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Cartwright–Sturmfels ideals
associated to graphs and linear spaces

Aldo Conca�, Emanuela De Negri� and Elisa Gorla��

Abstract. Inspired by work of Cartwright and Sturmfels, in [15] we introduced two classes of
multigraded ideals named after them. These ideals are defined in terms of properties of their
multigraded generic initial ideals. The goal of this paper is showing that three families of ideals
that have recently attracted the attention of researchers are Cartwright–Sturmfels ideals. More
specifically, we prove that binomial edge ideals, multigraded homogenizations of linear spaces,
and multiview ideals are Cartwright–Sturmfels ideals, hence recovering and extending recent
results of Herzog, Hibi, Hreinsdottir, Kahle, and Rauh [20], Ohtani [28], Ardila and Boocher [3],
Aholt, Sturmfels, andThomas [2], andBinglin Li [6].We also propose a conjecture on the rigidity
of local cohomology modules of Cartwright–Sturmfels ideals, that was inspired by a theorem
of Brion. We provide some evidence for the conjecture by proving it in the monomial case.
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1. Introduction

Inspired by the work of Cartwright and Sturmfels [11], in [15] we introduced two
families of multigraded ideals, namely Cartwright–Sturmfels ideals and Cartwright–
Sturmfels� ideals. Both families are characterized by means of multigraded generic
initial ideals. Cartwright–Sturmfels (CS for short) ideals are the Zn-graded ideals
whosemultigraded generic initial ideal is radical, while Cartwright–Sturmfels� (CS�)
ideals are the Zn-graded ideals whose multigraded generic initial ideal has a system
of generators which involves at most one variable of degree ei 2 Zn for every
i D 1; : : : ; n.

Ideals with a minimal system of generators that is also a universal Gröbner
basis are called robust. Being robust is a very strong property and robust ideals have
attracted a lot of interest, especially in recent years, see e.g. [5,8,14–16,21,31,33,34].

�The first two authors were partially supported by INdAM-GNSAGA.
��The third author was partially supported by the Swiss National Science Foundation under grant no.

200021_150207.
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Cartwright–Sturmfels� ideals are “very” robust in the sense that every multigraded
minimal systemof generators of aCS� ideal is a universalGröbner basis. Furthermore
a Cartwright–Sturmfels� ideal has the same graded Betti numbers as its initial ideals.
It turns out that CS ideals and their initial ideals are radical and very often universal
Gröbner bases of CS ideals can be kept under control as well.

In [14] and [15] we presented large families of determinantal ideals that are CS
or CS�, and discussed how these results generalize classical results of Bernstein,
Sturmfels, and Zelevinsky [5, 33] on universal Gröbner bases for generic maximal
minors. In [16] we gave a combinatorial description of their multigraded generic
initial ideals.

The goal of this paper is showing that the following three families of ideals, that
have recently attracted the attention of several researchers, are CS and, in some cases,
also CS�.

1. Binomial edge ideals. Binomial edge ideals have been introduced and studied by
Herzog, Hibi, Hreinsdottir, Kahle, and Rauh [20] and independently by Ohtani [28],
who proved that they are always radical. Matsuda and Murai [25] proved that the
regularity of the binomial edge ideal associated to a graph G is bounded by the
number of vertices of the graph and conjectured that equality holds only when the
graph is a line. Other interesting results concerning binomial edge ideals can be
found, for example, in [17, 18, 22]. We prove that binomial edge ideals are CS and
describe the associated generic initial ideal. As an immediate corollary we obtain
the aforementioned results of [20, 25, 28].

2. Closure of linear spaces in products of projective spaces. Let V be a vector space
of linear forms inKŒx1; : : : ; xn� and let L � AnK be the zero locus of V , i.e. a linear
space containing the origin. In [3] Ardila and Boocher studied the ideal I.zL/ defining
the closure zL ofL in .P1/n. They established several interesting structural properties
of I.zL/. We prove that I.zL/ is both a CS and a CS� ideal. As a consequence we
recover some of the results of [3]. More generally we prove that the ideal Ia.zL/
defining the closure ofL in the product Pa1 � � � � �Pau where a D .a1; : : : ; au/ andP
ai D n is CS (but not CS� in general). We describe Ia.zL/ first as the saturation

with respect to the set of homogenizing variables of a single determinantal ideal and
then as a sum of several determinantal ideals. Furthermore we give a combinatorial
characterization of its multidegree, or equivalently, a description of the multigraded
generic initial ideal of Ia.zL/. Finally, we observe that Ia.zL/ defines a Cohen–
Macaulay normal domain. This follows from Brion’s theorem, as we discuss in
Section 2.

3. Multiview ideals. A collection of matrices A D fAigiD1;:::;m with scalar entries,
with Ai of size di � n and rankAi D di , induces a rational map

�AWP
n�1 Ü

Y
Pdi�1
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sending x 2 Pn�1 to .Aix/iD1;:::;m. The ideal JA of the closure of the image of �A
is called multiview ideal. As explained in [2], the ideal JA plays an important role
in various aspects of geometrical computer vision. In [2] it is proved that JA is a
CS ideal when n D 4, di D 3 for all i , and assuming that the Ai ’s are generic.
In [6] Binglin Li proved results that, suitably interpreted, imply that JA is a CS
ideal in all cases. We show that the same conclusion can be obtained as a simple
corollary of our results on CS ideals in two ways: via elimination from the fact that
the ideal of 2-minors of a multigraded matrix is CS and, again, via elimination from
the multigraded closure of a linear space as discussed in (2).

Notice that the results in (2) and (3) also answer some of the questions posed by
Ardila and Boocher [3, p. 234].

A result of Brion [9] asserts that a prime ideal with multiplicity-free multidegree
defines a Cohen–Macaulay normal domain and is a CS ideal. As a corollary of
Brion’s theorem, in Section 2 we show that the minimal primes of a CS ideal are CS
as well. As a further consequence we get that, if P is a prime CS ideal, then every
ideal with the same multigraded Hilbert function of P is Cohen Macaulay. We
propose two conjectures (Conjecture 2.13 and Conjecture 2.14) concerning extremal
Betti numbers and the Hilbert function of local cohomology modules of CS ideals,
that are inspired by Brion’s theorem and confirmed by extensive computations. We
prove that both conjectures hold for CS monomial ideals.

Our results have been suggested and confirmed by extensive computations
performed using CoCoA [1] and Macaulay2 [19]. We thank Michel Brion, Marc
Chardin, Kohji Yanagawa, andMatteoVarbaro for useful discussions and suggestions.

2. Multidegrees and CS ideals

Let K be a field and S D KŒxij W i D 1; : : : ; n; 1 � j � di � with the standard
Zn-graded structure induced by deg.xij / D ei 2 Zn. We assume that d1; : : : ; dn > 0
and set xi D xi;1. Let T D KŒx1; x2; : : : ; xn� � S with the induced standard
Zn-graded structure. For m 2 N we set Œm� D f1; : : : ; mg and Œm�0 D f0; : : : ; mg.
A prime ideal P of S is called relevant if P 6� S.1;:::;1/ and irrelevant otherwise.

