J. Comb. Algebra. 1 (2017), 45-57 Journal of Combinatorial Algebra
DOI 10.4171/JICA/1-1-2 © European Mathematical Society

The canonical basis of the quantum adjoint representation

George Lusztig*

Abstract. We identify the canonical basis of the quantum adjoint representation of a quantized
enveloping algebra with a basis that we defined before the theory of canonical bases was
available.
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0. Introduction

0.1. According to Drinfeld and Jimbo, the universal enveloping algebra of a simple
split Lie algebra g over Q admits a remarkable deformation U (as a Hopf algebra
over Q(v), where v is an indeterminate) called a quantized enveloping algebra.
Moreover, the irreducible finite dimensional g-modules admit quantum deformation
to become simple U-modules. In [5], I found that these quantum deformations admit
canonical bases with very favourable properties (at least when g is of type A, D or E)
which give also rise by specialization to canonical bases of the corresponding simple
g-modules. (Later, Kashiwara [2] found another approach to the canonical bases.) In
this paper we are interested in the canonical basis of the quantum deformation A of the
adjoint representation of g. Before the introduction of the canonical bases, in [3,4],
I found a basis of A in which the generators E;, F; of U act through matrices whose
entries are polynomials in N[v]. By specialization, this gives rise to a basis of the
adjoint representation of g in which the Chevalley generators e;, f; of g act through
matrices whose entries are natural numbers, in contrast with the more traditional
treatments where a multitude of signs appear.

In this paper (Section 1) I will prove that the basis of A from [3, 4] coincides
with the canonical basis of A. I thank Meinolf Geck for suggesting that I should
write down this proof. As an application (Section 2), I will give a definition of
the Chevalley group over a field k£ associated to g which seems to be simpler than
Chevalley’s original definition [1].
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0.2. Let/ beafinite set with a given Z-valued symmetric bilinear form y, y’ — y-y’
on Y = Z[I] such that the symmetric matrix (i - j); jes is positive definite and
such that i -i/2 € {1,2,3,...} foralli € I,i-i/2 = 1 for some i € [ and
2% €{0,—1,-2,...} foralli, j € I. In the terminology of [6, 1.1.1, 2.1.3], this is
a Cartan datum of finite type. We shall assume that our Cartan datum is irreducible
(see [6, 2.1.3]). Let e be the maximum value of i -i/2 fori € I. We can assume
thate € {1,2,3). LetI! ={i e I;i-i/2=1},1¢ ={icl;i-i/2=ce). Ife=1
we have clearly I'=7J¢=1;ife>1,wehave I = I' L J¢.

Let X = Hom(Y,Z) and let (,) : ¥ x X — Z be the obvious pairing. For
Jj € I wedefine j" € X by (i, j') = 2%+ forall i € I. Let v be an indeterminate.

. vit—p
Fori € I we set v; = v'/2; forn € Z we set [n]; = -—4ir; forn € N we set

! = Ty sl o

Note that when i € I'! we have v; = v and we write [n] instead of [n];.

0.3. Following Drinfeld and Jimbo we define U to be the associative Q(v)-algebra
with generators E;, F; (i € I), K, (y € Y) and relations

KyKy = Kyty fory,y" inY,
K.E; =v"EK; fori, jin 1,
KiFj =v %" FK; fori,jin I,

K2 _ il

vi—vi

n!
Z(—l)P’ME!’EE!’ —Ofori # jinl,

J
e 1014
p+p'=1-{i,j’)
!
Z(—1)P’MF1’F,-F;’ — Ofori # jinl.

Tr,!
p.p/eN; [P]i [p ]i
p+p'=1-(i.j’)

Fori € I,s € N we set Ei(s) = ([s])"1E?, Fi(s) = ([s])) "' F;.

_ By [6, 3.1.12], there is a unique Q-algebra isomorphism™: U — U such that
E;=E;,F;=F,fori € I,K, = K_, fory € Y and v*u = v"u forallu € U,
nel.

