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A partial order on bipartitions
from the generalized Springer correspondence

Jianqiao Xia

Abstract. In [1], Lusztig gives an explicit formula for the bijection between the set of bipartitions
and the set N of unipotent classes in a spin group which carry irreducible local systems
equivariant for the spin group but not equivariant for the special orthogonal group. The set N

has a natural partial order and therefore induces a partial order on bipartitions. We use the
explicit formula given in [1] to prove that this partial order on bipartitions is the same as the
dominance order appeared in Dipper–James–Murphy’s work [2].
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1. Preliminaries

For group G D Spinn.k/, where k is a field of characteristic not equal to 2, let N be
the set of unipotent classes in G which carry irreducible local systems, equivariant
for the conjugation action of G, but not equivariant for the conjugation action of the
special orthogonal group. Then N has a one-to-one correspondence with a certain
set of partitions Xn (see [1, Section 14]). Xn consists of partitions

� D
�
�1 � �2 � � � � � �m

�
of n, such that each �i 2 NC, and

(1) for each integer n 2 2ZC 1, the set fi I�i D ng has at most one element;

(2) for each integer n 2 2Z, the set fi I�i D ng has an even number of elements.

Let IrrWs be the set of all bipartitions of s. Then the generalized Springer
correspondence for the spin group gives a bijection

Xn  !
G

t24ZCn

IrrW1
4
.n�2t2Ct/

: (1)
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In [1], Lusztig gives an explicit formula for this bijection. Specifically, let

� D
�
�1 � � � � � �m

�
2 Xn:

Define

ti D
X
j�iC1

d.�j / (2)

and
t D

X
j�1

d.�j /: (3)

Here

d.�j / D

(
0; if �j is even;
.�1/.�j .�j�1//=2; if �j is odd:

(4)

Then the image of � under the bijection can be constructed in the following way:
(1) If �i 2 4ZC1, then label this entry by a, and replace this entry by 14 .�i �1/� ti .
(2) If �i 2 4ZC3, then label this entry by b, and replace this entry by 14 .�i �3/C ti .
(3) If �i D e 2 4ZC2, then by definition it appears 2p times. Replace these entries

by
1
4
.e � 2/C ti ;

1
4
.e C 2/ � ti ; : : : ;

1
4
.e C 2/ � ti ; (5)

respectively, and label them as b; a; b; : : : ; a; b; a.
(4) If �i D e 2 4Z, then by definition it appears 2p times. Replace these entries by

1
4
e C ti ;

1
4
e � ti ; : : : ;

1
4
e � ti ; (6)

respectively. Label them as b; a; b; : : : ; a; b; a.
The modified entries with label a form a decreasing sequence ˛. The entries with
label b form a decreasing sequence ˇ. If t > 0, then � corresponds to .˛; ˇ/ in the
bijection. If t � 0, then � corresponds to .ˇ; ˛/. Moreover, the bipartition .˛; ˇ/
(when t � 1) or .ˇ; ˛/ (when t � 0) is an element in IrrW 1

4 .n�2t
2Ct/.

Remark. In Lusztig’s paper [1], he gives the formula for partitions in increasing
order. Here I simply translated everything in decreasing order, for convenience of
the following proof. Moreover a partition in decreasing order can be extended by
adding 0’s.

There is a natural partial order on N : c � c0 if c is contained in the closure of c0.
This partial order is given below, in terms of elements in Xn:
Definition 1.1. For �;� 2 Xn such that each is in decreasing order. We say � � �
if and only if for all i 2 N X

j�i

�j �
X
j�i

�j : (7)
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From the bijection (1), we have an induced partial order on the set of bipartitions
IrrWm, for each t . This partial order is closely related to that found in Dipper–James–
Murphy’s paper [2], and also appears in Geck and Iancu’s paper [3] as the asymptotic
case for their pre-order relation on IrrW , indexed by two parameters a; b. In the
asymptotic case b > .n � 1/a, their pre-order is a partial order, and is defined by

Definition 1.2 (Dipper–James–Murphy). The dominance order between

.�; �/; .�0; �0/ 2 IrrW;

each in decreasing order, is

.�; �/ � .�0; �0/,

(P
j�k �j �

P
j�k �

0
j ; for all k;

j�j C
P
j�k �j � j�

0j C
P
j�k �

0
j ; for all k:

(8)

The main result of this paper is the following:

Theorem 1. For t � m, the induced partial order on IrrWm from the inclusion
IrrWm ,! X2t2�tC4m, is the dominance order.

2. Proof of the main result

Let fm;t W IrrWm ,! X2t2�tC4m be the inclusion from the generalized Springer
correspondence. We first make the following observation:

Lemma 1. If t � m and � 2 fm;t .IrrWm/, then

�i 2 2Z [ .4ZC 1/:

Proof. Suppose on the contrary there is an i such that �i 2 4ZC 3. By definition,

t D
X
i

d.�i /:

Each �i 2 4Z C 1 contributes C1, and each �i 2 4Z C 3 contributes �1. By
definition of Xn, each odd integer appears at most once. So

t D jfi I�i 2 4ZC 1gj � jfi I�i 2 4ZC 3gj: (9)

And then,
jfi I�i 2 4ZC 1gj � t C 1:
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So
2t2 � t C 4m D j�j D

X
i

�i

�

X
i; �i24ZC1

�i

�

tX
jD0

.4j C 1/

D 2t2 C 3t C 1 � 2t2 � t C 4mC 1:

(10)

This is a contradiction! The lemma also proves that there are exactly t odd integers
in �, each in 4ZC 1.

