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Abstract. It is well known that every subqadratic Dehn function is linear. A question by Bridson
asked to describe the isoperimetric spectrum of groups, that is the set of all numbers ˛ such
that n˛ is equivalent to the Dehn function of a finitely presented group. The goal of this paper
is to give a description of the isoperimetric spectrum. Earlier a similar description was given by
Sapir, Birget and Rips for the intersection of the isoperimetric spectrum with Œ4;1�. Lowering
the bound from 4 to 2 required significant new ideas and tools.
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1. Introduction

1.1. Formulation of the theorem and corollaries. The minimal non-decreasing
function d WN ! N such that every word w vanishing in a group G D hA j Ri and
having length kwk � n is freely equal to a product of at most d.n/ conjugates of
relators from R˙1, is called the Dehn function of the presentation G D hA j Ri [8].
In other words, the the value d.n/ is the smallest integer that bounds from above
the areas of loops of length � n in the Cayley complex Cay.G/, and so by van
Kampen’s Lemma, d.n/ is equal to the maximal area of minimal filling diagrams �
with perimeter � n. (See Subsection 5.2 for the definitions.)

The values d.n/ are defined if the set of generators A is finite. For a finitely
presented group (i.e. both sets A and R are finite), the Dehn function exists and it is
usually taken up to equivalence to get rid of the dependence on a finite presentation
of G (see [12]). To introduce this equivalence �, let f and g be non-decreasing
functions N ! RC. We write f � g if there is a positive integer c such that
f .n/ � cg.cn/C cn for every n 2 N. Two non-decreasing functions f and g on N
are called equivalent if f � g and g � f .

Note that for many functions (for example, for n˛ , n˛.logn/ˇ .log logn/ , and
so on), their�-equivalence classes coincide with their‚-equivalence classes, where
the symbol ‚ is borrowed from the theory of computational complexity: one says
that f .n/ D ‚.g.n// if both properties f .n/ D O.g.n// and g.n/ D O.f .n//

hold.
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The Dehn function d D dG of a finitely presented group G is also called an
isoperimetric function of G since it is equivalent to the usual isoperimetric function
of a simply connected Riemannian manifold M , provided G acts properly and co-
compactly on M by isometries. So the concept of Dehn function is derived from
geometry, and one can find much more regarding this connection in [9].

Another connection is to Computational Complexity. The algorithmic word
problem in a finitely presented group is decidable if and only if the Dehn function is
recursive, and the Dehn function of a group bounds the computational complexity of
the word problem. It was shown in [2] that conversely, every recursively presented
group G with decidable word problem embeds into a finitely presented group
whose Dehn function is only polynomially larger than the computational complexity
(the time function) of the word problem in G. In particular, groups with word
problem in NP are precisely the subgroups of finitely presented groups G with at
most polynomial Dehn functions dG .

For every positive integer ˛, there are (nilpotent) groups with Dehn func-
tion n˛ [1]. The first examples of Dehn functions n˛ with non-integer ˛ can be found
in [6], where the description of possible exponents ˛, forming the isoperimetric
spectrum, was called the most fundamental question concerning isoperimetric
functions. (Obviously some conditions on the real exponent ˛ are inevitable since the
set of real numbers is uncountable, while the set of non-isomorphic finitely presented
groups is countable.)

Almost all possible Dehn functions F.n/ � n4 of finitely presented groups were
described in [22] in terms of time functions of non-deterministic Turing machines.
By Theorem 1.2 of [22], to obtain a group with Dehn functionF , it suffices to assume
that the function F is super-additive (i.e. F.mC n/ � F.m/C F.n/ for m; n 2 N)
and the integral part of 4

p
F.n/ is a time function of a non-deterministic Turing

machine (see the definition in [7]). As a corollary, it was proved in [22] that if ˛ � 4
and the real number ˛ is computable in time � 22m , then there is a finitely presented
group with Dehn function equivalent to n˛ (One should use the integral part sign
for functions on N, but we omit this sign speaking on asymptotic behavior.). The
computability can be defined as follows.
Definition 1.1. Let T WN ! N. A real number ˛ is computable in time � T .m/
if there exists a Turing machine which, given a natural number m, computes a
binary rational approximation of ˛ with an error O.2�m/, and the time of this
computation � T .m/.

The algebraic and many transcendental numbers are computable much faster, and
so there are examples of groups with Dehn functions equivalent to n�Ce , and so
on. If, conversely, for a real ˛, the function n˛ is equivalent to the Dehn function
of a finitely presented group, then for some c, the exponent ˛ is computable in
time 222

cm

[22].
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Still the class of Dehn functions < n4 was unclear even though it has drawn
attention (see, for example, [4–6]). We note the paper [4] (also the references there),
where the Dehn functions equivalent to n˛ were constructed for special non-integer
exponents of the form ˛ D 2 log2.2p=q/, where p and q are integers, p > q > 0.

Since all finitely presented groups with subquadratic Dehn functions are
hyperbolic [3, 8, 14], i.e. their Dehn functions are in fact linear, the only interval
2 < ˛ < 4 remained misty. To formulate a theorem that fills this gap, we need:

Definition 1.2. We say that a non-decreasing function f WN ! N is suitable if the
following properties hold.
� f .n/3 D O.n/.

� For every integer c > 0, there is C > 0 such that f .cn/ � Cf .n/, i.e.

f .O.n// D O.f .n//:

� There is a (non-deterministic) Turing machine M0 recognizing the values of the
function f .n/ with computation time O.n1=3/.

It works as follows. An integer k � 0 is an input of M0 in the form ak for a
fixed letter a. The Turing machine M0 produces a value f .n/ for some n � 1,
i.e. it obtains the word cf .n/ on a special tape. Then M0 compares f .n/ and k,
accepting k if k D f .n/. It can accept the input word ak if and only if k D f .n/
for some natural number n.

Theorem 1.3. For every suitable function f .n/ and every integer s � 2, the function
F.n/ D nsf .n/3 is equivalent to the Dehn function of a finitely presented group.

Given a suitable function f .n/, we denote g.n/ D f .n/3.

Corollary 1.4. If ˛ � 2 and the real number ˛ is computable in time O.22m/, then
there is a finitely presented group with Dehn function equivalent to n˛ .

Remark 1.5. It is easy to see that we have an equivalent statement when replacing 2
with any integer d > 1 both in the statement of Corollary 1.4 and in Definition 1.1
(resp., “binary” with “d-ary”). The formulation and the proof of Corollary 1.4 are
close to those for Corollary 1.4 of [22] (up to a minor inaccuracy in the formulation
of Corollary 1.4 [22]). However below we give a proof of our Corollary 1.4 since
one should draw it from different assumptions of Theorem 1.3.

Proof of Corollary 1.4. Assume that ˛ is computable in time O.22m/. Clearly, the
same property holds for the number ˇ D 1

3
.˛ � s/, where s D Œ˛�.

Let M0 be a (non-deterministic) Turing machine producing r D Œn1=3� � 1 (in
unary) with time O.r/. Then it computes Œlog2 r� and m D Œlog2 log2 r� (in binary)
with time O.r/ using divisions by 2.
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It follows from the assumption of the corollary that one can recursively compute
binary rational numbers ˇm such that

jˇ � ˇmj D O.2
�m/ D O

�
.log2 r/�1

�
(1.1)

and the time of the computation of ˇm isO.r/. LetM0 accomplish this computation.
In addition, one may assume that the number of digits in the binary expansion of ˇm
is O.m/. Therefore the computation of the product ŒˇmŒlog2 r�� needs time at most
O..log2 n/2/. Since r D Œn1=3�, the Turing machine can now obtain the binary
presentation m of ŒˇmŒlog2 n�� with time O..log2 n// and error O.1/.

Next, letM0 rewrite the binary presentation of m in unary (as a sequence of 1-s).
This well-known rewriting (e.g. see p. 352 in [22]) has time complexity of the form
O.m/ D O.ˇm log2 n/. One more M0-rewriting of this type applied to the unary
presentation of m (considered now as binary one), will have time complexity of the
form

‚.2m/ D ‚
�
2ŒˇmŒlog2 n��CO.1/

�
D ‚

�
2ŒˇmŒlog2 n��

�
:

One can rewrite as
‚
�
2ˇ log2 n

�
D ‚.nˇ / D O.n1=3/

by inequalities (1.1) and ˇ < 1=3, because log2 n D O.2m/.
During the last (deterministic) rewriting, one can count the number f .n/ of

commands and obtain a word bf .n/ on a special tape, where f .n/ D ‚.nˇ /. It
is easy to see that the rewriting can be defined so that the function f .n/ is non-
decreasing.

One more tape of the Turing machine M0 under construction has the input
word ak . It remains to check whether the lengths of the words bf .n/ and ak are
equal or not. This takes the time O.f .n// D O.n1=3/. Since the time of the entire
procedure is O.n1=3/, the function f .n/ is suitable. Now by Theorem 1.3, the
function nsf .n/3 D ‚.nsn3ˇ / D ‚.n˛/ is equivalent to the Dehn function of a
finitely presented group.

In particular, Corollary 1.4 implies:
Corollary 1.6. The functions n˛ for every real algebraic ˛ � 2, the functions n��1,
n
p
eC1; : : : are equivalent to Dehn functions of finitely presented groups.
As we mentioned above, the analog of Corollary 1.4 for ˛ � 4was proved in [22].

But weakening the restriction to ˛ � 2 now, although uses S -machines, as in [22], it
requires substantially new ideas.

Theorem 1.3 gives a tremendous class of new Dehn functions of the formO.n4/.
The following examples can be validated in absolutely similar way as Corollary 1.4.
Corollary 1.7. The functions n˛.logn/ˇ , n˛.logn/ˇ .log logn/ ; : : : are equivalent
to the Dehn functions of finitely presented groups, provided the real ˛; ˇ; ; : : : are
computable in time O.22m/ and ˛ > 2 or ˛ D 2 and ˇ > 0, or ˛ D 2, ˇ D 0,
 > 0; : : : :
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Since every finitely presented group is a fundamental group of a connected closed
Riemannian manifold X and therefore acts properly and co-compactly by isometries
on its universal cover zX , one can use Theorem 1.3 and Corollary 1.4 to formulate
one more

Corollary 1.8. For every function F.n/ satisfying the assumption of Theorem 1.3,
there exists a closed connected Riemannian manifold X such that the isoperimetric
function of the universal cover zX is equivalent to F.n/.

In particular, if a real number ˛ � 2 is computable in time O.22m/, then there
exists such a universal cover zX with isoperimetric function equivalent to n˛ .

Since the condition ˛ � 2 is the best possible and the obtained upper bound for
the Dehn function must be equivalent to the lower one, all inequalities throughout
this paper should be uniformly sharp, up to multiplicative constants.

We collect all the definitions and terms at the end of the paper (see Subject index).
The next subsection presents a short outline of the plan.

1.2. Brief description of the proof of Theorem 1.3. The idea of simulation of the
commands of a Turing machine by group relations goes back to the works of
P. Novikov, W.Boone and many other authors (see [20, 21]). However one has
to properly code the work of a Turing machine in terms of group relations, and
the interpretation problem for groups remains much harder than for semigroups,
because the group theoretic simulation can execute unforeseen computations with
non-positive words. Boone and Novikov secured the positiveness of admissible
configurations with the help of an additional “quadratic letter” (see [20, Ch. 12]).
However this old trick implies that the constructed group G contains Baumslag–
Solitar subgroups B1;2 and has at least exponential Dehn function. Since we want to
obtain at most polynomial Dehn functions, we use the S-machines introduced in [22].
Those S-machines invented by M. Sapir can work with non-positive words on the
tapes and they are polynomially equivalent to classical Turing machines.

According to the original version, S -machines are special rewriting systems. All
necessary definitions are given in Subsection 2.1. On the other hand, the state, tape
and command letters of an S -machine can be regarded as group generators, and
the commands can be interpreted as defining relations (see Subsection 5.1). The
obtained groupM is a multiple HNN-extension of a free group. Every computation
of the S -machine is simulated by van Kampen diagram over this group called trapezia
(Subsection 5.2).

To construct a finitely presented groupsG with desired Dehn functions, one needs
to add toM a special relation called the hub. It consists of state letters. There are very
particular van Kampen diagrams, called disks, built of the hub and many trapezia
attached around.

It is proved in [22] that for every Turing machine M0 with time function T .n/,
there is an equivalent S -machine M1 with time function (and the generalized time
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function) � T .n/3. It follows that if an accepting computation starts with an input
of length � n, it has length � T .n/3, and the computational disk has perimeter � n,
and so its area� nT .n/3. Since time functions are at least linear, this approach gave
the lower bound � n4 for the Dehn function of G.

To get the linear time of accepting computation, in comparison with the length of
the initial configuration for an S -machineM2, one can add an additional tape, where
the whole history of the forthcoming computation is written. Then every command
will erase one letter on this tape. This trick gives disks with quadratic area with
respect to their perimeters.

However wewant to construct disks with prescribed areaF.n/, as in Theorem 1.3.
In this paper, we first prove this theorem for s D 2, i.e. for F.n/ D O.n3/, and in
the final Subsection 10.2, we show that the value of s can be increased, since a
non-difficult modification of the main S-machine M constructed in Subsection 4.1
linearly slows down the work of M.

The main S-machine is composed of the S-machine M2 repeating the same
computationmany times and another S-machine that can stop the computations ofM2

after � g.n/ such cycles with subsequent erasure of all the tapes and acceptance.
This gives the lower bound � ng.n/ for the (general) time function and the lower
bound � F.n/ for the areas of computational disks.

The obtainment of the upper bounds is the major job in this paper. First of
all, to obtain quadratic upper bound for the areas of trapezia, one needs a linear
bound of the space of every computation (i.e. the maximal lengths of all admissible
words of it) in terms of the lengths of the first and the last word. This task is
aggravated by inaccurate simulation of the work of Turing machines by S-machines
and so by group relations. Standard trapezia correspond to the prescribed work of
S-machines, but there are non-standard ones simulating undesired computations
when the same tape is simultaneously changed at both ends. The features of
standard (accurate) computations of the main S-machine and of non-standard ones
are considered in Subsections 4.2 and 4.3, respectively. To reduce the effect of non-
standard computations, the basic steps of the work alternate with control steps in the
definition of the main S-machine given in Subsection 4.1.

Whereas a non-standard computation has linearly bounded space in terms of the
lengths of the first and the last words (and so the width of corresponding trapezia is
linearly bounded too), there exist much wider trapezia in the standard case. Hence
standard trapezia can have too large areas in the groupM . The new idea is decrease the
area of their boundary labels in the quotient group G. We do this in Subsection 10.1
applying the properties of long computations obtained in Subsection 4.5. It turned
out that wide trapezia with super-quadratic areas inM can be replaced, preserving the
boundary label, by diagrams of quadratic areas over G, i.e. by diagrams containing
hubs.

However before that, we prescribe artificial (but quadratic!) G-areas to special
“big” subtrapezia (Subsection 6.3), which leads to the definition of G-area for an
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arbitrary diagram over M or over G. A quadratic upper bound for the G-areas of
diagrams overM is given in Subsection 6.3. It turns out later, that the are diagrams of
quadratic area overG with the same boundary labels. The induction on the perimeter
is based on a non-trivial surgery. (See the proof of Lemma 6.16 in Subsection 6.3,
where we cut and paste diagrams.) In fact, we give an upper boundG-for area in terms
of the perimeter and the mixture of q- and � -letters in the boundary label, because
different types of surgeries decrease either perimeter or the mixture. The mixture is
defined for arbitrary necklace with beads of two colors (see Subsection 6.2), and it is
bounded by the square of the number of beads, and so we finally obtain a quadratic
upper bound in terms of perimeter only.

Note that instead of the combinatorial length of words (length of paths, perimeter)
we consider a modified length, where different letters and syllabi have different
lengths (Subsection 6.1). With respect to this modified length j � j, the length of
the top/bottom of every q-band Q is just the number of 2-cells in Q, and the rim
� -bands with bounded number of .�; q/-cells can be removed from a diagram with
decrease of perimeter. Such properties are exploited in the paper many times. It is
easy to reformulate the final results in terms of the combinatorial length k � k since it
is ‚-equivalent to j � j.

Our presentation of the group G (Subsection 5.1) is highly non-aspherical, and
so van Kampen diagrams with the same boundary label can differ widely. We choose
minimal diagrams in Section 7, i.e. reduced diagrams with minimal number of disks
and, for given number of disks, with minimal number of .�; q/-cells. We do not claim
that a minimal diagram has minimal area or minimalG-area for fixed boundary label,
but to obtain the upper bound for the Dehn function, it suffices to bound from above
the G-areas of minimal diagrams.

However, even one has quadratic estimates for G-areas of disk-free diagrams
(i.e. diagrams overM ) and the required upper bound � F.n/ for the areas of disks
(see the definition in Section 7), the “snowman” decomposition of diagrams in the
union of subdiagrams with single disk defined in [22], would give at least cubic upper
bound for the G-area of the entire minimal diagram. Thus, without new tools one
could only hope to weaken the restriction from [22] to ˛ � 3.

The helpful property is that a minimal diagram cannot contain subdiagram formed
by a disk and a very special trapezium connected by a “shaft” (Section 7). At first
sight, it seems that such subdiagrams are extremely rare. But they become ordinary
if the work of an S-machine has sufficiently many control steps (Steps 1�–5� in
Subsection 4.1). Hence the absence of these exotic subdiagrams can help. And it
helps indeed provided the sum � of the lengths of all “shafts” (see Definition 7.7)
linearly bounded in terms of the perimeter.

To obtain such a linear estimate, in Section 8, we introduce designs formed by
two finite sets of segments and prove a pure combinatorial proposition. So there
are neither machines nor groups, nor van Kampen diagrams in Section 8, and the
reader can start with that short section. (Is there even shorter proof or a reference
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to a known property? Although the author did believe that the linear estimate took
place, he wasted time devising a proof.)

Since � � cn for some constant c > 0, where n is the perimeter, one can estimate
the G-area of a diagram in terms of the sum nC � instead of n (Section 9), and this
is another new tool for obtaining the required upper bound for the area.

2. General properties of S-machines

2.1. S-machines as rewriting systems. There are several interpretations ofS -mach-
ines in groups. In particular, one can define an S -machine as a group that is a multiple
HNN extension of a free group. Here we slightly modify the original definition [22]
using [19] and define S -machines as rewriting systems working with words in group
alphabets. The precise definition of an S -machine S is as follows.

The hardware of an S -machine S is a pair .Y;Q/, where Q D tNiD0Qi and
Y D tNiD1Yi (for convenience we always set Y0 D YNC1 D ;). The elements
from Q are called state letters, the elements from Y are tape letters. The sets Qi
(resp., Yi ) are called parts ofQ (resp., Y ).

The language of admissible words consists of all reduced words W of the form

q˙11 u1q
˙1
2 : : : ukq

˙1
kC1; (2.1)

where every subword q˙1i uiq
˙1
iC1 either:

� belongs to .QjF.YjC1/QjC1/˙1 for some j and ui 2 F.YjC1/, where F.Yi / is
the set of reduced group words in the alphabet Y ˙1i ; or

� has the form quq�1 for some q 2 Qj and u 2 F.YjC1/; or
� is of the form q�1uq for q 2 Qj and u 2 F.Yj /.
(The second and third items extend the definition of admissible words in comparison
with [22], and the language of admissible words is equal to the language from [19].)

We shall follow the tradition of calling state letters q-letters and tape letters
a-letters, even though we shall sometimes use letters different from q and a as state
or tape letters. The number of a-letters in a word W is the a-length jW ja of W .
Usually parts of the set Q of state letters are denoted by capital letters. They may
differ fromQi for some S-machines. For example, a set P would consist of letters p
with various indices. Then we shall say that letters in P are p-letters or P -letters.)
The length of a word W , i.e. the number of all letters in W , is denoted by kW k.

If a group wordW overQ[Y has the form u0q1u1q2u2 : : : qsus , and qi 2 Q˙1j.i/,
i D 1; : : : ; s, ui are group words in Y , then we shall say that the base of W is
base.W / � Q˙1

j.1/
Q˙1
j.2/

: : :Q˙1
j.s/

Here Qi are just letters, denoting the parts of the
set of state letters. Note that the base is not necessarily a reduced word, and the
sign � is used for letter-by-letter equality of words. The subword of W between
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theQ˙1
j.i/

-letter and theQ˙1
j.iC1/

-letter will be called aQ˙1
j.i/
Q˙1
j.iC1/

-sector ofW . A
word can have manyQ˙1

j.i/
Q˙1
j.iC1/

-sectors.
Instead of specifying the names of the parts ofQ and their order as in

Q D Q0 tQ2 t � � � tQN ;

we say that the standard base of the S -machine is Q0 : : :QN . An admissible word
with standard base is called a configuration of the S-machine.

An S -machine also has a set of rewriting rules ‚. To every � 2 ‚, two
sequences of reduced words are assigned: ŒU1; : : : ; Um�, ŒV1; : : : ; Vm�, and a subset
Y.�/ D [Yj .�/ of Y , where Yj .�/ � Yj . A rule has the form:�

U1 ! V1; : : : ; Um ! Vm
�
;

where the following conditions hold:
� Each of Ui and Vi is a subword of an admissible word, both Ui and Vi have base
Q`Q`C1 : : :Qr (` D `.i/ � r D r.i/) and have a-letters from Y.�/.

� `.i C 1/ D r.i/C 1 for i D 1; : : : ; m � 1.
� U1 and V1 must start with aQ0-letter and Um and Vm must end with aQN -letter.

The pair of words Ui ; Vi is called a part of the rule, and is denoted ŒUi ! Vi �.
The notation � W ŒU1 ! V1; : : : ; Um ! Vm� contains all the necessary information

about the rule except for the sets Yj .�/. In most cases it will be clear what these
sets are, and very often the sets Yj .�/ will be equal to either Yj or ;. By default
Yj .�/ D Yj .

Every S -rule

� D
�
U1 ! V1; : : : ; Um ! Vm

�
has an inverse

��1 D
�
V1 ! U1; : : : ; Vm ! Um

�
;

which is also a rule of S ; we set Yi .��1/ D Yi .�/. We always divide the set of
rules ‚ of an S -machine into two disjoint parts, ‚C and ‚� such that for every
� 2 ‚C, ��1 2 ‚� and for every � 2 ‚�, ��1 2 ‚C (in particular ‚�1 D ‚, that
is any S -machine is symmetric). The rules from ‚C (resp., ‚�) are called positive
(resp., negative). In particular, ŒU1 ! U1I : : : IUm ! Um� is never an S-rule. It is
always the case that Yi .��1/ D Yi .�/ for every i .

For every word Ui � u0qlu1qlC1 : : : qrur�lC1 from the definition of the rule � ,
we denote by xUi its trimmed form qlu1qlC1 : : : qr starting and ending with state
letters. To apply an S -rule � to an admissible word W (2.1) means:
� to check if all tape letters of W belong to the alphabet Y.�/ and every state letter
of W is contained in some subword xU˙1i of W ;
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� if W satisfies this condition, then to replace simultaneously every subword

xU˙1i � .qlu1qlC1 : : : qr/
˙1

by subword
.u�10 Viu

�1
r�lC1/

˙1
� .u�10 v0q

0
1v1 : : : q

0
rvr�lC1u

�1
r�lC1/

˙1 .i D 1; : : : ; m/I

� to trim a few first and last a-letters (to obtain an admissible word starting and
ending with q-letters) followed by the reduction of the resulted word.
The following convention is important in the definition of S -machine:

After every application of a rewriting rule, the word is automatically reduced. The
reduction is not regarded as a separate step of an S -machine.

For example, applying the rule � W Œq1 ! aq01b
�1; q2 ! cq02d� to the admissible

word W � q1bq2dq�12 q�11 one first obtains the word

aq01b
�1bcq02ddd

�1.q02/
�1c�1b.q01/

�1a�1;

then after trimming and reduction one has q01cq02d.q02/�1c�1b.q01/�1. But the rule �
would not be applicable to W if Y2.�/ D ; or Y2.�/ D fa0g, where a0 ¤ b.

If a rule � is applicable to an admissible word W (i.e. W belongs to the domain
of � ) then the word W is called � -admissible, and W � � denotes the word obtained
after the application of � .

A computation of length or time t � 0 is a sequence of admissible words W0 !
� � � ! Wt such that for every i D 0; : : : ; t �1 the S-machine passes fromWi toWiC1
by applying one of the rules �i from‚. The wordH D �1 : : : �t is called the history
of the computation. Since Wt is determined by W0 and the history H , we use the
notation Wt D W0 �H .

A computation is called reduced if its history is a reduced word. Clearly, every
computation can be made reduced (without changing the initial and final words of
the computation) by removing consecutive mutually inverse rules.

An S-machine is called recognizing if it has the following attributes. There are
admissible words with the standard base called input configurations and accept (stop)
configuration. There are input sectors (at least one) and other sectors are empty for
input configurations, and all sectors are empty for the accept one. (However in this
paper, some S-machines have no input or accept configurations.) The state letters of
the input (of accept) configuration form a special vector Es1 (vector Es0) whose letters
are involved in one rule only and are completely changed by this rule.

A configuration W is said to be accepted by an S-machine M if there exists at
least one computation, called accepting computation, which starts with W and ends
with the accept configuration.

Assume that M is an S -machine, and there is (only one) accept configuration.
Then the a-length jW ja of an input configuration W is the number of tape letters
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in W . If the configuration W is accepted, denote by T .W / the minimal time of
computations accepting it. Then the time function T .n/ D TM .n/ is defined as
maxfT .W /g over all accepted input configurations W with jW ja � n.

The generalized time function T 0.n/ is defined for every S-machine having a
unique accept configuration. The definition is similar to the above definition of time
function but one should consider all accepted configurations W , not just input ones.
Therefore T .n/ � T 0.n/. (Presumably, n, in the definition of T 0.n/, corresponds to
the a-length of the accepted configurations.)

Time functions and generalized time functions are taken up to ‚-equivalence.

2.2. Simplifying the rules ofS -machines. Wesay that two recognizing S-machines
are equivalent if they have the same language of acceptable words and ‚-equivalent
time functions. Next lemma simplifies the rules of S-machine. In particular, one
needs Property (1) to define trapezia (Definition 5.5).
Lemma 2.1. Every S-machine S is equivalent to an S-machine S 0, where
(1) Every part Ui ! Vi of every rule � has 1-letter base:

Ui � viqiuiC1; Vi � v
0
iq
0
iu
0
iC1;

where qi ; q0i are state letters inQi .
(2) In every part viqiuiC1 ! v0iq

0
iu
0
iC1, we have that

kvik C kv
0
ik � 1 and kuiC1k C ku

0
iC1k � 1:

(3) Moreover, one can construct S 0 so that for every rule we haveX
i

�
kvik C kv

0
ik C kuik C ku

0
ik
�
� 1:

Proof. (1) Property (1) can be obtained after adding auxiliary state letters and
splittings the rules of S . Assume, for example, that the part U1 ! V1 has 2-letter
base: q1aq2 ! q01a

0q02. Then we introduce auxiliary state letters qj .1/, qj .2/
(j D 0; : : : ; N ) and replace the rule � by the product of three rules �1, �2 and �3,
where
(�1) For �1 and j > 1, we replace base letters q in Vj by their q.1/-copies and

obtain the parts Uj ! Vj .1/, while the part U1 ! V1 is replaced by the two
parts q1a! q1.1/, q2 ! q2.1/;

(�2) For �2 and j > 1, we have now the parts Vj .1/ ! Vj .2/, where Vj .2/ is a
copy of Vj .1/ after replacement q.1/! q.2/, while the part U1 ! V1 of � is
replaced by two parts q1.1/! q1.2/ with Y2.�2/ D ; and q2.1/! q2.2/;

(�3) For �3 and j > 1, we have Vj .2/ ! Vj , while the first part splits now as
q1.2/! q01a

0 and q2.2/! q02.



Polynomially-bounded Dehn functions of groups 323

The key feature of the new S-machine zS is in the following obvious property:

There is a one-to-one correspondence between computations w0 ! � � � ! wt of zS
(with any base) such that w0, wt do not have auxiliary q-letters and computations
of S connecting the same words. For every historyH of such computation of S , the
corresponding history of computation of zS is obtained from H by replacing every
occurrence of the rule �˙1 by the 3-letter word .�1�2�3/˙1.

Clearly, by applying this transformation to an S-machine S several times, we
obtain an equivalent S-machine satisfying Property (1).

(2) Suppose Property (2) is not satisfied for a part Ui ! Vi . For example, suppose a
rule � of an S -machine S has the i th part of the form aviqiuiC1 ! v0iq

0
iu
0
iC1, where

uiC1; vi ; u
0
iC1; v

0
i are words in the appropriate parts of the alphabet of a-letters, vi is

not empty, a is an a-letter, qi ; q0i are q-letters (a very similar procedure can be done
in all other cases).

