-
metric diagram products. This is done in [34], where the quasi-median geometry is
also extended. This allows us to prove an analogue of Theorem 4.45 and to prove a
statement similar to Theorem 4.46, namely, the following theorem.

Theorem 5.8 ([34]). Every annular (resp., symmetric) diagram group satisfies a short
exact sequence

1! R! G ! S ! 1;

where R is a subgroup of a right-angled Artin group and S is a subgroup of Thom-
pson’s group T (resp., V ).

For instance, this implies that every simple annular (resp., symmetric) diagram
group embeds into Thompson’s group T (resp., V ). This excludes in particular the
higher-dimensional Thompson groups nV for n � 2 [10].

Examples. Let P D hx j x D x2i. A reduced annular (resp., symmetric) .x; x/-
picture over P can always be written as the concatenation of a positive picture (i.e., all
of whose transistors are labelled by x D x2), followed by a cyclic permutation (resp.,
a permutation) of the wires, and finally by a negative picture (i.e., all of whose tran-
sistors are labelled by x2 D x). Such a structure immediately yields a triple .T1; �;T2/
where T1; T2 are two finite rooted 2-regular trees with the same number of leaves, say
n, and where � is a cyclic permutation (resp., a permutation) of n elements. This cor-
respondence induces an isomorphism from the annular diagram group Da.P ; x/ to
Thompson’s group T (resp., from the symmetric diagram group Ds.P ; x/ to Thom-
pson’s group V ). We refer to [15] for more information about the representations of
elements of T and V as pairs of trees.

These examples can be found in [45]. Other interesting examples can be found
in [27], namely, the Houghton groupsHn and the symmetrisationQV of Thompson’s
group V .

Given an n � 1, let Rn denote the union of n disjoint infinite rays; we also denote
by R.0/n its vertex-set. The Houghton group Hn is the group of the bijections R.0/n !
R
.0/
n that preserve the ends of the graph Rn and that preserve adjacency and non-

adjacency for all but finitely many pairs of vertices. In other words, an element ofHn
acts by translations outside a finite set of Rn and it permutes the vertices of this set in
an arbitrary way. Since, on each infinite ray, an element of Hn acts as a translation,
we have nmorphismsHn! Z giving the corresponding translation lengths (positive
if the vertices are translated towards infinity, negative otherwise). In order to get a
bijection R.0/n ! R

.0/
n , the sum of these translation lengths must be zero. Thus, one
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deduces a short exact sequence

1! S1 ! Hn ! Zn�1 ! 1;

where S1 is identified with the finitely supported permutations of R.0/n .
The definition of QV has a similar flavor. Let T denote the rooted 2-regular tree

with a fixed embedding in the plane (so each vertex has two children: a left and a
right). We also denote by T .0/ its vertex-set. Then, QV is the group of the bijections
T .0/! T .0/ that preserves adjacency, non-adjacency, and left-right order on the chil-
dren with only finitely many exceptions. Notice thatQV has a well-defined action on
the boundary of T , which is a Cantor set. This action turns out to coincide with the
usual definition of Thompson’s group V as a group of homeomorphisms of the Cantor
set. Hence, one deduces a short exact sequence

1! S1 ! QV ! V ! 1;

where S1 is identified with the finitely supported permutations of T .0/.

Proposition 5.9 ([27]). For every n� 2, the Houghton groupHn is isomorphic to the
symmetric diagram group Ds.Pn; r/, where

Pn WD ha; x1; : : : ; xn j x1 D x1a; : : : ; xn D xnai:

The groupQV is isomorphic to the symmetric diagram groupDs.Q; x/, where Q WD
ha; x j x D xaxi:

Figure 19 illustrates how to describe the second Houghton group as a symmet-
ric diagram group. The philosophy is the same for the other Houghton groups and
for QV . See [27, Examples 4.3 and 4.4] for more details. Notice that, by the same
argument, one can show that the groups QVn;r , which are defined by replacing our
previous rooted tree T with a forest of r rooted n-regular trees, are also symmetric
diagram groups.

5.2. Braided-like diagram groups

In addition to planar, annular, and symmetric diagram groups, it would be natural to
define braided diagram groups, where wires in pictures are thought of as strands in
braids. This variation has not been defined properly in the literature yet. Nevertheless,
the following results can be reasonably expected:

• The braided diagram group Db.P ; x/, where P D hx j x D x2i, coincides with
the braided Thompson group brV [11, 22].

• A braided diagram group acts on a median graph with vertex-stabilisers isomor-
phic to finitely generated braid groups. As a consequence, it is torsion-free.
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Figure 19. Ds.ha; x1; x2 j x1 D x1a; x2 D ax2i; x1x2/ isomorphic to H2.

