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1. Introduction

This paper is kind of a survey. The aim is to shed some light on the topic by putting
together mainly known results, adding a few new ones (that rely on fairly standard
techniques), and to draw attention to a couple of questions.

A profinite group is small if for each n 2 N it has only finitely many open
subgroups of index at most n.

Every finitely generated profinite group is small: indeed it is clear that a
d -generator group has at most nŠd subgroups of index n (see [9, Chapter 2] for
sharper estimates). Small groups also arise in number theory: if S is a finite set
of primes and K is the maximal algebraic extension of Q unramified outside S
then Gal.K=Q/ is a small profinite group [8, Theorem 1.48]. Whether all such
Galois groups are in fact finitely generated seems to be a hard open problem, and
group-theoretical methods are extemely unlikely to solve it.

If G is a finitely generated profinite group, then

(a) every subgroup of finite index is open, and

(b) every power subgroup Gm is open ([13, 14]; for better proofs see also [15]);
here Gm D hgm j g 2 Gi denotes the subgroup generated algebraically (not
topologically) by all mth powers in G.

If (a) holds one says that G is strongly complete. If (b) holds I will say that G is
power-open. It is clear that (b) implies (a).

We shall see below that every strongly complete group is small. A small group
need be neither strongly complete nor power-open; we explore some connections
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between these various concepts, in particular, towhat extent they can be “algebraically
defined”. Writing

F .P / D fP=N j N Co P g

to denote the family of all continuous finite quotients of a profinite group P , I will
say that a property of P is algebraically defined if it can be stated in terms of some
purely group-theoretic property of the groups in F .P / — this is not very precise,
but will be clear in the cases discussed below.

Significant contibutions are due to Nikolay Nikolov and John Wilson; thanks to
both for allowing me to quote some unpublished results.

I will use the following notation. For subset X of a group,

X�n D fx1x2 : : : xn j x1; x2; : : : ; xn 2 Xg:

For a group word w on k variables,

Gw D fw.g/˙1 j g 2 G.k/g; w.G/ D hGwi I

and for m 2 N, Gfmg D fgm j g 2 Gg, Gm D
˝
Gfmg

˛
.

X denotes the closure of a subset X in a profinite group G. We write N Co G

to mean: N is an open normal subgroup of G.
The word w has width f in G if w.G/ D G

�f
w , and infinite width if this holds

for no finite f . We recall that in a profinite group G, the subgroup w.G/ is closed
if and only if w has finite width in G; this holds if and only if w has bounded width
in F .G/ (see [17, Section 4.1]). If w.G/ has countable index in G then w.G/ is
open, hence has finite index [18, Lemma 2].

A finite group is anabelian if it has no abelian composition factors. A profinite
group G is anabelian if G=N is anabelian for every open normal subgroup N of G.

2. Examples

In the proof of [12, Theorem 4], Nikolov introduces a general method for constructing
groups with large verbal width. The basic idea is summed up in the next lemma.

For a group B let Sn.B/ denote the set of all n-generator subgroups of B .

Lemma 2.1. Let w be a word in k variables and let G D M Ì B be a semi-direct
product with w.M/ D 1. Suppose that for each H 2 Skm.B/ we have M D

AH �DH with ŒAH ;H � D 1 and ŒDH ;H � � DH . Then for any g1; : : : ; gm 2 G.k/
there existsH 2 Skm.B/ such thatYm

1
w.gi /˙1 2 DH �H: (2.1)
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This is clear: take H D
˝
bij j i D 1; : : : ; m; j D 1; : : : ; k

˛
where gij 2 Mbij ,

bij 2 B , and observe that

w.gi / 2 w.AH � .DH �H//:

Now suppose that
w.G/ �M ¤

[
H2Skm.B/

DH :

Then some element ofM is not of the form (2.1), and it follows that w does not have
width m in G.
Proposition 2.2. Let � be a non-empty set of primes with infinite complement. There
exists a metabelian small profinite group G such that G=G0Gp is infinite iff p 2 � .
Also G is not strongly complete and G0 is not closed.

Proof. For distinct primes p and q we construct a finite group Gp;q as follows. Set
B D Bq D C

.4q/
q (the elementary abelian group of order q4q), and for H � B

let AH be the FpB-module .B � 1/FpB=.H � 1/FpB . Note that AH .H � 1/ D 0
andAH .B�1/ D AH , since p ¤ q implies that .B�1/FpB is an idempotent ideal.