We want to replace � with two rules with smaller sums of lengths of their parts.
For this aim, we create a new S -machine zS with the same standard base and the
same a-letters as S . In order to build zS , we add one new (auxiliary) q-letter zqi
to each part of the set of q-letters, and replace the rule � by two rules � 0 and � 00.
The first rule � 0 is obtained from � by replacing the part viaqiuiC1 ! v0iq

0
iu
0
iC1

by aqiuiC1 ! zqiu0iC1, and all other parts Uj ! Vj by Uj ! zqj (here zqj is the
auxiliary q-letter in the corresponding part of the set of q-letters). The second rule � 00
is obtained from � by replacing the part viaqiuiC1 ! v0iq

0
iu
0
iC1 by vi zqi ! v0iq

0
i ,

and all other parts Uj ! Vj by zqj ! Vj .
Note that the sum of lengths of words in all parts of � 0 (resp., � 00) in zS is smaller

than the similar sum for � . Therefore, applying this transformation to an S-machineS

several times, we obtain an equivalent S-machine satisfying conditions (1) and (2).

(3) Similarly, one can obtain Property (3).

If YiC1.�/ D ; for an S-machine with Property (1), then the corresponding
component Ui ! Vi will be denoted Ui

`
! Vi and we shall say that the rule � locks

the QiQiC1-sectors. In that case we always assume that Ui ; Vi do not have tape
letters to the right of the state letters, i.e. it has the form viqi

`
! v0iq

0
i . Similarly,

these words have no tape letters to the left of the state letters if theQi�1Qi -sector is
locked by the rule.

Remark 2.2. The definitions of an admissible word and a rule application given
in Subsection 2.1 coincide with the the definitions from [22] in case of standard
base. However computations do not change the base. So to obtain the statement
of Lemma 2.4, we may use the main property of computations with standard base
obtained in [22].
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S-machines resemble multi-tape Turing machines (or algorithms). (The main
difference is that a Turing machine does not deal with negative letters.) We do not
give an accurate definition of Turing machines here since from now on we will not
use them in this paper (see, for example [7] or [22] for the definition). However, it
is important that the S-machine S.M/ constructed in [22] simulates the work of a
Turing machine M with time function T .n/ as follows. (See [22, Lemma 3.1 and
Proposition 4.1], though we use simpler notation below.)

Let M have one input sector YZ, and the input configurations have the form
W � yvz : : : , where v is a positive word in an alphabet A. Then there is an
S-machine S.M/ with input configurations of the form

�.W / D y1˛
nz1 : : : xy2vz2 : : : y3ı

nz3 : : : y4!
nz4;

where n D kvk (so S.M/ has four input sectors with tape words ˛n, v, ın and !n,
respectively); the S-machine S.M/ has time function ‚.T .n/3/, and it accepts the
configuration �.W / if and only if the configurationW is accepted byM . Moreover,
the S-machine S.M/ can be constructed so that for every configuration W 2 L

accepted by M with time T .W /, the S-machine S.M/ accepts this word with
time ‚.T .W /3/.
Remark 2.3. The “moreover” part is not formulated in [22] explicitly, but it follows
from Proposition 4.1.3 (b) since every Turing machine can be easily modified so
that the length of every accepting computation is ‚-equivalent to the space of this
computation.

In the present article, we will assume that the basic S-machine M1 has only one
input sector. Therefore,M1 has to have a few more rules in comparison with S.M/.
The input configurations ofM1 have the form

x�.W / D Ny1 Nz1 : : : Nx Nv Ny2 Nz2 : : : Ny3 Nz3 : : : Ny4 Nz4;

where Nv is a word in an alphabet xA, which copies the alphabet A (so the only input
word is Nv). The following rules ofM1 are added to the rules of S.M/.

For every (positive) letter a 2 A, there is a rule

�aW
�
Ny1 ! Ny1˛; Ny2 ! Na

�1
Ny2a; Ny3 ! Ny3ı; Ny4 ! Ny4!

�
;

where Na is a copy of a in the alphabet Na and all other sectors are locked by �a. They
also are locked by the connecting rule

�W
�
Ny1 ! y1; : : : Nx

`
! x; Ny2 ! y2; : : : Nz4 ! z4

�
;

which switches on the S-machineS.M/. If an input word �.W / is accepted byS.M/,
then x�.W / is accepted byM1, where Nv is a copy of v. Indeed, if Na is the last letter of
the word Nv, then the application of the rule �a moves the state letter Ny2 leftward and
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replaces Na by a from the right of Ny2. After n rules of this type, one can obtain the
word v between y2 and z2. These rules will also insert ˛n, ın, and !n in the sectors
Y1Z1, Y3Z3 and Y4Z4, respectively. So it remains to apply the rule � to obtain the
configuration �.W / accepted by S.M/. Also for the times of computations, we see
that TM1.x�.W // D O.TS.M/.�.W //.

Conversely, assume that the configuration x�.W / is accepted by M1. Then the
history of this accepting reduced computation has to be of the form

H � H0�H1�
�1H2� : : :H2s�1;

where H0;H2; : : : contain �˙1a -rules only and H1;H3; : : : are histories of S.M/.
However, H cannot have subwords of the form ��1Hi�. Indeed, if here Hi is a
reduced word �˙1a1 : : : �

˙1
at

, then the tape word u0 in the XY2 sector at the end of
the computation Ci with history Hi is obtained from the word u written there in
the beginning of Ci , after free multiplication from the right by the reduced word
Na�11 : : : Na�1t . But both u and u0 are empty since the rule � locks the XY2-sector.
Hence t D 0 and soHi is empty, a contradiction.

Thus, H � H0�H1, and the XY2-sector of the word x�.W / �H0 is empty being
locked by �. Hence the historyH0 has to be �at : : : �a1 if v � a1 : : : at , and the tape
word in the Y2Z2 sector of x�.W / �H0 has to be v while the tape words in the sectors
Y1Z1, Y3Z3 and Y4Z4 become ˛n, ın and !n as it follows from the definition
of �a-rules. Hence x�.W / � H0� � �.W /, and so �.W / is accepted my S.M/

and TM1.x�.W // > TS.M/.�.W /.
It follows that the S-machine M1 with one input sector enjoys the properties

of S.M/ from [22]:
Lemma2.4. LetM0 be a non-deterministic Turingmachine accepting the languageL

with a time function T .n/. Then there is an S-machineM1 with a single input sector
accepting the language L with time function ‚-equivalent to T .n/3.

Moreover, the S-machine M1 can be constructed so that for every word W 2 L

accepted by M0 with time T .W /, the S-machine M1 accepts this word with
time ‚.T .W /3/.
Remark 2.5. Later we will assume that the Turing machineM0 recognizes the values
of some suitable function according to Definition 1.2.

2.3. Some elementary properties of S -machines. The base of an admissible word
is not always a reduced word. However the following is an immediate corollary of
the definition of admissible word.
Lemma 2.6 ([16, Lemma 3.4]). If the i th component of the rule � has the form

viqi
`
! v0iq

0
i ;

i.e. YiC1.�/ D ;, then the base of any � -admissible word cannot have subwords
QiQ

�1
i orQ�1iC1QiC1.
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In this paper we often use copies of words. If A is an alphabet and W is a word
involving no letters from A˙1, then to obtain a copy of W in the alphabet A we
substitute letters from A for letters in W so that different letters from A substitute
for different letters. Note that if U 0 and V 0 are copies of U and V respectively
corresponding to the same substitution, and U 0 � V 0, then U � V .
Lemma 2.7. Suppose that the base of an admissible word W is QiQiC1. Suppose
that each rule of a reduced computation starting withW � qiuqiC1 and ending with
W 0 � q0iu

0q0iC1 multiplies the QiQiC1-sector by a letter on the left (resp., right).
And suppose that different rules multiply that sector by different letters. Then:
(a) the history of computation is a copy of the reduced form of the word u0u�1 read

from right to left (resp., of the word u�1u0 read from left to right). In particular,
if u � u0, then the computation is empty;

(b) the length of the historyH of the computation does not exceed kuk C ku0k;
(c) for every admissible word q00i u

00q00iC1 of the computation, we have

ku00k � max
�
kuk; ku0k

�
:

Proof. (a) Part (a) is obvious.

(b) To prove part (b), we choose a word Wi of the computation with shortest tape
word ui . This factorizes the history as H � H1H2, where H2 is the history of the
subcomputation Wi ! WiC1 ! � � � ! W 0. It follows that

kWiC1k D kWik C 1:

The next rule increases the length of admissible word again since the computation
is reduced and different rules multiply the sector by different letters, i.e. kWiC2k D
kWiC1k C 1. By induction, we have

ku0k � kuik C kH2k � kH2k:

To obtain the inequality kuk � kH1k, we consider the inverse computation W 0 !
� � � ! W . Hence

kHk D kH1k C kH2k � kuk C ku
0
k:

(c) The same argument proves Statement (c) since the length of u00 is either between
kuik and ku0k or between kuik and kuk.

Lemma 2.8. Suppose the base of an admissible word W is QiQiC1. Assume that
each rule of a reduced computation starting with W � qiuqiC1 and ending with
W 0 � q0iu

0q0iC1 multiplies the QiQiC1-sector by a letter on the left and by a letter
from the right. Suppose different rules multiply that sector by different letters and
the left and right letters are taken from disjoint alphabets. Then:
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(a) for every intermediate admissible word Wj of the computation, we have

kWj k � max
�
kW k; kW 0k

�
I

(b) the length of the historyH of the computation does not exceed 1
2
.kuk C ku0k/.

Proof. (a) If we choose the wordWi of minimal length, then after multiplications of
the form ui ! uiC1 D auib we have no cancellation from the left or from the right.
If we have the former option, then we will have no cancellation from the left after the
transition uiC1 ! uiC2, and therefore

kuiC1k � kuiC2k � � � � � ku
0
k:

Hence kuj k � ku0k if j � i . Analogously, kuj k � kuk if j � i .

(b) The word u0 results from u after multiplication from the left and from the right by
reduced words of length kHk: i.e. u0 is freely equal to AuB , where kAk D kBk D
kHk. There can be cancellations in the products Au and uB but afterwards there are
no cancellations since the words A and B are written in disjoint alphabets. Hence
the reduced length of u0 is at least

kAk C kBk � kuk D 2kHk � kuk;

whence 2kHk � kuk C ku0k, as required.

The following lemma is proved in [16, Lemma 3.7].

Lemma 2.9. Suppose the base of an admissible wordW isQiQ�1i (resp.,Q�1i Qi ).
Suppose each rule � of a reduced computation C starting with W � qiuq

�1
i

(resp., q�1i uqi ), where u ¤ 1, and ending withW 0 � q0iu
0.q0i /

�1 (resp., .q0i /
�1u0q0i /

has a part qi ! a�q
0
ib� , where b� (resp., a� ) is a letter, and for different � -s the

b� -s (resp., a� -s) are different. Then the history of the computation has the form
H1H

k
2H3, where k � 0,

kH2k � min
�
kuk; ku0k

�
; kH1k � kuk=2; and kH3k � ku

0
k=2:

Lemma 2.10. Under the assumptions of Lemma 2.9, we have

jWi ja � max
�
kuk; ku0k

�
for every admissible word Wi of the computation C .

Proof. It suffices to repeat the argument from the proof of Lemma 2.7 (c).
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3. Auxiliary S-machines and constructions

3.1. Primitive S-machines. Here we define a very simple S-machine Pr, which
has neither input nor accept configurations. As a part of other S-machines, it will be
used to read the tape words and to recognize a computation by its history and also to
check the order of state letters in the bases of computations.

The standard base of Pr has three lettersQ1PQ2, whereQ1Dfq1g,P Dfp1; p2g,
andQ2 D fq2g. The alphabet Y is Y 1tY 2, where Y 2 is a copy of Y 1. The positive
rules of Pr are defined as follows.
� �1.a/ D Œq1 ! q1; p1 ! a�1p1a0; q2 ! q2�, where a is a positive letter
from Y 1 and a0 is its copy from Y 2.
Comment. The state letter p1 moves left replacing letters a from Y 1 by their
copies a0 from Y 2.

� �12 D Œq1
`
! q1; p1 ! p2; q2 ! q2�.

Comment. When p1 meets q1, it turns into p2.

� �2.a/ D Œq1 ! q1; p2 ! ap2.a0/�1; q2 ! q2�.
Comment. The state letter p2 moves right towards q2 replacing letters a0 from Y 2
by their copies a from Y 1.

Lemma 3.1. Let C WW0! � � � !Wt be a reduced computation of the S-machine Pr
with the standard base and with t � 1. Then:

(1) if jWi ja > jWi�1ja for some i D 1; : : : ; t � 1, then jWiC1ja > jWi jaI

(2) jWi ja � max.jW0ja; jWt ja/ for every i D 0; 1; : : : ; t ;

(3) if W0 � q1up1q2 and Wt � q1vp2q2 for some words u; v, then u � v,
jWi ja D jW0ja for every i D 0; : : : ; t , t D 2k C 1, where k D jW0ja, and p1
(resp., p2) meets q1 in Wk (in WkC1) and the sector Q1P is empty in Wk and
in WkC1; moreover, the history H of C is uniquely determined by W0 (by Wt ),
provided W0 and Wt have the form q1up1q2 and q1vp2q2; vice versa, the
historyH uniquely determines words u and v under this assumption;

(4) it is not possible that W0 � q1up1q2 and Wt � q1vp1q2 for some u; v, and it
is not possible that W0 � q1up2q2 and Wt � q1vp2q2;

(5) if W0 � q1up1q2 or W0 � q1p1uq2, or W0 � q1up2q2, or W0 � q1p2uq2

for some word u, then jWi ja � jW0ja for every i D 0; : : : ; t .

Proof. Note that each of the rules .�j /˙1.a/ (j D 1; 2) either moves the state letter
left or moves it right, or deletes one letter from left and one letter from right, or insert
letters from both sides. In the later case, the next rule of a computation must be
again �.j /˙1.b/ for some b, and if the computation is reduced, it again must increase
the length of the configuration by two. Therefore, Statement (1) is true and (2)
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is also true since one can choose a shortest Wj and consider the subcomputation
Wj ! � � � ! Wt and the inverse subcomputation Wj ! � � � ! W0.

Since �12 locks Q1P -sector, the p-letter must reach q1 moving always left to
change p1 by p2, and so Wk � q1p1 : : : : The next rule of the form �1.a/˙1 could
increase the length of the configuration, which would imply that all consecutive rules
have to have the same type and p1 would never been replaced by p2, a contradiction.
Hence the next rule is �12, and arguing in this way, one uniquely reconstructs the
whole computation in case (3) for given W0 or Wt , and vice versa, the history H
determines both u and v. Property (4) holds for same reasons.

Note that no rule of Pr changes the projection of a word onto the free group
with basis Y1 if the state letter are mapped to 1 and the letters from Y2 are
mapped to their copies from Y1. Since the word u is mapped to itself, we have
jq1up1q2ja D kuk � jWi ja. The other cases of (5) are similar.

Remark 3.2. Similar tricks will later be referred to as projection arguments.
Lemma 3.3. If W0 ! � � � ! Wt is a reduced computation of Pr with base
Q1PP�1.Q1/�1 or .Q2/�1P�1PQ2 and W0 � qipiu.pi /�1.qi /�1 .i D 1; 2/

or W0 � .qi /�1.pi /�1vpiqi .i D 1; 2/ for some words u; v, then jWj ja � jW0ja
for every j D 0; : : : ; t .

Proof. The statement follows from the projection argument (Remark 3.2).

Remark 3.4. Also we will use the right analog Pr� of Pr: now p1 should move
right, meet q2 locking PQ2-sector and turning into p2, and move back towardsQ1.
Remark 3.5. Assume that a standard base has two (or more) subwords of the form
Q1PQ2, for example Q1PQ2P 0Q3. Then one can define parallel or sequential
composition of two primitive S-machines.

For the parallel composition, the same rule changes both subwords with bases
Q1PQ2 and Q2P 0Q3. One assumes that the tape alphabet of the sector Q2P 0

(of P 0Q3) is a copy of the tape alphabet of the sectorQ1P (of PQ2, resp.) and the
rules of Pr change simultaneously the subwords with bases Q1PQ2 and Q2P 0Q3

(e.g. simultaneously moves left both p1 and .p0/1, and so on). Every rule (e.g. �1.a/)
is applicable to a word iff it is applicable to both these subwords.

In case of sequential work, we have a primitive S-machine working with one of
these two bases, say with Q1PQ2, while the sector P 0Q3 is locked with the state
letter .p0/1. The second primitive S-machine can compute with baseQ2P 0Q3 when
the sector PQ2 is locked (and so the first S-machine stays idle) with state p2. For
this goal, one needs a connecting rule �21; it locks the sector PQ2 and changes the
state P -letters for new ones to switch off the first primitive S-machine and to switch
on the second one.

It is clear that in the same way one can define a more complex compositions P of
primitive S-machines, with several stages of parallel and sequential work. We will
consider compositions P, where every sector can be changed at one stage only.



330 A. Yu. Olshanskii

Lemma 3.6. Let us have a composition P of primitive S-machines with parallel
or/and sequential work, and C WW0 ! � � � ! Wt be a reduced computation of P with
standard base. Then:
(a) jWj ja � max.jW0ja; jWt ja/ for every configuration Wj of C ; moreover,

jW0ja � � � � � jWt ja

if every P -letter neighbors someQ-letter in the word W0;
(b) t � kW0k C kWtk � 4; moreover,

t � 2kWtk � 4

if every P -letter neighbors someQ-letter in the word W0.

Proof. (a) Let Wr be a shortest word of the computation. Then either

jWr ja D jWrC1ja D � � � D jWt ja or jWr ja D jWrC1ja D � � � D jWsj < jWsC1ja

for some s. It follows that the number of sectors increasing their lengths by two at
the transition Ws ! WsC1 is greater than the number of the sectors decreasing the
lengths by 2. Now it follows from Lemma 3.1 (1) that the same primitive S-machine
will continue increasing the lengths of the whole configurations, i.e.

jWsC1ja < jWsC2ja < � � � :

So for every j � r , we have jWj ja � jWt ja. Similarly, we have jWr ja � jW0ja
for j � r . Under the additional assumption about P -letters, W0 is the shortest
configuration by the projection argument.

(b) If the rules of P do not change the lengths of configurations, then every control
letter runs back and forward only one time, and the inequality follows. (One takes
into account that the base has length at least 3.) If kWrk < kWrC1k for some r ,
then every next transition keeps increasing the length by Lemma 3.1 (1), and so the
inequality holds as well.

3.2. S-machine with historical sectors. To control the space of computations, we
endowagivenS-machinewith historical sectors. Let us assume that anS -machineM1

satisfies the conditions of Lemma 2.1 and has hardware .Q; Y /, whereQ D tmiD0Qi ,
and the set of rules ‚. The new S-machineM2 has hardware

Q0;rtQ1;`tQ1;rtQ2;`tQ2;rt� � �tQm;`; Yh D Y1tX1tY2t� � �tXm�1tYm;

where Qi;` and Qi;r are (left and right) copies of Qi , Xi is a disjoint union of
two copies of ‚C, namely Xi;` and Xi;r . (There is neither Q0;`, nor Qm;r , nor X0,
norXm.) The positive rules ofM2 are in one-to-one correspondence with the positive
rules of M1.



Polynomially-bounded Dehn functions of groups 331

If � D ŒU0 ! V0; : : : ; Um ! Vm� is a positive rule of M1 with parts Ui ! Vi
of the form viqiuiC1 ! v0iq

0
iu
0
iC1, then the corresponding two parts of the rule �h

are Ui;` ! Vi;` and Ui;r ! Vi;r , with

Ui;` � viqi;`a�;i ; Vi;` � v
0
iq
0
i;` and Ui;r � qi;ruiC1; Vi;r � b�;iq

0
i;ru
0
iC1;

where a�;i (resp., b�;i ) is the copy of � in Xi;` (in Xi;r ). We also claim that a
sector Qi;rQiC1;` is locked by �h if and only if the sector QiQiC1 is locked by �
(i D 1; : : : ; m � 1).
Comment. Every computation of the S-machine M2 with history H coincides with
the computation ofM1 if one observes it only in working sectorsQi;rQiC1;l . In the
standard base, the working sectors of M2 alternate with historical sectors Qi;`Qi;r .
Every positive rule �h multiplies the content of the historical sectorQi;`Qi;r by the
corresponding letter b�;i from the right and by letter a�1

�;i
from the left.

Remark 3.7. The state letters of the S-machineM1 split when passing toM2. There
is a rule �h corresponding to the start (to the accept) rule � of M1. By definition,
the set of letters Yh.�h/ has no letters from the right alphabets Xi;r (from the left
alphabets X`;i ) if � is the start (resp., the stop) rule ofM1.

However we do not define input/stop configurations of M2 since the historical
sectors are never locked. By definition, everyQi�1;rQi;l is the working sector ofM2.
The input sector ofM2 is the working sector corresponding to the input sector ofM1.
Remark 3.8. It follows from the definition ofM2 that only Properties (1) and (2) of
Lemma 2.1 hold forM2, but not Property (3).

The sectors of the formQi;`Q
�1
i;`

andQ�1i;rQi;r (in a non-standard base) are also
called historical. Historical sectors help to give a linear estimate of the space of
every computation W0 ! � � � ! Wt in terms of kW0k and kWtk.
Lemma3.9. LetW0! � � � !Wt be a reduced computation ofM2 with baseQi;`Qi;r
and history H . Assume that the a-letters of W0 belong to one of the alphabets Xi;`,
Xi;r . Then kHk � jWt ja and jW0ja � jWt ja.

Proof. LetW0�qv0q0 and assume thatv0 has no letters fromXi;r . ThenWt�q00vtq000
with vt D uv0u

0, where u is a copy of H�1 in the alphabet Xi;` and u0 is a copy
of H in Xi;r . So no letter of u0 is cancelled in the product uv0u0, Therefore,
jWt ja � ku

0k D kHk and jWt ja � jW0ja

Lemma 3.10. If the base of an admissible word of the S-machine M2 has length at
least 3, then it contains a historical sector.

Proof. The base contains a subword of the form Q0Q00Q000 with three letters
fromQ˙1. It follows from the definition of admissible word that eitherQ0Q00-sector
orQ00Q000-sector is historical since every non-historical sector of the S-machine M2

has to have neighbor historical sectors.
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Lemma3.11. Let a reduced computationW0!W1! � � � !Wt of the S-machineM2

have 2-letter base and the history of the formH � H1H k
2H3 .k � 0/. Then for each

tape wordwi between two state letters ofWi .i D 0; 1; : : : ; t /, we have the inequality

kwik � kw0j C kwtk C 2h1 C 3h2 C 2h3;

where hj D kHj k .j D 1; 2; 3/.

Proof. By Lemma 2.1 (2) and the definition ofM2, we have

jkwik � kwi�1kj � 2

for every i D 1; : : : ; t . Therefore for i � h1, we have kwik � kw0kC2h1. Similarly,
kwik � kwtk C 2h3 for i � t � h3. It remains to assume that h1 < i < t � h3.

Denote by Wj the words wi with i D h1 C jh2, j D 0; 1; : : : ; k. If

W1 D W0 �H2 D uW0v

for some words u and v depending onH2 and on the sector, then

W2 D uW1v D u
2W0v

2

in free group, since the histories of the computations W0 ! � � � ! W1 and W1 !
� � � ! W2 are both equal to H2. Hence Wj D ujW0v

j , where both u and v have
length at most h2 by Lemma 2.1 (2) and the definition of M2.

By Lemma 8.1 from [18], the length of an arbitrary word Wj is not greater than

kuk C kvk C kW0k C kWkk;

provided 0 � j � k.
If ji � jh2j � h2=2 for some j , then jkwik � kWj kj � h2, and therefore

kwik � kuk C kvk C kW0k C kWkk C h2:

Since kW0k � kw0k C 2h1 and kWkk � kwtk C 2h3, we obtain

kwik � kukCkvkCkw0kCkwtkC2h1C2h3Ch2 � kw0jCkwtkC2h1C2h3C3h2

for every i , as required.

Lemma 3.12. For any reduced computation W0 ! � � � ! Wt of M2 with base of
length at least 3, we have

jWi ja � 9
�
jW0ja C jWt ja

�
.0 � i � t /:
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Proof. Let Q˙1i1 : : :Q˙1im be the base of the computation. There are computations
with the samehistoryH and basesQ˙1i1 : : :Q

˙1
im1

,Q˙1im1: : :Q
˙1
im2
; : : : ;Q˙1ims�1

: : :Q˙1ims
,

where each base has length 3 or 4. Hence it suffices to prove the lemma for any
computation with base of the form Q0Q00Q000 or Q0Q00Q000Qiv . By Lemma 3.10,
every such computation contains a historical sector, sayQ00Q000. Consider two cases:
1. The historical sector has the formQi;`Qi;r . By Lemma 2.8, we have

kHk � 1
2

�
jW0ja C jWt ja

�
:

It follows from Lemma 2.1 (2) that jjWiC1ja � jWi jaj � 6 for every neighbor
admissible words. Therefore,

jWi ja � max
�
jW0ja; jWt ja

�
C 3kHk

� max
�
jW0ja; jWt ja

�
C

3
2

�
jW0ja C jWt ja

�
�

5
2

�
jW0ja C jWt ja

�
:

2. The historical sector has form Qi;`Q
�1
i;`

or Q�1i;rQi;r . Then one can apply
Lemma 2.9 to the sector Q00Q000 and obtain the factorization H � H1H

k
2H3, with

k � 0,

h2 � min
�
kuk; ku0k

�
; h1 � kuk=2; and h3 � ku

0
k=2;

where u and u0 are the a-words of W0 and Wt , respectively in the historical sector
and hj D kHj k for j D 1; 2; 3. Since every Wi has at most three sectors, applying
Lemma 3.11 to each of them, we obtain:

jWi ja � jW0ja C jWt ja C 3.2h1 C 3h2 C 2h3/

� jW0ja C jWt ja C 3jW0ja C 9min
�
jW0ja; jWt ja

�
C 3jWt j

� 9
�
jW0ja C jWt ja

�
:

3.3. Division S-machine. Here we start with an S-machine D1. This S-machine
has two input sectors with words ak and b` and checks whether 2k divides ` or not.

The standard base of D1 is S.1/S.2/T .1/T .2/. The first input sector S.1/S.2/
has one-letter alphabet fag, the second input sector T .1/T .2/ has alphabet fbg. Also
we have one-letter alphabet fa0g for the sector S.2/T .1/. We omit some parts of
the rules in the list below if these parts do not change configurations (e.g. s ! s

for s 2 S.1/ is a part of �1).
� �1W Œs1 ! a�1s1a

0�; Œt1 ! t1b
�1�, s1 2 S.2/, t1 2 T .1/.

Comment. The state letter s1 moves left changing letter a by its copy a0, while t1
erases one letter b.

� �12W Œs
`
! s; s1 ! s2�, s 2 S.1/, s2 2 S.2/.

Comment. The rule �12 locks the sector S.1/S.2/ and replaces the state letter s1
by s2.
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� �2W Œs2 ! as2.a
0/�1�; Œt1 ! t1b

�1�.
Comment. s2 moves right toward T .1/ replacing a0 by a, while t1 erases the
letter b.

� �21W Œs2
`
! s1�.

Comment. This rule locks the sector S.2/T .1/ and replaces s2 by s1.

� �3W Œs1
`
! t1�; Œt1

`
! t2�.

Comment. The state t2 can appear if both sectors S.2/T .1/ and T .1/T .2/ are
empty.

We call a transition W ! W 0 given by the rule �˙11 or �˙12 wrong if it increases
the lengths of both sectors S.1/S.2/ and S.2/T .1/.
Lemma 3.13. Let W0 ! � � � ! Wt be a reduced computation of the S-machine D1
with standard base and the first transition W0 ! W1 is wrong. Then all subsequent
transitions are wrong too.

Proof. Let the first rule � be �˙11 . Then the first transition (restricted to the sectors
S.1/S.2/ and S.2/T .1/) has the form sus1vt1 ! sua�1s1.a

0/˙1vt1, where the
words u; v; ua�1; .a0/˙1v are reduced. It follows that the only possible rule for the
next transition is � again, W2 contains reduced form sua�2s1.a

0/˙2vt , and so on.
The case � D �˙12 is similar.

Lemma 3.14. (1) Suppose we have a reduced computationW0 ! � � � ! Wr of D1,
where W0 � saks1t1b`t 0, where t 0 2 T .2/, and Wr � : : : ti t 0 .i D 1; 2, i.e. the
sector T .1/T .2/ is empty/. Then the exponent ` is divisible by 2k.

(2) Conversely, if 2k divides `, then there is a computation

saks1t1b
`t 0 ! � � � ! sakt2t

0

of length j`j C j`=kj C 1 for k ¤ 0 and of length 1 for k D 0.

Proof. (1) If k D 0, then any transition given by �˙11 or �˙12 would be wrong, and
by Lemma 3.13. one can never obtain Wr , a contradiction. So we have no such
transition in the computation. But other rules do not change the exponent `. Hence
` D 0. Thus, we assume further that k ¤ 0.

By Lemma 3.13, there are no wrong transitions in the computation. Therefore if
the first rule is � D �˙11 , it has to move s1 left. Moreover, we have �k as the prefix
of the history, and

Wk � ss1.a
0/kt1b

`�kt 0:

The next transition is not wrong, and the only possible next rule is �12. Now s2
has to move right, we have jkj such transitions, and obtain

W2kC1 � sa
ks2t1b

`�2kt 0:
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Since the next rule is not wrong, it has to be �21. If ` � 2k ¤ 0, then the T .1/T .2/
sector is not locked, and the rule �3 does not apply. Thus the next transition
W2kC2 ! W2kC3 is given by � again, and one should repeat the cycle obtaining

W4kC3 � sa
ks2t1b

`�4kt 0;

and so on; the rule �3 will never apply if ` � .2k/m ¤ 0 for every m � 0.
There is another possibility for the first rule: � D ��121 . Since the second transition

cannot be wrong by Lemma 3.13, it is given by ��12 . Then we will obtain cycles
as above, but having reverse direction. The rule �3 will never apply if `C 2k ¤ 0,
`C 4k ¤ 0; : : : : Thus, Statement (1) is proved by contradiction.

