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The monodromy of real Bethe vectors for the Gaudin model
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Abstract. The Bethe algebras for the Gaudin model act on the multiplicity space of tensor
products of irreducible glr -modules and have simple spectrum over real points. This fact
is proved by Mukhin, Tarasov and Varchenko who also develop a relationship to Schubert
intersections over real points.Weuse an extension to SM0;nC1.R/ of these Schubert intersections,
constructed by Speyer, to calculate the monodromy of the spectrum of the Bethe algebras. We
show this monodromy is described by the action of the cactus group Jn on tensor products of
irreducible glr -crystals.
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1. Introduction

1.1. Gaudin Hamiltonians. The Hamiltonians for the Gaudin model are n comm-
uting operators depending on distinct complex parameters z1; z2; : : : ; zn acting on a
tensor product of irreducible representations of glr . The problem considered in this
paper is to describe the Galois or monodromy group of these operators.

Let glr be the Lie algebra of r � r matrices and eij the matrix with a 1 in the
.i; j /-entry and 0 everywhere else. For z D .z1; z2; : : : ; zn/ a set of distinct complex
parameters, the Gaudin Hamiltonians are

Ha.z/ D
X
b¤a

�ab

za � zb
where �ab D

X
i;j

e
.a/
ij e

.b/
j i ; (1.1)

for a D 1; 2; : : : ; n. We consider these either as elements ofU.glr/˝n or as operators
which act on

L.��/ D L.�1/˝ L.�2/˝ � � � ˝ L.�n/

for an n-tuple of partitions��D.�1; �2; : : : ; �n/with atmost r rows. ForX 2U.glr/,

X .a/ D 1˝ � � � ˝ 1˝X ˝ 1˝ � � � ˝ 1;

where X is placed in the ath factor.
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The main problem in the study of these operators is to produce a complete family
of simultaneous eigenvectors (whenever the operators are diagonalisable), see for
example [20]. We consider the problem of understanding how these eigenvectors
change as we vary the parameter z.

These operators commute with the action of glr onL.��/ (see [18]). In particular
this implies the Hamiltonians preserve weight spaces and singular vectors, hence
it is enough to understand the action of the Ha.z/ on the space L.��/sing

� for
some partition �. Let G.��I z/� be the commutative subalgebra of End.L.��/sing

� /

generated by the operators (1.1).

1.2. Themain result. In [8] a maximal commutative subalgebraA.��I z/� contain-
ing G.��I z/� is constructed. This algebra is called the Bethe algebra for L.��/sing

� .
The affine group Aff1 ' C�ËC acts on the parameter space by simultaneous scaling
and translation on each coordinate, i.e. for two scalars ˛; ˇ 2 C

.˛; ˇ/ � z D .˛z1 C ˇ; ˛z2 C ˇ; : : : ; ˛zn C ˇ/:

Since the denominators in (1.1) are all of the form za � zb , the Gaudin algebras
are invariant under this action, G.��I z/� D G.��I˛z C ˇ/�. It is also known
A.��I z/� D A.��I˛z C ˇ/� (see [5, Proposition 1]).

If Xn D fz 2 Cn j za ¤ zb for a ¤ bg, our parameter space becomes Xn=Aff1
which we identify withM0;nC1.C/, the moduli space of irreducible genus 0 curves
with nC 1 marked points, the .nC 1/st marked point being placed at infinity. We
obtain in this way a family of algebras A.��/� over M0;nC1.C/. We denote the
spectrum of this family by

� WA.��/�
def
D SpecA.��/� �!M0;nC1.C/:

The morphism � is finite (i.e. it is a finite ramified covering space) and is our main
object of study. Our aim will be to say something about the Galois theory of this map.
We denote by Gal.�/, the Galois group of � (see Section 4.4) and by A.��I z/�, the
fibre over the point z 2M0;nC1.C/.

In [12] Henriques and Kamnitzer show the cactus group Jn acts on the crystal

B.��/ D B.�1/˝ B.�2/˝ � � � ˝ B.�n/

for B.�/ the irreducible crystal of highest weight �. In fact this action preserves
weight spaces and singular vectors so restricts to an action on B.��/sing

� . The cactus
group contains a subgroup PJn, the pure cactus group. The following is the main
theorem of the paper. It was conjectured in a paper of Rybnikov [22, Conjecture 1.6]
(where it is attributed to Etingof). The statement was also conjectured independently
by Brochier–Gordon which is where the author first learnt of the statement.
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Theorem 1.1. For generic z 2M0;nC1 there exists a map PJn �! Gal.�/ from the
pure cactus group to the Galois group of � such that there exists a naturally defined
bijection

A.��I z/� B.��/
sing
� ;

�

equivariant for the induced action of PJn on A.��I z/�.

The author is has been informed Kamnitzer and Rybnikov have obtained similar
results. The strategy for proving Theorem 1.1 is to use the fact the Bethe algebras
are isomorphic to functions on intersections of Schubert varieties. Speyer [23]
constructs a compactification of a flat family of Schubert intersections and describes
it combinatorially. We use this description to calculate the monodromy of this family
and relate it back to the Galois theory of the Bethe algebras.

1.3. The vector representation and Calogero–Moser space. An important case is
when the partitions �s are all equal to � D .1/. This means V D L.�s/ D L.�/
is the vector representation, let B D B.�/ be the associated crystal. The importance
stems from the fact L.�/ can be embedded into V ˝m for some large enough m.
Several times we will reduce to this case in proofs.

Let r D n, �� D .�n/ and let � D .1; 1; : : : ; 1/. We can identify the set
B.��/� D ŒB

˝n�.1;1;:::;1/withwords of lengthn in the letters f1; 2; : : : ; ng an thuswith
the symmetric group Sn. The Jn-orbits in ŒB˝n�sing

.1;1;:::;1/
are exactly the Kazhdan–

Lusztig cells. It is shown in [19] that the family A.�n/.1;1;:::;1/ is a subvariety of
(type A) Calogero–Moser space (in fact the entire Calogero–Moser space is realised
using slightly more general Bethe algebras).

Bonnafé andRouquier [4] conjecture and provide evidence for a close link between
the geometry of Calogero–Moser space and the Kazhdan–Lusztig theory of the
associated Coxeter group in all types. In particular it is conjectured the Kazhdan–
Lusztig cells are produced as the orbits of a Galois group action. Theorem 1.1
provides evidence that the Kazhdan–Lusztig cells can in fact be recovered from the
Galois theory of Calogero–Moser space in type A, which will be developed in a
forthcoming work of Brochier, Gordon, and the author.

1.4. Moduli of theGaudinHamiltonians. Aguirre, Felder, andVeselov [1] showed
the algebras of HamiltoniansG.��I z/� fit into a family of commutative algebras over
SM0;nC1.C/. The pure cactus group PJn is the fundamental group of SM0;nC1.R/.
Thus one would like the limits of the Gaudin algebras described by this moduli
to have simple spectrum over the real points and use this covering to calculate the
monodromy. Unfortunately these algebras do not always have simple spectrum. The
first example where this fails is for n D 6 and � D .3; 2; 1/.

In the case when �� D .�n/, the Gaudin Hamiltonians (1.1) always generate
a maximal commutative subalgebra of End.ŒV ˝n�sing

� /, with simple spectrum when
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they are diagonalisable and thus generate the entire Bethe algebra (see [18]). This
means Theorem 1.1 also describes the Galois theory of the Gaudin algebras. This is
not always true for more general ��. In particular, when n D 2 and �1 D �2 D .2; 1/
then L.��/sing

.3;2;1/
is two dimensional, and the Gaudin Hamiltonians act by scalars,

whereas the Bethe algebra does not.

1.5. Outline. In Section 2 we outline some notation and preliminary notions we will
rely on throughout the paper, in particular we will recall some of the combinatorics
we need. Section 3 recalls the construction of Speyer’s flat family and describes
an action of the symmetric group on this family. We use this to calculate the
equivariant monodromy of Speyer’s family. In Section 4 we recall the definition of
the Bethe algebras and Mukhin, Tarasov, and Varchenko’s isomorphism between the
Bethe algebra and functions on Schubert intersections. We prove that the equivariant
monodromy in Speyer’s family is given by the action of Jn on crystals and use this
to prove Theorem 1.1.

Acknowledgements. The currentworkwas completedwhile the authorwas a student
at the University of Edinburgh and will form part of his PhD thesis. The author would
like to thank his supervisors, Iain Gordon and Michael Wemyss for their guidance,
and the School of Mathematics, University of Edinburgh for its support. The author
would also like to thank the referee for helpful comments and for pointing out the
example at the end of Section 1.4.

2. Preliminaries

2.1. Notation. We collect here some notation used throughout the paper. The set
f1; 2; : : : ; ng for a positive integer n will be denoted Œn�. The set of partitions will be
denoted Part. We will use� to denote the partition .1/ andƒ D ƒr;d D ..d �r/r/,
the rectangular partition with r rows and d � r columns.

For �;� 2 Part, we denote the set of semistandard and standard tableaux for
the skew shape �n� by SSYT.�n�/ or SYT.�n�/, respectively. If T 2 SSYT.�n�/
denote by T jr;s the skew tableaux obtained from T by ignoring boxes labelled with
numbers outside the range Œr; s�.

We will use the Schützenberger involutionmany times. It will play differing roles
depending on whether we consider it as an involution of semistandard tableaux or
standard tableaux. To make this distinction more obvious we will use the notation �
only for semistandard tableaux and the notation evac when applying the involution
to standard tableaux. We recall the definition briefly below. A careful definition can
be found in [9]. Recall that a jeu de taquin slide on a (semi)standard tableau is a
process that produces a new tableau as follows. Slides come in two varieties, reverse
and forwards. We will describe a reverse slide first. A slide is performed by choosing
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a position at which a new box can be added on the north west rim and for the shape
to remain a skew shape. For example, at the point marked on the tableau,

� 2 4

1 3 5
:

The slide is performed by moving the smallest neighbouring box into the marked
position. The sliding process is repeated with the newly vacant square, and until no
more slide moves can be made. For example, the result of sliding into the marked
position above, results in

2 4

1 3 5
:

A forwards slide is identical, except we start with a position on the south west rim, and
always take the largest number. The process can be applied to semistandard tableaux
as well, in which case, number to the north east are always considered larger.

The Schützenberger involution can now be described. We start with a standard
tableaux and delete the box containing the smallest number and perform a reverse
slide into this position. The empty square will end up on the south east rim and this
square is filled with the negative of the number we deleted. We repeat the process,
ignoring boxes with negative numbers until we only have negative numbers. We then
add nC 1 to the number in each box (where n) is the number of boxes. This process
is sometimes called evacuation. For example

1 2 4

3 5
7!