0.4. Let IV be the (finite) subgroup of Aut(X) generated by the involutions s; : A
A —(i,A)i" of X (i € I). Let R be the smallest W -stable subset of X that contains
{i’;i € I}. This is a finite set. Let R" = {«¢ € Ry € Y ;Ni'}, R~ = —R™.
Let R! (resp. R® be the smallest W -stable subset of X that contains / 1 (resp. 1°).
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Then R!, R¢ are W-orbits. If ¢ = 1 we have R = R! = R¢; if e > 1 we have
R = R' U Re.
Fori € I and @ € R let p; 4 be the largest integer > 0 such that «, & + i/,
o +2i',...,0+ piqi’ belong to R and let ¢; o be the largest integer > 0 such that
o, —i',a—2i',...,a—qiqi’ belong to R. Then:
(@) (i,a) = qig — Piwand pig + qig < 3.
(b) If piow + gie > 1, then we must have p; o +¢giog = e,1 € I'; moreover,
o —qigi’ € R, a+ pigi’ € R and o + ki’ € R for —q; 4 <k < pia.
(¢) If pi.o + ¢i.e = 1, then either both & — g; oi’, & + p; o1’ belong to R or both
belong to R'.
We define 7 : Rt — Nby h(a) = Y ;c;ni wherea = Y,y nii’ with n; € N.
There is a unique &g € R™ such that i(«p) is maximum. We then have p; 4, = 0
for all i € I; it follows that (i, @g) > 0 forany i € I. We have ap € R®.

0.5. The U-module A := Ag, (see [6, 3.5.6]) is well defined; it is simple, see [6,
6.2.3], and finite dimensional, see [6, 6.3.4]. Let n = ny, € A be as in [6, 3.5.7].
We have a direct sum decomposition (as a vector space) A = D)ex A* where
A* = {x €e A; Kyx = 04 x| Vy € Y}. Note that fori € I,1 € X we
have E; X* ¢ XAt F;X* ¢ X*~'. Moreover, we have dim A% = 1 ifa € R,
dim A® = #(I) and A* = 0if A ¢ R U {0}.

Let B be the canonical basis of A defined in [6, 14.4.11]. We now state the
following result in which || denotes absolute value.
Theorem 0.6.

(a) A has a unique Q(v)-basis € = {Xy;a € R} U {t;;i € I} such that (i)-(iii)
below hold.

(i) Xoy =15
(ii) for @ € R we have Xo € A%; fori € I we have t; € A°;

(iii) foranyi € I the linear maps E; : A — A, F; : A — A, are given by

EiXo = [qgia + 1]i Xati/ ifo € R, pio >0,

EiX_ir =1,
EiXy=0 ifa €R, pig =0 0 #—i
Eitj = [[(j,i")]]; Xir, ifjel,
FiXo = [pi,a + 1]i Xa—i’ fa €R, gia >0,
FiXi =1,
FX,=0 fa €R, gia=00#i,
Fity = [|(j,i")]; X=ir ifj €l

(b) We have € = B.
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Note that the uniqueness of & in (a) is straightforward. The existence of € is
proved in [3] under the assumption that e = 1 and is stated in [4] without assumption
on e. We shall not use these results here. Instead, in 1.15 we shall give a new proof
(based on results in [6]) of the existence of & at the same time as proving (b).

1. Proof of Theorem 0.6

1.1. Forany A € X, BN A* is a basis of A%. In particular, for any & € R, BN A“
is a single element; we denote it by b®.

Let A = Z[v,v~!] and let A 4 be the A-submodule of A generated by B. It is
known that L 4 is stable under Ei(s), Fi(s) fori e l,s e N.

By [6, 19.3.4], there is a unique Q-linear isomorphism ™~ : A — A such that
un = un for all u € U. By [6, 19.1.2], there is a unique bilinear form (,) :
A x A — Q(v) such that (n,n) = l and (E;x, x") = (x, viKii.i/zF,-x’), (Fix,x) =
(x, viKi_i'i/inx/), (Kyx,x") = (x,K,x") foralli € [,y € Y and x,x" in A.

1.2. By 6, 19.3.5],

(a) an element b € A satisfies b € B if and only if b € A4, b = b and
(b,b) e 1 +v1Z[v71].

