Remarks on profinite groups having few open subgroups

Dan Segal

Abstract. We explore the relations between various conditions of "smallness" on profinite groups.

Mathematics Subject Classification (2010). 20E18.

Keywords. Profinite groups, strong completeness.

1. Introduction

This paper is kind of a survey. The aim is to shed some light on the topic by putting together mainly known results, adding a few new ones (that rely on fairly standard techniques), and to draw attention to a couple of questions.

A profinite group is *small* if for each $n \in \mathbb{N}$ it has only finitely many open subgroups of index at most n.

Every finitely generated profinite group is small: indeed it is clear that a d-generator group has at most $n!^d$ subgroups of index n (see [9, Chapter 2] for sharper estimates). Small groups also arise in number theory: if S is a finite set of primes and K is the maximal algebraic extension of $\mathbb Q$ unramified outside S then $\mathrm{Gal}(K/\mathbb Q)$ is a small profinite group [8, Theorem 1.48]. Whether all such Galois groups are in fact finitely generated seems to be a hard open problem, and group-theoretical methods are externely unlikely to solve it.

If G is a finitely generated profinite group, then

- (a) every subgroup of finite index is open, and
- (b) every power subgroup G^m is open ([13, 14]; for better proofs see also [15]); here $G^m = \langle g^m \mid g \in G \rangle$ denotes the subgroup generated *algebraically* (not topologically) by all mth powers in G.

If (a) holds one says that G is *strongly complete*. If (b) holds I will say that G is *power-open*. It is clear that (b) implies (a).

We shall see below that every strongly complete group is small. A small group need be neither strongly complete nor power-open; we explore some connections

between these various concepts, in particular, to what extent they can be "algebraically defined". Writing

$$\mathcal{F}(P) = \{ P/N \mid N \vartriangleleft_o P \}$$

to denote the family of all continuous finite quotients of a profinite group P, I will say that a property of P is *algebraically defined* if it can be stated in terms of some purely group-theoretic property of the groups in $\mathcal{F}(P)$ — this is not very precise, but will be clear in the cases discussed below.

Significant contibutions are due to Nikolay Nikolov and John Wilson; thanks to both for allowing me to quote some unpublished results.

I will use the following notation. For subset X of a group,

$$X^{*n} = \{x_1 x_2 \dots x_n \mid x_1, x_2, \dots, x_n \in X\}.$$

For a group word w on k variables,

$$G_w = \{ w(\mathbf{g})^{\pm 1} \mid \mathbf{g} \in G^{(k)} \}, \ w(G) = \langle G_w \rangle;$$

and for $m \in \mathbb{N}$, $G_{\{m\}} = \{g^m \mid g \in G\}$, $G^m = \{G_{\{m\}}\}$.

 \overline{X} denotes the closure of a subset X in a profinite group G. We write $N \triangleleft_o G$ to mean: N is an open normal subgroup of G.

The word w has width f in G if $w(G) = G_w^{*f}$, and infinite width if this holds for no finite f. We recall that in a profinite group G, the subgroup w(G) is closed if and only if w has finite width in G; this holds if and only if w has bounded width in $\mathcal{F}(G)$ (see [17, Section 4.1]). If w(G) has countable index in G then w(G) is open, hence has finite index [18, Lemma 2].

A finite group is *anabelian* if it has no abelian composition factors. A profinite group G is anabelian if G/N is anabelian for every open normal subgroup N of G.

2. Examples

In the proof of [12, Theorem 4], Nikolov introduces a general method for constructing groups with large verbal width. The basic idea is summed up in the next lemma.

For a group B let $\mathcal{S}_n(B)$ denote the set of all n-generator subgroups of B.

Lemma 2.1. Let w be a word in k variables and let $G = M \rtimes B$ be a semi-direct product with w(M) = 1. Suppose that for each $H \in \mathcal{S}_{km}(B)$ we have $M = A_H \times D_H$ with $[A_H, H] = 1$ and $[D_H, H] \leq D_H$. Then for any $\mathbf{g}_1, \ldots, \mathbf{g}_m \in G^{(k)}$ there exists $H \in \mathcal{S}_{km}(B)$ such that

$$\prod_{1}^{m} w(\mathbf{g}_{i})^{\pm 1} \in D_{H} \cdot H. \tag{2.1}$$

This is clear: take $H = \langle b_{ij} \mid i = 1, ..., m, j = 1, ..., k \rangle$ where $g_{ij} \in Mb_{ij}$, $b_{ij} \in B$, and observe that

$$w(\mathbf{g}_i) \in w(A_H \times (D_H \cdot H)).$$

Now suppose that

$$w(G) \supseteq M \neq \bigcup_{H \in \mathcal{S}_{km}(B)} D_H.$$

Then some element of M is not of the form (2.1), and it follows that w does not have width m in G.

Proposition 2.2. Let π be a non-empty set of primes with infinite complement. There exists a metabelian small profinite group G such that $G/G'G^p$ is infinite iff $p \in \pi$. Also G is not strongly complete and G' is not closed.

