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Abstract. Braces are generalizations of radical rings, introduced by Rump to study involutive
non-degenerate set-theoretical solutions of the Yang–Baxter equation (YBE). Skew braces were
also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking,
skew braces provide group-theoretical and ring-theoretical methods to understand solutions
of the YBE. It turns out that skew braces appear in many different contexts, such as near-
rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf–Galois
extensions. These connections and some of their consequences are explored in this paper. We
produce several new families of solutions related in many different ways with rings, near-rings
and groups. We also study the solutions of the YBE that skew braces naturally produce. We
prove, for example, that the order of the canonical solution associated with a finite skew brace
is even: it is two times the exponent of the additive group modulo its center.
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1. Introduction

In [19] Drinfeld posed the problem of studying set-theoretical solutions of the Yang–
Baxter equation. Such solutions are pairs .X; r/, where X is a set and

r WX �X ! X �X; r.x; y/ D .�x.y/; �y.x//

is a bijective map such that

.r � id/.id � r/.r � id/ D .id � r/.r � id/.id � r/:

The first two papers addressing this combinatorial problem were those of Etingof,
Schedler and Soloviev [22] and Gateva-Ivanova and Van den Bergh [31]. Both papers
considered involutive and non-degenerate solutions. A solution is said to be involutive
if r2 D idX�X and it is said to be non-degenerate if all the maps �x; �x WX ! X are
bijective.
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In [22], Etingof, Schedler and Soloviev introduced the structure group G.X; r/
of a solution .X; r/ as the group with generators in fex W x 2 Xg and relations
exey D e�x.y/e�y.x/, x; y 2 X . They proved that G.X; r/ acts on X and there
is a bijective 1-cocycle G.X; r/ ! Z.X/ where Z.X/ is the free abelian group
on X . Bijective 1-cocycles are a powerful tool for studying involutive set-theoretical
solutions of the Yang–Baxter equation; see for example [22,23].

Involutive solutions have been intensively studied; see for example [14,18,25,26,
28–30]. In [44], Rump introduced braces, a new algebraic structure that turns out
to be equivalent to bijective 1-cocycles; see [13,27,47]. According to the definition
given by Cedó, Jespers and Okniński in [15], a brace is a triple .A; � ;C/, where .A; � /
is a group, .A;C/ is an abelian group and

a.b C c/C a D ab C ac

holds for all a; b; c 2 A. In this paper these braces will be called classical braces.
It was observed by Rump that radical rings form an important family of examples of
braces. This observation suggests using ring-theoretical methods to study involutive
set-theoretical solutions. Rump also observed that a classical brace A produces an
involutive non-degenerate solution:

rAWA � A! A � A; rA.a; b/ D
�
ab � a; .ab � a/�1ab

�
:

Moreover, the structure group G.X; r/ admits a canonical brace structure. This
brace structure over G.X; r/ is extremely important for understanding the structure
of involutive set-theoretical solutions.

The study of non-involutive solutions of the Yang–Baxter equation is also an
interesting problem with several applications in algebra and topology. Lu, Yan
and Zhu [38] and Soloviev [49] extended the main results of [22] to non-involutive
solutions. As in the involutive setting, one defines the structure group G.X; r/ and
proves that there is a bijective 1-cocycle with domain G.X; r/ (now with values in
a group which is in general not isomorphic to a free abelian group). These results
suggest a generalization of classical braces known as skew braces; see [33].

Skew braces produce non-degenerate set-theoretical solutions; see Theorem 4.1.
Moreover, the results of [38,49] can now be translated into the language of skew
braces. In particular, one obtains thatG.X; r/ admits a canonical skew brace structure
and its associated solution rG.X;r/ satisfies a universal property; see Theorem 4.5.

It is remarkable that skew braces have connections with other algebraic structures
such as groups with exact factorizations, Zappa–Szép products, triply factorized
groups, rings and near-rings, regular subgroups, Hopf–Galois extensions. As
skew braces produce non-degenerate solutions, these connections yield several new
families of examples of solutions of the Yang–Baxter equation associated with rings,
near-rings and groups.
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This paper is organized as follows. In Section 2 we review the definition and some
basic properties of skew braces and some elementary examples are given. In Section 3
connections to other topics in algebra are explored. We prove in Theorem 3.3 that
factorizable groups are skew braces. As a corollary we prove that Zappa–Szép
product of groups and semidirect products of groups are skew braces. Theorem 3.3 is
also used to construct skew braces from Jacobson radical rings. In Theorem 3.12 we
prove that skew braces provide examples of triply factorized groups. In Theorem 3.17
we translate a result of Sysak for triply factorized groups into the language of skew
braces. Based on this theorem, one easily finds a connection between near-rings and
skew braces; see Proposition 3.20. Several general constructions of skew braces are
stated, for example semidirect products, Zappa–Szép products and wreath products
of skew braces. The first two sections contain several new examples of skew braces.
We summarize these examples in the following table:

Additive group Multiplicative group Reference

S3 C6 Example 2.13
dihedral group quaternion group Example 2.18

A4 C3 Ì C4 Example 2.20
GL.n;C/ U.n/ � T .n/ Example 3.4

A5 A4 � C5 Example 3.5
PSL.2; 7/ S4 � C7 Example 3.6

Table 1.

In Section 4 the canonical non-degenerate solution associated to a skew brace
(constructed in Theorem 4.1) is studied. We prove in Corollary 4.3 that the solutions
associated with skew braces are biquandles; hence skew braces could be used to
construct combinatorial invariants of knots. In Theorem 4.13 it is proved that the
solution associated to a finite skew brace is always a permutation of even order;
and the order of this permutation is computed explicitly in terms of the exponent
of a certain quotient the additive group of the skew brace. In Section 5 ideals of
skew braces simple skew braces and skew braces of finite multipermutation level are
introduced. Finally, in Section 6 it is proved that skew braces are related to other
algebraic structures such as cycle sets (Theorem 6.8) and matched pairs of groups
(Theorem 6.11).

Notations and conventions. IfX is a set, we write jX j to denote the cardinality ofX
and SX to denote the group of bijective maps X ! X . For n 2 N the symmetric
group in n letters will be denoted by Sn, the alternating group in n letters by An
and the cyclic group of order n by Cn. Usually we simply write ab to denote the
product a � b.
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2. Preliminaries

Skew braces were first defined in [33]. In this section we recall the basic notions and
properties of skew braces.
Definition 2.1. A skew brace is a triple .A; � ; ı/, where .A; � / and .A; ı/ are groups
and the compatibility condition

a ı .bc/ D .a ı b/a�1.a ı c/ (2.1)

holds for all a; b; c 2 A, where a�1 denotes the inverse of a with respect to the group
.A; � /. The group .A; � / will be the additive group of the brace and .A; ı/ will be the
multiplicative group of the brace. A skew brace is said to be classical if its additive
group is abelian.
Definition 2.2. Let A and B be skew braces. A map f WA ! B is said to be a
brace homomorphism if f .aa0/ D f .a/f .a0/ and f .a ı a0/ D f .a/ ı f .a0/ for all
a; a0 2 A.
Remark 2.3. Skew braces form a category.
Remark 2.4. It follows from (2.1) that in every braceA the neutral elements of .A; � /
and .A; ı/ concide.
Example 2.5. Let A be a group. Then a ı b D ab gives a skew brace. Similarly, the
operation a ı b D ba turns A into a skew brace.
Example 2.6. Let A and M be groups and let ˛WA ! Aut.M/ be a group
homomorphism. ThenM � A with

.x; a/.y; b/ D .xy; ab/; .x; a/ ı .y; b/ D .x˛a.y/; ab/

is a skew brace. Similarly,M � A with

.x; a/.y; b/ D .x˛a.y/; ab/; .x; a/ ı .y; b/ D .xy; ba/

is a skew brace.
Example 2.7. Let A and B be skew braces. Then A � B with

.a; b/.a0; b0/ D .aa0; bb0/; .a; b/ ı .a0; b0/ D .a ı a0; b ı b0/;

is a skew brace.
Lemma 2.8 ([33, Corollary 1.10]). Let A be a skew brace. The map

�W .A; ı/! Aut.A; � /; �a.b/ D a
�1.a ı b/;

is a group homomorphism.
Remark 2.9. If A is a skew brace and a 2 A, the inverse of a with respect to ı is the
element a D ��1a .a�1/.
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Lemma 2.8 justifies the following definition:
Definition 2.10. Let A be a skew brace. The crossed group of A is defined as the
group �.A/ D .A; � / Ì .A; ı/ with multiplication

.a; x/.b; y/ D .a�x.b/; x ı y/:

Lemma 2.11 ([3, Lemma 2.4]). Let A be a skew brace and let

�W .A; ı/! SA; �b.a/ D �a.b/ ı a ı b:

Then �1 D id and �aıb D �b�a for all a; b 2 A.
The following lemma was proved by Bachiller for classical braces, see [4,

Proposition 2.3]. The same proof also works for skew braces.
Lemma 2.12 ([5, Lemma 1.1.17]). Let A be a group and �WA! Aut.A/ be a map
such that

�a�a.b/ D �a�b; a; b 2 A: (2.2)

Then A with a ı b D a�a.b/ is a skew brace.
Example 2.13. Let A D S3 and �WA! SA be given by

�id D �.123/ D �.132/ D id;
�.12/ D �.23/ D �.13/ D conjugation by .23/:

It is easy to check that �a�a.b/ D �a�b for all a; b 2 A. Hence A is a skew brace by
Lemma 2.12. Since the transposition .12/ has order six in the group .A; ı/, it follows
that .A; � / ' S3 and .A; ı/ ' C6.

The following lemma provides another useful tool for constructing skew braces.
Lemma 2.14. Let .A; ı/ be a group and �WA ! SA be a group homomorphism.
Assume that �a.1/ D 1 for all a 2 A and that

�a.b ı �
�1
b .c// D �a.b/ ı �

�1
�a.b/

�a.c/ (2.3)

for all a; b; c 2 A. Then A with ab D a ı ��1a .b/ is a skew brace.