(2) If ` D 2km or ` D �2km for some m � 0, the required computations can be
immediately constructed according to the samples from part (1) of the proof.

Nowwewant to modify the S-machineD1 as follows. To define the S-machineD2
we add one more part T .3/ to the standard base. The sector T .2/T .3/ serves to count
the number of cycles of the S-machine D1. So it is empty for the start configuration
ofD2, and the rule �21 ofD1 extended to the rule ofD2 has one more part: Œt 0 ! t 0c�,
where t 0 2 T .2/. Clearly, Properties (1) and (2) of Lemma 3.14 hold for D2 as well.
Moreover, repeating the proof of Property (2), we see that one obtains cm in sector
T .2/T .3/ with m D `

2k
when the sector T .1/T .2/ becomes empty.

The furthermodification is needed sincewe should check the divisibility by .2k/3,
which, in turn is necessitated byLemma 2.4. The S-machineD3 has the same standard
base as D2 but it checks divisibility by 2k three times, so its rules are subdivided in
three parts.

The rules of the first part are exactly the rules of the S-machine D2. The rule �3
of D2 serves as a connecting rule between the rules of the first part and the rules of
the second part. The difference between these two parts is that the sectors T .1/T .2/
and T .2/T .3/ interchange their roles: a state letter from T .2/ erases letters in the
sector T .2/T .3/ when the analogs of �1 and �2 work, and a state letter from T .1/

add one letter to the sector T .1/T .2/ when the analog of �21 is applied. (We do
not introduce notation for all state letters and all rules since we do not need them.)
The rules of the third part are absolutely similar to the rules of D1, i.e. the sector
T .2/T .3/ is locked.
Remark 3.15. Thus, one can repeat the argument from the proof of Lemma 3.14 (1,2)
three times to conclude that starting with an input configuration, the S-machine D3
can empty all the sectors, except for sector S.1/S.2/ if and only if the exponent ` is
divisible by .2k/3.

Finally, we add a rule � erasing a-letters of the sector S.1/S.2/ with non-trivial
part Œs ! sa�1� for s 2 S.1/ locking other sectors, and if all the sectors become
empty, one more rule �0 (the stop rule) locks all the sectors and changes all the state
letters for the letters of the stop configuration. Let us denote the obtained S-machine
by D4.
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Lemma 3.16. (1) Supposewe have a reduced accepting computationW0! � � � !Wr
of D4, whereW0 � saks1t1b`t 0t 00 is an input configuration. Then the exponent `
is divisible by .2k/3.

(2) Conversely, if .2k/3 divides `, then there is an accepting computation starting
with W0 � saks1t1b`t 0t 00 of length ‚.j`j C jkj/.

Proof. Properties (1), (2) follows from similar properties of D3 mentioned in Rem-
ark 3.15.

The next modification is obtained by adding historical sectors to the standard base
of D4. The approach is similar to that described in Subsection 3.2. The standard
base of D5 is

S.1/rS.2/`S.2/rT .1/`T .1/rT .2/`T .2/rT .3/`;

and the rules of D5 are the extensions of the rules of D4 to historical sectors as this
was defined in Subsection 3.2. The following lemma is an analog of Lemma 3.12.

Lemma 3.17. For any reduced computation W0 ! � � � ! Wr of the S-machine D5
with base of length at least 3, we have

jWi ja � 9
�
jW0ja C jWr ja

�
.0 � i � r/:

3.4. Control state letters. The work of the main S-machine will be checked by
control state letters running back and forward along the sectors from time to time.
The control letters behave as p-letters of the primitive S-machines Pr or Pr�.

Suppose M is an S -machine with a standard base Q0Q1 : : :Qs . We denote
byMc the S-machine with standard base

P0 tQ0 tR0 t P1 tQ1 tR1 t � � � t Ps tQs tRs:

For every rule � of M , its i th part ŒviqiuiC1 ! v0iq
0
iu
0
iC1� is replaced in Mc with

three parts �
vip

i `
! v0ip

i
�
;
�
qi

`
! q0i

�
;
�
r iuiC1 ! r iu0iC1

�
(3.1)

(i D 0; : : : ; s, pi 2 Pi , r i 2 Ri ). Here we should use one more
`
! if there is

`
! in

the definition of the component ofM .
Comment. Thus, the sectors PiQi and QiRi are always locked, and three state
letters pi , qi , r i work together in Mc as the single qi in M . Of course, such
a modification is useless for solo work of M . But it will be helpful when one
constructs a composition of Mc with other S-machines, because the control letters
from the parts Pi and Ri will work whenMc stands idle.
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4. The main S-machine

4.1. Definitions of machines M3–M6. We use the S-machine M2 from Subsec-
tion 3.2 and auxiliary S-machines to compose the main machine needed for this
paper.

At first we add control state letters to M2 and obtain S-machine M3 as it was
defined in Subsection 3.4. Let the standard base ofM2 beQ0Q1 : : :Qs , where sectors
Q0Q1, Q2Q3; : : : ;Qs�1Qs are working sectors, Qs�1Qs is the input sector, and
Q1Q2,Q3Q4; : : : are historical sectors. Then the standard base ofM3 is

P0Q0R0P1Q1R1 : : : PsQsRs;

where Pi (resp., Ri ) contains control p-letters (r-letters), i D 0; : : : ; s.
Since the rules of M3 treat every syllable PiQiRi as a single base letter, the

working and the historical sectors for M3 are of the form Ri�1Pi . In particular,
every historical sector has the form Ri�1Pi with even i .

The rules of the next S-machineM4 will be partitioned in subsets corresponding
to ten steps with auxiliary rules �.ij / connecting i th and j th steps. The state letters
are also disjoint for different steps. Therefore we need Q0, which is the disjoint
union of ten subsets, P0, which is the disjoint union of ten subsets, and so on. Thus,
the rules of different steps of a computation onM4 must be separated by connecting
rules.

We want to combine the S-machines M3, the machine .D5/c (i.e. the S-machine
.D5/ from Subsection 3.3 endowed with control state letters), and compositions
of primitive S-machines introduced in Subsection 3.1. We interbreed the input
sector of M3 and the first sectors of .D5/c . Namely, the state letters from Qs�1
and from S.1/r will be included in the part Qs�1 of the new S-machine M4, Qs
and S.2/` will be included in Qs . The reader will see below that at some steps of
computations, the part of base Qs�1Rs�1PsQsRs works asM3 while at other steps
it works as D5.

The new S-machine M4 repeats the computation of M3 many times and D5
bounds the number of such cycles. The standard base of M4 is

P0Q0R0P1Q1R1 : : :Ps�1Qs�1Rs�1PsQsRs �P S.2/rR�

P 1;`T .1/`R
1;`P 1;rT .1/rR

1;rP 2;`T .2/`R
2;`P 2;rT .2/rR

2;rP 3;`T .3/`R
3;`:

(Starting with Ps�1, this base looks looks like the base of D5 equipped with control
P - and R-parts.) The historical sectors of the form Ri�1Pi with even i are called
big historical sectors while R1;`P 1;r and R2;`P 2;r are small historical sectors. The
sector RsP is also small historical one. It corresponds to the sector S.2/`S.2/r
of D5.

The rules of M4 will be partitioned in subsets ‚i� and ‚i (i D 1; : : : ; 5)
corresponding to ten Steps. We will not list all state letters here since it would be
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complicated and not too helpful. It suffices to define the work ofM4 at different steps
as a composition of the S-machines defined in Section 3.

The Steps 1�; 2�; : : : ; 5� are control steps, where the copies of primitive
S-machines work. For example, we want to put Step 2� between Step 1 and Step 2
(see Fig. 1). So we define the composition P12� of primitive S-machines working
after the connecting rule �.12�/ and the composition P22� of primitive S-machines
working after �.2�2/�1, provided the inverse of the canonical computation of P22�
should follow right after the canonical computation of P12� .

Thus, to define the control S-machine of Step 2� below, one should define the
order of the work of primitive components for P12� and P22� and choose either
p-letters or r-letters to be control letters for these primitive components.
Remark 4.1. The control steps are used for double purpose. If the base of
a computation is standard, then the history of a control step restores all the
configurations (Lemma 4.5 (1)). If the base is not reduced, then the control steps and
the right order of the work of their primitive components redound to a linear bound
of the space of the computation in terms of the lengths of the first and the last words
(Lemma 4.13).

By default, every connecting rule �.ij / locks a sector if this sector is locked by
all rules from‚i or if it is locked by all rules from‚j . It also changes all state letters
used at Step i by there copies from the disjoint set of state letters used at Step j .

Figure 1. Graph of steps of S-machineM4.

Step 1�. This is a control step between Steps 2 and 1. So we define below the
canonical work of the S-machines P2�1 and P1�1, keeping in mind that the last rule
(as �21 in Remark 3.5) of the canonical computation of P2�1 switches on the inverse
computation for the canonical one of P1�1. This conjunction of the S-machines P2�1
and P1�1 is the S-machine of Step 1� denoted by P1� .

Let us define P2�1. At first, we have the parallel work of primitive S-machines
in all big historical sectors, and control r-letters run forward and back according the
rules from Subsection 3.1. The tape alphabet for every such primitive S-machine is
the left alphabet Xi;` of the big historical sector.

The next primitive S-machine (see Remark 3.5 for the definition of composition)
starts working similarly in the input subsector of M3 after the above mentioned
primitive S-machines stop working.
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Thenwe have parallel work of primitive S-machines in the small historical sectors.
Again, the running control letters are r-letters.

Finally, the primitive S-machine is switched on that checks the input word (ofD5)
between R1;r and P 2;` (with running state letters from Rs).

The running control letters of P11� are r-letters again (not p-letters), and this
S-machine is a copy of P21� with another set of state letters.

The transition rule �.1�1/ changes all state letters of Step 1� by their copies
in Step 1, which contain the letters of the start vector Es1 of M1. It locks all sectors
except for historical sectors, the sectorRs�1Ps (we can call it the input since it comes
from the input sectors of M3) and the sector R1;rP 2;`.

The �.1�1/-admissible wordsmay involve the copiesp1;�i and r1;�i of the letterp1
of a primitive S-machine Pr, but no copies of p2. They may contains letters from
alphabets Xi;` but not from Xi;r .

Step 1. The rules �.M4/ from ‚C1 restricted to the base P0Q0R0 : : :PsQsRs are
just the (copies of the) positive rules � ofM3. They do not change other sectors and
lock the sector R2;rP 3;`.
Comment. At Step 1,M4 works as the S-machineM3.

The connecting rule �.12�/ changes the state letters by their copies in disjoint
alphabet, in particular, the letters from the accept vector Es0 of M1 are replaced
by their copies. The �.12�/-admissible words have no letters from “left”
alphabets Xi;`. Besides, the rule �.12�/ “removes” one letter in the sector
R1;rP 2;`W Œbp1

2;`
! .p1

2;`
/0�.

Step 2�. This step is similar to Step 1�, the difference in the definition of the
S-machine P2� working at Step 2� is that alphabets Xi;` should be replaced by
alphabets Xi;r (i D 1; : : : ; s) and the control letters are p-letters (not r-letters).
Comment. The copies of primitive S-machine check several sectors again.

The transition rule �.2�2/ replaces all state letters of Step 2� with their copies
in Step 2, and the letters of the accept vector Es1 of M1 are among them. It locks
non-historical sectors except for the sector R1;rP 2;`.

Step 2. The positive rules from ‚2 are just copies of the negative rules from ‚1.
Comment. M4 works as at Step 1, but reverses the computation procedure.

The connecting rule �.21�/ completes the cycle.
The connecting rule �.23�/ makes possible the final Steps 3�–6.

Step 3�. As at Step 1�, the S-machine P3� is the conjunction of two S-machines:
P23� and P33� , where the first one is just a copy of P21� with a different set of state
letters.

For the S-machine P33� , the running state letters are r-letters too. Its canonical
work is as follows. At first, the primitive S-machines simultaneously check the small
historical sectors. Then the next primitive S-machine checks the sector R1;rP 2;`,
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then the input sector Rs�1Ps is checked, and finally the big historical sectors are
simultaneously checked.

The connecting rule �.3�3/ cannot be applied to an admissible word having
a-letters from right alphabets of historical sectors.

Step 3. The rules from ‚3 extend the rules of S-machine D5 as follows. The rules
of D5 on the configurations with base

S.1/rS.2/`S.2/rT .1/`T .1/rT .2/`T .2/rT .3/` (4.1)

are now the rules of Step 3 on the base

Ps�1Qs�1Rs�1PsQsRsP S.2/rR�

P 1;`T .1/`R
1;`P 1;rT .1/rR

1;rP 2;`T .2/`R
2;`P 2;rT .2/rR

2;rP 3;`T .3/`R
3;`

with control letters, according to the definition given in Subsection 3.4, but the control
letters do not work at this step, and so P 1;rT .1/rR

1;r in this base behaves as T .1/r
in (4.1), and so on.

The rules of‚3 do not change big historical sectors and lock non-historical sectors
of M3, except for the input sector Rs�1Ps .
Comment. After standard work with consecutive Steps 1� � 2 and control Step 3�,
the (copy of) S-machine D5 checks if the length of a-word in the sector R1;`P 2;r

divisible by the eight cubes of the a-length of the input sector.
The rule �.34�/ locks all sectors except for historical ones. It cannot be applied

to a word having a-letters from left alphabets of small historical sectors.

Step 4�. The tape alphabets of the control S-machine P4� are right alphabets Xi;r

for small historical sectors and left alphabets for big historical sectors. All working
sectors are locked.

The first half of P4� is the S-machine P34� . Its running control letters are
p-letters, and the canonical work starts with parallel work of primitive S-machines in
all small historical sectors followed by the parallel work of primitive S-machines
in the big historical sectors.

The second S-machine P44� starts with parallel work of primitive S-machines in
all small historical sectors with control r-letters followed by parallel work of primitive
S-machines in all big historical sectors with control p-letters.

Step 4. The rules of‚4 simultaneously erase the letters from small historical sectors.
The corresponding parts of the positive rules are

r1j;`x ! r1j;` .j D 1; 2; 3/

for every positive letter x from the right alphabet of a small historical sector.
The connecting rule �.45�/ locks all sectors except for big historical sectors.
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Step 5�. We define P5� D P45� . The control p-letters simultaneously check the
big historical sectors, while all other sectors are locked.

The connecting rule �.5�5/ locks all sectors except for big historical sectors.

Step 5. The rules of ‚5 simultaneously erase the letters from big historical sectors.
The corresponding parts of the positive rules are

xp1j ! p1j .j D 1; : : : ; s/

for every positive letter x from the left alphabet of a big historical sector.
The accept command �0 from ‚5 can be applied when all the sectors are empty.

So it locks all the sectors, changes the state letters and terminates the work ofM4.
So M4 has a unique accept configuration.

Lemma 4.2. Let a computation C of an S-machine Pi� .i D 1; : : : ; 5/ start with a
connecting rule � and end with a connecting rule � 0 ¤ ��1. Then for every sector
of the standard base, there is a rule in the history of C locking this sector.

Proof. We consider P1� only. Since the computation starts with .21�/ and ends
with .1�1/, all the primitive S-machines listed in the definition of the S-machine P1�
have to start and finish their work. So every sector of the standard base is locked
either by �.21�/ or by �.1�1/, or by a rule of a primitive S-machine of the
form �12; see Subsection 3.1 and Lemma 3.1 there, because every sector unlocked
by these connecting rules is checked by one of the primitive S-machines forming the
S-machine P1� .

Remark 4.3. Every cycle of the Steps 1�1; 1; 2�; 2 just changes the length of the
sector R1;rP 2;` by 1. (See the definition of the connecting rule �.12�/.) If this
length ` becomes divisible by 8k3, where k is the length of the input sector of M3,
the copy of the S-machine .D5/c can accept at Step 3, and one can obtain the
stop configuration of M4 after Steps 4�; 4; 5�; 5. Hence the shortest accepting
computation has at most ‚.k3/ D ‚.g.n// cycles of the Steps 1�1; 1; 2�; 2 if the
length of the sector R1;rP 2;` is ‚.n/.

This is an informal answer to the question why the division S-machine is needed.
Indeed, if an auxiliary S-machine just checks if ` is equal to k3, then the number of
cycles as above could be ‚.n/, which would lead to at least cubic Dehn function.

Another question: Since we want to repeat the cycle of the Steps 1�1, 1, 2�, 2
‚.f .n/3/ times, why doesM4 recognize the values f .n/ instead of g.n/ D f .n/3?
Because the Turing machine has to take time at least‚.g.n// to recognize g.n/. By
Lemma 2.4, the S-machine M1 should work as long as ‚.g3.n// or longer for the
same goal. If g.n/ is “almost” linear function, then this approach makes the time
function of M1 almost cubic, and the growth of the Dehn function we are going to
construct, becomes almost biquadratic.
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Let B be the standard base of M4 and B 0 be its disjoint copy. By M5 we denote
the S-machine with standard base B.B 0/�1 and rules �.M5/ D Œ�; ��, where � 2 ‚
and ‚ is the set of rules of M4. So the rules of ‚.M5/ are the same for M4-part
ofM5 and for the mirror copy ofM4. Therefore we will denote‚.M5/ by‚ as well,
assuming that the sector between B and .B 0/�1 is locked by any rule from ‚.

Finally, the main S-machineM DM6 is a cyclic analog ofM5. We add one more
base letter ftg. So the standard base of M6 it ftgB.B 0/�1ftg, where the part ftg has
only one letter t and the first part ftg is identified with the last part. (For example,
ftgB.B 0/�1ftgB.B 0/�1 can be a base of an admissible word for M6. Furthemore,
sectors involving t˙1 are locked by every rule from ‚. The stop word W0.M/ is
defined accordingly: every letter in the standard base B.B 0/�1 of M5 is replaced by
the corresponding letters from the stop word ofM5.

The “mirror” symmetry of the base of M will be used in Lemma 9.22. For a
different purpose mirror symmetry of Turing machines was used in the papers of
W.W.Boon and P. S. Novikov (see [20]).

4.2. Standard computations of M. The historyH of a reduced computation ofM
can be factorized so that every factor corresponds to one of the Steps 1�–5. If, for
example,H D H 0H 00H 000, whereH 0 is a product of rules from Step 2,H 00 has only
one rule �.21�/ and H 000 is a product of rules from Step 1�, then we say that the
step history of the computation (or its type) is .2/.21�/.1�/ or just .2/.1�/ since
the only rule connecting the computations of Steps 2 and 1� is �.21�/ and for the
most asymptotic estimates of the length of steps (e.g. kH 00k) or of the lengths of their
admissible words, it does not matter to which of the two possible steps the connecting
rule is attributed.

There are no computations of some types, say .1/.3/, as it immediately follows
from the definition of connecting rules (and from Fig. 1). In this subsection, we
eliminate some other subwords in step histories.

Lemma 4.4. (1) There are no reduced computations ofM with step histories

.1�1/.1/.1�1/, .21�/.2/.21�/, and .23�/.2/.23�/
.with .12�/.1/.12�/ and .2�2/.2/.2�2//

if the base of the computation contains at least one big historical sector : : :P�
(resp., big historical sector R� : : : ).

(2) There are no reduces computations of M with step histories

.3�3/.3/.3�3/ .with .34�/.3/.34�//

if the base of the computation contains a small historical sectors : : :P � (resp.,
a small historical sectors R� : : : ).
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Proof. (1) We consider only the type .1�1/.1/.1�1/ since other variants are similar.
Indeed, if the history H of the part (1) is non-empty, then a state p-letter inserts a
copy of H�1 in historical letters of the alphabet Xi;r (see Subsection 3.2). Recall
that the words with non-empty subwords over Xi;r are not �1�1-admissible, but
we should have �1�1-admissible words both in the beginning and at the end of the
subcomputation with historyH , a contradiction.

(2) The proof is similar.

Lemma 4.5. (1) There are no reduced computations of M with step histories of the
form

.i�j /.i�/.i�j /

for i D 1; : : : ; 5 if the base is standard.

(2) Let the base of a computation C WW0 ! � � � ! Wt be standard and C has one of
the step histories

.21�/.1�/.1�1/; .12�/.2�/.2�2/; .23�/.3�/.3�3/;

.34�/.4�/.4�4/; .45�/.5�/.5�5/:

Then all admissible words of C are uniquely defined by the history H of C ,
jW0ja D jW1ja D � � � D jWt ja, and kHk � 4kW0k.

Proof. (1) Consider only the step history .21�/.1�/.21�/ and the work of the
primitive S-machines switched on by the rule .21�/. If one of the rules �1.a/˙1
of this primitive S-machine (see Subsection 3.1) does not move a control state letter
right/left, but instead just insert a0˙1 from the right and a�1 from the left, then the
rule �12 is not applicable since the sector is not locked. So the next rule should
be �1.b/˙1 which is not the inverse one for �1.a/˙1. Hence the control state letter
has to insert letters from both sides without cancellations, and neither �12 nor .�12/�1
can be ever applied, a contradiction.

Therefore the primitive S-machine must work canonically, as it was described in
Subsection 3.1 (also see Lemma 3.1 (2)). Hence the history of its work uniquely
restores the words in the sectors controlled by this primitive S-machine.

Hence the first primitive S-machine has to complete its canonical work and switch
on the next primitive S-machine according to the definition of P1� for Step .1�/, and
so on. Thus, one never obtains a �.21�/�1-admissible word, a contradiction.

(2) By Lemma 3.1 (3), the histories of the primitive S-machines subsequently
restore the tape words in all unlocked sectors. Lemma 3.6 applied to C and to
the inverse computation, implies equalities jW0ja D jW1ja D � � � D jWt ja, and gives
kHk � 4kW0k if one takes into account that both the S-machine P21� and P21�
control each of the sectors.
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Lemma 4.6. There are no reduced computations with standard base and step
histories .5�/.4/.5�/.

Proof. Assume such a computation exists. Note that the small historical sectors are
empty at the both transitions .45�/. However every rule of Step 4 multiplies the
word in the small historical sector by a letter x, and one obtains no cancellations of
these letters since the computation is reduced and different rules multiply by different
letters. Hence the part .4/ is empty, and the lemma is proved by contradiction.

Below we need a rougher subdivision of the history of a reduced computation
with standard base. We say that the Steps 1 � 4� are fundamental steps and the
Steps 4, 5�, 5 are erasing steps. So the block history of every computation of M
is a subword of .F /.E/.F /.E/ : : : , where .F / (where .E/) are maximal parts of
the history with fundamental (resp., erasing) steps only. The separating rules for
neighbor blocks are �.4�4/˙1.
Lemma 4.7. If the block history of a computation is .E/, then its step history is a
subword of the word .4/.5�/.5/.5�/.4/.

Proof. Proving by contradiction and taking into account Lemma 4.5 (1), we should
get a subword .5�/.4/.5�/ in the step history, contrary to Lemma 4.6.

Lemma 4.8. Let W0 ! � � � ! Wt be a computation with block history .E/. Then:

(1) jWj ja � max
�
jW0ja; jWt ja

�
for j D 0; 1; : : : ; t ;

(2) t � 10
�
kW0k C kWtk

�
.

Proof. (1) If the history has only one Step 4 or 5, then Statement (1) follows from
Lemma 2.7 (c). For single Step 5� it follows from Lemma 3.6 (a).

If there is Step 5 in the computation, then by Lemma 4.7 we have only one
maximal subcomputationWk ! � � � ! W` of Step 5. Here jWkja � jW0ja sinceWk
has no non-empty sectors except for big historical sectors, which are unchanged
at Steps 4, while Steps 5� cannot decrease the sum of length of these sectors by
projection argument (see Remark 3.2). Hence it suffices to prove Statement (1) for
subcomputations with step historiesH 0 andH 00, whereH 0.5/H 00 is the step history.
Therefore we may prove Statement (1) under assumption that there are no Steps 5 in
the step history.

For the step history .4/.5�/, the a-length of the configuration separating two steps
cannot be longer than the final configuration by projection argument, which reduce
the proof to one-step histories.

(2) By Lemma 4.7, we have at most 5 steps, and by Property (1) it suffices to prove (2)
for one-step histories but with coefficient 2. Indeed such estimates for the lengths of
histories are obtained for Steps 4; 5�; 5 in Lemmas 2.7 (b) and 3.6 (b).
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Lemma 4.9. Let W0 ! � � � ! Wt be a computation with block history .F /.

(1) Then the step history of this computation is a subword of the word

W.m/ � .4�/.3/.3�/..1�/.1/.2�/.2//m.3�/.3/.4�/

for some non-zero integer m.
(Here we define ..1�/.1/.2�/.2//�1 D .2/.2�/.1/.1�/.)

(2) If the step history is equal to W.m/ for some m ¤ 0, then the exponent m is
divisible by .2k/3, where k is the a-length of the input sector Rs�1Ps after the
application of the connecting rule �.3�3/.

(3) If the step history is equal to

..1�/.1/.2�/.2//m.3�/.3/.4�/

and the history starts with a connecting rule, then the exponent m is congruent
to l modulo .2k/3, where k is as in Statement (2) and bl is the tape word of the
sector R1;rP 2;` in the beginning of the computation.

Proof. (1) Since the block history is .F /, Lemmas 4.5 (1) and 4.4 forbid “reverse
moves” �˙1H��1 in the history, whereH is a one-step history and � is a connecting
rule, Statement (1) follows from the definition of connecting rules between steps
(see Fig. 1).

(2) Let us restrict the subcomputation with step history .3�3/.3/.34�/ to the input
sectorRs�1Ps and the sectorR1;rP 2;`. Then we can apply Lemma 3.14 to conclude
that the exponent l of the tape word bl in the sector R1;rP 2;` at the beginning of this
computation is divisible by .2k/3. Similarly, for bl 0 at the end of the computation
with step history .34�/.3/.3�3/, we obtain that l 0 is divisible by .2k0/3, where k0 is
the a-length of the sector Rs�1Ps .

Note that a computation with step history .1�1/.1/.2�/.2/.21�/ (or step history
.1�1/.1/.2�/.2/.23�/) does not change the a-length of the sector Rs�1Ps since it
is preserved by the S-machine P2� by Lemma 3.1 and the history of Step 2 is inverse
(of the copy) of the history of Step 1 here. The same is true for the subcomputations
with step history .21�/.1�/.1�1/ and .23�/.3�/.3�3/ by Lemma 3.1. So k0 D k

and l 0 � l is divisible by .2k/3 by Lemma 3.14.
On the other hand, every rule �.12�/ multiplies the tape word in the sector

R1;rP 2;`. by b�1. Therefore `0�` D m, whencem is divisible by .2k/3, as required.

(3) The proof is similar to the proof of Statement (2).
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4.3. Computations with faulty bases.
Lemma 4.10. If the step history of a reduced computation C of M is

.21�/.1�/.1�1/; .12�/.2�/.2�2/; .23�/.3�/.3�3/;

.34�/.4�/.4�4/; or .45�/.5�/.5�5/;

then:
(1) the base of C is a reduced word;
(2) the first letter of the base, the length of the base and the historyH of C completely

determine the computation C .

Proof. (1) This follows from Lemmas 4.2 and 2.6.

(2) Consider for example the step history .21�/.1�/.1�1/. By Property (1) and
the definition of admissible word, the base of C is determined by its length and the
first letter. Since every sector unlocked by �.21�/ has to be checked by a primitive
S-machine, the copy of the content of this sector is contained in the history of the
computation as a product of the letters of the form �1.a/˙1 defined for the particular
primitive S-machine.

Lemma 4.11. Suppose that a reduced computation W0 ! � � � ! Wt of Step 1 or 2
(of Step 3) starts with a connecting rule. Assume that the length of its base B is
bounded from above by a constant N0, and B has a big historical sector (a small
historical sector, resp.) of the formRP (with indices). There is a constant c D c.N0/
such that jW0ja � cjWt ja.

Proof. Let V0 ! � � � ! Vt be the restriction of the computation to the sector with
base RP . By Lemma 3.9, we have t � jVt ja and jV0ja � jVt ja.

It follows from lemma 2.1 (2) that

jW0ja � jWt ja C 2N0t � jWt ja C 2N0jVt ja � .2N0 C 1/jWt ja:

It suffices to choose c D 2N0 C 1.

Definition 4.12. We call a base of M faulty if:
� it starts and ends with the same base letter,
� it has no proper subwords with this property, and
� it is a not a reduced word.

Note that if there is a computation C with a faulty base U1 : : : Ui : : : Us (where
U1 D Us), then one can replace every admissible word of this computation by the
cyclic shift of it with faulty baseUi : : : UsU1 : : : Ui�1Ui and obtain the cyclic shift C 0

of C .
The following is the main lemma of this subsection.
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Lemma 4.13. There is a constant C D C.M/, such that for every reduced
computation C WW0 ! � � � ! Wt of M with a faulty base and every j D 0; 1; : : : ; t ,
we have

jWj ja � C max
�
jW0ja; jWt ja

�
:

Proof. 0. If the faulty base is not of the form .pp�1p/˙1 for some control state
letter p (or r)), then the words W0; : : : ; Wt have to contain non-control state letters.
Hence we can replace the computation C by a cyclic shift of it and suppose further
that the first and the last letters of W0; : : : ; Wt are not control letters.