1 3 5

2 4
:

2.2. Equivariant fundamental groups and monodromy. We briefly recall the
equivariant fundamental and monodromy group. We follow the definition given by
Rhodes [21]. It is possible to formulate the definitions in many languages, some of
which apply in much broader generality (i.e. the language of orbifolds or stacks) but
since we deal with a reasonably simple situation we will stick with the more explicit
language.
Definition 2.1. Let X be a topological space and G a discrete group acting on X .
Let b 2 X be a basepoint. The equivariant fundamental group�G1 .X; b/ has elements
.˛; g/ where g 2 G and ˛ is a (homotopy class of a) path from b to g � b. The group
structure is defined by

.˛; g/ � .ˇ; h/ D .˛ � g.ˇ/; gh/:

Here we use the usual composition of paths and g.ˇ/ to denote the g-translate of the
path ˇ. An element of �G1 .X; b/ is called a G-equivariant loop.
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The fundamental group �1.X; b/ is the kernel of the projection �G1 .X; b/! G.
If f WS �! B is aG-equivariant topological covering we can define an action of the
group �G1 .X; b/ on the fibre f �1.b/. If p 2 f �1.b/ and .˛; g/ 2 �G1 .X; b/ then
denote by z̨ the unique lift of ˛ to S such that z̨.0/ D p. Since f is G-equivariant
z̨.1/ 2 f �1.g � b/. Define .˛; g/ � p D g�1 � z̨.1/.
Definition 2.2. The above action is theG-equivariantmonodromyaction of�G1 .B; b/
on f �1.b/. The image of �G1 .B; b/ in Sf �1.b/, the symmetric group on the fibre, is
the equivariant monodromy group and is denotedMG.f I b/.

2.3. Tilling of SM0;k.R/ by associahedra. In this section we will describe a CW -
structure on the real points SM0;nC1.R/. This has been investigated in [7], [14],
and [6]. We can define a stratification on SM0;k.R/ by subspaces

SM0;k.R/ DM1 �M2 � � � � �Mk�2 � ;

whereMi is the set of stable curves with at least i irreducible components.

2.3.1. Circular orderings. Let Dk � Sk be the dihedral group generated by
.12 : : : n/ and the involution reversing the order of 1; 2; : : : ; n. A circular ordering of
the integers f1; 2; : : : ; kg is an element of Sk=Dk . That is, we imagine ordering the
integers on a circle and identify orderings which coincide upon rotation or reflection.
The orderings .1; 2; 3; 4/, .4; 1; 2; 3/ and .4; 3; 2; 1/ all represent the same circular
ordering but are distinct from .1; 3; 2; 4/.

The order in which the marked points appear on a curve C 2 M0;k.R/ defines
a circular ordering. For each circular order s 2 Sk=Dk , let ‚s � SM0;k.R/ be the
closure of the subspace of curves with circular ordering s. For example, ‚id is the
closure of the set of irreducible curves projectively equivalent to a curve with marked
points z1 < z2 < � � � < zk .

By a theorem of Kapranov [14, Proposition 4.8], restricting the stratification
to ‚s gives it the structure of a CW-complex with i -skeleton ‚s \Mk�2�i . The
symmetric group Sk acts on SM0;k.R/ by permuting marked points. This action
transitively permutes the cell complexes ‚s and preserves i -cells. They are thus are
all isomorphic. We define the .k � 3/-associahedron to be this cell complex.

2.3.2. The fundamental group. The cactus group, Jn, is the groupwith generators spq
for 1 � p < q � n and relations
(i) s2pq D 1;
(ii) spqskl D sklspq if the intervals Œp; q� and Œk; l� are disjoint;
(iii) spqskl D suvspq if Œk; l� � Œp; q�, where v D yspq.k/ and u D yspq.l/,
where yspq is the permutation that reverses the order of the interval Œp; q�. This also
provides a maps to the symmetric group Sn. The pure cactus group PJn is defined
to be the kernel of this homomorphism.



The monodromy of real Bethe vectors for the Gaudin model 265

Lemma 2.3. The cactus group Jn is generated by the elements s1q for 2 � q � n.

Proof. By the relations for Jn given above we have spq D s1qs1.q�pC1/s1q . Since
the elements spq generate Jn so do the s1q .

In [12] it is shown �1. SM0;nC1.R// D PJn. The space SM0;nC1 also has an action
of Sn by permuting the first n marked points. This leaves the real points stable.
The equivariant fundamental group �Sn1 . SM0;nC1.R// is Jn. The equivariant loop
in SM0;nC1.R/ corresponding to spq 2 Jn is .˛; yspq/, where ˛ is the path from a
basepoint C passing through the wall reversing the labels p; : : : ; q to yspq � C .

2.4. Growth diagrams. In this section we recall the notion of a growth diagram.
Growth diagrams give an interpretation of jeu de taquin slides for standard tableaux
using combinatorial objects built on subsets of the lattice Z2. When we draw this
lattice we will depict the second coordinate as increasing northward on the vertical
axis and (perhaps counter intuitively) we depict the first coordinate as increasing
westward on the horizontal axis. This choice is made in order to be consistent with
the notation in [23].

2.4.1. Growth diagrams. Let I be a subset of Z2C D f.i; j / 2 Z2 j j � i � 0g. A
growth diagram on I is a map  W I �! Part obeying the following rules:
(i) If j � i D k � 0 then ij is a partition of k.
(ii) Suppose .i; j / 2 I. Then if .i � 1; j / (respectively, .i; j C 1/) is in I then

ij � .i�1/j (respectively, ij � i.jC1/).
(iii) If .i; j /; .i �1; j /; .i; j C1/ and .i �1; j C1/ 2 I and .i�1/.jC1/nij consists

of two boxes that do not share an edge then .i�1/j ¤ i.jC1/.
In view of condition (i), condition (ii) means if we move one step north or one

step east in I, we add a single box. Condition (iii) means if we have an entire square
in I, and if there are two possible ways to go from ij to .i�1/.jC1/ by adding boxes
then the two paths around the square should be these two different ways.

A path through I � Z2C is a series of steps from one vertex to another using only
northward and eastward moves (i.e. only ever increasing j and decreasing i and thus
j � i is a strictly increasing function on the path). Given a growth diagram  in I,
every path determines a standard tableau.

Given a rectangular region in a growth diagram, conditions (i) and (iii) mean the
entire rectangular region is determined by specifying the tableaux along any path
from its bottom left to top right corner.

2.4.2. The Schützenberger involution in growth diagrams. We now explain how
growth diagrams encode the jeu de taquin slides on standard tableaux (see [9] for a
definition). Let I be a rectangular region in Z2C only one step tall. So

I D f.i; j / j i D r; r C 1; : : : ; s and j D t; t C 1g;
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for some s and t so that .s; t/ is the bottom left hand corner and t � s � 0. Let  be a
growth diagram on I and set � D st ; � D s.tC1/; � D rt and � D r.tC1/. These
are the four partitions at the corners of I. Note that indices decrease when moving
eastward in Z2C.

Let T be the �n�-tableau given by the top edge of I and S the �n�-tableau given
by the bottom edge. See Figure 1. The partition � determines a node, denoted ı, on
the north-western boundary of T which we can slide into. Similarly the partition �
determines a node on the south-eastern boundary of S denoted �, which we can slide
into.

�

�

�

�

�

�

�

�

�

�

�

�

S

T

Figure 1. The jeu de taquin growth diagram.

Proposition 2.4. The tableau S is the result of the jeu de taquin slide of T into ı
and T is the result of the slide of S into �.

Proof. See [24, Proposition A1.2.7].

We now explain how this relates to the Schützenberger involution for standard
tableaux. Suppose T 2 SYT.�n�/ where � is a partition of k and �n� has l boxes.
Let

I D f.i; j / 2 Z2C j 0 � i � l; k � j � k C l; and i C k � j g:

That is, I is a triangle with vertices .0; k/; .l; k C l/ and .0; k C l/. Any growth
diagram,  , on I can be computed recursively if we know the value of  on either
on the horizontal or vertical side of I. Define the growth diagram T on I by setting
T .r; k C r/ D � for any 0 � r � l . That is, on the diagonal edge of I, T is of
constant value �. We set the sequence of partitions

T .l; k C l/ � T .l � 1; k C l/ � � � � � T .0; k C l/

on the horizontal edge of I so they determine the standard tableau T . By the
observation above, this determines T on all of I. As an immediate consequence of
the definition and of Proposition 2.4 we obtain the following corollary.
Corollary 2.5. Let T be the growth diagram above, associated to a standard tableau
T 2 SYT.�n�/. The standard tableau determined by the sequence of partitions along
the vertical edge of I is evac.T /, the Schützenberger involution of T .
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This explains why the Schützenberger involution is in fact an involution, at least
in the case of standard tableaux.

2.5. Dual equivalence classes. WenowdescribeHaiman’s [10] notion of dual equiv-
alence. This is an equivalence relation on skew tableaux, dual to slide equivalence in
the sense that it preserves the Q-symbol of a word given by the RSK correspondence.
Definition 2.6. Two semistandard skew tableaux, T and T 0 of the same shape, are
called dual equivalent, denoted T �D T 0, if for all meaningful sequence of slides,
applying the sequence of slides to T and T 0 results in tableaux of the same shape.
Example 2.7. The skew tableaux depicted below are dual equivalent.

1

2 3

2

1 3

2.5.1. Dual equivalence is local. We have the following proposition which tells us
that dual equivalence is a local operation. That is, we can replace a subtableau with
a dual equivalent one and the resulting tableau will be dual equivalent to the original
one.
Proposition 2.8 ([10, Lemma 2.1]). Suppose X , Y , S and T are semistandard
tableaux such thatX [T [Y andX [S [Y are semistandard tableaux. If S �D T
then X [ T [ Y �D X [ S [ Y .

A skew-shape is called normal if it has a unique top left corner, and antinormal if
it has a unique bottom right corner. That is, if it is the north-western or south-eastern
part of a rectangle, respectively. We have the following important properties of dual
equivalence which we will use many times.
Theorem 2.9. Dual equivalence has the following properties.
(i) All tableaux of a given normal or antinormal shape are dual equivalent.
(ii) The intersection of any slide equivalence class and any dual equivalence class

is a unique tableaux.
(iii) Two words are dual equivalent if and only if their Q-symbols agree.

Proof. Properties (i), (ii) and (iii) are Proposition 2.14, Theorem 2.13 and Theo-
rem 2.12 in [10], respectively.

2.5.2. Shuffling dual equivalence classes. Given a rectangular growth diagram let
S1 and S2 denote the standard tableaux defined by the western edge and the northern
edge, respectively, and let T1 and T2 denote the standard tableaux defined by the
southern and eastern edges, respectively.
Proposition 2.10 ([23, Proposition 7.6]). The dual equivalence classes of T1 and T2
remain unchanged if we replace either (or both) S1 or S2 by dual equivalent tableaux.
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Let ı1 and ı2 be dual equivalence classes such that the shape of ı2 extends the
shape of ı1. Choose representatives S1 and S2 for ı1 and ı2, respectively. Construct
the unique rectangular growth diagram with western and northern edges given by
S1 and S2, respectively. Define "1 and "2 to be the dual equivalence classes of the
southern and eastern edges, respectively. Proposition 2.10 implies that "1 and "2 are
independent of the representatives S1 and S2 chosen.
Definition 2.11. If ı1 and ı2 are, as above, dual equivalence classes such that the
shape of ı2 extends the shape of ı1 we say ."1; "2/ are the shuffle of .ı1; ı2/.
Example 2.12. In can be checked that that following pairs of dual equivalence classes
correspond under shuffling. 

2

1 3
;

1

2

!
and

 
1

2
;

2

1 3

!
2.5.3. Dual equivalence growth diagrams. We now define the notion of dual
equivalence for growth diagrams (introduced in [23]). First we fix an function
mWZ �! Z>0 which we call the interval. We define several auxiliary functions
using m. We define a function ymWZ �! Z

ym.i/
def
D

(
1C

Pi�1
kD1m.k/; if i > 0;

1 �
P0
kDi m.k/; if i � 0;

a function xmWZ2C �! Z2C, xm.i; j /
def
D . ym.i/; ym.j //, and a function msWZ2C �! N

ms.i; j /
def
D ym.j / � ym.i/ D

j�1X
kDi

m.k/:

In particular ms.i; i/ D 0, ms.i; i C 1/ D m.i/ and if m is the constant function 1
then ms.i; j / D j � i .