Proof. Note that Equation (2.3) is equivalent to

��1a .bc/ D �
�1
a .b/�

�1
a .c/: (2.4)

We prove that the operation is associative:

a.bc/ D a ı ��1a .bc/ D a ı .�
�1
a .b/�

�1
a .c//

D a ı ��1a .b/ ı �
�1

aı��1a .b/
.c/ D .ab/ ı ��1ab .c/ D .ab/c:
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The neutral element 1 of A is a right identity: a1 D a ı��1a .1/ D a ı 1 D a. The
element a�1 D �a.a/ is a right inverse of A since

aa�1 D a ı ��1a .a
�1/ D a ı ��1a �a.a/ D a ı a D 1:

Therefore .A; � / is a group by [42, §1.1.2].
The brace compatibility condition follows from Equation (2.4):

.a ı b/a�1.a ı c/ D .a ı b/�a.c/ D a�a.b/�a.c/ D a�a.bc/ D a ı .bc/:

The lemma is proved.

Definition 2.15. A skew brace A is said to be a two-sided skew brace if

.ab/ ı c D .a ı c/c�1.b ı c/

holds for all a; b; c 2 A.

Example 2.16. Let A be a skew brace with abelian multiplicative group. Then A is
a two-sided skew brace.

Example 2.17. Let n 2 N be such that n D p
a1
1 � � �p

ak
k
, where the pj are distinct

primes, all aj 2 f0; 1; 2g and pmi 6� 1 .mod pj / for all i; j;m with 1 � m � ai .
Then every skew brace of size n is a two-sided classical brace, since every group of
order n is abelian, see for example [41].

Example 2.18. Let

A D hr; s W r4 D s2 D 1; srs D r�1i

be the dihedral group of eight elements and let

B D f1;�1; i;�i; j;�j; k;�kg

be the quaternion group of eight elements. Let � W B ! A be the bijective map
given by

1 7! 1; �1 7! r2; �k 7! r3s; k 7! rs;

i 7! s; �i 7! r2s; j 7! r3; �j 7! r:

A straightforward calculation shows that A with

x ı y D �.��1.x/��1.y//

is a skew brace with additive group A and multiplicative group isomorphic to B .
This skew brace is two-sided.
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The following proposition provides other examples:
Proposition 2.19. Let A be a skew brace such that �a.a/ D a for all a 2 A. Then A
is a two-sided skew brace.

Proof. First we notice that a�1 D a since a D ��1a .a
�1/ D ��1a .a/

�1 D a�1. In
particular,

x ı y D y ı x D .y�1 ı x�1/�1 (2.5)

for all x; y 2 A. Using (2.1) and (2.5) one obtains that

.ab/ ı c D .c�1 ı .b�1a�1//�1

D
�
.c�1 ı b�1/c.c�1 ı a�1/

��1
D .c�1 ı a�1/�1c�1.c�1 ı b�1/�1

D .a ı c/c�1.b ı c/:

This completes the proof.

Now we show a non-classical skew brace that is not two-sided:
Example 2.20. Let G be the group generated by the permutations

.1263/.48ba/.57c9/; .145/.278/.39a/.6bc/:

Then G is a group of order twelve isomorphic to C3 Ì C4. Let � WG ! A4 be the
bijective map given by

id 7! id; .16/.23/.4b/.5c/.79/.8a/ 7! .14/.23/;

.145/.278/.39a/.6bc/ 7! .234/; .1b564c/.29837a/ 7! .143/;

.154/.287/.3a9/.6cb/ 7! .243/; .1c465b/.2a7389/ 7! .142/;

.1362/.4ab8/.59c7/ 7! .13/.24/; .1263/.48ba/.57c9/ 7! .12/.34/;

.1a68/.253c/.49b7/ 7! .132/; .186a/.2c35/.47b9/ 7! .124/;

.1967/.243b/.5ac8/ 7! .134/; .1769/.2b34/.58ca/ 7! .123/:

A straightforward calculation shows that A4 with the operation

� ı � D �.��1.�/��1.�//

is a skew brace.
Let a D .14/.23/ and b D c D .234/. Then

.12/.34/ D .ab/ ı c ¤ .a ı c/c�1.a ı b/ D .123/;

hence it is not two-sided.
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2.1. Skew braces with nilpotent additive group. Skew braces with nilpotent addi-
tive group are similar to classical braces. It was observed in [48] that Sylow subgroups
of the additive group of finite classical braces are also braces.
Theorem 2.21. Let A be a finite skew brace whose additive group .A; � / is nilpotent
and decomposes as A D A1 � � �Ak , where Aj is a Sylow subgroup of order p˛jj , pj
is a prime number and ˛j � 1. Then each Ai is a skew brace.

Proof. It is enough to prove that the subgroup A1 of .A; � / is a subgroup of .A; ı/.
Remark 2.4 implies thatA1 ¤ ;. Let a 2 A and b 2 A1. Since p˛11 b D 0 and �a is a
group automorphism of .A; � /, 0 D �a.p˛11 b/ D p

˛1
1 �a.b/. Hence �a.b/ 2 A1 and

��1a .b/ D �a.b/ 2 A1. Therefore a ı b D a�a.b/ 2 A1 and a D ��1a .a
�1/ 2 A1

for all a; b 2 A1.

Corollary 2.22. LetA be a finite skew brace whose additive group .A; � / is nilpotent
and decomposes as A D A1 � � �Ak , where Aj is a Sylow subgroup of order p˛jj , pj
is a prime number and ˛j � 1. Then each Ai1 � � �Ail is a skew brace.

Proof. It follows from Theorem 2.21 and induction on k.

Corollary 2.23. LetA be a finite skew brace whose additive group .A; � / is nilpotent.
Then .A; ı/ is solvable.

Proof. By Corollary 2.22, for each prime p there exists subgroup of .A; � / of order
coprime with p. Thus the claim follows from Hall’s Theorem; see for example [42,
§9.1.8].

Remark 2.24. Corollary 2.23 was proved by Byott in the context of Hopf–Galois
extensions; see [11, Theorem 1].

We recall some questions from [5], see also [11, §1].
Question 2.25. Let A be a finite skew brace with solvable additive group. Is the
multiplicative group solvable?
Question 2.26. Let A be a finite skew brace with nilpotent multiplicative group. Is
the additive group solvable?
Remark 2.27. Partial results to Questions 2.25 and 2.26 can be found in the context
of Hopf–Galois extensions; see for example [9,11].

2.2. Bijective 1-cocycles. In this subsection we review the equivalence between
skew braces and bijective 1-cocycles.

Let G and A be groups such that G acts on A by automorphisms. Recall that a
bijective 1-cocycle is an invertible map � WG ! A such that

�.gh/ D �.g/.g � �.h//

for all g; h 2 G.



On skew braces 55

Example 2.28. The maps of Examples 2.18 and 2.20 are bijective 1-cocycles.
Let � WG ! A and �WH ! B be bijective 1-cocycles. A homorphism between

these bijective 1-cocycles is a pair .f; g/ of group homomorphisms f WG ! H ,
gWA! B such that

�f D g�;

g.h � a/ D f .h/ � g.a/; a 2 A; h 2 G:

Bijective 1-cocycles form a category.
For a given group A let C.A/ be the full subcategory of the category of bijective

1-cocycles with objects � WG ! A and let Badd.A/ be the full subcategory of the
category of skew braces with additive group A.
Theorem 2.29 ([33, Proposition 1.11]). Let A be a group. The categories Badd.A/

and C.A/ are equivalent.

Remark 2.30. In the context of classical braces, Theorem 2.29 was implicit in the
work of Rump; see [44,47] or [27].
Remark 2.31. In [20] Etingof and Gelaki give a method of constructing finite-
dimensional complex semisimple triangular Hopf algebras. They show how any
non-abelian group which admits a bijective 1-cocycle gives rise to a semisimple
minimal triangular Hopf algebra which is not a group algebra.

3. Examples and constructions

3.1. Factorizable groups. For an introduction to the theory of factorizable groups
we refer to [1]. Recall that a group A factorizes through two subgroups B and C if
A D BC D fbc W b 2 B; c 2 C g. The factorization is said to be exact ifB\C D 1.

The following proposition produces factorizable groups from classical and skew
braces:
Proposition 3.1. Let A be a skew brace. Assume that there exist subbraces B and C
such that .A; � / admits an exact factorization through .B; � / and .C; � /. If �b.c/ 2 C
for all b 2 B and c 2 C , then .A; ı/ admits an exact factorization through .B; ı/
and .C; ı/.

Proof. The claim follows from the equality a D bc D b ı ��1
b
.c/.

Example 3.2. Let A be a classical brace (or more generally, a skew brace with
nilpotent additive group). Assume that the group .A; � / decomposes as A1 � � �Ak ,
where the Aj are the Sylow subgroups of .A; � /. Let I � f1; : : : ; kg, B D

Q
i2I Ai

and C D
Q
i 62I Ai . Then .A; ı/ admits an exact factorization through B and C by

Corollary 2.22 and Proposition 3.1.
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Theorem 3.3. Let A be a group that admits an exact factorization through two
subgroups B and C . Then A with

a ı a0 D ba0c; a D bc 2 BC; a0 2 A;

is a skew brace with multiplicative group isomorphic to B � C and additive group
isomorphic to A.

Proof. The map �WB � C ! A, �.b; c/ D bc�1, is bijective. Since � is bijective
and a ı a0 D �.��1.a/��1.a0//, it follows that .A; ı/ is a group isomorphic to the
direct product B � C . To prove that A is a skew brace it remains to show (2.1). Let
a D bc 2 BC and a0; a00 2 A. Then

.a ı a0/a�1.a ı a00/ D .ba0c/a�1.ba00c/

D ba0c.c�1b�1/ba00c

D ba0a00c

D a ı .a0a00/:

This completes the proof.