1. By Lemma 4.10, the step history (and the inverse step history) has no subwords

.21�/.1�/.1�1/; .12�/.2�/.2�2/; .23�/.3�/.3�3/;

.34�/.4�/.4�4/; and .45�/.5�/.5�5/:

2. Assume that the history has only one Step .2�/ and the base is .pp�1p/�1 for
some control state letter p (or r)). Obviously, the running letter p cannot lock any
sector and so every rule has the same type (either �1.�/ or �2.�/ as in Subsection 3.1).

If jWjC1ja > jWj ja for some j , then one of two sectors (e.g. the first one)
increases its length by 2, while another one does not decrease the length under the
transition Wj ! WjC1. But then the first sector of WjC2 has to increase again by 2
since the computation is reduced. It follows that

jWjC1j � jWjC2j � � � � � jWt j:

Hence the length of every admissible word does not exceed max.jW0ja; jWt ja/.
If the faulty base has no subwords of the form .pp�1p/˙1, the same inequality

for a computation with history of Step 2� follows from Lemmas 3.1 and 3.3. Thus,
one may assume further that the step history is not .2�/. Similarly, it is neither .1�/
nor .3�/, nor .4�/, nor .5�/.

3. Assume there is .1/ in the step history. Then by item 1, the set of steps is either
(a) f.1/g, (b) f.1/; .1�/g, (c) f.1/; .2�/g, or (d) we have the subword .1�/.1/.2�/ in
the step history (or in the inverse step history).
3a. In this case, the required inequality follows from Lemma 3.12. (Recall that by
definition the connecting rule �.12�/ inserts/deletes one letter, but this small change
of length is not an obstacle.)

3c. Assume that the step history is .2�/.1/ (or .1/.2�/) and W0 ! � � � ! Wj is
a maximal subcomputation with step history .2�/. Then jW0ja � jWj ja by the
projection argument. Therefore it suffices to prove the statement of the lemma for
a subcomputations with step histories .2�/ and .1/. For the case .2�/, we refer to
item 2. The case .1/ is considered in item 3a. Thus, we assume further that the step
history has length at least 3.
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Suppose the step history has a subword .2�/.1/.2�/. Then the base (or the inverse
base) has no big historical sectors R : : : (with indices) by Lemma 4.4.

So the only possible bases for big historical sectors have form P�1P . The state
control letters of such sector should start running at Step .2�/ after the application
of the connecting rule �.12�/ but they cannot ever meet state letter from R and will
run forever, and jWt ja � jWj ja by Lemma 3.3, if Wj is obtained at the application
of �.12�/. Hence one can cut the computation atWj reducing the problem to items 2
and 3a. If there are no big historical sectors, then there are no working sectors of
the S-machineM3. The other sectors ofM (which could come from the base of D5)
do not work at Steps .1/ and cannot decrease their length starting from a connecting
rule at Steps .2�/ by Lemma 3.1. This makes the statement of the lemma obvious
for them.

Hence one may assume that there are no subwords .2�/.1/.2�/, and so the step
history is .1/.2�/.1/.

Suppose the base has a big historical sector RP (with indices). Then for the
maximal subcomputation Wr ! � � � ! Wt of Step 1, we have jWr ja � cjWt ja by
Lemma4.11 because the length of a faulty base is bounded by a constantN0 depending
on the S-machine M only. Hence one can reduce our task to the subcomputations
with the step histories .1/ and .2�/. (Of course, the constant in the desired inequality
changes when we pass to step histories involving more types of steps.) Hence we
assume further that the base has no big historical sectors RP .

Also there are no big historical sectors P�1P because state control letters of
such sector should start running after the application of the connecting rule �.12�/
but they cannot ever meet state letter from R and will run forever by Lemma 3.3; the
last Step 1 will not be reached.

So all big historical sectors (if any) are of the form R�1R. Recall that the
alphabets for the �.12�/˙1-admissiblewords areXi;r , and so theword in this alphabet
will be conjugated at Step 1 by the letters from the disjoint alphabets Xi;` in sectors
with bases R�1i�1Ri�1. Hence after application of �.12�/�1, each rule of Step 1
will increase the length of such sector by 2. By Lemmas 3.10 and 2.1, we have
jWr ja � � � � � jWt ja if the last Step 1 starts with Wr . This reduces the problem to
the subcomputations with the step histories .1/ and .2�/ again.

If there are no big historical sectors, then we have no working sectors except for
the sectors of the S-machine D5 because one may assume that the left-most sector of
the standard base of M2 is always locked and because the base is faulty. The other
sectors (which could come from the base of D5) do not work at Steps .1/ and cannot
decrease their length towardsW0 orWt at Steps .2�/ by Lemma 3.1. This makes the
statement of the lemma obvious for them and completes case 3c.

3b. This case is similar to 3c up to exchange of R with P and Xi;` with Xi;r .

3d. Assume that the step history has a subword .1�/.1/.2�/. Then there are no
big historical sectors P�1P and RR�1 since the conjugation in free group given
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by Step 1 cannot transform a non-trivial word in the alphabet Xi;` in a word in the
alphabetXi;r . So all big historical sectors have base of the formRP (or inverse one).

Consider the word Wj obtained after the application of the last connecting
rule �.12�/˙1. Only big historical sectors of Wj are not locked (except for the
sectors of the S-machine D5, which are not touched by Step 1). If the next step is 1,
then its rules cannot make the historical sector shorter by Lemma 3.9. If the next step
is 2�, then no sector becomes shorter by Lemma 3.1. The same is true for Step 1�
if it follows Step 1. Repeating this procedure, we have jWj ja � jWt ja. Therefore
one can reduce Case 3d to previous cases by subdivision of the computation along
the transitions between Steps 1 and 2�. (The occurrences of �.12�/ and �.12�/�1
in the history of the computation have to alternate in Case 3d inserting/deleting the
same letter, and so this does not affect the desired inequality.)

Thus, we may assume further that there are no Steps 1 in the computation.

4. We may also assume that there are no Steps 2 in the computation. The proof
copies the proof at item 3 with subcases (a) f.2/g (b) f.2/; .2�/g, (c) f.2/; .3�/g, and
(d) where one considers the subword .2�/.2/.3�/ and the word Wj provided by the
last connecting rule �.2�2/˙1.

5. If there is Step 5 in the step history, then we cannot have steps except for 5 and 5�
by item 1. It follows from the definition of Step 5� and Lemma 3.1 (4) that the
subword .5/.5�/.5/ in the step history is not possible if there is a big historical sector
with base of type RP . By Lemma 3.3, historical sectors with base P�1P are not
possible too. However the historical sectors with base RR�1 do not change words
at Step 5. It follows that the word Wj obtained after the transition from .5�/ to .5/
is not longer than Wt (see similar argument at item 3d). So one reduces the task to
shorter step histories.

Thus, one may assume that there are no subwords .5/.5�/.5/ in the step history.
Therefore assuming that there is .5/ in the step history, we should consider only
the history .5�/.5/.5�/ or its subwords. Again the rules �.5�5/ defines a word Wj ,
which is not longer thanWt by Lemma 3.1. This reduce the task to step histories .5�/
and .5/. For .5�/, the problem is solved in item 2, and it is solved by Lemma 2.7 (c)
for .5/.

Thus one may assume from now that there are no Steps (5) in the step history.

6. If there is .5�/ in the step history, then by items 1 and 5, there are no other
steps except for .4/ and .4�/. However the transition .45�/ provides us with the
shortest words in the computations since neither computations of Step 5� nor those
from .4/ can make big historical sectors shorter by Lemmas 3.1 and 3.3. So cutting
the computation along such transitions, we can decrease the number of steps. Since
a single Step 5� is eliminated in item 2, we may further assume that there are no
Steps .5�/ in the computation.
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7. If there is .4/ in the step history, then by items 1 and 6, there are no other steps
except for .4�/. For such histories we will repeat some arguments from item 3c using
now small histories instead of big ones.

The case with a single Step .4�/ is eliminated by item 2. The brief history .4/ is
also eliminated by Lemma 2.7 (c) (for small historical sectors RP ) and Lemma 2.10
(for small historical sectors RR�1). Assume that the step history is .4�/.4/
and W0 ! � � � ! Wj is a maximal subcomputation with step history .4�/.
Then, jW0ja � jWj ja by the projection argument. Therefore the problem is reduced
to single step histories Thus, we assume further that the step history has length at
least 3.

Assume that there is a subword .4/.4�/.4/ in the step history and there is the
letter Rs in the base. Then it cannot follow by R�1s , because the letter from Rs must
start running right after the connecting rule �.4�4/�1 and it cannot ever reach the
part P , so the next connecting rule �.4�4/ cannot appear, a contradiction. Hence
there is a sector RsP . It follows that there is R1;` in the base since the sectors
between P and R1;` are locked by �.4�4/. Then we obtain P 1;r and all other parts
of small historical sectors.

Also there is the part Ps�1 in the base, becase all the sectors between Ps�1
and R are locked by �.4�4/. Hence right after the sector RsP is checked by the
first primitive S-machine of P44� , a letter from Ps�1 starts running checking the
big historical sectors, and again, there should be the part Rs�2 in the base, since
otherwise the next occurrence of �.4�4/ does not happen.

This implies it turn, that there is Ps�2 in the base, and so on, that is we have
all the sectors of the standard base of M and the base of our computation has no
cancellation, contrary to the definition of faulty base.

Hence there are no parts Rs in the base, provided .4/.4�/.4/ is a subword of the
step history. Similar argument shows that there are no R1;` and R2;`. (For example,
if there is R1;`, then there is a rule locking the sector R1;`P 1;r by the definition
of primitive S-machines; this rule has to lock sector RsP too, and so the part Rs

occurs in the base too.) Hence nothing changes at Steps 4, since only R-letters can
erase the small historical sectors. The transition .44�/ provides us with the shortest
words in the computations since neither computations of Step 4� nor those from .4/

can make small historical sectors shorter by Lemmas 3.1 and 3.3. So cutting the
computation along such transitions, we can decrease the number of steps. Therefore
we may further assume that there are no subwords .4/.4�/.4/ in the step history.

Thus, the step history is .4�/.4/.4�/, and as above it can be subdivided in one-
step histories. Therefore we may assume from now that there are no Steps 4 in the
step history.

8. Now we assume that there is Step 4� in the step history.
Suppose the step history has a subword .4�/.3/.4�/. Then the base has no

small historical sectors R� : : : by Lemma 4.4 (2). So the only possible bases for
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small historical sectors are .P i;r/�1P i;r or P�1P . The state control letters of such
sectors should start running after the application of the connecting rule �.34�/ but
they cannot ever meet state R-letters and will run forever, whence jWt ja � jWj ja by
Lemma 3.3, ifWj is obtained at the application of �.34�/. So the whole step history
is .4�/.3/.4�/. Hence one can cut the computation at Wj reducing the problem to
item 2 and Lemma 3.17. If there are no small historical sectors, then there are no
sectors of the S-machine D5 changed at Step 3. The other sectors (which could come
from the base of M2) do not work at Steps 3 and cannot decrease their length when
starting from a connecting rule at Steps 4� by Lemma 3.1. As usual, this allows
induct on the number of steps.

Hence one may assume that there are no subwords .4�/.3/.4�/. The subwords
.3�/.3/.3�/ are eliminated in the same way.

Assume that the step history has a subword .3�/.3/.4�/. Then there are no small
historical sectors with non-reduced bases UU�1 since the conjugation in free group
given by Step 3 cannot transform a non-trivial word in the alphabet Xi;` in a word in
the alphabetXi;r . So all small historical sectors have base of the formRP (or inverse
ones).

Consider the word Wj obtained after the application of the last connecting rule
�.34�/˙1. Only small historical sectors of Wj are not locked (except for the sectors
of S-machine M3, which are not touched by Step 3). If the next step is .3/, then its
rules cannot make the historical sector shorter by Lemma 3.9. If the next Step .4�/,
then no sector becomes shorter by Lemma 3.1. The same is true for Step 3� if it
follows Step 3. Repeating this procedure, we have jWj ja � jWt ja. Therefore one
can reduce the problem to shorter step histories.

Assume that the step history is .3/.4�/.3/. This resembles item 3c, but below we
consider small historical sectors instead of the big ones.

Suppose the base has a small historical sector Ri;`P i;r or RsP . Let Wr !
� � � ! Wt be the maximal subcomputation with step history .3/. Then we obtain
inequality jWr ja � cjWt ja by Lemma 4.11. Hence one can reduce our task to the
subcomputations with the step histories .3/ and .4�/. Therefore we assume further
that the base has no small historical sectors of the form RP .

Also there are no small historical sectors .P i;r/�1P i;r (or P�1P ), because
state control letters of such sector should start running after the application of the
connecting rule �.34�/ but they cannot ever meet state letter from R and will run
forever by Lemma 3.3; the last Step 3 will not be reached.

So all small historical sectors are of the form Ri;`.Ri;`/�1 (or RsR
�1
s ) But then

the word from such a sector in “right” alphabet will be conjugated at Step 3 by the
letters from a left alphabet. Hence after application of �.34/�1, each rule of Step 3
will increase the length of such sector by 2. By Lemmas 3.10 and 2.1, we have
jWr ja � � � � � jWt ja if the last Step 3 starts with Wr . This reduces the problem to
the subcomputations with the step histories .3/ and .4�/ again.
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If there are no such sectors, then there are no sectors of the S-machineD5 changed
at Step 3 since the base is faulty. The other sectors (which could come from the base
of M2) do not work at Steps 3 and cannot decrease the length towards W0 or Wt at
Steps 3. This makes the statement of the lemma obvious.

It remains to consider the brief history .3/.4�/ and apply the projection argument
to the part .4�/. (Compare with case .2�/.1/ in item 3c.)

Hence one may assume from now that there are no Steps 4� in the computation.

9. If there is Step 3 in the step history, then there are no steps except for 3 and .3�/.
As in item 8, one may assume that the length of step history is at least 3. Then the
subwords .3�/.3/.3�/ can be eliminated by the same argument we used in item 8
to eliminate subwords .4�/.3/.4�/. It remains to consider computations with step
history .3/.3�/.3/. Again, one refer to item 8 since one can eliminate such history
in the way the histories .3/.4�/.3/ were eliminated in item 8.

The lemma is proved.

4.4. Space and time of M-computations with standard base.
Lemma 4.14. Let C WW0 ! � � � ! Wt be a computation with standard base and
step history .21�/.1�/.1/.2�/.2/.21�/: Then the configuration Wt is a copy of W0
except for the sector R1;rP 2;l and the mirror copy of it, whose lengths inW0 andWt
differ by one.

If H.1�/ and H.2�/ are the histories of the subcomputations C.1�/ and C.2�/

of C with step histories .21�/.1�/.1�1/ and .12�/.2�/.21�/, respectively, then

jkH.1�/k � kH.2�/kj D 2:

Proof. The subcomputations C.1�/ and C.2�/ do not change the a-words in the
historical sectors by Lemma 3.6(a), and so the histories of Steps 1 and 2 are inverse
copies of each other. Taking into account that the transition .12�/ changes the length
of the sector R1;rP 2;l (and the mirror it) by 1, we obtain the first statement of the
lemma.

After the sector R1;rP 2;l changes length by one, the primitive S-machine check-
ing this sector changes the computation time by 2, as it follows from Lemma 3.1 (3).
This proves the second statement.

Recall that the blocks .E/ and .F / of a history were defined before Lemma 4.7.
Lemma 4.15. (1) If a configuration W0 is accepted and � -admissible for a rule �

from block .E/, then there is a reduced accepting computationW0 ! � � � ! Wt
with block history .E/ and t � 3kW0k;

(2) There is a constant c1 depending on M only, such that for any computation
C WW0 ! � � � ! Wt of M, which is the beginning of a reduced accepting
computation with block history .E/ or .F /.E/, we have

kWj k � c1
�
kW0k C s

�
for every j D 0; : : : ; t , where s is the length of the step history.
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Proof. (1) Note that all the sectors of Wt are empty. It follows that all the words
in big historical sectors of W0 are copies of the same word since every rule of M
multiplies the tape words of these sectors by the copies of the same letter or does not
change all these words. Similarly, the tape words in the small historical sectors (and
in their mirror sectors) are copies of each other.

If the small historical sectors of W0 are non-empty, then � is a rule of Step 4.
So there is an accepting computation erasing all the letters of this sector (and of its
mirror copy). The length of the next control Step 5� will be at most 2kW0k by the
definition of the S-machine P5� and Lemma 3.1 (3). Then the rules of Step 5 can
erase all tape letters in the big historical sectors (and their mirror copies). This gives
the total upper estimate t � 2kW0k C kW0k, as required. If � is a rule of Step 5�
or 5, then the estimate is even better.

(2) If the computation is accepting and has type .E/, then the step history is a
suffix of the word .4/.5�/.5/ by Lemma 4.7. The rules of Step 5� cannot increase
the lengths of configurations by Lemma 3.1. Clearly, the rules of Steps 4 and 5
cannot insert letters too. Hence kWj k � jW0k, and so it suffices to prove the same
inequality under the assumption that j � r , where W0 ! � � � ! Wr is the maximal
subcomputation with block history .F /.

By Lemma 4.9, the step history of this subcomputation is a suffix of the word

W.m/ � .4�/.3/.3�/..1�/.1/.2�/.2//m.3�/.3/.4�/

for some non-zero integer m.
At first we consider the subcomputations Ci with step histories

..21�/.1�/.1/.2�/.2/.21�//˙1:

By Lemma 4.14, we conclude that in the beginning and at the end ofCi , the difference
of lengths of configurations is equal to˙2. The number of such subcomputations Ci
does not exceed s=2.

The number of one-step subcomputations, which are not subcomputations of
any Ci , is at most 7. The transitions of some of them (1�; 2�; 3�; 4�) do not increase
the lengths of configurations by Lemma 3.6 (a). All transitions of each other step
(1; 2; 3) can increase the a-length but Lemma 4.11 bounds possible enlargement from
above. This proves Statement (2).

Lemma 4.16. Let a history H of a computation C WW0 ! � � � ! Wt with standard
base have type .F / and end with a connecting rule. Suppose that C is a beginning
of a reduced accepting computation and there are at most 10 steps in C . Then for a
constant c2 D c2.M/, we have

kHk � c2kW0k:
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Proof. Recall that the length of the history is linearly bounded for each of the steps in
terms of the lengths of their configurations (Lemma 2.7 for Steps 4 and 5, Lemma 3.9
for Steps 1, 2 and 3, Lemmas 4.5(2) and 3.1 (1) for control steps.) The lengths of
these configurations are linearly bounded in Lemma 4.15 (2). Taking into account
that the number of steps is at most 10 we come to the desired inequality.

Lemma 4.17. There is a constant c3 such that for any accepted configuration W0,
which is �.2; 1�/˙1-admissible, there exists an accepting computation with block
history .F /.E/ of length at most c3.k3 C 1/.kW0k C k3/, where k is the a-length
of the input sector RsP of the word W0. The number of steps in this computation is
less than 32k3 C 4.

Proof. By Lemma 4.15 (1), an accepted word � -admissible for a rule � from
block .E/ can be accepted by a computation having only one block. Hence it
suffices to consider computations with block histories .F /.E/.

By Lemma 4.9, the step history of block .F / is a word

..1�/.1/.2�/.2//m.3�/.3/.4�/

for some integer m since W0 is �.21�/˙1 admissible.
Assume that jmj > .2k/3. Then the rule �.12�/ occurs at least .2k/3C1 times in

the history. The rule �.12�/ permanently changes the length of the sector R1;rP 2;`

by one multiplying it by the same letter. On the other hand, by Lemma 4.14, the
subcomputations with step histories

..21�/.1�/.1/.2�/.2/.21�//˙1

do not change the a-word of length k in the input sector RsP . Therefore there is a
transition (not the last one), where the a-length of the sector R1;rP 2;` is divisible
by .2k/3, and so the transition to Step 3 was possible earlier by Lemma 3.16 (2).
Hence it suffices to prove the lemma under the assumption jmj � .2k/3, and so the
number of steps does not exceed 4jmj C 3 � 32k3 C 3 by Lemma 4.7.

The length of the history is linearly bounded for each of the steps in terms of
the lengths of the configurations (Lemma 2.7 for Steps 4 and 5, Lemma 3.9 for
Steps 1, 2 and 3, Lemmas 4.5(2) and 3.1 (1) for control steps.) The lengths of these
configurations are linearly bounded in Lemma 4.15 (2). Taking into account that the
number of steps is linearly bounded in terms of m and jmj � .2k/3, we come to the
desired inequality.

We will consider a suitable function function f .n/ and the functions g.n/
and F.n/ from Definition 1.2 under the assumption that s D 2 in that definition.
(The inequality s � 3 will appear in the last Subsection 10.2.) So the recognizing
Turing S-machineM0 is taken from that definition and M1 is given by Lemma 2.4.
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Without loss of generality, one may assume that the values of f .n/ are greater
than some constant, for instance, for every integer n � 1, we have

f .n/ � 5: (4.2)

Besides, it is convenient to enlarge the domain of those functions assuming that
they are defined for every real x � 0. One may assume that f .x/ is still positive
for x > 0 and non-decreasing.
Lemma 4.18. For every x > 0 and d 2 Œ0; x/, we have

F.x/ � F.x � d/ �
d

x
F.x/ D dxg.x/:

Proof. Note that F.x/=x2 � F.x � d/=.x � d/2 since the function g.x/ is non-
decreasing. Hence

F.x/ � F.x � d/ � F.x/
�
1 �

.x � d/2

x2

�
� F.x/

2dx � d2

x2
� F.x/

dx

x2
D
d

x
F.x/:

Lemma 4.19. Let C WW0 ! � � � ! Wt be a computation ofM with block history .F /
and the step history of this computation contains a subword

..21�/.1�/.1/.2�/.2/.21�//˙1:

Let k be the a-length of the input sector RsP of a �.2�1/˙1-admissible
configuration Wj in C . Then (a) k D f .n/, for some n � 1, (b) k D O.f .kW0k//,
and (c) k3 D O.kW0k/.

Proof. Claim (c) follows from (b) since f .n/3 D O.n/.
To prove (b) statement, it suffices to prove that k D O.f .r//, where r is the

length of a big historical sector of W0. We have r 0 � r , where r 0 is the length of a
big historical sector ofWj by Lemma 4.9; indeed, the computationWj ! � � � ! W0
cannot decrease the length of it by Lemma 3.6 (a) applied to the control steps and
Lemma 3.9 applied to Steps 1 and 2. (Step 3 does not change this sector.) For the
same reason r 00 � r 0, and k D k00 where r 00 is the length of a big historical sector
of the first configuration D0 of a subcomputation D of C˙1 with the step history
.1�1/.1/.12�/ and k00 is the a-length of the input sector RsP of D0. Hence it
suffices to prove that k00 D O.f .r 00//.

The subcomputation of Step 1 (restricted to the base of M3) is actually the
computation of M2. If we ignore the historical sectors, we have the accepting
computation of M1 with input sector ak00 . By the definition of M0 and M1,
k00 D f .n/ for some n � 1, the accepting computation of M0 has length ‚.n1=3/,
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and so the number of rules at Step 1 is ‚.n/ by Lemma 2.4. Hence r 00 � ‚.n/,
because D0 contains the history of Step 1 written in big historical sectors. Hence,
k00 D f .n/ D O.f .r 00//. Since k D k00, Property (a) is obtained as well.

Lemma 4.20. Let W0 be an accepted word and C WW0 ! � � � ! Wt be a reduced
computation of M with block history .E/, where the computation either length-non-
increasing or length-non-decreasing, or .F /.E/, where the block .E/ is a length-
non-increasing subcomputation, or .F /. Then:

(a) kWj k � c4max
�
kW0k; kWtk

�
.j D 0; : : : ; t /, where c4 D c4.M/; or

(b) there are accepting computations for W0 and Wt with block histories .E/
or .F /.E/ and historiesH0 andHt such that

kH0k C kHtk < t=100;

the historyH of C has a factorizationH D H.1/H.2/H.3/, where

kH.1/k; kH.2/k < t=100;

H.2/ is of type
..21�/.1�/.1/.2�/.2/.21�//m

with jmj � c3 and the lengths of the subhistories ofH.2/ of type

..21�/.1�/.1/.2�/.2/.21�//˙1

are less than t=10.

Proof. If C is of type .E/, then Property (a) follows since C either non-increases or
non-decreases the lengths of configurations.

Let C have type .F /.E/. Again we obtain Property (a) by Lemma 4.15 (2) if the
number of steps in block .F / is less than 10.

Otherwise, by Lemmas 4.7 and 4.9, block .F / contains a subword

..21�/.1�/.1/.2�/.2/.21�//˙1

in the step history, and by Lemma 4.14, the corresponding computations Ci just
multiply the words in the sector R1;rP 2;` (and in its mirror copy) by a letter b or
by b�1 depending on the sign of the exponent, while the length k of the word in the
sector RsP is not changed.

The history corresponding to the block .F / isH1H2H3, where the length of the
step history at most 4 forH1 andH3,H2 has the form

..21�/.1�/.1/.2�/.2/.21�//m;
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andH2 is the history of the subcomputationWs0! � � � !Ws1! � � � !Wsm starting
with �.21�/˙1, and every Wsi is a �.21�/˙1-admissible word. If

w D max
�
kWs0k; kWsmk

�
;

then by Lemma 4.14,

max
�m�1X
iD0

kWsik;

mX
iD1

kWsik

�
� wCjw�2jC� � �Cjw�2jm�1jj � jmjw=2: (4.3)

Hence the sum of the lengths of the subcomputations C0; : : : ;Cm�1 is at least
jmjw by Lemma 3.1 for the Steps 1� and 2� of these subcomputations. Therefore,
kH2k > jmjw.

Now if max.kW0k; kWtk/ D w0 � w, then the length of every Wj with j � s0
or j � sm is bounded by c1.w0 C 10/ by Lemma 4.15 (2), and the same estimate
works if Wj is a configuration of some subcomputation Ci . Hence we have the
inequality of item (a) of the lemma.

So we assume now that w0 < w. Let k be the a-length of the input sector RsP

of the word Ws0 . If m � c23k3, then t � kH2k > c23k3w. We also have that each of
the subcomputations Ci with step histories

..21�/.1�/.1/.2�/.2/.21�//˙1

have length less than t
10
. This follows from the property, that the difference of the

lengths of Ci and CiC1 is at most 4 (the computational time for control step can
change by 2 by Lemma 4.14, but the number of such subcomputations is at least
c23 > 1000).

Let Ws0 � V0 ! � � � ! Vd be a shortest accepting computation for Ws0 with a
history H0. To estimate d from above, we may assume by Lemma 4.15 (1) that its
block history is either .E/ or .F /.E/. The step history of block .E/ has length at
most 3 by Lemma 4.7.

If the number of steps inH0 is atmost 10, then kH0k D O.kW0k/ byLemma4.16.
Otherwise by Lemma 4.9,H0 D H 0H 00, whereH 0 has step history

..21�/.1�/.1/.2�/.2/.21�//˙1

andH 0H 00 starts with a �.21�/˙1-admissible configuration Ws0 . By Lemma 4.17,

kH 0H 00k � c3.k
3
C 1/

�
kWs0k C k

3
�

� c3.k
3
C 1/.w C k3/ D c3.k

3
C 1/O.w/

(4.4)

since k3 D O.w/ by Lemma 4.19.
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Thus by (4.4),

kH 0H 00k � c23k
3w=400 � kH2k=400 � .s � r/=400

if c3 is large enough. To estimate the length of the shortest accepting computation
for W0, it remains to estimate s0 D kH1k, but this value does not exceed
c2w � c

2
3k
3w=800 � t=400 by Lemma 4.16. Therefore,

kH0k � t=400C t=400 D t=200 � kH2k=200:

Similarly, we obtain
kHtk � t=200 � kH2k=200:

Now define H.1/ D H1, H.2/ D H2, and H.3/ D H3 xH , where xH is of type .E/
and so has at most 3 steps, and H.3/ has less than 10 steps. To obtain Property (2)
of the lemma ifm � c23k3, it remains to estimateH.3/. Indeed, by Lemmas 4.15 (2)
and 4.16, we have

kH.3/k D kH3k C k xHk � c2w C 3w � t=100:

Assume now that jmj < c23k
3. Then the number of steps s in the subcomp-

utation C does not exceed 10c23k3C 20. Therefore for every configurationWj of C ,
we obtain from Lemmas 4.15 (2) and 4.19 that

kWj k � c1.w
0
C 10c23k

3
C 20/ D c1c

2
3O.w

0/ � c4w
0;

if c4 is big enough, and we have Property (a).
The same argument works if the block history is just .F /.

Lemma 4.21. Let W0 be an accepted word and C WW0 ! � � � ! Wt be a reduced
computation of M with block history of the form .E/.F / : : : .F /.E/, where the
first (the last) block .E/ is a length-non-decreasing (resp., length-non-increasing)
subcomputation. Then there are accepting computations for W0 and Wt with block
histories .E/ or .F /.E/ and historiesH0 andHt such that kH0kC kHtk < t=100:

Proof. Since the word W0 is � -admissible for a rule � of block E, we have
kH0k � 3kW0k by Lemma 4.15 (1), and kW0k � kWsk, where C 0WWs ! � � � ! Wr
is the subcomputation corresponding to the first occurrence of .F / in the block history
of C , because the rules of the first block .E/ does not decrease the lengths.