1.3. By [2] (see also [6, 16.1.4]), for any i € [ there is a unique Q(v)-linear
map I:“, : A — A such that the following holds: if x € A, E;x = 0 and
s € N, then F}(Fi(s)x) = Fi(s+1)x. Moreover, there is a unique Q(v)-linear map
E,' : A — A such that the following holds: if x € A, F;x = 0and s € N, then
Ei(Ei(s)x) = El.(SH)x. Let A = Q(v) N Q[[v™!]]. Let A, be the A-submodule
of A generated by B. For any x € Ay let x be the image of x in A := Ax/v 1A,
Note that {b; b € B} is a Q-basis of A. By [2] (see also [6, 20.1.4]), forany i € I,
Fi, E; preserve A, v A4 hence they induce Q-linear maps A — A (denoted again
by F;, Ei). From [2] (see also [6, 20.1.4]) we see also that

(@) F; : A —> A,E; : A — A act in the basis {b; b € B} by matrices with all
entries in {0, 1}.

In the case where e = 1, the results in this subsection are not needed; in this case,
instead of (a), we could use the positivity of the matrix entries of E; : A — A,
F; : A — A proved in [6, 22.1.7].

14. Leta € R,i € I besuchthatq;q = 0,p = pio > 1. Then we have
(i,a0) = —p. Let Z° = b* € A% We have F; Z° € A% hence F; Z° = 0. We
define Zk € Ak fork =1,. .., p by the inductive formula

(a) ZK = [k]71E; z*¥! = EFZ°.

i
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Using F; Z 0=0 together with (a) and the commutation formula between E;, F;
we see by induction on k that fork = 1,..., p we have

(b) FZ%F =[p—k+1],ZzF".

1.5.  We preserve the setup of 1.4. We show that for k € [0, p — 1] we have

—2p+2k
() Zk-‘rl Zk-‘rl 1—v i Zk Zk
a (740, 240 = (7K 28,

1
We have E; Z¥ = [k + I]iZkJrl hence using 1.4(b):

[k + 1]1'2(Zk+1v Zk+1)
= (E;Z*, E: Z%) = (ZF v K"* F E: Z%)
Kz i/2 K‘—i-i/Z
— (25 k!B R ) - (24 vk l/z—flzk)

v,-—vl.

il (t,a—l—ki’)—l—l — v
( N R = ’)(Z",Zk)
Vi — U
U—2p+4k+1 .
(v_p+2k+1 k] [p k 4 1]1 —_ll)(zk,zk)
V; — Ui

We have

l 1

Y p 2
(vi = v ') | v [klilp —k + 1]; — .

vi—vi

= v PP f =) (T o) T ) (o o)

= vi2k+2 _ Ui2 _ vi—2p+4k + Ui_2p+2k _ vi—2p+4k+2 T + 2p+4k 1
— vi2k+2 + vi—2p+2k _ Ui_2p+4k+2 1
— (vi—2p+2k _ 1)(1 . Ui2k+2),
Thus
(Zk+1’ Zk+1) _ (vi—2p+2k _ 1)(1 i vi2k+2) (Zk’ Zk)

(vk+1 _ v—k—1)2

i i

and (a) follows.
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1.6. We preserve the setup of 1.4. We must have p € {1, 2, 3}.
Assume first that p = 1. From 1.5(a) we have (Z!,Z') = (Z°, Z°). Assume
now that p = 2. Then from 0.4(b) we have v; = v and from 1.5(a) we have

1—v*
z'.z" = m(zo,zo)’
(22.7%) = 1—v

-2
—v

Assume next that p = 3. Then from 0.4(b) we have v; = v and from 1.5(a) we have

1 ~1 1—v~° 0 -0
(Z2°.2°)= ——=(Z2°,2%),
1—v72
VANVAEIVANWAY
3 3 102 5 ) 0 -0
(2. 2%) = 1 —(2°.2%) = (2°.2°).

