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Abstract. For integers e; ` � 2, the level ` Fock space has an sl1-crystal structure arising from

the action of a Heisenberg algebra, intertwining the csle-crystal. The vertices of these crystals
are charged `-partitions. We give the combinatorial rule for computing the arrows anywhere
in the sl1-crystal. This allows us to pinpoint the location of any charged `-partition. As an
application, we compute the support of the spherical representation of a cyclotomic rational
Cherednik algebra, and in particular, the set of parameters such that it is finite-dimensional. We
also give an easy abacus characterization of all finite-dimensional representations of type B

Cherednik algebras.
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1. Introduction

. . . in einem bloßen Hin und Her,
Vor und Zurück. . .

Stefan Zweig

The level ` Fock space, whose standard basis consists of all `-partitions, appears as the
Grothendieck group of categories of representations of cyclotomic rational Cherednik
algebras, Hecke and q-Schur algebras at roots of unity, and finite classical groups
in non-defining characteristic. These identifications require a choice of parameters
s 2 Z

` and e 2 Z�2 for the Fock space, then denoted Fs. There are two important

crystal structures on Fs: the csle-crystal and the sl1-crystal, both of which are
represented by a graph whose vertices are the standard basis elements of Fs. The
csle-crystal is categorified by parabolic branching rules in the respective module
categories; this is related to induction and restriction with respect to parabolics of the
same type [1, 7, 35]. Moreover, the rule for computing the csle-crystal is known: the
arrows are given by adding “good” nodes of a given content modulo e [11, 24]. The
sl1-crystal is categorified by the action of a Heisenberg algebra on the cyclotomic
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Cherednik category O [29, 36]; this action is related to parabolic induction with
respect to type A parabolics [36]. Previous work by Losev [29] and the first author [14]
gave roundabout or indirect constructions of the sl1-crystal, with explicit formulas
only in special cases. This left open the problem of formulating a direct combinatorial
rule for the arrows in the sl1-crystal.

The motivation for studying the combinatorics of the sl1-crystal is that the
csle- and sl1-crystals taken in conjunction provide the answers to some important
representation theoretic questions, in particular about the cyclotomic Cherednik
category O. The simple objects L.�/ of O are parametrized by `-partitions � [16].
The finite-dimensional simple modules (cuspidals) are exactly those L.�/ such that �

is a source vertex for both the csle- and sl1-crystals [29,36]. More generally, the two
crystals determine the Harish-Chandra series of O: the cuspidal support of L.�/ can
be read off from the location of � in the csle- and sl1-crystals [29,31,36].

In this paper, we study the sl1-crystal of higher level Fock spaces (so for ` � 2)
using combinatorics of `-abaci, which encode charged `-partitions using beads on `

runners. Our first main result gives a simple rule for computing the incoming and
outgoing arrows of the sl1-crystal at a vertex A for an arbitrary `-abacus A, from
which we derive a formula for the position of A in its connected component. In order
to state our theorem, we adapt the notion of e-period from [20], defining certain
patterns of e beads in the abacus called fore and aft periods (Definition 4.5).

Theorem A. (a) Let A and A
0 be `-abaci. There is an arrow A ! A

0 in the
sl1-crystal if and only if for some k 2 N, A

0 is obtained from A by shifting the
kth fore period Pk of A one unit to the right, and the shift QPk of Pk is equal to
Q0

k
, the kth aft period of A

0.

(b) The position of a vertex A in the sl1-crystal is determined by a partition � that
can be read off directly from A.

Part (a) of the above statement is Theorem 4.15, and provides the analogue for
the sl1-crystal to the celebrated csle-crystal rule [11]. It allows us to construct the
entire connected component of the sl1-crystal containing an arbitrary `-abacus A,
completing the results of [15, Section 5]. Part (b) is a reformulation of Theorem 5.1.
This gives an easy way to compute the depth q.�/ of � in the sl1-crystal, which is
equal to j� j (where � is the `-partition read off from A). The number q.�/ gives one
part of the support of the simple module L.�/ [29].

In special cases, our results allow us to deduce closed formulas. Section 6
presents a closed combinatorial formula for each `-partition in a certain connected
component of the sl1-crystal component when the charge s 2 eZ

` (this is the
lattice cZ of [29, Section 1.2] containing the origin). The connected component in
question is the one containing the empty `-partition, and consists of all `-partitions
which are simultaneously singular for the action of csle and of its level-rank dual
(see [14]).
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Applications to representation theory of Cherednik algebras. In Section 7 we
answer some classical questions about the representation theory of cyclotomic rational
Cherednik algebras. Our first result on this topic consists of a formula for the set of
charges s 2 Z

` such that the spherical representation L.Triv/ of Hc.G.`; 1; n// has
a given support. Fix s 2 Z

`, normalized so that s1 D n � e � 1 (without loss of
generality). Let q.Triv/ and p.Triv// denote the depth of A.Triv; s/ in the sl1- and
csle-crystals, respectively. Set m D minfn mod e; sj mod e j sj � 0; 2 � j � `g.
The following result is Theorem 7.1.

Theorem B. Write n D qe C r with q; r 2 N [ f0g and r < e. We have

q.Triv/ D

(
q if sj < 0 for all j � 2;

0 if sj � 0 for some j � 2;

p.Triv/ D

(
r if sj < 0 for all j � 2;

m if sj � 0 for some j � 2:

Theorem B with ` D 2 overlaps with a result of [9, Section 4.2]; Corollary 7.5
implies [17, Corollary 5.4] and answers [17, Question 5.5] in the affirmative, which
is also answered by the forthcoming [18]. Outside type A, finite-dimensional
simples L.�/ occur for � such that dim � > 1, and it is an interesting and difficult
problem to classify them. Corollary 7.8 replaces Triv D ..1n/; ;; : : : ; ;/ with
a rectangular partition concentrated in one component, and with similar formulas
to Corollary 7.5 identifies the parameters such that the corresponding Cherednk
algebra representation is finite-dimensional. Theorem 7.11 calculates the depth
of � D .�; ;; : : : ; ;/ in the sl1-crystal for any partition �, and Theorem 7.10
identifies when dim L.�/ < 1. Corollary 7.14 classifies all finite-dimensional
Hc.Bn/-modules by a pattern avoidance condition on abaci:

Theorem C. A charged bipartition j�; si labels a finite-dimensional representation of
Hc.Bn/ if and only if the abacus A of j�; si avoids the eC1 patterns of Theorem 7.13,
and additionally, any bead in A with a space directly to its left is either the last bead
of a period, or sits above an empty space or the last bead of a period.

Relation of our work to previous work on the sl1-crystal. We now discuss the his-
tory of the problem and previous work by other authors. A first method for computing
the sl1-crystal was found by Losev [29]. He gives a formula for the action of the
annihilation operators in the case of an asymptotic parameter [29, Proposition 1.1],
then introduces wall-crossing functors which commute with the sl1- and csle-crystals
in order to transfer the sl1-crystal to other chambers of the parameter space.
These functors induce a bijection on the set of `-partitions; concrete computations
with the sl1-crystal can then be performed given a precise understanding of the
combinatorics of iterated wall-crossings. Jacon and Lecouvey recently found a
combinatorial description of crossing a single wall [21], however the composition of
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wall-crossings becomes complicated, and there is no known closed formula for an
arbitrary composition of wall-crossings. The number of walls grows as the size of the
`-partitions increases, but the number of asymptotic chambers stays fixed, so that the
number of walls that must be crossed to compute the sl1-crystal for all parameters
and larger `-partitions increases.

We use combinatorics of e-periods in abaci to study the sl1-crystal, continuing
the project begun in the first author’s previous work [15, Section 5], in which the
action of the operators Qa� of [29, 36] was expressed in terms of adding “good
vertical e-strips”. This yielded a way to compute the sl1-crystal of the ` Fock
space recursively, starting from the empty `-partition, and starting a new connected
component at every `-partition with no incoming arrow. However, the sl1-crystal
structure is not directly given by the operators Qa�, which rather describe the action of
the Heisenberg algebra at the crystal level. In particular, [15] did not give a formula
for the action of the creation and annihilation operators of sl1. The questions of
describing the edges in the sl1-crystal, how to compute a path leading to the highest
weight vertex, how to determine the position or depth of a multipartition in the
sl1-crystal, remained open. Likewise, the wall-crossing approach left it as an open
question whether any direct combinatorial rule existed for computing the arrows in
the sl1-crystal or the depth of an `-partition in an arbitrary chamber [29, Section 1.2].
Our construction resolves these questions.

2. Combinatorics of abaci and crystal structures

2.1. Abaci. Fix ` 2 Z�2. An `-abacus is a subset A of Z � f1; : : : ; `g such that
there exists m�; mC 2 Z verifying:

� For all ˇ � m� and for all j 2 f1; : : : ; `g, .ˇ; j / 2 A.

� For all ˇ � mC and for all j 2 f1; : : : ; `g, .ˇ; j / … A.

The `-abacus A is represented by ` rows of beads (numbered from 1 at the bottom
to ` at the top); the position .column; row/ of a bead is given by .ˇ; j /, and we will
therefore write b D .ˇ; j / for the bead b of A in position .ˇ; j /. Accordingly, a pair
.ˇ; j / 2 Z � f1; : : : ; `g such that .ˇ; j / … A will be called a space of A. We see
that an abacus is infinitely full in the left direction and infinitely empty in the right
direction. For k 2 N and j 2 f1; : : : ; `g, the kth bead in row j of A, denoted b

j

k
,

is the kth element of the set A \ f.ˇ; j / I ˇ 2 Zg written in decreasing order (with
respect to the natural order on Z � fj g induced by � on Z).

We define the charge of A as the element s D .s1; : : : ; s`/ of Z
` such that in

the abacus obtained from A by pushing all beads as far to the left as possible, the
rightmost bead in row j , say b D .ˇ; j /, verifies ˇ D sj , for all j 2 f1 : : : ; `g.
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Let s D .s1; : : : ; s`/ 2 Z
`. The set of `-abaci with charge s is in bijection with

the set of `-partitions

f� D .�1; �2; : : : ; �`/ j �j D .�
j
1 ; �

j
2; : : : / is a partition for each j D 1; : : : ; `g

via the map A 7! � D ..�1
1; �1

2; : : : /; : : : ; .�`
1; �`

2; : : : // defined by

.ˇ; j / 7! �
j

k
D ˇ � sj C k � 1

for all .ˇ; j / 2 A, where k 2 Z�0 is such that .ˇ; j / D b
j

k
. We will sometimes

also write ˇ D ˇ.b/ and j D j.b/ for a bead b D .ˇ; j /. These are the ˇ-numbers
associated to A (or to � and s), see [22,23]. In particular, we have b

j

k
D .ˇ.b

j

k
/; j /.

We write j�; si for the data consisting of an element s 2 Z
` and an `-partition �,

and call it a charged `-partition. Further, we write A D A.�; s/ for the corresponding
`-abacus, and will often identify A with j�; si.

Example 2.1. Let `D3, �D ..10; 9; 1/; .93; 7; 6; 4; 1/; .6; 32// and sD .�4; 0; �5/.
Then we have

A.�; s/ D

3
2
1

11109876543210-1-2-3-4-5-6-7-8-9

The elements j�; si, for s fixed and � varying, form the C-basis of the so-called
level ` Fock space, denoted Fs.

Remark 2.2. It is helpful to keep in mind that the beads of the abacus correspond
to the parts of the partition (considered as having infinitely many parts equal to 0).
From the formula ˇ D �

j

k
� k C 1 C sj , one sees that the position ˇ 2 Z of a given

bead b D .ˇ; j / in its row j on the abacus is equal to the “shifted content” of the
space to the right of the last box in the corresponding row in �j . Adding/removing
a box to/from a row of a Young diagram corresponds on the abacus to shifting the
bead encoding that row one space to the right/left, see also [15, Section 2.1.2].

2.2. bsle-crystal of the Fock space. Let e 2 Z�2. Then the Fock space has an csle-

crystal structure, whose data is encoded in the csle-crystal graph (and as is classically
done, we use the term “crystal” in place of “crystal graph”). This is usually
achieved by replacing the ground field C by the field of rational functions C.v/,
and by endowing the resulting space F

v
s (called the v-deformed Fock space) with

the structure of an integrable U
0
v.csle/-module [12, 24], which depends on the

parameters s and e. By Kashiwara’s theory of crystals for quantum groups [19,25], the
representation F

v
s has a U

0
v.csle/-crystal structure, a combinatorial datum controlling

the behaviour of the U
0
v.csle/-module “at v D 0”. Since the role of v is irrelevant
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for our purpose, we will simply talk of the csle-crystal for Fs. (This is also justified
by the fact that the cyclotomic Cherenik category O provides an csle-categorification
of Fs, see Section 3.8.)

The csle-crystal is a directed colored graph whose vertices are the standard basis
elements j�; si of Fs, and whose arrows represent the action of the Kashiwara crystal
operators Qfi (or equivalently Qei by reversing the arrows) for i D 0; : : : ; e�1. Explicit
formulas for computing it are known. We briefly recall the rule for the arrows in the
csle-crystal in the language of abaci.

Firstly, this requires the notion of good left- and right-shiftable i -beads. Let A

be an `-abacus with charge s. Let b D .ˇ; j / 2 A, and let i D ˇ mod e. If
.ˇC1; j / … A (respectively .ˇ�1; j / … A), then b is called a right-shiftable i -bead
(respectively a left-shiftable .i �1/-bead). For a right-shiftable bead b D .ˇ; j / 2 A

(regardless of the value of ˇ mod e), one can define shifting b in A one unit to the
right as the procedure replacing A by .A n fbg/ t fb0g, where b0 D .ˇ C 1; j /. One
similarly defines shifting b one unit to the left for a left-shiftable bead b.