Let k andm be the parameters of C 0 defined as in the proof of Lemma 4.20. Note
thatm ¤ 0 by Lemmas 4.9 (1) and 4.5 (1) since C 0 starts with �.4�4/�1. Due to the
maximality of C 0, one can apply Lemmas 4.9 (2) and 4.19 (a) to C 0 and obtain

jmj � .2k/3 � 1000
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since the length k of any word accepted by M1 and M2 is at least 5 by (4.2). Then,
as in Lemma 4.20, we obtain that the length of C 0 is at least

2kWsk C 2jkWsk � 2j C � � � C 2jkWsk � 1998j;

which is at least 1000kWsk and at least 1000kW0k > 300kH0k.
Similarly we have that the length of C 00 is greater than 300kHtk, where the

computation C 00 corresponds to the last occurrence of .F / in the block history of C .
It follows that kH0k C kHtk < t=100.

Lemma 4.22. Let W0 be an accepted word, C WW0 ! � � � ! Wt be a reduced
computation of M andH0,Ht be the histories of the shortest computations accepting
W0 and Wt , respectively. Then:
(1) C is a product of at most three subcomputations

C1WW0 ! � � � ! Wn1 ; C2WWn1 ! � � � ! Wn1Cn2 ;

and C3WWn1Cn2 ! � � � ! Wn1Cn2Cn3 .n1 C n2 C n3 D t /;

where
max

�
kWn1k; kWn1Cn2k

�
� max

�
kW0k; kWtk

�
and for every Ci .i D 1; 2; 3/ either:

(a) kWj k � c4max
�
kW0k; kWtk

�
, for every configuration Wj of Ci , where

c4 D c4.M/; or
(b) there are accepting computations for the first and the last configuration

of Ci with block histories .E/ or ..F /.E/ and histories H 0i and H
00
i such

that kH 0ik C kH
00
i k < ni=100.

(2) The sum of lengths of all maximal subcomputations of C with block history .E/
does not exceed 3.kW k0 C kWtk/C t=100.

Proof. (1) If the block history of C is .F /, then the entire computation C satisfies
either (a) or (b) by Lemma 4.20. If the block history of C is .E/.F /, we consider
the subcomputation

C 0WW0 ! � � � ! Ws

corresponding to the first block .E/ of the step history. If Wn1 has minimal length
in C 0, then the subcomputation

C 00WWn1 ! � � � ! Ws

is length-non-decreasing; this follows from Lemma 2.7 for Steps 4 and 5 and from
Lemma 3.6 for Step 4�. Similarly, the subcomputation

W0 ! � � � ! Wn1
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is length-non-increasing. Since kWn1k � kW0k we can again apply Lemma 4.20 to
the subcomputations

W0 ! � � � ! Wn1 and Wn1 ! � � � ! Wt :

Therefore we assume that there are at least three blocks.
Consider the subcomputation

C 0WWr ! � � � ! Ws

corresponding to the first block .E/ occured in the step history. It has a maximal
length-non-increasing part Wr ! � � � ! Wn1 as in the previous paragraph.

Observe that kWrk � kW0k. Indeed, only historical sectors can be unlocked
in Wr , but neither control S-machine can increase the lengths of these sectors in
the computation Wr ! � � � ! W0 with block history .F / by Lemma 3.1, nor the
computations of Steps 1, 2, 3 can do this by Lemma 3.9.

Since kWn1k � kWrk � kW0k, we can apply Lemma 4.20 to the subcomputation

C1WW0 ! � � � ! Wn1

and obtain one of the properties (a) or (b) for it. Similarly, we consider the last
block .E/ in the block history of C and define the subcomputation C3 starting with
Wn1Cn2 whose length does not exceed the length ofWt , and so either (a) or (b) holds
for C3. We have n2 D 0 if the block history is .F /.E/.F /.

If there are at least two blocks .E/, then the middle computation C2 satisfies the
assumptions of Lemma 4.21, and so Property (b) holds for it.

(2) The subdivision of each subcomputation corresponding to a .E/ according the
sample of part (1) gives the required estimate. Namely, if a subcomputation D is a
product D1D2D3 with block history .E/.F /.E/ satisfying Lemma 4.21, then we
obtain that the length of D1 plus the length of D3 is less than 0:01 of the length
ofD2. IfD has brief history .E/ or .F /.E/, or .E/.F /, the we refer to Lemma 4.20.

Lemma 4.23. For every accepted wordW0 of length at most n there is an accepting
computation of length O.nf .n/3/ with number of steps O.f .n/3/. The generalized
time function T 0.n/ ofM is equivalent to ‚.nf .n/3/.

Proof. By Lemma 4.15 (1), given an accepted wordW0 of length n, there is a shortest
accepting computation W0 ! � � � ! Wt with block history either .E/ or .F /.E/ .
We denote byH its history. The step history of block .E/ has length at most 3kW0k
by Lemma 4.7 and contains at most three steps.

If the number of steps inH is at most 10, then

kHk D O
�
kW0k

�
D O.n/
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by Lemma 4.16. Otherwise by Lemma 4.9,H D H1H2H3, whereH1 has less than
10 steps andH2 has step history

..1�/.1/.2�/.2//˙1

andH2H3 starts with a �.21�/˙1-admissible configuration Wj . By Lemma 4.17,

kH2H3k � c3.k
3
C 1/

�
kWj k C k

3
�
;

where k is the length of the sector RsP in Wj , and the number of steps in H2H3
is O.k3/ (and so the number of steps in the entireH is O.k3/). Here,

kWj k � c1
�
jW0ja C 10

�
D O.n/

by Lemma 4.15 (2).
Since k D O.f .kWj k// D O.n/ and k3 D O.kWj k/ by Lemma 4.19, we have

O.k3/ D O
�
f .n/3

�
for the number of steps and

kH2H3k � c3.k
3
C 1/

�
kWj k C k

3
�
D c3

�
f .n/3

�
O.n/ D O.n/g.n/

by the definition of the functions f .n/ and g.n/.
The length of each of each one-step subhistory ofH1 is bounded by 4c1.jW0jaC10/

(use Lemma 3.6 (b) for Steps 1�, 2�, 3�, 4�, 5�, Lemma 2.8 (b) for Steps 1, 2, and 3,
and Lemma 2.7 for Steps 4 and 5). Hence the length of the whole history H is
also O.n/g.n/, as required.

To bound T 0.n/ from below, we will construct a series of accepted words V.n/
of length ‚.n/. The base of every V.n/ is standard, and V.n/ is �.2�1/-acceptable.
The input sector RsP contains ak , where k D f .n/ > 0, the word in the sector
R2;`P 3;` is bl , where l D ‚.n/ > 8k3 and l congruent to 4k3 modulo 8k3. (There
is such l since k3 D f .n/3 D O.n/.) Each of the big historical sectors of V.n/
contains the history of an accepting computation forM2, written in the alphabetsXi;`.
The length of this history is O.n/ by the definition of the suitable function f .n/, the
definition of the machines M0 �M2 and Lemma 2.4). Each of the small historical
sectors contains the history of the computation of D5 (also in left alphabets) that
checks that l �4k3 is divisible by 8k3. Since l D ‚.n/, this history has lengthO.n/
by Lemma 3.16. Thus, we have kVnk D ‚.n/.

Every word V.n/ is accepted. Indeed, the rules of Step 1� can check all the
sectors since the base is standard. Then the rules of Step 1 can accept f .n/, �.12�/
replaces bl with bl�1. The rules of Step 2� check the sectors again, the history
of Step 2 copies the inverse history of Step 1, it restores the alphabets Xi;` in big
historical sectors. Then we repeat the cycle decreasing the exponent at b by one
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again. After 4k3 such cycles we obtain bl�4k3 in the sector R2;`P 3;`, where l�4k3
is divisible by 8k3, and therefore after Step 3�, Step 3 can complete its work by
Lemma 3.16 (b). It remains to erase all tape letters using the rules of block .E/ and
stop computing after the rule �0 is applied.

Now let us estimate from below the length of arbitrary (reduced) computation

V.n/ � W0 ! � � � ! Wt :

By Lemma 4.9, we have the block .F / of the form

..1�/.1/.2�/.2//m.3�/.3/.4�/

in the history, where m � 4k3 .mod 8k3/ by Lemma 4.9 (2). Hence,

jmj � 4k3 D 4f .n/3:

The history of every subcomputation with step history ..1�/.1/.2�/.2//˙1 has
length at least ‚.n/ for the following reason. Every configuration of it has a word
in the sector R2;`P 3;` of length ‚.n/ since this length belongs to the segment
Œl � 4k3; l �. So by Lemma 3.1, one needs ‚.n/ rules to check this sector at the
control steps 1� and 2�.

Therefore the length of the computation W0 ! � � � ! Wt is at least 4k3‚.n/ D
‚.nf .n/3/, as desired. Since we obtain the required lower bound for every n and
kVnk D ‚.n/, the lemma is proved.

Remark 4.24. A subcomputation with step history

..21�/.1�/.1/.2�/.2/.21�//˙1

does not change the length of the sectorR2;`P 3;` by Lemma 3.6 applied to steps .1�/
and .2�/. Hence we have the same property for computations ..1�/.1/.2�/.2//m
starting and ending with connecting rules. Thus, above we obtained ‚.nf .n/3/
configurations of length at least ‚.n/ for any computation accepting the word V.n/.

We call a base B of a reduced computation (and the computation itself) revolving
if B � xvx for some letter x and a word v, and B has no proper subword of this
form.

If v � v1zv2 for some letter z, then the word zv2xv1z is also revolving. One can
cyclically permute the sectors of revolving computation with base xvx and obtain
a uniquely defined computation with the base zv2xv1z, which is called a cyclic
permutation of the original computation. The history and lengths of configurations
do not change when one cyclically permutes a computation.
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Lemma 4.25. There is a constant c4 D c4.M/ such that following holds. For any
computation C WW0 ! � � � ! Wt ofM with a revolving base xvx either:

(1) we have the inequality

kWj k � c4max
�
kW0k; kWtk

�
;

for every word Wj of C , where c4 D c4.M/; or

(2) we have the following properties:

(a) the word xv is a cyclic permutation of the standard base B D B.M/ or
of B�1;

(b) the corresponding cyclic permutations W 00 and W 0t of the words W0 and Wt
are accepted words;

(c) the step history of C (or of the inverse computation) contains subwords

.21�/.1�/.1�1/ and .12�/.2�/.2�2/I

and

(d) C is a product of at most three subcomputations

C1WW
0
0 ! � � � ! W 0n1 ; C2WW

0
n1
! � � � ! W 0n1Cn2 ;

and C3WW
0
n1Cn2

! � � � ! W 0n1Cn2Cn3 .n1 C n2 C n3 D t /;

where
max

�
kW 0n1k; kW

0
n1Cn2

k
�
� max

�
kW0k; kWtk

�
and for each Ci , either:

(d1) kW 0j k � c4max.kW 00k; kW 0t k/, for every configuration Wj of Ci ; or
(d2) there are accepting computations for the first and the last configuration

of Ci with histories H 0i and H
00
i such that kH 0ik C kH

00
i k < ni and

the corresponding block histories are either .E/ or .F /.E/.

Proof. If the computation is faulty, then Property (1) is given by Lemma 4.13
since c4 > C . If it is non-faulty, then we have all sectors of the base in the same
order as in the standard base (or its inverse), and we obtain Property (2a). Therefore
we may assume now that the base xv is standard and Property (1) does not hold.

If the block history of C is .E/, we obtain a contradiction with Lemma 4.8
since c4 > 1.

If the computation has only one step of type .F /, then Property (1) follows from
Lemmas 3.6, 3.12 and 3.17, a contradiction again. So there is a connecting rule �
from block .F / in the history.
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Assume there is a block .F / in the block history of C , and this block has at least
8 steps. Then by Lemma 4.9, the step history of C has a subword

..21�/.1�/.1/.2�/.2/.21�//˙1;

and Property (c) follows. Moreover the words at the big (small) history sectors
are copies of the same word since the subcomputations of Step .1�/ (or 2�) have
simultaneously controlled these sectors. Therefore after a number of such cycles one
can obtain the length of the sector R1;rP 2;` divisible by 8k3 (where k is the length
of the sector RsP ), which by Lemma 4.9 (2), makes possible to accept after the
Steps 3�; 3; 4�; 4; 5. So one obtains Properties (a), (b), and (c). Then Property (d)
follows from Lemma 4.22.

If there are no such blocks .F /, then there are no subwords .E/.F /.E/ in the
block history by Lemmas 4.9 and 4.5. Hence the block history is .F /.E/.F / or a
subword of this word. Let configuration W 0r and W 0s subdivide C in single block
computations. Then kW 0rk < c3kW

0
0k, because there are at most 7 steps in the

subcomputationW 0r ! � � � ! W 00, and each step transition fromW 0j towardsW
0
0 can

multiply the length by at most c. (See Lemma 3.6 for control steps and Lemma 4.11
for Steps 1, 2, and 3.) Analogously, we have kW 0s k < c3kW

0
0k. Since for every step

the lengths of all configurations are linearly bounded in terms the first and the last
configurations (see Lemmas 3.12, 3.17 3.6 (a)) we have

kW 0j k � c3max
�
kW 00k; kW

0
t k
�

if j � r or j � s. So to obtain Property (1) (and a contradiction), it suffices to
linearly bound the configurations in the subcomputationW 0r ! � � � ! W 0s in terms of
max.kW 0rk; kW 0s k/. This is done in Lemma 4.8 (1). Thus, the proof is complete.

4.5. Two more properties of standard computations. Here we prove two lemmas
needed for the estimates in Section 9. The first one says (due to Lemma 4.5 (2))
that if a standard computation C is very long in comparison with the lengths of the
first and the last configuration, then it can be completely restored if one knows the
history of C , and the same is true for the long subcomputations of C . This makes the
auxiliary parameter ��.�/ useful for some estimates of areas of diagrams �. The
second lemma is helpful for the proof of Lemma 9.23 in Section 9.

Lemma 4.26. Let C WW0 ! � � � ! Wt be a reduced computation with standard base,
where t � c5max.kW0k; kWtk/ for sufficiently large constant c5 D c5.M/. Suppose
the wordW0 is accepted. Then any subcomputation D WWr ! � � � ! Ws of C (or the
inverse for D) of length at least 0:4t contains one of the words

.21�/.1�/.1�1/; .12�/.2�/.2�2/; .23�/.3�/.3�3/; .34�/.4�/.4�4/

in the step history.
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Proof. If the block history of C is .F /, we refer to Lemma 4.20 as follows.
Assume that Property (a) of that lemma holds. Then every step of the

computation D has length at most 4c4max.kW0k; kWtk/ by Lemma 3.9 for Steps 1,
2, and 3 and by Lemma 3.6 (b) for other steps. Hence the number of steps in D has to
be at least 10 since the length of its history is at least 0:4c5max.kW0k; kWtk/ and c5
can be chosen large enough. It follows from Lemma 4.9 (1) that the step history of D

contains subwords

.21�/.1�/.1�1/ and .12�/.2�/.2�2/;

as required.
If Property (a) of Lemma 4.20 fails, then by Property (b), we have a sub-

computation of length > 0:98t with step history ..1�/.1/.2�/.2//˙m, where
every cycle with block history ..1�/.1/.2�/.2//˙1 has length < t=10. Then the
subcomputation D of length � 0:4t has to contain such a cycle, and so the step
history of D contains .12�/.2�/.2�2/; as required. Thus, we may assume that the
block history of C is not .F /.

If the block history of D contains a subword .E/.F /.E/, then the statement
follows from Lemma 4.9 (where Lemma 4.5 eliminates the case m D 0). So the
block history of D is a subword of .F /.E/.F /. By Lemma 4.22 (2), the length of
the .E/-subcomputation of D is less than

t=100C 3
�
kW0k C kWtk

�
� t=50:

So one of the .F /-subcomputations of D has length > .0:4 � 0:02/t=2 D 0:19t .

Case 1. Assume that there is a block .E/ in the block history of D , and without loss
of generality, we may assume that the computation D has a subcomputation

D 0WWr ! � � � ! Wj

of type .F / with j � r > 0:19t and the subcomputation of type .E/ occurs after D 0

in D . Proving by contradiction, we conclude that the step history of D 0 is .4�/ since
a longer step history would provide us with the subword

.34�/.4�/.4�4/

in the step history of D .
Suppose the subcomputation

W0 ! � � � ! Wr

also has a block .E/. Then C has a subcomputation with block history .E/.F /.E/.
Let the subcomputation xC correspond to the middle block .F /. Then the first and
the last configurations of xC are admissible for some rules of type .E/. Therefore by
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Lemma 4.15 (1), one can construct an auxiliary computation zC D C 0 xCC 00, where
the first factor (the third one) starts (resp., ends) with Step (5). Then by Lemmas 4.9
and 4.19 for zC , the subcomputation xC of C has a subcomputation of type .F / with
step history

..1�/.1/.2�/.2//m1.3�/.3/.4�/;

jm1j � 8k
3 � 1000, and the subcomputation corresponding to the last Step .4�/ has

length > 0:19t . It follows that at least 1000 control steps of the form .1�/ or .2�/
should have length > 0:19t since their control S-machines have to check the big and
small historical sectors too (and the length of the historical sectors are unchanged by
the rules of

..1�/.1/.2�/.2//m1.3�/.3/.4�//:

We obtain a contradiction since 1000 � 0:19t > t .
Thus, the computation EWW0 ! � � � ! Wj is of type .F /. Hence kWj k � kW0k,

because only historical sectors can be unlocked inWj , but neither control S-machine
can decrease the lengths of these sectors in the computation Wj ! � � � ! W0 with
block history .F / by Lemma 3.1, nor the computations of Steps 1, 2, and 3 can do
this by Lemma 3.9.

If the step history of E ends with .34�/.4�/.4�4/, then

kW0k � kWj k � 0:19t=4 > 0:04t

by Lemma 3.6, which contradicts to the assumption of the lemma. Hence the step
history of E is .4�/, and so 0:19t � 4kW0k by Lemma 3.6 (b), a contradiction again.

Case 2. The block history of D is .F /. Since the block history of C is not .F / but a
subword of .F /.E/ : : : , we conclude without loss of generality, that C begins with a
maximal subcomputation EWW0 ! � � � ! Wu of type .F /, where r � u < t . Then
as in Case 1, we have kWuk � kW0k.

Now consider the options (a) and (b) provided by Lemma 4.20 for E . The
option (b) is eliminated exactly as in the second paragraph of the proof of the current
lemma, where t can be replaced by 0:4t since u � r � s � 0:4t . Hence we have
by (a) that every configurationWj of E satisfies the inequality kWj k � c4kW0k since
kWuk � kW0k. Then the length of every single step of E cannot exceed 4c4kW0k
(see Lemma 3.6 (b) for control steps and 2.8 for Steps 1, 2, and 3). Here we have
4c4 < c5=10 by the choice of c5.

Since s � r � 0:4t � 0:4c5kW0k, we see that the length of the step history of D

is at least 4. It follows from Lemma 4.9 that the step history of D contains one of the
words mentioned in the formulation of Lemma 4.26.

Lemma 4.27. Let a reduced computation W0 ! � � � ! Wt start with an accepted
word W0, have standard base, and have step history of length 1. Assume that for
some index j , we have jWj ja > 3jW0ja. Then there is a sectorQQ0 such that a state
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letter fromQ or fromQ0 inserts a letter increasing the length of this sector after any
transition of the subcomputation Wj ! � � � ! Wt .

Proof. Let the step history be .1/. Note that all big historical sectors of any
configuration Wi have the same content (up to taking a copy) since the word W0
is accepted. Assume that no rule of the subcomputation D WW0 ! � � � ! Wj
increases the length of big historical sectors. Then by Lemma 2.8 (b) the length of
the history of D does not exceed h, where h is the a-length of such sectors.

Every rule of the subcomputation D can change the length of any working sector
at most by 1. (See Lemma 2.1 (3)). Hence if its length inW0 is `, its length inWj is
at most `Ch. It follows that jWj ja � 3jW0ja, because the working sectors ofM2 and
its historical sectors alternate in the standard base. This contradicts to the assumption
of the lemma.

Thus, there is a rule in the history of D increasing the length of a big historical
sector QQ0. It has to insert a letter from Xi;` from the left and a letter from Xi;r
from the right. Since the obtained word is not a word over one of these alphabets,
Step 1 is not over, and the next rule has to increase the length of the sector again in
the same manner since the computation is reduced. This procedure will repeat until
one getsWt . This proves the statement. The same proof works for Steps 2 and 3. (In
the later case, one will consider small historical sectors.)

It follows from the definition of Step 4 (of Step 5) that every rule either increase
or decrease the length of small (resp., of big) history sectors. If any rule increases
it, then all the next rules will increase the lengths of these sectors too. Hence the
argument of the previous paragraph works for Steps 4 and 5 as well.

For the control Steps 1�–5�, the statement of the lemma follows from Lem-
ma 3.1 (1): if we have a transition of a primitive S-machine, where the control state
letter increases the length of a sector, then it will keep increasing it in any reduced
computation.

5. Groups and diagrams

5.1. The groups. Every S-machine can be simulated by finitely presented group
(see [22] and also [17, 19]). Here we apply such a construction to the S-machine M.
To simplify formulas, it is convenient to change the notation. From now on we shall
denote by N the length of the standard base ofM.

Thus the set of state letters isQDtNiD0Qi , whereQN DQ0 D ftg, Y Dt
N
iD1Yi ,

and ‚ is the set of rules of the S-machineM.
The finite set of generators of the group M consists of q-letters corresponding

to the states Q, a-letters corresponding to the tape letters from Y , and � -letters
corresponding to the rules from the positive part ‚C of ‚ (the same letter as for the
S-machine).
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The relations of the groupM correspond to the rules of the S-machineM. Recall
that the cyclic S-machine M satisfies Property (1) of Lemma 2.1, and so every rule
� 2 ‚C of it has the form

� W
�
U0 ! V0; : : : UN ! VN

�
;

where U0 � UN and V0 � VN . For every such rule � , we introduce the following
relation of the groupM .

Ui�iC1 D �iVi ; �ja D a�j ; i; j D 0; : : : ; N (5.1)

for all a 2 Yj .�/. (Here �N � �0.) The first type of relations will be called
.�; q/-relations, the second type - .�; a/-relations.

Finally, the required group G is given by the generators and relations of the
groupM and by one more additional relation, namely the hub-relation

.WM /
L
D 1; (5.2)

whereWM is the accept word (of length N ) of the S-machineM and the exponent L
is a large enough integer. (It depends onM and will be made more precise later.) The
corresponding cells in van Kampen diagrams looks like hubs in the net of q-bands
(see pictures in [15, 20, 22]).

5.2. Van Kampen diagrams. Recall that a van Kampen diagram� over a present-
ation P D hA j Ri (or just over the group P ) is a finite oriented connected and
simply–connected planar 2–complex endowed with a labeling function

LabWE.�/! A˙1;

whereE.�/ denotes the set of oriented edges of�, such that Lab.e�1/ � Lab.e/�1:
Given a cell (that is a 2-cell)… of�, we denote by @… the boundary of…; similarly,
@� denotes the boundary of �. The labels of @… and @� are defined up to cyclic
permutations. An additional requirement is that the label of any cell … of � is
equal to (a cyclic permutation of) a word R˙1, where R 2 R. The label and the
combinatorial length kpk of a path p are defined as for Cayley graphs.

The van Kampen Lemma states that a word W over the alphabet A˙1 represents
the identity in the group P if and only if there exists a diagram � over P such that
Lab.@�/ � W , in particular, the combinatorial perimeter k@�k of � equals kW k.
([11, Ch. 5, Theorem 1.1]; our formulation is closer to Lemma 11.1 of [13]). The
word W representing 1 in P is freely equal to a product of conjugates to the words
from R˙1. The minimal number of factors in such products is called the area of the
word W . The area of a diagram � is the number of cells in it. By van Kampen
Lemma, Area.W / is equal to the area of a diagram having the smallest number of
cells among all diagrams with boundary label Lab.@�/ � W .
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We will study diagrams over the groups M and G. The edges labeled by
state letters (D q-letters) will be called q-edges, the edges labeled by tape letters
(D a-letters) will be called a-edges, and the edges labeled by � -letters are � -edges.

We denote by jpja, (jpj� , jpjq) the a-length (resp., the � -length, the q-length) of
a path/word p, i.e. the number of a-edges/letters (the number of � -edges/letters, the
number of q-edges/letters) in p.

The cells corresponding to relation (5.2) are called hubs, the cells corresponding
to .�; q/-relations are called .�; q/-cells, and the cells are called .�; a/-cells if they
correspond to .�; a/-relations.

A van Kampen diagram is reduced, if it does not contain two cells (= closed 2-
cells) that have a common edge e such that the boundary labels of these two cells are
equal if one reads them starting with e (if such pairs of cells exist, they can be removed
to obtain a diagram of smaller area and with the same boundary label). To study
(van Kampen) diagrams over the group G we shall use their simpler subdiagrams
such as bands and trapezia, as in [2, 15,22], etc. Here we repeat one more necessary
definition.

Definition 5.1. Let Z be a subset of the set of letters in the set of generators of the
groupM . A Z-band B is a sequence of cells �1; : : : ; �n in a reduced van Kampen
diagram � such that:
� Every two consecutive cells�i and�iC1 in this sequence have a common boundary
edge ei labeled by a letter from Z˙1.

� Each cell �i , i D 1; : : : ; n has exactly two Z-edges in the boundary @�i , e�1i�1
and ei (i.e. edges labeled by a letter from Z˙1) with the requirement that either
both Lab.ei�1/ and Lab.ei / are positive letters or both are negative ones.

� If n D 0, then B is just a Z-edge.

The counter-clockwise boundary of the subdiagram formedby the cells�1; : : : ; �n
of B has the factorization e�1q1fq�12 where e D e0 is a Z-edge of �1 and f D en is
an Z-edge of �n. We call q1 the bottom of B and q2 the top of B, denoted bot.B/
and top.B/. Top/bottom paths and their inverses are also called the sides of the
band. The Z-edges e and f are called the start and end edges of the band. If n � 1
but e D f, then the Z-band is called a Z-annulus.

We will consider q-bands, where Z is one of the sets Qi of state letters for
the S-machine M, � -bands for every � 2 ‚, and a-bands, where Z D fag � Y .
The convention is that a-bands do not contain .�; q/-cells, and so they consist of
.�; a/-cells only.

Remark 5.2. To construct the top (or bottom) path of a band B, at the beginning
one can just form a product x1 : : : xn of the top paths xi -s of the cells �1; : : : ; �n
(where each �i is a Z-bands of length 1). No � -letter is being canceled in the word
W � Lab.x1/ : : :Lab.xn/ if B is a q- or a-band since otherwise two neighbor cells
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of the band would make the diagram non-reduced. For similar reason, there are no
cancellations of q-letters in W if B is a � -band

If B is a � -band then a few cancellations of a-letters (but not q-letters) are
possible in W . (This can happen if one of �i ; �iC1 is a .�; q/-cell and another one
is a .�; a/-cell.) We will always assume that the top/bottom label of a � -band is a
reduced form of the wordW . This property is easy to achieve: by folding edges with
the same labels having the same initial vertex, one can make the boundary label of a
subdiagram in a van Kampen diagram reduced (e.g. see [13] or [22]).

If the path .e�1q1f/˙1 or the path .fq�12 e�1/˙1 is the subpath of the boundary
path of � then the band is called a rim band of �. We shall call a Z-band maximal
if it is not contained in any other Z-band. Counting the number of maximal Z-bands
in a diagram we will not distinguish the bands with boundaries e�1q1fq�12 and
fq�12 e�1q1, and so every Z-edge belongs to a unique maximal Z-band.

We say that a Z1-band and a Z2-band cross if they have a common cell and
Z1 \Z2 D ;.

Sometimes we specify the types of bands as follows. A q-band corresponding to
one of the letters t of the base is called a t -band.

The papers [2,15,18] contain the proof of the following lemma in a more general
setting. (In contrast to [15, Lemma 6.1] and [18, Lemma 3.11], we have no x-cells
here.)
Lemma5.3. A reduced vanKampen diagram� overM has no q-annuli, no � -annuli,
and no a-annuli. Every � -band of � shares at most one cell with any q-band and
with any a-band.

If W � x1 : : : xn is a word in an alphabet X , X 0 is another alphabet, and
�WX ! X 0[f1g (where 1 is the emptyword) is amap, then�.W / � �.x1/ : : : �.xn/
is called the projection of W onto X 0. We shall consider the projections of words in
the generators of M onto ‚ (all � -letters map to the corresponding element of ‚,
all other letters map to 1), and the projection onto the alphabet fQ0 t � � � tQN�1g
(every q-letter maps to the correspondingQi , all other letters map to 1).
Definition 5.4. The projection of the label of a side of a q-band onto the alphabet‚
is called the history of the band. The step history of this projection is the step history
of the q-band. The projection of the label of a side of a � -band onto the alphabet
fQ0; : : : ;QN�1g is called the base of the band, i.e. the base of a � -band is equal to
the base of the label of its top or bottom.