Consider the graph with vertices Z2C and edges aij between .i; j / and .i � 1; j /
and edges bij between vertices .i; j / and .i; j C 1/. If we embed Z2C � R2, these
as simply the horizontal and vertical unit intervals between the points of Z2C. If
I � Z2C, we call an edge of Z2C internal to I if both of its endpoints are in I.
Definition 2.13. A dual equivalence growth diagram on I with interval m is a map
 W I �! Part as well as an assignment of a dual equivalence class ˛ij (resp., ˇij )
to every edge aij (resp., bij ) internal to I, obeying the following rules.
(i) If .i; j / 2 I then ij is a partition of ms.i; j /.
(ii) If aij (resp., bij ) is internal to I then ij � .i�1/j (resp., ij � i.jC1/).
(iii) If aij ; b.i�1/j ; bij and ai.jC1/ 2 I then .˛ij ; ˇ.i�1/j / is the shuffle of

.ˇij ; ˛i.jC1//.
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Example 2.14. A simple example would be just the four vertices below, with the
western and northern edges labelled by the first pair of dual equivalence classes
in Example 2.12 and the southern and eastern edges labelled by the second pair.
To be explicit, in this case we could take I D f.0; 1/; .0; 2/; .�1; 1/; .�1; 2/g and
m.0/ D 2;m.1/ D 3, and m.�1/ D 2.

We should think of the interval m as defining how many boxes we are allowed
to add with each step though the lattice. Indeed, if we wish to move one step east
from .i; j /, ms increases by m.i � 1/ and if we wish to move one step north, ms
increases by m.j /. Thus the partition i i must be the empty partition and i.iC1/
is a partition of m.i/. This means when m is the constant function m.i/ D 1 our
definition coincides with that for a ordinary growth diagram for I.

We can also think of dual equivalence growth diagrams as equivalence classes
of certain growth diagrams. Let z be a growth diagram on zI � Z2C. We say zI is
adapted to an interval mWZ �! Z>0 if it has the following property: If zI contains
each of the four vertices xm.i; j /; xm.i�1; j /; xm.i; j C1/; and xm.i�1; j C1/, then zI
contains all of the vertices in the rectangular region they bound.

xm.i; j / xm.i � 1; j /

xm.i; j C 1/ xm.i � 1; j C 1/

Definition 2.15. If zI is adapted tom, the reduction modulom of a growth diagram z
is defined to be the map  W I �! Part for

I D f.i; j / 2 Z2C j . ym.i/; ym.j // 2 zIg;

given by  D z ı xm, along with the set of dual equivalence classes

� ˛ij , the dual equivalence class defined by the horizontal path, in z , from xm.i; j /
to xm.i � 1; j /, and

� ˇij , the dual equivalence class of the tableaux defined by the vertical path, in z ,
from xm.i; j / to xm.i � 1; j /.
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Example 2.16. If we let m be any interval function with m.0/ D 2;m.1/ D 3

and m.�1/ D 2 then the dual equivalence growth diagram in Example 2.14 is the
reduction modulo m of the following growth diagram on the subset

zI D f.i; j / j �3 � i � �1 and 1 � j � 4g:

Proposition 2.17. The map  W I �! Part along with the choice of ˛ij and ˇij
define a dual equivalence growth diagram on I.

Proof. We must check the conditions in Definition 2.13. For condition (i) note that
ij D z ym.i/; ym.j / so

ˇ̌
ij
ˇ̌
D ym.j /� ym.i/ which is ms.i; j / by definition. We have a

path in zI from xm.i; j / to xm.i � 1; j / so

ij D z xm.i;j / � z xm.i�1;j / D .i�1/j :

Similarly ij � i.jC1/. To see condition (iii), note that ˛ij ; ˇ.i�1/j ; ˇij and ˛i.jC1/
are defined as the dual equivalence classes coming from the four sides of a rectangular
growth diagram:

z xm.i;j / z xm.i�1;j /

z xm.i;jC1/ z xm.i�1;jC1/

ˇij

˛ij

ˇ.i�1/j

˛i.jC1/

The fact that this portion of zI forms a rectangular growth diagram is given by the
requirement that zI is adapted to m. By definition, this means .ˇij ; ˛i.jC1// is the
shuffle of .˛ij ; ˇ.i�1/j / as required.

3. Speyer’s flat family

In this section we describe the main geometrical tool that will be used to prove
Theorem 1.1. In the paper [17], Mukhin, Tarasov, and Varchenko describe a relation-
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ship between Bethe algebras and Schubert calculus. Speyer [23] constructs a flat
family of Schubert intersections over SM0;k.C/, which in Section 4 will be related
to the spectrum of the Bethe algebras. We define an action of the symmetric group
on the family and Speyer’s explicit combinatorial description of the real points to
calculate the equivariant monodromy action.

3.1. Osculating flags. In this section we recall some definitions and facts from
Schubert calculus. All the Grassmannians we consider will be defined relative to
some genus 0 smooth curve C . To set this up, choose a very ample line bundle L

on C of degree d � 1. We have the Veronese embedding

"WC �! PH 0.C;L/�:

A point p is sent by " to the hyperplane of sections vanishing at p. Let

Gr.r; d/C
def
D Gr.r;H 0.C;L//:

We can also define the r th associated curve "r WC �! Gr.r; d/C which sends a
point p to the space of sections vanishing to order at least d � r at p. That is

"r.p/
def
D H 0.C; Id�rp ˝L/ � H 0.C;L/;

Here Ip is the ideal sheaf of the point p. With this notation " D "d�1.

Definition 3.1. The flag F�.p/ defined by Fi .p/ D "i .p/ is called the osculating
flag at p.

Example 3.2. We can make this concrete by considering the case C D P1 D PC2.
Fix the standard homogeneous coordinates Œx W y� on P1. Choose the line bundle
OP1.d �1/. ThenH 0.P1;O.d �1// D CŒx; y�d�1, the homogeneous polynomials
of degree d � 1. If we work in the affine patch where y ¤ 0 then we identify
identify this with Cd Œu�, the space of polynomials of degree strictly less than d
(u is the coordinate on this patch). The Grassmannian Gr.r; d/P1 is then the set of
r-dimensional subspaces of Cd Œu�. The map "r sends the point Œb W 1� 2 P1 to the
subspace .u � b/d�rCr Œu� and the osculating flag F�.b/ is

.x � b/d�1C1Œx� � .x � b/
d�2C2Œx� � � � � � .x � b/C.d�1/Œx� � Cd Œx�:

The flag F�.1/ is

C0Œx� � C1Œx� � � � � � C.d�1/Œx� � Cd Œx�:

Remark 3.3. When we are in the situation of Example 3.2 we will drop the sub-
script P1. and write Gr.r; d/ instead of Gr.r; d/P1 .
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Suppose we have pairs .C;L/ and .D;K/ of curves and very ample line bundles
as well as an isomorphism �WC �! D such that ��L Š K . We would like some
relation between the Grassmannian and osculating flags on each curve. It is important
to note it is not possible to choose a canonical isomorphism between ��L and K ,
however we have the following fact.
Lemma 3.4. Let E be an invertible OX -module for a projective C-scheme X . Then
End.E/ Š C.

Proof. Note that End.OX / Š C. The lemma follows from the fact OX Š E ˝ E�

and the hom-tensor adjunction formula:

C Š Hom.OX ;OX / ŠHom.E ˝ E�;OX /

ŠHom.E;Hom.E�;OX //
ŠHom.E;E/:

This means the isomorphism ��L Š K is unique up to scalar multiple. By
notingH 0.C;�/ D H 0.D; ���/, we have a canonical induced isomorphism

�1WPH
0.C;L/ �! PH 0.D;K/;

as well as canonical isomorphisms

�r WGr.r; d/C �! Gr.r; d/D
for any r .
Lemma 3.5. The isomorphism �r preserves the associated curves, more precisely,
�r ı "r D "r ı �. In particular Fi .�.p// D �r.Fi .p//.

Proof. Choose an isomorphism  W��L �! K . We thus obtain an isomorphism
H 0.C;L/ �! H 0.D;K/which we also denote by . Letp 2 C and let q D �.p/.
We need to show that the image ofH 0.C; Id�rp ˝L/ under isH 0.D; Id�rq ˝K/.
This follows since  is a module homomorphism and thus sends ��.Id�rp ˝ L/,
considered as a submodule of ��.L/, to Id�rq ˝K .

3.2. Schubert intersections. For a partition �, with at most r rows and d � r
columns and a point p 2 C we will denote the Schubert variety corresponding to the
osculating flag F�.p/ by �.�Ip/C . Let �c be the partition complementary to � for
Gr.r; d/C . That is, �c is obtained from ƒr;dn� by rotating 180 degrees.
Lemma 3.6. Let .C;L/; .D;K/ and �r be as in Section 3.1. The image of�.�Ip/C
under �r is �.�I�.p//D .

Proof. Choose an isomorphism  W��L �!K . If F is a flag inH 0.C;L/ then for
any subspace V � H 0.C;L/

dimV \ Fi D dim .V / \  .Fi /:

Thus  r.�.�;F /C / D �.�; .F //. By Lemma 3.5  .F .p// D F .�.p//.
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3.3. Speyer’s compactification. In this section, we fix the following data
� positive integers d; r and k such that d � r , and

� a sequence of partitions �� D .�1; �2; : : : ; �k/ such that each �i has at most r
rows and d � r columns and and k � r.d � r/.

Often we will reduce to the case when �� D .�k/, i.e. �i D � for all i 2 Œk�. We
will refer to this as the fundamental case. We are interested in Schubert intersections
relative to the conditions ��. For z D .z1; z2; : : : ; zn/ 2 .P1/k distinct define

�.��I z/
def
D �.�1I z1/ \�.�2I z2/ \ � � � \�.�kI zk/:

After accounting for an action of PGL2 we consider the family �W�.��/ �! M0;k

whose fibre over the curve with marked points z is �.��I z/. We recall the
construction of Speyer’s flat families G .r; d/; and S.��/ from [23] which extend
the families Gr.r; d/ �M0;k and �.��/.

3.3.1. The construction. If A is a three element subset of Œk�, fix a curve CA
isomorphic to P1 with three points marked by the elements of A. Since A consists
of exactly three elements, the choice of CA is unique up to projective equivalence.
We write Gr.r; d/A for Gr.r; d/CA . For a curve C 2 M0;k with marked points
.z1; : : : ; zk/ let �A.C /WP1 �! CA be the unique isomorphism that for each a 2 A
sends za 2 P1 to the point on CA marked by a. In this way we obtain a morphism

�AWM0;k � P1 �!M0;k � CA:

Applying the Grassmannian construction to the family of curves we obtain a
morphism

�AWM0;k � Gr.r; d/P1 �!M0;k � Gr.r; d/A:

Using these morphisms we construct an embedding

M0;k � Gr.r; d/ SM0;k �
Q
AGr.r; d/A

.C;X/ .C; �A.C;X//:

IdentifyM0;k � Gr.r; d/ with its image in SM0;k �
Q
AGr.r; d/A.