Remark 2.3. We have chosen our definitions of “left-shiftable i -bead” and “right-
shiftable i -bead” so that shifting a right-shiftable i -bead to the right corresponds
to adding an addable i -box to the Young diagram of j�; si , while shifting a left-
shiftable i -bead to the left corresponds to removing a removable i -box from the
Young diagram of j�; si . Please note that a left-shiftable i -bead b D .ˇ; j / satisfies
ˇ D i C1 mod e, and not ˇ D i mod e. Indeed, ˇ �1 is the content of the rightmost
box in a row of the Young diagram of �j .

Secondly, this rule requires an order on the beads of a given abacus with charge s.
For beads b D .ˇ; j / and b0 D .ˇ0; j 0/ in A, set

b < b0 ” ˇ < ˇ0 or . ˇ D ˇ0 and j > j 0 /:

The following procedure was explained in [11, Section 2.1], see also [12,
Section 6.2.10]. Form the sequence .b1; b2; : : : ; br/ of all left- and right-shiftable i

beads of A, where b1 < b2 < � � � < br , and encode each bk by � if it is left-shiftable
and by C if it is right-shiftable, and form the corresponding word w. Delete all
subwords of the form �C in w recursively, ending up with a word w0 of the form
C C � � � C � � � � � �. The word w0 depends only on w and is independent of the
order in which the deletions are made. The good left-shiftable i -bead (respectively
good right-shiftable i -bead) of A is, if it exists, the bead bk of w corresponding to
the leftmost � (respectively the rightmost C) in w0.

Remark 2.4. Note that the order generalises the usual order on beads of level one
(i.e. one-runner) abaci in a non-canonical way. Indeed, this order gives rises to the so-
called Uglov realization of the csle-crystal, in opposition to the Kleshchev realization
(inducing an isomorphic but different crystal) which arises from another order on
beads, see for instance [12, Example 6.2.16]. For our purposes, it is essential to work
with Uglov’s realization, see Section 3.8.
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Theorem 2.5 ([24, Section 3], [11, Theorem 2.8]). There is an arrow A
i

! A
0 in

the csle-crystal if and only if the following equivalent situations hold:

(1) A
0 is obtained from A by shifting its good right-shiftable i -node one unit to the

right.

(2) A is obtained from A
0 by shifting its good left-shiftable i -node one unit to the

left.

Remark 2.6. Translating the charge s by an integer t amounts to translating the labels
of the arrows of the csle-crystal graph by t mod e.

Example 2.7. Let ` D 3 and A D A.j�; si/ be as in Example 2.1. Take e D 2. Let
us compute the incoming and outgoing 0-arrows of the csl2-crystal at the vertex A. The
right-shiftable 0-beads of A.�; s/ are: .6; 1/, .4; 1/, .4; 2/, .2; 2/, .�8; 3/. The left-
shiftable 0-beads of A.�; s/ are: .7; 2/, .1; 3/, .�1; 2/, .�5; 1/, .�5; 2/. Ordering
the right- and left-shiftable 0-beads we obtain the word C � .�.�.�C/C/C/.�C/

whose reduced word is C�. The good right-shiftable 0-bead is .�8; 3/, the good
left-shiftable 0-bead is .�5; 2/.

Each connected component of the csle-crystal has a unique source vertex. Such
elements are called highest weight vertices for csle . In [20], Jacon and Lecouvey have
given a combinatorial characterisation of highest weight vertices for csle . Let us recall
it here by translating it into the language of abaci.

Definition 2.8 ([20, Definition 2.2]). Let A be an `-abacus. The first e-period of A

is, if it exists, the sequence of e beads P1 D .bi D .ˇi ; ji//iD1;:::;e of A satisfying
ˇiC1 D ˇi � 1 for all i D 1; : : : ; e � 1 such that

(1) jiC1 � ji for all i D 1; : : : ; e � 1,

(2) ˇ1 D max fˇ j .ˇ; j / 2 A; 1 � j � `g,

(3) ji D min fj j .ˇ; j / 2 A; ˇ D ˇig.

The procedure A 7! A n P1 is called peeling P1 off A. Recursively, one defines
the kth e-period of A as, if it exists, the first e-period of the abacus obtained from A

by peeling off P1; : : : ; Pk�1. We call A totally e-periodic if there exists k � 0 and
r 2 Z

` such that peeling off the first k periods of A results in A.;; r/. We have the
following result [20, Theorem 5.9].

Proposition 2.9. An abacus is a highest weight vertex for csle if and only if it is totally
e-periodic.

2.3. sl1-crystal of the Fock space. There is a second important action on level `

Fock spaces, namely that of a Heisenberg algebra. This was first investigated by
Uglov [38], where he considered the action of a quantum Heisenberg algebra on the
v-deformed Fock space. It has been shown in [29] (using a Heisenberg categorical
action appearing in [36]) that this action yields a new crystal structure on Fs, called
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the sl1-crystal (or sometimes the Heisenberg crystal). Another definition of the
sl1-crystal has then been given in [15] in purely combinatorial terms.

The sl1-crystal is determined by the action of some operators Qb� 1, where �

is a partition, that commute with the Kashiwara csle-crystal operators Qfi , Qei . It is
encoded in a directed graph whose vertices are all abaci with charge s, and each
of whose connected components is isomorphic to the Kashiwara sl1-crystal on
partitions (the direct limit of the Kashiwara Uv.sle/-crystals on partitions), i.e. to
the Young graph [34, Definition 5.1.2] (the branching graph of the symmetric group
in characteristic 0). Each connected component of this graph has a unique source
vertex, called a highest weight vertex for sl1. For each A 2 Fs, there exists a unique
partition � such that A D Qb�A

ı, where A
ı is the unique highest weight vertex A

ı

in the connected component of A2.
In [14, Section 6.3], the operators Qb� have been expressed as the composition

of more elementary operators QbC
k

, where k 2 Z. Drawing an arrow labeled by k

between two abaci A and A
0 whenever A

0 D QbC
k

A gives the description of the
sl1-crystal isomorphic to the Young graph. Reversing the arrows gives the action of
operators denoted by Qb�

k
3. The graph isomorphism between an arbitrary connected

component of the sl1-crystal and the Young graph is then given by the bijection
A D Qb�A

ı 7! � , and an arrow labeled k goes to an arrow that adds a box of
content k to a partition.

Remark 2.10. The operators Qb˙
k

are analogues of the Kashiwara crystal operators
for the Heisenberg algebra. More precisely, they are the image of the Kashiwara
operators of Uv.sl1/ under a certain bijection, see [14] and [15].

An explicit formula for computing the sl1-crystal of Fs using Qb� has been first
given in [15, Theorem 5.11] using the combinatorics of vertical strips. We do not
recall the definition of addable (respectively removable) vertical e-strips here and
refer to [15, Definition 5.1]. The order < on beads of an abacus corresponds to
an order on multipartitions by the correspondence of Section 2.1. This extends
lexicographically to an order on addable (respectively removable) vertical e-strips.

Definition 2.11 ([15, Definition 5.5]). The kth good addable vertical e-strip Xk

of j�; si is defined recursively as follows:

� X1 is the maximal addable vertical e-strip.

� For k > 1, Xk is the maximal addable vertical strip X satisfying X < Xk�1 and
.[k�1

iD1Xi / \ X D ;.

Theorem 2.12. Let � D .�1; �2; : : : / be a partition. The operator Qb� acts on any
charged multipartition by recursively adding the kth good vertical e-strip �k times
for each k � 1.

1In [36], they are denoted Qa� .
2In [14] and [15], the partition � is denoted �.

3In [14] and [15], Qb˙
k

are denoted Qb˙1;k .
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Thanks to this formula we can reconstruct the whole sl1-crystal of Fs. However,
the process of constructing the sl1-crystal using Theorem 2.12 is recursive: it
requires one to start from the highest weight vertex .;; ;; : : : ; ;/ and then to apply the
various operators Qb� , adding a new crystal component whenever there is no incoming
arrow at an `-partition �. In Section 4, we will give an explicit description of the
action of Qb˙

k
on an arbitrary `-partition � in terms of abaci, consequently permitting

the construction of any connected component of the sl1-crystal starting from any �

in that connected component. This will yield an easy formula (Theorem 5.1) for
finding the position of any vertex in its connected component without going back to
the source.

Remark 2.13. The sl1-crystal is invariant under componentwise translation of the
charge s by any integer t . For this reason, together with Remark 2.6, we may omit
the labeling of columns by ˇ-numbers when drawing an abacus.

Example 2.14. The following is the beginning of two connected components of the
sl1-crystal of the level 2 Fock space with parameters s D .0; 1/ and e D 3.

- - -

3. The cyclotomic rational Cherednik algebra and its Category O

In this section we explain the representation theoretic meaning of the sl1-crystal
from the viewpoint of cyclotomic rational Cherednik algebras.

3.1. The rational Cherednik algebra Hc.W /. Let h be a vector space over C

of dimension n 2 N, and let W � GL.h/ be a finite subgroup generated by S WD

fs 2 W j rk.Id � s/ D 1g (such elements s are called reflections). The pair .h; W /



112 T. Gerber and E. Norton

is called a complex reflection group [4, Section 1.A]. For each reflection s 2 S ,
let ˛s 2 h� and ˛_

s 2 h be eigenvectors with eigenvalue different from 1 such that
h˛s ; ˛_

s i D 2 where h�; �i W h� � h �! C is the natural pairing. Let c W S ! C be
a conjugacy-invariant function on the set of reflections of W and write cs for c.s/.
We may think of c as a multiparameter attaching a parameter to each conjugacy class
of reflections; with this understood, we will refer to c simply as a parameter. The
rational Cherednik algebra Hc.W; h/ is the quotient of T.h ˚ h�/ Ì CŒW � by the
relations

Œx; x0� D 0; Œy; y0� D 0; Œy; x� D hy; xi �
X

s2S

csh˛s ; yihx; ˛_
s is

for all x; x0 2 h� and all y; y0 2 h [10]. We will write Hc.W / for Hc.W; h/. The
rational Cherednik algebra is called rational double affine Hecke algebra (rational
DAHA) by some authors, e.g. in [36,39].

3.2. The cyclotomic rational Cherednik algebra Hc.G.`; 1; n//. The group
G.`; 1; n/ � GL.n; C/ consists of all n � n permutation matrices whose nonzero
entries are `th roots of 1. It is the semidirect product �n

Ì Sn where � is the
group of `th roots of 1 in C

�. The Weyl groups Sn D An�1 D G.1; 1; n/ and
Bn D G.2; 1; n/ appear as special cases. From now on, take ` � 2 and h D C

n.
Fix the standard basis fyig, i D 1; : : : ; n, for h (i.e. yi is the vector with 1 in the i th
place and 0’s elsewhere). Then h� ' C

n with dual basis fxig, i D 1; : : : ; n. The set
of reflections S in G.`; 1; n/ is given by:

S D f
i j 1 ¤ 
 2 �; i D 1; : : : ; ng [ fs


ij j 
 2 �; 1 � i < j � ng;

where 
i WD diag.1; : : : ; 
; : : : ; 1/ with 
 in the i th place, and s


ij WD 
�1

i sij 
i D

sij 
i

�1
j . There are ` conjugacy classes of reflections in G.`; 1; n/: one class

containing all s


ij , and one class for each 
 2 � , 
 ¤ 1, consisting of all 
i ,

i D 1; : : : ; n.

For each reflection s 2 S we fix the eigenvectors ˛s , ˛_
s as follows. For s D s



ij

we take ˛s D ˛


ij WD .0; : : : ; �
; : : : ; 1; : : : ; 0/ 2 h� with �
 in the i th place and 1

in the j th place. Then .˛


ij /_ WD .0; : : : ; �
�1; : : : ; 1; : : : ; 0/ 2 h. The reflection

s D 
i has xi 2 h� and yi 2 h as eigenvectors with eigenvalue different from 1, but
in order that h˛s ; ˛_

s i D 2, we take ˛s D xi and ˛_
s D 2yi .

Fix a parameter c W S ! C. Let � be the parameter for the conjugacy class
of s



ij , and let c
 be the parameter for the conjugacy class of 
i , 
 ¤ 1 2 � . The

cyclotomic rational Cherednik algebra is generated by the group algebra CŒG.`; 1; n/�
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and the two polynomial algebras CŒx1; : : : ; xn� and CŒy1; : : : ; yn� with relations
sij yk D ysij .k/sij , sij xk D xsij .k/sij , 
j yi D ıij 
yi
j , 
j xi D ıij 
�1xi
j , and
the following two relations. If i ¤ j then:

Œyi ; xj � D �
X


2�

�h˛


ij ; yiihxj ; .˛



ij /_is



ij D �

X


2�


s


ij :

If i D j then:

Œyi ; xi � D 1 � �
X

j ¤i

X


2�

s


ij �

X

1¤
2�

2c
 
i :

3.3. Parameters for the cyclotomic Cherednik algebra versus parameters for the

Fock space. Shan and Vasserot introduce a reparametrization for Hc.G.`; 1; n// in
order to translate between the Cherednik algebra parameters and the Fock space
parameters [36, Section 3.3]:

h D ��; �c0

 D

`�1X

pD0


�php

Here, c0

 D 2c
 for 
 ¤ 1 and c0

1 D �1. If e 2 Z�2, s D .s1; : : : ; s`/ 2 Z
` are

the parameters for the level ` Fock space, then following [36, Theorem 6.10] the
corresponding Cherednik algebra parameters are given by:

h D �1=e; hp D .spC1 � sp/=e; p > 0:

Then � D 1=e > 0, and using this convention we are opposite to Losev
in [29] who takes � D �1=e; therefore by [29, Section 4.1.4], whenever Losev
has j.�1; �2; : : : ; �`/; .s1; s2; : : : ; s`/i, we have

j..�1/t ; .�2/t ; : : : ; .�`/t /; .�s1; �s2; : : : ; �s`/i:

3.4. Category Oc.W /. The category Oc.W / is the category of finitely generated
Hc.W /-modules on which h acts locally nilpotently [16]. It is a highest weight
category with finitely many simple objects, which are labeled by the irreducible
representations of W over C [16]. In the case of W D G.`; 1; n/, this means that
the simple objects are labeled by `-partitions � of n. We write L.�/ for the simple
module in Oc.W / labeled by �. For a generic parameter c, Oc.W / ' CŒW � and
L.�/ Š CŒx1; : : : ; xn� ˝ � as C-vector spaces for all � 2 IrrW . We are interested in
those parameters for which Oc.W / is not a semisimple category and for which the
simple modules can be smaller.
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3.5. Integral parameters. In this paper we always assume that � D 1=e for some
integer e � 2 and that the Fock space Fs has integral charge s 2 Z

`; we call this the
case of integral parameters. The corresponding Cherednik algebra parameters are
then a subset of all parameters c such Oc.W / is not semisimple; a semisimplicity
criterion for Oc.W / was given by Rouquier in [32, Proposition 5.4]. However, the
general case can be reduced to the case of integral parameters. Indeed, Dipper and
Mathas proved such a reduction in the case of Hecke algebras of G.`; 1; n/ because of
the existence of a certain Morita equivalence, see [6, Theorem 1.1] or [12, Section 5.4]
for more details. The Cherednik category Oc.G.`; 1; n// is a highest weight cover
of the category of finite-dimensional modules for the Hecke algebra of G.`; 1; n/

at certain parameters determined by c [32] (highest weight covers were defined
in [32], and further developed in [30, 33]). Highest weight covers are unique up to
equivalence [30, 32, 33]; using this property, Rouquier showed that Oc.G.`; 1; n//

is equivalent to a direct sum over tensor products of category O’s corresponding
to Fock spaces with integral parameters [32, Theorem 6.13, Remark 6.16], with a
restriction on � which was later removed by Losev [28, Proposition 3.2]. Without
loss of generality we may therefore consider the integral parameter case, as is done
for example in [36].