As for words, we may use representatives ofQj -s in base words.
Definition 5.5. Let� be a reduced diagram overM , which has boundary path of the
form p�11 q1p2q�12 , where p1 and p2 are sides of q-bands, and q1, q2 are maximal
parts of the sides of � -bands such that Lab.q1/, Lab.q2/ start and end with q-letters.

Then � is called a trapezium. The path q1 is called the bottom, the path q2 is
called the top of the trapezium, the paths p1 and p2 are called the left and right sides
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of the trapezium. The history (step history) of the q-band whose side is p2 is called
the history (resp., step history) of the trapezium; the length of the history is called
the height of the trapezium. The base of Lab.q1/ is called the base of the trapezium.

Figure 2. Band and trapezium.

Remark 5.6. Notice that the top (bottom) side of a � -band T does not necessarily
coincide with the top (bottom) side q2 (side q1) of the corresponding trapezium of
height 1, and q2 (q1) is obtained from top.T / (resp., bot.T /) by trimming the first
and the last a-edges if these paths start and/or end with a-edges. We shall denote
the trimmed top and bottom sides of T by ttop.T / and tbot.T /. By definition, for
arbitrary � -band T , ttop.T / is obtained by such a trimming only if T starts and/or
ends with a .�; q/-cell; otherwise ttop.T / D top.T /. The definition of tbot.T / is
similar.

By Lemma 5.3, any trapezium� of height h � 1 can be decomposed into � -bands
T1; : : : ; Th connecting the left and the right sides of the trapezium. The word written
on the trimmed top side of one of the bands Ti is the same as the word written on
the trimmed bottom side of TiC1, i D 1; : : : ; h. Moreover, the following lemma
claims that every trapezium simulates the work of M. It summarizes the assertions
of Lemmas 6.1, 6.3, 6.9, and 6.16 from [18]. For the formulation (1) below, it is
important that M is an S -machine. The analog of this statement is false for Turing
machines. (See [17] for a discussion.)
Lemma 5.7. (1) Let � be a trapezium with history �1 : : : �d .d � 1/. Assume

that � has consecutive maximal � -bands T1; : : : Td , and the words Uj and Vj
are the trimmed bottom and the trimmed top labels of Tj .j D 1; : : : ; d /. Then
the history of � is a reduced word, Uj , Vj are admissible words forM , and

V1 � U1 � �1; U2 � V1; : : : ; Ud � Vd�1; Vd � Ud � �d :

(2) For every reduced computation U ! � � � ! U �H � V of M with kHk � 1
there exists a trapezium� with bottom label U , top label V , and with historyH .
Using Lemma 5.7, one can immediately derive properties of trapezia from the

properties of computations obtained earlier.
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If H 0 � �i : : : �j is a subword of the history �1 : : : �d from Lemma 5.7 (1), then
the bands Ti ; : : : ; Tj form a subtrapezium�0 of the trapezium�. This subtrapezium
is uniquely defined by the subword H 0 (more precisely, by the occurrence of H 0 in
the word �1 : : : �d ), and �0 is called theH 0-part of �.

We say that a trapezium � is standard if the base of � is the standard base B
ofM or B�1, and the step history of� (or the inverse one) contains one of the words

.21�/.1�/.1�1/; .12�/.2�/.2�2/; .23�/.3�/.3�3/;

.34�/.4�/.4�4/; .45�/.5�/.5�5/:

Remark 5.8. By Lemmas 5.7 and 4.10 (2), given the historyH , one can reconstruct
the entire standard trapezium �.
Definition 5.9. We say that a trapezium � is big if:
(1) the base of � or the inverse word has the form xvx, where xv a cyclic shift of

the L-s power of the standard base;
(2) the diagram � contains a standard trapezium.
Lemma 5.10. Let � be a trapezium whose base is xvx, where x occurs in v
exactly L � 1 times and other letters occur < L times each (where L is as in (5.2)).
Then either � is big or the length of a side of every � -band of � does not exceed
c5.kW k C kW

0k/, where W;W 0 are the labels of its top and bottom, respectively.

Proof. The diagram� is covered byL subtrapezia�i (i D 1; : : : ; L)with basesxvix.
Assume that the the step history of� (or inverse step history) contains one of the

subwords

.21�/.1�/.1�1/; .12�/.2�/.2�2/; .23�/.3�/.3�3/; .34�/.4�/.4�4/:

Then by Lemma 4.5 (2) (and 5.7), the base of � has the form .xu/Lx, where xu
is a cyclic shift of the standard base (or the inverse one) and the diagrams �i -s
(i D 1; : : : ; L) are just copies of each other. Since� contains a standard subtrapezia,
it is big.

Now, under the assumption that the step history has no subwords mentioned in
the previous paragraph, it suffices to bound the the length of a side of every � -band
of arbitrary �i by � c4.kV ja C kV 0k/, where V and V 0 are the labels of the top and
the bottom of �i .

Assume that the word xvix has a proper subword yuy, where u has no letters y,
and any other letter occurs in u at most once. Then the word yuy is faulty since vi
has no letters x. By Lemma 4.13, we have

jUj ja � C max
�
jU0ja; jUt ja

�
for every configuration Uj of the computation given by Lemma 5.7 restricted to the
base yuy. Since c4 > C , it suffices to obtain the desired estimate for the computation
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whose base is obtained by deleting the subword yu from xvix. Hence inducting on
the length of the base of �i , one may assume that it has no proper subwords yuy,
and so the base of �i is revolving. Now the required upper estimate for �i follows
from Lemma 4.25 (see (1) and (2c) there).

5.3. Parameters. The following constants will be used for the proofs in this paper.

��1; N � c0 � � � � � c5 � L0 � L� K � J

� ı�1 � c6 � c7 � N1 � N2 � N3 � N4: (5.3)

For each of the inequalities of this paper, one can find the highest constant (with
respect to the order�) involved in the inequality and see that for fixed lower constants,
the inequality is correct as soon as the value of the highest one is sufficiently large.
This principle makes the system of all inequalities used in this paper consistent.

6. Diagrams without hubs

6.1. A modified length function. Let us modify the length function on the words
and paths. The standard length of a word (a path) will be called the combinatorial
length of it. From now on we use the word “length” for the modified length. We set
the length of every q-letter equal 1, and the length of every a-letter equal to a small
enough number ı so that

J ı < 1: (6.1)
We also set to 1 the length of every word of length � 2 which contains exactly

one � -letter and no q-letters (such words are called .�; a/-syllables). The length of a
decomposition of an arbitrary word in a product of letters and .�; a/-syllables is the
sum of the lengths of the factors. The length jwj of a word w is the smallest length
of such decompositions. The length jpj of a path in a diagram is the length of its
label. The perimeter j@�j of a van Kampen diagram is similarly defined by cyclic
decompositions of the boundary @�.

The next statement follows from the above definitions and from the property of
.�; q/-relations and their cyclic shifts: The subword between two q-letters (between
� -letters) in arbitrary .�; q/-relation is a syllable (has at most one q-letter and at most
two a-letters).
Lemma 6.1. Let s be a path in a diagram� having c � -edges and d a-edges. Then:
(a) jsj � max.c; c C .d � c/ı/.
(b) jsj D c if s is a top or a bottom of a q-band.
(c) for any product s D s1s2 of two paths in a diagram, we have

js1j C js2j � jsj � js1j C js2j � ı: (6.2)
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(d) Let T be a � -band with base of length lb . Let la be the number of a-edges in the
top path topp.T /. Then the length of T (i.e. the number of cells in T ) is between
la � lb and la C 3lb .

Lemma 6.2. Let� be a van Kampen diagram whose rim � -band T has base with at
most K letters. Denote by �0 the subdiagram �nT . Then j@�j � j@�0j > 1.

Proof. Let s be the top side of T and s � @�. Note that the difference between
the number of a-edges in the bottom s0 of T and the number of a-edges in s cannot
be greater than 2K, because every .�; q/-relator has at most two a-letters. Hence
js0j � jsj � 2Kı. However,�0 is obtained by cutting off T along s0, and its boundary
contains two � -edges fewer than �. Hence we have js0j � js00j � 2 � 2ı for the
complements s0 and s00 of s and s0, respectively, in the boundaries @� and @�0.
Finally,

j@�j � j@�0j � 2 � 2ı � 2Kı � 4ı > 1

by (6.1) and (6.2).

We call a base word w tight if:
(1) for some letter x the word w has the form uxvx, where the letter x does not

occur in u and x occurs in v exactly L � 1 times;
(2) every proper prefix w0 of w does not satisfy Property (1).
Lemma 6.3. If a base w of a � -band has no tight prefixes, then kwk � K0, where
K0 D 2LN .

Proof. The hub base includes every base letter L times. Hence every word in this
group alphabet of length � K0 C 1 includes one of the letters LC 1 times.

From now on we shall fix a constant K such that

K > 2K0 D 4LN: (6.3)

Definition 6.4. We say that a reduced diagram � is a comb if it has a maximal
q-band Q (the handle of the comb), such that:
.C1/ bott.Q/ is a part of @� , and every maximal � -band of � ends at a cell in Q.
If in addition the following properties hold:
.C2/ one of the maximal � -bands T in � has a tight base (if one reads the base

towards the handle); and
.C3/ other maximal � -bands in � have tight bases or bases without tight prefixes,
then the comb is called tight.

The number of cells in the handle Q is the height of the comb, and the maximal
length of the bases of the � -bands of a comb is called the basic width of the comb.

Notice that every trapezium is a comb.
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Figure 3. Comb.

Lemma 6.5 ([19, Lemma 4.10]). Let l and b be the height and the basic width
of a comb � and let T1; : : : Tl be consecutive � -bands of � (as in Figure 3). We
can assume that bot.T1/ and top.Tl/ are contained in @� . Denote by ˛ D j@�ja
the number of a-edges in the boundary of � , and by ˛1 the number of a-edges
on bot.T1/. Then ˛ C 2lb � 2˛1, and the area of � does not exceed c0bl2 C 2˛l
for some constant c0 D c0.M/.

We say that a subdiagram � of a diagram � is a subcomb of � if � is a comb,
the handle of � divides � in two parts, and � is one of these parts.
Lemma 6.6. Let � be a reduced diagram over G with non-zero area, where every
rim � -band has base of length at least K. Assume that:
(1) � is a diagram over the groupM ; or
(2) � has a subcomb of basic width at least K0.
Then there exists a maximal q-band Q dividing � in two parts, where one of the
parts is a tight subcomb with handle Q.

Proof. (1) Let T0 be a rim band of � (Fig 1). Its base w is of length at least K, and
therefore w has disjoint prefix and suffix of length K0 since K > 2K0 by (6.3). The
prefix of this base word must have its own tight subprefix w1, by Lemma 6.3 and the
definition of tight words. A q-edge of T0 corresponding to the last q-letter of w1 is
the start edge of a maximal q-band Q0 which bounds a subdiagram � 0 containing a
band T (a subband of T0) satisfying Property (C2). It is useful to note that a minimal
suffix w2 of w, such that w�12 is tight, allows us to construct another band Q00 and a
subdiagram � 00 which satisfies (C2) and has no cells in common with � 0.

Thus, there are Q and � satisfying (C2). Let us choose such a pair with minimal
Area.�/. Assume that there is a � -band in � which does not cross Q. Then there
must exist a rim band T1 which does not cross Q in � . Hence one can apply the
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construction from the previous paragraph to T1 and construct two bands Q1 and Q2

and two disjoint subdiagrams �1 and �2 satisfying the requirement (C2) for � .
Since �1 and �2 are disjoint, one of them, say �1, is inside � . But the area of �1 is
smaller than the area of � , and we come to a contradiction. Hence � is a comb and
condition (C1) is satisfied.

Assume that the base of a maximal � -band T of � has a tight proper prefix (we
may assume that T terminates on Q), and again one obtain a q-band Q0 in � , which
provides us with a smaller subdiagram � 0 of �, satisfying (C2), a contradiction.
Hence � satisfies Property (C3) as well.

(2) The proof is shorter since a comb is given in the very beginning.

Figure 4. Lemma 6.6.

6.2. Mixture on the boundaries of diagrams. We will need a parameter of dia-
grams introduced in [16]. It was called mixture.

Let O be a circle with two-colored finite set of points (or vertices) on it, more
precisely, let any vertex of this finite set be either black or white. We callO a necklace
with black and white beads on it. We want to introduce the mixture of this finite set
of beads.

Assume that there are n white beads and n0 black ones on O . We define sets Pj
of ordered pairs of distinct white beads as follows. A pair .o1; o2/ (o1 ¤ o2) belongs
to the set Pj if the simple arc ofO drawn from o1 to o2 in clockwise direction has at
least j black beads. We denote by �J .O/ the sum

PJ
jD1 #Pj (the J -mixture onO).

Below similar sets for another necklace O 0 are denoted by P0J . In this subsection,
J � 1, but later on it will be a fixed large enough number J from the list (5.3).

Lemma 6.7 ([16, Lemma 6.1]). (a) �J .O/ � J.n2 � n/.

(b) Suppose a necklaceO 0 is obtained fromO after removal of a white bead v. Then
#P0j � #Pj for every j , and �J .O/ � Jn < �J .O 0/ � �J .O/.
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(c) Suppose a necklaceO 0 is obtained fromO after removal of a black bead v. Then
#P0j � #Pj for every j , and �J .O 0/ � �J .O/.

(d) Assume that there are three black beads v1, v2, v3 of a necklaceO , such that the
clockwise arc v1–v3 contains v2 and has at most J black beads (excluding v1
and v3), and the arcs v1–v2 and v2–v3 havem1 andm2 white beads, respectively.
IfO 0 is obtained fromO by removal of v2, then �J .O 0/ � �J .O/�m1m2.
For any diagram� overG, we introduce the following invariant�.�/ D �J .@�/

depending on the boundary only. To define it, we consider the boundary @.�/, as a
necklace, i.e. we consider a circle O with k@�k edges labeled as the boundary path
of�. By definition, the white beads are the mid-points of the � -edges ofO and black
beads are the mid-points of the q-edges O . Then, by definition, the mixture on @�
is �.�/ D �J .O/.

6.3. Quadratic upper bound for quasi-areas of diagrams over M . The Dehn
function of the groupM is greater that the required function F.n/ D n2f .n/3. For
example, it is cubic if f .n/ D const. However we are going to find the Dehn function
ofG, and first we want to bound the areas of the words vanishing inM with respect to
the presentation of G. For this goal we artificially introduce the concept of G-area.
The G-area of a big trapezia can be much less that the real area of it in M . This
concept will be justified at the end of this paper, where some big trapezia are replaced
by diagrams with hubs, but having lesser areas.
Definition 6.8. The G-area AreaG.�/ of a big trapezium � is, by definition, the
minimum of the half of its area (i.e. the number of cells) and the product

c5h
�
ktop.�/k C kbot.�/k

�
;

where h is the height of � and c5 is the constant from (5.3).
To define the G-area of a diagram � over M , we consider a family S of big

subtrapezia (i.e. subdiagrams, which are trapezia) and single cells of � such that
every cell of � belongs to a member † of this family, and if a cell … belongs to
different †1 and †2 from †, then both †1 and †2 are big subtrapezia of � with
bases xv1x, xv2x, and… is a .�; x/-cell. (In the later case, the intersection†1\†2
must be an x-band.) There is such a family “covering” �, e.g. just the family of all
cells of �.

The G-area of S is the sum of G-areas of all big trapezia from S plus the number
of single cells from S (i.e. the G-area of a cell … is Area.…/ D 1). Finally, the
G-area AreaG.�/ is the minimum of thea G-areas of all “coverings” S as above.

It follows from the definition that AreaG.�/ � Area.�/ since the G-area of a
big trapezium does not exceed a half of its area.
Lemma 6.9. Let � be a reduced diagram, and every cell � of � belongs in one of
subdiagrams �1; : : : ; �m, where any intersection �i \�j either has no cells or it
is a q-band, Then AreaG.�/ �

Pm
iD1AreaG.�i /.
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Proof. Consider the families S1; : : : ;Sm given by the definition of G-areas for the
diagrams�1; : : : ; �m. Then the setS D S1[� � �[Sm “covers” the entire� according
to the above definition. This implies the required inequality for G-areas.

We will show that for some constant N2 and N1 the G-area of any reduced
diagram � overM with perimeter n does not exceed N2n2 C N1�.�/. (Using the
quadratic upper bound for �.�/ from Lemma 6.7 (a), one deduces that the G-area
is bounded by N 0n2 for some constant N 0.) Roughly speaking, we are doing the
following. We use induction on the perimeter of the diagram. First we remove
rim � -bands (those with one side and both ends on the boundary of the diagram)
with short bases. This operation decreases the perimeter and preserves the sign of
N2n

2 C N1�.�/ � AreaG.�/, so we can assume that the diagram does not have
such bands. Then we use Lemma 6.6 and find a tight comb inside the diagram with a
handle C . We also find a long enough q-band C 0 that is close to C . We use a surgery
which amounts to removing a part of the diagram between C 0 and C and then gluing
the two remaining parts of� together. The main difficulty is to show that, as a result
of this surgery, the perimeter decreases and the measure and the mixture change in
such a way that the expression N2n2 C N1�.�/ � AreaG.�/ does not change its
sign. In the proof, we need to consider several cases depending on the shape of the
subdiagram between C 0 and C . Note that neither N2n2 nor N1�.�/ nor AreaG.�/
alone behave in the appropriate way as a result of the surgery, but the expression
N2n

2 CN1�.�/ � AreaG.�/ behaves as needed.
Remark 6.10. We introduced the surgery and used inductionmentioned above in [19,
Lemma6.2] to obtain aworse upper boundn2 logn for the area. But therewere neither
mixture, nor G (justM ), nor G-area in [19], and a different definition for length j � j
was used there. Besides, we will use an auxiliary function ˆ.x/ in the proof to be
able to repeat in part our argument later, for diagrams over G. So we shall prove
Lemma 6.16 anew to obtain the better estimate.

So, N1 and N2 are big enough constants from the list (5.3). Here “big enough”
means that they satisfy the inequalities used in the proof of Lemma 6.16 (such that
as (6.13), (6.14), (6.15), (6.26), (6.30), (6.32), (6.34), (6.39)). Each of them has the
form Ni > � (i D 1; 2), where the right-hand side � does not depend on Ni (but
depends on the constants introduced earlier). Since the number of inequalities is
finite, the right choice of N1; N2 is possible.

Letˆ.x/ be an arbitrary function defined for real x � 0 such thatˆ.x/ D x2�.x/
for a non-decreasing function �.x/ > 0 with �.1/ � 1 and

ˆ.x/ �ˆ.x � y/ � xy�.x/ for 0 � y � x: (6.4)

Remark 6.11. For this section, it suffices to take quadraticˆ.x/ and �.x/ D const:,
but to estimate theG-area of diagrams with hubs, we will take the functionsˆ.x/ D
F.x/ and �.x/ D g.x/, satisfying inequality (6.4) by Lemma 4.18.
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We are going to prove that the G-area of a reduced diagram � over M does
not exceed N2ˆ.n/C N1�.n/�.�/, where n D j@�j. Arguing by contradiction in
the remaining part of this section, we consider a counter-example � with minimal
perimeter n. Of course, its G-area is positive, and, by Lemma 5.3, we have at least
two � -edges on the boundary @�, and so n � 2.

If � is a comb with handle C and B is another maximal q-band in � , then B

cuts up � in two parts, where the part that does not contain C is a comb � 0 with
handle B. It follows from the definition of comb, that every maximal � -band of �
crossing B connects B with C . If B and C can be connected by a � -band containing
no .�; q/-cells, then � 0 is called the derivative subcomb of � . Note that no maximal
� -band of � can cross the handles of two derivative subcombs.
Lemma 6.12. (1) The diagram � has no two disjoint subcombs �1 and �2 of basic

widths at most K with handles B1 and B2 such that some ends of these handles
are connected by a subpath x of the boundary path of�, where x has at most N
q-edges.

(2) The boundary of every subcomb � with basic width s � K has 2s q-edges.

Figure 5. Lemma 6.12.

Proof. We will prove Statements (1) and (2) using simultaneous induction on A D
Area.�1/ C Area.�2/ (resp., on A D Area.�/). Arguing by contradiction, we
consider a counter-example with minimal A.
(1) Since the area of �i (i D 1; 2) is less than A, we may use Statement (2), and so
we have at most 2K q edges in @�i .

Let h1 and h2 be the lengths of the handles B1 and B2 of �1 and �2, resp.
Without loss of generality, we assume that h1 � h2. Denote by yizi the boundaries
of �i (i D 1; 2), where yi is the part of @� and zi is the side of the handle of �i
(so y1xy2 is the part of the boundary path of �, see Fig. 5 (1)). Then each of the
� -edges e of y1 is separated in @� from every � -edge f of y2 by less than 4KCN < J

q-edges. Hence every such pair .e; f/ (or the pair of white beads on these edges)
makes a contribution to �.�/.
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Let �0 be the diagram obtained by deleting the subdiagram �1 from �. When
passing from @� to @�0, one replaces the � -edges from y1 by the � -edge of z1
belonging to the same maximal � -band. The same is true for white beads.

But each of the h1h2 pairs in the corresponding set P 0 of white beads is separated
in @�0 by less number of black beads than the pair defined by �. Indeed, since the
handle of �1 is removed when one replaces @� by @�0, two black bead at the ends
of this handle are removed, and therefore

�.�/ � �.�0/ � h1h2 (6.5)

by Lemma 6.7 (d).
Let ˛ be the number of a-edges in @�1. It follows from Lemma 6.5 that the area,

and so the G-area of �1, does not exceed C1.h1/2 C 2˛h1, where C1 D c0K.
Remark 6.13. The constants C1; C2; C12; C3 are not included in the list (5.3) since
their values chosen here make sense only in the present subsection.

Since the boundary of�0 has at least twoq-edges fewer than� and jz1jDh1�jy1j,
we have j@�0j � j@�j � 2. Moreover, we have from Lemma 6.1 (a) and Lemma 5.3
that

j@�j � j@�0j �  D max
�
2; ı.˛ � 2h1/

�
; (6.6)

because the top/bottom of B1 has at most h1 a-edges.
This inequality, inequality (6.5), and the inductive assumption related to�0, imply

that the G-area of �0 is not greater than

N2ˆ.n � /CN1�.n/�.�/ �N1�.n/h1h2:

Adding the G-area of �1 and using inequality (6.4), we see that by Lemma 6.9, the
G-area of � does not exceed

N2ˆ.n/ �N2nCN1�.n/�.�/ �N1�.n/h1h2 C C1h
2
1 C 2˛h1:

Since h1 � h2 and �.n/ � 1, this will contradict the choice of the counter-example�
when we prove that

�N2n �N1h
2
1 C C1h

2
1 C 2˛h1 < 0: (6.7)

If ˛ � 4h1, then inequality (6.7) follows from the inequalities  � 2 and

N1 � C1 C 8: (6.8)

Assume that ˛ > 4h1. Then by (6.6), we have  � 1
2
ı˛ andN2n > 2˛h1 since

n � 2h1 by Lemma 5.3, and
N2 > 2ı

�1: (6.9)

Since N1h21 > C1h21 by (6.8), the inequality (6.7) follows.
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(2) If there are at least two derivative subcombs of � , then one can find two of
them satisfying the assumptions of Statement (1) (moreover, with jxjq D 0), and
Area.�1/ C Area.�2/ < Area.�/ D A, a contradiction. Therefore there is a most
one derivative subcomb � 0 in � (Fig. 5 (2)). In turn, � 0 has at most one derivative
subcomb � 00, and so one. It follows that there are no maximal q-bands in � except
for the handles of � 0; � 00; : : : . Since the basic width of � is s, we have s maximal
q-bands in � , and the lemma is proved.

Lemma 6.14. There are no pair of subcombs � and � 0 in� with handles X and X0

of length ` and `0 such that � 0 is a subcomb of � , the basic width of � does not
exceed K0 and `0 � `=2.

Figure 6. Lemma 6.14.

Proof. Proving by contradiction, one can choose � 0 so that `0 is minimal for all
subcombs in � and so � 0 has no proper subcombs, i.e. its basic width is 1 (Fig. 6). It
follows from Lemma 6.5 that for ˛ D j� 0ja, we have

AreaG.� 0/ � Area.� 0/ � c0.l 0/2 C 2˛l 0: (6.10)

Let �0 be the diagram obtained after removing the subdiagram � 0 from �. The
following inequality is the analog of (6.6) (where h1 is replaced by `0)

j@�j � j@�0j �  D max
�
2; ı.˛ � 2l 0/

�
: (6.11)

The q-band X contains a subband C of length l 0. Moreover one can choose C

so that all maximal � -bands of � crossing the handle X0 of � 0, start from C . These
� -bands form a comb � 00 contained in � , and in turn, � 00 contains � 0. The two parts
of the complement XnC are the handles of two subcombs E1 and E2 formed by
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maximal � -bands of � , which do not cross X0. Let the length of these two handles
be `1 and `2, respectively, and so we have `1 C `2 D l � l 0 > l 0. (E1 or E2 can be
empty; then `1 or `2 equals 0.)

It will be convenient to assume that � is drawn from the left of the vertical
handle X. Denote by yz the boundary path of � , where y is the right side of the
bandX. Thus, there are l1 (resp., l2) � -edges on the common subpath x1 (subpath x2)
of z and @E1 (and @E2).

By Lemma 6.12 (2), the path z contains at most 2K0 q-edges, because the basic
width of � is at most K0.

Consider the factorization z D x2xx1, where x is a subpath of @� 0. It follows
that between every white bead on x1 (i.e. the middle point of the � -edges on x1)
and a white bead on x we have at most 2K0 black beads (i.e. the middle points of
the q-edges of the path x). Since J is greater than 2K0, every pair of white beads,
where one bead belongs to x and another one belongs to x1 (or, similarly, to x2)
contributes 1 to �.�/. Let P denote the set of such pairs. By the definition of E1
and E2, we have #P D l 0.`1 C `2/ D l 0.l � l 0/ > .l 0/2.

When passing from @� to @�0, one replaces the left-most � -edges of every
maximal � -band from � 0 with the right-most � -edges lying on the right side of X0.
The same is true for white beads. But each of the l 0.l � l 0/ pairs in the corresponding
set P 0 of white beads is separated in @�0 by less number of black beads since the
q-band X0 is removed. Therefore every pair from P 0 gives less by 1 contribution to
the mixture, as it follows from the definition of mixture. Hence �.�/ � �.�0/ �
l 0.l � l 0/ � .l 0/2. This inequality, inequality (6.11), and the inductive assumption
related to �0, imply that the G-area of �0 is not greater than

N2ˆ.n � /CN1�.n/�.�/ �N1�.n/.`
0/2:

Adding the G-area of � 0 (6.10) and applying inequality (6.4), we see that the G-area
of � does not exceed

N2ˆ.n/CN1�.n/�.�/ �N2n �N1�.n/.l
0/2 C c0.l

0/2 C 2˛l 0:

This will contradict the choice of the counter-example � when we prove that

�N2n �N1.l
0/2 C c0.l

0/2 C 2˛l 0 < 0; (6.12)

because �.n/ � 1. Consider two cases:
(a) Let ˛ � 4l 0. Then inequality (6.12) follows from the inequalities  � 2 and

N1 � c0 C 8: (6.13)

(b) Assume that ˛ > 4l 0. Then by (6.11) we have  � 1
2
ı˛ and N2n > 2˛l 0 since

n � 2l � 4l 0 by Lemma 5.3, and

N2 > ı
�1: (6.14)
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Since N1.l 0/2 > c0.l 0/2 by (6.13), the inequality (6.12) follows.
Thus, the lemma is proved by contradiction.

Lemma 6.15. � has no rim � -band whose base has s � K letters.

Figure 7. Rim � -band.

Proof. Assume by contradiction that such a rim � -band T exists, and top.T / belongs
in @.�/ (Fig. 7). When deleting T , we obtain, by Lemma 6.2, a diagram �0 with
j@�0j � n � 1. Since top.T / lies on @�, we have from the definition of the length,
that the number of a-edges in top.T / is less than ı�1.n � s/. By Lemma 5.1, the
length of T is at most 3s C ı�1.n � s/ < ı�1n. Thus, by applying the inductive
hypothesis to �0, we have that G-area of � is not greater than

N2ˆ.n � 1/CN1�.n/�.�/C ı
�1n

because �.�0/ � �.�/ by Lemma 6.7 (b). But the first term of this sum does not
exceed N2ˆ.n/ �N2n by (6.4), and so the entire sum is bounded by

N2ˆ.n/CN1�.n/�.�/

provided
N2 � ı

�1: (6.15)
This contradicts to the choice of �, and the lemma is proved.

Lemma 6.16. The G-area of a reduced diagram � overM does not exceed

N2ˆ.n/CN1�.n/�.�/;

where n D j@�j.

Proof. We continue studying the hypothetical minimal counter-example �. By
Lemma 6.15, now we can apply Lemma 6.6 (1). By that lemma, there exists a tight
subcomb � � �. Let T be a � -band of � with a tight base.

The basic width of � is less than K0 by Lemma 6.3. Since the base of � is tight,
it is equal to uxvx for some x, where the last occurrence of x corresponds to the
handle Q of � , the word u does not contain x, and v has exactly L � 1 occurrences
of x. Let Q0 be the maximal x-band of � crossing T at the cell corresponding to the
first occurrence of x in uxvx (Fig. 8 (a)).
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Figure 8. Lemma 6.16.

