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The isoperimetric spectrum of finitely presented groups

Mark V. Sapir�

Abstract. The isoperimeric spectrum consists of all real positive numbers ˛ such that n˛ is
equivalent to the Dehn function of a finitely presented group. In this note we show how a
recent result of Olshanskii completes the description of the isoperimetric spectrum modulo the
celebrated Computer Science conjecture (and one of the seven Millennium Problems) P D NP
and even a formally weaker conjecture.
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The goal of this note is to show that the recent paper by Olshanskii [11] completes
a description of the isoperimetric spectrum of finitely presented groups modulo the
P D NP conjecture.

Since in this note we consider only polynomially bounded functions N ! R, we
call two functions f; g equivalent if

af .n/ � g.n/ � bf .n/

for some positive constants a; b.
Brady and Bridson [6] called the set of all real numbers ˛ � 1 such that n˛

is equivalent to the Dehn function of a finitely presented group the isoperimetric
spectrum. When it was introduced, it was known only that all natural numbers
belong to the isoperimetric spectrum (the free nilpotent group of class c with at
least 2 generators has Dehn function ncC1 [2]), and that by Gromov’s theorem the
intersection of the isoperimetric spectrum with the open interval .1; 2/ is empty. It
is obvious also that the isoperimetric spectrum is a countable set since the set of
all finite group presentation is countable. Bridson [6] found the first examples of
non-integral numbers in the spectrum.
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Soon after, we proved in [14] that for ˛ � 4 to be in the isoperimetric spectrum,
it is enough that ˛ is computed in time � 22m . Recall [14] that a real number ˛ is
called computable in time T .m/ where T .m/ is a function N ! N, if there exists
a deterministic Turing machine which, given a natural number n, computes a binary
rational approximation of ˛ with an error at most 1=2nC1 in at most T .n/ steps. Thus
all algebraic numbers � 4 and many transcendental numbers such as � C 1 are in
the isoperimetric spectrum. On the other hand, we proved in [14] that every number
in the isoperimetric spectrum can be computed in time �222

cm

for some constant c.
It can be seen from the proof of this result that the number of 2’s in this estimate can
be reduced to two as in the lower bound if we had P D NP:

Provided P D NP every number in the isoperimetric spectrum can be
computed in time � 22cn for some constant c. (C)

I mentioned (C) (without a proof) in my ICM talk [12] and my Bulletin of
Mathematical Sciences survey [13].

Note that Statement (C) is weaker than Theorem 2 below where the upper and
lower bound for complexity of numbers in the isoperimetric spectrum coincide (see
the discussion [9]).

For ˛ � 4, the situation was more complicated. On the one hand the tools
used in [14] were too weak to handle ˛ � 4. On the other hand, Brady, Bridson,
Forester, andShankar foundmore numbers from the interval .2; 4/ in the isoperimetric
spectrum, showing that the set of these numbers is dense in the interval .2; 4/ [3]
and even contains all rational numbers [4]. Their numbers from the isioperimetric
spectrum were constructed using algebraic rather than computational properties.
(Note also that the groups constructed in [3–6], are given by very small presentations
comparing to the groups in [14] and are subgroups of CAT(0) groups which is quite
remarkable.) But the paper by Olshanskii [11] showed that the intersection of the
isoperimetric spectrum with .2; 4/ can be described in the same terms as in [14].

Let d � 2 be a natural number. We say that the first m d -ary digits of a real
number ˛ > 0 can be computed in time � T .m/ if there is deterministic Turing
machine computing for every m � 1 a (finite) d -ary number ˇm such that

j˛ � ˇmj �
1

dmC1

in time� T .m/. Ifd D 2, thenwe simply say that˛ can be computed in time� T .m/.
Combining results of [14] and [11] we get the following theorem. Notice first that

there is a misprint in the formulation of [14, Corollary 1.4]: the first inequality sign
there should be the ordinary �, not the coarse � (A. Yu.Olshanskii pointed it out to
me). The proof works for the � sign (see below).
Theorem1 (The first part of Corollary 1.4 from [14] (with the correct inequality sign),
and Corollary 1.4 from [11]). If a number ˛ � 2 can be computed in time � 2c2n

for some c, then ˛ belongs to the isoperimetric spectrum.
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One needs to modify a little the proof of the first part of Corollary 1.4 from [14]
to obtain the estimate � 2c2n instead of � 22n .