For a Zn-graded S -moduleM , denote byMa the homogeneous component ofM
of degree a 2 Zn.
Definition 2.1. Let M be a finitely generated, Zn-graded S -module and set
c D dimS � dimM . The Zn-graded Hilbert series ofM is

HS.M; z/ D
X
a2Zn

�
dimKMa

�
za 2 QJz1; : : : ; znKŒz�11 ; : : : ; z�1n �:

Set

KM .z/ D HS.M; z/
nY
iD1

.1 � zi /
di :
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It turns out that KM .z/ 2 ZŒz˙11 ; : : : ; z˙1n �. Then set

CM .z/ D KM
�
1 � z1; : : : ; 1 � zn

�
:

The multidegree DegM .z/ ofM , as defined in [27, Chapter 8], is the homogeneous
component of smallest total degree, i.e. of degree c, of CM .z/. It turns out that
DegM .z/ 2 NŒz1; : : : ; zn�. Note that by [27, Claim 8.54] the multidegree DegM .z/
does not change if one replacesM by a shifted copy of it. Hence it is not restrictive to
assume thatMa D 0 unless a 2 Nn and, under this assumption, KM .z/ and CM .z/
are actually polynomials. In the geometric setting multidegrees are related to Chow
classes, see [27, Notes, p. 172] for details and references.

For a Laurent polynomial G.z/ 2 RŒz˙11 ; : : : ; z˙1n � let us denote by ŒG.z/�min
the sum of the terms, including their coefficients, that are minimal with respect to
division in the support of G.z/. For example, if G.z/ D z21 C 2z1z

2
2 C 3z

3
1 , then

ŒG.z/�min D z
2
1 C 2z1z

2
2 . One easily checks that:

Lemma 2.2. Let G1.z/; : : : ; Gv.z/ be Laurent polynomials such that ŒGi .z/�min has
positive coefficients for every i . Then� vX

iD1

Gi .z/

�
min
D

� vX
iD1

�
Gi .z/

�
min

�
min
:

In [14] we defined the G-multidegree ofM as follows:

GDegM .z/ D
�
CM .z/

�
min:

Clearly the homogeneous component of degree c of GDegM .z/ is DegM .z/. In
Proposition 2.8 we will show that GDegM .z/ D DegM .z/ if all the minimal
primes of M have codimension c. On the other hand, if M has minimal primes
of codimension greater than c, then GDegM .z/might contain terms of degree higher
than c.

By definition
DegM .z/ D

X
eM .a/z

a;

where the sum runs over all a 2
Qn
iD1Œdi �0 such that jaj D c. It turns out that

eM .a/ 2 N. The module M has a multiplicity-free multidegree if eM .a/ 2 f0; 1g
for all a. Furthermore M has a multiplicity-free G-multidegree if all the non-zero
coefficients in GDegM .z/ are equal to 1. With a slight abuse of terminology we will
say that a multigraded ideal I has multiplicity-free multidegree (or multiplicity-free
G-multidegree) if the quotient ring S=I has that property.

Assuming that Ma ¤ 0 for a � 0 (that is, when all the components of a are
sufficiently large), there exists a non-zero polynomial PM .z/ 2 QŒz1; : : : ; zn�, the
multigraded Hilbert polynomial of M , such that PM .a/ D dimKMa for a � 0.
Denote by DM .z/ the homogeneous component of largest degree of PM .z/. If M
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has irrelevant minimal primes then there is no clear relation between DM .z/ and
DegM .z/. On the other hand if one assumes thatM has at least one relevant minimal
prime of minimal codimension, then the total degree of DM .z/ is dimM � n and
the coefficientsDM .z/ can be deduced from those of DegM .z/. Let

DM .z/ D
X fM .a/

aŠ
za;

where the sum runs over the a 2
Qn
iD1Œdi � 1�0 such that jaj D dimM � n. The

numbers fM .a/ are actually non-negative integers and are called mixed multiplicities
ofM .

The polynomials DM .z/ and DegM .z/ are related as follows: for all the
a 2

Qn
iD1Œdi � 1�0 such that jaj D dimM � n one has fM .a/ D eM .a

0/, where
a0 D .d1 � 1 � a1; : : : ; dn � 1 � an/. If a 2 Nn is such that jaj D c and ai D di
for some i , then the corresponding coefficient eM .a/ cannot be read off DM .z/.
However, if all the minimal primes of minimal codimension ofM are relevant, then
such coefficients are actually zero. Therefore one has:

Lemma 2.3. Assume that all the minimal primes of minimal codimension ofM are
relevant. Then the polynomials DegM .z/ and DM .z/ are two different encodings
of the same numerical data. In particular, this is the case ifM D S=P and P is a
relevant prime.

If K is algebraically closed and P is a relevant prime ideal then the coefficients
eS=P .a/ have a geometric interpretation. Let X denote the associated subvariety
ofPd1�1�� � ��Pdn�1. The coefficient eS=P .a/ is the number of points of intersection
ofX withL1�� � ��Ln whereLi is a general linear space of Pdi�1 of dimension ai .

Given a term order � and aZn-graded homogeneous ideal I ofS , one can consider
its Zn-graded generic initial ideal gin.I /. As in the Z-graded setting, Zn-graded
generic initial ideals are Borel fixed. We refer to [15, Section 1] for more details on
multigraded generic initial ideals. We just recall that to any a 2

Qn
iD1Œdi �0 one can

associate the Borel fixed prime ideal

Pa D
�
xij W 1 � i � n and 1 � j � ai

�
and that any Borel fixed prime ideal of S is of this form.

We have:

Lemma 2.4. Let I be a Zn-graded ideal of S and let fza1 ; : : : ; zasg be the support
of GDegS=I .z/. Then the minimal primes of the Zn-graded generic initial ideal of I
are fPa1

; : : : ; Pas
g.

Proof. Let J D gin.I /. Since the G-multidegree only depends on the Hilbert
series we have GDegS=I .z/ D GDegS=J .z/. Then the result follows from [14,
Prop. 3.12].
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Definition 2.5. Let I be a Zn-graded ideal of S . We say that I is a Cartwright–
Sturmfels (CS) ideal if there exists a radical Borel fixed ideal J of S such that
HS.I; y/ D HS.J; y/.

With the notation of Definition 2.5 it turns out that J D gin.I /, see [15, Prop-
osition 1.6]. Notice also that by Lemma 2.4 one has the following characterization.
Proposition 2.6. Let I be a Zn-graded ideal of S . One has that I is CS if and only
if I has a multiplicity-free G-multidegree and gin.I / has no embedded primes.
Definition 2.7. We say that I is a Cartwright–Sturmfels� (CS�) ideal if there exists
a Zn-graded ideal J of S extended from T such that HS.I; z/ D HS.J; z/.

With the notation of Definition 2.7 it turns out that J D gin.I / and that I and J
have the same Zn-graded Betti numbers, see [15, Proposition 1.9, Corollary 1.10].

Notice that a Zn-graded homogeneous ideal of T is just a monomial ideal of T .
Hence, a Zn-graded ideal of S which is extended from T is an ideal of S generated
by monomials in x1; : : : ; xn.