Now the picture is clear for t � m. In fact, if .˛; ˇ/ corresponds to �, then ˛
represents the deviation of odd integers of � from .4t � 3; 4t � 7; : : : ; 1/, and ˇ is
the even integers of �, up to scalar. We have the following lemma:

Lemma 2. Suppose t � m, and .˛; ˇ/ 2 IrrWm corresponds to � under fm;t . Then,
� is the re-ordering of numbers

4˛i C 4.t � i/C 1; 1 � i � t; and 2ˇ1; 2ˇ1; 2ˇ2; 2ˇ2 : : :

(˛ is extended by “0’s” if necessary). For convenience, let

f .˛i / D 4˛i C 4.t � i/C 1;

if the underlying t causes no ambiguity.

Proof. � defined in the lemma has order

4j˛j C 4jˇj C

tX
iD1

�
4.t � i/C 1

�
D 2t2 � t C 4m:

Since fm;t is a bijection, we only need to prove that �, the reordering of numbers

f .˛i /; 1 � i � t; and 2ˇ1; 2ˇ1; 2ˇ2; 2ˇ2 : : : ;

indeed gives .˛; ˇ/ by Lusztig’s rule. Now we assume � is sent to .˛0; ˇ0/. Notice
that since even integers doesn’t contribute to the t -function (see (2)), the t -function
associated to f .˛i / is exactly t � i . So, ˛0 D ˛. If ˇ D .0/, then the lemma is
automatically true. If ˇ ¤ .0/, suppose

4l C 1 > 2ˇ1 > 4l � 3; l � 1:
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We claim that ˛i D 0 for i � t � l C 1. So, �i D f .˛i / for i � t � l . Indeed,
otherwise ˛t�lC1 � 1. Since ˛ is decreasing, we have

m D j˛j C jˇj

� t � l C 1C ˇ1

� t � l C 1C .2l � 1/ � t C 1:

(11)

This is a contradiction!
Now suppose

4k C 1 > 2ˇi > 4k � 3; k � l:

Since we have shown ˛i D 0 for i � t � l C 1. The odd integers less than 2ˇi are
exactly 4k � 3; 4k � 7; : : : ; 1. So the corresponding t -function is k. There are two
cases:

(1) 2ˇi D 4k � 2. Then from Lusztig’s rule, 2ˇi , 2ˇi are modified by

1
4
.2ˇi � 2/C k D ˇi ;

1
4
.2ˇi C 2/ � k D 0;

with labels b, a, respectively.

(2) 2ˇi D 4k. Then from Lusztig’s rule, 2ˇi , 2ˇi are modified by

1
4
.2ˇi /C k D ˇi ;

1
4
.2ˇi / � k D 0;

with labels b, a, respectively.

So indeed ˇ0 D ˇ.

Now we use the above observation to prove the main theorem. Let .˛; ˇ/,.˛0; ˇ0/
be bipartitions with order m. They correspond to �; �0 from the inclusion

fm;t W IrrWm ,! X2t2�tC4m:

Here t � m is a fixed integer.

Proof of the main theorem.

(a) If .˛; ˇ/ � .˛0; ˇ0/ in the dominance order, then � � �0.

Proof. Let A.k/ D f�1; : : : ; �kg (repetitions are allowed, with multiplicity
specified), and define A0.k/ similarly. A.k/; A0.k/ are defined for all positive
integers k, and �; �0 are extended by 0’s. Let jA.k/j denote the sum of elements
in A.k/, and similarly for jA0.k/j. Suppose � � �0 does not hold. Then since
j�j D j�0j, there is a largest k such that

jA.k/j < jA0.k/j:
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For convenience, let g1 � g2 � � � � be the decreasing sequence of even integers in �,
and similarly define g0i for �

0. It is clear that

.4˛; g/ � .4˛0; g0/;

as bipartitions of 4m. In fact, for l even, the inequality is equivalent to

j˛j C ˇ1 C � � � C ˇ l
2

� j˛0j C ˇ01 C � � � C ˇ
0
l
2

:

The inequalities for odd l is deduced from the average of those of l � 1 and l C 1.
Suppose A0.k/ consists of elements f .˛0i /, 1 � i � u, and g01; : : : ; g0l . So,

k D uC l . If l D 0, then

jA.k/j � jA0.k/j �

uX
iD1

f .˛i / �

uX
iD1

f .˛0i /

D 4
�
˛1 C ˛2 C ˛u � ˛

0
1 � � � � � ˛

0
u

�
� 0:

(12)

This is a contradiction! Here we used that A.k/ consists of the largest k elements
of �. If l ¤ 0, and ˛uC1 D 0. Then we can choose k elements in �:

f .˛i /; i � u; and g1; : : : ; gl :

These k elements have sum greater than or equal to jA0.k/j. So,

jA.k/j � jA0.k/j:

A contradiction!
If ˛uC1 ¤ 0. Suppose A.k/ consists of elements

f .˛i /; 1 � i � uC s; and g1; : : : ; gl�s:

If s D l , then we claim that f .˛uCl/ < �0
k
. Otherwise, assume f .˛uCl/ � �0

k
.