Proof. For distinct primes p and q we construct a finite group $G_{p,q}$ as follows. Set $B=B_q=C_q^{(4q)}$ (the elementary abelian group of order q^{4q}), and for $H\leq B$ let A_H be the $\mathbb{F}_p B$ -module $(B-1)\mathbb{F}_p B/(H-1)\mathbb{F}_p B$. Note that $A_H(H-1)=0$ and $A_H(B-1)=A_H$, since $p\neq q$ implies that $(B-1)\mathbb{F}_p B$ is an idempotent ideal.

$$M_{p,q} = \bigoplus_{H \in \mathcal{S}_{3q}(B)} A_H$$

$$G_{p,q} = M_{p,q} \rtimes B_q.$$

Note that

$$G'_{p,q} = [M_{p,q}, G_{p,q}] = M_{p,q}.$$

Writing

$$D_H = \bigoplus_{H \neq L \in \mathcal{S}_{3q}(B)} A_L$$

we see that Lemma 2.1 applies for the word $w_p = [x, y]z^p$, and infer that this word does not have width q in $G_{p,q}$.

Now partition π' (the set of primes complementary to π) into $|\pi|$ infinite subsets $\sigma(p)$ ($p \in \pi$). Set

$$G = \prod_{\substack{p \in \pi, \\ q \in \sigma(p)}} G_{p,q}.$$

If $p \in \pi$ then w_p does not have width q in $G_{p,q}$, hence also not in G, for every $q \in \sigma(p)$. So w_p has infinite width in G. It follows that $w_p(G) = G'G^p$ is not closed, and therefore has uncountable index in G.

If $r \in \pi'$, then $G_{\{r\}}$ contains

$$\prod_{\substack{p \in \pi, \\ r \neq a \in \sigma(p)}} G_{p,q}$$

so G^r is open and $G/G'G^r \cong B_r$ is finite.

Now let $m \in \mathbb{N}$. If $q \nmid m$ then $G_{p,q}^m \geq \langle B_q^{G_{p,q}} \rangle = G_{p,q}$. It follows that

$$\overline{G^m} \ge \prod_{\substack{p \in \pi, \\ q \in \sigma(p), \, q \nmid m}} G_{p,q}$$

and hence that $\overline{G^m}$ is open. It follows trivially (see Theorem 3.1 below) that G is small.

If $p \in \pi$ then the same argument shows that $\overline{G^p} = G$, while G has infinitely many normal subgroups of index p; none of these is open so G is not strongly complete. Finally, if G' were closed then $G'G^p = G'G_{\{p\}}$ would be closed, being the product of two compact subsets of G, whence $G = \overline{G^p} \leq G'G^p$. This is false for $p \in \pi$, so G' is not closed. (This may seem counter-intuitive since at first glance one expects G' to be the product of the $M_{p,q}$: the point is that an element of $M_{p,q}$ may be the product of about 4q commutators, and an infinite product of such elements may fail to be a product of finitely many commutators in G.)

The next example is taken from [12, Theorem 4]. For any group S we denote by \mathcal{V}_S the group variety generated by S (the class of all groups that satisfy all laws of S). If S is finite then \mathcal{V}_S is finitely based, by the Oates-Powell Theorem (see [6, 52.12]). It follows that \mathcal{V}_S can be defined by a single word, w_S . Then for any group G, the corresponding verbal subgroup is $\mathcal{V}_S(G) = w_S(G)$.

Proposition 2.3. Let S be a non-abelian finite simple group of exponent m. There exists an anabelian small profinite group G such that neither $V_S(G)$ nor G^m is closed. G is not strongly complete.

Proof. Say w_S is a word on k variables. Let $(T_n)_{n\in\mathbb{N}}$ be a sequence of finite non-abelian simple groups of strictly increasing exponents, all exceeding m (for example, large alternating groups). Since the free group F_{kn} has only finitely many normal subgroups of index $|T_n|$, there exists r(n) such that $T_n^{(r(n))}$ cannot be generated by kn elements. Put $B_n = T_n^{(r(n))}$, for each $H \in \mathcal{S}_{kn}(B_n)$ let Ω_H be the B_n -set $H \setminus B_n$, and let $M_H = S^{\Omega_H}$, a B_n -group where B_n acts by permuting the factors.

Let

$$M_n = \prod_{H \in \mathcal{S}_{kn}(B_n)} M_H$$
 (direct product),

and set

$$G_n = M_n \rtimes B_n = S \wr_{\Omega} B_n$$

the permutational wreath product where Ω is the disjoint union of the transitive G-sets Ω_H .

Let $H \in \mathcal{S}_{kn}(B_n)$. Then $M_H = A_H \times C_H$ where $A_H \cong S$ is the factor corresponding to H in Ω_H and C_H is the product of the remaining factors, and the

conditions of Lemma 2.1 are fulfilled on putting $D_H = C_H \times \prod_{L \neq H} M_L$, both for $w = w_S$ and for $w = x^m$. Also

$$w_S(G_n) \ge G_n^m \ge \langle (B_n^m)^{G_n} \rangle = \langle B_n^{G_n} \rangle = G_n$$

(the final equality holds because for each H we have $|\Omega_H| \ge 2$ and S is perfect).