Put

Mp;q D

M
H2S3q.B/

AH

Gp;q DMp;q Ì Bq:

Note that
G0p;q D ŒMp;q; Gp;q� DMp;q:

Writing
DH D

M
H¤L2S3q.B/

AL

we see that Lemma 2.1 applies for the word wp D Œx; y�zp , and infer that this word
does not have width q in Gp;q .

Now partition � 0 (the set of primes complementary to �) into j�j infinite subsets
�.p/ .p 2 �/. Set

G D
Y
p2�;
q2�.p/

Gp;q .

If p 2 � then wp does not have width q in Gp;q , hence also not in G, for every
q 2 �.p/. So wp has infinite width in G. It follows that wp.G/ D G0Gp is not
closed, and therefore has uncountable index in G.

If r 2 � 0, then Gfrg contains Y
p2�;

r¤q2�.p/

Gp;q

so Gr is open and G=G 0Gr Š Br is finite.
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Now let m 2 N. If q − m then Gmp;q �
˝
B
Gp;q
q

˛
D Gp;q . It follows that

Gm �
Y
p2�;

q2�.p/; q−m

Gp;q

and hence that Gm is open. It follows trivially (see Theorem 3.1 below) that G is
small.

Ifp 2 � then the same argument shows thatGp D G, whileG has infinitelymany
normal subgroups of index pI none of these is open so G is not strongly complete.
Finally, ifG0were closed thenG0Gp D G0Gfpgwould be closed, being the product of
two compact subsets ofG, whenceG D Gp � G0Gp . This is false for p 2 � , soG0
is not closed. (This may seem counter-intuitive since at first glance one expectsG0 to
be the product of theMp;q: the point is that an element ofMp;q may be the product
of about 4q commutators, and an infinite product of such elements may fail to be a
product of finitely many commutators in G.)

The next example is taken from [12, Theorem 4]. For any group S we denote
by VS the group variety generated by S (the class of all groups that satisfy all
laws of S ). If S is finite then VS is finitely based, by the Oates–Powell Theorem
(see [6, 52.12]). It follows that VS can be defined by a single word, wS . Then for
any group G, the corresponding verbal subgroup is VS .G/ D wS .G/.

Proposition 2.3. Let S be a non-abelian finite simple group of exponent m. There
exists an anabelian small profinite group G such that neither VS .G/ nor Gm is
closed. G is not strongly complete.

Proof. Say wS is a word on k variables. Let .Tn/n2N be a sequence of finite non-
abelian simple groups of strictly increasing exponents, all exceedingm (for example,
large alternating groups). Since the free group Fkn has only finitely many normal
subgroups of index jTnj, there exists r.n/ such that T .r.n//n cannot be generated by
kn elements. PutBn D T .r.n//n ; for eachH 2 Skn.Bn/ let�H be theBn-setHnBn,
and letMH D S

�H , a Bn-group where Bn acts by permuting the factors.
Let

Mn D

Y
H2Skn.Bn/

MH (direct product);

and set
Gn DMn Ì Bn D S o� Bn;

the permutational wreath product where � is the disjoint union of the transitive
G-sets �H .

Let H 2 Skn.Bn/. Then MH D AH � CH where AH Š S is the factor
corresponding to H in �H and CH is the product of the remaining factors, and the
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conditions of Lemma 2.1 are fulfilled on putting DH D CH �
Q
L¤HML, both for

w D wS and for w D xm. Also

wS .Gn/ � G
m
n �

˝
.Bmn /

Gn
˛
D
˝
Bn

Gn
˛
D Gn

(the final equality holds because for eachH we have j�H j � 2 and S is perfect).
We conclude that wS does not have width n; and xm does not have width kn,

in Gn. Hence each of these words has infinite width in

G D

1Y
nD1

Gn,

and so neither VS .G/ D wS .G/ nor Gm is closed.
Let q 2 N. Then T qn D Tn for all but finitely many n. As above it follows that

G
q
n D Gn for all but finitely many n, and hence (as above) that Gq is open in G, and

finally that G is therefore small.
That G is not strongly complete follows from Theorem 4.1, below.