Example 3.4 (QR decomposition). Let n 2 N. The group GL.n;C/ admits an
exact factorization as through the subgroups U.n/ and T .n/, where U.n/ is the
unitary group and T .n/ is the group of upper triangular matrices with positive
diagonal entries. Therefore there exists a skew brace A with .A; � / ' GL.n;C/ and
.A; ı/ ' U.n/ � T .n/.
Example 3.5. The alternating simple group A5 admits an exact factorization through
the subgroups

A D h.123/; .12/.34/i ' A4; B D h.12345/i ' C5:

By Theorem 3.3, there exists a skew brace with additive group A5 and multiplicative
group A4 � C5. Compare with [11, Corollary 1.1(i)].
Example 3.6. The simple group PSL.2; 7/ admits an exact factorization through
the subgroups A ' S4 and B ' C7. By Theorem 3.3, there exists a skew brace
with additive group PSL.2; 7/ and multiplicative group S4 �C7. Compare with [11,
Corollary 1.1(ii)].

Recall from [36] that a pair .A;B/ of groups is said to be matched if there are
two actions

B
(
 � B � A

*
�! A

such that

b * .aa0/ D .b * a/..b ( a/ * a0/; (3.1)
.bb0/ ( a D .b ( .b0 * a//.b0 ( a/ (3.2)
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for all a; a0 2 A and b; b0 2 B . If the quadruple .A;B;*;(/ form a matched pair
of groups, then A � B is a group with multiplication

.a; b/.a0; b0/ D .a.b * a0/; .b ( a0/b0/;

where a; a0 2 A and b; b0 2 B . The inverse of .a; b/ is

.a; b/�1 D .b�1 * a�1; .b ( .b�1 * a�1//�1/:

This group will be denoted by A ‰ B and it is known as the biproduct or the
Zappa–Szép product of A and B .

Corollary 3.7. LetA andB be a matched pair of groups. Then the biproductA‰ B

is a skew brace with

.a; b/.a0; b0/ D .a.b * a0/; .b ( a0/b0/; .a; b/ ı .a0; b0/ D .aa0; b0b/;

where a; a0 2 A and b; b0 2 B .

Proof. It follows from Theorem 3.3 since the biproduct A ‰ B admits an exact
factorization through the subgroups A‰ 1 ' A and 1‰ B ' B .

Theorem 3.3 is useful to construct skew braces associated with rings.

Proposition 3.8. Let R be a ring (associative, noncommutative), let S be a subring
of R and let I be a left ideal in R such that S \ I D 0 and R D S C I . Assume
that S and I are Jacobson radical rings (for example nilpotent rings). Then R with
the operation

a ı b D aC b C ab

is a group and R D S ı I is an exact factorization.

Proof. It is easy to prove that ı is associative. Moreover, since S and I are Jacobson
radical rings, it follows that .S; ı/ and .I; ı/ are groups.

We claim that each r 2 R can be written as r D a ı b for some a 2 S and b 2 I .
Since R D I C S , one writes r D i C s for some s 2 S and i 2 I . Now let s be the
inverse of s in the group .S; ı/. Then

r D s ı .s ı r/

with s 2 S and s ı r D s ı .i C s/ D i C si 2 I . Since .S; ı/ and .I; ı/ are groups
and R D S ı I , it follows that .R; ı/ is a group. The factorization R D S ı I is
exact since I \ S D 0.

Particular cases of Proposition 3.8 can be easily obtained as factors of free algebras
or as factors of differential polynomial rings.
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Example 3.9. Let F be a field and let P D F hx1; : : : ; xni be the noncommutative
(associative) polynomial ring in n noncommuting variables, and let A be the
subalgebra of P consisting of polynomials which have zero constant term. Let V be
the linear space over F spanned by x1; : : : ; xn and let V1 and V2 be linear subspaces
of A such that V D V1 ˚ V2. Let Q � A be an ideal in A such that Am � Q for
some m, and denote J D QA (note that J is an ideal in P ). Let R D A=J . Then

S D faC J W a 2 PV1g � R; I D faC J W a 2 PV2g � R;

satisfy the assumptions of Proposition 3.8 and hence .R; ı/ admits an exact
factorization R D S ı I .
Example 3.10. Let N be a nilpotent ring andM be a left N -module. Let R be the
ring of matrices �

N M

0 0

�
D

��
n m

0 0

�
W n 2 N; m 2M

�
;

and
S D

�
N 0

0 0

�
� R; I D

�
0 M

0 0

�
� R:

Then R, I and S satisfy the assumptions of Proposition 3.8 and the group .R; ı/
admits an exact factorization as R D S ı I .
Remark 3.11. Exactly factorizable groups give rise to a special class of Hopf
algebras, see for example [6,21,35,52].

3.2. Triply factorized groups. In [50] Sysak observed an interesting connection
between radical rings and triply factorized groups. This idea shows that skew braces
produce triply factorized groups.

Recall that a triply factorized group is tuple .G;A;B;M/, where G is a group
with subgroups A, B andM and such that G D AM D BM D AB and A \M D
B \M D 1.
Theorem 3.12. Let X be a skew brace. Let G D �.X/, A D .X; � / � 1, M D

1� .X; ı/ andB D f.x; x/ W x 2 Xg. Then .G;A;B;M/ is a triply factorized group
such that A \ B D 1.

Proof. Clearly G D AM and A\M D A\B D B \M D 1. Let us prove that B
is a subgroup ofG. ClearlyB is nonempty. For x; y 2 X , using that y D ��1y .y�1/,
one obtains

.x; x/.y; y/�1 D .x; x/.y; y/ D .x ı y; x ı y/ 2 B:

To prove that G D BM notice that .x; y/ D .x; x/.1; x ı y/ 2 BM . Similarly
.x; y/ D .xy�1; 1/.y; y/ 2 AB , proves that G D AB .
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Example 3.13. Let R be a nilpotent ring (associative, noncommutative), let S be a
subring of R and let I1 and I2 be left ideals of R such that

S \ I1 D S \ I2 D I1 \ I2 D 0; R D S C I1 D S C I2 D I1 C I2:

Proposition 3.8 with A D S , B D I1 and M D I2 implies that .R; ı/ is a triply
group factorized group:

R D A ı B D A ıM D B ıM; A \ B D 0:

Let us show a particular case of Example 3.13.
Example 3.14. Recall the notation from Example 3.9. Let n D 2m for somem 2 N
and let

V1 D

mX
iD1

Fxi ; V2 D

2mX
iDmC1

Fxi ; V3 D

mX
iD1

F.xi C xmCi /:

Now let

A D faC J W a 2 PV1g; B D faC J W a 2 PV2g; M D faC J W a 2 PV3g:

Proposition 3.8 implies that .R; ı/ is a triply factorized group:

R D A ı B D A ıM D B ıM; A \ B D 0:

Remark 3.15. Let A be a skew brace. The multiplicative group .A; ı/ with actions
x * y D �x.y/ andx ( y D �y.x/ form amatched pair of groups, see Lemma6.9.
The biproduct .A; ı/‰ .A; ı/ has multiplication

.x; y/.x0; y0/ D .x ı �y.x
0/; �x0.y/ ı y

0/

and it is a triply factorizable group with A D .A; ı/ � 1, M D 1 � .A; ı/ and
� D f.x; x/ W x 2 Ag. The multiplication on � is given by

.a; a/.b; b/ D .a ı �a.b/; �b.a/ ı b/ D .ab; ab/

since ab D a ı �a.b/ and a ı �a.b/ ı�b.a/ ı b D 1. There is a left action of .A; ı/
on � given by

a � .b; b/ D .1; a/.b; b/.1; a/�1 D .�a.b/; �a.b//

and the map � Ì .A; ı/ ! .A; ı/ ‰ .A; ı/ given by ..a; a/; b/ 7! .a; a ı b/ is a
group isomorphism.
Lemma 3.16. Let .G;A;B;M/ be a triply factorized group withM normal inG and
A\B D 1. For eachm 2M there exists a unique 
.m/ 2 A such thatm
.m/ 2 B .
Moreover, the map m 7! 
.m/ is bijective.
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Proof. Since G D AB D BA and A \ B D 1, for each m 2 M there is a unique

.m/ 2 A such that m
.m/ 2 B , i.e. if m D ba, then 
.m/ D a�1. Similarly,
A � MB D BM and M \ B D 1 imply that for each a 2 A there is a unique
�.a/ 2 M such that �.a/a 2 B , i.e. if a D b1m1, then �.a/ D b1m�11 b�11 . Now it
follows �.
.m// D m for all m 2M and that 
.�.a// D a for all a 2 A.

The following result is [51, Proposition 21] in the language of skew braces:

Theorem 3.17 (Sysak). Let .G;A;B;M/ be a triply factorized group such thatM
is normal in G and A \ B D 1. ThenM with

m ım0 D 
�1.
.m/
.m0//;

where 
 is the map of Lemma 3.16, is a skew brace such that �.M/ ' G.

Proof. Form;m0 2M write a D 
.m/ and a0 D 
.m0/. By Lemma 3.16,m ım0 D

�1.
.m/
.m0// defines a group structure over M isomorphic to that of A. Since
m.am0a�1/.aa0/ D .ma/.m0a0/ 2 B , it follows that

m ım0 D m.am0a�1/:

NowM is a skew brace since

.m ım0/m�1.m ım00/ D m.am0a�1/m�1m.am00a�1/

D mam0m00a�1

D m ı .m0m00/:

Since G D MA D AM , a routine calculation proves �W�.M/! G, .m; x/ 7!
m
.x/, is a bijective group homomorphism:

�..m; x/.n; y// D �.m�x.n/; x ı y/

D m�x.n/
.x ı y/

D m�x.n/
.x/
.y/

D mx�1.x ı n/
.x/
.y/

D mx�1.x
.x/n
.x/�1/
.x/
.y/

D m
.x/n
.y/

D �.m; x/�.n; y/:

This completes the proof.
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3.3. Near-rings. This section is based on the work of Sysak on near-rings; see for
example [51, §10]. However, the connection with skew braces and all the examples
in this section are new.