We conclude that w_S does not have width n, and x^m does not have width kn, in G_n . Hence each of these words has infinite width in

$$G=\prod_{n=1}^{\infty}G_n,$$

and so neither $V_S(G) = w_S(G)$ nor G^m is closed.

Let $q \in \mathbb{N}$. Then $T_n^q = T_n$ for all but finitely many n. As above it follows that $G_n^q = G_n$ for all but finitely many n, and hence (as above) that $\overline{G^q}$ is open in G, and finally that G is therefore small.

That G is not strongly complete follows from Theorem 4.1, below. \Box

Different examples of small but not strongly complete groups were given in [11, Proposition 27].

3. Small groups

Write $s_n(G)$ to denote the number of (open) subgroups of index at most n in a (pro)finite group G. Thus a profinite group P is small if and only if $s_n(P)$ is finite for each n; this is equivalent to the statement: there is a function $f: \mathbb{N} \to \mathbb{N}$ such that $s_n(G) \leq f(n)$ for every $G \in \mathcal{F}(P)$ and all n.

Theorem 3.1. A profinite group P is small if and only if $\overline{P^m} \triangleleft_o P$ for every $m \in \mathbb{N}$.

Thus *P* is small if and only if for each $m \in \mathbb{N}$ there exists k(m) such that

$$\forall Q \in \mathcal{F}(P) : |Q/Q^m| < k(m). \tag{3.1}$$

Equivalently: $\mathcal{F}(P)$ contains only finitely many groups of exponent m.

This has a curious number-theoretic interpretation: with Chebotarev's Theorem [8, Theorem 1.116] it yields

Corollary 3.2. Let S be a finite set of primes and let $m \in \mathbb{N}$. Then there are only finitely many finite Galois extensions K of \mathbb{Q} such that (1) all primes ramified in K are in S and (2) almost all primes have residue degree at most m in K.

In one direction, Theorem 3.1 is obvious: every open subgroup of index at most n contains $\overline{P^m}$ where m = n!, so $s_n(P) \le s_n(P/\overline{P^m}) < \infty$.

The other direction lies deeper; it generalizes the positive solution to the Restricted Burnside Problem, which can be formulated as the statement: $\overline{F^m} \lhd_o F$ for every $m \in \mathbb{N}$ when F is a finitely generated free profinite group.

It is proved in much the same way, bearing in mind the slightly different hypothesis. Since $\overline{P^m}$ is the intersection of all $N \triangleleft_o P$ with $P^m \leq N$, it will follow from the next result, on taking $f(n) = s_n(P)$:

Theorem 3.3. Let $f: \mathbb{N} \to \mathbb{N}$ be a function and let $m \in \mathbb{N}$. If G is a finite group such that $G^m = 1$ and $s_n(G) \leq f(n)$ for all n then $|G| \leq v(m, f)$, a number depending only on f and m.

For the rest of this section all groups will be finite. For a group G let $h^*(G)$ denote the minimal length of a chain of normal subgroups $1 = G_0 \le G_1 < \cdots < G_n = G$ such that each factor G_i/G_{i-1} is either nilpotent or semisimple (here, a *semisimple group* means a direct product of non-abelian simple groups). Classic results of Hall and Higman, recalled in Section 6 below, imply

Theorem 3.4. If $G^m = 1$ then $h^*(G) \le \eta(m)$, a number depending only on m.

(Take $\eta(m) = 2\delta(m)$ in Theorem 6.2.)

Now let G be a group satisfying the hypotheses of Theorem 3.3.

Case 1. Suppose that $|G| = p^e$ for some prime p, and that $|G/G'G^p| = p^d$. Then $p^{d-1} \le s_p(G) \le f(p)$ so $d \le \lambda(p) := \lceil 1 + \log_p f(p) \rceil$. Now G can be generated by d elements, and then Zelmanov's theorem [19, 20] gives $|G| \le \beta(\lambda(p), m)$, a number depending only on f(p) and m.

Case 2. Suppose that G is nilpotent. Say $m = p_1^{e_1} \dots p_r^{e_r}$. Then from Case 1 we see that

$$|G| \leq \prod_{i=1}^r \beta(\lambda(p_i), m) := \nu_{\text{nil}}(m, f).$$

Case 3. Suppose that G is semisimple. The result of [10], with CFSG (the classification of finite simple groups; see [3]), shows that there are only finitely many non-abelian simple groups S such that $S^m = 1$; call them S_1, \ldots, S_k and put $t_i = |S_i|$. Now $G \cong \prod S_i^{(c_i)}$ for some $c_i \geq 0$. Clearly $c_i \leq s_{t_i}(G) \leq f(t_i)$ for each i, and so

$$|G| \le \prod_{i=1}^{k} t_i^{f(t_i)} := \nu_{ss}(m, f).$$

So far, we have shown that if $h^*(G) = 1$ then

$$|G| \le \max\{\nu_{\text{nil}}(m, f), \nu_{\text{ss}}(m, f)\} := \nu_1(m, f),$$

say. Now let q > 1 and suppose inductively that for each h < q, and every function g, we have found a number $v_h(m,g)$ such that for any group H satisfying $h^*(H) \le h$, $H^m = 1$ and $s_n(H) \le g(n)$ for all n we have $|H| \le v_h(m,g)$.