We observe the following:
Proposition 2.8. LetM be a finitely generated Zn-graded S -module and set

FM .z/ D
X

length.MP /DegS=P .z/;

where the sum runs over the minimal primes P ofM . Then:
(1) GDegM .z/ D ŒFM .z/�min.
(2) If all minimal primes ofM have the same codimension, then

FM .z/ D DegM .z/ D GDegM .z/:

Proof. (1) Consider a multigraded composition series

0 DM0 �M1 � � � � �Mv DM

such that for every i one has Mi=Mi�1 ' S=.Pi /.�ui / where Pi is multigraded
prime and ui 2 Zn is a shift. SetNi DMi=Mi�1. SinceK-polynomials are additive
on short exact sequences, so are C -polynomials. Then

CM .z/ D

vX
iD1

CNi
.z/:

Since ŒCNi
�min D DegS=Pi

.z/ independently of the shift ui , and since DegS=Pi
.z/

has positive coefficients, by Lemma 2.2 we have

GDegM .z/ D
�
CM .z/

�
min D

� vX
iD1

DegS=Pi
.z/

�
min
:
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Observe that if P1 ¨ P2 are multigraded prime ideals then�
DegS=P1

.z/C DegS=P2
.z/
�
min D DegS=P1

.z/

as can be seen by observing that gin.P1/ � gin.P2/ and using that, by the main result
of [23], all the minimal primes of gin.P1/ have minimal codimension. Hence we
may remove from Œ

Pv
iD1DegS=Pi

.z/�min those summands corresponding to primes
that are not minimal. Furthermore, by localization, we know that a given minimal
prime of M occurs in the list P1; : : : ; Pv exactly length.MP / times. So we obtain
the desired formula.
Assertion (2) follows from (1) and [27, Theorem 8.53].

We may deduce the following important corollary:
Corollary 2.9. Let I be a CS ideal, then

GDegS=I .z/ D
X

DegS=P .z/;

where the sum runs over the minimal primes P of I .

Proof. Set 1 D .1; 1; : : : ; 1/ and let FS=I .z/ be as in Proposition 2.8. Since I
is radical, we have that FS=I .1/ is the geometric degree gdeg.S=I / in the sense
of [32]. By Proposition 2.8 we have GDegS=I .1/ � FS=I .1/ and equality holds
if and only if GDegS=I .z/ D FS=I .z/. Now let J D gin.I /. Observe that
GDegS=I .z/ D GDegS=J .z/ because GDeg just depends on the Hilbert series.
Moreover GDegS=J .1/ D gdeg.S=J / by [14, Prop. 3.12]. Both I and J are radical,
hence their geometric degrees coincide with their arithmetic degrees. Therefore,
combining [32, Prop. 4.1] and [32, Thm. 2.3] we have gdeg.S=I / D gdeg.S=J /.
Summing up, we have:

gdeg.S=J / D GDegS=J .1/ D GDegS=I .1/
� FS=I .1/ D gdeg.S=I / D gdeg.S=J /:

Hence GDegS=I .1/ D FS=I .1/ which implies GDegS=I .z/ D FS=I .z/.

Since every radical Borel fixed ideal has a multiplicity-free G-multidegree it
follows that the same is true for every CS ideal. Furthermore every CS ideal is
generated in degree � 1 2 Zn. However, there are radical ideals generated in
degree � 1 and with a multiplicity-free G-multidegree and that are not CS ideals, as
the next example shows.
Example 2.10. Let S D QŒx1; x2; x3; y1; y2; y3� with the Z2-graded structure
induced by deg.xi / D e1 and deg.yi / D e2. The ideal

I D
�
x1y1; x2y2; x3y2; x2y3; x3y3

�
;
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generated in degree 1 D .1; 1/, is the intersection of

.x1; x2; x3/; .y1; x2; x3/; .x1; y2; y3/; .y1; y2; y3/:

Hence by Corollary 2.9 the multidegree of S=I is

GDegS=I .z/ D DegS=I .z/ D z31 C z
2
1z2 C z1z

2
2 C z

3
2 :

On the other hand, its multigraded generic initial ideal is

gin.I / D
�
x1y1; x2y1; x1y2; x2y2; x3y1; x1x2y3; x

2
1y3

�
so that I is not CS.

The classes of CS and CS� ideals are in a sense dual to each other. In fact, in [15,
Theorem 1.14] we showed that if I is a squarefree monomial ideal, then I is CS if and
only if its Alexander dual I � is CS�. Moreover, it follows from the definitions that
the families of CS and CS� ideals are closed under Zn-graded coordinate changes
and taking initial ideals. In [14, 15] we showed that if I is CS or CS�, then its
Zn-graded generic initial ideal does not depend on the choice of the term order but
only on the total order given to the indeterminates with the same degree. We also
proved that each of the two classes is closed with respect to a number of natural
operations, see [15, Proposition 1.7 and Theorem 1.16]. Other interesting properties,
including bounds on the projective dimension and Castelnuovo-Mumford regularity
were established in [15, Proposition 1.9, Proposition 1.12, and Corollary 1.15].

A beautiful theorem of Brion [9] asserts that an irreducible subvariety X of a
flag variety is normal and Cohen–Macaulay if it has multiplicity-free multidegree.
Moreover Brion showed that such an X admits a flat degeneration to a reduced
union of Schubert varieties that is Cohen–Macaulay as well. See also the work of
Perrin [29]. Using the terminology that we have introduced and limiting ourselves to
subvarieties of a product of projective spaces, Brion’s result can be stated as follows:

Theorem 2.11 (Brion). Assume K is algebraically closed. Let P be a Zn-graded
prime ideal in the polynomial ring S . Assume that S=P has a multiplicity-free
multidegree. Then:

(1) S=P is normal and Cohen–Macaulay,

(2) P is a CS ideal,

(3) the multigraded gin of P defines a Cohen–Macaulay ring.

As a consequence of Brion’s theorem we have:

Corollary 2.12. Assume that K is algebraically closed.

(1) LetP be a prime CS ideal. Then everyZn-graded ideal with the sameZn-graded
Hilbert series of P defines a Cohen–Macaulay ring.
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(2) Let I be CS ideal and let P1; : : : ; Ps be its minimal primes. Then each Pi is CS
and

in.I / D \siD1 in.Pi /

for every term ordering.

Proof. Assertion (1) follows immediately from Theorem 2.11 since P , being CS,
has a multiplicity-free multidegree. To prove (2) one observes that by Corollary 2.9
a minimal prime of a CS ideal has a multiplicity-free multidegree, hence it is a CS
ideal by Theorem 2.11.

Brion’s theorem suggests that there might be a very strong connection between
homological invariants of a CS ideal and that of its generic initial ideal. Computa-
tional experiments suggest the following conjecture:
Conjecture 2.13. Let I be a CS ideal and J its Zn-graded generic initial ideal.
Then the extremal (total) Betti numbers of I and J are equal. In particular, I and J
have the same projective dimension and Castelnuovo-Mumford regularity.

Even stronger, we conjecture the following.
Conjecture 2.14. Let I be a CS ideal and J its Zn-graded generic initial ideal.
Then one has:

dimK H i
m.S=I /a D dimK H i

m.S=J /a

for every i 2 N and every a 2 Zn.
HereH i

m.S=I / denotes the multigraded i th local cohomology module supported
on the graded maximal ideal m of S . As explained by Chardin in [12] extremal Betti
numbers can be characterized in terms of vanishing of graded components of the
local cohomology modules. Therefore Conjecture 2.14 implies Conjecture 2.13.

We have:
Proposition 2.15. Conjecture 2.14 holds for monomial ideals.