We consider the smallest subdiagram � 0 of � containing all the � -bands of �
crossing the x-band Q0. It is a comb with handle Q2 � Q. The comb � 0 is covered
by a trapezium �2 placed between Q0 and Q, and the comb �1 with handle Q0. The
band Q0 belongs to both �1 and �2. The remaining part of � is a disjoint union of
two combs �3 and �4 whose handles Q3 and Q4 contain the cells of Q that do not
belong to the trapezium �2. The handle of � is the composition of handles Q3, Q2,
Q4 of �3, � 0 and �4 in that order.

Let the lengths of Q3 and Q4 be l3 and l4, respectively. Let l 0 be the length of
the handle of � 0. Then by Lemma 6.14, we have

l 0 > l=2 and l D l 0 C l3 C l4: (6.16)

For i 2 f3; 4g and ˛i D j@�i ja, Lemma 6.5 gives inequalities

Ai � C1l
2
i C 2˛i li ; (6.17)

whereAi is theG-area of �i . (We take into account thatG-area cannot exceed area.)
Let p3;p4 be the top and the bottom of the trapezium �2. Here p�13 (resp., p�14 )

shares some initial edges with @�3 (with @�4), the rest of these paths belong to the
boundary of�. We denote by d3 the number of a-edges of p3 and by d 03 the number
of the a edges of p3 which do not belong to �3. Similarly, we introduce d4 and d 04.

LetA2 be theG-area of �2. Then by Lemma 5.10 and the definition of theG-area
for big trapezia, we have

A2 � C2l
0.d3 C d4 C 1/ (6.18)

for some constant C2 < ı�1, because the basic width of �2 is less than K.
Now we observe that the handle Q2 of � 0 is a copy of Q0 because both maximal

q-bands of the trapezium �2 correspond to the same basic letter x.
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This makes the following surgery possible. The diagram � is covered by two
subdiagrams: � and another subdiagram �1, having only the band Q in common.
We construct a new auxiliary diagram by attaching �1 to �1 with identification of
the of the band Q0 of �1 and the band Q2. We denote the constructed diagram by�0.

�0 is a reduced diagram because every pair of its cells having a common edge,
has a copy either in �1 or in �1. Now we need the auxiliary:

Lemma 6.17. The G-area A0 of�0 is at least the sum of the G-areas of �1 and�1
minus l 0.

Proof. Consider a minimal “covering” S of �0 from the definition of G-area, and
assume that there is a big trapezium E 2 S, such that neither �1 nor �1 contains it.
Then E has a base ywy, where .yw/˙1 is a cyclic permutation of the Lth power of
the standard base, and the first y-band of E is in �1, but it is not a subband of Q0.

Since the history H of the big trapezium E is a subhistory of the history of �2,
we conclude that �2 is a big trapezium itself, and therefore .xv/˙1 is an Lth power
of a cyclic shift of the standard base (or of the inverse of it). Since the first y occurs
in uxvx before the first x it follows that we have the .LC1/-th occurrence of y before
the last occurrence of x in the word uxvx. But this contradicts to the definition of
tight comb � .

Hence every big trapezium fromS entirely belongs either to�1 or to�1. Therefore
one can obtain “coverings” S0 and S00 of these two diagrams if (1) every † from S is
assigned either to S0 or to S00 and then (2) one add at most l 0 single cells since the
common band Q0 in �0 should be covered twice in disjoint diagrams �1 and �1.
These construction complete the proof of the lemma.

By Lemma 6.9, the G-area of � does not exceed the sum of G-areas of the five
subdiagrams�1, �2, �3, �4, and�1. But the direct estimate of each of these values is
not efficient. Therefore we will use Lemma 6.17 to bound theG-area of the auxiliary
diagram �0 built of two pieces �1 and �1.

It follows from our constructions and Lemmas 6.9 and 6.17, that

AreaG.�/ � A2 C A3 C A4 C A0 C l 0: (6.19)

Now we continue proving Lemma 6.16.
Let p3 be the segment of the boundary @�3 that joinsQ and�2 along the boundary

of� (Fig. 8 (b)). It follows from the definition of d3, d 03, l3, and ˛3, that the number
of a-edges lying on p3 is at least ˛3 � .d3 � d 03/ � l3.

Let u3 be the part of @� that contains p3 and connects Q with Q0. It has l3
� -edges. Hence we have, by Lemma 6.1, that at least

ju3j � max
�
l3; l3 C ı

�
jp3ja � l3

��
� max

�
l3; l3 C ı

�
˛3 � .d3 � d

0
3/ � 2l3

��
:

Since u3 includes a subpath of length d 03 having no � -edges, we also have by Lem-
ma 6.1 (c) that ju3j � l3 C ı.d 03 � 1/.
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One can similarly define p4 and u4 for �4. When passing from @� to @�0 we
replace the end edges of Q0, u3 and u4 by two subpaths of @Q having lengths l3
and l4. Let n0 D j@�0j. Then it follows from the previous paragraph that

n � n0 � 2C ı
�
max

�
0; d 03 � 1; ˛3 � .d3 � d

0
3/ � 2l3

�
Cmax

�
0; d 04 � 1; ˛4 � .d4 � d

0
4/ � 2l4

��
: (6.20)

In particular, n0 � n � 2. By the inductive hypothesis,

A0 � N2ˆ.n0/CN1�.n0/�.�0/: (6.21)

We note that themixture�.�0/ of�0 is not greater than�.�/�l 0.l�l 0/. Indeed,
by Lemma 6.14 (2), one can use the same trick as in Lemma 6.14 as follows. For
every pair of white beads, where one bead corresponds to a � -band of �2 and another
one to a � -band of �3 or �4, the contribution of this pair to �.�0/ is less than the
contribution to�. It remains to count the number of such pairs: l 0.l3Cl4/ D l.l�l 0/.

Therefore, by inequalities (6.21) and (6.4), the G-area of � is not greater than

N2ˆ.n/CN1�.n/�.�/�N2n.n�n0/�N1�.n/l
0.l�l 0/CA2CA3CA4Cl

0: (6.22)

In viewof inequalities (6.18), (6.17), and (6.19), to obtain the desired contradiction,
it suffices to prove that

N2n.n � n0/CN1l
0.l � l 0/ � C12l

0.d3 C d4 C 1/C C12.l
2
3 C l

2
4 /

C 2˛3l3 C 2˛4l4 C l
0; (6.23)

where C12 D max.C1; C2/.
Since l D l 0 C l3 C l4, it suffices to prove that

N2n.n�n0/CN1l
0.l�l 0/ � C3l

0.d3Cd4C1/CC3.l
2
3Cl

2
4 /C2˛3l3C2˛4l4; (6.24)

where C3 D C12 C 1.
Note that we can assume that

C3 � 1: (6.25)

First we can choose N1 big enough so that

N1l
0.l � l 0/=3 � C3.l3 C l4/

2
� C3.l

2
3 C l

2
4 /:

Indeed, by (6.16), we obtain

N1

3
l 0.l � l 0/ �

N1

3
.l3 C l4/.l3 C l4/;

so it is enough to assume that
N1 > 3C3: (6.26)
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We also have that
N2

2
n.n � n0/ � C3l

0; (6.27)

because n � n0 � 2, n � 2l 0 ,and N2 � C3 by (6.26).
It remains to prove that

N2

2
n.n � n0/C

2N1

3
l 0.l � l 0/ > C3l

0.d3 C d4/C 2˛3l3 C 2˛4l4: (6.28)

We assume without loss of generality that ˛3 � ˛4, and consider two cases:
(a) Suppose ˛3 � 2C3.l � l 0/. Since di � ˛i Cd 0i for i D 3; 4, by inequality (6.20),
we have

d3 C d4 � ˛3 C ˛4 C d
0
3 C d

0
4 < 4C3.l � l

0/C ı�1.n � n0/C 2 � 2ı
�1

< 4C3.l � l
0/C ı�1.n � n0/:

Therefore,

N1

3
l 0.l � l 0/C

N2

2
n.n � n0/ � 4C

2
3 l
0.l � l 0/C C3ı

�1.n � n0/l
0

> C3l
0.d3 C d4/

(6.29)

since we can assume that

N1 > 12C
2
3 ; N2=2 > C3ı

�1: (6.30)

We also have by (6.16):

N1

3
l 0.l � l 0/ �

N1

3
.l3 C l4/.l3 C l4/

�
N1

3

˛3 C ˛4

4C3
.l3 C l4/ > 2˛3l3 C 2˛4l4

(6.31)

since we can assume that
N1 > 24C3: (6.32)

The sum of inequalities (6.29) and (6.31) gives us the desired inequality (6.28).

(b) Assume now that ˛3 > 2C3.l � l 0/. Then, applying Lemma 6.5 to the comb �3,
we obtain

d3 � d
0
3 <

1

2
˛3 CK0l3 �

5

6
˛3 (6.33)

since l3 � l � l 0 < ˛3
2C3

and
C3 > 3K0: (6.34)

We also have
d4 � d

0
4 <

1

2
˛4 CK0l4 �

5

6
˛3:
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These two inequalities and inequality (6.20) lead to

d3 C d4 �
5

3
˛3 C ı

�1.n � n0/: (6.35)

It follows from (6.33) that

˛3 � .d3 � d
0
3/ � 2l3 �

1

6
˛3 �

2

2C3
˛3 �

1

7
˛3;

since l3 � l � l 0 < ˛3
2C3

and C3 > 42 by (6.25). Therefore, by (6.20),

n � n0 �
1

7
ı˛3: (6.36)

Thus, by (6.35),
d3 C d4 < 13ı

�1.n � n0/: (6.37)

Since 2l 0 < n and n � n0 � 2, inequality (6.37) implies

N2

3
n.n � n0/ > C3l

0.d3 C d4/; (6.38)

because we can assume that
N2 � C3ı

�1 (6.39)

(N2 > 21C3ı�1 is enough).
Inequalities (6.36), (6.39), ˛3 � ˛4, and 4.l3 C l4/ � n give us

N2

6
n.n � n0/ �

7

2
C3ı

�1.n � n0/n � 2˛3.l3 C l4/ � 2˛3l3 C 2˛4l4: (6.40)

The inequality (6.28) follows now from inequalities (6.38), and (6.40).

7. Minimal diagrams over G

Given a reduced diagram � over the group G, one can construct a planar graph
whose vertices are the hubs of this diagram plus one improper vertex outside �, and
the edges are maximal t -bands of �.

Let us consider two hubs …1 and …2 in a reduced diagram, connected by two
neighbor t -bands Ci and CiC1, where there are no other hubs between these t -bands.
These bands, together with parts of @…1 and @…2, bound either a subdiagram having
no cells, or a trapezium‰ of height� 1 (Fig. 9). The former case is impossible since
in this case the hubs have a common t -edge and, the diagram is not reduced since all
cyclic permutations of the word .WM /L starting with t are equal. We want to show
that the latter case is not possible either if the diagram � is chosen with minimal
number of hubs among the diagrams with the same boundary label.
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Figure 9. Cancellation of two hubs.

Indeed, both the top and the bottom labels of ‰ are equal to the word .WM t /˙1,
and removing CiC1 from ‰, we get a subdiagram ‰0 with top/bottom label .WM /˙1
and the same label V of its sides. It follows thatWM and V commute in the groupM .
Hence the word U � .WM /

1�LV.WM /
L�1V �1 is equal to 1 in M . But U is the

boundary label of a subdiagram � containing ‰0 and both …1 and …2. Hence
one can replace � with a diagram over M , decreasing the nubmer of hubs in �, a
contradiction.

IfW is anM-accepted word, then the word .W /L is equal to 1 in G. To see this,
one can glue up L copies�1; : : : ; �L ot the trapezia corresponding to the accepting
computation of W , identifying the right side of each �i and the left side of �iC1
(indices are taken modulo L). The obtained annulus has inner boundary labeled by
the hub word .WM /L, and so the hole can be glued up by a hub cell.

As in [22] and [15], wewill increase the set of relations ofG by adding the (infinite)
set of disk relators .W /L for every accepted wordW . So we will consider diagrams
with disks, where every disk cell (or just disk) is labeled by such a word .W /˙L.
(In particular, the hub is a disk.)

Again, if two disks are connected by two t -bands and there are no other disks
between these t -bands, then one can reduce the number of disks in the diagram. For
this aid, it suffices to replace the disks with hubs and the cells corresponding to the
defining relations ofM , and apply the trick exploited above.

Definition 7.1. We will call a reduced diagram � minimal if:

(1) the number of disks is minimal for the diagrams with the same boundary label;
and

(2) � has minimal number of .�; t/-cells among the diagrams with the same
boundary label and with minimal number of disks.

Clearly, a subdiagram of a minimal diagram is minimal itself.

Thus, no two disks of a minimal diagram are connected by two t -bands, such
that the subdiagram bounded by them contains no other disks. This property makes
the disk graph of a reduced diagram hyperbolic, in a sense, if the degree L of every
proper vertex (D disk) is high (L� 1). Below we give a more precise formulation
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(proved for diagrams with such a disk graph, in particular, in [22, Lemma 11.4] and
in [15, Lemma 3.2]).

Lemma 7.2. If a a minimal diagram contains at least one disk, then there is a disk…
in� such thatL�3 consecutive maximal t -bandsB1; : : : ;BL�3 start on @…, end on
the boundary @�, and for any i 2 Œ1; L� 4�, there are no disks in the subdiagram �i
bounded by Bi , BiC1, @…, and @� (Fig. 10).

Figure 10. Lemma 7.2.

A maximal q-band starting on a disk of a diagram is called a spoke.
Lemma 7.2 implies by induction on the number of hubs:

Lemma 7.3 (see [16, Lemma 5.19]). If a reduced diagram � has m � 1 hubs, then
the number of spokes of � ending on the boundary @�, and therefore the number
of q-edges in the boundary path of �, is greater than mLN=2 .

Recall the following transformation for diagrams with disks, exploited earlier
in [15, 22]. Assume there is a disk … and a � -band T subsequently crossing some
spokes B1; : : : ;Bk which start (say, counter-clockwise) from…. Assume that k � 2
and there are no other cells between … and the bottom of T , and so there is a
subdiagram � formed by… and T .

We describe the transposition (band moving construction in the terms of [22]) of
the disk and the band as follows. We have a word V � tW1t : : : tWk�1t written on
the top of the subband T 0 of T , that starts on B1 and ends on Bk . The bottom q2
of T 0 is the subpath of the boundary path q2q3 of… (Fig. 11).

Note that W1 � W2 � � � � � Wk�1 and tW1 is an accepted word by Lemma 5.7.
Therefore one can construct a new disk x… with boundary label .tW1/L and
boundary s1s2, where Lab.s1/ � V . Also one construct an auxiliary band T 00 with
top labelW �11 t�1 : : : t�1W �11 , where the number of occurrences of t�1 isL�k, and
attach it to s�12 , which has the same label. Finally we replace the subband T 0 by T 00
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(and make cancellations in the new � -band xT if any appear). The new diagram x�
formed by x… and xT has the same boundary label as � .

Figure 11. Transposition of a � -band and a disk.

Remark 7.4. After the transposition, the first .�; t/-cells of t -spokes B1; : : : ;Bk are
removed and the total number of common .�; t/-cells of the new spokes xB1; : : : ; xBk

of x… and xT is less than the number of common .�; t/-cells of B1; : : : ;Bk and T at
least by k. In particular, if k > L � k, then the number of .�; t/-cells in x� is less
than the number of .�; t/-cells in � . This observatiom implies

Lemma 7.5. Let � be a minimal diagram.

(1) Assume that a � -band T0 crosses k t-spokes B1; : : : ;Bk starting on a disk …,
and there are no disks in the subdiagram �0, bounded by these spokes, by T0
and by…. Then k � L=2.

(2) Assume that there are two disjoint � -bands T and S whose bottoms are parts of
the boundary of a disk… and these bands correspond to the same rule � (if their
histories are read towards the disk). Suppose T crosses k � 2 t-spokes starting
on @… and S crosses ` � 2 t -spokes starting on @…. Then k C ` � L=2.

(3) � contains no � -annuli.

(4) A � -band cannot cross a maximal q-band (in particular, a spoke) twice.

Proof. (1) Since every cell, except for disks, belongs to a maximal � -band, it follows
from Lemma 5.3 that there is a � -band T such that T crosses all B1; : : : ;Bk and�0
has no cells between T and …. If k > L=2, then by Remark 7.4, the transposition
of… and T would decrease the number of .�; t/-cells in�, a contradiction, since�
is a minimal diagram.

(2) As above, let us transpose T and …. This operation removes k .�; t/-cells but
add L � k new .�; t/-cells in xT . However ` .�; t/-cells of S and ` .�; t/-cells of xT
will formmirror pairs, and so after cancellations one will have at mostL�k�2` new
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.�; t/-cells. This number is less than k if kC ` > L=2 contrary to the minimality of
the original diagram. Therefore k C ` � L=2.

(3) Proving by contradiction, consider the subdiagram �0 bounded by a � -annulus.
It has to contain disks by Lemma 5.3. Hence it must contain spokes B1; : : : ;BL�3

introduced in Lemma 7.2. But this contradits to item (1) of the lemma since
L � 3 > L=2.

(4) The argument of item (3) works if there is a subdiagram �0 of � bounded by an
q-band and a � -band.

The transposition transformation will be used for extrusion of disks from quasi-
trapezia. The definition of a quasi-trapezium sounds as the definition of trapezium,
but quasi-trapezia may contain disks. (So a quasi-trapezium without disks is a
trapezium.)
Lemma 7.6. Let a minimal diagram � be a quasi-trapezium with standard
factorization of the boundary as p�11 q1p2q�12 . Then there is a diagram � 0 such
that:
(1) the boundary of � 0 is .p01/�1q01p02.q02/�1, where

Lab.p0j / � Lab.pj / and Lab.q0j / � Lab.qj /

for j D 1; 2;
(2) the numbers of hubs and .�; q/-cells in � 0 are the same as in �;
(3) the vertices .p01/� and .p02/� (the vertices .p01/C and .p02/C) are connected by

a simple path s1 (by s2, resp.) such that we have three subdiagrams �1; �2; �3
of � 0, where �2 is a trapezium with standard factorization of the boundary
.p01/�1s1p02s�12 and all cells of the subdiagrams �1 and �3 with boundaries
q01s�11 and s2.q01/�1 are disks;

(4) all maximal � -bands of � and all maximal � -bands of �2 have the same number
ot .�; t/-cells (equal for � and �2).

Proof. Every maximal � -band of � must connect an edge of p1 with an edge of p2;
this follows from Lemma 7.5 (3). Hence we can enumerate these bands from bottom
to top: T1; : : : ; Th, where h D jp1j D jp2j.

If � has a disk, then by Lemma 7.2, there is a disk … such that at least L � 3
t -spokes of it end on q1 and q2, and there are no disks between the spokes ending
on q1 (and on q2). By Lemma 7.5 (2), at leastL�3�L=2 � 2 of these spokes must
end on q1 (resp., on q2).

If … lies between Tj and TjC1, then the number of its t -spokes crossing Tj
(crossing TjC1) is at least 2. So one can make a transposition of … with each of
these two � -bands. So we can move the disk toward q1 (or toward q2) until the
disk is extruded from the quasi-trapezium. (We use that if k t-spokes B1; : : : ;Bk
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of… end on q1, then after transposition, we again have k t-spokes xB1; : : : ; xBk of x…
ending on q1; see the notation of Remark 7.4.)

No pair Tj and TjC1 corresponds to two mutual inverse letters of the history. This
is clear if there are no discs between these � -bands. If there is a disk, then this is
impossible too by Lemma 7.6 (2) since one could choose a disk… as in the previous
paragraph. So the projection of the label of p1 on the history is reduced.

Let us choose i such that the numberm of .�; t/-cells in Ti is minimal. It follows
that � has at least hm .�; t/-cells.

If the disk … lies above Ti , we will move it upwards using transpositions. So
after a number of transpositions all such (modified) disks will be placed above the
� -band number h and form the subdiagram �1. Similarly we can form �3 moving
other disks downwards.

In the obtaining diagram �2 lying between �1 and �3, every � -band is reduced
by the definition of transpositions. The neighbor maximal � -band of �2 cannot
correspond to mutual inverse letters of the history since the labels of p1 and p01 are
equal. It follows that the diagram �2 (without disks) is a reduced diagram, and so it
is a trapezium of height h.

The � -band Ti did not participate in the transpositions. Therefore it is a maximal
� -band of �2. Hence the trapezium �2 contains exactly mh .�; t/-cells, which does
not exceed the number of .�; t/-cells in � . In fact these two numbers are equal
since � is a minimal diagram. So every maximal � -band of � and every maximal
� -band of �2 has m .�; t/-cells.

We say that a historyH is standard if there is a standard trapeziumwith historyH .

Definition 7.7. Suppose we have a disk … with boundary label .tW /L and B be a
t -spoke starting on …. Suppose there is a subband C of B, which also starts on …
and has a standard historyH , for which the word tW isH -admissible. Then we call
the t -band C a shaft.

For a constant � 2 Œ0I 1=2/ we also define a stronger concept of �-shaft at …
as follows. A shaft C with history H is a �-shaft if for every factorization of the
historyH � H1H2H3, where kH1kC kH3k < �kHk, the middle partH2 is still a
standard history. (So a shaft is a 0-shaft).

Lemma 7.8. Let… be a disk in a minimal diagram � and C be a �-shaft at… with
historyH . Then C has no factorizations C D C1C2C3 such that:

(a) the sum of lengths of C1 and C3 do not exceed �kHk; and

(b) � has a quasi-trapezium � such that top (or bottom) label of � has L C 1
occurrences of t and C2 starts on the bottom and ends on the top of � .

Proof. Proving by contradiction, we first replace � by a trapezium � 0 according
to Lemma 7.6. The transpositions used for this goal do not affect neither … nor C
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sinceC crosses all the maximal � -bands of� . Also one can replace� 0 by a trapezium
with shorter base and so we assume that the base of it starts and ends with letter t .

For the beginning, we assume thatC is a shaft (i.e.� D 0). Then it follows from the
definition of shaft and Remark 5.8 that bot.� 0/ is labeled by .tW /Lt , where .tW /L
is the boundary label of …. One can remove the first or the last maximal t -band
from � 0 and obtain a subtrapezium � 00 whose boundary label coincides with the
label of @… (up to cyclic permutation), and @� 00 shares a t -edge with @… (Fig. 12
with � D 0). It follows that the subdiagram �0 D …[ � 00 has boundary label freely
equal to Lab.top.� 00//. However Lab.top.� 00/ � .tW 0/L, where tW 0 D .tW / �H

by Lemma 5.7, and so there is a disk …0 with boundary label .tW 0/L. Therefore
the subdiagram �0 can be replaced by a single disk. So we decrease the number of
.�; t/-cells contrary to the minimality of �.

Figure 12. Lemma 7.8.

Now we consider the general case, where C D C1C2C3. As above, we replace �
by a trapezium � 0 and obtain a trapezium � 00 after removing of one t -band in � 0.
To obtain a contradiction, it suffices to consider the diagram �0 D … [ C1C2 [ �

00

(forgetting of the complement of�0 in�) and find another diagram�00 with one disk
and fewer .�; t/-cells such that Lab.@�00/ D Lab.@�0/ in the free group.

Since both histories H and H2 (and so H1H2) are standard, one can enlarge � 00
and construct a trapezium � 000 with history H1H2. (The added parts E1 and E2 are
dashed in Figure 12 with � > 0). Note that we add < �kHkL new .�; t/-cells since
every maximal � -band of � 000 has L such cells. As in case � D 0, this trapezium � 000

and the disk … can be replaced by one disk …0. However to obtain the boundary
label equal to Lab.@�0/, we should attach the mirror copies 91 and 92 of E1 and E2
to …0. The obtained diagram �00 has at most �kH1kL .�; t/-cells, while �0 has
at least kH2kL � .1 � �/kHk .�; t/-cells. Since � < 1 � �, we have the desired
contradiction.

Lemma 7.8 will be used to obtain a linear bound, in terms of perimeter j@�j, for
the sum of lengths � D ��.�/ of all �-shafts in a minimal diagram �, which make
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possible to exploit �� as an inductive parameter along with j@�j. One more tool
needed to linearly bound ��, is a combinatorial proposition of two finite systems of
disjoint segments on Euclidean plane proved in the next section.

8. Designs in topological disk

By D , we denote Euclidean closed disk of radius 1. Let T be a finite set of disjoint
chords (plain lines in Fig. 13) andQ a finite set of disjoint simple curves in D (dotted
lines in Fig. 13). One may think of a curve as a non-oriented broken line, i.e. it is
built from finitely many finite segments. To distinguish the elements from T and Q,
we will say that the elements of Q are arcs.

We shall assume that the arcs belong to the open disk Do, an arc may cross a
chord transversally at most once, and the intersection point cannot coincide with one
of the two ends of an arc.

Under these assumptions, we shall say that the pair .T;Q/ is a design.
By definition, the length jC j of an arc C is the number of the chords crossing C .

The term subarc will be used in natural way; obviously one has jDj � jC j if D is a
subarc of an arc C .

We say that an arc C1 is parallel to an arc C2 and write C1 k C2 if every chord
(from T) crossing C1 also crosses C2. So the relation k is transitive. (The arc of
length 2 is parallel to the arc of length 5 in Fig. 13.)

Figure 13. Design.
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Definition 8.1. Given � 2 .0 I 1/ and an integer n � 1, Property P.�; n/ of a design
says that for any n different arcs C1; : : : ; Cn, there exist no subarcs D1; : : : ;Dn,
respectively, such that

jDi j > .1 � �/jCi j

for every i D 1; : : : ; n andD1 k D2 k � � � k Dn.
By definition, the length `.Q/ of the set of arcs Q is defined by the equality

`.Q/ D
X
C2Q

jC j: (8.1)

The number of chords will be denoted by #T. The goal of this subsection is to
prove the following:
Theorem 8.2. There is a constant c D c.�; n/ such that for any design .T;Q/ with
Property P.�; n/, we have

`.Q/ � c.#T/: (8.2)

To prove Theorem 8.2, we may assume that Q has no arcs of length 0 and that
every chord is crossed by an arc. Also we may assume that #T > 1 since otherwise
all the arcs are parallel, and Property P.�; n/ implies that the number of arcs is at
most n � 1; therefore one can take c D n � 1.

Every chord T divides the disk D in two half-disks. If one of these half-disks
contains no other chords, we call the chord T peripheral and denote the peripheral
half-disk (without chord) by OT .

An arcD is called an extension of an arc C if C is a subarc ofD. (An extension
need not be an element of Q.) We will consider only extensions of C 2 Q such that
replacing C by D we again obtain a design .T;Q0/ (but Property P.�; n/ can be
violated for the new design).

An arc C of a design is called maximal if there exists no extension D of C
with jDj > jC j.
Lemma 8.3. Let .T;Q/ be a design with #T � 1. Then all the arcs C1; C2; : : :
from Q have maximal extensions D1;D2; : : : forming a set of arcs Q0 such that the
design .T;Q0/ has the following property: for every arc Di , its ends belong to two
different peripheral half-disks.

Proof. Since no arc can cross a chord twice and the set of chords is finite, there is
a system of maximal arcs D1;D2; : : : such that every Di is an extension of Ci . It
suffices to prove that the ends of everyDi belong to peripheral half-disks.

Assume that we have an end o of an arc D D Di and o belongs to no peripheral
half-disk. Let us choose the direction for D toward o, and assume that T is the last
chord crossed byD. LetH be the half-disk defined by T , where the point o belongs
to. The half-disk H is not peripheral, and so it contains a chord T 0 ¤ T . None of
such T 0 could be crossed byD because otherwiseD had to cross the chord T at least
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twice. We may assume that T 0 is the closest to o in the sense that one can connect o
and T 0 by a path p inside H , p consequently intersect ` arcs Di1 ; : : : ;Di` from the
set fD1;D2; : : : g, and the number ` is minimal.

If ` D 0, then usingp one could extendD so that the extension crossesT 0. If ` > 0
we come to a contradiction too. Indeed, let us consider a small neighborhood U
ofDi1 , which contains neither points of other arcs, nor the boundary points of D . If
one can bypathDi1 inU moving around it, thereby replacingp by a pathp0 having `�1
intersections with arcs (see Fig. 14 (a)), we get a contradiction. Otherwise going
around Di1 in U clockwise or counter-clockwise one will cross an interval of some
chord T 00 ¤ T from H (Fig. 14 (b)). Then one can use U to connect o with the
chord T 00 and an extention ofD crosses T 00, a contradiction again.

Figure 14. Lemma 8.3.

To continue the proof of Theorem 8.2, we modify the number #T, taking every
chord T with a weight �.T /. By definition:

�.T / D 1; if T crosses exactly one arc from Q;
�.T / D 2; if T crosses exactly two arcs;

:::

�.T / D 2n � 2; if T crosses exactly 2n � 2 arcs;
�.T / D 2n � 1; if T crosses at least 2n � 1 arcs:

Clearly, we have
#T � �.T/ def

D

X
T2T

�.T / � .2n � 1/#T:

Therefore, instead of (8.2), it suffices to prove the following inequality

`.Q/ � d �.T/ (8.3)
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for some d D d.�; n/ > 0. We will prove (8.3) for any d � 1
�
by induction on

the number of arcs in Q. If there is only one arc, then it is nothing to prove since
`.Q/ � #T in this case. So we will assume that there are at least two arcs.