3.6. Parabolic induction and restriction, and Harish-Chandra series. For any
parabolic subgroup W 0 � W (i.e. the stabilizer of a point in h), there are exact ([3]),
biadjoint ([27,35]) induction and restriction functors IndW

W 0 W Oc.W 0/ ! Oc.W / and
ResW

W 0 W Oc.W / ! Oc.W 0/ [3]. Finite-dimensional modules are characterized by
the property that their restriction to Oc.W 0/ for any parabolic W 0 � W is 0 [3]. For
this reason, finite-dimensional simple modules are sometimes referred to as cuspidal
modules (as in [17, Section 5.7], for example). Any simple module L 2 Oc.W /

appears as a direct summand of the head of IndW
W 0 L0 for some finite-dimensional

simple module L0 2 Oc.W 0/ and some parabolic subgroup W 0 � W [3]. Let us
call .W 0; L0/ a cuspidal pair if L0 is a finite-dimensional simple Oc.W 0/-module.
The cuspidal pair .W 0; L0/ such that HomOc.W /.IndW

W 0L0; L/ ¤ 0 is unique up to
W -conjugacy [31]. We will then use the standard terminology from Lie theory and
refer to .W 0; L0/ as the cuspidal support of L, and say that L belongs to the Harish-
Chandra series of .W 0; L0/. This is completely analogous to Harish-Chandra series in
Lie theory. In the case of finite unitary groups in positive, non-defining characteristic,
the parametrization of Harish-Chandra series by cuspidal pairs is known to coincide
with the parametrization of the Harish-Chandra series of a sum of type B Cherednik
algebras, see [8].

3.7. Parabolic subgroups and supports of simple modules in Oc.G.`; 1; n//.

The support of L.�/ is the set-theoretic support of L.�/ as a CŒh�-module. It has
a concrete description for G.`; 1; n/ which we explain now. Let W D G.`; 1; n/

for ` � 2 and W 0 � W be a parabolic subgroup. Parabolics W 0 of W are of the
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form G.`; 1; n1/ � Sn2
� Sn3

� � � � � Snu
with n1 C n2 C n3 C � � � C nu � n,

up to W -conjugacy. We are interested in those parabolics W 0 such that Oc.W 0/

contains a finite-dimensional representation. Suppose � D 1=e is the parameter
for the transpositions of Sn � W . Then Oc.W 0/ can contain a finite-dimensional
representation only when W 0 is of the form:

W 0 D G.`; 1; n � eq � p/ � S�q
e

up to conjugacy, with 0 � q � bn
e
c and 0 � p � n � eq; such a parabolic W 0 is the

stabilizer of the point

aD .0; : : : ; 0; x1; x2; : : : ; xp; y1; y1; : : : ; y1; y2; y2; : : : ; y2; : : : ; yq; yq; : : : ; yq/2h

where the entry 0 occurs n � eq � p times, and each entry yi occurs e times [29].
If .L0; W 0/ is the cuspidal support of L.�/ for some finite-dimensional simple
L0 2 Oc.W 0/, W hW 0

coincides with the support of L.�/. We then write p.�/

for p above and q.�/ for q above, as in [29].

3.8. i -induction and the bsle-crystal. One part of the support of L.�/, determined
by the integer p.�/, is given by the depth of � in the csle-crystal [29, 35].
Using Chuang and Rouquier’s technique of sl2-categorification [5], Shan showed
that the induction and restriction functors IndW

W 0 and ResW
W 0 , for W D G.`; 1; n/

and W 0 D G.`; 1; n � 1/, split into a direct sum of functors Fi and Ei respectively,
i D 0; : : : ; e � 1, which satisfy the defining relations of the Chevalley generators fi ,
ei of csle [35]:

IndW
W 0 D

M

0�i�e�1

Fi ; ResW
W 0 D

M

0�i�e�1

Ei :

The functors Fi and Ei are called i -induction and i -restriction, respectively. Taking
the head of Fi .L.�// and the socle of Ei .L.�// gives rise to an abstract crystal
structure on the Grothendieck group of

L
n�0 Oc.G.`; 1; n//, isomorphic to the

csle-crystal of the Fock space Fs (explained in Section 2.2), where s is determined
from c by the formulas of Section 3.3. Note that this isomorphism has been made
explicit by Losev [26, Theorem 5.1]: provided one works with Uglov’s realization
of the Fock space crystal, it is simply given by the correspondence ŒL.�/� $ �,
i.e. if QFi denotes head.Fi .�// and QEi denotes socle.Ei .�//, we have

QFi .L.�// D L. Qfi .�// and QEi .L.�// D L. Qei .�//;

where Qfi and Qei are the Kashiwara crystal operators on Fs of Section 2.2.

3.9. The functor A� and the sl1-crystal. We summarize the construction of the
sl1-crystal on Fs by Losev in [29, Section 5.1], who adapts the results of
Shan and Vasserot in [36, Section 5.6] to the language of crystals. Given a
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partition � D .�1; �2; : : : / and a positive integer k, write k� for the partition
.k�1; k�2; : : : /. Shan and Vasserot define an exact functor from Oc.G.`; 1; n�em//

to Oc.G.`; 1; n//, by:

A� .M/ D IndG.`;1;n/

G.`;1;n�em/�Sem
M � L.e�/

for � a partition of m and em � n (see [36, Definition 5.12], note that they denote A�

by a�
� ). Shan and Vasserot showed that the functor A� gives rise to an exact functor

on ˚nOc.G.`; 1; n// and that A� commutes with the i -induction and i -restriction
functors Fi and Ei [36, Proposition 5.15].

There is a bijection

fpartitionsg � f`-partitions � j p.�/ D 0; q.�/ D 0g

�! f`-partitions � j p.�/ D 0g

given by sending .�; �/ to � DW Qb� .�/ where L.�/ is the unique irreducible
constituent (up to multiplicity) in the head of A�.L.�// [36, Section 5.6], [29,
Section 5.1]. Since the set of partitions has an sl1-crystal structure, this bijection
induces an sl1-crystal structure on the set of `-partitions which have depth 0 in the
csle-crystal. Losev then extends the crystal to all of Fs as follows. Say � D F �0

where L.�0/ is finite-dimensional, equivalently where p.�0/ D q.�0/ D 0, and
where F is the composition of p > 0 i -induction functors Fi . Then the head of
A� .L.�// contains a unique simple L.�/ up to multiplicities [29, Proposition 5.1].
We then write Qb� .�/ WD �. The commutative diagram in [29, Proposition 5.1]
means that the entire sl1-crystal component of �0 can be translated by applying F

to each �0 in the sl1-crystal component of �0, producing an isomorphic crystal in
which every vertex has depth p in the csle-crystal. This gives a bijection as above:

fpartitionsg � f`-partitions � j p.�/ D p; q.�/ D 0g

�! f`-partitions � j p.�/ D pg

sending .�; �/ to � D Qb� .�/. These bijections taken over all p � 0 then induce
an sl1-crystal structure on Fs. The depth j�j of � in the sl1-crystal is equal
to q.�/, determining the other part of the support of the simple module L.�/ 2

Oc.G.`; 1; n// [29]. Via its definition using [29, Proposition 5.1], the sl1-crystal
commutes with the csle-crystal.

3.10. Finite-dimensional representations of Hc.G.`; 1; n//. When W D Sn, it is
well known that Oc.Sn/ contains a finite-dimensional module if and only if c D ˙r=n

with r 2 N coprime to n, and then there is exactly one finite-dimensional simple
module, L.Triv/ if c > 0 and L.Sign/ if c < 0 [2]. The category O for a direct
product of groups is the tensor product of the categories, and thus it follows that
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any L.�/ 2 Oc.Sn/ when c D r=e > 0 with r coprime to e and 2 � e � n

appears as a direct summand of the head of IndSn

W 0L.Triv�m/ where W 0 D S�m
e for

some 0 � m � bn
e
c [3]. Wilcox solved the problem of finding the support of any

simple L.�/ 2 Oc.Sn/ [40].
In general, a module L 2 Oc.W / is finite-dimensional if and only if its support

is 0. By the results of Shan, Shan and Vasserot, and Losev explained in the preceding
paragraphs, this means that the simple module L.�/ 2 Oc.G.`; 1; n// is finite-
dimensional if and only if � has depth 0 in both the csle- and sl1-crystals. The crystal
structures depend on the Fock space charge .e; s/, equivalently, on the parameter c,
so the classification of finite-dimensional representations also depends on c. We can
find the cuspidal support .W 0; L0/ of L.�/ 2 Oc.W / by finding W 0 using the formula
in Section 3.7, and finding L0 D L. Q�

ı
� Triv/ 2 Oc.G.`; 1; n � eq � p/ � .S

�q
e //

by first finding the source vertex Q� of the csle-crystal component containing �, and then
finding the source vertex Q�

ı
of the sl1-crystal component containing Q�.

4. The rule for the arrows in the sl1-crystal

4.1. Quasiperiods, fore periods, and aft periods.

Definition 4.1. Let A be an `-abacus. An e-quasiperiod in A is an ordered set of e

beads fb1; : : : ; beg of A such that that, if bi D .ˇi ; ji/ for i D 1 : : : e, the following
two conditions hold:

� ˇiC1 D ˇi � 1 for all i D 1; : : : ; e � 1.

� ji � jiC1 for all i D 1; : : : ; e � 1.

Definition 4.2. The abacus A is totally e-quasiperiodic if the set of beads of A can
be partitioned into e-quasiperiods.

In particular, e-periods (see Definition 2.8) are e-quasiperiods. When e is clear
from the context, we will simply write periods for e-periods and quasiperiods for
e-quasiperiods. Likewise, we might simply talk about totally periodic/quasiperiodic
abaci.

Recall the total order on beads defined in Section 2.2. The lexicographic extension
of that order to quasiperiods is a total order on the set of quasiperiods of A. If A is a
totally quasiperiodic abacus with a chosen set of quasiperiods QP1; QP2; : : : partitioning
its beads, the quasiperiods QP1; QP2; : : : may therefore be enumerated in such a way
that QPk > QPk0 for all k < k0.

Notation 4.3. Given a totally ordered set of quasiperiods QPk of A, k 2 N, write

fb
.m/

k
g for the beads of QPk , m 2 f1; : : : ; eg, ordered so that b

.m/

k
> b

.mC1/

k
for each

m � e � 1:

Lemma 4.4. An abacus A is totally quasiperiodic if and only if it is totally periodic.
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Proof. It is clear that if A is totally periodic then A is totally quasiperiodic.

Conversely, assume that A is totally quasiperiodic. We will describe an algorithm
that constructs the first period P1 of A step by step in such a way that the abacus at
each step remains totally quasiperiodic. The following picture illustrates the process:

�! �! �!

�! �!

Now we explain the algorithm. Let QP1; QP2; : : : be a chosen set of quasiperiods

partitioning the beads of A with QPk > QPk0 for all k < k0. Then b
.1/
1 is the maximal

bead in A. If QP1 is a period, we are done. Otherwise, if QP1 is not a period, then
there is a bead .ˇ; j / 2 A where .ˇ; j 0/ 2 QP1 and j < j 0. Pick the largest bead
.ˇ; j / such that this happens. Since A is totally quasiperiodic, .ˇ; j / belongs to a

quasiperiod QPk for some k ¤ 1. Write .ˇ; j 0/ D b
.m/
1 and .ˇ; j / D b

.n/

k
as above

(i.e. .ˇ; j 0/ is the mth bead of QP1 and .ˇ; j / is the nth bead of QPk). Observe that

m � n since ˇ.b
.1/

k
/ � ˇ.b

.1/
1 / due to b

.1/
1 being the maximal bead of A. Let s 2 Z,

0 < s � e � m be minimal such that b
.mCs/
1 is in a lower row than b

.nCs/

k
, if such

an s exists; otherwise, set s D e � m C 1. Now set

QP 0
1 WDfb

.1/
1 ; b

.2/
1 ; : : : ; b

.m�1/
1 ; b

.n/

k
; b

.nC1/

k
; : : : ; b

.nCs�1/

k
; b

.mCs/
1 ; b

.mCsC1/
1 ; : : : ; be

1g

QP 0
k WDfb

.1/

k
; b

.2/

k
; : : : ; b

.n�1/

k
; b

.m/
1 ; b

.mC1/
1 ; : : : ; b

.mCs�1/
1 ; b

.nCs/

k
; b

.nCsC1/

k
; : : : ; b

.e/

k
g

Thus we exchange an interval of s beads which are “out of order” between the two
quasiperiods QP1 and QPk .