For this, one should take natural numberd > log2 cwhich is a power 2k for somek
and consider d -ary representations of numbers instead of binary representations as
in [14]. Each d -ary digit of ˛ is a binary number with k binary digits. So if the
first m binary digits of ˛ are computed in time � 2c2m , then the first m d -ary digits
of ˛ (or, equivalently, first km binary digits of ˛) are computed in time � ddm and
the rest of the proof of [14, Corollary 1.4] carries by replacing 2 by d everywhere.

Let us explain themodifications inmore details. After replacing 2 byd , ProblemA
from [14] becomes
Problem Ad . Given a natural number n written in d -ary, compute f .n/ in d -ary.
The size of n is the number of d -ary digits of n, that is Œlogd n�C 1.

The first part of [14, Corollary 1.3] becomes the following statement:
Corollary 1.3d . Let f .n/ � n4 be a superadditive function such that the d -ary
representation of f .n/ is computable in time

O
�
4
p
f .n/

�
by a Turing machine (i.e. Problem Ad is solvable in time O. 4

p
f .n//). Then f .n/ is

equivalent to the Dehn function of a finitely presented group.
The proof of Corollary 1.3d repeats the proof of [14, Corollary 1.3] relacing

binary by d -ary everywhere.
The first part of [14, Corollary 1.4] becomes:

Corollary 1.4d . For every real number ˛ � 4 whose d -ary representation is
computable in time � dd

m the function Œn˛� is equivalent to the Dehn function
of a finitely presented group.
Proof. Notice that the function Œn˛� is equivalent to the function d Œ˛Œlogd n��. The
function Œlogd n�C1 (i.e. the length of the d -ary expression of the number of d -digits
in n) is computable in time

� O
�
.logd n/2

�
by an obvious algorithm: scan the number n from left to right on one tape and after
each step add 1 to the number on the other tape.

Since the first Œlogd .logd n/�C 1 d -ary digits of ˛ are computable in time O.n/,
the function Œ˛Œlogd n�� is computable in time

O.n/ � O
�
n˛=4

�
:

Notice also that Problem Ad for a function equivalent to dm is solvable in
time O.m/. Indeed, we can consider the unary expression of m as the d -ary
expression of

dmC1 � 1

d � 1
and use the second algorithm in the proof of [14, Corollary 1.3]. It remains to apply
Corollary 1.3d .
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Now we will prove the main result of the note.
Theorem 2. Provided P D NP, a number ˛ is in the isoperimetric spectrum if and
only if it can be computed in time � 2c2m for some c � 1.

Proof. Theorem 1 gives one part of Theorem 2.
To prove the other part, suppose that n˛ is the Dehn function of a finitely presented

group. Then by [14, Theorem 1.1], n˛ is equivalent to the time function T .n/ of
some (non-deterministic) Turing machineM which recognizes the word problem in
a finitely presented group.

Let us recall the definition of the time function of a non-deterministic Turing
machine.

Definition 3. Let M be a nondeterministic Turing machine. The function t .�/ is
called the time function of M iff for all x (bitstrings that represents non-negative
integers in the non-signed binary notation) we have:
(1) [Bound] for every inputw ofM of length� x that is accepted byM , there exists

an accepting computation ofM on w, with time � t .x/; and
(2) [Tightness] there exists an input w of length � x, such that:

(2.1) every accepting computation ofM on w has time � t .x/; and
(2.2) there exists an accepting computation ofM on w with time exactly t .x/.

As explained by Emil Jeřábek [10] (see his proof below), the following property
follows from P D NP:

There is a deterministic Turing machine M 0 computing a polynomially
bounded functionT 0.n/which is equivalent toT .n/ and having time function
at most T .n/d for some constant d .