Define

$$v_q(m, f) = v_1(m, f) \cdot v_{q-1}(m, g_{m, f})$$

where $g_{m,f}(n) = f(n.\nu_1(m, f))$. Suppose that G with $G^m = 1$ satisfies $s_n(G) \le f(n)$ for all n and that $h^*(G) \le q$. Thus G has a normal subgroup H with $h^*(H) \le q - 1$ such that G/H is either nilpotent or semisimple. Then $|G/H| \le \nu_1(m, f)$, and so for each n we have

$$s_n(H) \le s_{n,\nu_1(m,f)}(G) \le g_{m,f}(n).$$

Therefore $|H| \le \nu_{q-1}(m, g_{m,f})$, whence $|G| = |H| |G/H| \le \nu_q(m, f)$. Finally, set

$$\nu(m, f) = \nu_{n(m)}(m, f).$$

If G satisfies the hypotheses of Theorem 3.3 then $h^*(G) \le \eta(m)$ by Theorem 3.4 and so $|G| \le \nu(m, f)$ as required.

4. Strongly complete groups

The property of being small is inherently "algebraically defined", in terms of the subgroup-growth functions $s_n(G)$, and more succinctly in the remark following Theorem 3.1. The definition of "strongly complete", on the other hand, refers directly to non-open subgroups, which by their nature are undetectable in the continuous finite quotients of a profinite group. The following characterization, due to Smith and Wilson, is therefore remarkable.

An *f-variety* is the group variety generated by a finite group. Each such variety is finitely based, by the Oates–Powell theorem (see [6, Chapter 5]), and can therefore be defined by a single group word.

Theorem 4.1 ([18, Theorem 2]). A profinite group G is strongly complete if and only if $V(G) \triangleleft_O G$ for every f-variety V.

If $N \leq G$ and |G:N| = m then $N \geq \mathcal{V}(G)$ where $\mathcal{V} = \mathcal{V}_{\operatorname{Sym}(m)}$, so $s_m(G) = s_m(G/\mathcal{V}(G))$; thus we have

Corollary 4.2. Every strongly complete profinite group is small.

See also [16, Theorem 2.4], where this was first proved using an ultrafilter construction.

Now V(G) is open if and only it is both closed and has finite index in G. If $V = V_S$ for a finite group S, it is defined by a word w_S ; let us call such a word an f-word. Then V(G) is closed in G if and only if w_S has finite width in G; in that case,

$$|G:\mathcal{V}(G)| = \left|G:\overline{\mathcal{V}(G)}\right| = \sup_{Q \in \mathcal{F}(G)} |Q:w_S(Q)|.$$

Thus we have the algebraic characterization: G is strongly complete if and only if for each f-word w there exists $k(w) \in \mathbb{N}$ such that

$$\forall Q \in \mathcal{F}(G) : |Q/w(Q)| \le k(w) \text{ and } w \text{ has width } k(w) \text{ in } Q.$$
 (4.1)

Smith and Wilson (loc.cit) establish another characterization, which is not algebraic in my sense but nicely clarifies the relation between "strongly complete" and "small": *G* is strongly complete if and only if *G* has finitely many subgroups of each finite index, and this holds if and only if *G* has only countably many subgroups of finite index.

Now (4.1) looks like a strengthening of (3.1), except that the power words x^m are not (usually) f-words, because infinite Burnside groups exist. Could we use power words instead of f-words here? The question has some plausibility because every *finitely generated* profinite group is indeed power-open (the power subgroups G^m are open, [14]). On the other hand, it is clear that every power-open profinite group is strongly complete.

Question 1. Is every strongly complete profinite group power-open?

If so, we can replace the f-words w in (4.1) by the power words x^m , $m \in \mathbb{N}$. The following reduction was pointed out to me by John Wilson:

Proposition 4.3 (J. S. Wilson). Suppose that G is strongly complete. If $H^q \triangleleft_o H$ for every $H \triangleleft_o G$ and every prime-power $q \mid m$ then $G^m \triangleleft_o G$.

Proof. There are only finitely many finite simple groups of exponent dividing m, say S_1, \ldots, S_t ([10]+CFSG). Let \mathcal{V} denote the variety generated by $S_1 \times \cdots \times S_t$.

Let $\eta(m)$ be the number given by Theorem 3.4, so every finite group of exponent dividing m has a normal series of length $\eta(m)$ with each factor either semisimple or nilpotent. Let $k=\eta(m)s$, where m is divisible by s primes. Then every finite group of exponent dividing m has a normal series of length k with each factor either in V or of exponent q for some prime-power $q\mid m$. It follows by a standard inverse limit argument that every locally finite group of exponent dividing m has such a normal series. Now the main theorem of [14] implies that G/G^m is locally finite; hence there is a normal series

$$G = G_0 \ge G_1 \ge \cdots \ge G_k = G^m$$

such that for each i, either $\mathcal{V}(G_i) \leq G_{i+1}$ or $G_i^q \leq G_{i+1}$ for some prime-power $q \mid m$.