We must check that QP 0
1 and QP 0

k
are quasiperiods. It is clear from the construction

that the ˇ-numbers of the successive elements of QP 0
1 are successive elements of N,
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and likewise for QP 0
k
. Thus it suffices to check that

j.b
.m�1/
1 / � j.b

.n/

k
/; j.b

.n�1/

k
/ � j.b

.m/
1 /;

j..b
.nCs�1/

k
/ � j.b

.mCs/
1 /; and j.b

.mCs�1/
1 / � j.b

.nCs/

k
/:

We have j.b
.m�1/
1 / � j.b

.m/
1 / > j.b

.n/

k
/ where the first inequality is because QP1

is a quasiperiod and the second inequality is by the definitions of m; n; likewise

j.b
.n�1/

k
/ > j.b

.m�1/
1 / � j.b

.m/
1 /, where the first inequality is because ˇ.b

.n�1/

k
/ D

ˇ.b
.m�1/
1 / D ˇC1 and by our assumption on the maximality of .ˇ; j /, for all b 2 QP1

with ˇ.b/ > ˇ there is no bead b0 2 A with ˇ.b0/ D ˇ.b/ and j.b0/ < j.b/. The
remaining two inequalities are checked similarly.

It follows that QP 0
1; QP2; : : : ; QPk�1; QP 0

k
; QPkC1; : : : is a partitioning of the beads

of A into quasiperiods, of which QP 0
1 is the maximal quasiperiod since it contains the

maximal bead b
.1/
1 of A. Moreover, if b is among the first m beads of QP 0

1, b satisfies
the condition that if b0 2 A, b0 ¤ b and ˇ.b0/ D ˇ.b/, then j.b0/ > j.b/. Now
iterate the procedure on QP 0

1 with respect to this new partitioning, and so on. With
each iteration, the number M such that the first M beads of the maximal quasiperiod
belong to the minimal row among beads in that column, increases by at least 1.
Thus the process terminates after at most e � 1 iterations with the construction of a
partitioning of the beads of A into quasiperiods such that the maximal quasiperiod
is a period, P1. Moreover, by construction A n P1 is totally quasiperiodic.

Iterating on A n P1 to construct P2, and so on, it follows that A is totally
periodic.

We now define some new combinatorial notions which will be used in
Theorem 4.15:

Definition 4.5. Let A be an `-abacus.

(1) The first fore period P1 is the largest quasiperiod of A. Recursively, the kth fore
period Pk is the largest quasiperiod of A satisfying Pk < Pk�1 and Pk \Pi D ;

for all i < k.

(2) A bead of A which does not belong to any fore period of A is called a free bead.

(3) For each k 2 N, let Pk be the kth fore period of A and b
.i/

k
be the i th bead of Pk .

The kth vessel Vk of A is the union of Pk and the set of free beads b D .ˇ; j /

of A, ˇ.b
.e/

kC1
/ � ˇ � ˇ.b

.1/

k
/, satisfying:

(a) if ˇ D ˇ.b
.i/

k
/ for some i 2 f1; : : : ; eg then j > j.b

.i/

k
/

(b) if ˇ D ˇ.b
.i/

kC1
/ for some i 2 f1; : : : ; eg then j < j.b

.i/

kC1
/

(c) if ˇ < ˇ.b
.e/

k
/ then there exists j 0 such that .ˇ C 1; j 0/ 2 Vk .
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Informally, we think of these conditions as saying that b is “between” Pk and
PkC1 and Vk is “connected.”

(4) The kth aft period Qk is the minimal quasiperiod in the kth vessel of A.

(5) A bead of A that does not belong to a vessel is called adrift.

Definition 4.5(1) is the translation of Definition 2.11 in the language of abaci.

Remark 4.6. Note that fore and aft periods are not, in general, periods in the sense
of [20]. When an abacus is totally e-periodic, there are no free beads, and thus
the fore periods and the aft periods coincide. In this case they also coincide with
Definition 2.8, and we will simply refer to them as the periods of A.

Remark 4.7. Observe that the definition of vessels is also recursive because of
Condition (3)(c).

Example 4.8. Let e D 3 and ` D 4. The fore periods of A are drawn in red, the aft
periods of A are drawn in blue when they differ from the fore periods. The first vessel
consists of the rightmost three beads linked in red which form P1, the rightmost three
beads linked in blue which form Q1, and two more beads — the free bead one unit
below and left of P1, and the free bead above the middle of Q1. There are two beads
that are adrift, below and right of P1.

: : : : : :

Lemma 4.9. Let Vk and Vk0 be vessels in an abacus A, k ¤ k0. Then Vk \ Vk0 D ;.

Proof. Suppose by way of contradiction that b D .ˇ; j / 2 Vk \ Vk0 is a bead in
the intersection of two different vessels. Since Pk \ Pk0 D ;, and Vk n Pk consists
of free beads, likewise Vk0 n Pk0 , b must be a free bead. Without loss of generality,
k < k0, so Pk0 < Pk . We then have

ˇ.b
.e/

k0 / � ˇ.b
.e/

kC1
/ � ˇ � ˇ.b

.1/

k0 / � ˇ.b
.1/

kC1
/

so ˇ D ˇ.b
.i 0/

k0 / for some i 0 2 f1; : : : ; eg and also ˇ D ˇ.b
.i 00/

kC1
/ for some i 00 2

f1; : : : ; eg. On the one hand, Definition 4.5(3)(b) then implies that j < j.b
.i 00/

kC1
/,

and on the other hand, Definition 4.5(3)(a) implies that j > j.b
.i 0/

k0 /. But j.b
.i 00/

kC1
/ �

j.b
.i 0/

k0 / (with equality if and only if k C 1 D k0). So

j < j.b
.i 00/

kC1
/ � j.b

.i 0/

k0 / < j;

a contradiction.
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Definition 4.10. Let P be a quasiperiod in A. Let j1; j2; : : : js be the distinct j ’s
such that .ˇ; j / 2 P for some ˇ 2 Z. For each i D 1; : : : ; s, let ˇi D

maxfˇ j .ˇ; ji/ 2 P g. If .ˇi C 1; ji/ … A for all i D 1; : : : ; s then we may define
the right shift of P as

QP D f.ˇ C 1; j / j .ˇ; j / 2 P g

and we say that P is right-shiftable. Let P be a right-shiftable quasiperiod. We say
that we shift P one unit to the right if we replace A with .A n P / [ QP . The left
versions of these definitions are similar.

Example 4.11. Let j�; si D j..1/; .12//; .0; 1/i and e D 3. Let P D P1. Then P is
both right- and left-shiftable. Here is P being shifted to the right:

�!

Here is P being shifted to the left:

�!

Lemma 4.12. For an abacus A and k 2 N, let Pk be the kth fore period of A, and
assume Pk is right-shiftable. Let QPk be the right shift of Pk and let Vk be the kth
vessel of A.

(1) .Vk n Pk/ [ QPk contains a unique quasiperiod, which is equal to QPk .

(2) Let A
0 D .A n Pk/ [ QPk be the abacus obtained by shifting Pk one unit to the

right. For a 2 N, denote P 0
a (respectively Q0

a) the ath fore (respectively aft)
periods of A

0. Then QPk D Q0
k

if and only if QPk \ P 0
a D ; for all 1 � a � k � 1.

Proof. (1) Let Q � ..Vk nPk/[ QPk/ be a quasiperiod. Definition 4.5 implies that Q

is not contained in Vk n Pk . Let b D .ˇ; j / 2 Q \ QPk . Say b is the i th bead of Q

and the mth bead of QPk . Consider what the i C 1st bead of Q can then be (if i < e):
by the definition of quasiperiod, we know it is .ˇ � 1; j 0/ for some j 0 � j , and that
.ˇ; j / 2 QPk . By Definition 4.5(3), note that if .˛; h/ 2 Pk , then .˛; h00/ … Vk for
h00 < h. This implies: (a) if .˛; h/ and .˛ � 1; h0/ are successive beads of Pk , and
so .˛ C 1; h/ and .˛; h0/ are successive beads of QPk , then .˛; h00/ 2 .Vk n Pk/ [ QPk

with h00 � h if and only if h00 D h0; and (b) if .˛; h/ is the eth bead of Pk then
.˛; h0/ … .Vk n Pk/ [ QPk for all h0 � h. Therefore .ˇ � 1; j 0/, the i C 1st bead
of Q, must be the m C 1st bead of QPk . Iterating this argument, it follows that once Q

meets QPk in a bead b, then all beads of Q which are smaller than b coincide with
beads of QPk . Since both Q and QPk consist of e beads with consecutive ˇ-numbers,
the first bead of Q must then have at least as big a ˇ-number as the first bead of QPk .
But by Definition 4.5(3)(a), the maximum ˇ-number of a bead in Vk is the ˇ-number
of the first bead of Pk . The only bead of Q � ..Vk n Pk/ [ QPk/ with ˇ-number
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equal to that of the first bead of QPk is the first bead of QPk itself. So Q and QPk have
the same first bead, and therefore they completely coincide.

(2) Suppose QPk \ P 0
a D ; for all 1 � a � k � 1. Since A

0 is obtained from A

by shifting its kth fore period Pk to the right and this does not affect the fore
periods smaller than Pk , we have Pa D P 0

a and QPk \ P 0
a D ; for all a � k C 1.

Any quasiperiod in an abacus must intersect some fore period, so it must hold that
QPk \ P 0

k
¤ ;. Moreover, the preceding remarks also imply that QPk � V 0

k
. The first

bead b0 of Q0
k

cannot be to the right of the first bead b of QPk by minimality of Q0
k

in V 0
k
. If some bead of Q0

k
lies in the same column and below a bead of QPk then,

since Pa D P 0
a and P 0

a \ Q0
k

D ; for all 1 � a � k � 1, we’d be able to construct
a larger quasiperiod than Pk in A which doesn’t intersect Pa for all 1 � a � k � 1,
contradicting that Pk is the kth fore period of A. If b0 is in the same column as b and

above it, then .b0; b
.1/

k
; b

.2/

k
; : : : ; b

.e�1/

k
/ would be the kth fore period of A instead

of Pk . It follows that Q0
k

belongs to .Vk n Pk/ [ QPk , but by Part (1), the only

quasiperiod of .Vk n Pk/ [ QPk is QPk . Therefore QPk D Q0
k
.

Conversely, suppose that QPk D Q0
k
. Then QPk is a subset of V 0

k
. The vessels

are disjoint by Lemma 4.9, and P 0
a is a subset of V 0

a for all a, so QPk \ P 0
a D ; for

all a ¤ k.

Remark 4.13. Note that taking k D 1 in Lemma 4.12(2), it follows that QP1 D Q0
1

always.

4.2. Arrows in the sl1-crystal. Our main theorem allows us to construct the entire
connected sl1-crystal component of any `-abacus A starting from nothing but
knowledge of A itself (and the specification of e, of course), using a rule for computing
all incoming and outgoing arrows that is explicit and easy to use. We indicate direction
of motion in the sl1-crystal moving away from a source by traveling downstream,
and moving towards a source by traveling upstream.

Recall from Section 2.3 that there is a graph isomorphism from a connected
component of the sl1-crystal on Fs with source A

ı to the Young graph, sending

A D Qb�A
ı to � and sending an arrow Qb� A

ı m
�! Qb�A

ı, m 2 Z, to the arrow that adds
a box of content m to � to obtain �.

Definition 4.14. For k 2 N and a connected component of the Fock space Fs,
let ‡C

k
be the operator which corresponds under the graph isomorphism with the

Young graph to the operator on partitions which acts on a partition � by adding a box
to the kth row of � if the number of nonzero parts of � is at least k � 1, and acts by 0

if the number of parts of � is less than k � 1. Likewise, let ‡�
k

be the operator which
corresponds under the graph isomorphism with the Young graph to the operator on
partitions which acts on a partition � by removing a box from row k of � if � has at
least k nonzero parts, and acts by 0 otherwise.
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Thus ‡C
k

acts on A D Qb�A
ı by QbC

�kC1�k
and ‡�

k
acts on A by Qb�k�k , and the

data of ‡˙
k

, k 2 N is equivalent to the data of Qb˙
m , m 2 Z.

The following theorem is a direct analogue of Theorem 2.5. It gives the action
of the maps ‡˙

k
for k � 1. Using these, starting from any A, one can construct the

entire connected component of the sl1-crystal containing A. In particular, one can
recover its source vertex.

Theorem 4.15. Let A and A
0 be `-abaci. There is an arrow A ! A

0 in the
sl1-crystal if and only if the following equivalent situations hold for some k 2 N:

(1) (traveling downstream) A
0 is obtained from A by shifting the kth fore period Pk

of A one unit to the right, and the shift QPk of Pk is equal to Q0
k
, the kth aft

period of A
0.

(2) (traveling upstream) A is obtained from A
0 by shifting the kth aft period Q0

k

of A
0 one unit to the left, and the shift QQ0

k
of Q0

k
is equal to Pk , the kth fore

period of A.

In this case, we have A
0 D ‡C

k
A, or equivalently A D ‡�

k
A

0.