Proof. Let I be a CS monomial ideal and let J be its generic initial ideal. Since J
is an initial ideal of I (after a change of coordinates) we have:

dimK H i
m.S=I /a � dimK H i

m.S=J /a

for all i and a 2 Zn. The Alexander duals I � and J � of I and J are CS� ideals with
the same Zn-graded Hilbert function. Hence they have the same Zn-graded Betti
numbers [15, Proposition 1.9]. In particular, I � and J � have the same Z-graded
Betti numbers. Then we deduce from Lemma 2.16 below that

dimK H i
m.S=I /j D dimK H i

m.S=J /j

for all j 2 Z and all i � 0 that, in combination with the inequality above, implies
the desired equality.
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Lemma 2.16. Let I be a squarefree monomial ideal in a polynomial ring R D
KŒx1; : : : ; xN �. Denote by I � its Alexander dual. Then for every i � 0 and every
j > 0 one has

dimK H i
m.R=I /�j D

min.i;j /X
vD1

 
j � 1

v � 1

!
ˇi�v;N�v.I

�/;

whileH i
m.R=I /j D 0 for j > 0 and dimK H i

m.R=I /0 D ˇi;N .I
�/.

Proof. Combining Hochster’s formulas for Betti numbers (in the dual form) [27,
Corollary 1.40] and for local cohomology [27, Theorem 13.13] one has that

dimK H i
m.R=I /�a D ˇi�jaj;1�a.I

�/

for every a 2 f0; 1gN . Computing the dimension of the Z-graded component of
H i

m.R=I / as sum of the corresponding multigraded components and taking into
account Hochster’s formula for local cohomology, one obtains the desired result.

Let us conclude the section by stating a very general conjecture which is due to
Jürgen Herzog. Morally speaking Herzog’s conjecture asserts that a radical initial
ideal behaves (homologically) as the generic initial ideal with respect to the revlex
order does. The conjecture, in various forms, has been discussed in several occasions
by Herzog and his collaborators but, as far as we know, never appeared in print. A
special case of it appears in Varbaro’s PhD thesis as [35, Question 2.1.16]. Indeed,
our Conjecture 2.13 is a special case of Herzog’s conjecture.
Conjecture 2.17 (Herzog). Let I be a homogeneous ideal in a polynomial ring
and J an initial ideal of I with respect to a term order. Assume J is radical. Then I
and J have the same extremal Betti numbers. In particular, I and J have the same
projective dimension and regularity.

Herzog’s conjecture is known to be true for toric ideals (in toric coordinates)
because in that case J defines a Cohen–Macaulay ring. Furthermore it is known in
few other cases as, for example, homogeneous Cohen–Macaulay ASL with discrete
Buchsbaum counterpart [26, Thm. 4.4].

3. Binomial edge ideals

In this section we prove that every binomial edge ideal is a Cartwright–Sturmfels
ideal.

LetK be a field, let S D KŒx1; : : : ; xn; y1; : : : ; yn� and letX be the 2�nmatrix
of variables

X D

�
x1 x2 � � � xn
y1 y2 � � � yn

�
:
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Denote by �ij the 2-minor of X corresponding to the column indices i; j , i.e.

�ij D

ˇ̌̌̌
xi xj
yi yj

ˇ̌̌̌
D xiyj � xjyi :

Let G be a graph on the vertex set Œn� D f1; : : : ; ng and let

JG D
�
�ij W fi; j g is an edge of G

�
:

The ideal JG is called the binomial edge ideal of G. Binomial edge ideals are just
ideals generated by subsets of the 2-minors of X . Herzog, Hibi, Hreinsdottir, Kahle,
and Rauh in [20] and, independently, Ohtani in [28] proved that JG is radical. Wewill
show that JG is a Cartwright–Sturmfels ideal with respect to the natural Zn-graded
structure induced by deg.xi / D deg.yi / D ei 2 Zn.
Theorem 3.1. The Zn-graded generic initial ideal of JG is generated by the
monomials ya1

: : : yav
xixj , where i; a1; : : : ; av; j is a path in G. In particular,

JG is a Cartwright–Sturmfels ideal and therefore all the initial ideals of JG are
radical and reg.JG/ � n.

Here by a path of G we mean a sequence of vertices without repetitions such that
every pair of adjacent vertices form an edge of the graph. Note that in the description
of the generators of the generic initial ideal one can assume that i < j and that the
path is minimal in the sense that the only edges among the vertices i; a1; : : : ; av; j
are .i; a1/; .a1; a2/; : : : ; .av; j /. That reg.JG/ � n has been proved originally by
Matsuda and Murai in [25], where they also conjectured that equality holds if and
only ifG is a path of length n�1. In [4] a universal Gröbner basis for JG is described
and this implies that all the initial ideals of JG , in the given coordinates, are radical.

Proof. Consider any term order such that xi > yi for all i . To compute the generic
initial ideal we first apply a multigraded upper triangular transformation � to JG ,
i.e. for every i we have �.xi / D xi and �.yi / D ˛ixi C yi with ˛i 2 K. We obtain
a matrix

�.X/ D

�
x1 x2 � � � xn

˛1x1 C y1 ˛2x2 C y2 � � � ˛nxn C yn

�
whose 2-minors are:

�.�ij / D

ˇ̌̌̌
xi xj

˛ixi C yi ˛jxj C yj

ˇ̌̌̌
D .˛j � ˛i /xixj C�ij :

Assume that ˛j ¤ ˛i for i ¤ j . We multiply �.�ij / by the inverse of .˛j � ˛i /
and obtain:

Fij D xixj � �ij�ij

with
�ij D .˛i � ˛j /

�1:
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Hence
�.JG/ D

�
Fij W fi; j g is an edge of G

�
:

Set
F D

˚
yaFij W i; a1; : : : ; av; j is a path in G

	
;

where
ya D ya1

: : : yav
:

It is enough to prove that F is a Gröbner basis for �.JG/ for every � such that
˛j ¤ ˛i for i ¤ j . We first observe that F � �.JG/, i.e. yaFij 2 �.JG/ for every
path i; a1; : : : ; av; j in G. This is proved easily by induction on v, the case v D 0

being trivial, applying to the matrix �.X/ the following relation

.z1i ; z2i /�jk.Z/ �
�
�ij .Z/;�ik.Z/

�
that holds for every 2�nmatrixZ D .zij / and every triplet of column indices i; j; k.
To prove that F is a Gröbner basis we take two elements yaFij and ybFhk in F and
prove that the corresponding S -polynomial reduces to 0 via F . Here a D a1; : : : ; av
and b D b1; : : : ; br and i; a; j and h; b; k are paths inG. We distinguish three cases:

Case 1. If fi; j g D fh; kg, we may assume i D h and j D k. The corresponding
S -polynomial is 0.

Case 2. If fi; j g \ fh; kg D ;. Let u D GCD.ya; yb/. Then yaFij D u.ya=u/Fij
and ybFhk D u.yb=u/Fhk . Note that .ya=u/Fij and .yb=u/Fhk have coprime
leading terms and hence they form a Gröbner basis. If a Gröbner basis is multiplied
with a polynomial the resulting set of polynomials is still a Gröbner basis. Hence,
fyaFij ; ybFhkg is a Gröbner basis and the S -polynomial of yaFij ; ybFhk reduces
to 0 using only yaFij ; ybFhk .