Let $i \in \{0, \ldots, k\}$ be maximal such that G_i is open in G. Suppose that i < k. Then G_i is again strongly complete, so if $\mathcal{V}(G_{i+1}) \leq G_i$ then $G_{i+1} \lhd_o G_i$ by Theorem 4.1, whence $G_{i+1} \lhd_o G$, contradiction. If G_i/G_{i+1} has exponent q for some prime-power $q \mid m$ then $G_{i+1} \lhd_o G_i$ by hypothesis, whence $G_{i+1} \lhd_o G_i$, again a contradiction. It follows that i = k and so $G^m \lhd_o G$.

Thus it will suffice to answer Question 1 for normal subgroups of *prime power* index. In some cases this is feasible:

Theorem 4.4 (N. Nikolov). Let G be an anabelian profinite group. Then $G = G^q$ for every prime-power q.

Suppose that q is odd. Theorem 3 of [12] says that the word x^q has bounded width l(q) in every finite anabelian group. In unpublished work (personal communication), Nikolov proves the same statement for q any power of 2. It follows in either case that x^q has finite width l(q) in G, whence G^q is closed. Now if $G^q \leq N <_o G$ then G/N is a finite anabelian group of prime-power order, whence N = G. But G^q is the intersection of all such N, so $G^q = G$.

With Proposition 4.3 this gives

Theorem 4.5. Let G be an anabelian profinite group. Then G is strongly complete if and only if G is power-open.

At the other extreme we could consider prosoluble groups. Question 1 is still open in this case, but the following may be relevant:

Lemma 4.6. Suppose that G is strongly complete and prosoluble. Let $q = p^n$, p be a prime, and let P be a Sylow pro-p subgroup of G. If G^q is not closed then $P_1 := P \cap \overline{G^q} \triangleleft_o P$ and P_1 has an infinite perfect quotient $P_1/(P \cap G^q)$.

Proof. $\overline{G^q} \lhd_o G$ by Theorem 3.1, so $P_1 \lhd_o P$. Now G has a Hall pro-p'-subgroup H, and $G^q P \geq HP = G$. So $\overline{G^q} = G^q P_1$ and so

$$\frac{P_1}{P \cap G^q} = \frac{P_1}{P_1 \cap G^q} \cong \frac{\overline{G^q}}{G^q}.$$

The latter is infinite and perfect, because $\overline{G^q}$ is strongly complete and an abelian group of finite exponent is residually finite.

Thus a negative answer to Question 1 would imply a positive answer to

Question 2. Does there exist a pro-p group with a nontrivial perfect quotient?

This is apparently unkown; the answer is probably "yes", but it seems quite hard. To summarize some of the above:

Theorem 4.7. Let G be a profinite group. The following conditions are equivalent to G being strongly complete.

- (i) if G is a pro-p group: G is finitely generated; or, G is small; or, $\overline{G'G^p}$ is open; or, $G'G^p$ is open;
- (ii) if G is pronilpotent: G is small; or, each Sylow subgroup of G is finitely generated;
- (iii) if G is prosoluble: $H'H^p \triangleleft_o H$ for every $H \triangleleft_o G$ and every prime p;
- (iv) if G is an abelian: G^m is open for every $m \in \mathbb{N}$; or, $|G/G^m|$ is finite for every $m \in \mathbb{N}$.

Proof. Most of this appears above, or follows easily. Let me sketch the argument for (iii), where G is prosoluble. Note that $H'H^p = w(H)$ where $w = [x, y]z^p$ defines the variety generated by C_p , so if G is strongly complete and $H \triangleleft_o G$ then H is strongly complete and w(H) is open by Theorem 4.1. For the converse, suppose that G is not strongly complete and let N be a normal subgroup of G of minimal finite index such that N is not open. Then G/N is a finite soluble group, by Hall's characterization of finite soluble groups as those having a Hall p'-subgroup for every prime p: indeed, if Q is a Hall pro-p' subgroup of G/N. Now let H/N be a minimal normal subgroup of G/N. Then $H \triangleleft_O G$ and $H'H^p \leq N < H$ for some prime p; so $H'H^p$ is not open in H. \square

Remark. Theorem 4.1 does have a direct analogue for small groups:

Theorem 4.8. A profinite group G is small if and only if $\overline{V(G)} \lhd_o G$ for every f-variety V.

Of course this is an immediate corollary of Theorem 3.1, since if $\mathcal{V} = \mathcal{V}_Q$ where Q has exponent m then $G^m \leq \mathcal{V}(G)$. However it is worth mentioning because it is completely elementary. To prove it directly we argue exactly as in the proof of Theorem 3.1, quoting Proposition 6.1 (see Section 6 below) in place of Theorem 3.4.