Different examples of small but not strongly complete groups were given in [11,
Proposition 27].

3. Small groups

Write sn.G/ to denote the number of (open) subgroups of index at most n in a
(pro)finite group G: Thus a profinite group P is small if and only if sn.P / is finite
for each n; this is equivalent to the statement: there is a function f WN ! N such
that sn.G/ � f .n/ for every G 2 F .P / and all n.

Theorem 3.1. A profinite groupP is small if and only ifPm Co P for everym 2 N.

Thus P is small if and only if for each m 2 N there exists k.m/ such that

8Q 2 F .P / W jQ=Qm
j � k.m/: (3.1)

Equivalently: F .P / contains only finitely many groups of exponent m.
This has a curious number-theoretic interpretation: with Chebotarev’s Theorem

[8, Theorem 1.116] it yields

Corollary 3.2. Let S be a finite set of primes and let m 2 N. Then there are only
finitely many finite Galois extensions K of Q such that (1) all primes ramified in K
are in S and (2) almost all primes have residue degree at most m in K.

In one direction, Theorem 3.1 is obvious: every open subgroup of index at most n
contains Pm where m D nŠ, so sn.P / � sn.P=Pm/ <1.
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The other direction lies deeper; it generalizes the positive solution to theRestricted
Burnside Problem, which can be formulated as the statement: Fm Co F for every
m 2 N when F is a finitely generated free profinite group.

It is proved inmuch the sameway, bearing inmind the slightly different hypothesis.
Since Pm is the intersection of all N Co P with Pm � N , it will follow from the
next result, on taking f .n/ D sn.P /:
Theorem 3.3. Let f WN ! N be a function and let m 2 N. If G is a finite group
such that Gm D 1 and sn.G/ � f .n/ for all n then jGj � �.m; f /, a number
depending only on f and m.

For the rest of this section all groups will be finite. For a groupG let h�.G/ denote
the minimal length of a chain of normal subgroups 1 D G0 � G1 < � � � < Gn D G
such that each factor Gi=Gi�1 is either nilpotent or semisimple (here, a semisimple
group means a direct product of non-abelian simple groups). Classic results of Hall
and Higman, recalled in Section 6 below, imply
Theorem 3.4. If Gm D 1 then h�.G/ � �.m/, a number depending only on m.

(Take �.m/ D 2ı.m/ in Theorem 6.2.)
Now let G be a group satisfying the hypotheses of Theorem 3.3.

Case 1. Suppose that jGj D pe for some prime p, and that jG=G0Gpj D pd . Then
pd�1 � sp.G/ � f .p/ so d � �.p/ WD

˙
1C logp f .p/

�
. NowG can be generated

by d elements, and then Zelmanov’s theorem [19, 20] gives jGj � ˇ.�.p/;m/, a
number depending only on f .p/ and m.
Case 2. Suppose that G is nilpotent. Say m D p

e1

1 : : : p
er
r . Then from Case 1 we

see that

jGj �

rY
iD1

ˇ.�.pi /;m/ WD �nil.m; f /:

Case 3. Suppose that G is semisimple. The result of [10], with CFSG (the class-
ification of finite simple groups; see [3]), shows that there are only finitely many
non-abelian simple groups S such that Sm D 1; call them S1; : : : ; Sk and put
ti D jSi j. Now G Š

Q
S
.ci /
i for some ci � 0. Clearly ci � sti .G/ � f .ti / for

each i , and so

jGj �

kY
iD1

t
f .ti /
i WD �ss.m; f /:

So far, we have shown that if h�.G/ D 1 then

jGj � maxf�nil.m; f /; �ss.m; f /g WD �1.m; f /;

say. Now let q > 1 and suppose inductively that for each h < q, and every function g,
we have found a number �h.m; g/ such that for any groupH satisfying h�.H/ � h,
Hm D 1 and sn.H/ � g.n/ for all n we have jH j � �h.m; g/.
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Define
�q.m; f / D �1.m; f / � �q�1.m; gm;f /

wheregm;f .n/Df .n:�1.m; f //. Suppose thatGwithGmD1 satisfies sn.G/�f .n/
for all n and that h�.G/ � q. ThusG has a normal subgroupH with h�.H/ � q�1
such that G=H is either nilpotent or semisimple. Then jG=H j � �1.m; f /, and so
for each n we have

sn.H/ � sn:�1.m;f /.G/ � gm;f .n/:

Therefore jH j � �q�1.m; gm;f /, whence jGj D jH j jG=H j � �q.m; f /.
Finally, set

�.m; f / D ��.m/.m; f /:

If G satisfies the hypotheses of Theorem 3.3 then h�.G/ � �.m/ by Theorem 3.4
and so jGj � �.m; f / as required.