Case 3. If #fi; j g \ fh; kg D 1. Renaming the column indices we may assume
that i D 1, h D 2 and j D k D n. Hence we deal with yaF1n and ybF2n. Let
u D LCM.ya; yb/. We have:

S
�
yaF1n; ybF2n

�
D u

�
x2F1n � x1F2n

�
D uxnF12:

If u is divisible by a monomial yd D yd1
� � �ydt

such that 1; d1; : : : ; dt ; 2 is a path
in G then S.yaF1n; ybF2n/ is multiple of the element ydF12 of F . On the other
hand, if u is not divisible by a monomial yd D yd1

� � �ydt
such that 1; d1; : : : ; dt ; 2

is a path in G then

f1; a1; : : : ; avg \ f2; b1; : : : ; brg D ; and u D yayb:

In this case we proceed to reduce S.yaF1n; ybF2n/ D yaybxnF12. In doing this
we observe that the reduction via an element ycF˛ˇ of F allows us to replace x˛xˇ
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with �˛ˇ�˛ˇ provided that the monomial x˛xˇ is multiplied with a monomial

multiple of yc . We denote this operation by
˛ˇ
!. We have:

S
�
yaF1n; ybF2n

�
D yaybxnF12 D yayb

�
x1x2xn � �12xn�12

�
D yayb

�
x1x2xn � �12xnx1y2 C �12xnx2y1

�
1n
�! yayb

�
x2�1n�1n � �12�1n�1ny2 C �12xnx2y1

�
D yayb

�
�1nx1x2yn � �1nx2xny1 � �12�1n�1ny2 C �12

�
xnx2y1

2n
�! yayb

�
�1nx1x2yn � �1n�2n�2ny1 � �12�1n�1ny2 C �12�2n�2ny1

�
12
�! yayb

�
�1n�12�12yn � �1n�2n�2ny1 � �12�1n�1ny2 C �12�2n�2ny1

�
D yayb

�
�1n�12.�12yn ��1ny2/ � �1n�2n�2ny1 C �12�2n�2ny1

�
D yayb

�
�1n�12.��2ny1/ � �1n�2n�2ny1 C �12�2n�2ny1

�
D yayby1�2n

�
� �1n�12 � �1n�2n C �12�2n

�
D 0:

The last equality holds since��1n�12��1n�2nC�12�2n D 0, which can be checked
by direct computation. This concludes the proof that the set F is a Gröbner basis.
The remaining statements follow from general facts on Cartwright–Sturmfels ideals
established in [15, Remark 1.5, Corollary 1.15].

We describe now the minimal primes of the generic initial ideal of JG . We denote
by c.G/ the number of connected components of a graph G. For a subset T of Œn�
let GT be the restriction of G to T and set

UT D
�
xixj W i; j 2 T and are connected by a path in GT

�
C

X
i 62T

.xi ; yi /:

It is clear that gin.JG/ � UT for every T . Furthermore let E be a subset of T such
that E contains exactly one vertex for each connected component of GT and set

UT;E D
�
xi W i 2 T nE

�
C

X
i 62T

.xi ; yi /:

Then:
Proposition 3.2. Theminimal primes of gin.JG/ are exactly the idealsUT;E , whereT
is chosen so that for every i 2 Œn� n T one has c.GT[fig/ < c.GT /.

Proof. Let P be a minimal prime of gin.JG/ and let T D fi 2 Œn� W yi 62 P g.
Since P is Borel fixed then it follows from Theorem 3.1 that UT � P and so it
follows that gin.JG/ D

T
T UT . Now, UT � UT1

if and only if T1 � T and
c.GT1

/ D c.GT /. So it follows that gin.JG/ D
T
T UT where the intersection is

restricted to the T such that for every i 2 Œn� n T one has c.GT[fig/ < c.GT /.
Finally, observe that UT D

T
UT;E where the intersection ranges over E � T such

that E contains exactly one vertex for each connected component of GT .
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In [33] Schenzel and Zafar computed the structure of the local cohomology
modules (indeed of the corresponding Ext-modules) of the binomial edge ideal
associated to a complete bipartite graph. These results might shed some light on
Conjecture 2.14 and might suggest more precise versions of it.

4. Closure of linear spaces in products of projective spaces

Let T D KŒx1; : : : ; xn� be a polynomial ring with a standard Zu-graded structure,
i.e. deg.xi / 2 fe1; : : : ; eug for every i . Let S D T Œy1; : : : ; yu� with the Zu-graded
structure obtained by extending that of T by letting degyi D ei 2 Zu. Given
f D

Pv
iD1 �ix

ai 2 T n f0g we consider its Zu-homogenization f hom 2 S D

T Œy1; : : : ; yu� defined as

f hom
D

vX
iD1

�ix
aiyb�bi ;

where deg xai D bi 2 Zu and yb D LCM.yb1 ; : : : ; ybv /. For any c 2 Zu such that
LCM.yb1 ; : : : ; ybv /jyc , we define

f hom;c
D

X
�ix

aiyc�bi :

By construction, f hom is Zu-homogeneous of degree b and f hom;c D f homyc�b .
Given an ideal I of T its Zu-homogenization is defined as

I hom D
�
f hom

W f 2 I n f0g
�
� S

and it is clearly a Zu-graded ideal of S . For generalities about homogenization of
ideals we refer the reader to [24]. Here we just recall that if I D .f1; : : : ; ft / then

I hom D
�
f hom
1 ; : : : ; f hom

t

�
W

� uY
iD1

yi

�1
;

see [24, Corollary 4.3.8]. Let c 2 Zu such that for every i D 1; : : : ; t and for every
monomial xa in the support of fi we have yvjyc , where v D deg xa 2 Zu. Then we
have

I hom D
�
f

hom;c
1 ; : : : ; f

hom;c
t

�
W

� uY
iD1

yi

�1
;

because f hom;c
i and f hom

i differ only by a monomial in the y’s.
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We denote by I ? the largest Zu-graded ideal of T contained in I , i.e. the ideal
generated by the Zu-graded elements in I . We show that:

Theorem 4.1. Let T D KŒx1; : : : ; xn� be a polynomial ring with a standard
Zu-graded structure. Let V be a vector space of linear forms of T (i.e. elements
of degree 1 with respect to the standard Z-graded structure) and J.V / be the ideal
generated by V . Then

(1) J.V /hom and J.V /? are Cartwright–Sturmfels ideals.

(2) Both J.V /hom and J.V /? define Cohen–Macaulay normal rings.

If K is algebraically closed, T is equipped with the natural Zn-graded structure,
and L is the zero locus V in AnK , then ideal J.V /hom is exactly the defining ideal of
the closure zL of L in P1 � � � � � P1, i.e. J.V /hom D I.zL/ in the notation of Ardila
and Boocher. If instead we equip T with a Zu-graded structure where ai variables
have degree ei , then the ideal J.V /hom is the ideal associated to the closure of L
in the product Pa1 � � � � � Pau , i.e. J.V /hom is the ideal denoted by Ia.zL/ in the
introduction.

Proof. (1) The assertion on J.V /? follows from the one on J.V /hom and [15,
Theorem 1.16] since, by [24, Tutorial 50], one has

J.V /? D J.V /hom \ T:

To prove the assertion for J.V /hom we argue as follows. For a matrix X and an
integer t we denote by It .X/ the ideal generated by the t -minors of X . Let ` be a
linear form of T , say ` D

Pu
iD1 `i where `i is Zu-homogeneous of degree ei 2 Zu.