5. The "congruence kernel"

Let G be a profinite group. Considered as an abstract group, G has a profinite completion \widehat{G} , and the identity map on G induces a natural continuous epimorphism $\pi: \widehat{G} \to G$.

The "congruence kernel" of G is $C(G) = \ker \pi$. Note that C(G) is the projective limit

$$C(G) = \lim_{\leftarrow} \overline{N}/N$$

where N runs over normal subgroups of finite index in G. Thus G is strongly complete if and only if C(G) = 1.

Theorem 5.1. If C(G) is small then G is strongly complete.

Thus a congruence kernel is either trivial or very large (in particular, not finitely generated as a profinite group).

Proof. Assume that C = C(G) is small. First we prove that G is small.

Suppose for a contradiction that G has infinitely many open normal subgroups of index n. It is then easy to see that there exist an open normal subgroup H of G, a finite simple group Q of order $\leq n$ and a continuous epimorphism $\pi\colon H\to P=Q^\mathbb{N}$. For each non-principal ultrafilter \mathcal{U} on \mathbb{N} let $\psi_{\mathcal{U}}\colon H\to Q$ be the induced map onto the ultrapower $P/\mathcal{U}\cong Q$, and set $K_{\mathcal{U}}=\ker\psi_{\mathcal{U}}$. Note that $K_{\mathcal{U}}$ contains $\pi^{-1}(P_0)$

where P_0 is the restricted direct power of Q inside P; if S is any finite collection of non-principal ultrafilters, it follows that

$$K_S := \bigcap_{\mathcal{U} \in S} K_{\mathcal{U}}$$

is a dense normal subgroup of finite index in H. Thus K_S contains a normal subgroup N of finite index in G and $K_S\overline{N} = H$. Therefore $H/K_S \cong \overline{N}/(\overline{N} \cap K_S)$ is a continuous image of C; say $H/K_S \cong C/M$ where M is open and normal in C.

Let \mathcal{V} be the variety generated by Q. Then $\overline{\mathcal{V}(C)} \leq_O C$ by Theorem 4.8. Now $\mathcal{V}(H) \leq K_S$ so $\overline{\mathcal{V}(C)} \leq M$ and so $|H/K_S| \leq |C| \cdot |V(C)| < \infty$. Choosing the set S so as to maximize $|H/K_S|$, we see that $K_{\mathcal{U}} \geq K_S$ for every non-principal ultrafilter \mathcal{U} . Thus there are only finitely many possibilities for $K_{\mathcal{U}}$.

Now it is easy to see that $K_{\mathcal{U}}$ determines \mathcal{U} ; indeed, for $V \subseteq \mathbb{N}$ we have

$$V \in \mathcal{U} \iff K_{\mathcal{U}} \supseteq \pi^{-1} \{ f : \mathbb{N} \to Q \mid f(V) = \{1\} \}.$$

But the number of non-principal ultrafilters is infinite, so we have our contradiction.

Now fix an f-variety V and put W = V(G). If $W \le N \lhd_f G$ then \overline{N}/N is a continuous image of C, and as above we may infer that $|\overline{N}/N| \le |C| : \overline{V(C)}| < \infty$. We choose such an N so as to maximize $|\overline{N}/N|$.

Suppose that $W \leq M \lhd_f G$. Put $D = N \cap M$. Then $\overline{D}N = \overline{N}$ so $|\overline{D}/(N \cap \overline{D})| = |\overline{N}/N|$ and as $N \cap \overline{D} \geq D$ it follows that $N \cap \overline{D} = D$. There are countably many possibilities for \overline{D} , since G is small; and given D, there are finitely many possibilities for M. Thus there are countably many possibilities for M.

Since there are countably many f-varieties it follows that G has countably many normal subgroups of finite index. The result follows by [18, Theorem 2].

6. Generalized Fitting height: a reminder

In this section all groups are finite. The *generalized Fitting subgroup* of a group G is $F^*(G) = FE$ where F = F(G) is the Fitting subgroup and E = E(G) is the largest quasi-semisimple normal subgroup of G (to say that E is *quasi-semisimple* means that E is perfect and E/Z(E) is a product of simple groups); E is more usually defined as the subgroup generated by the components of G, the quasisimple subnormal subgroups (that this is equivalent is a small exercise). It is always the case that $F \cap E = Z(E)$ and E/Z(E) is semisimple; see [1, Chapter 11]. Thus F^*/F is semisimple.

The *generalized Fitting height* h(G) of G is defined by:

$$h(1) = 0, \quad h(G) = 1 + h(G/F^*(G)).$$

It is not hard to see that h(G) is the minimal length of a series of normal subgroups from 1 to G such that each factor is the product of a nilpotent normal subgroup

and a quasi-semisimple normal subgroup; it follows that h is sub-additive on group extensions.

The first result is elementary. For a group Q the variety generated by Q is denoted \mathcal{V}_Q .

Proposition 6.1. For each finite group Q there is an integer m(Q) such that $G \in \mathcal{V}_Q$ implies $h(G) \leq m(Q)$.