1.7. We preserve the setup of 1.6. We show:
(a) We have ZK = p*+* fork = 0,1,..., p.

Since Z° € B, we have Z° € Ay, Z° = 7°,(2°,2% e 1 + v~'Z(v™!). From
the formulas in 1.6 we see that (Zk, Zk) el+ v_lZ(v_l) fork =0,1,...,p.
For k = 1,..., p we have E; Zk-1 = [k],-Zk hence for k = 0,1,..., p we have
zk = El.(k)Z0 € A4. From ZF = El.(k)ZO we see also that ZK = Ei(k)ﬁ =
Ei(k)Z0 = 7Zk. Using 1.2(a) we see that €Z* € B for some € € {I,—1}. By 1.4(a),
we have Z_k = Elk Z°. Using this together with and 1.3(a), we see that € = 1 so that
7k € B. Since Z¥ € A®Tki’ we see that Z¥ = patki’,

1.8. Leti € I,& € R be such that p; 5 > 0 (or equivalently such that & + i’ € R).
We show:

(a) Eib® = [gi g + 116%™
Leta = a—¢qigi’ € R. Wehave gig = 0, pig = pia + ¢ia > 0. We set
Z° = b*. We then define Z¥ with k € [1, p; o] in terms of &, Z° as in 1.4. Note that
E;Z* 1 = [k]; Z¥ for any k € [1, p; o). Taking k = gia + 1 (sothatk € [1, p; o])
we deduce

E;Z%% = [g; g + 1]; 2%,

By 1.7(a) we have Z%.& = p¥ 7Z9%.a+1 = p@+" This proves (a).

Here is a special case of (a); we assume thati # j in /:

(b) If (j,i’) < Othen E;b"" = b +/';if (j,i') = Othen E;b" = 0.
It is enough to use that p; ;s = —(j,i’) (we have ¢j;» = Osincei’ — j' ¢ R).
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1.9. Leti € I,& € R be such that g; 5 > 0 (or equivalently such that @ —i’ € R).
We show:

(a) Fib® = [pig + 11:6%77.
Letao = @ —qjqi’ € R. Wehave giy = 0, pig = pig + ¢ia > 0. We set
Z° = b*. We then define Z¥ with k € [1, p; o] in terms of &, Z° as in 1.4. Note that
FZk = [piw—k+1]; Z* " fork € [1, p; o]. Takingk = gia (sothatk € [1, pi o))
we deduce

FZ%e = [pig+ 1 2%

By 1.7(a) we have Z%.a = p¥ 7Z4%.a—1 = p&=i' This proves (a).

Here is a special case of (a); we assume thati # j in /:

(b) If (j,i") < Othen Fjb~" = b="=J";if (j,i’) = 0, then F;b~" = 0.
It is enough to use that ¢, ;s = (j, —i’) (we have p; _;» = O since —i’ + j’ ¢ R).

1.10. Leti € I;wesett; = Eib_i/ e A°. We show

(a) Fit; = (vi + vi_l)b_i/.
Indeed,
’ T LA e
Fit; = FiEib_l = EiFib_l — %b_l
UV — vi
2 -2
Vi =0 T —1\ 7 —i
= b = \V; + V; b
v; vi_l ( i i )
We show:
(b) ti.t) = (1+v72) (b~ 67").

Indeed, using (a) we have

(i t;) = (Eb™ ;) =

v + le)vi_(i’i/Hl(b_i/,b_i/)
1+ 072) (6", b7").

From (b) we see that (#;,%;) € 1 + v~ 'Z[v™!]; from the definitions we have also
ti € Ay and f; = t;; it follows that ef; € B for some € € {l,—1}. Now from
ti = E;b~" and F;b™" = 0 we see that 1; = E;b~"" hence L= E,IL‘/ Using this
together with 1.3(a) and we see that e = 1 hence

(© t; € B.
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We show:
(d) Ifi # j,then Fitj = [—(j.i')];b™" .