4. Strongly complete groups

The property of being small is inherently “algebraically defined”, in terms of the
subgroup-growth functions sn.G/, and more succinctly in the remark following
Theorem 3.1. The definition of “strongly complete”, on the other hand, refers directly
to non-open subgroups, which by their nature are undetectable in the continuous
finite quotients of a profinite group. The following characterization, due to Smith
and Wilson, is therefore remarkable.

An f-variety is the group variety generated by a finite group. Each such variety is
finitely based, by the Oates–Powell theorem (see [6, Chapter 5]), and can therefore
be defined by a single group word.

Theorem 4.1 ([18, Theorem 2]). A profinite groupG is strongly complete if and only
if V.G/ Co G for every f-variety V .

If N � G and jG W N j D m then N � V.G/ where V D VSym.m/, so sm.G/ D
sm.G=V.G//; thus we have

Corollary 4.2. Every strongly complete profinite group is small.

See also [16, Theorem 2.4], where this was first proved using an ultrafilter
construction.

Now V.G/ is open if and only it is both closed and has finite index in G. If
V D VS for a finite group S , it is defined by a word wS ; let us call such a word an
f-word. Then V.G/ is closed in G if and only if wS has finite width in G; in that
case,

jG W V.G/j D
ˇ̌
G W V.G/

ˇ̌
D sup
Q2F .G/

jQ W wS .Q/j:
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Thus we have the algebraic characterization: G is strongly complete if and only
if for each f-word w there exists k.w/ 2 N such that

8Q 2 F .G/ W jQ=w.Q/j � k.w/ and w has width k.w/ inQ: (4.1)

Smith and Wilson (loc.cit) establish another characterization, which is not
algebraic in my sense but nicely clarifies the relation between “strongly complete”
and “small”: G is strongly complete if and only if G has finitely many subgroups of
each finite index, and this holds if and only if G has only countably many subgroups
of finite index.

Now (4.1) looks like a strengthening of (3.1), except that the power words xm are
not (usually) f-words, because infinite Burnside groups exist. Could we use power
words instead of f-words here? The question has some plausibility because every
finitely generated profinite group is indeed power-open (the power subgroupsGm are
open, [14]). On the other hand, it is clear that every power-open profinite group is
strongly complete.
Question 1. Is every strongly complete profinite group power-open?

If so, we can replace the f-words w in (4.1) by the power words xm, m 2 N.
The following reduction was pointed out to me by John Wilson:

Proposition 4.3 (J. S. Wilson). Suppose that G is strongly complete. If H q Co H

for everyH Co G and every prime-power q j m then Gm Co G.

Proof. There are only finitely many finite simple groups of exponent dividingm; say
S1; : : : ; St ([10]CCFSG). Let V denote the variety generated by S1 � � � � � St .

Let �.m/ be the number given by Theorem 3.4, so every finite group of exponent
dividing m has a normal series of length �.m/ with each factor either semisimple or
nilpotent. Let k D �.m/s, wherem is divisible by s primes. Then every finite group
of exponent dividing m has a normal series of length k with each factor either in V

or of exponent q for some prime-power q j m. It follows by a standard inverse limit
argument that every locally finite group of exponent dividing m has such a normal
series. Now the main theorem of [14] implies that G=Gm is locally finite; hence
there is a normal series

G D G0 � G1 � � � � � Gk D G
m

such that for each i , either V.Gi / � GiC1 or Gqi � GiC1 for some prime-power
q j m.