Proof. We define m(Q) recursively: set m(1) = 0 and suppose that m(L) has been found for every group L with |L| < |Q|.

If G is a finite group in V_Q then G is a section of $Q^{(n)}$ for some finite n, so $h(G) \leq h(H)$ where $H \leq Q^{(n)}$. It will suffice to find an upper bound for h(H).

Let M be a maximal normal subgroup of Q and put $X = H \cap M^{(n)}$. Then $X \in \mathcal{V}_M$ and $H/X \cong HM^{(n)}/M^{(n)} \in \mathcal{V}_{Q/M}$, so if M > 1 we have

$$h(H) \le h(H/X) + h(X) \le m(Q/M) + m(M).$$

Thus if Q is not simple we may define m(Q) to be the infimum of m(Q/M) + m(M) where M ranges over the maximal normal subgroups of Q.

Now suppose that Q is simple. Write $\pi_i \colon H \to Q$ for the projection to the ith factor in the product and set $L_i = \ker \pi_i$. Say $H\pi_i = Q$ for $1 \le i \le r$ and $H\pi_i = T_i < Q$ for $r < i \le n$ (here r may be 0 or n). Put $X = L_1 \cap \cdots \cap L_r$. Then $H/X \cong Q^{(t)}$ for some $t \le r$ and $X \le P := T_{r+1} \times \cdots \times T_n$.

Now let $a = \max\{h(T) \mid T < Q\}$. Then P has a series of normal subgroups $1 = A_0 \le B_1 \le A_1 \le \cdots \le B_a \le A_a = P$ with B_i/A_{i-1} nilpotent and A_i/B_i semisimple. Say S_1, \ldots, S_s are all the non-abelian composition factors of proper subgroups of Q. Then

$$B_i = B_{i0} \leq B_{i1} \leq \cdots \leq B_{is} = A_i$$

where each B_{ij} is normal in P and $B_{ij}/B_{i(j-1)} \cong S_j^{(n_{ij})}$. Intersecting with X we obtain a normal series

$$\dots A_{i-1} \cap X < B_i \cap X = X_{i0} < X_{i1} < \dots < X_{is} = A_i \cap X \dots$$

such that $(B_i \cap X)/(A_{i-1} \cap X)$ is nilpotent and

$$\frac{X_{ij}}{X_{i(j-1)}} \cong \frac{B_{i(j-1)}(X \cap B_{ij})}{B_{i(j-1)}} \in \mathcal{V}(S_j),$$

for each i and j.

It follows that

$$h((A_i \cap X)/(A_{i-1} \cap X)) \le 1 + m(S_1) + \dots + m(S_s) = b$$

say, and hence that $h(X) \le ab$. As H/X is semisimple we may therefore define m(Q) = 1 + ab.

The next result is not elementary: it depends on CFSG — more precisely, it needs the Schreier Conjecture and the Odd Order Theorem. It also depends on the Hall-Higman Theorem (which it more or less implies, in a weak sense).

Theorem 6.2. For each $q \in \mathbb{N}$ there is an integer $\delta(q)$ such that $G^q = 1$ implies $h(G) \leq \delta(q)$.

Proof. Setting $\delta(1) = 0$ we may suppose that q > 1 and that $\delta(q')$ has been defined for all q' < q. Let G be a group satisfying $G^q = 1$.

If q is a prime power then G is nilpotent and $h(G) \le 1$. Otherwise, let p be an odd prime divisor of $q = p^e r$ where $p \nmid r$.

Suppose first that G is soluble. According to Theorem A of [5], G has p-length $l \le 2e + 1$; so G has a normal series

$$1 = P_0 \le N_0 < P_1 < \cdots < P_l \le N_l = G$$

with each P_i/N_{i-1} a p-group and $N_i^r \leq P_i$. It follows that

$$h(G) \le l(1 + \delta(r)).$$

Next, suppose that Fit(G) = 1 and let $M = F^*(G)$. Then $M = S_1 \times \cdots \times S_n$ is a product of non-abelian simple groups. Let L be the kernel of the induced permutation action of G on the set $\{S_1, \ldots, S_n\}$. Since $C_G(M) = 1$ (because Fit(G) = 1) we see that L/M embeds into $Out(S_1) \times \cdots \times Out(S_n)$, whence L/M is soluble by the Schreier Conjecture, [4, Theorem 7.1.1].