We have Fit; = F;E;b~/ = E;F;b~/". This is 0 if (i, j’) = 0 since by 1.9(b)
we have F;b~/" = 0 (so in this case (a) holds). Now assume that (i, j"} < 0. Then
using 1.9(b) and 1.8(a) we have

EiFb™ = E; b7 =q; —ir—jr +1],07

Note that p; _;—j» = 1 since =i’ — j’ +j € R, —i’'"—j 4+ 2j" ¢ R. Hence
qj—ir—jr—1= (],—l —jy =-2—{(j.i’) thatis, ¢; —is—j» + 1 = —(j,i’). This
completes the proof of (d).

We show:

() (Eiti, Esti) = 27 (07", b7").
Indeed, using (b) we have

(Eiti,Eiti) ti,v; K ”/ZFE l‘,)

(thvl ”/ZE Ftl) (tla lKl l/z—lti)

= [2; (tz, ,Kl l/zE pi )
[2] (tl » Vi Kl l/ztl)
= [z]i(ti, v,-ti) = [2]1'2(b_i/,b_"’),

proving (e).

From () we get ([2];7 ' Eiti, [2]7 Eit;) € 1 + v 'Z[v™!]. We have [2];71E;t; =
El-(z)b_i/ € A 4. Moreover, we have clearly [2];! E;t; = [2];' E;t;. Using 1.2(a) we
deduce that €[2];' E;#; € B for some € € {1,—1}. Since [2];'E;t; € A", we must
have 6[2];1Ei t; = b"’. Thus we have eEi(z)b_"/ = b'". Since F;b~" = 0 it follows
that Eizb_i/ = ¢b and E?IL’/ =eb'. Using 1.3(a), we deduce that ¢ = 1. Thus,

() Eit; = [2];b".
1.11. Leti € I. Weseti; = F;b'' € A°. We show:

(a) Eif; = [2];b.
Indeed,

ii/2 —ii/2 2 -2
~ 2/ 2/ : — K. -/ Uy — V. i/ -/
Eit; = E;Fib' = FE;b' + —7—b" = —13b" =[2];b".
Vi — Ui UV — vi
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We show:
(b) (7. 71) = 2l (b7, b7).
Indeed, using (a) we have:
(7)) = (b)) = (0 o E)
= (0", v K2 2:b7) = 2007 (b, B,
From (b) we see that (i, 1;) € 1 + v 'Z[v™!]; from the definitions we have also
fi € Ay and 7; = f;; using 1.2(a) we see that €7; € B for some € € {1, —1}. From

;i = F;b", E;b'" = 0 we see that7; = F;b"’ hence 7; = F;b" . Using this and 1.3(a)
we deduce that € = 1 so that

©) i €B.
We show:
(d) (i, 1) = (1 +v;72) (b, b7).

Indeed, using 1.10(f) we have
(i.t:) = (Fb" 1) = (b7, v K "? Ety)
= (0" vk 26"
= o7 2107 07) = (14 072) (b7 67)
hence (7;,t;) € 1 + v='Z[v™!]. If f; # ¢; then, since 7; € B and #; € B, we would
have (7;,t;) € v™'Z[v™!] (see [6, 19.3.3]), contradicting (d). Thus we have 7; = f;
and

s/

(e) Ebt =1;.
We show:
®) Ifi # j, then Eit; = [(j,i")];b"".

Using (e) we have E,'tj = EiFjbj/ = F,’Eibj/. This is 0 if (i, j’) = 0 since
by 1.8(b) we have E;b/" = 0 (so in this case (f) holds). Now assume that (i, j’) < 0.
Then using 1.8(b) and 1.9(a) we have

FiEb) = Fib"* = [y + 110"
Note that ¢ ;74 ;s = 1sincei’ + j'— j' € R,i’ + j' —2j’ ¢ R. Hence
V= pjirgjr ="+ j') =2+ (j.i')
that is,

piir+j +1=—(j.i).
This completes the proof of (f).
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1.12. 'We show:

(a) Ifa € RY, then (b, b%) = 1+ v 2 4.4 v72"D = y=e+1[¢] Ifa € R,
then (b%, b%) = 1.

Note that when e = 1 we have R! = R and the two formulas in (a) are compatible
with each other.