Definition 3.7 ([23]). The family G .r; d/ is the closure of M0;k � Gr.r; d/ in
SM0;k �

Q
AGr.r; d/A. Also define the subvariety S.��/ as

G .r; d/ \
\
a2A

�.�a; a/A:



274 N. White

Theorem 3.8 ([23, Theorem 1.1]). The family G .r; d/ and its subfamily S.��/ have
the following properties:
(i) G .r; d/ and S.��/ are Cohen-Macaulay and flat over SM0;k .
(ii) G .r; d/ is isomorphic to Gr.r; d/ �M0;k overM0;k .
(iii) S.��/ is isomorphic to �.��/ overM0;k .
(iv) If a representative of C 2 M0;k has marked points z1; z2; : : : zk 2 P1 then the

fibre of S.��/ over C is isomorphic to
T
�.�i ; zi /.

Theorem 3.9 ([23, Theorem 1.4]). If j��j D
P
j�i j D r.d � r/, the fibre of S.��/

over C 2 SM0;k.R/ is a reduced union of real points.

3.3.2. The fibre. We will also want an explicit description of the fibres of S.��/ so
let us recall this from [23]. Fix C 2 SM0;k , a not necessarily irreducible curve and
denote its irreducible components C1; C2; : : : Cl . Fix an irreducible component Ci
and let A � Œk� be a three element subset. If x1; : : : ; xe are the nodes lying on Ci
we say that v.A/ D Ci if the points marked by A lie on three separate connected
components of Cnfx1; : : : ; xeg.

Define the projection of a 2 Œn� onto Ci : if a marks a point on Ci then the
projection is this point, otherwise there is a unique node x 2 Ci via which a is path
connected to Ci , let x be the projection. If v.A/ D Ci then the projection of A
onto Ci produces three distinct points on Ci .

If v.A/ D Ci define the isomorphism �i;AWCi �! CA given sending the
projection onto Ci of a 2 A to the point marked by a in CA. This morphism
is uniquely determined since v.A/ D Ci . By considering the corresponding
isomorphisms Gr.r; d/Ci �! Gr.r; d/A we obtain an embedding

Gr.r; d/Ci
Q
v.A/DCi

Gr.r; d/A:

Wewill identify Gr.r; d/Ci with its image. Speyer shows the projection from G .r; d/

into
Q
v.A/DCi

Gr.r; d/A lands inside Gr.r; d/Ci . In this way we can think of the
fibre G .r; d/.C / as a subvariety of

Q
i Gr.r; d/Ci .

Definition 3.10. A node labelling for C is a function � which assigns to every pair
.Ci ; x/, of an irreducible component and node x 2 Cj , a partition �.Cj ; x/ such that
if x 2 Ci \ Cj then �.Ci ; x/c D �.Cj ; x/. Denote the set of node labellings by NC
Theorem 3.11 ([23, Section 3, proof of Theorem 1.2]). Let C 2 SM0;k be a stable
curve with irreducible components C1; C2; : : : ; Cl . LetDi be the set of nodes on Ci
and Pi the set of marked points. The fibres of G .r; d/ and S.��/ over C are

G .r; d/.C / D
[
�2NC

Y
i

\
x2Di

�.�.Ci ; x/; x/Ci ; (3.1)

S.��/.C / D
[
�2NC

Y
i

� \
x2Di

�.�.Ci ; x/; x/Ci \
\
p2Pi

�.�p; p/Ci

�
: (3.2)
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3.4. Speyer’s labelling of the fibre. Restrict to the case when j��j D r.d � r/.
By Theorem 3.9 the family S.��/.R/ �! SM0;k.R/ is a topological covering of
degree cƒ

��
. Recall from Section 2.3 that SM0;k.R/ is tiled by associahedra. This

tiling is indexed by circular orderings of the set Œk�. We can lift the cellular structure
to a tiling by associahedra of S.��/.R/ and the aim of this section will be to explain
Speyer’s combinatorial description of this CW-complex structure.

For now, we will just consider the fundamental case S.�k/. Choose a circular
ordering, s D .s.1/; s.2/; : : : ; s.k//, and let ‚ be an associahedron of S.�k/.R/
lying above the associahedron corresponding to s in SM0;k.R/. The associahedron
has facets labelled by non-adjacent pairs .i; j / where i < j . The facet ‚ij
of ‚ lies over stable curves that generically have two components, one containing
(in order) the labels s.i/; s.i C 1/; : : : ; s.j � 1/ and the other containing the labels
s.j /; s.j C 1/; : : : ; s.i � 1/. Such a stable curve is depicted in Figure 2.

: : :s.i C 1/

s.i/
s.j � 1/

s.j /s.i � 1/

s.j C 1/: : :

ij

 c
ij

Figure 2. A stable curve in ‚ij .

Fix a generic point C in ‚ij . Theorem 3.11 tells us that the map � assigns
a partition to either side of the node of the stable curve at C . Let ij be the
partition assigned to the side of the node away from the component labelled
s.i/; s.i C 1/; : : : ; s.j � 1/. Again see Figure 2 for a depiction of this situation.
In fact, ij does not depend on x (see [23, Lemma 7.1]).

3.4.1. Cylindrical growth diagrams. Let I D f.i; j / 2 Z2 j 0 � j � i � kg.

Definition 3.12. A growth diagram on I is a cylindrical growth diagram for .r; d/ if
it satisfies the condition that i.iCk/ D ƒr;d .

The reason for the adjective cylindrical is that these growth diagrams are periodic
along the north-west diagonal. An example of (part of) a cylindrical growth diagram
for r D 2 and d D 5 is given in Figure 3. As one can see from the diagram, the
bottom row is repeated at the top.
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;

;

;

;

;

;

;

Figure 3. An example of a growth diagram for r D 2 and d D 5. We can take the bottom left
corner as .1; 1/.

Remark 3.13. A path though  , as defined in Section 2.4 from a node .i; i/ to a node
.j; j C k/ (i.e. nodes lying on the left and right edges of the diagram) completely
defines all of the partitions lying in the rectangular region the path spans. In the
case of cylindrical diagrams the extra condition that i.iCk/ is the rectangular shape
means such a path completely determines the entire cylindrical growth diagram.
Proposition 3.14 ([23, Lemma 6.4 and Theorem 6.5]). For an associahedron
‚ � S.�k/.R/ the map  is a cylindrical growth diagram. The associahedra which
tile S.�k/.R/ are labelled by pairs .s; / of a circular ordering s and a cylindrical
growth diagram  .

Note the cylindrical growth diagram depends on the particular representative of
the circular ordering s 2 Sk=Dk that we choose. If we choose another representative
the cylindrical growth diagram shifted or we take the mirror image (this comes from
the action ofDk).

3.4.2. Wall crossing in the fundamental case. We now recall a description of
how these associahedra are joined together. Fix an associahedron ‚ in S.�k/.R/
labelled by .s; /. Let .ys; y/ be the labelling of the associahedra y‚ joined to ‚ by
the facet ‚pq . Using the description of SM0;k.R/ the circular ordering ys is obtained
from s by reversing the order of s.p/; s.p C 1/; : : : ; s.q � 1/.
Proposition 3.15 ([23, Proposition 6.7]). The cylindrical growth diagram y is given
by

yij D

(
ij ; if Œi; j � \ Œp; q� D ; or Œp; q� � Œi; j �;
.pCq�j /.pCq�i/; if Œi; j � � Œp; q�:

(3.3)
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Proof. We will not repeat the proof here except to say that since the partitions ij are
constant along the relevant divisor of SM0;k.R/, the partitions do not change, only the
indexation relative to the circular ordering changes. Considering how the indexation
changes allows one to write the conditions in (3.3).

Note y can be determined recursively by the information given in (3.3). The
pairs .i; j / which appear in (3.3) are those for which ‚ij intersects ‚pq . The rule
means when we cross a wall we flip certain triangles and leave others fixed. This is
depicted in Figure 4. The red triangle is flipped about the axis shown, green triangles
are fixed, and other areas are computed recursively (or using the cyclicity properties
of the diagram).

pqqq

pp

11

.kC 1/.kC 1/

Figure 4. Crossing walls and flipping triangles.

3.4.3. Another realisation of S.��/. Before we are able to describe the CW-
structure for more general ��, we realise S.��/ as a subvariety of S.�zk/, in fact,
the real points will be a CW-subcomplex. Here, zk D j��j. We should think of
obtaining the family S.��/ inside S.�zk/ by colliding the first j�1j marked points in
such a way to obtain �1, the next j�2j to obtain �2, and so on.

For our purposes here, wewill take SM0;2 to be a single point. With this convention,
we have an embedding SM0;k �

Qk
iD1
SM0;j�i jC1 into SM

0;zk
by sending the tuple

.C; C .1/; C .2/; : : : ; C .k// to the stable curve obtained by the following process:
� If j�i j � 2, glue the last marked point of Ci and the i th marked point of C .
� The l th marked point of Ci is renumbered l C

Pi�1
jD1

ˇ̌
�j
ˇ̌
, for 1 � l � j�i j.

� If j�i j D 1 then the i th marked point of C is renumbered
Pi
jD1

ˇ̌
�j
ˇ̌
.
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This is an example of a clutching map as described in [15, Section 3] where it is also
shown that this is in fact a closed embedding. Figure 5 shows generically what such
a stable curve looks like.

1

3
2

5

3

4 4

3

22

1

142

3

16
4

5
3

7

18

2

9

3 112

10

1

C

C1

C2

C3

C4

Figure 5. A generic point in SM0;4 �
Qk
iD1
SM0;j�i jC1 when j�2j D 4, j�3j D 3, and

j�1j D j�4j D 2. The original label of each marked point is shown in grey on the inside of each
curve.

Restrict the family S.�zk/ to SM0;k �
Qk
iD1
SM0;j�i jC1 and let Y be the connected

components where the k central nodes are labelled by �1; �2; : : : ; �k . As families
over SM0;k �

Qk
iD1
SM0;j�i jC1, Y is isomorphic to S.��/ �

Qk
iD1 S.�j�i j; �c

i /.

3.4.4. Dual equivalence cylindrical growth diagrams. We now describe the dual
equivalence version of cylindrical growth diagrams. Let�� be a sequence of partitions
such that j��j D r.d �r/. It will be convenient here to always take our indices, when
referring to this sequence, modulo k. That is, by �l we will always mean �.l mod k/.

Definition 3.16. A dual equivalence cylindrical growth diagram (or decgd for short)
of shape �� is a dual equivalence growth diagram  on Ik with i.iCk/ D ƒ, and
such that i.iC1/ D �i . We denote the set of decgd’s of shape �� by decgd.��/.

As an example we can take r D 5 and d D 2 again. If we choose

�� D
�

; ;
�

then Figure 6 gives an example of a decgd of shape ��. Since shapes with only a
single box, as well as shapes of normal or antinormal shape (see Theorem 2.9 (i))
only have a single dual equivalence class we do not indicate the dual equivalence
class for edges that correspond to such a shape.
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;

;

;

;

1 2
3

2
1

1
2 3

Figure 6. An example of a dual equivalence cylindrical growth diagram for r D 5 and d D 2.

3.4.5. Reduction of cylindrical growth diagrams. The reason for the strange
choice of layout in Figure 6 is the following. If we superimpose the diagram on top
of Figure 3 we can see that it was simply obtained by forgetting certain nodes in
Figure 3 but remembering the dual equivalence classes defined by the paths between
nodes that we kept. In fact it is the reduction modulo m of the cylindrical growth
diagram from Figure 3.