• Polycyclic subgroups in braided diagram groups are virtually abelian and undis-
torted.

• Every braided diagram group G satisfies a short exact sequence

1! R! G ! S ! 1;

where R is a subgroup of a right-angled Artin group and where S is a subgroup
of brV .

It would interesting to know whether braided diagram groups are bi-orderable. In
other words, is it possible to combine the bi-orderability of braid groups and (planar)
diagram groups in order to deduce the bi-orderability of braided diagram groups?

In this direction, we can imagine as many diagram-like groups as there are braided-
like groups. This could include virtual diagram groups, in reference to virtual braid
groups; loop diagram groups, in reference with loop braid groups; cactus diagram
groups, in reference to the cactus groups; etc. The variations are virtually endless.

In another direction, it is possible to treat wires differently according to the letters
labelling it. There are at least two such examples available in the literature.

The first example is [3], dedicated to the symmetrisation QF (resp., QT ) of
Thompson’s group F (resp., T ). The group QF (resp., QT ) is naturally a sub-
group of QV , which is isomorphic to the symmetric diagram group Ds.P ; x/ where
P D ha; x j x D axai, and its elements can be described as the pictures where the
wires labelled a behave like in a planar (resp., annular) picture. This point of view
allows the authors to show that the groups QF , QT , QV are of type F1.

As another example, we can mention the Chambord groups introduced in [37].
Formally, they are defined thanks to specific diagrams with both strands (which are
braided) and wires (which are cyclically permuted). This formalism allows the authors
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to describe combinatorially the asymptotically rigid mapping class groups studied
in [38], including the braided Ptolemy–Thompson groups from [29] and the braided
Houghton groups from [21, 28].

5.3. Monoid presentations

So far, we have only considered diagram groups defined from semigroup presenta-
tions, but it is also possible to start from monoid presentations, i.e., allowing relations
of the form u D 1, where 1 corresponds to the empty word. Given a monoid present-
ation P D h†jRi, one can define a Squier square complex S.P / by repeating word
for word Definition 2.1; and, fixing a baseword w 2 †C, the diagram groupD.P ;w/
is defined as the fundamental group of the connected component S.P ; w/ of S.P /.
Following Section 2.2, a diagrammatic description of D.P ; w/ can be obtained, but
it is more convenient to use pictures instead of diagrams. The main difference with
semigroup presentations is that, in a picture over our monoid presentation, a transistor
labelled by a relation u D 1 (resp., 1 D u) has not bottom (resp., top) wires.

Two examples of dipole reduction. A reduced picture.

a

a a a
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a

a
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b

c d

b
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b b b

b

x y

x
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p q

We refer to [45] for more details. Even though many techniques can be transferred
from diagram groups over semigroup presentation to diagram groups over monoid
presentations, a major difference is that a picture over monoid presentation may admit
several reduced forms, i.e., reducing the dipoles in one order or another may lead to
distinct pictures. See Figure 20.

Even worse, the problem of determining whether or not two given pictures are
equivalent modulo dipole reduction may be undecidable [45, Theorem 13.3]. This
explains why it is usually much more difficult to work with diagram groups over
monoid presentations than diagram groups over semigroup presentations. As an illus-
tration of this phenomenon, let us mention the following open question.

Question 5.10 ([45]). Are diagram groups over monoid presentations torsion-free?
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Figure 20. Two distinct reductions of a picture over hx j x D 1i.

This question illustrates how little is known about diagram groups over monoid
presentations.

It is worth noticing that Question 5.10 cannot be answered with the help of median
geometry as mentioned in Section 4.2. Indeed, a (connected component of the) Squier
cube complex over a monoid presentation may not be nonpositively curved. For
instance, if P D hx j x D 1i, then the 4-cycle

xx
.x;xD1;1/������! x

.1;xD1;1/������! 1
.1;1Dx;1/������! x

.1;xD1;x/������! xx

shows that the link of the vertex 1 is not simplicial since there is a loop based at the
vertex given by the edge .1; 1 D x; 1/.

6. Open questions

In this final section, we record various open questions related to diagram groups.

Classification of diagram groups

In view of the known examples of diagram groups, there seem to be three main fam-
ilies of diagram groups: those which contain a copy of Thompson’s group F , those
which contain a copy of the wreath product Z oZ but not of F , and those which embed
into a right-angled Artin group. Are there other big families of diagram groups? Let
us ask a few precise questions in this direction.

Conjecture 6.1 ([33]). A diagram group embeds into a right-angled Artin group if
and only if it does not contain Z o Z.