Let i 2 f0; : : : ; kg be maximal such that Gi is open in G. Suppose that i < k.
Then Gi is again strongly complete, so if V.GiC1/ � Gi then GiC1 Co Gi by
Theorem 4.1, whence GiC1 Co G, contradiction. If Gi=GiC1 has exponent q for
some prime-power q j m then GiC1 Co Gi by hypothesis, whence GiC1 Co G,
again a contradiction. It follows that i D k and so Gm Co G.
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Thus it will suffice to answer Question 1 for normal subgroups of prime power
index. In some cases this is feasible:
Theorem 4.4 (N. Nikolov). Let G be an anabelian profinite group. Then G D Gq

for every prime-power q.
Suppose that q is odd. Theorem 3 of [12] says that the word xq has bounded

width l.q/ in every finite anabelian group. In unpublished work (personal
communication), Nikolov proves the same statement for q any power of 2. It follows
in either case that xq has finite width l.q/ in G, whence Gq is closed. Now if
Gq � N Co G then G=N is a finite anabelian group of prime-power order, whence
N D G. But Gq is the intersection of all such N , so Gq D G.

With Proposition 4.3 this gives
Theorem 4.5. Let G be an anabelian profinite group. Then G is strongly complete
if and only if G is power-open.

At the other extreme we could consider prosoluble groups. Question 1 is still
open in this case, but the following may be relevant:
Lemma 4.6. Suppose that G is strongly complete and prosoluble. Let q D pn;

p be a prime, and let P be a Sylow pro-p subgroup of G. If Gq is not closed then
P1 WD P \Gq Co P and P1 has an infinite perfect quotient P1=.P \Gq/.

Proof. GqCoG byTheorem3.1, soP1CoP . NowG has aHall pro-p0-subgroupH ,
and GqP � HP D G. So Gq D GqP1 and so

P1

P \Gq
D

P1

P1 \Gq
Š
Gq

Gq
:

The latter is infinite and perfect, because Gq is strongly complete and an abelian
group of finite exponent is residually finite.

Thus a negative answer to Question 1 would imply a positive answer to
Question 2. Does there exist a pro-p group with a nontrivial perfect quotient?

This is apparently unkown; the answer is probably “yes”, but it seems quite hard.
To summarize some of the above:

Theorem 4.7. Let G be a profinite group. The following conditions are equivalent
to G being strongly complete.
(i) if G is a pro-p group: G is finitely generated; or, G is small; or, G0Gp is open;

or, G0Gp is open;
(ii) if G is pronilpotent: G is small; or, each Sylow subgroup of G is finitely

generated;
(iii) if G is prosoluble: H 0Hp Co H for everyH Co G and every prime p;
(iv) if G is anabelian: Gm is open for every m 2 N; or, jG=Gmj is finite for every

m 2 N.
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Proof. Most of this appears above, or follows easily. Let me sketch the argument
for (iii), where G is prosoluble. Note that H 0Hp D w.H/ where w D Œx; y�zp

defines the variety generated by Cp , so if G is strongly complete and H Co G

then H is strongly complete and w.H/ is open by Theorem 4.1. For the converse,
suppose that G is not strongly complete and let N be a normal subgroup of G of
minimal finite index such thatN is not open. ThenG=N is a finite soluble group, by
Hall’s characterization of finite soluble groups as those having a Hall p0-subgroup
for every prime p: indeed, ifQ is a Hall pro-p0 subgroup ofG thenQN=N is a Hall
p0-subgroup of G=N . Now letH=N be a minimal normal subgroup of G=N . Then
H Co G andH 0Hp � N < H for some prime p; soH 0Hp is not open inH .

Remark. Theorem 4.1 does have a direct analogue for small groups:
Theorem 4.8. A profinite group G is small if and only if V.G/ Co G for every
f-variety V .

Of course this is an immediate corollary of Theorem 3.1, since if V D VQ

where Q has exponent m then Gm � V.G/. However it is worth mentioning
because it is completely elementary. To prove it directly we argue exactly as in the
proof of Theorem 3.1, quoting Proposition 6.1 (see Section 6 below) in place of
Theorem 3.4.

5. The “congruence kernel”

Let G be a profinite group. Considered as an abstract group, G has a profinite com-
pletion bG, and the identity map on G induces a natural continuous epimorphism
� WbG ! G.

The “congruence kernel” ofG isC.G/ D ker� . Note thatC.G/ is the projective
limit

C.G/ D lim
 
N=N

where N runs over normal subgroups of finite index in G. Thus G is strongly
complete if and only if C.G/ D 1.
Theorem 5.1. If C.G/ is small then G is strongly complete.

Thus a congruence kernel is either trivial or very large (in particular, not finitely
generated as a profinite group).