We first prove (a) for « € R™ by descending induction on h(a). If h(x) =
h(ag) then @« = g and we have b* = 7 so that (b*,b%) = (n,n) = 1. Now
assume that « € R, h(a) < h(ag). We can find o’ € R, i € I such that
giww =0, p = piyw > land ¢ = o' + ki’ where k € {0,1,..., p — 1}. Then
h(a' + pi’) > h(x) hence (&' + pi’,o’ + pi’) is given by the formula in (a).
Assume first that p = 1. Then ¢ = o’ and by 1.6 and 1.7(a) we have (b*, b*) =
(b¥'+ b+ By 0.4(c), either both &, & 4 i’ belong to R¢ or both belong to R';
(a) follows in this case. Next assume that p > 1. By 0.4(b) we have p = e and
o + pi' € R¢. Hence (b P p@'+ri"y = | If k = 0 then o € R® (see 0.4(b))
and by 1.6 and 1.7(a) we have (b%,b%) = (b*+PI p'+Pi"). (a) follows in this
case. If k > 0, k < p then o € R! (see 0.4(b)) and by 1.6 and 1.7(a) we have
(b2, %) = (1 4+ v 2 4 -« 4 v 2Dy +pi" pe’+0i"). (3) follows in this case.
This completes the proof of (a) assuming that @ € R™.

We now prove (a) for « € R~ by induction on h(—«) > 1. Leti € I. Recall
that 7;,1; satisfy 7; = 1; (see 1.11), (t;,1;) = [Z]ivi_l(b_i/,b_i/) (see 1.10(b)) and
(. 1) = [21iv;7 1 (B, b') (see 1.11(b)). It follows that

(b) (67" b7y = (b".b").

In particular, (a) holds when i(—a) = 1. We now assume that « € R~ and
h(—a) > 2. Wecan findo’ € R™,i € I suchthatgj o = 0, p = pios > 1 and
a = o + ki’ where k € {0,1,..., p—1}. Then h(—(a’ + pi’)) < h(—a) hence
(o' + pi’, '+ pi’) is given by the formula in (a). The rest of the proof is a repetition of
the first part of the proof. Assume firstthat p = 1. Thena = o’ and by 1.6 and 1.7(a)
we have (b%, b%) = (b " b®'+1"). By 0.4(c), either both o, @ + i’ belong to R®
or both belong to R'; (a) follows in this case. Next assume that p > 1. By 0.4(b)
we have p = e and o’ + pi’ € R®. Hence (b T7' p¥'+P"y = 1. If k = 0 then
a € R¢ (see 0.4(b)) and by 1.6 and 1.7(a) we have (b%, b%) = (b¥' tPi" p@'+tri"): (a)
follows in this case. If k > 0, k < p then @ € R! (see 0.4(b)) and by 1.6 and 1.7(a)
we have (b%,b%*) = (1 4+ v 2 +--- 4 v~ 2Dy pa +pi" pe'+0i"). (1) follows in this
case. This completes the proof of (a) assuming that « € R™; hence (a) is proved in
all cases.

1.13. We show:

(@) Ifi € I' then (4, 1;) = (1 + v 2) (L + v 2 + -+ v72ED),
Ifi € I®then (t;,4) =1+ vi_2 =140v72%.
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Note that when e = 1 we have /! = I¢ and the two formulas in (a) are compatible
with each other.

From 1.10(b) we have (¢;,1;) = [2],-1)1._1 (b_’/, b"’/). Using 1.12(a) we see that (a)
holds.

In the remainder of this subsection we fix i # j in /. We show:
(b) Ifatleastone of i, j isin /' and i - j # O then (t;,1;) = v—¢[e].
If both i, j arein /¢ andi - j # Othen (t;,¢;) = v™°.
Ifi - j =0then (t;,¢;) = 0.
Using 1.10(d), we have

(li,lj) _ (Eib_i ) _ ( Uz ”/ZFZJ)
= [~ G0, (07w kD7)
v; 1[ (1], (b" 7.