Question 6.2 ([33]). Is a diagram group not containing Thompson’s group F linear
or residually finite?
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It is worth noticing that, given a semigroup presentation P D h†jRi and a base-
word w 2 †C, we know exactly when the diagram group D.P ; w/ contains F or
Z o Z. Indeed, D.P ; w/ contains F if and only if there exist words a; b; x such that
w D axb and x2 D x hold modulo P [48]; and D.P ; w/ contains Z o Z if and only
if there exist words a; b; p such that D.P ; p/ ¤ ¹1º and such that w D ab, a D ap,
b D pb hold modulo P [47].

Question 6.3 ([50]). If a diagram group does not contain any non-abelian free sub-
group, does it embed into Thompson’s group F ?

Notice that Theorem 4.46 implies that a diagram with no free non-abelian sub-
group maps to F with an abelian kernel.

Isomorphism problem

Given any reasonable family of groups, a basic, but usually difficult, problem is to
find how to determine whether two members of the family yield isomorphic groups.

Question 6.4. Given two semigroup presentations P1 D h†1 jR1i, P2 D h†2 jR2i
and two basewordsw1 2†C1 ,w2 2†C2 , how to determine whether the diagram groups
D.P1; w1/ and D.P2; w2/ are isomorphic?

As an easy sufficient condition, notice that, given a semigroup presentation P D
h†jRi and two words u; v 2 †C, the diagram groups D.P ; u/ and D.P ; v/ are
isomorphic if u and v represent the same element in the semigroup defined by P .
This is an immediate consequence of the fact that u and v are two vertices in the
same connected component of the Squier square complex S.P /, which implies that
the fundamental groups are conjugate in the fundamental groupoid.

More interesting conditions are given by [49, Theorem 4.1]. Nevertheless, we are
far from a reasonable answer to Question 6.4. In order to illustrate the difficulty of the
problem, let us mention a few examples of non-trivial isomorphisms. Considering the
semigroup presentations

A D ha; b; c j a D b; b D c; c D ai;
B D ha; b; p j a D ap; b D pbi;
C D ha; b; x; y j ax D ay; xb D ybi;

the diagram groups D.A; a/, D.B; ab/, and D.C ; axb/ are all infinite cyclic. Con-
sidering the semigroup presentations

D D ha; b; c; p j a D b; b D c; c D a; a D api;
E D ha; b; c; x; y; p j a D b; b D c; c D a; ax D ay; xp D ypi;
F D ha; b; c j ab D ba; ac D ca; bc D cbi;
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the diagram groups D.D ; a/, D.E; axp/, and D.F ; abc2/ are all free of rank two.
Considering the presentation

G D ha; b; c j a D bc; b D ca; c D abi;
H D hx j x D x9i;

the diagram groups D.G ; a/ and D.H ; x/ are both isomorphic to the generalised
Thompson group F9 [46].

The triviality problem is probably a more reasonable question before attacking
Question 6.4.

Question 6.5. Given a semigroup presentation P D h†jRi and a baseword w 2†C,
how to determine whether the diagram group D.P ; w/ is non-trivial?

Algorithmic aspects

In addition to the isomorphism and triviality problems previously mentioned, there
are other interesting problems that remain to be solved algorithmically. For instance,
consider the following question.

Question 6.6 ([45]). Given a finite semigroup presentation P D h†jRi and a base-
word w 2 †C, is there an algorithm computing the rank of the abelianisation of the
diagram group D.P ; w/?

In free groups, many problems are solved algorithmically thanks to Stallings’ fold-
ings. As mentioned in Section 3.5, a similar theory exists for directed 2-complexes and
their diagram groups. However, the theory remains to be developed.

Problem 6.7. Develop the theory of foldings of directed 2-complexes for diagram
groups. In particular, solve [41, Conjecture 3.11].

Nevertheless, it is worth mentioning that Stallings’s foldings have been applied
with success to Thompson’s group F ; see, for instance, [41–43].

Solvable diagram groups

Theorem 2.23 shows that there are no interesting nilpotent diagram groups. There
are interesting solvable diagram groups, such as the wreath product Z o Z, but only
few examples are known. Finding more examples, or proving that there are only few
possible examples, would be interesting.

Question 6.8. Which metabelian (resp., solvable) groups are diagram groups?

Question 6.9. Are there finitely presented solvable diagram groups?

Conjecture 6.10. A diagram group does not contain Z o Z2.
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Right-angled Artin groups

As mentioned in Section 2.4, right-angled Artin groups given by finite trees and finite
interval graphs are diagram groups. On the other hand, we saw with Corollary 3.19
that right-angled Artin groups defined by triangle-free graphs with induced cycles of
odd length � 5 are not diagram groups. This naturally raises the following question.