Lemma 3.17. Let zk D r.d � r/. The set Izk is adapted to m.i/ D j�i j and

f.i; j / 2 Z2C j xm.i; j / 2 Izk g D Ik :

The reduction modulo m of a cylindrical growth diagram on Izk for .d; r/ is a decgd
on Ik for .d; r/ of shape  xm.1;2/;  xm.2;3/; : : : ;  xm.k;kC1/.

Proof. The only way for all four corners of a rectangular subset ofZ2C to be contained
in Izk is if all its vertices are in Izk . Hence Izk is adapted to m.

Suppose that .i; j / 2 Ik , thus j � i � k. We would like to show xm.i; j / 2 Izk ,
that is we would like to show ym.j / � ym.i/ D ms.i; j / � zk. But

ms.i; j / D

j�1X
lDi

m.l/ D

j�1X
lDi

ˇ̌
�.l mod k/

ˇ̌
;

and since j � i � k each �l occurs at most once in the above sum. By the assumption
that j��j D zk we havems.i; j / � zk as required. Now consider .i; j / 2 Z2C such that
ms.i; j / � zk. If j � i > k then by the pigeonhole principle each �l must occur at
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least once, and some �l must occur twice in the sum

ms.i; j / D

j�1X
lDi

ˇ̌
�.l mod k/

ˇ̌
;

contradicting the fact that ms.i; j / � zk. This proves the second claim.
The only thing left to check to ensure that the reduction modulom of a cylindrical

growth diagram on Izk is a decgd on Ik is that for any i , xm.i; i C k/ D .j; j C zk/ for
some j . Equivalently we check that ms.i; i C k/ D zk. This is straightforward since
the sum

ms.i; i C k/ D

iCk�1X
lDi

ˇ̌
�.l mod k/

ˇ̌
contains one of each �l appearing in �� and by assumption j��j D zk.

Proposition 3.18 ([23, Proposition 8.1]). Every decgd on Ik is the restriction of a
cylindrical growth diagram on Izk . The number of decgd’s of shape �� is c

ƒ
��
.

3.4.6. The CW-structure and wall crossing for general ��.

Theorem 3.19 ([23, Theorem 8.2]). Themaximal faces of the CW-structure onS.��/

are labelled by pairs .s; / of a circular ordering s and a decgd  of shape
.�s.1/; �s.2/; : : : ; �s.k//.

We leave it to the reader to consult [23] for a rigorous proof of this fact however
we will comment on how the results of Section 3.4.3 allow us to make this statement
and produce the dual equivalence classes. We use the notation of Section 3.4.3.
Let ‚ be a .k � 3/-associahedron in S.��/. We consider the embedding

‚ �
Qk
iD1 S.�j�i j; �Ci /.R/ S.�zk/.R/:

Since this is an embedding of CW-complexes ‚ �
Qk
iD1 S.�j�i j; �Ci /.R/ must be

contained in some .zk � 3/-associahedron z‚ of S.�zk/.R/. Let .zs; z/ be the circular
order (of zk) and cylindrical growth diagram labelling z‚ as per Proposition 3.14.
Let � be the unique order preserving bijection

fzs.ki1/ j 1 � i � kg �! f1; 2; : : : ; kg; where ki1 D 1C
i�1X
jD1

ˇ̌
�j
ˇ̌
;

then s.i/ D � ı zs.ki1/. Let m.i/ D
ˇ̌
�s.i/

ˇ̌
, then  is the reduction of z modulo m.
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Proposition 3.20. Suppose we have two neighbouring associahedra of S.��/

labelled by the pairs .s; / and .ys; y/ where ys is obtained from s by reversing
s.p/; s.p C 1/; : : : ; s.q � 1/. The dual equivalence cylindrical growth diagram y is
given by

yij D

(
ij ; if Œi; j � \ Œp; q� D ; or Œp; q� � Œi; j �;
.pCq�j /.pCq�i/; if Œi; j � � Œp; q�;

(3.4)

with the dual equivalence classes ˛ij and ˇij being similarly flipped inside the
triangle south-west of the node .p; q/. We have the same picture of flipping triangles
as in Figure 4.

3.5. The Sk-action. Given a permutation � 2 Sk and a subset A � Œk� we use the
notation

�A
def
D f�.a/ j a 2 Ag:

In this way � defines a permutation of the set of three element sets A � Œk�. The
permutation � also induces an isomorphism CA ! C�A (sending marked points to
marked points) and hence an isomorphism Gr.d; r/A ! Gr.d; r/�A. In order to
keep our notation tidy we will use � to denote all of these isomorphisms, the context
should make it clear which we a referring to. Since the constructions were functorial,
diagrams of the type

Gr.r; d/A Gr.r; d/�A

Gr.r; d/P1

�

�A ��A

(3.5)

commute. Let Sk act on SM0;k by permuting marked points. The above discussion
means we have an action of Sk on the trivial family

SM0;k �

Y
A2.Œk �3 /

Gr.d; r/A:

Proposition 3.21. The variety G .d; r/ is stable under the action of Sk and the variety
S.��/ is sent isomorphically onto S.� � ��/. In particular the stabiliser of �� in Sk
acts on S.��/.

Proof. Recall G .r; d/ is defined as the closure of the image of the embedding

M0;k � Gr.r; d/ SM0;k �
Q
AGr.r; d/A

.C;X/ .C; �A.C;X//:
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By the commutativity of (3.5), the Sk-action preserves the image of Gr.r; d/P1 . Thus
the action of Sk also preserves the closure.

Let A � Œn� be a three element set. By Lemma 3.6, for any a 2 A the
isomorphism � sends�.�a; a/A to the Schubert variety�.�a; �.a//�A. This means

�S.��/ D �

�
G .r; d/ \

\
a2A

�.�a; a/A

�
D G .r; d/ \

\
a2A

�.�a; �.t//�A

D G .r; d/ \
\
a2A

�.���1.a/; a/A:

3.6. Acting on the � labelling. Wewill also need some finer information on exactly
what the orbits in S.��/ look like. This will be helpful when it comes to determining
what the Sk-action does to the cylindrical growth diagram indexing a face of S.R/.

Consider the fibre G .r; d/.C / for some stable curve C 2 SM0;k . Using the
description of the fibre from Theorem 3.11, we have

G .r; d/.C / D
[
�2NC

Y
i

\
d2Di

�.�.Ci ; d /; d/Ci ;

where NC is the set of node labellings for C , Ci the irreducible components of C
and Di the set of nodes on the component Ci . The action of Sk on SM0;k permutes
marked points, thus C and its image �C are the same curve simply with different
marked points. That is, there is an isomorphism C ! �C which we can take to
be the identity morphism, which sends the point marked by a to the point marked
by �.a/. In this way we identify the irreducible components Ci and �Ci and if d is a
node in Ci , we also have a node d 2 �Ci . Using this identification, a node labelling
� 2 N naturally determines a node labelling in N�C , which we also denote by �.
Lemma 3.22. The Sk action on G .d; r/ “preserves the �-component of the fibre”.
More precisely, if we fix a � 2 NC the image ofY

i

\
d2Di

�.�.Ci ; d /; d/Ci

under the action of � is Y
i

\
d2�Di

�.�.�Ci ; d /; d/�Ci :

Proof. By the commutativity of (3.5), the GrassmannianGr.r; d/Ci is sent isomorph-
ically onto Gr.r; d/�Ci . Lemma 3.6 then tells us that �.�.Ci ; d /; d/Ci is mapped
onto �.�.�Ci ; d /; d/�Ci .
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3.7. The Sk-action on S.��/.R/. We can now describe how the Sk-action effects
the labelling of the fibre by cylindrical growth diagrams.
Proposition 3.23. If ‚ is an associahedron in S.��/.R/ labelled by .s; / then �‚
is the associahedron labelled by .� � s; /.

Proof. Let y‚ D �‚. We first restrict to the fundamental case when �� D .�/k . It
is clear by the action of Sk on SM0;k.R/ that � � s is the circular ordering labelling
the associahedron y‚. Recall the cylindrical growth diagram y of y‚ is determined by
considering the �-labelling of a point on each of its facets. As shown in Lemma 3.22
this �-labelling is preserved, so y D  .

Now consider the general case for arbitrary ��. We use the notation from
Section 3.4.3. Choose a permutation z� 2 Szk such that

‚ �

kY
iD1

S
�
�j�i j; �Ci

�
.R/ � z‚

is sent to

� �‚ �

kY
iD1

S
�
�j�i j; �Ci

�
.R/ � z� � z‚:

Here z‚ is a choice of associahedron in S.�zk/.R/. If z is the cylindrical growth
diagram labelling z‚, then the above shows z is also the cylindrical growth diagram
labelling z� �  . But the decgd labelling � � ‚ is by definition the reduction of this
cylindrical growth diagram, which by assumption is  .

3.7.1. The equivariantmonodromy. Letk D nC1, fix a basepointC 2M0;nC1.R/
and consider the sequence of partitions .��; �c/ where �� D .�1; �2; : : : ; �n/ and
j�j D j��j (this condition implies j��j C j�j D r.d � r/). Let S��n � Sn be the
subgroup fixing ��. Proposition 3.21 says we have an action of Sn on the disjoint
union G

�

S.� � ��; �
c/.R/;

where � ranges over a set of representatives for the cosets Sn=S��n . The cactus
group Jn acts on this family by equivariant monodromy.

Using Theorem 3.19, identify the fibre over C with
F
� decgd.� � ��; �

c/. We
could potentially do this in a number of ways but fix one by choosing, for the
associahedron containing C , a representation s D .s.1/; s.2/; : : : ; s.nC 1// of the
corresponding circular ordering. Let  be the decgd labelling an associahedron lying
overC and let y be the decgd labelling the associahedron obtained from  by crossing
the wall corresponding to flipping the marked points s.p/; s.p C 1/; : : : ; s.q/.
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Corollary 3.24. The equivariant monodromy action of Jn on
F
� decgd.� � ��; �

c/

is given by spq �  D y .

Proof. Recall fromSection 2.3.2, spq acts bymonodromy around the equivariant loop
.˛; yspq/where ˛ is a path fromC to yspq �C passing through the wall which swaps the
marked points s.p/; s.pC1/; : : : ; s.q/. We lift ˛ to z̨, the unique path in the covering
space

F
� S.� ���; �

c/.R/ starting at the point overC labelled  . By Proposition 3.20
the point over ys1q �C at the end of z̨ is labelled y . Now Proposition 3.23 says acting
by ys1q does not change the decgd. Hence s1q �  D y .

3.7.2. The fundamental case for �. We now restrict to the case when �� D .�n/
which we call the fundamental case for �. In this case S��n D Sn so the fibre over C
is identified with decgd.�n; �c/. For n D 5 a decgd of shape .�n; �c/ will have
the form shown in Figure 7. Note the partition in position .1; 6/ is � (the bottom left
corner is in position .1; 1/). This is demonstrated by the following lemma.
Lemma 3.25. If  2 decgd.�n; �c/ then 1.nC1/ D �.

Proof. By definition n.nC1/ D �c. Consider the rectangular subdiagram with
corners .n C 1; n C 1/; .n C 1; n C 2/; .1; n C 1/, and .1; n C 2/. Extend this
rectangular region to a growth diagram and let 1.nC1/ D �,

;

�c

�

ƒ

S T

Choose tableaux S and T lifting the dual equivalence classes as shown. Since
our rectangle is a growth diagram, S must be the rectification of T . However the
rectification of a tableaux of shape ƒn� has shape �c. One way to see this is
to note cƒ��c is the number of T 2 SYT.ƒn�/ slide equivalent to S , since we have
produced such aT , cƒ��c > 0. But cƒ��c D ı�� (see [9, Section 9.4]) hence � D �.