We see that if (j,i’) = 0 then (¢;,¢;) = 0.
Now assume that {j,i’) # 0.
Ifi e I¢,j € I°then (j,i') = —1and (#;,t;) = v™°.
Ifi €1¢,j € I'then (j,i’) = —e and (1;,1;) = v¢[e].
Ifi e Il,j € I°then (t;,t;) = (¢j.4;) = v ¢e].
Ifi e I',j € I' then (j,i’) = —1 and
(ti.t;) = v_l(l +v 2 4 v_z(e_l)) = v~ ¢[e].
This completes the proof of (b).

1.14. We show:
(a) The elements {¢;;i € I} are distinct.

Leti # j in /. If we had 1; = ¢}, then we would have (1;,7;) € 1 + v 1Z[v™1],
see 1.13(a). But 1.13(b) shows that (#;,7;) € v"'Z[v™!]. This completes the proof
of (a).

Let ¢ = {b%; ¢ € R} U {¢;,i € I}. By (a), this is a subset of A rather than a
multiset. We show:

(b) We have B = €.

Since t; € B forany i € I, we have € C B. Clearly we have #{(€) = #{(R) + #(]).
Since we have also #{(B) = #(R) + §(/), it follows that & = B, proving (b).

1.15. 'We prove the existence part of 0.6(a). It is enough to prove that the elements
Xo = b* and t; satisty the requirements of 0.6(a). Now 0.6(a)(i) holds by definition;
0.6(a)(ii) is immediate; 0.6(a)(iii) has been verified earlier in this section. This proves
the existence part of 0.6(a) and at the same time proves 0.6(b) (see 1.14(b)).
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2. Applications

21. Leti € I,k € Z-y. From 0.6 we see that the action of Ei(k), Fi(k) in the
basis & of A is given by the following formulas.

(4.0 + K}
E,-(k)Xa = %Xa-i-ki’ ifae Roa#—i' k= pia
[9: i [K];
E®X, =0 ifa € R,a # —i',k > pia,
EiX—i/ = tia Ei(Z)X—i/ = Xl',’ El(k)X—l/ =0 lfk 2 3’
Eity = (1G] Xor. E{P1; =0 ifk>2,
o + K]
FWx, = Ptk ifo € Roa#i'k < gia.
[Pi.eli [K];
F®x, =0 ifo € R,a#i' k> qiq,
Fin'/ =t, Fi(z)Xi/ = X—i/7 F;(k)Xl/ =0 if k > 3,
Fity =[G )X, FPt; =0 ifk 22

In particular, we see that £ i(k), Fi(k) act through matrices with all entries in N[v, v™!].

(In the case where e = 1 this is already known from [6, 22.1.7].)

2.2. [If v is specialized to 1, the U-module A becomes a simple module over the
universal enveloping algebra of a simple Lie algebra g corresponding to the adjoint
representation A|,=1 of g; this module inherits a Q-basis {Xy;a € R} U {t;;i € I}
in which the elements ¢;, f; of g defined by E;, F; act by matrices with entries in N.
Let z € Q. Then for i € I, the exponentials x;(z) = exp(ze;), yi(z) = exp(zf;)
are well defined endomorphisms of A|,=;. Their action in the basis above can be
described using the formulas in 2.1:

_ N Qi +K)!

Xi(2) Xo = Z '—'k'ZkX(H_ki/ ifo € R,a # —i’,
0<k=pi o dio-K:
xi(2) Xy =Xy +zt; + 22Xy,
xi(@2)tj = t; + [(j.i")lz Xy ifjel,
j k)!
Vi(2) Xy = Z %kaa—ki’ ifo e R, # i’
0<k=<q; o Piaft:

vi(2) X = Xir + zt; + 22Xy,
yi(@)t; =t +1(j.i")z X ifjel.
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2.3. Now let k be any field and let V' be the k-vector space with basis
{Xo;x € RYU{ti;i € 1},

Foranyi € I and z € k we define x;(z) € GL(V), yi(z) € GL(V) by the formulas
in 2.2 (which involve only integer coefficients). The subgroup of GL(V') generated
by the elements x;(z), y;(z) for various i € I,z € k is the Chevalley group [1]
over k associated to g.
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