We refer to [39] for the basic theory of near-rings. Recall that near-ring is a setN
with two binary operations

.x; y/ 7! x C y; .x; y/ 7! x � y;

such that .N;C/ is a (not necessarily abelian) group, .N; � / is a semigroup, and
x � .yC z/ D x � yC x � z for all x; y; z 2 N . We assume that our near-rings contain
a multiplicative identity, denoted by 1.
Example 3.18. LetG be a (not necessarily abelian) additive group andM.G/ be the
set of maps G ! G. ThenM.G/ is a near-ring under the following operations:

.f C g/.x/ D f .x/C g.x/; .f � g/.x/ D g.f .x//; f; g 2M.G/; x 2 G:

A subgroup M of .N;C/ is said to be a construction subgroup if 1 CM is a
subgroup of the multiplicative subgroup N� of units of N .
Lemma 3.19. Let N be a near-ring andM be a construction subgroup of N . Then
.1CM/ �M �M . In particular, 1CM acts onM by left multiplication.

Proof. Let a; a0 2 1CM . Then

�a0 C a D �a0 C 1 � 1C a D �.�1C a0/C .�1C a/ 2M

since �1C a0 2 M and �1C a 2 M . Let m;m0 2 M and write m D �1C a and
m0 D �1C a0 for some a; a0 2 1CM . Then

.1Cm/ �m0 D a � .�1C a0/ D �aC a � a0 2M

since a 2 1CM and a � a0 2 1CM .

Proposition 3.20. LetN be a near-ring andM be a construction subgroup. ThenM
is a skew brace with

mm0 D mCm0; m ım0 D mC .1Cm/ �m0:

Proof. By Lemma 3.19, the operations are well-defined. For each m 2M let �m be
the map n 7! .1C m/ � n. It is routine to verify that �WM ! Aut.M/, m 7! �m,
is a well-defined map such that �mC�m.n/ D �m�n. By applying Lemma 2.12, the
proposition is proved.

Remark 3.21. Proposition 3.20 shows a connection between near-rings and skew
braces. This connection then answers [12, Question 1].
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If N is a near-ring and M is a construction subgroup of N , Proposition 3.20
implies that M is a skew brace. The following is the translation of a theorem of
Hubert in the language of skew braces:
Theorem 3.22 (Hubert). LetA be a skew brace with multiplicative group isomorphic
to G. The near-ring M.G/ contains a construction subgroup M such that
�.A/ ' �.M/.

Proof. By Theorem 3.12, the group G D �.A/ provides a triply factorized group
G DMA DMB D AB with A \ B D 1. Now [34, Theorem 2.9] applies.

3.4. Nilpotent rings. We now construct examples of skew braces related to nil-
potent rings and algebras. These examples are influenced by near ring theory and
construction subgroups. The following result is inspired by [39, Example 1.6].
Lemma 3.23. Let F be a finite field and let A be a commutative F -algebra such that
A D F CN whereN is a nilpotent subalgebra of A. Let S be the set of all functions
A ! A which can be written as polynomials from NŒx� (where two functions are
equal if they have the same values). Then S with the operation

f .x/ � g.x/ D f .x/C g.x C f .x//

is a group.

Proof. Direct calculations show that the operation is associative and that f .x/ D 0 is
the identity element of S . It suffices to prove that each element in S has a left inverse,
i.e. for each g.x/ 2 S there exists f .x/ 2 S such that f .x/ D �g.x C f .x//. The
map f .x/ can be obtained recursively as

f .x/ D �g.x � g.x � g.x C g.� � � .x � g.x// � � � ////;

where the number of brackets is equal to n and N n D 0. Indeed, for any p 2 NŒx�,
�g.x � g.x � g.x C g.� � � .x � g.x C p// � � � //// D f .x/ because the element p
will be multiplied by at least n elements fromN in the left hand-side of this equation.
Hence it will have zero value (where the left hand side has n brackets). By substituting
p D �g.x/ we get that

f .x/ D �g.x � g.x � g.x C g.� � � .x � g.x// � � � ////;

where the number of brackets is n C 1: Therefore, �g.x C f .x// D f .x/; as
required.

Remark 3.24. The same construction of Lemma 3.23 works when A is a non-
commutative associative algebra. In this case instead of the polynomial ringAŒx� one
takes the noncommutative polynomial ring, where the variable x does not commute
with the elements of A.
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We are now ready to present some examples of skew braces inspired by the
near-ring of functionsM.G/ over a group G.

Proposition 3.25. Let F be a finite field and let A be a commutative F -algebra such
that A D F C N where N is a nilpotent subalgebra of A. Let S be the set of all
functions A! A which can be written as polynomials from NŒx�. Then S with the
usual addition and

f .x/ � g.x/ D f .x/C g.x C f .x//;

is a classical brace.

Proof. By Lemma 3.23 it remains to show the brace compatibility condition:

f .x/ � .g.x/C h.x// � f .x/ D g.x C f .x//C h.x C f .x//

D f .x/ � g.x/ � f .x/C f .x/ � h.x/:

This completes the proof.

Remark 3.26. Notice that if we consider S to be the set of polynomial functions
from NŒx� with zero constant terms, then Proposition 3.25 has a very short proof:
since S is nilpotent in the near-ringM.A;C/, it is a construction subgroup hence a
skew brace by Proposition 3.20. As the polynomial function x is the identity map, and
hence the identity in the near-ringM.A;C/, we get .f �g/.x/ D f .x/Cg.xCf .x//.

Corollary 3.27. The sets T D ff 2 S W f .1/ D 0g and ff 2 T W f .0/ D 0g are
subbraces of S .

Proof. It follows from Proposition 3.25.

Lemma 3.28. Let F be a finite field and let A be a commutative F -algebra such that
A D F CN whereN is a nilpotent subalgebra of A. Let S be the set of all functions
A ! A which can be written as polynomials from NŒx� (where two functions are
equal if they have the same values). Then S with the operation

f .x/ˇ g.x/ D f .x/ ı g.x ı f .x//;

where a ı b D aC b C ab, a; b 2 A, is a group.

Proof. It is easy to prove that ˇ is associative and that f .x/ D 0 is the identity
element of S . To prove that S is a group it suffices to show that every element
in S has a left inverse, i.e. that for every g.x/ 2 S there is f .x/ 2 S such that
f .x/ ı g.x ı f .x// D 0, so

f .x/ D �g.x ı f .x// � f .x/ � g.x ı f .x//:
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Let n be such that N n D 0 and let t .x/ D
Pn
iD1.�1/

ig.x/i . Then

g.x/ ı t .x/ D t .x/ ı g.x/ D 0;

and hence

g.x ı f .x// ı t .x ı f .x// D t .x ı f .x// ı g.x ı f .x// D 0:

Therefore, the equation f .x/ ı g.x ı f .x// D 0 is equivalent to

f .x/ D t .x ı f .x//

Now f .x/ D t .x ı t .x ı t .� � � .x ı t .x// � � � ///, where the number of brackets is equal
to n.

Remark 3.29. The same construction of Lemma 3.28 works when A is a non-
commutative associative algebra. In this case instead of the polynomial ringAŒx� one
takes the noncommutative polynomial ring, where the variable x does not commute
with the elements of A.

Proposition 3.30. Let F be a finite field and let A be an F -algebra such that
A D F CN whereN is a nilpotent subalgebra of A. Let S be the set of all functions
A! A which can be written as a noncommutative polynomials from NŒx�. Then S
with the operations

f .x/ˇ g.x/ D f .x/ ı g.x ı f .x//; .f ı g/.x/ D f .x/ ı g.x/;

is a skew brace.

Proof. By Lemma 3.28 it suffices to prove the compatibility condition. Let f .x/�1
denote the inverse of f .x/ in the group .S; ı/.

.f ˇ .g ı h//.x/ D f .x/ ı .g ı h/.x ı f .x//

D f .x/ ı g.x ı f .x// ı h.x ı f .x//

D .f ˇ g/.x/ ı f .x/�1 ı .f ˇ h/.x/:

This completes the proof.

Remark 3.31. Proposition 3.30 can be obtained from Proposition 3.20 when S is the
set of functions which are polynomial functions from NŒx� with zero constant term.

3.5. Matched pair of skew braces. The construction of matched pair of braces was
first considered by Bachiller [2] for classical braces.
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Definition 3.32. A pair of skew braces .A;B/ is said to bematched if there are group
homomorphisms ˛W .A; ı/! Aut.B; � / and ˇW .B; ı/! Aut.A; � / such that

�Aa ˇb D ˇ˛a.b/�
A

ˇ�1
˛a.b/

.a/; (3.3)

�Bb ˛a D ˛ˇb.a/�
B

˛�1
ˇb.a/

.b/; a 2 A; b 2 B; (3.4)

where �A is the map of A and �B is the map of B .

Definition 3.33. Given a matched pair .A;B; ˛; ˇ/ of skew braces, define the
biproduct A‰ B as the set of ordered pairs .a; b/ 2 A � B with the operations

.a; b/.a0; b0/ D .aa0; bb0/; (3.5)

.a; b/ ı .a0; b0/ D .ˇb.ˇ
�1
b .a/ ı a0/; ˛a.˛

�1
a .b/ ı b0//: (3.6)

Proposition 3.34. Given a matched pair .A;B; ˛; ˇ/ of skew braces, the biproduct
A‰ B is a skew brace.