We can use Lemma 3.25 to give a bijection between decgd.�n; �c/ and SYT.�/
by choosing a path though I. The standard Young tableaux associated to a decgd 
is described by the growth diagram along the path. Fix the unique path from .1; 1/

to .1; nC 2/ and denote it ˛. Use ˛ to identify decgd.�n; �c/ with SYT.�/.
There is an action of the cactus group Jn on SYT.�/ by partial Schützenberger

involutions. This action was studied by Berenstein and Kirillov [3]. The partial
Schützenberger involution of order q on T 2 SYT.�/ is defined by applying the
Schützenberger involution to the subtableau T jq and leaving the remaining entries
(i.e. those in T jqC1;n) unchanged.
Proposition 3.26. The identification of SYT.�/ and decgd.�n; �c/ above identifies
the action of Jn on both sides. More precisely if T is obtained using the path ˛ from
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; � � � �

; � � � �

; �j2 � � �

; � �j3 � �

; � � �j4 �

; � � � �

; �c � � � �

Figure 7. A decgd of shape .�5; �c/.

the decgd  then the standard tableaux s �T is obtained by taking the path ˛ through
the decgd s �  , for all s 2 Jn.

Proof. We only need to show this for s D s1q by Lemma 2.3. Let  be the decgd
with T along the path ˛. Denote the shape of T jq by�jq , so 1.qC1/ D �jq . Consider
the triangle in  depicted in Figure 8. Proposition 3.20 says that s1q �  will contain
the same triangle, flipped about the axis shown. In particular the tableau obtained
along the path ˛ in s1q �  is the same as the tableau obtained along the path ˇ from
.q C 1; q C 1/ to .1; q C 1/ and then to .1; nC 2/ in  . By Corollary 2.5 this is the
partial Schützenberger involution s1q � T .

� �

� �

�jq

�

s1q

ˇ

Figure 8. The action of s1q .
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Corollary 3.27. Identify the fibre in S.�n; �c/.R/ over C with SYT.�/ as describe
above. The equivariant monodromy action of Jn is given by partial Schützenberger
involutions.

4. Bethe algebras

In this section we define the Bethe algebras and recall the relationship between Bethe
algebras and Schubert intersections. We review the notion of Galois theory for a
finite morphism of varieties. We then use the results of Section 3 prove Theorem 1.1.

4.1. Definition of Bethe algebras. Let glr Œt � WD glr ˝CŒt � be the current algebra
of polynomials with coefficients in glr . For a formal variable u and an element
x 2 glr define the generating function

x.u/
def
D

1X
sD0

.x ˝ t s/u�s�1:

This is a useful accounting device. For example, it allows us to define, for any
a 2 C, an automorphism �a of glr Œt � by the assignment, x.u/ 7! x.u�a/, for every
element x 2 glr . This means we map xt s to x.aC t /s , the coefficient of u�s�1 in the
expansion of x.u� a/ about infinity. For a glr Œt �-moduleM and a complex number
a 2 C, we define the evaluation moduleM.a/ as the pullback over the map �a.

In a similar fashion we define the evaluation morphism evW glr Œt � �! glr by the
assignment x.u/ 7! xu�1, meaning we send t to zero and x to itself. Then any
glr -module can be made into a glr Œt �-module by pullback. Given a glr -module N ,
as a glr Œt �-module, t acts by zero. Hence on N.a/, xt s acts by asx.

If @ is differentiation with respect to u then we can define the following
noncommutative determinant by expansion along the first column,

D WD det

˙
@ � e11.u/ �e21.u/ � � � �er1.u/

�e12.u/ @ � e22.u/ � � � �er2.u/
:::

:::
: : :

:::

�e1r.u/ �e2r.u/ � � � @ � err.u/

�

where eij are the standard generators for glr . The determinant D has the form

D D @r C

rX
iD1

Bi .u/@
r�i ;

for some power series with coefficients Bis 2 glr Œt �,

Bi .u/ D

1X
sDi

Bisu
�s:
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Definition 4.1. The universal Bethe algebra is the subalgebra A, of U.glr Œt �/
generated by the coefficients Bis . For an A-module M , we call the image of A
in End.M/ the Bethe algebra associated toM .

By [16, Propositions 8.2 and 8.3] the universal Bethe algebra is a commutative
subalgebra ofU.glr Œt �/ and commutes with the action of glr � glr Œt �. As a result, for
any glr Œt �-module M , and any weight �, the subspaces M�, M sing and M sing

�
� M

are A-submodules. Let �� be a sequence of partitions with at most r rows. As a
special case of Definition 4.1, for z D .z1; z2; : : : ; zn/ 2 Xn we denote the Bethe
algebra associated to

L.��I z/� D
�
L.�1/.z1/˝ L.�2/.z2/˝ � � � ˝ L.�n/.zn/

�sing
�

by A.��I z/�.
Lemma 4.2. The Bethe algebras A.��I z/� are invariant under the action of the
group Aff1: if ˛ 2 C�; ˇ 2 C, then A.��I˛z C ˇ/� D A.��I z/� as subalgebras
of End.L.��/sing

� /.

Proof. This is proved for example in [22, Proposition 1].

By Lemma 4.2 the Bethe algebras form a family of algebras over M0;nC1.C/.
Denote the spectrum of this family by � WA.��/� �!M0;nC1.C/ and the fibre over
a point z by A.��I z/�.
Theorem 4.3 ([17, Corollary 6.3]). Suppose z1; z2; : : : ; zn are distinct real numbers
and � is a partition of n (with at most r rows). The Bethe algebra A.��I z/� has
simple spectrum. In particular A.��I z/� has dimension c�

��
and over M0;nC1.R/,

� is a covering of degree c�
��
.

4.2. The MTV isomorphism. In this section we recall the definition of the MTV
isomorphism. Choose d � r such that r.d � r/ � j��j. Mukhin, Tarasov and
Varchenko [17] define the MTV-isomorphism � WA.��/� �! �.��; �

c/ in the
following way. Let � 2 A.��I z/�, be an element of the fibre over z. We consider �
as a map �WA.��I z/� �! C. Let bis D �.Bis/ be the image of the generators.
Define

bi .u/ D

1X
sDi

bisu
�s:

Consider the differential operator

D�
D @r C

rX
iD1

bi .u/@
r�i ;

which is just the differential operator D evaluated on the eigenspace of L.��/sing
�

corresponding to �. Define �.�/ to be the kernel of D� acting on Cd Œu�.
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Theorem 4.4. The subspace �.�/ � Cd Œu� has dimension r and is contained in
the Schubert intersection �.��; �cI z;1/. Moreover it defines an isomorphism of
families overM0;nC1.C/ of the varieties A.��/� and �.��; �c/.

Proof. The proof amounts to piecing together information in [17]. First construct an
auxiliary Bethe algebra. Let Vn D V ˝n ˝ CŒx1; : : : ; xn�. This is a Sn-module, by
simultaneous permutation of the variables xi and the tensor factors V ˝n, and glr Œt �
acts diagonally on V ˝n by evaluation at xi in the corresponding tensor factor. The
two actions commute and thus glr Œt � acts on the space of invariants VSn

n . We
denote the Bethe algebra associated to ŒVSn

n �
sing
� by A� and its spectrum by A�.

By [17, Corollary 2.4 and Lemma 2.13], L.��I z/� is a subquotient of ŒVSzn
zn
�
sing
�

where zn D j��j. Thus we can identify A.��I z/� as a subscheme of A�.
In [17, Theorem 5.3] it is shown there exists an isomorphism z� WA��!�ı.�cI1/

such that the restriction of z� to the subscheme A.��I z/� is � and is an isomorphism
of schemes. We can extend z� to an isomorphism of trivial families overM0;nC1.C/,
which restricts to isomorphisms A.��I z/� �! �.�c; ��I z;1/ at closed points.
Since both families A.��/� and �.��; �c/ are finite and flat over M0;nC1.C/, the
fact that z� restricts to an isomorphism over closed points, implies that it restricts to
an isomorphism globally A.��/� �! �.��; �

c/.

4.3. Crystals. We recall briefly how crystals of the irreducible glr -modules are real-
ised using semistandard tableaux. For a complete description see [13]. The crystal
B D B.�/ of the vector representation is

1 2 � � � r :
1 2 r�1

Using the tensor rule we have a description of the crystal B˝n as the set
words.n/ of words of length n in the letters 1; 2; : : : ; r . Identify the element
i1 ˝ i2 ˝ � � � ˝ in 2 B˝n with the word i1i2 � � � in. The irreducibleL.�/ embeds
into the tensor power of vector representations V ˝n where n D j�j. We can
thus realise the crystal B.�/ as an appropriate connected component of B˝n. The
RSK-correspondence gives a bijection between words of length n and pairs of
tableaux:

RSKW words.n/ �!
G
j�jDn

SSYT.�/ � SYT.�/:

See [9] for a definition. We use P and Q to denote composition of RSKwith projection
onto the first and second factors (the P and Q-symbols of the word). By a theorem
of Ariki and Kazhdan–Lusztig (see [2, Theorem A]) u; v 2 B˝n lie in the same
irreducible crystal (on the same connected component) if and only if Q.u/ D Q.v/.
For a standard �-tableau T . We can use RSK�1.T; �/ to embed SSYT.�/ into B˝n, this
is a connected component of the crystal isomorphic to B.�/. This does not depend
on T and identifies the vertices of B.�/ with semistandard tableaux.
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4.3.1. Coboundary structure. The category of (finite dimensional) glr -modules is
a braided monoidal category. In [12], Henriques–Kamnitzer show this structure does
not descend to the category of crystals and in fact the category of crystals cannot be
given a braiding. Instead, Henriques–Kamnitzer show that the category of crystals
satisfies the axioms of a coboundary category.

A coboundarymonoidal category is amonoidal categorywith a commutor, natural
isomorphisms �XY WX ˝ Y �! Y ˝ X , satisfying a certain coherence condition
(similar to the hexagon condition for braided monoidal categories). The important
fact for us is that the cactus group, Jn, acts on n-fold tensor products in a coboundary
category. For objects B1; B2; : : : ; Bn, for 1 � p < q � n set

�pq D id˝.p�1/˝�Bp˝���˝Bq�1;Bq ˝ id˝.n�q/ :

The generators spq 2 Jn of the cactus group act in the following way. First set
sp.pC1/ D �p.pC1/ and inductively spq D s.pC1/q ı �pq . We should think of spq as
swapping the order of Bp; BpC1; : : : ; Bq .

In the case g D glr Henriques–Kamnitzer give a simple description of the
commutor for the category of crystals. The Schützenberger involution � acts on
a crystal by acting on each irreducible component (and thus has vertices identified
with semistandard tableaux) individually. For two glr -crystals, B;C define

�B;C WB ˝ C �! C ˝ B; by �B;C .b ˝ c/ D �.�.c/˝ �.b//: (4.1)

This defines the cactus commutor on the category of glr -crystals. The generator spq
of the cactus group acts on b1˝ b2˝ � � � ˝ bn 2 B1˝B2˝ : : :˝Bn by sending it
to

b1 ˝ � � � ˝ �.�.bq/˝ �.bq�1/˝ � � � ˝ �.bp//˝ � � � ˝ bn:

Remark 4.5. As remarked above we can identify words.n/ with B˝n. To calculate
the action of � on w 2 B˝ we use the RSK-correspondence. If RSK.w/ D .P;Q/

then �.w/ D RSK�1.�P;Q/. In particular w and �.w/ have the same Q-symbol.