Set 1 D
Pu
1 ei and notice that `hom;1 D

Qu
jD1 yj

Pu
iD1 `i=yi can be written as

H hom;1
D det

�
y1 0 � � � � � � 0 `1
�y2 y2 0 � � � 0 `2
0 �y3 y3 � � � 0 `3
:::

:::
:::

: : :
:::

:::
:::

:::
:::

: : : yu�1
:::

0 0 � � � � � � �yu `u

�

:

Now, if V D hL1; : : : ; Lvi, let XŒu� be the u � .v C u � 1/ matrix with block
decomposition

XŒu� D
�
YŒu� jMŒu�

�
;
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where

YŒu� D

�
y1 0 � � � � � � 0

�y2 y2 0 � � � 0

0 �y3 y3 � � � 0
:::

:::
:::

: : :
:::

:::
:::

:::
: : : yu�1

0 0 � � � � � � �yu

�

and

MŒu� D

�
L11 : : : L1v
L21 : : : L2v
L31 : : : L3v
:::

:::
:::

:::
:::

:::

Lu1 : : : Luv

�

is the u � v matrix whose i th column is given by the Zu-homogeneous components
of Li , that is Li D

Pu
qD1Lqi . Let HŒu� be the ideal generated by the u-minors

�1; : : : ; �v of XŒu�, where �i involves the .u � 1/ columns of YŒu� and the i th
column ofMŒu�. By constructionHŒu� D .Lhom;1

1 ; : : : ; L
hom;1
v /, hence

J.V /hom D HŒu� W

� uY
iD1

yi

�1
:

It follows immediately from the straightening law for minors (see [10, Section 4]) that
Iu�1.YŒu�/Iu.XŒu�/ � HŒu� and obviously HŒu� � Iu.XŒu�/. In this case Iu�1.YŒu�/
is generated by the squarefree monomials of degree u�1 in the variables y1; : : : ; yu.
Hence,

Iu
�
XŒu�

�
W

� uY
iD1

yi

�1
� HŒu� W

� uY
iD1

yi

�1
�
�
Iu�1

�
YŒu�

�
Iu
�
XŒu�

��
W

� uY
iD1

yi

�1
D Iu

�
XŒu�

�
W

� uY
iD1

yi

�1
:

Summing up, we have shown that

J.V /hom D HŒu� W

� uY
iD1

yi

�1
D Iu

�
XŒu�

�
W

� uY
iD1

yi

�1
:

The matrix XŒu� is row-graded, i.e. the entries in its i th row are homogeneous of
degree ei 2 Zu. Hence by [15, Corollary 1.19] its ideal of maximal minors is a
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Cartwright–Sturmfels ideal. In particular Iu.XŒu�/ is radical, hence

J.V /hom D Iu
�
XŒu�

�
W

� uY
iD1

yi

�
:

By [15, Theorem 1.16] it follows that J.V /hom is a Cartwright–Sturmfels ideal as
well. This concludes the proof of (1).
(2) Since J.V / is a prime ideal, then J.V /hom is prime (see e.g. [24, Prop. 4.3.10]).
Then J.V /? D J.V /hom \ T is prime as well. One can easily check that the ideals
J.V /hom and J.V /? are geometrically primes, i.e. they remain prime under field
extensions. Hence we may assume without loss of generality that K is algebraically
closed. So we may apply Brion’s Theorem 2.11 and conclude that both J.V /hom
and J.V /? define Cohen–Macaulay normal rings.

In order to identify generators of J.V /hom, we proceed as follows. For every
non-empty subset A of f1; : : : ; ug let

VA D V \˚i2ATei

and consider the ideal J.VA/ generated by VA. We associate to J.VA/ the ideal HA
generated the homogenization Lhom;c of the generators of J.VA/ with respect to the
vector c D

P
i2A ei and the corresponding matrices XA; YA;MA constructed as in

the proof of Theorem 4.1. In the proof of Theorem 4.1 we showed that

J.VA/
hom
D IjAj.XA/ W

�Y
i2A

yi

�
D IjAj.XA/ W

� uY
iD1

yi

�
and, since J.VA/ � J.V /, we obtain IjAj.XA/ � J.VA/hom � J.V /hom. Therefore
we have X

A¤;

IjAj.XA/ � J.V /
hom:

We claim that equality holds. In order to prove our claim, we will need the following:
Lemma 4.2. Let J be a Zu-graded Cartwright–Sturmfels ideal, let F be a product
of Zu-graded linear forms. Let J1 be the ideal generated by the elements of J W .F /
of degree smaller than .1; : : : ; 1/. Then J W .F / D J C J1.

Proof. By induction on the degree of F and by [15, Theorem 1.16], we may assume
that F is a Zu-graded linear form, say of degree eu. After a change of coordinates we
may also assume that F is a variable, call it x. We introduce a revlex term order <
such that x is the smallest variable with respect to <. Let G1; : : : ; Gv be a Gröbner
basis of J with respect to <. Since J is a Cartwright–Sturmfels ideal the Gi ’s
have degrees smaller than or equal to .1; : : : ; 1/. Some of them, say G1; : : : ; Gw ,
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have a leading term divisible by x and the remaining GwC1; : : : ; Gv do not. Hence
Gj D xHj for j D 1; : : : ; w. It follows thatJ W x D .H1; : : : ;Hw ; GwC1; : : : ; Gv/.
Hence J1 D .H1; : : : ;Hw/C .Gj W degGj < .1; : : : ; 1// and J W x D J C J1.

Lemma 4.3. With the notation introduced above, let F 2 T be a Zu-graded
polynomial of degree a 2 Zu with au D 0. Assume that Fyu 2 HŒu�, then F 2 HA
with A D Œu� n u.

Proof. Let �uW ˚uiD1Tei
! Teu

be the projection on the uth homogeneous
component. We may choose a basis of V of the form L1; : : : ; Lh; U1; : : : ; Uk so
that �u.L1/; : : : ; �u.Lh/ form a K-basis of �u.V / and �u.Ui / D 0 for every i .
By construction, HŒu� is generated by the homogenization with respect to the
vector 1 of L1; : : : ; Lh; U1; : : : ; Uk . Notice that for every i D 1; : : : h one has that
L

hom;1
i D Wi .y1 � � �yu�1/ C yuW

0
i , where Wi D �u.Li / and W 0i is homogeneous

of degree 1 � eu. Moreover, the homogenization with respect to the vector 1 of
U1; : : : ; Uk generates yuHA, with A D Œu� � fug. Since Fyu is inHŒu�, then

Fyu D

hX
iD1

Ei
�
Wiyi � � �yu�1 C yuW

0
i

�
C yuC;

whereC 2 HA and theEi ’s areZu-homogeneous with the homogeneous component
of degree eu equal to 0. Since W1; : : : ; Wh; yu are linearly independent elements of
degree eu, it follows that Ei D 0 for every i and F D C 2 JA.

We can now give an explicit description of J.V /hom and J.V /? as sums of ideals
of minors.