Proof. We claim that

˛a.˛
�1
a .b/ ı y/ D b�Bb ˛ˇ�1

b
.a/.y/ D b ı ˛ˇ�1

b
.a/.y/; (3.7)

ˇb.ˇ
�1
b .a/ ı x/ D a�Aa ˇ˛�1a .b/.x/ D a ı ˇ˛�1a .b/.x/: (3.8)

We only prove (3.7). Since ˛ is a group homomorphism, using (3.5) one obtains that

˛a.˛
�1
a .b/ ı y/ D ˛a

�
˛�1a .b/�B

˛�1a .b/
.y/
�

D b˛a�
B

˛�1a .b/
.y/ D b�Bb ˛ˇ�1

b
.a/.y/ D b ı ˛ˇ�1

b
.a/.y/:

Then

�.a;b/.a
0; b0/ D .�Aa ˇ˛�1a .b/.a

0/; �Bb ˛ˇ�1
b
.a/.b

0//:

A direct calculation shows that �.a;b/ 2 Aut.A � B/ for all a 2 A and b 2 B . Thus
by Lemma 2.12 it suffices to prove that

�.a;b/�.x;y/.a
0; b0/ D �.a;b/ı.x;y/.a

0; b0/:

This is equivalent to prove the following two equalities:

ˇb�
A

ˇ�1
b
.a/
ˇy�

A

ˇ�1y .x/
.a0/ D ˇ˛a.˛�1a .b/ıx/�

A

ˇ�1
˛a.˛

�1
a .b/ıy/

ˇb.ˇ
�1
b
.a/ıx/

.a0/; (3.9)

˛a�
B

˛�1a .b/
˛x�

B

˛�1x .y/
.b0/ D ˛ˇb.ˇ�1b .a/ıy/�

B

˛�1
ˇb.ˇ

�1
b
.a/ıy/

˛a.˛
�1
a .b/ıy/

.b0/: (3.10)
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Let us prove (3.9). Let a00 D ˇ�1
b
.a/ and b00 D y. We first observe that

ˇ�1
˛a.˛

�1
a .b/ıy/

ˇb.ˇ
�1
b .a/ ı x/ D ˇ�1bı˛a00 .b00/

ˇb.a
00
ı x/

D ˇ�1˛a00 .b00/
ˇ�1b .ˇb.a

00
ı x//

D ˇ�1˛a00 .b00/
.a00 ı x/

D ˇ�1˛a00 .b00/
.a00�Aa00.x//

D ˇ�1˛a00 .b00/
.a00/ˇ�1˛a00 .b00/

�Aa00.x/

D ˇ�1˛a00 .b00/
.a00/�ˇ�1

˛a00 .b
00/
.a00/ˇ

�1
b00 .x/

D ˇ�1˛a00 .b00/
.a00/ ı ˇ�1b00 .x/:

This equality and (3.7) imply that

ˇb�
A

ˇ�1
b
.a/
ˇy�

A

ˇ�1y .x/
.a0/ D ˇbˇ˛a00 .b00/�

A

ˇ�1
˛a00 .b

00/
.a00/

�A
ˇ�1
b00
.x/
.a0/

D ˇbı˛a00 .b00/�
A

ˇ�1
˛a00 .b

00/
.a00/ıˇ�1

b00
.x/
.a0/

D ˇbı˛a00 .b00/�
A

ˇ�1
˛a00 .b

00/
.a00/ıˇ�1

b00
.x/
.a0/

D ˇbı˛a00 .b00/�
A

ˇ�1
˛a.˛

�1
a .b/ıy/

ˇb.ˇ
�1
b
.a/ıx/

.a0/

D ˇ˛a.˛�1a .b/ıy/�
A

ˇ�1
˛a.˛

�1
a .b/ıy/

ˇb.ˇ
�1
b
.a/ıx/

.a0/:

The proof of (3.10) is similar.

Definition 3.35. Let A and X be skew braces. A left action of A on X is a group
homomorphism .A; ı/ ! AutB.X/, where AutB.X/ denotes the group of brace
automorphisms of X .

An easy consequence of Proposition 3.34 is the construction of semidirect
product of skew braces. Semidirect products of classical braces were considered
by Rump [46].
Corollary 3.36. Let A and B be skew braces. Assume that there is a left action ˛
of A on B . Then A � B with the operations

.a; b/.a0; b0/ D .aa0; bb0/; .a; b/ ı .a0; b0/ D .a ı a0; b ı ˛a.b
0//;

is a skew brace. This skew brace structure over A � B will be denoted by A Ë B .
Corollary 3.37. Let A and B be skew braces. Assume that there is a left action ˇ
of B on A. Then A � B with the operations

.a; b/.a0; b0/ D .aa0; bb0/; .a; b/ ı .a0; b0/ D .a ı ˇb.a
0/; b ı b0/;

is a skew brace.
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Corollary 3.38. Let A be a skew brace such that

�a�b D ��a.b/�a; a; b 2 A: (3.11)

ThenD.A/ D AËA is a skew brace. The skew braceD.A/ will be called the double
of A.

Proof. The brace A acts on A if and only if (3.11) holds. Thus the claim follows
from Corollary 3.36.

Wreath products of classical braces were considered in [13, Corollary 3.5]. The
construction also works for skew braces:
Corollary 3.39. Let A be a skew brace. Let n 2 N and B be skew brace such that
.B; ı/ � Sn. Then the wreath product A o B D A�n Ì B is a skew brace.

Proof. According to Example 2.7, A�n D A� � � � �A (n-times) is a skew brace. Let
ıWB ! AutB.An/, b 7! ıb , where

ıb.a1; : : : ; an/ D .ab.1/; : : : ; ab.n//:

Then B acts on An and hence then claim follows from Corollary 3.37.

4. Solutions of the Yang–Baxter equation

Skew braces produce non-degenerate solution of the YBE.
Theorem 4.1 ([33, Theorem 3.1]). Let A be a skew left brace. Then

rAWA � A! A � A;

rA.a; b/ D .�a.b/; �b.a// D .�a.b/; �
�1
�a.b/

..a ı b/�1a.a ı b//;

is a non-degenerate solution of the Yang–Baxter equation. Furthermore, rA is
involutive if and only if ab D ba for all a; b 2 A.
Remark 4.2. Let A be a skew brace and rA its associated solution. If one writes
r.a; b/ D .u; v/, then a ı b D u ı v since

��1�a.b/..a ı b/
�1a.a ı b// D �a.b/ ı a ı b

for all a; b 2 A.
A biquandle is a non-degenerate set-theoretical solution .X; r/ of the YBE such

that there exists a bijection t WX ! X such that r.t.x/; x/ D .t.x/; x/ for all x 2 X .
Biquandles have applications in classical and virtual knot theory, see for example [24]
and [40].
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Corollary 4.3. Let A be a skew brace and rA its associated solution of the YBE.
Then .A; rA/ is a biquandle.

Proof. Let a 2 A. By Theorem 4.1, b D ��1a .a/ is the unique element of A such
that r.a; b/ D .a; b/. Similarly, ��1a .a/ 2 A is the unique element of A such that
rA.�

�1
a .a/; a/ D .��1a .a/; a/. It follows that the map A ! A, a 7! ��1a .a/, is

bijective with inverse a 7! ��1a .a/.

Let .X; r/ be a non-degenerate solution. Recall that the structure group of .X; r/
is defined as the group G.X; r/ with generators in fex W x 2 Xg and relations
exey D euev whenever r.x; y/ D .u; v/. Let �WX ! G.X; r/ be the canonical map,
i.e. �.x/ D ex . In general, � is not injective:

Example 4.4. Let X D f1; 2; 3; 4g, � D .12/ and � D .34/. Then .X; r/,
r.x; y/ D .�.y/; �.x//, is a non-degenerate solution of the YBE. The canonical
map �WX ! G.X; r/, i 7! ei , is not injective since for example

e1e2 D e1e1

and hence e1 D e2.

The following result is [38, Theorem 9] in the language of skew braces, see
also [49, Theorem 2.7]:

Theorem 4.5. Let .X; r/ be a non-degenerate solution of the YBE. Then there exists
a unique skew left brace structure over G.X; r/ such that

rG.X;r/.� � �/ D .� � �/r:

Furthermore, ifB is a skew left brace and f WX ! B is a map such that .f �f /r D
rB.f � f /, then there exists a unique skew brace homomorphism �WG.X; r/! B

such that f D �� and .� � �/rG.X;r/ D rB.� � �/.

Proof. By [38, Theorem 9] and the equivalence between skew braces and bijective
1-cocycles of Theorem 2.29, it remains to prove that

�.gh/ D �.g/�.h/

for all g; h 2 G.X; r/. Write �B D �. Since �.�g.h// D ��.g/�.h/,

�.gh/ D �.g ı ��1g .h// D �.g/ ı �.�
�1
g .h// D �.g/ ı �

�1
�.g/�.h/ D �.g/�.h/:

From this the claim follows.

Example 4.6. Let G be a group that admits an exact factorization through the
subgroups A and B . By Theorem 3.3, G is a skew brace with additive group G and
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multiplicative group A � B . Theorem 4.1 shows that the map r WG � G ! G � G

given by
r.g; h/ D .b�1hb; a�11 ahbb�11 /;

where g D ab and b�1hb D a1b1 for a; a1 2 A and b; b1 2 B , is a non-degenerate
set-theoretical solution of the YBE. This is essentially the solution constructed by
Weinstein and Xu in [54, Theorem 9.2].
Example 4.7. Let A D S3. Then A is a skew brace with a ı b D ba. Clearly
�a.b/ D a

�1ba, a; b 2 A and the associated solution is

rAWA � A! A � A; rA.a; b/ D .a
�1ba; a/:

The order of rA is twelve and the restriction of rA to the conjugacy class of involutions
of A has order three.
Example 4.8. The skew brace of Example 2.13 produces a solution of order twelve.
This solution is isomorphic to .X; r/, where X D f1; 2; : : : ; 6g and r.x; y/ D
.�x.y/; �y.x// is given by

�1 D id; �2 D id; �3 D .263/;

�4 D .236/; �5 D .263/; �6 D .236/;

�1 D id; �2 D .36/.45/; �3 D .36/.45/;

�4 D id; �5 D id; �6 D .36/.45/:

Example 4.9. The skew brace of Example 2.18 produces a solution of order four.
This solution is isomorphic to .X; r/, where X D f1; 2; : : : ; 8g and r.x; y/ D
.�x.y/; �y.x// is given by

�1 D id; �2 D .25/.47/; �3 D .38/.47/; �4 D .25/.38/;

�5 D .25/.47/; �6 D id; �7 D .25/.38/; �8 D .38/.47/;

�1 D id; �2 D .25/.38/; �3 D .25/.38/; �4 D id;
�5 D .25/.38/; �6 D id; �7 D id; �8 D .25/.38/:

Definition 4.10. Let A be a skew brace with additive group G. The depth of A is
defined as the exponent of the group G=Z.G/.