Proof. It is easily seen that (1) holds if and only if (2) holds, so we will prove that
there is an arrow A ! A

0 in the sl1-crystal if and only if (1) holds.
First we argue that arrows in the sl1-crystal are given by shifting fore periods

to the right. From Sections 2.3 and 3.9, we know that A D Qb�A
ı for a unique

partition � D .�1; �2; : : : / and a unique highest weight vertex A
ı of the sl1-crystal,

that A0 is in the connected component of A if and only if A0 D Qb� Aı for a unique
partition � , and that the connected component of A

ı is isomorphic to the Young
graph. This implies that A

0 D ‡C
k

A if and only if A
0 D Qb�[
 A

ı where 
 is an

addable box in row k of � . Now we recall how Qb� was defined in [15]: this operator
recursively adds the kth good vertical e-strip �k times to a charged multipartition, for
each k � 1 (Theorem 2.12). Adding the kth good addable strip is exactly the same
thing as shifting the kth fore period one unit to the right in the abacus, since adding a
box to the diagram corresponds to shifting a bead to the right in the abacus, and the
fore periods correspond to the good addable strips (Definition 4.5). Therefore, the
vertex A has an outgoing arrow given by shifting the kth fore period one unit to the
right for each k such that � has an addable box in row k.

Now we are ready to prove that if there is an arrow A ! A
0 in the sl1-crystal

then (1) holds. By the previous paragraph, A ! A
0 implies that A

0 is obtained from
A by shifting the kth fore period Pk of A to the right for some k 2 N. Write A D
Qb� A

ı and A
0 D ‡C

k
A D Qb�[
 A

ı where 
 is an addable box in row k of � . If k D 1

then by Lemma 4.12(2), QP1 D Q0
1. So suppose k > 1. By Lemma 4.12 (2), it suffices

to show that QPk \P 0
a D ; for all 1 � a � k �1. By contradiction, suppose that there

exists a bead b D .ˇ; j / in QPk\P 0
c for some 1 � c � k�1. We may choose the bead b

so that .ˇ �1; j / … QPk \P 0
a for any 1 � a � k �1. Since QPk is the right shift of Pk ,
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either .ˇ � 1; j / 2 QPk or .ˇ � 1; j / … A
0. So .ˇ � 1; j / … P 0

a for all 1 � a � k � 1.
Let � D � C .1k/ D � [
 C .1k�1/ D .�1 C1; �2 C1; : : : ; �k C1; �kC1; �kC2; : : : /.
Now consider the position .ˇ; j / in the abacus Qb� A

ı. On the one hand, computing
first Qb�[
A

ı D A
0 and then applying Qb.1k�1/, we observe that b 2 P 0

c is shifted one

unit to the right in Qb.1k�1/A
0, but since .ˇ � 1; j / … P 0

a for all 1 � a � k � 1,

then .ˇ; j / … .A0 n .P 0
1 [ � � � [ P 0

k�1
// [ QP 0

1 [ � � � [ QP 0
k�1

D Qb.1k�1/A
0 D Qb� A

ı.

On the other hand, computing Qb�C.1k�1/A
ı first and then applying ‡C

k
, we observe

that in Qb�C.1k�1/A
ı D Qb.1k�1/.

Qb�A
ı/, the kth period has not shifted the �k C 1st

time yet and coincides with the kth period Pk of Qb� A
ı; upon applying ‡C

k
, we have

.ˇ; j / 2 QPk � ‡C
k

Qb�C.1k�1/A
ı D Qb� A

ı. This is a contradiction, and therefore
QPk \ P 0

a D ; for all 1 � a � k � 1.
Conversely, suppose that (1) holds, i.e. suppose that Pk � A can be shifted to

the right yielding A
0, and that the right shift QPk of Pk is Q0

k
, the kth aft period

of A
0. Let A

00 D Qb.1k/A. By Lemma 4.12(2), QPk \ P 0
a D ; for all 1 � a < k.

Thus Qb.1k�1/A
0 D A

00. Let Qb�
.1k�1/

be the inverse operator to Qb.1k�1/. Then A
0 D

Qb�
.1k�1/

. Qb.1k/A/ and therefore A
0 D ‡C

k
A.

Remark 4.16. In particular, one recovers [15, Theorem 5.11] by expressing the
operators Qb� as compositions of operators QbC

k
(or equivalently, operators ‡C

k
).

Example 4.17. In Example 4.8, the only fore periods which can travel downstream
are P1, P2, and P6. The only aft periods which can travel upstream are Q1 and Q5.

Example 4.18. Let ` D 3, e D 5, � D ..4; 1/; .7; 2/; .2; 15//, and s D .3; �3; 1/.
We have its abacus A D A.�; s/:

� � � � � �

In this example, the aft periods and the fore periods coincide: Pk D Qk for all
k 2 N. The only period that has space to move to the left is Q2 in the top row.
However, the shift of Q2 one unit to the left, QQ2, is not the 2nd fore period in the
resulting abacus, so shifting Q2 to the left is not a move that allows A to travel
upstream in the crystal. Indeed, here is the abacus .A n Q2/ [ QQ2:

� � � � � �

Its second period is not the left shift of Q2 from A. So no aft period Qk can travel
upstream, and A is a highest weight vertex for the sl1-crystal.

The only period of A that can travel downstream is P1. Note that this is always
the case if A is a highest weight vertex for the sl1-crystal.
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Example 4.19. Let ` D 5, e D 4, � D ..9; 2/; .52; 4; 3; 2; 12/; .2; 12/; .6; 4; 2; 12/;

.42; 22; 12//, and s D .�4; 2; �1; 2; 3/. Let A D A.�; s/.

� � � � � �

All but two pairs of the aft periods and fore periods coincide: Pk D Qk except
for when k D 3; 5. The fore periods are drawn in red, and the aft periods which differ
from the fore periods are drawn in blue. We stopped drawing the periods after P8.
The fore periods P1, P2, P3, P4, and P6 can travel downstream, and we have:

‡C
1 A D ..10; 2/; .62; 4; 3; 2; 12/; .2; 12/; .7; 4; 2; 12/; .43; 22; 12//

‡C
2 A D ..9; 2/; .53; 3; 2; 12/; .2; 12/; .6; 5; 2; 12/; .52; 22; 12//

‡C
3 A D ..9; 2/; .52; 4; 32; 12/; .3; 12/; .6; 4; 3; 12/; .42; 3; 2; 12//

‡C
4 A D ..9; 3/; .52; 4; 3; 22; 1/; .22; 1/; .6; 4; 22; 1/; .42; 22; 12//

‡C
6 A D ..9; 2; 1/; .52; 4; 3; 2; 13/; .2; 13/; .6; 4; 2; 13/; .42; 22; 12//

and ‡C
k

A D 0 otherwise. The aft periods Q1, Q2, Q3, and Q5 can travel upstream,
and we have:

‡�
1 A D ..8; 2/; .43; 3; 2; 12/; .2; 12/; .5; 4; 2; 12/; .42; 22; 12//

‡�
2 A D ..9; 2/; .52; 32; 2; 12/; .2; 12/; .6; 3; 2; 12/; .32; 22; 12//

‡�
3 A D ..9; 2/; .52; 4; 3; 13/; .13/; .6; 4; 2; 12/; .42; 14//

‡�
5 A D ..9; 2/; .52; 4; 3; 2; 1/; .2; 1/; .6; 4; 2; 12/; .42; 22//

and ‡�
k

A D 0 otherwise.

Example 4.20. We leave it as an exercise for the reader to verify that taking e D 3,
there is no aft period that can travel upstream in the 3-abacus below, and therefore
this is the abacus of a highest weight vertex for the sl1-crystal when e D 3:

� � � � � �

Recall from Section 3.9 that the csle-crystal and the sl1-crystal commute. This
implies that all vertices in a single sl1-crystal component have the same depth in
the csle-crystal. When the vertices of the sl1-crystal have depth 0 in the csle-crystal,
equivalently, when the abaci are totally e-periodic, the rule for going upstream or
downstream in the crystal simplifies:
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Corollary 4.21. Let A; A
0 be totally e-periodic `-abaci. There is an arrow A ! A

0

in the sl1-crystal if and only if the following equivalent situations hold for some
k 2 N:

(1) A
0 is obtained from A by shifting the kth period Pk one unit to the right, and

the shift QPk of Pk is the kth period of A
0.

(2) A is obtained from A
0 by shifting the kth period Pk one unit to the left, and the

shift QPk of Pk is the kth period of A.

Example 4.22. The following 3-abacus is totally 4-periodic.

� � � � � �

Here, only P2 can travel upstream. In fact, the highest weight vertex is obtained by
shifting P2 twice to the left, and then P1 twice to the left. In particular, � D .22/.

The following lemma will be used in Section 7.

Lemma 4.23. Suppose Qk D .b
.1/

k
; : : : ; b

.e/

k
/ is a left-shiftable aft period of an

abacus A. Suppose Pm D .b
.1/
m ; : : : ; b

.e/
m /, m > k, is a fore period of A such that

either (1) or (2) holds:

(1) ˇ.b
.1/
m / D ˇ.b

.1/

k
/,

(2) ˇ.b
.1/
m / D ˇ.b

.e/

k
/ � 1 and j.b

.1/
m / < j.b

.e/

k
/.

Then ‡�
k

A D 0, i.e. shifting Qk to the left does not give an edge in the sl1-crystal.

Proof. Let fcA be the abacus obtained by shifting Qk to the left, let QQk be the left

shift of Qk and let Qb
.i/

k
be its beads. If P1; : : : ; Pk�1 are the first k � 1 fore periods

of A then they are also the first k �1 fore periods of fcA as shifting Qk to the left does
not affect the quasiperiods which are both disjoint from Qk and larger than Qk . If

(1) holds then necessarily j.b
.1/
m / > j.b

.1/

k
/, so P D .b

.1/
m ; Qb

.1/

k
; Qb

.2/

k
; : : : ; Qb

.e�1/

k
/ is

a larger quasiperiod of fcA than QQk whose intersection with P1; : : : ; Pk�1 is empty,
so QQk cannot be the kth fore period of fcA. Similarly, if (2) holds then the quasiperiod

f Qb
.1/

k
; : : : ; Qb

.e�1/

k
; b

.1/
m g > QQk . By Theorem 4.15, this implies that ‡�

k
A D 0.

5. Position of an abacus in its sl1-crystal component

For all A 2 Fs, there exists a unique highest weight vertex A
ı 2 Fs for sl1 and a

unique partition � such that A D Qb� A
ı, and j� j is the depth of A in the sl1-crystal

(see Sections 2.3 and 3.9). Pairing this observation with Theorem 4.15 gives an easy
way to read off � from A. For all k 2 N, let ˛k D maxfq 2 Z�0 j .‡�

k
/q.A/ ¤ 0g;

where .‡�
k

/q is ‡�
k

applied q times. In abacus terms, ˛k is the number of successive
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times Qk � A can travel a unit upstream. Let r D maxfn 2 N j ˛n ¤ 0g. Thus r

is maximal such that Qr � A can travel upstream. Set ık D
Pr

mDk ˛m.

Theorem 5.1. The partition � is given by the formula

� D .ı1; ı2; : : : ; ır/:

Proof. By Theorem 4.15, there is an edge B ! A in the sl1-crystal if and only
if Qk � A can travel upstream for some k yielding B if and only if ‡�

k
A D B.

By Definition 4.14, .‡�
k

/a.A/ ¤ 0 if and only if � has a successively removable
boxes in row k. Thus ˛k is the maximum number of successively removable boxes
in row k, which means that � has exactly ˛k columns of length k. Therefore,
� t D .k

˛ks
s ; k

˛ks�1

s�1 ; : : : ; k
˛k1

1 /, where k1 < k2 < � � � < ks 2 N are all of the k 2 N

such that ˛k ¤ 0. It then follows by the formula for the transpose of a partition that
� D .ı1; ı2; : : : ; ır/.

Example 5.2. Let `D2, e D2, sD .0; �1/, and �D ..6; 4; 4; 2; 2; 1/; .5; 5; 5; 3; 3//.
Then

A.�; s/ D � � � � � �

We have Qi D Pi for all i ¤ 2; Q2 is the quasiperiod drawn in blue. We have r D 4,
˛4 D 2, ˛2 D 2, and ˛k D 0 for all k ¤ 2; 4. The position of � in the sl1-crystal is
therefore � D .4; 4; 2; 2/t D .4; 4; 2; 2/, and q.�/ D j� j D 12.

Example 5.3. The abacus in Example 4.8 has only two aft periods which can travel
upstream, Q5 and Q1, and ˛5 D 1 D ˛1: This abacus thus has position � D .5; 1/t D

.2; 14/ in its crystal component, and its depth in the sl1-crystal is 6.

Remark 5.4. Even though the csle-crystal structure of the Fock space has been widely
studied and is considered well-understood [11–13,24], it is a difficult problem to find
an explicit combinatorial formula for the depth of an abacus A.�; s/ DW A in this
crystal. However, this piece of information is one half of the knowledge of the support
of L.�/ 2 Oc.G.`; 1; n// (see Section 3.7). Note that if A.�; s/ is the source vertex
of the csle-crystal component containing A, then p.�/ D j�j � j�j is the depth
of A in the csle-crystal. An efficient algorithm for computing � has been given
in [13, Theorem 6.3]. This does not require computing the action of the Kashiwara
crystal operators, and relies instead on an affine analogue of the Robinson-Schensted
correspondence, denoted ˆ. Constructing ˆ however requires iterated use of the
Schensted insertion procedure on symbols. We pose the question: is there a way to
compute p.�/ without constructing �, as we have done for q.�/?

6. Charges in eZ
` and a closed formula for doubly highest weight vertices

In this section, we consider `-charges of the form s D .s1; : : : ; s`/ where sj �sj 0 2 eZ

for all j; j 0. Without loss of generality in virtue of Remarks 2.6 and 2.13, we can
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assume that minfsj j 1 � j � `g D 0 and thus sj D ezj with zj 2 Z�0 for all
j D 1 : : : ; ` and minfzj g D 0. Write z D .z1; : : : ; z`/, and A

ı D A.;; s/. We will
give a combinatorial formula for the vertices belonging to the connected component
of the sl1-crystal with highest weight vertex A

ı. Such vertices are called doubly
highest weight vertices in [14] as they are singular for the action of csle and csl` (see [38]
and [14]) simultaneously.