Proof. Assume that C D C.G/ is small. First we prove that G is small.
Suppose for a contradiction thatG has infinitely many open normal subgroups of

index n. It is then easy to see that there exist an open normal subgroupH ofG, a finite
simple group Q of order � n and a continuous epimorphism � WH ! P D QN .
For each non-principal ultrafilter U on N let  UWH ! Q be the induced map onto
the ultrapower P=U Š Q, and set KU D ker U. Note that KU contains ��1.P0/
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where P0 is the restricted direct power ofQ inside P ; if S is any finite collection of
non-principal ultrafilters, it follows that

KS WD
\

U2S

KU

is a dense normal subgroup of finite index in H . Thus KS contains a normal
subgroupN of finite index inG andKSN D H . ThereforeH=KS Š N=.N \KS /
is a continuous image of C ; sayH=KS Š C=M whereM is open and normal in C .

Let V be the variety generated by Q. Then V.C / Co C by Theorem 4.8. Now
V.H/ � KS so V.C / � M and so jH=KS j �

ˇ̌
C W V.C /

ˇ̌
< 1. Choosing the

set S so as to maximize jH=KS j, we see that KU � KS for every non-principal
ultrafilter U. Thus there are only finitely many possibilities for KU.

Now it is easy to see that KU determines U; indeed, for V � N we have

V 2 U” KU � �
�1
ff WN ! Q j f .V / D f1gg :

But the number of non-principal ultrafilters is infinite, so we have our contradiction.
Now fix an f-variety V and put W D V.G/. If W � N Cf G then N=N is a

continuous image of C , and as above we may infer that jN=N j � jC W V.C /j <1.
We choose such an N so as to maximize jN=N j.

Suppose that W � M Cf G. Put D D N \ M . Then DN D N so
jD=.N \D/j D jN=N j and as N \D � D it follows that N \D D D. There are
countably many possibilities for D, since G is small; and given D, there are finitely
many possibilities forM . Thus there are countably many possibilities forM .

Since there are countably many f-varieties it follows that G has countably many
normal subgroups of finite index. The result follows by [18, Theorem 2].

6. Generalized Fitting height: a reminder

In this section all groups are finite. The generalized Fitting subgroup of a group G
is F �.G/ D FE where F D F.G/ is the Fitting subgroup and E D E.G/ is the
largest quasi-semisimple normal subgroup of G (to say that E is quasi-semisimple
means that E is perfect and E=Z.E/ is a product of simple groups); E is more
usually defined as the subgroup generated by the components of G, the quasisimple
subnormal subgroups (that this is equivalent is a small exercise). It is always the case
that F \E D Z.E/ and E=Z.E/ is semisimple; see [1, Chapter 11]. Thus F �=F is
semisimple.

The generalized Fitting height h.G/ of G is defined by:

h.1/ D 0; h.G/ D 1C h.G=F �.G//:

It is not hard to see that h.G/ is the minimal length of a series of normal subgroups
from 1 to G such that each factor is the product of a nilpotent normal subgroup
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and a quasi-semisimple normal subgroup; it follows that h is sub-additive on group
extensions.

The first result is elementary. For a group Q the variety generated by Q is
denoted VQ.
Proposition 6.1. For each finite groupQ there is an integerm.Q/ such thatG 2 VQ
implies h.G/ � m.Q/.

Proof. We define m.Q/ recursively: set m.1/ D 0 and suppose that m.L/ has been
found for every group L with jLj < jQj.

If G is a finite group in VQ then G is a section of Q.n/ for some finite n,
so h.G/ � h.H/ whereH � Q.n/. It will suffice to find an upper bound for h.H/.

Let M be a maximal normal subgroup of Q and put X D H \M .n/. Then
X 2 VM andH=X Š HM .n/=M .n/ 2 VQ=M , so ifM > 1 we have

h.H/ � h.H=X/C h.X/ � m.Q=M/Cm.M/:

Thus ifQ is not simple wemay definem.Q/ to be the infimum ofm.Q=M/Cm.M/

whereM ranges over the maximal normal subgroups ofQ.
Now suppose that Q is simple. Write �i WH ! Q for the projection to the i th

factor in the product and set Li D ker�i . Say H�i D Q for 1 � i � r and
H�i D Ti < Q for r < i � n (here r may be 0 or n). PutX D L1\ � � � \Lr . Then
H=X Š Q.t/ for some t � r and X � P WD TrC1 � � � � � Tn.