(�)

Here we reproduce Emil Jeřábek proof from [10] with his permission.
The Property (�) is strictly weaker than P D NP, in the sense that it follows from

E D †E
2
, which is not known to imply P D NP. Of course, we cannot prove this

unconditionally with current technology, as it would establish P ¤ NP.
Here, E denotes DTIME.2O.n//, NE D NTIME.2O.n//, and †E

2
D NENP

is the second level of the exponential hierarchy (with linear exponent), EH (see
e.g. [7, 8]). Equivalently, we may define †E

2
using alternating Turing machines

(see [1, Section 5.3]) as

†E
2 D †2 � TIME

�
2O.n/

�
:

Note that conversely, P D NP implies P D PH, where PH is the union of all
classes in the Polynomial Hierarchy, which implies

E D †E
2 D EH

by a padding argument similar to [1, Section 2.6.2].
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To see that E D †E
2

implies (�), let t be the function defined exactly like T , but
with the input and output integers written in binary, and let gt D f.x; y/ W y � t .x/g
be its hypograph. Then gt 2 †E2 . Indeed, let x; y be binary strings that represents
non-negative integers. It follows from Definition 3 that .x; y/ satisfies y � t .x/ if
and only if there exists an input w of length � x, such that:
(2.1) every accepting computation of M on w has time � y (equivalently, no

accepting computation ofM on w has time < y); and
(2.2) there exists an accepting computation ofM onw (automaticallywith time� y).
(Indeed: If (x,y) satisfies this, then w is accepted, but only in time � y; hence
y � t .x/.) And if y � t .x/ then the Definition 3 implies that there exists w of
length � x, such that (2.1) and (2.2) hold.)

Here, the non-deterministic Turing machine M , with time function T .n/ � n˛ .
Writing n in binary as x, we have T .n/ D t .x/.

Property (2.1) is a 8 condition, which can be verified co-nondeterministically in
time

O.x C y/ D O
�
2jxj C 2jyj

�
:

Property (2.2) is an 9 condition, which can be verified nondeterministically in time

O.t.x// � 2Œ˛�jxj

(where Œ˛� is the smallest integer upper-bound on ˛).
So, if E D †E

2
, then gt 2 E. Then we can compute t (as a function)

deterministically in exponential time using binary search, and therefore we can
compute T .n/ in time polynomial in n.

More precisely, finding t .x/ from x, using gt , by binary search is done as follows.
Let Œy0; y1� be the current estimation interval for t .x/; initially, Œy0; y1� D Œ0; xa�

where a D d˛e C 1. Loop invariant: .x; y0/ 2 gt , and .x; y1/ 62 gt (the loop
invariant holds during the loop, but not at the end of the loop). While y0 < y1: if�

x; b.y1 C y0/=2c
�
2 gt

then:

y0 WD b.y1 C y0/=2c;

else y1 WD b.y1 C y0/=2c

return y0.
The search uses� log.xa/ steps, each of which uses a membership test in gt . We

have log.xa/ D a2jxj, and membership in gt is in E. As a function of n (the number
represented by x in binary), the search takes polynomial time.

Now let Turing machineM 0 with, say, k tapes and the function T 0.n/ as in (�) be
given. Since ˛ � 2, for any n > 0

�1n
˛
� T 0.n/ � �2n

˛ (1)
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for some positive constants �1 � 1 and �2 � 1. Let number n0 be such that

2n > log2.�2=�1/ (2)

for every n � n0.
Let q D d˛e C 1.
Consider the following Turing machineM 00 which will calculate the firstm digits

of ˛ (for every m). This Turing machine has k C 3 tapes with tape k C 3 being the
input tape. It starts with numberm in binary written on tape kC3 and all other tapes
empty. Then it calculates the number

n D 22
mCn0 (3)

and writes it on tape k C 1 (using tape k C 2 as an auxiliary tape and cleaning it
after n is computed). ThenM 00 turns on the machineM 0 and produces T 0.n/ on tape
k C 2. Then it calculates

p D
�
.log2 T 0.n/C log2 �1/=2n0

�
and writes it on tape k C 2. By (1),

˛ log2 nC log2 �1 � log2 T 0.n/ � ˛ log2 nC log2 �2:

Therefore, by (3)

Œ˛2m� � p � ˛2m C
log2.�2=�1/

2n0
: (4)

Hence p D Œ˛2m� because the second summand on the right hand side of
inequality (4) is a positive number less than 1 by (2), so p=2m is a rational
approximation of ˛ which is within 1=2m from ˛. From the construction ofM 00, it is
clear that the time complexity ofM 00 does not exceed 2c2m for some constant c.

Emil Jeřábek’s argument above shows that Property (�) follows also from the
property E D †E

2
. Thus in Theorem 2, one can replace P D NP by a formally

weaker E D †E
2
.
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