Example 4.11. Classical braces have depth one.
To study the depth of a skew brace we need the following lemma.

Lemma 4.12. Let A be a skew brace and let n 2 N. Then

r2n.a; b/ D ..a ı b/�na.a ı b/n; .a ı b/�na.a ı b/n ı a ı b/; (4.1)

r2nC1.a; b/ D ..a ı b/�na�1.a ı b/nC1; .a ı b/�na�1.a ı b/nC1 ı a ı b/; (4.2)

for all n � 0. Moreover, the following statements hold:
(1) r2n D id if and only if abn D bna for all a; b 2 A.
(2) r2nC1 D id if and only if �a.b/ D .a ı b/na.a ı b/�n for all a; b 2 A.
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Proof. It suffices to prove (4.1) and (4.2). We proceed by induction on n. The case
n D 0 is trivial for (4.1) and (4.2). Assume that the claim holds for some n > 0. If n
is even, by applying the map r to Equation (4.1) and using Remark 4.2 we obtain that

r2nC1.a; b/ D r
�
.a ı b/�na.a ı b/n; .a ı b/�na.a ı b/n ı a ı b

�
D
�
.a ı b/�na�1.a ı b/n.a ı b/; .a ı b/�na�1.a ı b/n.a ı b/ ı a ı b

�
D
�
.a ı b/�na�1.a ı b/nC1; .a ı b/�na�1.a ı b/nC1 ı a ı b

�
:

Thus Equation (4.2) holds. If n is odd, a similar argument shows that (4.1) holds.

Theorem 4.13. Let A be a finite skew brace with more than one element. Then the
order of rA is 2d , where d is the depth of A.

Proof. Let n be such that r2nC1 D id. By applying Lemma 4.12 one obtains that
a�1.a ı b/nC1 D .a ı b/na for all a; b 2 A. In particular, if b D 1, then a D 1, a
contradiction.

Therefore we may assume that the order of the permutation rA is 2n, where
n D minfk W bka D abk 8a; b 2 Ag. Now one computes

n D minfk W bk 2 Z.A/ 8b 2 Ag D minfk W .bZ.A//k D 1 8b 2 Ag D d;

and the theorem is proved.

Example 4.14. Let A be a finite skew brace such that its additive group has trivial
center. Then the order of rA is equal to 2e, where e is the exponent of the additive
group of A.

Example 4.15. Letp be an odd prime number and letA be a non-classical skew brace
of size 2p. Then the additive group of A is isomorphic to the dihedral group D2p of
size 2p. Since Z.D2p/ D 1 and the exponent of D2p is 2p, the order of rA is 4p.

5. Ideals and retractable solutions

Ideals of skew braces were defined in [33].

Definition 5.1. Let A be a skew brace. A normal subgroup I of .A; ı/ is said to be
an ideal of A if aI D Ia and �a.I / � I for all a 2 A.

Example 5.2. Let f WA ! B be a skew brace homomorphism. Then ker f is an
ideal of A since f .�a.x// D �f .a/.f .x// D 1 for all x 2 ker f and a 2 A.

An important example of an ideal is the socle. As in the classical case, the socle
is useful for studying the structure of skew braces and multpermutation solutions.
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Example 5.3. Let A be a skew brace. Then the socle

Soc.A/ D fa 2 A W a ı b D ab; b.b ı a/ D .b ı a/b for all b 2 Ag

is an ideal of A contained in the center of .A; � /; see [33, Lemma 2.5].
Lemma 5.4. Let A be a skew brace. Then Soc.A/ D ker� \Z.A; � /.

Proof. By [33, Lemma 2.5] we only need to prove ker� \ Z.A; � / � Soc.A/. Let
a 2 ker�\Soc.A/. It suffices to show that b.bıa/ D .bıa/b for all b 2 B . Since a
is central, ba D ab for all b 2 A. This implies that b ı .b.b ı a// D b ı ..b ı a/b/
for all b and the claim follows.

Lemma 5.5 ([33, Lemma 2.3]). Let A be a skew left brace and I � A be an ideal.
Then the following properties hold:
(1) I is a normal subgroup of .A; � /.

(2) a ı I D aI for all a 2 A.

(3) I and A=I are skew braces.
Lemma 5.6. Let f WA ! B be a surjective homomorphism of skew braces. Then
A= ker f ' B .

Proof. A routine calculation shows that A= ker f ! B , a ker.f / 7! f .a/, is a
well-defined isomorphism of skew braces.

The following proposition is a simple application of the transfer theory. We will
use the following theorem of Schur, see for example [42, §10.1.3]. If H is a central
subgroup of finite index n in a group G, the map x 7! xn is a group homomorphism
since it is the transfer of G intoH .
Proposition 5.7. Let A be a skew brace. Assume that the socle has finite index n.
Then the map A! A, a 7! an, is a group homomorphism.

Proof. Since Soc.A/ � Z.A; � / by [33, Lemma 2.5], the claim follows since Soc.A/
has finite index in G.

Definition 5.8. A skew brace is said to be simple if A ¤ 1 and 1 and A are the only
ideals of A.
Example 5.9. Skew braces with a prime number of elements are simple.
Example 5.10. Skew braces with simple multiplicative group are simple.
Example 5.11. Skew braces with simple additive group are simple.
Example 5.12. The skew brace of Example 2.20 is simple since a nontrivial proper
normal subgroup of C3ÌC4 have size three and a nontrivial proper normal subgroup
of A4 have size four; see Lemma 5.5.
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The following problem arises naturally.
Problem 5.13. Classify finite simple skew braces.
Remark 5.14. The problem of classifying classical simple braces is intensively
studied, see for example [2].
Definition 5.15. Let A be a skew brace. The socle series of A is defined as the
sequence

A1 D A; AnC1 D An=Soc.An/; n � 1:

Lemma 5.16. Let A ba a skew brace. Let S1.A/ D Soc.A/ and

SnC1.A/ D fa 2 A W .a ı b/
�1ab 2 Sn.A/; Œb; b ı a� 2 Sn.A/ 8b 2 Ag

for n � 1, where Œx; y� D x�1y�1xy denotes the commutator of x and y. Then
AnC1 D A=Sn.A/ for all n 2 N.

Proof. Notice that a 2 SnC1.A/ if and only if abSn.A/ D .a ı b/Sn.A/ and
b.b ı a/Sn.A/ D .b ı a/Sn.A/ for all b 2 A. Now the claim follows by induction
on n.

Definition 5.17. Let A be a skew brace. It is said that A has finite multipermutation
level if there exists n 2 N such that An has only one element.
Example 5.18. LetA be the skew brace of Example 2.18. The socle Soc.A/ ofA has
two elements and hence A2 D A=Soc.A/ is the trivial classical brace over C2 � C2.
It follows that Soc.A2/ D A2 and hence A has finite multipermutation level.
Example 5.19. Let A be the simple skew brace of Example 5.12. Then Soc.A/ D 1
and hence A does not have finite multipermutation level.

Recall the construction of semidirect product of skew braces of Corollary 3.36.
Theorem 5.20. Let A and B be skew braces of finite multipermutation level. Let
C D AËB be a semidirect product of A and B . Then C has finite multipermutation
level.

Proof. By induction one proves that

1 � Sn.B/ � Sn.C /

for all n 2 N. Since B has finite multipermutation level, there exists k 2 N
1 � B � 1 � Sk.B/ � Sk.C /. Since Soc.A/ � 1 � SkC1.C /, one proves by
induction that Sn.A/ � 1 � SnCk.C / for all n 2 N. Now let l 2 N be such that
Sl.A/ D A. Then A � 1 D Sl.A/ � 1 � SkCl.C / and hence SkCl.C / D C .

Theorem 5.21. Let A be a skew brace of finite multipermutation level. Then .A; � /
is nilpotent.



On skew braces 73

Proof. We proceed by induction on the size of A. If the order of A is a prime
number, then .A; � / is nilpotent. Now assume that the result holds for all skew braces
of size < jAj. Since A=Soc.A/ is nilpotent by induction and Soc.A/ is a central
subgroup of .A; � /, it follows that A is nilpotent.

Remark 5.22. The converse of Theorem 5.21 does not hold. One example is the
simple classical brace of size 24 constructed in [2, Remark 7.2]. Another example:
In the list of skew braces computed in [33] one can find a non-classical brace of
size 16 with trivial socle and nilpotent additive group.

6. Skew braces and other algebraic structures

In Subsection 2.2 we reviewed the equivalence between skew braces and bijective
1-cocycles. In this section we state several equivalences involving skew braces.