Now let a D maxfh.T / j T < Qg. Then P has a series of normal subgroups
1 D A0 � B1 � A1 � � � � � Ba � Aa D P with Bi=Ai�1 nilpotent and Ai=Bi
semisimple. Say S1; : : : ; Ss are all the non-abelian composition factors of proper
subgroups ofQ. Then

Bi D Bi0 � Bi1 � � � � � Bis D Ai

where each Bij is normal in P and Bij =Bi.j�1/ Š S
.nij /

j . Intersecting with X we
obtain a normal series

: : : Ai�1 \X � Bi \X D Xi0 � Xi1 � � � � � Xis D Ai \X : : :

such that .Bi \X/=.Ai�1 \X/ is nilpotent and

Xij

Xi.j�1/
Š
Bi.j�1/.X \ Bij /

Bi.j�1/
2 V.Sj /;

for each i and j .
It follows that

h..Ai \X/=.Ai�1 \X// � 1Cm.S1/C � � � Cm.Ss/ D b

say, and hence that h.X/ � ab. As H=X is semisimple we may therefore define
m.Q/ D 1C ab.
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The next result is not elementary: it depends on CFSG — more precisely, it
needs the Schreier Conjecture and the Odd Order Theorem. It also depends on the
Hall–Higman Theorem (which it more or less implies, in a weak sense).
Theorem 6.2. For each q 2 N there is an integer ı.q/ such that Gq D 1 implies
h.G/ � ı.q/.

Proof. Setting ı.1/ D 0 we may suppose that q > 1 and that ı.q0/ has been defined
for all q0 < q. Let G be a group satisfying Gq D 1.

If q is a prime power then G is nilpotent and h.G/ � 1. Otherwise, let p be an
odd prime divisor of q D per where p − r .

Suppose first that G is soluble. According to Theorem A of [5], G has p-length
l � 2e C 1; so G has a normal series

1 D P0 � N0 < P1 < � � � < Pl � Nl D G

with each Pi=Ni�1 a p-group and N r
i � Pi . It follows that

h.G/ � l.1C ı.r//:

Next, suppose that Fit.G/ D 1 and letM D F �.G/. ThenM D S1�� � ��Sn is a
product of non-abelian simple groups. LetL be the kernel of the induced permutation
action of G on the set fS1; ; : : : ; Sng. Since CG.M/ D 1 (because Fit.G/ D 1) we
see that L=M embeds into Out.S1/� � � � �Out.Sn/, whence L=M is soluble by the
Schreier Conjecture, [4, Theorem 7.1.1].

The Odd Order Theorem [2] ensures that S1 has even order, and hence that q is
even. A simple argument, given below, shows that Gq=2 � L. It follows that

h.G/ � 1C l.1C ı.r//C ı.q=2/:

In general, letH be the soluble radical of G. Then Fit.G=H/ D 1: Applying the
two previous cases we deduce that h.G/ � ı.q/ where

ı.q/ D 1C 2l.1C ı.r//C ı.q=2/:

Proof that Gq=2 � L. (Copied from the proof of [5, Theorem 4.4.1].) Suppose that
the claim is false. Say 2e D t exactly divides q. Then there exists g 2 G with
g2

e
D 1 and g2e�1

… L. Thus g has order t modulo L. Hence g in its conjugation
action has a cycle of length t on fS1; ; : : : ; Sng, say .S1; ; : : : ; St /. Let x 2 S1 be an
element of order 2. Then S .xg/

i

1 D S1Ci centralizes S1 for 1 � i < t , so for h 2 S1
we have

h.xg/
t

D hxg:g
t�1

D hx :

Choosing h 2 S1XCS1
.x/we infer that .xg/t ¤ 1. But .xg/t D .x; xg ; : : : ; xgt�1

/

2 S1 � � � � � St is an element of order 2, so the order of xg is exactly 2t ; this
contradicts xq D 1.



100 D. Segal

It is not known whether the generalized Fitting height of all finite groups in an
arbitrary non-trivial variety is uniformly bounded; it would suffice to settle this for
soluble groups: see [7, Problem 2; Theorems 6–7].
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