4.3.2. Crystals and decgds. Since Jn acts on crystals by crystal morphisms it
preserves weight spaces and singular vectors. Thus s 2 Jn produces a map of sets
sW B.��/

sing
� �! B.ys � ��/

sing
� , recall that ys is the image of s in Sn. Let J ��n � Jn be

the preimage of S��n . The group J ��n acts on the set B.��/sing
� .

We can also characterise J ��n as the equivariant fundamental group of the
S
��
n -action on SM0;nC1.R/. Thus J ��n also acts on decgd.��; �c/ as described

by Corollary 3.24. We will defer the proof of the following theorem to Section 4.7.

Theorem 4.6. There is a J ��n -equivariant bijection decgd.��; �c/ �! B.��/
sing
� .
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4.4. Galois actions for finite maps. In this section we recall the notion of the
Galois group for a finite morphism between varieties. This was defined by Harris
in [11]. Let � WY �! X be a dominant morphism between varieties over C of equal
dimension. We say it has degree d if the associated field extension K.X/ ,! K.Y /

has degree d . For a generic point x 2 X the fibre consists of d reduced points, which
we denote y1; y2; : : : ; yd . By the primitive element theorem there exists ˛ 2 K.Y /
such that K.Y / D K.X/Œ˛�. Let P 2 K.X/Œt � be the minimal polynomial of ˛. By
definition, P has degree d .

Let Mx be the field of germs of meromorphic functions around x and Mi the
field of meromorphic functions around yi . We have natural inclusions K.X/ �Mx

and K.Y / �Mi . Since � is locally around yi an isomorphism of analytic varieties
we have isomorphisms �i WMi �! Mx . Let K.Y /i D �i .K.Y //, and let L be the
subfield of Mx generated by theK.Y /i . The images ˛i D �i .˛/ 2 L are all distinct
and thus are a complete set of roots for P . The field L is the Galois closure, in Mx

of the extension K.X/ ,! K.Y / and thus the Galois group Gal.L=K.X// acts on
the set of roots f˛ig which we may identify canonically with the fibre ��1.x/.
Definition 4.7. The image of Gal.L=K.X// in S��1.x/, the group of permutations
of the fibre, is called the Galois group of � and is denoted Gal.�/ or Gal.� I x/ if we
wish to emphasise the basepoint.
Remark 4.8. The definition of the Galois group Gal.� I x/ depends only on local
properties of the morphism � , it is thus a birational invariant of � . Let � 0WX 0 �! Y 0

be another degree d , dominant morphism and suppose we have birational maps
making the following diagram commute,

Y Y 0

X X 0:

�

g

� 0

f

Suppose f is defined on x and g is defined on y1; y2; : : : ; yd . The morphisms f
and g provide isomorphism f [WMx �! Mf .x/ and g[i WK.Y / �! K.Y 0/, which
restrict to isomorphisms K.X/ �! K.X 0/ and K.Y /i �! K.Y 0/i (and thus also
between L and L0). Importantly these isomorphisms send primitive elements to
primitive elements and thus after identifying the groups S��1.x/ and S� 0�1.f .x//
using g, the Galois groups are equal.

We can always find a dense open subset U � Y over which � is unramified.
Restricting we obtain a topological covering map �j��1.U /. If x 2 U we can
consider themonodromy groupMU .� I x/ � S��1.x/. The following theorem relates
the Galois group to the monodromy group.
Proposition 4.9 ([11, Section I.2]). For anyU as above the monodromy group equals
the Galois group,MU .� I x/ D Gal.� I x/. In particular the monodromy group does
not depend on the open neighbourhood chosen to define it.
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Remark 4.8 and Proposition 4.9 are the key tools we need to calculate (part of)
the Galois group of the spectrum of the Bethe algebras.

4.5. Proof of Theorem 1.1. The four varieties we have been investigating and their
relationship is summarised by the following diagram.

A.��/� �.��; �
c/ S.��; �

c/ S.��; �
c/.R/

M0;nC1.C/ M0;nC1.C/ SM0;nC1.C/ SM0;nC1.R/

�

�

�

� � �jR

D

(4.2)

The first claim of Theorem 1.1 is that there is a homomorphismPJn ! Gal.� I z/
for some generic point z 2M0;nC1. LetMR � S��1.z/ be the monodromy group of
the covering �jR. SincePJn D �1. SM0;nC1.R/I z/, by definition we have a surjective
homomorphism PJn !MR.

Choose a dense open subset z 2 U � SM0;nC1.C/ over which � is unramified. We
can chooseU so that is contains SM0;nC1.R/ by Theorem 3.9. The inclusion of the real
points S.��; �

c/.R/ induces an inclusion MR ,! MU .�I z/. Proposition 4.9 now
implies that MU .�I z/ D Gal.�I z/. The group Gal.� I z/ is a subgroup of S��1.z/.
The morphism � ı � identifies the sets ��1.z/ and ��1.z/. With this identification
fixed, Gal.� I z/ D Gal.�I z/ by Remark 4.8. Hence we have a homomorphism
from PJn onto the subgroupMR � Gal.� I z/.

The second claim of Theorem 1.1 is that for a real point z 2 M0;nC1.R/ there
exists a bijection of setsA.��I z/� ! B.��/

sing
� equivariant for the action ofPJn. The

isomorphism � identifiesA.��I z/�with�.��; �cI z;1/. Since � is an isomorphism
commuting with projections to M0;nC1.C/, this identification is equivariant for the
action of Gal.�; z/, and thus also for PJn. By Theorem 3.19 �.��; �cI z;1/ can
be identified with decgd.��; �c/. Now we may use Theorem 4.6 to find a bijection
to B.��/sing

� which is equivariant with respect to Jn (and thus PJn).

4.6. Proof of Theorem 4.6 in the fundamental case. We will prove Theorem 4.6
in the fundamental case for � when �� D .�n/. First we recall some facts about the
interaction of the RSK-correspondence and the Schützenberger involution.

4.6.1. Schützenberger involution and RSK. For an integer x 2 Œr� let x� D
r C 1 � x. If w D x1x2 : : : xn is a word in the letters 1; 2; : : : ; r let

w�
def
D x�nx

�
n�1 � � � x

�
1 :

With this notation we have a remarkable duality theorem.
Theorem 4.10. If RSK.w/ D .P;Q/ then RSK.w�/ D .�P; evacQ/.

Proof. See Section 1 of Appendix A in [9] for the proof.
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The following proposition gives information about the Q-symbol of subwords.
For a skew tableaux T let Rect.T / be the unique tableaux of straight shape, slide
equivalent to T .

Proposition 4.11. If w D x1x2 � � � xn is a word with Q-symbol Q and u D
xrxrC1 � � � xs is a (contiguous) subword, then the Q-symbol of u is Rect.Qjr;s/.

Proof. See Proposition 1 in Section 5.1 of [9].

4.6.2. Standard �-tableaux. Recall from Section 3.7.2 the action of Jn on SYT.�/
by partial Schützenberger involutions.

Proposition 4.12. The bijection ŒB˝n�sing
� �! SYT.�/Iw 7! Q.w/, given by taking

the Q-symbol of a word, is equivariant for the action of Jn.

Proof. Recall from Lemma 2.3 that the elements s1q for 1 < q � n generate Jn. Let
w D b1b2 � � � bn 2 ŒB

˝n�
sing
� be a highest weight word and let Q D Q.w/. Denote

the subword b1 � � � bq by wq . The word s1q � w is by definition

�.�.bq/�.bq�1/ � � � �.b1//bqC1 � � � bn D �.w
�
q /bqC1 � � � bn:

By Remark 4.5 the involution � does not change the Q-symbol of a word so we
have that Q.�.w�q // D Q.w�q / and by Theorem 4.10 Q.w�q / D evac Q.wq/. By
considering the definition of the RSK correspondence by the insertion algorithm
Q.wq/ D Qj1;q . Thus Q.s1;q � w/j1;q D Q.�.w�q // D evac Qj1;q . The remaining
letters in the word s1q � w have not changed, therefore Q.s1q � w/jqC1;n D QjqC1;n.
Thus s1q �Q D Q.s1q � w/.

4.7. The proof of Theorem 4.6. Recall Proposition 3.26 gives a Jn-equivariant
bijection SYT.�/ �! decgd.�n; �c/. Combining this with Proposition 4.12
gives the desired Jn-equivariant bijection ŒB˝n�sing

� �! decgd.�n; �c/ for the
fundamental case (when �� D .�n/). Our strategy for the general case will
be the following. We will define embeddings ŒB.��/�sing

� ,! ŒB˝n�
sing
� and

decgd.��; �/ ,! decgd.�n; �/ that are consistent in the sense that the outer squares
of the following diagram commute. This is proved below. The inner square commutes
since we have already established Theorem 4.6 in the fundamental case.

ŒB.��/�
sing
�

�
B˝zn

�sing
�

decgd.�zn; �/ decgd.��; �/

�
B.ys1q � ��/

�sing
�

�
B˝zn

�sing
�

decgd.�zn; �/ decgd.ys1q � ��; �/

s1q Ns1q Ns1q s1q

(4.3)
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Here s1q is a generator of Jn, ys1q its image in Sn and Ns1q 2 Jzn is a particular
element we construct below. Both embeddings will be defined below and are given
by a sequence of standard tableaux .T�/, where Ti is a standard �i -tableau, we call
this object a standard ��-tableau. The inner square of (4.3) commutes since this is
case �� D .�zn/ which was proven above.

The idea is that the image of Ns1q in Szn acts by preserving the blocks of the first
j�1j letters, the next j�2j letters and so on, while permuting these n blocks in the same
way as ys1q . Let mi D

Pi�1
jD1 j�j j and m

q
i D

Pi�1
jD0 j�ys1q.j /j. Denote the generators

of Jzn by zskl . Define

Ns1q D

� qY
iD1

zs.mq
i
C1/m

q

iC1

�
zs.mpC1/mq :

Given a standard ��-tableau, T�, we define the embedding ŒB.��/�
sing
� ,!

ŒB˝n�
sing
� , denoted {T� by sending b1 ˝ � � � ˝ bn 2 ŒB.��/�sing

� to the word

w D x1x2 � � � xzn 2 ŒB
˝n�sing

�

such that xmiC1 � � � xmiC1 is the unique word with P -symbol bi and Q-symbol Ti .
We say that w having this property has T� as its ��-partial Q-symbols.

Lemma 4.13. The left hand square of (4.3),

ŒB.��/�
sing
�

�
B˝zn

�sing
�

�
B.ys1q � ��/

�sing
�

�
B˝zn

�sing
�

{T�

s1q Ns1q

{ys1q �T�

;

commutes.