6.1. Skew cycle sets. Recall that a cycle set is a pair .X; �/, where X is a set
and .a; b/ 7! a � b is a binary operation on X such that each map 'aWX ! X ,
'a.b/ D a � b, is bijective, and

.a � b/ � .a � c/ D .b � a/ � .b � c/

holds for all a; b; c 2 A.
A linear cycle set is a triple .A;C; �/, where .A;C/ is an abelian group, .A; �/

is a cycle set, and

a � .b C c/ D .a � b/C .a � c/; .aC b/ � c D .a � b/ � .a � c/

hold for all a; b; c 2 A.
Linear cycle sets were introduced byRump in [43]. Classical braces are equivalent

to linear cycle sets; see for example [47, Proposition 2.3].
Definition 6.1. A skew cycle set is a triple .A; � ; �/, where .A; � / is a (not necessarily
abelian) group and .a; b/ 7! a � b is a binary operation on A such that each map
'aWX ! X , 'a.b/ D a � b, is bijective, and

a � .bc/ D .a � b/.a � c/; (6.1)
.ab/ � c D .a � b/ � .a � c/ (6.2)

hold for all a; b; c 2 A.
Remark 6.2. Let A be a skew cycle set. It follows from (6.2) that

.a � b/ � .a � c/ D .b � .b�1ab// � .b � c/

holds for all a; b; c 2 A.
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Definition 6.3. LetA andB be skew cycle sets. A homomorphism betweenA andB
is a group homomorphism f WA! B such that

f .a � a0/ D f .a/ � f .a0/

for all a; a0 2 A.
Notation 6.4. Let A be a skew cycle set. The inverse operation of � will be denoted
by �, i.e. a � b D c if and only if a � c D b, a; b; c 2 A.
Lemma 6.5. Let A be a skew cycle set. Then

a � .bc/ D .a � b/.a � c/; (6.3)
.ab/ � c D a � ..a � b/ � c/ (6.4)

for all a; b; c 2 A.

Proof. Let a; b; c 2 A. Since a � ..a � b/.a � c// D .a � .a � b//.a � .a � c// D bc,
Equation (6.3) follows. Now let

d D .ab/ � c D .a � b/ � .a � c/:

Then .ab/ � d D c D a � ..a � b/ � d/ and the lemma is proved.

Skew cycle sets form a category.
For a group A let S.A/ be the full subcategory of skew cycle sets whose objects

are skew cycle set structures over A.
Lemma 6.6. Let A be a skew brace. Then the group .A; � / with

a � b D ��1a .b/ D a ı .ab/

is a skew cycle set. Moreover, if f WA ! A1 is a homomorphism of skew braces,
then f is a homomorphism of skew cycle sets.

Proof. Each map 'a W b 7! a � b is bijective. Let a; b; c 2 A. To prove (6.1) one
uses that �W .A; ı/! Aut.A; � / is a group homomorphism:

a � .bc/ D ��1a .bc/ D �a.bc/ D �a.b/�a.c/ D .a � b/.a � c/:

To prove (6.2) we compute

.a � b/ � .a � c/ D ��1
��1a .b/

.��1a .c// D �
�1

aı��1a .b/
.c/ D ��1ab .c/ D .ab/ � c:

To prove that f is a skew cycle set homomorphism one computes

f .a � b/ D f .a ı .ab// D f .a/ ı .f .a/f .b// D f .a/ � f .b/:

This finishes the proof.
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Lemma 6.7. LetA be a skew cycle set. ThenA with �a.b/ D a�b, where a�b D c
if and only if a � c D b, is a skew brace. Moreover, if f WA! A1 is a skew cycle set
homomorphism, then f is a skew brace homomorphism.

Proof. Let �WA ! SA be given by a 7! �a. Let a; b; c 2 A. First we notice that
�a.bc/ D �a.b/�a.c/ since

�a.bc/ D a � .bc/ D .a � b/.a � c/ D �a.b/�a.c/

by Lemma 6.5, Equation (6.3).
To prove that �a�a.b/.c/ D �a�b.c/ holds we use Lemma 6.5, Equation (6.4) to

obtain that

�a�b.c/ D a � .b � c/ D a � ..a � .a � b// � c/

D .a.a � b// � c D .a�a.b// � c D �a�a.b/.c/:

Now since �a.bc/ D �a.b/�a.c/ and �a�a.b/.c/ D �a�b.c/ hold, A is a skew
brace by Lemma 2.12.

Finally the map f is a skew brace homomorphism since

f .a ı b/ D f .a.a � b// D f .a/f .a � b/

D f .a/ .f .a/ � f .b// D f .a/�f .a/.f .b// D f .a/ ı f .b/

for all a; b 2 A.

Lemmas 6.6 and 6.7 yield the following result:
Theorem 6.8. Let A be a group. The categories Badd.A/ and S.A/ are equivalent.

6.2. Matched pairs of groups. For a given group .A; ı/ let M.A/ be the category
with objects the matched pairs .A;A/ such that

a ı b D .a * b/ ı .a ( b/ (6.5)

for all a; b 2 A and morphisms all group homomorphisms f WA! A such that

f .a * b/ D f .a/ * f .b/; f .a ( b/ D f .a/ ( f .b/

for all a; b 2 A.
Lemma 6.9. LetA be a skew brace. Then ..A; ı/; .A; ı// is a matched pair of groups
with a * b D �a.b/ and a ( b D �b.a/, a; b 2 A.

Proof. Lemma 2.8 proves that � is a left action and Lemma 2.11 proves that � is a
right action. Thus we need to prove that

a * .b ı b0/ D .a * b/ ı ..a ( b/ * b0/; (6.6)
.a ı a0/ ( b D .a ( .a0 * b// ı .a0 ( b/ (6.7)

hold for all a; a0; b; b0 2 A.
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For a; a0; b 2 A one obtains that

.a ( .a0 * b// ı .a0 ( b/ D �a�a0.b/ ı a ı �a0.b/ ı �a0.b/ ı a
0
ı b

D �aıa0.b/ ı a ı a
0
ı b

D .a ı a0/ ( b:

For a; b; b0 2 A one obtains that

.a * b/ ı ..a ( b/ * b0/ D �a.b/ ı
�
�a.b/ ı a ı b * b0

�
D �a.b/ ı ��a.b/�aıb.b

0/

D �a.b/�aıb.b
0/

D a * .b ı b0/:

This completes the proof.

Lemma 6.10. Let .A; ı/ be a group and .A;A;*;(/ be a matched pair of groups
such that a ı b D .a * b/ ı .a ( b/ for all a; b 2 A. Then A with

ab D a ı .a * b/

is a skew brace.

Proof. For a; b 2 A write �a.b/ D a * b. Then �WA ! SA, a 7! �a, is a
well-defined group homomorphism. Equation (6.5) implies that �a.1/ D 1 for all a.
Since

�a.b ı �
�1
b .c// D �a.b/ ı .�a(b�

�1
b .c//

D �a.b/ ı ��a.b/ıaıb�
�1
b .c/

D �a.b/ ı �
�1
�a.b/

�a.c/;

the claim follows from Lemma 2.14

For a given group A, letBmul.A/ be the full subcategory of the category of skew
braces with multiplicative group A. Combining Lemma 6.9 and Lemma 6.10 one
gets the following result:

Theorem 6.11. LetA be a group. The categoriesBmul.A/ andM.A/ are equivalent.

Remark 6.12. Theorem 6.11 is implicit in the work of Lu, Yan and Zhu, see [38,
Theorem 2] and [53]. The result for classical braces was proved by Gateva-Ivanova;
see [27, Theorem 3.7]. Our proof of Theorem 6.11 is essentially that of Gateva-
Ivanova.
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A. Hopf–Galois extensions (by N. Byott and L. Vendramin)

In this appendix we review the connection between skew braces and Hopf–Galois
extensions. This connection was first observed by Bachiller in [4, §2].

Let K be a field and let H be a cocommutative Hopf algebra over K. An
H -module algebra A over K is anH -Galois extension of K if the map

� WA˝K A! HomK.H;A/; �.a˝ b/.h/ D a.h � b/;

is bijective.
Let K � L be a finite extension of fields. A Hopf–Galois structure on L=K

consists of a Hopf algebra H over K and an action of H on L such that L is an
H -Galois extension of K. In [32], Greither and Pareigis showed how to find all
Hopf–Galois structures whenL=K is separable. For simplicity, we consider only the
case where L=K is also normal, so that L=K is a Galois extension in the classical
sense. We then have:
Theorem A.1 (Greither–Pareigis). LetK � L be a finite Galois field extension with
group G. Then Hopf–Galois extensions on L=K correspond bijectively to regular
subgroups A of SG normalized by G, where G is considered as a subgroup of SG by
the regular left representation.

Recall that a subgroupA of SG is regular if, given any g, h 2 G, there is a unique
a 2 A with a � g D h. The isomorphism class of A in Theorem A.1 is known as the
type of the Hopf–Galois structure. Note that jAj D jGj, but in general A andG need
not be isomorphic.

In the situation of Theorem A.1, the fact that A acts regularly on G enables us
to define a bijection between A and G, via which we may translate the left regular
action of G on itself into an action of G on A. Thus G becomes a regular subgroup
of SA. It was observed by Childs [16] that the condition in Theorem A.1, namely
thatA is normalized byG, holds if and only ifG is contained in the subgroup Hol.A/
of SA, where Hol.A/ D A Ì Aut.A/ is the holomorph of A. The group operation in
Hol.A/ is given by

.a; f /.b; g/ D .af .b/; fg/;

and an element .b; g/ 2 H acts on a 2 A by .b; g/ � a D bg.a/. (Thus the first
factor A in Hol.A/ is identified with left multiplications by elements of A.)

Childs’ observation was used in [8] to give a formula to count Hopf–Galois
structures:
Proposition A.2. The number e.G;A/ of Hopf–Galois structures of type A on a
Galois extension L=K with group G is given by

e.G;A/ D
jAut.G/j
jAut.A/j

f .G;A/;

where f .G;A/ is the number of regular subgroups of Hol.A/ that are isomorphic to
the group G.
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We now sketch the proof of this, partly following the exposition in [17, §7], in
order to elucidate the relationship between Hopf–Galois structures and skew braces.