Theorem 4.4. With the notations above one has:

J.V /hom D
X
A¤;

IjAj.XA/

and J.V /? D
X
A¤;

IjAj.MA/:

Proof. In order to prove the first statement, by the proof of Theorem 4.1 it suffices to
show that

Iu
�
XŒu�

�
W

� uY
iD1

yi

�
D

X
A¤;

IjAj.XA/:

By induction, it suffices to prove that

Iu
�
XŒu�

�
W

� uY
iD1

yi

�
D Iu

�
XŒu�

�
CW;



Cartwright–Sturmfels ideals associated to graphs and linear spaces 249

where

W D

uX
jD1

�
Iu�1

�
XŒu�nfj g

�
W

� uY
iD1

yi

��
:

By Lemma 4.2 it suffices to show that any Zu-graded element G 2 Iu.XŒu�/ W
.
Qu
iD1 yi / of degree smaller than .1; : : : ; 1/ is in W . We may assume that G has

degree 0 in the uth coordinate. In the proof of Theorem 4.1 we observed that every
squarefree monomial of degree u � 1 in the yi ’s multiplies Iu.XŒu�/ in the ideal
HŒu� D .L

hom;1
1 ; : : : ; L

hom;1
v /. Since by assumption Gy1 � � �yu 2 Iu.XŒu�/, then

G
�
y1 � � �yu�1

�2
yu 2 HŒu�:

Notice that the polynomial F D G.y1 � � �yu�1/
2 is Zu-graded and has degree 0 in

the last coordinate and Fyu 2 HŒu�. It follows from Lemma 4.3 that F 2 HA with
A D Œu� n fug. Hence,

G 2 HA W

� uY
iD1

yi

�1
D IjAj.XA/ W

� uY
iD1

yi

�
� W:

The second statement may be deduced from the first as follows. One observes that
J.V /hom is homogeneous with respect to theZ-graded structure induced by assigning
degree 1 to the yi ’s and degree 0 to the elements of T . Since J.V /? D J.V /hom\T ,
then J.V /? is obtained from J.V /hom by setting to 0 the yi ’s.

In the next example we illustrate Theorems 4.1 and 4.4 and their proofs. We
consider the linear space discussed in [3, Example 1.7] and we homogenize with
respect to a different multigrading.
Example 4.5. Let T D KŒx1; : : : ; x6� with the Z3-graded structure induced by

deg.xi / D

�
e1; for i D 1; 2;
e2; for i D 3;
e3; for i D 4; 5; 6:

Let V D hL1; L2; L3iwithL1 D x1Cx2Cx6, L2 D x2�x3Cx5, L3 D x3Cx4.
So one has u D v D 3 and

Xf1;2;3g D

0@ y1 0 x1 C x2 x2 0

�y2 y2 0 �x3 x3
0 �y3 x6 x5 x4

1A :
In Theorem 4.1 we proved that J.V /hom is a CS ideal and

J.V /hom D I3
�
Xf1;2;3g

�
W .y1y2y3/:
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In order to obtain the generators of J.V /hom, we use Theorem 4.4. The relevant
subsetsA � f1; 2; 3g are those forwhichVA ¤ f0g, hence in this case they correspond
to

Vf1;3g D hL1; L2 C L3i; Vf2;3g D hL3i

and of course Vf1;2;3g D V . The corresponding matrices are

Xf1;3g D

�
y1 x1 C x2 x2
�y3 x6 x4 C x5

�
; Xf2;3g D

�
y2 x3
�y3 x4

�
;

thus by Theorem 4.4 we have

J.V /hom D I2
�
Xf1;3g

�
C I2

�
Xf2;3g

�
C I3

�
Xf1;2;3g

�
:

It turns out that the generators of I3.Xf1;2;3g/ are superfluous, so that

J.V /hom D
�
x4y2 C x3y3; x6y1 C x1y3 C x2y3;

x4y1 C x5y1 C x2y3; x1x4 C x2x4 C x1x5 C x2x5 � x2x6
�
:

Finally by Theorem 4.4 we have J.V /? D I2.Mf1;3g/C I2.Mf2;3g/C I3.Mf1;2;3g/,
with

Mf1;3g D

�
x1 C x2 x2
x6 x4 C x5

�
; Mf2;3g D

�
x3
x4

�
;

Mf1;2;3g D

0@x1 C x2 x2 0

0 �x3 x3
x6 x5 x4

1A ;
so that one gets J.V /? D .detMf1;3g/.

In [3], Ardila and Boocher consider T D KŒx1; : : : ; xn� with the standard
Zn-graded structure induced by deg xi D ei 2 Zn. In this setting they prove,
among other things, that all the initial ideals of J.V /hom (in the given coordinates)
are squarefree. Moreover, the Betti numbers of J.V /hom and in.J.V /hom/ coincide.
We can recover and generalize these results as follows.

Theorem 4.6. Let T D KŒx1; : : : ; xn� be a polynomial ring with the standard Zn-
graded structure. Let V be a vector space of linear forms of T (i.e. elements of
degree 1 with respect to the standard Z-graded structure) and let J.V / be the ideal
generated by V . Then J.V /hom � S D KŒx1; : : : ; xn; y1; : : : ; yn� is a Cartwright–
Sturmfels as well as a Cartwright–Sturmfels� ideal. Furthermore every idealH of S
with the same Zn-graded Hilbert function as J.V /hom is radical, Cohen–Macaulay
and ˇi;a.H/ D ˇi;a.J.V /hom/ for every i 2 N and a 2 Nn.
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Proof. Weproved thatJ.V /hom is aCartwright–Sturmfels ideal. Hence every idealH
of S with the same Zn-graded Hilbert function as J.V /hom is radical. Let G D
gin.J.V /hom/ be the multigraded generic initial ideal of J.V /hom. Since J.V /hom is
a Zn-graded prime ideal, the largest variable of each block does not appear in the
generators of G. Since we have only two variables in each block it follows that the
generators ofG involve only one variable per block, hence J.V /hom is a Cartwright–
Sturmfels� ideal. Hence every ideal H of S with the Zn-graded Hilbert function
of J.V /hom satisfies ˇi;a.H/ D ˇi;a.J.V /

hom/ for every i 2 N and a 2 Nn. The
Cohen–Macaulay property follows from Brion’s Theorem 2.11.

Ardila and Boocher in [3] computed the multidegree of S=J.V /hom in their
setting. We are able to compute the multidegree in general.

LetT D KŒx1; : : : ; xn�with anyZu-graded structure. LetV D hL1; : : : ; Lvi and
consider the v�nmatrixMV , whose .i; j /-entry is the coefficient of xj inLi . ToMV

we associate the matroid MV , whose elements are the subsets of Œn� corresponding
to linearly independent columns ofMV . A basis of MV is a maximal element, i.e. a
set of column indices fb1; : : : ; bvg corresponding to a basis of the column space
of MV . To every basis b D fb1; : : : ; bvg we associate a multidegree deg.b/ D
deg.xb1

� � � xbr
/ 2 Zu and let

DV D
˚
deg.b/ W b is a basis of MV

	
:

With this notation we have:
Theorem 4.7. Let R D S=J.V /hom. The multidegree of R is given by the formula:

DegR.z/ D
X
w2DV

zw :

Proof. If W � An is the affine .n � v/-dimensional linear space corresponding
to J.V /, then J.V /hom corresponds to the closure SW ofW in the product of projective
spaces Pn1 � � � � � Pnu , where ni D dimK Tei

, 1 � i � u. By the results we have
recalled in Section 2 we have:

DegR.z/ D
X

deg.Hc \ SW /zc ;

where the sum runs over the c D .c1; : : : ; cu/ 2 Nu with ci � ni and jcj D v.
Moreover, Hc D W1 � � � � � Wu and Wi � Pni is a generic linear subspace with
dimWi D ci . Here deg.Hc \ SW / denotes the usual intersection multiplicity of Hc
and SW .

We claim that the intersection ofHc and SW is affine (for a generic choice ofHc).
In fact, since SW is irreducible and not contained in the hyperplane Hi of equation
yi D 0 for any i , then dim.SW \Hi / D n�v�1. Therefore, a genericHc has empty
intersection with SW \Hi , since dimHcCdim.SW \Hi / D n�1 < n. Finally, since
there are u hyperplanesHi , the intersection of a genericHc with SW avoids them all.
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Since the intersection ofHc and SW is affine, then it corresponds to the intersection
of W with W1 � � � � � Wu � An1 � � � � � Anu D An where Wi is a generic linear
subspace of Ani that contains the origin.