Question 6.11. Which (finitely generated) right-angled Artin groups can be described
as diagram groups?

So far, neither an expected nor a reasonable answer is known. A related question
is the following.

Question 6.12 ([33]). Are all right-angled Artin groups subgroups of diagram groups?

For instance, even though right-angled Artin groups defined by cycles of odd
lengths � 5 are not diagram groups, they do embed into diagram groups4 [33].

Miscellaneous

Recall that, given two groups G;H , the group G is residually H if, for every non-
trivial g 2 G, there exists a morphism ' W G ! H satisfying '.g/ ¤ 1.

Question 6.13 ([45, 50]). Are all diagram groups residually PLC.Œ0; 1�/? or even
residually F ?

A possible strategy, suggested in [45], was the following. Let P D h†jRi be a
semigroup presentation and let w 2 †C be a baseword. Every atomic .aub; avb/-
diagram � over P can be written as ".a/C ‰.u D v/C ".b/, where ".a/; ".b/ are
diagrams with no cells labelled by a; b and where ‰.u D v/ is a single cell labelled
by u D v. To such a diagram�, we associate a continuous, nondecreasing, piecewise
linear homeomorphism H.�/ W Œ0; jaubj� ! Œ0; javbj� which has slope 1 on both
Œ0; jaj� and Œjauj; jaubj�. Then, one gets a morphism

� W D.P ; w/! PLC.Œ0; jwj�/

by taking a diagram ˆ, decomposing it as a concatenation of atomic diagrams ˆ1 ı
� � � ıˆn, and sending it toH.ˆ1/ ı � � � ıH.ˆn/. Is it is possible to obtain a non-trivial
homeomorphism �.ˆ/ by choosing the homeomorphisms H.�/ carefully?

4This is contrary to what [19] claims. There, the authors cite [47] in order to justify that
such right-angled Artin groups do not embed into diagram groups. But the result only proves
that these right-angled Artin groups are not diagram groups themselves, and the proof (sketched
in Section 3.3) does not imply this statement either.



An introduction to diagram groups 85

We saw a particular instance of this construction in Section 2.4, where we de-
scribed how to embed D.hx j x D x2i; x/ into PLC.Œ0; 1�/ and recognised that it
coincides with Thompson’s group F . However, it turns out that the strategy described
above cannot work in full generality, as shown by [50, Example 7.7]. Nevertheless,
the construction remains interesting and still applies to many examples.

As mentioned in Section 2.5, it is proved in [32] that diagram groups with Z2

are locally free, which implies in particular that there are no interesting hyperbolic
diagram groups. First, this raises the following question.

Question 6.14 ([32]). Is a locally free diagram group necessarily free?

Next, since we saw in Section 4.6 that there are many interesting examples of
acylindrically hyperbolic diagram groups, it is natural to look for relatively hyperbolic
diagram groups. We conjecture that there are no interesting examples there either.

Conjecture 6.15. Relatively hyperbolic diagram groups are free products.

Question 6.16 ([49]). Do the cohomological and algebraic dimensions of diagram
groups always coincide?

Recall that the algebraic dimension of a group is the maximal rank of a free abelian
subgroup. According to [50], the answer is positive for diagram groups over complete
presentations.

Question 6.17 ([47]). Is every subgroup of Thompson’s group F a diagram group?

Question 6.18 ([47]). Is the derived subgroup of a diagram group again a diagram
group?

Recall from Section 4.4 that a finitely generated diagram group satisfies the Bur-
illo property if every word length is bi-Lipschitz equivalent to the diagram length #.�/,
i.e., the number of 2-cells in a reduced representative.

Question 6.19 ([2]). Does there exist a finitely generated diagram that does not sat-
isfy the Burillo property?

There are examples of infinitely presented diagram groups (such as abelian and
non-abelian free groups of infinite rank), examples of finitely generated diagram
groups that are not finitely presented (such as Z oZ and Z �Z), examples of diagram
groups of type F1 but not of type F (such as Thompson’s group F ), and examples
of diagram groups of type F (such as abelian and non-abelian free groups). But there
is a gap in the progression; hence, the following question arises.

Question 6.20. Given an n � 2, does there exist a diagram group of type Fn but not
FnC1?
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It is worth noticing that such examples exist for symmetric diagram groups: the
Houghton group Hn is of type Fn�1 but not of type Fn [12].

Acknowledgements. I am grateful to the anonymous referee for their comments on
the manuscript, and to Mateo Tarocchi for having pointed out to me a mistake in the
proof of Proposition 2.14 from the first version of the article.
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