Proof. Let b D b1˝� � �˝bn 2 ŒB.��/�sing
� . By definition {ys1q �T� ıs1q.b/ has ys1q ���-

partial Q-symbols ys1q � T�. Our first job is to show the same is true for Ns1q ı {T�.b/,
i.e. Ns1q ı {T�.b/ lies in the same copy of ŒB.��/�sing

� .
By definitionw D {T�.b/ has ��-partial Q-symbols T�, that is, ifw D x1x2 � � � xzn

then xmiC1 � � � xmiC1 hasQ-symbolTi . Wewill use the notationwji;j for the subword
xi � � � xj . Let T 0� be the ys1q � ��-partial Q-symbols of s1q � w. If i > q then�

Ns1q � w
�
j
m
s1q

i
C1;m

s1q

iC1

D wjmiC1;miC1 ;

so

T 0i D Q ı RSK
��
Ns1q � w

�
j
m
s1q

i
C1;m

s1q

iC1

�
D Q ı RSK

�
wjmiC1;miC1

�
D Ti :
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Since ys1q.i/ D i , we have Ti D Tys1q.i/ for i > q. On the other hand, if i < q, let
s1mq � w D y1y2 � � �yzn. By definition,

T 0i D Q ı RSK
��
Ns1q � w

�
j
m
s1q

i
C1;m

s1q

iC1

�
D Q ı RSK

��
s
.m
s1q

i
C1/m

s1q

iC1

� y1y2 � � �yzn
�
j
m
s1q

i
C1;m

s1q

iC1

�
;

where we have used the definition of s1q . Now applying the definition of the cactus
group action on words,

T 0i D Q ı RSK
�
�
�
y�
m
s1q

iC1

� � �y�
m
s1q

i
C1

��
:

Using the fact that � preserves the Q-symbol of a word and applying Theorem 4.10
we obtain

T 0i D evac ı Q ı RSK
�
y
m
s1q

i
C1
� � �y

m
s1q

iC1

�
:

Now we can apply the rectification property for Q-symbols of subwords from
Proposition 4.11, so

T 0i D evac ı Rect
�
Q ı RSK

�
y1 � � �yzn

�
j
m
s1q

i
C1;m

s1q

iC1

�
D evac ı Rect

�
Q ı RSK

�
�.x�mq � � � x

�
1 /xmqC1 � � � xzn

�
j
m
s1q

i
C1;m

s1q

iC1

�
D evac ı Rect

�
Q ı RSK

�
x�mq � � � x

�
1xmqC1 � � � xzn

�
j
m
s1q

i
C1;m

s1q

iC1

�
;

where we have used the definition of y1 : : : yzn and the fact that � preserves Q-symbols
again. Picking out the correct subword and applying Theorem 4.10 gives

T 0i D evac ı Q ı RSK
�
x�ms1q.i/C1

� � � x�ms1q.i/C1
�

D evac ı evac ı Q ı RSK
�
xms1q.i/C1

� � � xms1q.i/C1
�
:

Since evac is an involution,

T 0i D Q ı RSK
�
xms1q.i/C1

� � � xms1q.i/C1
�

D Tys1q.i/:

Now, by Proposition 2.8 and Theorem 2.9, property (iii), {ys1q �T� ı s1q.b/ and
Ns1q ı {T�.b/ are dual equivalent words. Since they are by definition highest weight
words they are also slide equivalent and thus by Theorem 2.9, property (ii), must be
the same word.
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Now we explain the embeddings in the right hand square of (4.3). Again let T�
be a standard ��-tableaux. For  2 decgd.��; �c/ we can lift this to decgd.�zn; �c/

by simply choosing a representative for each dual equivalence class along the path
from .1; 1/ to .1; nC 2/. We want to do this in a controlled way. Let ˛i be the dual
equivalence class allocated to the edge .1; i/� .1; i C 1/. Choose a lift Si of ˛i such
that Si is slide equivalent to Ti . Since the intersection of any slide equivalence class
and dual equivalence class is a single tableaux, we have a unique choice for Si . The
map |T� is defined by sending  to the above described decgd in decgd.�zn; �c/.
Lemma 4.14. The right hand square of (4.3),

decgd.��; �
c/ decgd.�zn; �c/

decgd.ys1q � ��; �
c/ decgd.�zn; �c/

|T�

s1q Ns1q

|ys1q �T�

;

commutes.

Proof. By Corollary 3.24, the action of the cactus group on decgd’s is given by
the rotation of certain triangles. Let  2 decgd.��; �c/. We will first calculate the
tableaux defined by the growth along the path from .1; 1/ to .1; znC2/ in |Ns1q �T�.s1q �/.
As depicted in Figure 9 (for q D 4) let ˛i be the dual equivalence class on the edge
connecting .1; i/ and .1; i C 1/, for 1 � i � n and ˇi the dual equivalence class of
of the edge connecting .q C 1; i/ and .q C 1; i C 1/ for 1 � i � q. Furthermore
let Ui and Vi be the unique standard tableaux of dual equivalence classes ˛i and ˇi ,
respectively, which are slide equivalent to Ti .

The action of s1q flips the triangle about the axis shown in Figure 9 and preserves
the partitions and dual equivalence classes along the path from .1; qC1/ to .1; nC2/
by Proposition 3.20. By definition, |ys1q �T�.s1q � / is then constructed by lifting
the appropriate dual equivalence classes to the following tableaux along the path
.1; 1/ � .1; znC 2/,

Vq; Vq�1; : : : ; V1; UqC1; : : : ; Un: (4.4)

This determines |ys1q �T�.s1q � /. Now we make the same calculation for the other
side of the commutative diagram.

First apply |T� to  , which means lifting the dual equivalence classes along
.1; 1/� .1; nC2/ (these are the classes ˛i ) toUi . Now apply s1q , this means flipping
a large triangle and several smaller triangles. Figure 10 depicts (for q D 4) the
resulting diagram after flipping only the large triangle. We have only marked the dual
equivalence classes on the vertical and not the actual tableaux.

Now we flip the small triangles, working right to left. The order we flip does not
matter as these elements of the cactus group commute. The first triangle is easy, by
Proposition 3.20 we preserve all the other small triangles as well as the entire path
.1;
ˇ̌
�q
ˇ̌
C1/�.1; znC2/. We end upwithTq D Vq along the path .1; 1/�.1;

ˇ̌
�q
ˇ̌
C1/.
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�

��

�

�

�

�

�

�

� � �

�

�

˛1

˛2

˛3

˛4

ˇ1ˇ2ˇ3ˇ4

˛5

Figure 9. The dual equivalence classes ˛i and ˇi .

The triangles further to the right take some more thought, we will try and flip
the i th triangle. Flipping this triangle preserves all the small triangles to the left and
the right as well as everything on the path .1; 1/ � .1; znC 2/ except for the section
between .1;mys1qi C 1/ and .1;m

ys1q
iC1 C 1/. Locally we have the picture

�

�

�

�

�

� � �

� � �
Tq�iC1 �Tq�iC1 " "

ˇq�iC1 ˇ
0

ı ı

�Tq�iC1 Tq�iC1

where we have marked the dual equivalence classes and tableaux before the flip
in red and after the flip in green. In fact ˇ0 D ˇq�iC1. To see this denote by �
the dual equivalence class of Ti , this is also the dual equivalence class of �Ti by
Theorem 2.9 (i). Thus .ı; ˇq�iC1/ is the shuffle of .�; "/. However .ı; ˇ0/ is also the
shuffle of .�; "/, thus ˇ0 D ˇq�iC1.

What we have shown is after flipping all the triangles, (i.e. applying s1q to |T�./)
the dual equivalence class in the i th position on the path .1; 1/�.1;mqC1/ is ˇq�iC1
and the tableaux in this position is thus the unique tableaux in ˇq�iC1 slide equivalent
to Tq�iC1. By assumption this is Vq�iC1. Since we never changed anything on the
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�

��

�

�

�

�

�

�

� � �

�

�

ˇ4; �T4

ˇ3

ˇ2

ˇ1

T4

�T3

T3

�T2

T2

�T1

T1

Figure 10. s1q acting on a decgd.

path .1;mqC1/�.1; znC2/, the sequence of tableaux along the path .1; 1/�.1; znC2/
is

Vq; Vq�1; : : : ; V1; UqC1; : : : ; Un;

which coincides with (4.4). Hence |ys1q �T�.s1q � / D s1q � |T�./.

4.8. Monodromy in Rybnikov’s compactification. Theorem 1.1 is conjectured by
Rybnikov [22] in a different form. In this section we recall the conjecture and use
Theorem 1.1 to prove it.

Rybnikov constructs commutative subalgebras xA.��I z/� of End.L.��/sing
� / for

any point z in the compactified moduli space SM0;nC1.C/. For z 2 M0;nC1.C/, the
algebra xA.��I z/� is simply the Bethe algebra A.��I z/�. Rybnikov shows that for
all real z 2 SM0;nC1.C/ the algebra xA.��I z/� has simple spectrum. This means in
particular if we let xA.��/� be the corresponding family of algebras over SM0;nC1.C/
and

xA.��/�
def
D Spec xA.��/�;

the spectrum of these algebras, then the finite map xA.��/�.R/ ! SM0;nC1.R/ is
a topological covering. The conjecture [22, Conjecture 1.6] which we prove is the
following.
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Theorem 4.15. For z 2 SM0;nC1.R/ the monodromy action of PJn on xA.��/�.z/ is
isomorphic to the action of PJn on B.��/sing

� .

To prove the theoremwe require a lemma about the topology of SM0;nC1.R/ sitting
inside SM0;nC1.C/. Let U � SM0;nC1.C/ be the dense open set over which xA.��/�
is unramified: U contains SM0;nC1.R/. Let U0 D U \M0;nC1.C/.

Lemma 4.16. Let x; y 2 M0;nC1.R/. Any path in SM0;nC1.R/ with endpoints x
and y is homotopy equivalent to a path in U0 with endpoints x and y.

Proof. Any path in SM0;nC1.R/ is homotopy equivalent to path in SM0;nC1.R/ which
passes transversally through codimension 1 cells only. Since U0 is open and contains
M0;nC1.R/ it is enough to show we can move our path off such an intersection while
remaining in an arbitrarily small neighbourhood of the intersection point.

Locally at the intersection our path is given by n marked points

z1.t/; z2.t/; : : : ; zn.t/ 2 R

depending on a single parameter t , (we fix the last marked point at infinity). Assume
for simplicity that z1.t/ < z2.t/ < � � � < zn.t/ for t < 0 and assume the path hits the
wall which swaps the order of the marked points zp.t/; : : : ; zq.t/ at t D 0. We will
use i to denote an integer in the interval Œp; q� and j to denote an integer between 1
and n not in Œp; q�. This means limt!0 zi .t/ D y for some real number y which we
can assume to be 0 by using an affine translation if needed. Let � > 0 be a small real
parameter. Let ci .�/ D 1

2
.zi .�/ C zi .��// and ri .�/ D 1

2
jzi .�/ � zi .��/j. Now

define the functions depending on a parameter ı 2 Œ0; 1�

fi .t/ D

(
sgn.zi .�//

p
ri .�/2 � .zi .t/ � ci .�//2; if t 2 .��; �/;

0; otherwise.

Consider the path z0.t/ given by z0j .t/ D zj .t/ and z0i .t/ D zi .t/ C fi .t/
p
�1.

Let U 0 be any neighbourhood of the intersection point. By choosing � small enough
we can ensure our path is contained in U 0. The path z0.t/ depends continuously on �
and the limit as � goes to 0 is the original path z.t/, hence the paths are homotopy
equivalent. We can illustrate this with the picture given in Figure 11. We can do this
for all transversal intersections and hence the claim is proved.

Proof of Theorem 4.15. Fix a basepoint z 2 M0;nC1.R/. We identify the fibre with
B.��/

sing
� using the same process described in Section 4.5. Suppose we have a loop s

in SM0;nC1.R/ given by the element s 2 PJn. By Lemma 4.16 s is homotopy
equivalent to a loop  0s contained entirely in U0. By Theorem 1.1 the monodromy
action of s on the fibre is the same as the action of s on B.��/sing

� .
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0

� �

zp.��/

zq.��/

Figure 11. Homotopy of path off intersection point.
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