To begin with, we consider G and A as abstract groups, i.e. given without any
actions on each other. Let �G W G ! SG be the left regular representation: �G.g/ �
h D gh for g, h 2 G. We will call ˛ W A ! SG a regular embedding if ˛ is an
injective group homomorphism whose image ˛.A/ � SG is regular onG. A regular
embedding ˛ W A! SG induces a bijection

˛� W A! G; ˛�.a/ D ˛.a/ � 1G :

Define ˇ W G ! SA by ˇ.g/ D ˛�1� �G.g/˛�. Then ˇ is also a regular embedding.
In this way, we obtain a bijection from the set

A D fregular embeddings ˛ W A! SGg

to the set
G D fregular embeddings ˇ W G ! SAg;

whose inverse is obtained by the same construction with A and G interchanged. By
the observation of Childs, this restricts to a bijection from

A0 D f˛ 2 A W ˛.A/ is normalized by Gg

to
G0 D fˇ 2 G W ˇ.G/ � Hol.A/g:

If ˛ 2 A0 and � 2 Aut.A/, then also ˛� 2 A0. Thus Aut.A/ acts on A
(from the right) by composition. This action is fixed-point-free: if ˛� D ˛ then
� D idA. Moreover, for ˛, ˛0 2 A0, we have ˛0.A/ D ˛.A/ , ˛0 D ˛� for
some � 2 Aut.A/. Thus each regular subgroup ˛.A/ � SG normalized by G
corresponds to an orbit of A0 under Aut.A/, and each such orbit has cardinality
jAut.A/j. By Theorem A.1, the number of these subgroups is e.G;A/. Hence we
have jA0j D jAut.A/je.G;A/. A similar argument gives jG0j D jAut.G/jf .G;A/.
As there is a bijective correspondence between A0 and G0, Proposition A.2 follows.

The action of Aut.A/ on A0 by composition translates to an action on G0.
Explicitly, if ˛ 2 A0 corresponds to ˇ 2 G0, and � 2 Aut.A/, then ˛0 D ˛�

corresponds to ˇ0 where ˇ0.g/ D ��1ˇ.g/� 2 SA. Thus the action of Aut.A/ on G0
is by conjugation inside SA, and this action is again fixed-point-free. Two elements
of G0 give rise to the same regular subgroup of Hol.A/ if and only if they are in the
same orbit under this action. Thus the Hopf–Galois structures of type A on L=K
correspond bijectively to the Aut.A/-conjugacy classes of G0.

One may check that the action of Aut.A/ on G0 by conjugation commutes with
the action of Aut.G/ by composition.

We now turn to the classification of skew braces. We have the following result
from [33, Proposition 4.3].
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Proposition A.3. LetA be a group. There exists a bijective correspondence between
isomorphism classes of skew braces with additive group isomorphic toA and classes
of regular subgroups of Hol.A/ under conjugation by elements of Aut.A/.

Proof. Let B.A/ be the set of isomorphism classes of skew braces with additive
group A and let R.A/ be the set of equivalence classes of regular subgroups of
Hol.A/ under conjugation by Aut.A/.

LetG be a regular subgroup ofHol.A/. The regularity ofG implies that� WG!A,
�.a; f / D a, is bijective. Then A with the operation

a ı b D �.��1.a/��1.b// D af .b/

is a group isomorphic to G. Since

a ı .bc/ D af .bc/ D af .b/f .c/ D af .b/a�1af .c/ D .a ı b/a�1.a ı c/;

the set A is a skew brace. A routine calculation shows that this correspondence
induces a map C WR.A/! B.A/.

Let BWB.A/ ! R.A/ be given by B.A/ D f.a; �a/ W a 2 Ag. Routine
calculations show that the map B is well-defined and that B ı C D idR.A/ and
C ı B D idB.A/.

Remark A.4. Proposition A.3 was proved for classical braces by Bachiller [4, Prop-
osition 2.3].

In terms of the preceding notation, the regular subgroups of Hol.A/ which are
isomorphic to G correspond to orbits of G0 under Aut.A/, and the isomorphism
classes of skew braces with multiplicative group G and additive group A correspond
to orbits of G0 under Aut.G/ � Aut.A/. We summarize the above discussion in the
following result.
Theorem A.5. Let A and G be finite groups of the same order, and let G0 be the set
of regular embeddings G ! Hol.A/. Then G0 admits commuting actions (from the
right) of Aut.G/ by composition and of Aut.A/ by conjugation in S.A/.

The set of Hopf–Galois structures of type A on a Galois extension of fields
with group G corresponds bijectively to the set of orbits G0=Aut.G/, while the set
of isomorphism classes of skew braces with multiplicative group G and additive
group A corresponds bijectively to the set of orbits G0=.Aut.G/ � Aut.A//.

Hence there is a surjective map from this set of Hopf–Galois structures to this set
of isomorphism classes of skew braces, induced by the canonical surjection

G0=Aut.G/� G0=.Aut.G/ � Aut.A//:

Remark A.6. While each of the groups Aut.A/ and Aut.G/ acts without fixed points
on G0, this is not true for Aut.G/ �Aut.A/, and the orbits under this group need not
all have the same size.
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In more concrete terms, in order to count either Hopf–Galois structures or skew
braces, we need to determine the regular subgroups of Hol.A/ isomorphic to G. To
obtain the number of Hopf–Galois structures, we take the number of such subgroups
and adjust by the factor jAut.G/j=jAut.A/j as specified in PropositionA.2. To obtain
the number of skew braces (up to isomorphism), we take the number of orbits of such
subgroups under conjugacy by Aut.A/. In general, these orbits are of different sizes,
so there is no simple relationship between the number of Hopf–Galois structures and
the number of skew braces.

We illustrate the difference between counting Hopf–Galois structures and
counting skew braces by means of an example.
Example A.7. Let G D Cpn be the cyclic group of order pn for an odd prime p
and n 2 N. In this case, the Hopf–Galois structures were determined by Kohl [37]
(see also [17, Theorem 9.1]), and the classical braces were determined by Rump [45].
If A is a group of order pn (not necessarily abelian) such that Hol.A/ contains an
element of order pn then in fact A is cyclic [37, Theorem 4.4]. Thus every Hopf–
Galois structure on a cyclic field extension of degree pn is of cyclic type, and every
skew brace with multiplicative group Cpn also has additive group Cpn . In particular,
there are no such skew braces beyond the classical braces found by Rump. Let � be
a generator of A D Cpn . Then

Aut.A/ D f�u W u 2 .Z=pnZ/�g;

where �u.�/ D �u. Now any regular subgroup G of Hol.A/ must contain a unique
element of the form .�; �u/, and it easy to check that this element generates G.
Moreover, u � 1 .mod p/ since �u must have p-power order. Hence there are pn�1
possibilities for u. This gives pn�1 distinct regular subgroups, and hence pn�1
Hopf–Galois structures. To count the skew braces, we must consider the orbits of
these subgroups under conjugacy by Aut.A/. Now if G D h.�; �u/i then �vG��1v is
generated by .�v; �u/. This subgroup is also generated by a unique element of the
form .�; �w/. As v varies, the possible values ofw are precisely those such that u�1
and w � 1 are divisible by the same power of p. Hence we obtain n skew braces (up
to isomorphism), corresponding to

u D 1; 1C pn�1; 1C pn�2; : : : ; 1C p:

These skew braces have socles of size

pn; pn�1; : : : ; p;

respectively, and the corresponding orbits of regular subgroups under the action of
Aut.A/ have sizes

1; p � 1; p.p � 1/; : : : ; pn�2.p � 1/;

respectively.
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Having explained the connection between skew braces and Hopf–Galois
structures, we restate a couple of known results for Hopf–Galois structures in terms
of skew braces. The first example is the uniqueness result [33, Theorem 1]:

Theorem A.8. Let n 2 N. There is a unique skew brace of size n if and only if n
and �.n/ are coprime, where � denotes the Euler’s totient function.

The following result is [11, Theorem 2]:

Theorem A.9. Let A be a finite skew brace with abelian multiplicative group. Then
the additive group of A is solvable.

Question A.10. Let A be a skew brace with multiplicative group isomorphic to Z.
Is the additive group of A also isomorphic to Z?

In [33, Algorithm 5.1] amethod to enumerate skew braces of small size appears. It
is based on Proposition A.3. An easy modification of the Magma [7] implementation
of [33, Algorithm 5.1] allows us to enumerate Hopf–Galois extensions of small
degree using Proposition A.2.

Example A.11. In [10, Corollaries 6.3 and 6.4] one finds that

e.S3;S3/ D e.C6;S3/ D 2; e.S3; C6/ D 3; e.C6; C6/ D 1:

In [10, Corollary 6.6] one finds that

e.C7 Ì C3; C7 Ì C3/ D 16; e.C7 Ì C3; C21/ D 7;
e.C21; C7 Ì C3/ D 4; e.C21; C21/ D 1:

Let n 2 N. Let G1; : : : ; Gm be a complete set of representatives of isomorphism
classes of groups of order n. To record the number of Hopf–Galois extensions of
degree n, we constuct an m �m array E.n/ in which the .i; j /-entry is the number
e.Gi ; Gj /.

Example A.12. The arraysE.8/ andE.12/ are shown in Tables 2 and 3, respectively.

C8 C4 � C2 C4 Ì C2 Q8 C 32

C8 2 0 2 2 0
C4 � C2 4 10 6 2 4
C4 Ì C2 2 14 6 2 6
Q8 6 6 6 2 2
C 32 0 42 42 14 8

Table 2. The number of Hopf–Galois extensions of fields of degree eight.
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C3 Ì C4 C12 A4 C6 Ì C2 C6 � C2

C3 Ì C4 2 3 12 2 3
C12 2 1 0 2 1
A4 0 0 10 0 4
C6 Ì C2 14 9 0 14 3
C6 � C2 6 3 4 6 1

Table 3. The number of Hopf–Galois extensions of fields of degree twelve.

The number h.n/ of Hopf–Galois structures of degree n is

h.n/ D

mX
iD1

mX
jD1

e.Gi ; Gj /:

Some values of h.n/ are shown in Table 4.

n 6 8 10 12 14 16 18 20
h.n/ 8 190 10 102 12 25168 289 166

n 21 22 24 25 26 27 28 30
h.n/ 28 16 5618 30 18 4329 128 80

n 34 36 38 40 42 44 45 46
h.n/ 22 5980 24 8556 374 184 12 28

Table 4. The number h.n/ of Hopf–Galois extensions of fields of degree n.

Problem A.13. Compute h.32/.
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