Because A
ı is the abacus of the empty charged multipartition, it is totally periodic,

and thus its fore and aft periods coincide by Remark 4.6. Moreover, because s D ez,
each period of A

ı is a sequence of e beads .bi /iD1;:::;e in the same row and satisfying
b1 D .ˇ1; j1/ with ˇ1 D 0 mod e. Therefore, we can construct a (reverse) tabloid T

by replacing the kth period of A
ı by the number k. For each j D 1; : : : ; `, let Tj be

the sequence of numbers in row j of T , in increasing order.

For a partition � D .�1; �2; : : : / (with infinitely many zero parts), and for any
increasing integer sequence X D .x1; x2; : : : /, write �ŒX; e� D .�e

x1
; �e

x2
; : : : /.

Theorem 6.1. Let � be a partition and s be as above. Then Qb� j;; si D j�; si where

�j D �ŒTj ; e�:

Proof. Corollary 4.21 implies that if A
ı is a highest weight vertex in both the csle- and

sl1-crystals, then every other vertex Qb�A
ı in its sl1-crystal connected component

may be obtained from A
ı by first, shifting P1 to the right �1 times, then, shifting P2

to the right �2 times, etc4. Complete information about the periods of A
ı is given

by the tabloid T : the row of T containing entry k is the row containing the kth
period of A. Making the kth period travel �k times downstream is exactly shifting
its e beads, that all belong to the same row, say j , by �k steps to the right, which
corresponds to adding �e

k
in the j th component of the `-partition.

Example 6.2. Take e D 3, ` D 8 and z D .2; 5; 3; 0; 2; 1; 1; 2/. Then the abacus A
ı

looks as follows

: : : : : :

4Note that this recovers [14, Proposition 7.4]. In the even more particular case where A is a doubly
highest weight vertex, i.e. Aı is the empty `-partition, one recovers the original result of [14, Remark 6.16].
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The tabloid T for A
ı is:

T D

: : : 32 24 16 9

: : : 31 23 15

: : : 30 22 14

: : : 29 21 13 8

: : : 28 20

: : : 27 19 12 7 4

: : : 26 18 11 6 3 2 1

: : : 25 17 10 5

from which we may compute Qb� .Aı/ for any partition � . e.g. if

� D .12; 92; 7; 6; 4; 32; 22; 14/;

Qb� j;; si D ..63; 23/; .123; 96; 43; 13/; .73; 33; 13/; ;; .33; 13/; .13/; ;; .23//:

In the case where z1 � z2 � � � � � z` D 0, we can give a more direct formula
for Qb� A. In this case, we may write

z D .z1; : : : ; z`/ D .y
a1

1 ; y
a2

2 ; : : : ; yam
m ; 0b/

where 0 < yi < yi�1 and where a1 C a2 C � � � C am C b D `. Set N D
P`

iD1 zi DPm
iD1 aiyi and set di D yi � yiC1, i D 1; : : : ; m. If � D .�1; �2; : : : / is a partition,

write �Œe� as shorthand for �ŒN; e� D .�e
1; �e

2; �e
3; : : : /.

Corollary 6.3. Let � be a partition and s D ez with z1 � z2 � � � � � z` D 0. Then
Qb� j;; si D j�; si where

�j D
�
�j ; �a1Cj ; �2a1Cj ; : : : �.d1�1/a1Cj ;

�d1a1Cj ; �d1a1Ca2Cj ; �d1a1C2a2Cj ; : : : ; �d1a1C.d2�1/a2Cj ; : : :

: : : ; �d1a1Cd2a2C���C.dm�1/amCj ; �N Cj ; �N C`Cj ; �N C2`Cj ; �N C3`Cj ; : : :
�
Œe�

for 1 � j � a1,

�j D
�
�d1a1Cj ; �d1a1Ca2Cj ; �d1a1C2a2Cj ; : : : ; �d1a1C.d2�1/a2Cj ;

�d1a1Cd2a2Cj ; �d1a1Cd2a2Ca3Cj ; �d1a1Cd2a2C2a3Cj ; : : : ;

: : : ; �d1a1Cd2a2C.d3�1/a3Cj ; : : :

: : : ; �d1a1Cd2a2C���C.dm�1/amCj ; �N Cj ; �N C`Cj ; �N C2`Cj ; �N C3`Cj ; : : :
�
Œe�

for a1 C 1 � j � a1 C a2,

:::
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�j D
�
�Pp

iD1
di ai Cj ; �Pp

iD1
di ai CapC1Cj ; �Pp

iD1
di ai C2apC1Cj ; : : : ;

: : : ; �Pp

iD1
di ai C.dpC1�1/apC1Cj ; �PpC1

iD1
di ai Cj

; �PpC1

iD1
di ai CapC2Cj

;

�PpC1

iD1
di ai C2apC2Cj

; : : : ; �PpC1

iD1
di ai C.dpC2�1/apC2Cj

; : : :

: : : ; �d1a1Cd2a2C���C.dm�1/amCj ; �N Cj ; �N C`Cj ; �N C2`Cj ; �N C3`Cj ; : : :
�
Œe�

for a1 C a2 C � � � C ap C 1 � j � a1 C a2 C � � � C ap C apC1,

:::

�j D
�
�N Cj ; �N C`Cj ; �N C2`Cj ; �N C3`Cj ; : : :

�
Œe�

for
Pm

iD1 ai < j � `.

Proof. By Theorem 6.1, the formula for j�; si is obtained by identifying the periods
in A by looking at the tabloid T and taking the subsequences of N corresponding to
the rows of T . Therefore, it suffices to determine a closed formula for the entries of
row j of T for all j D 1; : : : ; `. It is an elementary combinatorial problem to see
that the formulas above compute the desired numbers.

We can now give a combinatorial procedure for computing Qb� A
ı when z need

not satisfy zj � zj C1, starting from the situation of Corollary 6.3. Take any z 2 Z
`

with minfzj g D 0, let T be its tabloid, and let T 0 be the tabloid resulting from
switching zj and zj 0 for some j > j 0. Since the order in T goes from bottom to top
across the rows, all entries of T located in the rectangle consisting of columns of T

which have an entry in row j or j 0 but not both, and rows from j 0 to j inclusive,
will slide up (if zj < z0

j ) or down (if zj > z0
j ) to the next available spot in the same

column of the diagram of shape T 0.

Example 6.4. Take z D .7; 7; 5; 1; 0/ and say we want to change the 2nd and 4th
entries to get z0 D .7; 1; 5; 7; 0/. We replace the diagram of shape T with the diagram
of shape T 0 by switching the second and fourth rows. Then to get the tableau T 0, all
entries located in the rectangle slide up to the next available row in the new diagram,
while all entries outside the rectangle remain unchanged:

: : : 35 30 25

: : : 34 29 24 20 16 2

T D : : : 33 28 23 19 16 13 10 7

: : : 32 27 22 18 15 12 9 6 4 2

: : : 31 26 21 17 14 11 8 5 3 1
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: : : 35 30 25

: : : 34 29 24 20 16 13 10 7 4 2

T 0 D : : : 33 28 23 19 15 12 9 6

: : : 32 27 22 18 16 2

: : : 31 26 21 17 14 11 8 5 3 1

7. Applications

7.1. Depth of the trivial representation in the bsle- and sl1-crystals. Given an
abacus A, we call the bidepth of A the pair .q; p/ 2 Z

2
�0 where q is the depth of A

in the sl1-crystal and p is the depth of A in the csle-crystal.

For n 2 Z�0, let Triv denote the `-partition ..1n/; ;; ;; : : : ; ;/. This labels the
trivial representation of G.`; 1; n/. The aim of this section is to answer the following
question: given .q; p/ 2 Z

2
�0 and n 2 Z�0, for which values of the parameters e; s

does the abacus A WD A.Triv; s/ have bidepth .q; p/? Take s D .s1; s2; : : : ; s`/ 2 Z
`

such that s1 D n � e � 1, without loss of generality by Remarks 2.6 and 2.13 (we
identify an abacus with its horizontal shifts). Write n D qe C r with q; r 2 N [ f0g

and r < e. Set

m D minfr; sj mod e j sj � 0; 2 � j � `g:

Let .q.Triv/; p.Triv// denote the bidepth of A.Triv; s/.

Lemma 7.1. The number of free beads in A is equal to p.Triv/.

Proof. We will induct on the number of free beads. By Theorem 2.9, p.Triv/ D 0

if and only if A is totally periodic, which is the case if and only if the number of
free beads is equal to 0. The bead b1

n is the only left-shiftable bead in A. Then by
Theorem 2.5, b1

n is good left-shiftable if and only if p.Triv/ > 0, which holds if and
only if A has free beads. It is easy to see that if A has free beads then b1

n must be a
free bead, and that b1

nC1 is never a free bead in the abacus of ..1n/; ;; : : : ; ;/ for any
charge s. Shifting b1

n to the left then reduces both p.Triv/ and the number of free
beads by 1, and now the statement is true by induction.

Lemma 7.2. Suppose sj � 0 for some j � 2. Then the number of free beads in A

is equal to m.

Proof. By induction on m. Suppose m D 0. If m D r D 0 then e divides n. Then A

is totally quasiperiodic, so by Lemma 4.4, A is totally periodic and hence the number
of free beads in A is equal to 0. If m D sj mod e D 0 for some j � 2 and sj � 0,
then take j such that sj is minimal with this property. Then in the word of left-
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and right-shiftable 0-beads (see Section 2.2), the � for the unique left-shiftable bead
b1

n D .�e C 1; 1/ of A cancels with the C for the right-shiftable bead .sj ; j / and
therefore b1

n is not good left-shiftable. It follows by Theorem 2.5 that A is a highest

weight vertex for the csle-crystal, so by Theorem 2.9 A is totally periodic, i.e. the
number of free beads is 0. For the induction step: if b1

n is good left-shiftable then
shifting it to the left reduces the number of free beads by 1. Since our formulas use
a charge normalized in a way depending on n, we must renormalize the charge s

for ..1n�1/; ;; : : : ; ;/ to charge t by subtracting 1 from every component of s, so that
t1 D s1 � 1 D .n � 1/ � e � 1 and tj D sj � 1. If n D eq C r with r > 0 then
n � 1 D eq C .r � 1/ D eq C r 0, e > r 0 WD r � 1 � 0; and if sj > 0 mod e for all
sj � 0, j � 2, then sj � 1 mod e D sj mod e � 1. Therefore

m � 1 D minfr � 1; sj � 1 mod e j j � 2; sj � 0g

D minfr 0; tj mod e j j � 2; tj � 0g

and by induction, the right-hand-side equals the number of free beads in
A...1n�1/; ;; : : : ; ;/; t/ D A...1n�1/; ;; : : : ; ;/; s/. Hence the number of free beads
in A is .m � 1/ C 1 D m.

Theorem 7.3. The bidepth of A.Triv; s/ is given by the following formulas:

q.Triv/ D

(
q if sj < 0 for all j � 2;

0 if sj � 0 for some j � 2;

p.Triv/ D

(
r if sj < 0 for all j � 2;

m if sj � 0 for some j � 2:

Proof of the formula for q.Triv/. If e > n then obviously Triv is a highest weight
vertex for the sl1-crystal by Theorem 4.15, as there is no space for a bead in row 2 or
higher to shift to the left, and any quasiperiod containing fb1

1 ; : : : ; bn
1 g must contain

a bead from a higher row since e > n. Then q.Triv/ D 0 D q.
For the remainder of the proof of the q.Triv/ formula, assume that e � n. Let

P D fb1
n�eC1; : : : ; b1

ng D f.0; 1/; .�1; 1/; .�2; 1/; : : : ; .�e C 1; 1/g;

a quasiperiod of A consisting of the e beads directly to the right of the space in row 1.
Observe that P is the unique left-shiftable quasiperiod of A. Furthermore, since
.ˇ.b1

n/ � 2; 1/ 2 A, .‡�
k

/2
A D 0. It then follows by Theorems 4.15 and 5.1 that

either (a) q.Triv/ D 0, or (b) P D Qk for some k � 1 and the left shift QP of P is
the kth fore period of .A n P / [ QP , in which case � D .1k/ and q.Triv/ D k.

First, suppose that sj < 0 for all j . Then the first q fore periods are chains of e

successive beads in row 1 and P D Qq is the qth aft period. Let QQq be the left
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shift of Qq. If b D .ˇ; j / 2 A with j � 2 then ˇ � �1. The first bead of QQq

is .ˇ.b1
n�eC1/ � 1; 1/ D .�1; 1/. Thus QQq > Q for any quasiperiod Q of A whose

first bead belongs to a row j > 1, and so QQq is the qth fore period of .AnQq/[ QQq.
Therefore q.Triv/ D q.

Next, suppose that sj � 0 for some j � 2. If P is not an aft period then
q.Triv/ D 0, so suppose that P D Qk for some k. Either P is also a fore period or
it is not. If P D Pk then for all 1 � ˇ � e � 1 and all j � 2, .ˇ; j / cannot be the
first bead of a fore period Pa, because otherwise the bead .0; 1/ would belong to Pa

and not to Pk . Since sj � 0 for some j � 2, .0; j / 2 A. Take j minimal with
this property. It follows that .0; j / is the first bead of PkC1. Then by Lemma 4.23,
‡�

k
A D 0, and since Qk is the only left-shiftable quasiperiod, we conclude that

q.Triv/ D 0.
On the other hand, if P ¤ Pk then beads f.0; 1/; .�1; 1/; : : : ; .�˛; 1/g for some

0 � ˛ < e � 1 are beads of Pk and beads f.�˛ � 1; 1/; : : : ; .�e C 1; 1/g are
free beads. Pick j � 2 minimal with sj � 0. Then .0; j / belongs to some fore

period Pm. If the first bead b
.1/
m of Pm is to the right of the first bead b of Pk , i.e. if

ˇ.b
.1/
m / > ˇ.b/, then k > m, but then a larger quasiperiod than Pm not intersecting

any Pa, a < m, could be constructed using .0; 1/; .�1; 1/,. . . instead of .0; j /, etc.,

contradicting the definition of mth fore period. If ˇ.b
.1/
m / < ˇ.b/ then the bead

.�˛ � 1; 1/ would belong to Pm and would not be free. So ˇ.b
.1/
m / D ˇ.b/, and thus

ˇ.b
.e/
m / D �˛. Then ˇ.b

.e/

kC1
/ D �˛ also since Pm � PkC1 < Pk . But then P is

not an aft period Qk as its free beads b0 do not satisfy the condition ˇ.b
.e/

kC1
/ � ˇ.b0/

in Definition 4.5(3). So in this situation, P ¤ Qk and thus q.Triv/ D 0.