The Odd Order Theorem [2] ensures that S_1 has even order, and hence that q is even. A simple argument, given below, shows that $G^{q/2} \leq L$. It follows that

$$h(G) \le 1 + l(1 + \delta(r)) + \delta(q/2).$$

In general, let H be the soluble radical of G. Then Fit(G/H) = 1. Applying the two previous cases we deduce that $h(G) \le \delta(q)$ where

$$\delta(q) = 1 + 2l(1 + \delta(r)) + \delta(q/2).$$

Proof that $G^{q/2} \leq L$. (Copied from the proof of [5, Theorem 4.4.1].) Suppose that the claim is false. Say $2^e = t$ exactly divides q. Then there exists $g \in G$ with $g^{2^e} = 1$ and $g^{2^{e-1}} \notin L$. Thus g has order t modulo L. Hence g in its conjugation action has a cycle of length t on $\{S_1, \ldots, S_n\}$, say (S_1, \ldots, S_t) . Let $x \in S_1$ be an element of order 2. Then $S_1^{(xg)^i} = S_{1+i}$ centralizes S_1 for $1 \leq i < t$, so for $h \in S_1$ we have

$$h^{(xg)^t} = h^{xg.g^{t-1}} = h^x.$$

Choosing $h \in S_1 \setminus C_{S_1}(x)$ we infer that $(xg)^t \neq 1$. But $(xg)^t = (x, x^g, \dots, x^{g^{t-1}})$ $\in S_1 \times \dots \times S_t$ is an element of order 2, so the order of xg is exactly 2t; this contradicts $x^q = 1$.

It is not known whether the generalized Fitting height of all finite groups in an arbitrary non-trivial variety is uniformly bounded; it would suffice to settle this for soluble groups: see [7, Problem 2; Theorems 6–7].

References

- M. Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, 10, Cambridge University Press, Cambridge, 1986. Zbl 0583.20001 MR 895134
- [2] W. Feit and J. G. Thompson, Solvability of groups of odd order, *Pacific J.Math.*, 13 (1963), 775–1029. Zbl 0124.26402 MR 166261
- [3] D. Gorenstein, R. Lyons, and R. Solomon, *The classification of the finite simple groups*, Mathematical Surveys and Monographs, 40.1, American Math. Soc., Providence, Rhode Island, 1994. Zbl 0816.20016 MR 1303592
- [4] D. Gorenstein, R. Lyons, and R. Solomon, *The classification of the finite simple groups*, Mathematical Surveys and Monographs, 40.3, American Math. Soc., Providence, Rhode Island, 1998. Zbl 0890.20012 MR 1490581
- [5] P. Hall and G. Higman, On the *p*-length of *p*-soluble groups and reduction theorems for Burnside's problem, *Proc. London Math. Soc.* (3), 6 (1956), 1–42. Zbl 0073.25503 MR 72872
- [6] H. Neumann, Varieties of groups, Springer-Verlag, Berlin-Heidelberg-New York, 1967.Zbl 0251.20001 MR 215899
- [7] E. I. Khukhro, Problems of bounding the *p*-length and Fitting height of finite soluble groups, *J. Siberian Federal Uni. Mathematics & Physics*, **2** (2009), no. 3, 258–270.
- [8] H. Koch, Algebraic Number Theory, Springer-Verlag, Berlin Heidelberg, 1997.Zbl 0885.11001 MR 1474965
- [9] A. Lubotzky and D. Segal, Subgroup growth, Birkhäuser, Basel, 2003. Zbl 1071.20033 MR 1978431
- [10] G. A. Jones, Varieties and simple groups, J. Austral. Math. Soc., 17 (1974), 163–173. Zbl 0286.20028 MR 344342
- [11] N. Nikolov, Algebraic properties of profinite groups, 2012. arXiv:1108.5130
- [12] N. Nikolov, Verbal width in anabelian groups, *Israel J. Math.*, **216** (2016), 847–876.
 Zbl 06673874 MR 3557468
- [13] N. Nikolov and D. Segal, On finitely generated profinite groups, I: strong completeness and uniform bounds, *Annals of Math.*, **165** (2007), 171–238. Zbl 1126.20018 MR 2276769
- [14] N. Nikolov and D. Segal, Powers in finite groups, *Groups, Geometry and Dynamics*, 5 (2011), 501–507. Zbl 1243.20036 MR 2782182
- [15] N. Nikolov and D. Segal, Generators and commutators in finite groups; abstract quotients of compact groups, *Invent. Math.*, 190 (2012), 513–602. Zbl 1268.20031 MR 2995181
- [16] H. L. Peterson, Discontinuous characters and subgroups of finite index, *Pacific J. Math.*, 44 (1973), 683–691. Zbl 0263.22004 MR 316627

- [17] D. Segal, *Words: notes on verbal width in groups*, London Math. Soc. Lecture Notes Series, 361, Cambridge Univ. Press, Cambridge, 2009. Zbl 1198.20001 MR 2547644
- [18] M. G. Smith and J. S. Wilson, On subgroups of finite index in compact Hausdorff groups, Arch. Math., 80 (2003), 123–129. Zbl 1039.20011 MR 1978067
- [19] E. I. Zelmanov, The solution of the restricted Burnside problem for groups of odd exponent, *Math. USSR Izv.*, **36** (1991), 41–60. Zbl 0704.20030 MR 1044047
- [20] E. I. Zelmanov, The solution of the restricted Burnside problem for 2-groups, *Mat. Sb.*, **182** (1991), 568–592. Zbl 0752.20017 MR 1119009

Received 12 July, 2017

D. Segal, All Souls College, University of Oxford, Oxford OX1 4AL, UK E-mail: segal@maths.ox.ac.uk