From Lemma 2,

f .˛uCs�1/ � f .˛uCs/ � 4 � �
0
k�1 � �

0
k

(since terms beyond 2ˇ01 contain all the positive integers in 4ZC1 smaller than 2ˇ01).
So we get

f .˛uCl�1/ � �
0
k�1:

This method proceeds, so we get

�i D f .˛i / � �
0
i ; i � x;

where �0x D g01. But from the case l D 0 above, we know that

jA.x � 1/j � jA0.x � 1/j:
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So, jA.k/j � jA.k/0j, which is a contradiction! Hence,

�k D f .˛uCl/ < �
0
k :

If �kC1 is odd, we have
�kC1 � �k � 4 � �

0
kC1:

But then jA.k C 1/j < jA0.k C 1/j, and this contradicts with the fact that k is the
largest. So �kC1 is even.

From Lemma 2, we conclude that ˛i D 0 for i � k C 1 D uC s C 1, and

4.t � u � s/C 1 > 2ˇ1 > 4.t � u � s/ � 3:

If s ¤ l , Lemma 2 also implies that ˛i D 0 for i � uC sC 1. In either case, we
have

gi < 4.t � u � s/C 1 D f .˛
0
uCs/

for i � l � s C 1. Then,

jA.k/j � jA0.k/j D

uCsX
iD1

f .˛i /C

lX
iD1

gi �

� uCsX
iD1

f .˛0i /C

lX
iD1

g0i

�

C

uCsX
iDuC1

f .˛0i / �

lX
iDl�sC1

gi

D

�
4j˛j C

lX
iD1

gi � 4j˛
0
j �

lX
iD1

g0i

�
C

uCsX
iDuC1

f .˛0i / �

lX
iDl�sC1

gi

�

uCsX
iDuC1

f .˛0i / �

lX
iDl�sC1

gi � sf .˛
0
uCs/ �

lX
iDl�sC1

gi � 0:

(13)
Contradiction! So we have shown � � �0.

(b) Suppose � � �0, then .˛; ˇ/ � .˛0; ˇ0/. Clearly ˛ � ˛0 from Lemma 2 and the
discussion at the beginning of the proof above. So if .˛; ˇ/ � .˛0; ˇ0/ does not hold,
then there is a smallest k, such that

j˛j C ˇ1 C � � � C ˇk < j˛
0
j C ˇ01 C � � � C ˇ

0
k : (14)

We still use the notation A.x/ for the first x terms of �, and use S.x/ to represent the
sum of first x terms of ˇ and j˛j. So S.k/ < S 0.k/, for some k � 1. By assumption
of k, ˇk < ˇ0k . If ˇk D 0, then it is automatically a contradiction, since the left side
is then m D j˛0j C jˇ0j. So,

0 < ˇk < ˇ
0
k :
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They both come from some even integers 2ˇk; 2ˇ0k in the corresponding partition.
Suppose they correspond to �x�1; �x and �0x0�1; �

0
x0 , respectively. Suppose,

4uC 5 > 2ˇk > 4uC 1 and 4u0 C 5 > 2ˇ0k > 4u
0
C 1:

Then u0 � u. So,

x D 2k C t � u � 1 � x0 D 2k C t � u0 � 1:

Now,

jA.x/j � jA0.x0/j D jA.x/j � jA0.x/j C

xX
iDx0C1

�0i

�

xX
iDx0C1

�0i :

(15)

Also notice that

jA.x/j � jA0.x0/j D

u0X
iDuC1

.4i C 1/C 4
�
S.k/ � S 0.k/

�
<

u0X
iDuC1

.4i C 1/:

(16)

This means
u0X

iDuC1

.4i C 1/ >

xX
iDx0C1

�0i : (17)

However, this is a contradiction, since

f4uC 5; 4uC 9; : : : ; 4u0 C 1g � f�x0C1; �x0C2; : : :g;

and x � x0 D u0 � u.

We now give an example that violates the above partial order for t D m� 1. The
partition

� D .4t C 1; 4t � 3; : : : ; 9; 5; 3; 1/

corresponds to .˛; ˇ/, where ˛ D .1; 1; : : : ; 1/ (t “1’s”) and ˇ D .1/.
The partition

�0 D .4t C 1; 4t � 3; : : : ; 9; 5; 2; 2/

corresponds to .˛0; ˇ0/, where ˛0 D .1; 1; : : : ; 1; 1/ (t C 1 “1’s”.) and ˇ0 D .0/.
Then � > �0, but .˛; ˇ/ < .˛0; ˇ0/.
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