Proof of the formula for p.Triv/. The case sj � 0 for some j � 2 follows from
Lemmas 7.1 and 7.2. Consider the case sj < 0 for all j . Then the first q fore periods
of A are P1 D fb1

1 ; : : : ; b1
e g, P2 D fb1

1Ce; : : : ; b1
2eg,. . . Pq D fb1

1C.q�1/e
; : : : ; b1

qeg.
If r D 0, then peeling off P1; : : : ; Pq off A yields A.;; s/, which by Theorem 2.9
implies p.Triv/ D 0. If r > 0, beads b1

n D .�e C 1; 1/; : : : ; b1
n�rC1 D .�e C r; 1/

are the free beads because .�e; 1/; .0; j / … A for all j � 2. By Lemma 7.1,
q.Triv/ D r .

Remark 7.4. By the results of Shan, Vasserot, and Losev explained in Sections 3.8
and 3.9, Theorem 7.3 has a representation theoretic meaning: it gives the
support of the irreducible representation L.Triv/ 2 Oc.G.`; 1; n//, where c is the
parameter for the Cherednik algebra determined by .e; s/ as in Sections 3.2 and 3.3.
Conversely, Theorem 7.3 also permits the description of all n and all parameters c

(or equivalently .e; s/) such that L.Triv/ 2 Oc.G.`; 1; n// has a given support.

Consequently, we deduce the set of parameters (without normalizing s) such that
the spherical representation L.Triv/ is finite-dimensional. Let n 2 N.
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Corollary 7.5. The set of parameters .e; s/2Z�Z
` such that L.Triv/2Oc.G.`; 1; n//

is finite-dimensional consists of all .e; s/ satisfying either

(i) sj � s1 D ke � n C 1 for some k 2 N and some 2 � j � `, or

(ii) the following two conditions hold:

(a) e divides n, and

(b) sj � s1 � e � n C 1 for some 2 � j � `.

Proof. As explained in Section 3.10, a simple module L.�/ in Oc.G.`; 1; n/ is finite-
dimensional if and only if q.�/ D p.�/ D 0. From Theorem 7.3, we deduce that
the module L.Triv/ is finite-dimensional if and only if the following two conditions
hold:

(i0) sj � s1 � e � n C 1 for some 2 � j � `, and

(ii0) either

(a0) e divides n, or

(b0) sj �s1 D �nC1 mod e for some 2 � j � ` such that sj �s1 � e �nC1.

Note that (a) is the same as (a0), (b) is the same as (i0), and that (b0) is equivalent to (i).
Moreover, (b0) trivially implies (i0), so ((i0) and (ii0)) is equivalent to ((i) or (ii)).

Remark 7.6. The problem of determining the parameters c such that the Hc.W /-
representation L.Triv/ is finite-dimensional has been studied by a number of authors.
We list prior results intersecting the case of W D G.`; 1; n/. The first result in this
direction was Berest, Etingof and Ginzburg’s theorem for W D Sn D G.1; 1; n/,
which states that L.Triv/ is finite-dimensional if and only if c D r=n for some r 2 N

with gcd.r; n/ D 1 [2]. Using methods of geometric representation theory, Varagnolo
and Vasserot showed several years later that for W a Weyl group, L.Triv/ is a finite-
dimensional Hc.W /-module for equal parameters c if and only if c D r=e for e an
elliptic number of W , r 2 N, gcd.r; e/ D 1 [39]. Etingof extended Varagnolo and
Vasserot’s result to unequal parameters and to the more general question of the support
of L.Triv/, thus giving a complete answer for W D Bn D G.2; 1; n/ for any pair of
parameters [9]. More recently, Griffeth, Gusenbauer, Juteau, and Lanini developed a
“degenerate” version of Bezrukavnikov-Etingof parabolic restriction aimed towards
studying finite-dimensional representations [17]; this produced a sufficient condition
for L.Triv/ to be finite-dimensional for W D G.`; 1; n/ [17, Corollary 5.4]. They
followed this with the natural question: is the condition of [17, Corollary 5.4] also
necessary for L.Triv/ to be finite-dimensional? [17, Question 5.5]. We now check
that our Corollary 7.5 agrees with the answers for ` D 2 in [9] and for ` � 2 in [17],
giving a positive answer to [17, Question 5.5]. Note that we have restricted ourselves
to the case of integral charges for the Fock space and � D 1=e instead of r=e, but
the general case can be reduced to this case, see Section 3.5. Indeed, the preimage
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of Triv under the isomorphism of [32, Theorem 6.15] is Triv for the same value of n

and for a smaller level s. Then it is enough to consider the corresponding abacus
with s runners.

In the case of G.2; 1; n/ D Bn, the change of parameters of Section 3.3 directly
translates Corollary 7.5 into Etingof’s criterion [9, Section 4.2] for the set of
parameters c D .c1; c2/ such that L.Triv/ is finite-dimensional. If .e; .s1; s2// is
a Fock space charge, then c1 D 1=e and c2 D .s2 � s1/=e � 1=2. Corollary 7.5(i)
gives c2 D .ke � n C 1/=e � 1=2 for some k 2 N, and therefore

c1.n � 1/ C c2 D .n � 1/=e C c2 D .2k � 1/=2

for some k 2 N, which are the lines described by Etingof in [9, Section 4.2].
In the case that e divides n, Corollary 7.5 (ii) gives additional parameters at which
L.Triv/ is finite-dimensional: those not already included in (i) consist of .s1; s2/ with
s2 �s1 � e �nC1 and s2 �s1 C .n�1/ ¤ 0 mod e. Write s2 �s1 D ke �nC1Ca

for 1 � a � e � 1, k 2 N. Write n D er . Changing to Cherednik parameters,

.c1; c2/ D .1=e; .s2 � s1/=e � 1=2/ D .1=e; .2k � 1/=2 � n=e C .1 C a/=e/

D .r=n; .2k � 1/=2 � r C r.1 C a/=n/ D .r=n; p=2 � r C .rs/=n/

with p an odd positive integer and 2 � s � e D n=r D n=gcd.r; n/. These are
exactly the isolated points of [9, Section 4.2] where L.Triv/ is finite-dimensional,
when c1 D 1=e.

In the general case of G.`; 1; n/, we compare our result with the sufficient
condition for L.Triv/ to be finite-dimensional given in [17, Corollary 5.4]. The
surface appearance of their criterion is slightly different as they use a different
parametrization of the Cherednik algebra. We check that after reparametrization, it
is consistent with Corollary 7.5. In our notation, the condition of [17, Corollary 5.4]
is that either

(i0) `.n � 1/=e C d0 � dj D �j C k` for some 1 � j � ` � 1 and some positive
integer k, or

(ii0) e divides n and `.p � 1/=e C d0 � dj D �j C k` for some 1 � j � ` � 1,
some positive integer k, and some n � e C 1 � p � n

where the parameters dj , 0 � j � ` � 1, are related to the parameters sj C1,
0 � j � ` � 1 via the formula

.1 C dj �1 � dj /=` D hj D .sj C1 � sj /=e for all 1 � j � ` � 1

(where hj is given in Section 3.3). Therefore, we have

.i0/ , `.n � 1/=e C d0 � dj D �j C k`

,
`

e
.n � 1/ C

`

e
.sj C1 � s1/ � j D �j C k`

, sj C1 � s1 D ke � n C 1

, .i/:
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Similarly,

.ii0/ , `.p � 1/=e C d0 � dj D �j C k`

, sj C1 � s1 D ke � p C 1

, .ii/

We see that the condition in [17, Corollary 5.4] is not only sufficient, but also
necessary. This is proved independently in Griffeth and Juteau’s forthcoming
work [18].

7.2. Depth of a rectangular partition concentrated in one component in the

sl1-crystal. The part of Theorem 7.1 concerning depth in the sl1-crystal may be
generalized to multipartitions � such that one component is a rectangle and all the
other components are empty.

Theorem 7.7. Let m and n be nonnegative integers and let � be an `-partition of
mn such that �a D .mn/ and �j D ; for all j ¤ a. Normalize any charge s so that
sa D n � e � m. Write n D qe C r with q; r 2 Z�0 and r < e. Set

t 0 D

(
maxfsj ; sj 0 C e j j > a; j 0 < ag if all sj ; sj 0 C e < 0;

0 otherwise;

and set t D minf�t 0; mg. Then q.�/ D tq.

Proof. Let A WD A.�; s/. As in the proof of Theorem 7.3, q.�/ can only be nonzero
if

Q D f.0; a/; .�1; a/; .�2; a/; : : : ; .�e C 1; a/g D fba
n�eC1; ba

n�eC2; : : : ; ba
ng

is an aft period. When n < e then Q is not an aft period and q D 0, so the statement
q.�/ D tq is true as both sides are 0. For the rest of the proof suppose q > 0.

First, consider the case that sj < 0 for all j > a and sj 0 < �e for all j 0 < a.
Then .ˇ; j / … A for all ˇ � 0, .ˇ0; j 0/ … A for all ˇ0 � �e. This implies that the
first q fore periods of A are Pk WD fba

.k�1/eC1
; ba

.k�1/eC2
; : : : ; ba

ke
g, k D 1; : : : ; q

and that Q D Qq is the qth aft period. Q can be shifted to the left up to m times, and
each left shift gives an edge in the crystal so long as the situations of Lemma 4.23 do
not occur. The number t is by construction the number of times Q can be shifted to
the left without the situations of Lemma 4.23 occurring. Theorem 5.1 then implies
� D .tq/ and hence q.�/ D tq.

Next, suppose sj � 0 for some j > a. Then by arguments identical to those
used in the proof of Theorem 7.3, q.�/ D 0. Suppose sj 0 � �e for some j 0 < a.
Definition 4.5 implies that if Q is an aft period Qk then ba

n does not lie above a
bead b belonging to Pm for m > k. On the other hand, by assumption .�e; j 0/ 2 A

and it belongs to some fore period. Therefore if Q is an aft period, then .�e; j 0/ is
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the first bead of the fore period that it belongs to. Then by Lemma 4.23, shifting Q

to the left does not give an edge in the sl1-crystal.

Corollary 7.8. Suppose that j�; si is as in Theorem 7.7. Then L.�/ is finite-
dimensional if and only if (1) or (2) holds:

(1) there exists k 2 N [ f0g such that sj D ke for some j > a, or sj 0 D .k � 1/e

for some j 0 < a.

(2) the following conditions both hold:

(a) e divides n, and

(b) sj � 0 for some j > a or sj 0 � �e for some j 0 < a.

Proof. There is a single removable box in �, and it is a removable 0-box. It is
smaller than an addable 0-box, and thus not good removable for the csle-crystal, if and
only if (1) holds, or e divides n. If (1) holds then Theorem 7.7 implies q.�/ D 0.
If e divides n, then the additional condition for � to be a highest weight vertex
for the sl1-crystal according to Theorem 7.7 is the statement that t 0 D 0, which
is (2)(b).

7.3. Depth of .�; ;; : : : ; ;/ in the sl1-crystal for any partition �. Throughout
this subsection, � D .�

a1

1 ; �
a2

2 ; : : : ; �
ar
r / denotes a partition with �1 > �2 > � � � >

�r > 0 being the distinct nonzero parts of � and ai their multiplicities. We study the
position in the sl1-crystal of � WD .�; ;; : : : ; ;/; an `-partition all of whose nonzero
parts are in the first component.

Lemma 7.9. q.�/ D 0 if and only if either (i) e > maxfaig, or (ii) taking �i

to be maximal so that ai � e, then .ˇ1
Ni �eC1; j / 2 A for some j � 2, where

Ni WD
Pi

mD1 am.

Proof. The depth q.�/ D 0 if and only if there is no aft period in row 1 which can
travel upstream in the crystal. The first way for there to be none such is if ai < e

for all i , because then there is no uninterrupted string of e beads in the first row
with space to its left. The second way is if for any consecutive string Q of e beads
in row 1 with a space to its left, it can’t shift to the left without changing the other
periods. As in the proof of Theorem 7.3, if there are beads above all the beads of
such a quasiperiod Q, either Q will fail to be an aft period, or there will be a fore
period stacked above it, in which case by Lemma 4.23 Q cannot travel upstream.

Theorem 7.10. L.�/ is finite-dimensional if and only if (1) and (2) hold:

(1) condition (i) or (ii) of Lemma 7.9 holds, and

(2) if b1 < b2 < � � � < bd are the left-shiftable i -beads of � which each contribute a
� to the reduced Kashiwara i -word of the level 1 charged partition j�; s1i, then
there exist d distinct integers j1; j2; : : : ; jd , 2 � ji � `, such that sji

D i mod e

and sji
� ˇ.bi / C e � 1 for each i D 1; : : : ; d .
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Proof. Condition (1) is the condition that � is a highest weight vertex in the sl1-
crystal. It follows from the Kashiwara rule that � is a highest weight vertex of
the csle-crystal if and only if (2) holds: the only left-shiftable beads of � are the
left-shiftable beads of �, and if they are canceled by right-shiftable beads in � then
a fortiori this is true in �. If they are left-shiftable and not canceled by any right-
shiftable beads in �, then in order not to yield a good left-shiftable bead, they must
all be canceled by right-shiftable beads in higher rows of A, which is the condition
stated in (2).