Therefore, the defining equations of the affine part of Hc are general elements
`i;j 2 Tei

with 1 � i � u and 1 � j � ni�ci . In particular,m.Hc ; SW / 2 f0; 1g and
it is 1 if and only if the `i;j ’s and the Li ’s are linearly independent. The associated
determinant is the linear combination the maximal minors ofMV corresponding to
bases of MV of multidegree c whose coefficients are generic. Hencem.Hc ; SW / D 1
if and only if c 2 DV .

We illustrate Theorem 4.7 by considering again Example 4.5.
Example 4.8. Let T D KŒx1; : : : ; x6� with the same Z3-graded structure as in
Example 4.5, i.e. let

deg.xi / D

�
e1; for i D 1; 2;
e2; for i D 3;
e3; for i D 4; 5; 6:

Let V D hL1; L2; L3iwithL1 D x1Cx2Cx6, L2 D x2�x3Cx5, L3 D x3Cx4,
and let R D S=J.V /hom. The matrix associated to V is

MV D

0@1 1 0 0 0 1

0 1 �1 0 1 0

0 0 1 1 0 0

1A :
The set of bases of the matroid MV is˚

123; 124; 134; 135; 145; 234; 235; 236; 245; 246; 346; 356; 456
	
:

To every basis we associate a multidegree and a monomial in KŒz1; z2; z3�, for
example 123 corresponds to the degree deg.x1x2x3/ D .2; 1; 0/ and to the
monomial z21z2. The set of the degrees of the bases of MV is

DV D
˚
.2; 1; 0/; .2; 0; 1/; .1; 1; 1/; .1; 0; 2/; .0; 1; 2/; .0; 0; 3/

	
;

so that by Theorem 4.6 one has

DegR.z/ D z21z2 C z
2
1z3 C z1z2z3 C z1z

2
3 C z2z

2
3 C z

3
3 :

Each monomial in the multidegree corresponds to a minimal prime of the generic
initial ideal, e.g. .2; 1; 0/ corresponds to the ideal generated by the first 2 variables
of the first block and the first variable of the second block. Hence the multigraded
generic initial ideal of J.V / is the intersection of the 6 components:

.2; 1; 0/! .x1; x2; x3/ .2; 0; 1/! .x1; x2; x4/

.1; 1; 1/! .x1; x3; x4/ .1; 0; 2/! .x1; x4; x5/

.0; 1; 2/! .x3; x4; x5/ .0; 0; 3/! .x4; x5; x6/

i.e. gin.J.V // D .x1x4; x2x4; x3x4; x1x5; x2x3x5; x1x3x6/.
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5. Multiview ideals

In this section, we turn our attention to multiview ideals. Consider a collection of
matriceswith scalar entriesA D fAigiD1;:::;mwithAi of sizedi�n and rankAi D di .
One has an induced rational map

�AWP
n�1 Ü

Y
Pdi�1

sending x 2 Pn�1 to .Aix/iD1;:::;m. The ideal JA associated to the closure of the
image of �A is called multiview ideal. We refer to [2] for a discussion of the role
played by JA in various aspects of geometrical computer vision. Our goal is proving
the following theorem.
Theorem 5.1. For all choices of A D fAigiD1;:::;m the multiview ideal JA is a CS
ideal and it defines a Cohen–Macaulay normal domain.

Theorem 5.1 is proved in [2] in the case n D 4 and di D 3 for all i , under the
assumption that the Ai ’s are generic. Later on Binglin Li in his yet unpublished
preprint [6] proved Theorem 5.1 in general. Furthermore he gave a combinatorial
description of the multidegree and the generators of JA. Our goal is giving two
alternative proofs of Theorem 5.1.

First of all we introduce the algebraic objects needed to describe the problem.
Notice that our point of view is somewhat dual to that of [6]. We denote by Vi the
vector space of linear forms of T D KŒx1; : : : ; xn� generated by the entries of the
matrix Aix where x is the column vector with entries x1; : : : ; xn. Then V1; : : : ; Vm
is a collection of vectors spaces of linear forms of dimension di D dimK Vi . We
define

A
�
V1; : : : ; Vm

�
D K

�
V1y1; : : : ; Vmym

�
� T

�
y1; : : : ; ym

�
;

i.e. A.V1; : : : ; Vm/ is the subalgebra of the polynomial ring T Œy1; : : : ; ym� generated
by the elements vyi with v 2 Vi . By construction A.V1; : : : ; Vm/ is the multigraded
coordinate ring of the closure of the image of �A. The Zm-graded structure on
A.V1; : : : ; Vm/ is induced by the assignment degyi D ei 2 Zm.

We presentA.V1; : : : ; Vm/ as a quotient ofKŒxij W i D 1; : : : ; m; j D 1; : : : ; di �
via the K-algebra surjection

�WK
�
xij W i D 1; : : : ; m; j D 1; : : : ; di

�
! A

�
V1; : : : ; Vm

�
defined by �.xij / D vijyi , where fvij W j D 1; : : : ; dig is a basis of Vi . By con-
struction, JA D ker�.

Proof of Theorem 5.1. First proof. We take the point of view of [13]. Observe that
A.V1; : : : ; Vm/ is a subring of the Segre product

K
�
xiyj W i D 1; : : : ; n and j D 1; : : : ; m

�
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of the polynomial rings T and KŒy1; : : : ; ym�. The latter is defined as a quotient of
the polynomial ring

K
�
xij W i D 1; : : : ; m; j D 1; : : : ; m

�
by the ideal I2.X/ of 2-minors of the matrix X D .xij /. Hence JA is obtained
from I2.X/ by performing a Zm-graded change of variables and then eliminating the
variables xij with di < j � m. Since I2.X/ is a CS ideal, by [15, Theorem 1.6] we
may conclude that JA is a CS ideal.
Second proof. We consider the K-algebra map

�0WK
�
xij W i D 1; : : : ; m; j D 1; : : : ; di

�
! T

defined by �0.xij / D vij . Clearly Ker�0 is generated by linear forms, indeed byPm
iD1 di �dimK

Pm
iD1 Vi linear forms. By construction Ker� is the ideal generated

by the Zm-homogeneous elements of Ker�0. With the notation introduced above:

Ker� D
�
Ker�0

�?
and by Theorem 4.6 we conclude that Ker� is CS, i.e. JA is CS.

Finally, Cohen–Macaulayness and normality follow from Brion’s Theorem 2.11.

Example 5.2. Letm � d and n D .m� 1/d . Let A D fAigiD1;:::;m with Ai generic
of size d � n. By genericity, we may choose coordinates such that

Vj D hxd.j�1/C1; xd.j�1/C2; : : : ; xjd i

for j D 1; : : : ; m � 1, and

Vm D hv1; : : : ; vd i; with vh D �
m�1X
jD1

xd.j�1/Ch

for h D 1; : : : ; d . Then

Ker�0 D
� mX
iD1

xik W k D 1; : : : ; d

�
:

It follows that the multiview ideal JA, i.e. the ideal of the closure of the image of the
rational map

�AWP
n�1 Ü

mY
iD1

Pd�1;

is defined by the m-minors of the generic m � d matrix0BB@
x11 x12 : : : x1d
x21 x22 : : : x2d
: : : : : : : : : : : :

xm1 xm2 : : : xmd

1CCA :
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