We may iterate using the lemma to obtain a complete description of �.�/, the
position of � in the sl1-crystal, and thus of q.�/ D j� j. By Lemma 7.9 we may
assume ai � e for some i , otherwise we know q.�/ D 0. Let �i1; : : : ; �is �

f�1; : : : ; �rg be the distinct parts of � for which ai � e, ordered so that iu < iuC1,
and set ıiu D �iu � �iuC1

for u D 1; : : : ; s � 1 and set ıis D �is . For i D 1; : : : ; r;

write ai D qie C ri with qi ; ri 2 Z�0, ri < e. Set N D Nr D
Pr

iD1 ai , the number
of parts of � including multiplicities. Normalize s so that s1 D N : this means the
rightmost bead of � representing a part of size 0 has column position 0.

Theorem 7.11. Consider the largest sj , j � 2.

� If sj � .
Pr

kDi1C1 ak/ C �i1 C e then

�.�/ D ;:

� Let 1 < u � s. If .
Pr

kDiuC1 ak/ C �iu C e � sj � .
Pr

kDiu
ak/ C �iu C e then

�.�/ D
�
.qi1 C qi2 C � � �C qiu�1

/ıiu�1 ; .qi1 C qi2 C � � �C qiu�2
/ıiu�2 ; : : : ; q

ıi1

i1

�t
:

� Let 1 � u � s. If �iuC1
C

Pr
tDiuC1

at < sj � e < �iu C
Pr

tDiuC1 at , then

�.�/ D
�
.qi1 C qi2 C � � � C qiu�1

C qiu/b; .qi1 C qi2 C � � � C qiu�1
/ıiu�1 ;

.qi1 C qi2 C � � � C qiu�2
/ıiu�2 ; : : : ; q

ıi1

i1

�t
;

where

b D �iu C

rX

tDiuC1

at � sj � #fbeads b in row 1 j sj � e < ˇ.b/ < �iu C

rX

tDiuC1

atg:

� If sj � e then

�.�/ D
�
.qi1 C qi2 C � � � C qis/ıis ; .qi1 C qi2 C � � � C qis�1

/ıis�1 ; : : : ; q
ıi1

i1

�t
:
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Proof. The quasiperiod Q consisting of the last e beads of a sequence of aui
beads

corresponding to a part �ui
occurring aui

� e times, can, first of all, move to the
left as many times as there is space to do so, which is until it encounters the next
part of �. If the next part occurs less than e times then the shift of Q forms a chain
of > e beads with those beads and the minimal quasiperiod, the last e beads of
that chain, can continue moving left. . . and this continues until such a quasiperiod
encounters the beads corresponding to the next part �iuC1

of � occurring aiuC1
� e

times. Thus Q can physically shift (recursively) to the left as many times as there are
spaces between the clump of beads corresponding to parts of � of size �ui

and the
clump of beads corresponding to parts of size �uiC1

, so ıui
times. This will always

be traveling upstream in the crystal unless at some point the first bead of Q passes to
the left of a bead in one of the rows above; if this happens then that is where Q stops
traveling upstream. Translating these remarks into formulas gives the theorem.

Example 7.12. Let � D .127; 7; 6; 411/, s D .20; s2; : : : ; s`/, and e D 3. Let
sj D maxfs2; : : : ; s`g. We illustrate the computation of �.�/ and q.�/, drawing
rows 1 and j only since no other row plays a role. There are two distinct parts �i

with ai � e, �1 and �4, and so i1 D 1, i2 D 4, qi1 D 2; qi2 D 3.

(1) sj D 28. The blue bead, the first bead of the qi1st aft period, cannot move to the
left of the red bead, which means it cannot move left at all. Then �.�/ D ; and
q.�/ D 0.

(2) sj D 24. The blue bead, the first bead of the qi1st aft period, cannot move to
the left of the red bead, which is 4 units to its left. Since qi1 D 2 we have
� D .24/t D .42/ and q.�/ D 8.

(3) sj D 18. The blue bead cannot move to the left of the red bead, but it’s a moot
point because there’s no space for it to do so: Q2 can move 8 D 12�4 D �i1 ��i2

units left and then runs into the next fore period. So Q2 can travel upstream in
the crystal 8 times and we have �.�/ D .28/t D .82/ and q.�/ D 16.

(4) sj D 5. As in the previous example, Q2 which is marked by the rightmost blue
bead can travel 8 times upstream. The leftmost blue bead marks the first bead of
the aft period Qqi1

Cqi2
D Q5. It cannot move to the left of the red bead, so Q5
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can travel upstream twice in the crystal. Then �.�/ D .52; 28/t D .102; 23/ and
q.�/ D 26.

(5) sj D 3. As in the previous example Q2 can travel 8 times upstream. The blue
bead of Q5 cannot move to the left of the red bead, but this is a moot point as
there’s no space for it to do so, it runs into the infinite chain of beads starting
4 D ıi2 spaces to its left and there it stops. So Q5 can travel upstream 4 times in
the crystal. Then �.�/ D .54; 28/t D .122; 43/ and q.�/ D 36.

7.4. A criterion for finite-dimensionality of Cherednik algebra modules in

type B. Let ` D 2 and take a charged bipartition j�; si: � D .�1; �2/,
s D .s1; s2/ 2 Z

2. Fix e � 2. Let A be the abacus of � D .�1; �2/ and let
N 2 Z be the ˇ-number (i.e. column position) of the first bead of the first fore period
of A.

Theorem 7.13. The level 2 abacus A is a highest weight vertex for the sl1-crystal
if and only if A avoids the following e C 1 patterns from column N and to the left:

.1/ .2/ .3/ .4/ � � �

More formally, the k C 1st pattern (k C 1) for a given ˇ � N , 0 � k � e, is
that .ˇ; 2/; .ˇ � k; 1/ … A and .ˇ0; j / 2 A for all ˇ � k � ˇ0 � ˇ, j D 1; 2,
.ˇ0; j / ¤ .ˇ; 2/; .ˇ � k; 1/. The statement is that A is a highest weight vertex for
the sl1-crystal if and only if patterns (1) through (e C 1) do not occur in A for
every ˇ � N .

Proof. First we show that if patterns (1) through (e C 1) do not occur then A is the
source of its sl1-crystal component. There are e C 1 distinct quasiperiods up to shift
when ` D 2: for 0 � k � e, the kth type of quasiperiod is

f.
; 2/; .
�1; 2/; : : : ; .
�eCkC1; 2/; .
�eCk; 1/; : : : ; .
�eC2; 1/; .
�eC1; 1/g

for some 
 2 Z. If patterns (1) through (k C 1) do not occur then the kth type of
quasiperiod has no space to move to the left, for all k D 1; : : : ; e � 1. Now consider
the two extremal cases of a quasiperiods of types 0 and e concentrated in rows 2

and 1, respectively. For the former: if case (1) does not occur and the quasiperiod P

has space to the left to move, then the position one step below and left of the last bead
of P is occupied by a bead b. The left shift of P would then not form a fore period
as such a period would use b instead of the last bead of the shift of P . For the latter:
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if A avoids patterns (1) through (e) and a quasiperiod P of type e, concentrated in
row 1, has space to move to its left, then either pattern (e C 1) occurs or the space
directly left of P is free, the space above it is occupied by a bead, and all spaces
above the beads of P are occupied by beads. A slightly longer but straightforward
argument shows that in the latter case, P cannot travel upstream in the crystal.

For the reverse implication: assume that A is a highest weight vertex for the
sl1-crystal. In pattern (e C 1), the e beads in row 2 always form a fore period, and
the e beads in row 1 an aft period which can move upstream in the crystal by shifting
left. Thus pattern (e C 1) does not occur. Suppose one of the patterns (1) through (e)
appears in A, say pattern (k C1) for some 0 � k � e �1, with the column position of
the upper right space equal to ˇ. As k < e, there is no quasiperiod that is a subset of
the pattern, and there is no quasiperiod starting to the right of the pattern and ending
to the left of the pattern. But we have assumed ˇ � N where N is the position of the
first bead of the first fore period of A. This implies there must be some quasiperiod
Q � A whose last bead b.e/ satisfies ˇ.b.e// � ˇ � k C 1. Consider the smallest
such Q, and say Q is of type k0. Set ˇ0 D ˇ.b.e//. We have

Q D f.ˇ0 C e � 1; 2/; .ˇ0 C e � 2; 2/; .ˇ0 C e � 3; 2/; : : :

: : : ; .ˇ0 C k0; 2/; .ˇ0 C k0 � 1; 1/; : : : ; .ˇ0 C 1; 1/; .ˇ0; 1/g:

If .ˇ0 � 1; 1/ 2 A then ˇ0 > ˇ � k C 1 and

f.ˇ0 C e � 2; 2/; .ˇ0 C e � 3; 2/; : : :

: : : ; .ˇ0 C k0; 2/; .ˇ0 C k0 � 1; 1/; : : : ; .ˇ0 C 1; 1/; .ˇ0; 1/; .ˇ0 � 1; 1/g � A

is a smaller quasiperiod than Q whose last bead b satisfies ˇ.b/ � ˇ � k C 1,
contradicting minimality of Q. So .ˇ0 � 1; 1/ … A. If .ˇ0 C k0 � 1; 2/ 2 A, then

f.ˇ0 C e � 1; 2/; .ˇ0 C e � 2; 2/; .ˇ0 C e � 3; 2/; : : :

: : : ; .ˇ0 C k0; 2/; .ˇ0 C k0 � 1; 2/; : : : ; .ˇ0 C 1; 1/; .ˇ0; 1/g � A

is a smaller quasiperiod than Q, again contradicting minimality of Q. So .ˇ0 Ck0 �1;

2/ … A. Since .ˇ0 � 1; 1/; .ˇ0 C k0 � 1; 2/ … A, Q is a left-shiftable quasiperiod.
In the pattern (k) it is impossible for the beads .
; 2/ to belong to the same

quasiperiod as the beads .
 0; 1/ for all ˇ�k � 
 � ˇ�1 and all ˇ�k C1 � 
 0 � ˇ.
This implies that Q is the minimal quasiperiod in its vessel, hence is an aft period.
Moreover, we claim that the left shift of Q is a fore period: this is clear if Q is not
concentrated in a single row. If Q is concentrated in row 1 then .ˇ0 C e � 1; 2/ … A

because otherwise Q is not minimal. Then the left shift of Q is a fore period. If Q is
concentrated in row 2, so if k0 D 0, then .ˇ0 �1; 2/ D .ˇ0 Ck0 �1; 2/, .ˇ0 �1; 1/ … A

and this implies that the left shift of Q is a fore period. So in every possible case, the
left shift of Q is a fore period. This contradicts the assumption that A is a highest
weight vertex in the sl1-crystal.
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Corollary 7.14. Suppose j�; si is a charged bipartition, j�j D n. Then L.�/ is
a finite-dimensional representation of the rational Cherednik algebra Hc.Bn/ D

Hc.G.2; 1; n// at the corresponding parameters c D .1=e; .s2 � s1/=e � 1=2/ if and
only if

(1) A.�; s/ satisfies the pattern avoidance condition of Theorem 7.13,

(2) and additionally,

(a) if b D .ˇ; 1/ 2 A and .ˇ � 1; 1/ … A, then b is the last bead of a period.

(b) if b D .ˇ; 2/ 2 A and .ˇ � 1; 2/ … A, then either .ˇ; 1/ … A or .ˇ; 1/ 2 A

is the last bead of a period.

Proof. L.�/ is finite-dimensional if and only if A WD A.�; s/ is a source vertex in
both the sl1- and the csle-crystals. By Theorem 7.13, A is a source vertex for the
sl1-crystal if and only if A avoids the e C 1 patterns described in the theorem. In
order for A to also be a source vertex for the csle-crystal, A must in addition be totally
e-periodic. This is the case if and only if any bead directly to the right of a space
belongs to an e-period. If b WD .ˇ; 1/ 2 A and .ˇ � 1; 1/ … A then b is in a period if
and only if it is the last bead of a period. If b WD .ˇ; 2/ and .ˇ �1; 2/ … A, then since
we are already assuming A is a highest weight vertex for the sl1-crystal, it follows
from Theorem 7.13 that .ˇ � 1; 1/, .ˇ � 2; 1/,. . . , .ˇ � e; 1/, .ˇ � e � 1; 1/ 2 A.
Thus b will belong to a period if and only if condition (2)(b) is satisfied.

Remark 7.15. Note that this theorem concerns any bipartition �, and thus detects
finite-dimensionality of L.�/ for any � 2 Irr Bn, not just L.Triv/. This is a new result
which can be applied not only to Cherednik algebras of type B but to type D as well,
since finite-dimensional representations of H1=e.Dn/ are obtained via restriction
from finite-dimensional representations of H.1=e;0/.Bn/. For example, the main
theorem of [37], which was proved by computing wall-crossings, follows immediately
from Corollary 7.14. Indeed: let e 2 2N and s D .0; e=2/, so that c D .1=e; 0/ is the
corresponding type B Cherednik algebra parameter. Let � D .�

a1

1 ; �
a2

2 ; : : : / ¤ ; be
an arbitrary partition with �i the distinct nonzero parts of � and ai their multiplicities.
The abacus A of the charged bipartition j.�; �/; .0; e=2/i has the same arrangement
of beads in row 2 as in row 1, except that the beads in row 2 are shifted e=2 units
to the right relative to those in row 1. This means that A has a pair of spaces
in positions .�1 � a1; 1/ and .�1 � a1 C e=2; 2/, violating the pattern avoidance
condition of Theorem 7.13. Therefore L.�; �/ is infinite-dimensional, implying [37,
Theorem 2.1].

Remark 7.16. Combining Corollary 7.14 and [14, Theorem 7.7], we get an easy
combinatorial characterization of charged bipartitions whose level-rank dual is an
FLOTW e-partition (see e.g. [12, Definition 5.7.8] for the definition).
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