Assume that there is an arc C , which, after one choose a direction, can be
factorized as C1C2C3, where:

(a) jC1j C jC3j � �jC j; and

(b) every chord crossing C1 or C3 has weight at most 2n � 2.

Let us remove C from Q. We obtain a new design .T0;Q0/. Here T0 has the same
chords as T, but their weights change. Obviously, Property P.�; n/ holds for the
design .T0;Q0/. Hence by inductive hypothesis, the inequalty `.Q0/ � d �.T0/ is
true.

Also we have `.Q/ D `.Q0/C jC j and

�.T/ � �.T0/C jC1j C jC3j � �.T0/C �jC j

since all chords crossing C1 and C3 loss their weight by 1. It follows that

`.Q/ D `.Q0/C jC j � d �.T0/C jC j � d
�
�.T0/C �jC j

�
� d �.T/;

as desired, since d � ��1.
It remains to obtain a contradiction assuming that no arcC 2 Q has a factorization

with Properties (a) and (b). In other words, every arcC 2 Q has a subarcD maximal
with respect to the following properties:

(A) jDj > .1 � �/jC j; and

(B) the first and the last chords crossingD have weight 2n � 1.

We denote by .xT; xQ/ the design obtained after the transition C ! D for every arc C .
Here we assume that xT contains the chords from T, which cross some arcs from xQ.
Observe that all chords of weight 2n � 1 from T have the same weight in xT, as it
follows from the definition of xQ. (We do not claim Property P.�; n/ for .xT; xQ/.)

Let xT be a peripheral chord from xT. It is crossed by (at least) 2n � 1 arcs
D1; : : : ;D2n�1 since xT is the first/last chord crossing the arcs.

By Lemma 8.3, there are maximal extensions zD1; : : : ; zD2n�1 ofD1; : : : ;D2n�1,
respectively. Moreover, such extensions can be constructed for every peripheral
chord, and the two ends of every extension must belong to different peripheral half-
disks of the design .xT; xQ/.

Suppose one can choose n extension, say zD1; : : : ; zDn starting inO xT and ending in
the same half-diskOT 0 (T 0 2 xT). Then every chord of xT crossing zDi has to cross zDj
for 1 � i; j � n. The same is true for the chords of T disposed between xT and T 0.
Since zDi starts with Di and zDj starts with Dj , the inequality jDi j � jDj j implies
that every chord of T crossing Di has to cross Dj too. Therefore assuming that
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jD1j � � � � � jDnj, we haveD1 k � � � k Dn. However this violates Property P.�; n/
for the arcs C1; : : : Cn since jDi j > .1 � �/jCi j for every i D 1; : : : ; n.

Thus, there are no n arcs among zD1; : : : ; zD2n�1 connecting the half-disk O xT
with the same peripheral half-disk. We see that for every peripheral half-disk O xT
one can find three arcs, say zDi , zDj , zDk connectingO xT with three different peripheral
half-disks.

Now let us choose one vertex in every peripheral half-disk (e.g, on the boundary
of the disk D) and connect it with three other vertices using the triples of arcs
obtained in the previous paragraph. We obtain an outerplanar graph with at least
four vertices, where every vertex has degree at least 3. However there exist no such
graphs ([10, Corollary 11.9]). The obtained contradiction completes the proof of
Theorem 8.2.

Remark 8.4. One may allow the ends of arcs to belong to the boundary of D , and
then the same inequalty (8.2) holds since one can cut off the ends of every arc C
preserving the length of C .

Let us have a parameter � 2 Œ0; 1=2/. For every t -spoke B of a minimal
diagram �, we choose the �-shaft of maximal length in it (if a �-shaft exists). If B

connects two disks…1 and…2, then there can be two maximal �-shafts: at…1 and
at…2. We denote by ��.�/ the sum of lengths of all �-shafts in this family.

Lemma 8.5. There is a constant c D c.�/ such that ��.�/ � cj@�j for every
minimal diagram � over the group G.

Proof. Let us associate the following design with �. We say that the middle lines
of the maximal � -bands (they cross � -edges of the bands in the middle points)
are the chords and the middle lines of the maximal �-shafts are the arcs. Here
we use two disjoint middle lines if two maximal �-shafts share a .�; t/-cell. By
Lemma 7.5 (3), (4), we obtain a design, indeed.

Observe that the length jC j of an arc is the number of cells in the �-shaft and
#T � j@�j=2 since every maximal � -band has two � -edges on @�.

Thus, by Theorem 8.2, it suffices to show that the constructed design satisfies the
condition P.�; n/, where n does not depend on �.

Let n D 2L C 1. If Property P.�; n/ is violated, then we have n maximal
�-shafts C1; : : : ;Cn and a subband D of C1, such that jD j > .1� �/jC1j, and every
maximal � -band crossing D must cross each of C2; : : : ;Cn. (Here jBj is the length
of a t -band B.) It follows that each of these � -bands crosses at least LC 1 maximal
t -bands. (See Lemma 7.5 (3), (4). Here we take into account that the same t -spoke
can generate two arcs in the design.) Hence using the �-shaft C1 one can construct a
quasi-trapezium of height jD j, which contradicts the statement of Lemma 7.8.
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9. Upper bound for G -areas of diagrams over the group G

By definition, the G-area of a disk … is just the minimum of areas of diagrams over
the presentation ((5.1), (5.2)) of G having the same boundary label as….
Lemma 9.1. There is a constant c6 such that theG-area of any disk does not exceed
c6F.j@…j/.

Proof. The disk… can be built of a hub and L standard accepting trapezia overM .
By Lemma 4.23, and the definition of the functions f .n/, g.n/, there are such trapezia
of height

O
�
k@…k=L

�
g
�
k@…k=L

�
D O

�
j@…j

�
g
�
j@…j

�
:

The step history of these trapezia has length

O
�
f
�
j@…j

�3�
D O

�
j@…j

�
by Lemma 4.23. Therefore the length of every � -band in it is O.j@…j/ by Lem-
mas 4.17 and 6.1 (a), (d). The statement of the lemma follows.

By definition, the G-area of a minimal diagram � over G is the sum of G-
areas of its disks plus the G-area of the complement. For the complement, as in
Subsection 6.3, we consider a family S of big subtrapezia and single cells of � such
that every cell of � belongs to a member † of this family, and if a cell … belongs
to different †1 and †2 from †, then both †1 and †2 are big subtrapezia of � with
bases xv1x, xv2x, and… is an .�; x/-cell.) Hence the statement of Lemma 6.9 holds
for minimal diagrams over G as well.

We want to prove that for big enough constants N3 and N4,

Area.�/ � N4F
�
nC ��.�/

�
CN3�.�/g.n/

for every minimal diagram � with perimeter n. For this goal, we will argue by
contradiction in this section and study a counter-example with minimal nC ��.�/.
Lemma 9.2. The diagram � has no rim � -bands with base of length at most K.

Proof. The functions F.x/ and g.x/ satisfy the definition given for ˆ.x/ and �.x/,
and the inequality (6.4) by Lemma 4.18. Hence the proof of Lemma 6.15 works for
the minimal counter-example overG. It suffices to replaceN2 andN1 byN4 andN3,
replace n by n C ��.�/, and notice that the value of �� does nor increase when
passing from � to �0.

By Lemma 6.16, � has at least one disk. Using Lemma 7.2, we fix a disk …
in � such that L � 3 consecutive maximal t -bands B1; : : : ;BL�3 start on @�, end
on the boundary @…, and for any i 2 Œ1; L� 4�, there are no disks in the subdiagram
bounded by Bi , BiC1, @…, and @�. (See Fig. 10.)
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We denote by ‰ D cl.…;B1;BL�3/ the subdiagram without disks bounded
by the spokes B1, BL�3 (and including them) and by subpaths of the boundaries
of � and …, and call this subdiagram a clove. Similarly one can define the cloves
‰ij D cl.…;Bi ;Bj / if 1 � i < j � L � 3.
Lemma 9.3. The clove ‰ D cl.…;B1;BL�3/ has no subcombs of basic width at
least K0.

Proof. Proving by contradiction, we may assume that there is a tight subcomb � by
Lemma 6.6 (2). Then contradiction appears exactly as in the proofs of Lemmas 6.12–
6.16, since Lemma 4.18 allows us to define ˆ.x/ D F.x/. It suffices to replace N2
and N1 with N4 and N3, replace n with nC ��.�/, and notice that the value of ��
does not increase when passing from � to �0 since no t -band of � is a part of a
spoke.

The statements of auxiliary Lemmas 6.12, 6.14, and 6.21 holds as well for the
minimal counter-example overG. Belowwe use the following analog of Lemma 6.12:
Lemma 9.4. (1) The counter-example � has no two disjoint subcombs �1 and �2

of basic widths at most K with handles C1 and C2 such that some ends of these
handles are connected by a subpath x of the boundary path of� with jxjq � N .

(2) The boundary of every subcomb � with basic width s � K has 2s q-edges.
Lemma 9.5. (1) Every maximal � -band of ‰ crosses either B1 or BL�1.
(2) There exists r , L=2 � 3 � r � L=2, such that the � -bands of ‰ crossing BL�3

do not cross Br , and the � -bands of ‰ crossing B1 do not cross BrC1.

Proof. (1) If the claim were wrong, then one could find a rim � -band T in ‰,
which crosses neither B1 nor BL�3. By Lemma 9.2, the basic width of T is greater
than K. Since (1) a disk has LN spokes, (2) no q-band of ‰ intersects T twice by
Lemma 5.3 (3), T has at least K q-cells, and (4) K > 2K0 C LN , there exists a
maximal q-band C 0 such that a subdiagram � 0 separated from ‰ by C 0 contains no
edges of the spokes of … and the part of T belonging to � 0 has at least K0 q-cells
(Fig. 15).

If � 0 is not a comb, and so a maximal � -band of it does not cross C 0, then � 0
must contain another rim band T 0 having at least K q-cells. This makes possible to
find a subdiagram � 00 of � 0 such that a part of T 0 is a rim band of � 00 containing at
least K0 q-cells, and � 00 does not contain C 0. Since Area.� 0/ > Area.� 00/ > � � � ,
such a procedure must stop. Hence, for some i , we obtain a subcomb �.i/ of basic
width � K0, contrary to Lemma 9.3.

(2) Assume there is a maximal � -band T of‰ crossing the spoke B1. Then assume
that T is the closest to the disk …, i.e. the intersection of T and B1 is the first cell
of the spoke B1. If B1; : : : ;Br are all the spokes crossed by T , then r � L=2 by
Lemma 6.3. Since the band T does not cross the spoke BrC1, no other � -band of ‰
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crossing B1 can cross BrC1 and no � -band crossing the spoke BL�3 can cross Br .
The same argument shows that r C 1 � L=2 � 2 if there is a � -band of ‰ crossing
the spoke BL�3.

Figure 15. Lemma 9.5.

For the clove ‰ D cl.�;B1;BL�3/ in �, we denote by p D p.‰/ the common
subpath of @‰ and @� starting with the t -edge of B1 and ending with the t -edge
of BL�3. Similarly we define the (outer) path pij D p.‰/ij for every smaller
clove ‰ij .

Lemma 9.6. Every path pi;iC1 .i D 1; : : : ; L � 4/ has less than 3K0 q-edges.

Proof. Let a maximal q-band C of ‰ start on pi;iC1 and do not end on …. Then it
has to end on pi;iC1 too.

If � is the subdiagram without disks separated by C , then every maximal � -band
of � has to cross the q-band C since its extension in‰ must cross either B1 or BL�3

by Lemma 9.5. Therefore � is a comb with handle C .
Consider the q-bands of this kind defining maximal subcombs �1; �2; : : : ; �k

in‰i;iC1. The basic width of each of them is less thanK0 by Lemma 9.3. Therefore,
k � 1 since otherwise one can get two subcombs contradicting to Lemma 9.4 (1),
because there are at most N C 1 maximal q-bands starting on @… in ‰i;iC1. By
Lemma 9.4 (2), such a subcomb has at most 2K0 q-edges in the boundary. Hence
there are at most 2K0 CN < 3K0 q-edges in the path pi;iC1.

We denote by x� the subdiagram formed by… and ‰, and denote by xp the path

top.B1/u�1bot.B/�1L�3;

whereu is a subpath of @…, such that xp separates x� from the remaining subdiagram‰0
of � (Fig. 16).
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Figure 16. Boundaries of ‰ and ‰0.

Similarly we define subdiagrams x�ij , paths

xpi;j D top.Bi /u�1ij bot.B/�1j ;

where uij is a subpath of @…, and the subdiagrams ‰0ij .
We denote by H1; : : : ;HL�3 the histories of the spokes B1; : : : ;BL�3 (read

starting from the disk …) and by h1; : : : ; hL�3 their lengths, i.e. the numbers of
.�; t/-cells. By Lemma 9.5, these lengths non-increase and then non-decrease as
follows:

h1 � h2 � � � � � hr ; hrC1 � � � � � hL�3 .L=2 � 3 � r � L=2/; (9.1)

and therefore HiC1 is a prefix of Hi (Hj is a prefix HjC1) for i D 1; : : : ; r � 1

(resp., for j D r C 1; : : : ; L � 4).
Recall that the boundary label of @… has the formW L, i.e. it is the Lth power of

an accepted word W .
Lemma 9.7. We have the following inequalities

jxpij j � hi C hj C .L � j C i/jW j � 1

and, if i � r and j � r C 1, then

jpij j � jpij j� C jpij jq � hi C hj C .j � i/N C 1:

Proof. The first iequality follows from Lemma 6.1 (b) since the path uij has
L � j C i � 1 t -edges. To prove the second inequality, we observe that the path jpij j
has .j � i/N C 1 q-edges and it has hi C hj � -edges by Lemma 9.5.

The large constants L and L0 are chosen so that

L30 � L: (9.2)
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Lemma 9.8. If j � i > L=2, then we have

�.�/ � �.‰0ij / > �2Jn.hi C hj / � �2Jnjpij j:

Proof. The number of q-edges in the path xpij (or in the path uij ) does not exceed the
similar number for pij provided j � i � L=2. Therefore any two white beads o, o0
of the necklace on @�, provided they both do not belong to pij , are separated by at
least the same number of black beads in the necklace for� as in the necklace for‰0ij
(either the clockwise arc o–o0 includes pij or not). So such a pair contributes to�.�/
at least the amount it contributes to �.‰0ij /. Thus, to estimate �.�/ � �.‰0ij / from
below, it suffices to consider the contribution to �.‰0/ for the pairs o, o0, where
one of the two beads lies on pij . The number of such (unordered) pairs is bounded
by n.hi C hj / by Lemma 9.5. Taking into account the definition of � of diagrams
and inequalities (9.1), we get the required inequality.

Lemma 9.9. If j � i > L=2, then the following inequality holds:

jpij j < .1C "/jxpij j;

where " D N�1=24 . Moreover, we have

jpij j C ��.x�ij / < .1C "/jxpij j:

Proof. It suffices to prove the second statement. Let d be the difference

jpij j C ��.x�ij / � jxpij j

and assume by contradiction that d � "jxpij j. Then

d � jpij j C ��.x�ij / � "�1d;

whence

d � .1C "�1/�1
�
jpij j C ��.x�ij /

�
�
"

2

�
jpij j C ��.x�ij /

�
�
"y

2
; (9.3)

where by definition, y D jpij j C ��.x�ij /.
We have �

j@�j C ��.�/
�
�
�
j@‰0ij j C ��.‰

0
ij /
�
� d > 0;

because j@�j � j@‰0ij j � jpij j � jxpij j and ��.x�ij /C ��. N‰0ij / � ��.�/. Therefore
for x D nC ��.�/, we obtain from the minimality of the counter-example � that

AreaG.‰0ij / � N4F.x � d/CN3�.‰
0
ij /g.n/

� N4F.x/ �N4F.x/x
�1d CN3�.�/g.n/C 2N3Jnjpij jg.n/

� N4F.x/CN3�.�/g.n/ �N4F.x/x
�1d C 2N3Jnyg.n/ (9.4)
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by Lemma 9.8, inequality ��.‰0ij // � ��.�/, and Lemma 4.18. By Lemma 9.7,
jxpij j < jpij j C j@…j, and so the perimeter j@‰ij j is less than 2jpij j C j@…j. Since

j@…j � Ljxpij j < L
�
jpij j C ��.x�ij /

�
;

we have
j@‰ij j < .2C L/jpij j C L��.x�ij / � .LC 2/y: (9.5)

By the inequalities N2 > N1, (9.5), Lemmas 6.16 and 6.7 (a), the G-area of ‰ij
does not exceed

N2.2C L/
2y2 CN1�.‰ij / � N2.J C 1/.2C L/

2y2: (9.6)

By Lemma 9.1, the G-area of… does not exceed

c6F
�
j@…j

�
� c6F

�
.LC 2/y

�
;

and by definition of the functions f and F , there is a constant c7 D c7.L/ such that
AreaG.…/ � c7F.y/.

This estimate and (9.6) give the inequality

AreaG.x�ij / � N2.J C 1/.2C L/2y2 C c7F.y/;

and we obtain with (9.4) that

AreaG.�/ � N4F.x/CN3�.�/g.n/ �N4F.x/x�1d
C 2N3Jnyg.n/CN2.J C 1/.2C L/

2y2 C c7F.y/:

To obtain the desired contradiction, it suffices to show that here, the number
T D N4F.x/x

�1d=3 is greater than each of the last three summands. Recall that

F.x/x�1 D xg.x/ � ng.n/; d > "y=2 by (9.3); " D N
�1=2
4 ;

and so
T > 2N3Jnyg.n/

ifN4 is large enough in comparison withN3 and other constants chosen earlier. Also
we have

T > N2.J C 1/.2C L/
2y2;

because x D nC ��.�/ > jpij j C ��.x�ij / D y, and so

F.x/x�1d > xg.x/"y=2 � "y2=2:

Finally, T > c7F.y/ since

F.x/x�1d > xg.x/"y=2 � y2g.y/"=2 D "F.y/=2:
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For every path pi;iC1 we will fix a shortest path qi;iC1 homotopic to pi;iC1 in
the subdiagram ‰ij , such that the first and the last t -edges of qi;iC1 coincide with
the first and the last t -edges of pi;iC1. For j > i C 1 the path qi;j is formed by
qi;iC1; : : : ;qj�1;j . The following lemma is similar to the second part of Lemma 9.7.

Lemma 9.10. If i � r and j � r C 1, then

jqij j � jqij j� C jqij jq � hi C hj C .j � i/N C 1:

Let ‰0ij (let ‰0, �0) be the subdiagram of ‰ij (of ‰, of �) obtained after
replacement of the subpath pij (of p ) by qij (by q D q1;L�3, resp.) in the boundary.

Lemma 9.11. (1) The subdiagram ‰0ij has no maximal q-bands except for the
q-spokes starting from @….

(2) Every � -band of ‰0ij is crossed by the path qij at most once.

Proof. Assume there is a q-bandQ of‰0ij starting and ending on qij . Then j D iC1
and qi;iC1 D uevfw, where Q starts with the q-edge e and ends with the q-edge f.
Let Q have length `. Then jvj � ` since every maximal � -band of‰0i;iC1 crossing Q

has to end on the subpath v. So one has jevfj D `C 2, and replacing the subpath evf
by a side of Q of length ` one replaces the path qi;iC1 with a shorter homotopic path
by Lemma 6.1. This contradicts to the choice of qi;iC1, and so the first statement is
proved. The prove of the second statement is similar.

It follows fromLemma 9.5 that between the spokesBj andBjC1 (1 � j � r�1),
there is a trapezium �j of height hjC1 with the side t -bandsBjC1 andB 0j , whereB 0j
is the beginning of length hjC1 of the t -spoke Bj . Similarly, we have trapezia �j
for r C 1 � j � L � 4. By Lemma 9.11 (2), every trapezium �j is contained in
both ‰j;jC1 and ‰0j;jC1. The bottoms yj of all trapezia �j belong to @… and have
the same labelW t . We will use zj for the tops of these trapezia. Since �j and �j�1
(2 � j � r � 1) have the same bottom labels and the historyHj is a prefix ofHj�1,
by Lemma 5.7, hj different � -bands of �j�1 form the copy � 0j of the trapezium �j
with top and bottom paths z0j and y0j D yj�1.

We denote by Ej (by E0j ) the comb formed by the maximal � -bands of ‰j;jC1
(of ‰0j;jC1, resp.) crossing the t -spoke Bj but not crossing BjC1 (1 � j � r � 1);
See Fig. 17. Its handleCj of height hj �hjC1 is contained inBj . The boundary @Ej
(resp., @E0j ) consists of the side of this handle, the path zj and the path pj;jC1
(the path qj;jC1, respectively).

Assume that a maximal a-band A of E0j (2 � j � r � 1) starts on the path zj
and ends on a side a-edge of a maximal q-band C of E0j . Then A, a part of C and a
part z of zj bound a comb r.
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Figure 17. Lemma 9.12.

Lemma 9.12. There is a copy of the comb r in the trapezium � D �j�1n� 0j .

Proof. The subpath z of zj starts with an a-edge e and ends with a q-edge f. There is
a copy z0 of z in z0j starting with e0 and ending with f0. Note that the � -cells � and � 0
attached to f and to f0 in r and in � are copies of each other since they correspond
to the same letter of the history. Now moving from f to e, we see that the whole
maximal � -band T1 of r containing � has a copy in � . Similarly we obtain a copy
of the next maximal � -band T2 of r, and so on.

Lemma 9.13. At most N a-bands starting on the path yj can end on the .�; q/-cells
of the same � -band. This property holds for the a-bands starting on zj too.

Proof. We will prove the second claim only since the proof of the first one is similar.
Assume that the a-bands A1; : : : ;As start from zj and end on some .�; q/-cells of a
� -band T . Let T0 be the minimal subband of T , where the a-bands A2; : : : ;As�1

end and Nzj be the minimal subpath of zj , where they start. Then by Lemma 5.3,
every maximal q-band starting on Nzj has to cross the band T0 and vice versa. Hence
the base of T0 is a subbase of the standard base (or of its inverse). Since every rule
ofM can change at mostN � 2 a-letters in a word with standard base, all .�; q/-cells
of T0 have at most N � 2 a-edges, and the statement of the lemma follows.

Without loss of generality, we assume that

h D hL0C1 � hL�L0�3: (9.7)

Lemma 9.14. If h � L20jW ja, then the number of trapezia �j with the properties

jzj ja � jW ja=c5N

for j 2 ŒL0 C 1; r � 1� or j 2 Œr C 1;L � L0 � 5�, is less than L=5.
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Proof. Consider �j as in the assumption of the lemma with j 2 ŒL0 C 1; r � 1�.
The subcomb E0j has at most N maximal q-bands by Lemma 9.11. So there are at
most N maximal a-bands starting on zj and ending on each of the � -bands of E0j .
Proving by contradiction, we have at least LjW ja=5c5N such a-bands for all j 2 S ,
where S the set of integers in ŒL0 C 1; r � 1� [ Œr C 1;L � L0 � 5�; denote this set
of a-bands by A. But the number of maximal � -bands in all such subcombs E0j does
not exceed 2h. Therefore at least LjW ja=5c5N � 2hN bands from A end on the
subpaths qj;jC1 for j 2 S . Therefore by Lemmas 9.10 and 6.1, we have

jpL0C1;L�L0�5j � jqL0C1;L�L0�5j
� hL0C1 C hL�L0�5 C LN=2C ı

�
LjW ja=5c5N � 2hN

�
� hL0C1 C hL�L0�5 C LN=2C ıLjW ja=10c5N (9.8)

since
2hN � 2L20N jW ja < L

3
0jW ja=10c5N � LjW ja=10c5N

by the choice of L0 and L (9.2).
Also by Lemma 9.7, we have

jxpL0C1;L�L0�5j � hL0C1 C hL�L0�5 C 3L0N C 3L0ıjW ja
� hL0C1 C hL�L0�5 C 3L0N C ıLjW ja=20c5N; (9.9)

because by the choice of L, 3L0 < L=20c5N . Since

hL0C1 C hL�L0�5 � 2h � 2L
2
0jW ja < LjW ja;

L is chosen after c5N , and " D N�1=24 is chosen after L, the inequality

jpL0C1;L�L0�5j
jxpL0C1;L�L0�5j

� 1C
ı

20c5N
> 1C "

follows from (9.8) and (9.9), contrary to Lemma 9.9. The lemma is proved by contra-
diction.

Lemma 9.15. If h � L20jWaj, then the histories H1 and HL�3 have different first
letters.

Proof. Let T and S be the maximal � -bands of ‰ crossing B1 and BL�3,
respectively, and the closest to the disk …. Let they cross k and ` spokes of …,
respectively. By Lemma 9.14,

k C ` > L � L=5 � 3L0 > 2L=3;

and also k; ` � 2 since L=2 � 3 � r � L=2. It follows from Lemma 7.5 that the
first letters ofH1 andHL�3 are different.
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Lemma 9.16. We have h > L20jW ja.

Proof. If this inequality is wrong, then by Lemma 9.14, there are at least

L � L=5 � 3L0 > 0:7L

trapezia�j with jzj ja < jW ja=c5N , and one can choose two such trapesia�k and�`
such that k < r , ` � r C 1 and ` � k > 0:6L. Since HkC1 (resp., H`) is a prefix
of H1 (of HL�3), it follows from Lemma 9.15 that the first letters of HkC1 and H`
are different.

Since the bottoms of �k and �` (which belong to @�) have the same label, one
can construct an auxiliary trapezium E identifying the bottom of a copy of �k and
the bottom of a mirror copy of �`. The history ofE isH�1

`
HkC1, which is a reduced

word since the first letters of Hk and H` are different, i.e. E is a trapezium indeed
by Lemma 5.7.

The top and the bottom of E have a-lengths less than jW ja=c5N . Without loss
of generality, one may assume that hkC1 � h`, and so hkC1 � t=2, where t is the
height of E.

Note that the difference of a-lengths jW ja � jW ja=c5N > jW ja=2, and so

hkC1; h` > jW ja=2N (9.10)

since the difference of a-lengths for the top and the bottom of every maximal
� -band of E does not exceed N . Therefore t > jW ja=N , and the computation
corresponding E satisfies the assumption of Lemma 4.26.

So for every factorizationH 0H 00H 000 of the history of �k , where

kH 0k C kH 00k � �kH 0H 00H 000k;

we have kH 00k > 0:4t , since � < 1=5. Therefore by Lemma 4.26, the spoke BkC1

is a �-shaft.
Using Lemma 9.7, we obtain:

jpkC1;`j C ��
�
x�kC1;`

�
� hkC1 C h` C 0:6LN C hkC1: (9.11)

By inequality (9.10), we have ıLjW ja � 2LNıhkC1 < hkC1 by the choice of ı
and by Lemma 9.7,

jxpkC1;`j � hkC1 C h` C 0:4LN C 0:4LıjW ja � hkC1 C h` C hkC1=2C 0:4LN:
(9.12)

The right-hand side of the inequality (9.11) divided by the right-hand side of (9.12)
is greater than 1:1 (because hkC1 � h`), which contradicts Lemma 9.9. Thus, the
lemma is proved.
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Lemma 9.17. We have hi > ı�1 for every i D 1; : : : ; L0.

Proof. By inequalities (9.7) and (9.1), we have hi � hL�L0�3. Proving by contra-
diction, we obtain jW ja < hi � ı�1 by Lemma 9.16. Then,

jxpi;L�L0�3j < hi C hL�L0�3 C 3L0.N C ı
�1ı/ � hi C hL�L0�3 C 4L0N

by Lemma 9.7, and

jpi;L�L0�3j � hi C hL�L0�3 C LN=2:

Since hi C hL�L0�3 � 2ı�1 and 4L0N < LN=4, we see that

jpi;L�L0�3j
jxpi;L�L0�3j

> 1C ı > 1C "

contrary to Lemma 9.9. The lemma is proved by contradiction.

Lemma 9.18. None of the spokes B1; : : : ;BL0 contains a �-shaft at… of length at
least ıh.

Proof. On the one hand, by Lemmas 9.7 and 9.16,

jxpL0C1;L�L0�3j < hL0C1 C hL�L0�3 C 3L0.N C ıjW ja/
< hL0C1 C hL�L0�3 C 3L0.N C ıL

�2
0 h/: (9.13)

On the other hand, by Lemma 9.7,

jpL0C1;L�L0�3j > hL0C1 C hL�L0�3 C .L � 3L0/N: (9.14)

If the statement of the lemma were wrong, then we would have ��.x�/ � ıh, and
inequalities (9.13) and (9.14) would imply that

jpL0C1;L�L0�3j � jxpL0C1;L�L0�3j C ��.x�/ � .L � 6L0/N � 3L
�1
0 ıhC ıh

� LN=2C ıh=2:

The right-hand side of the last inequality divided by the right-hand side of (9.13) is
greater than " D N

�1=2
4 , because h � hL0C1; hL�L0�3, which would contradict to

Lemma 9.9. Thus, the lemma is proved.

Lemma 9.19. For every j 2 Œ1; L0 � 1�, we have jzj ja > hjC1=c5.

Proof. If jzj ja � hjC1=c5, then the computation C WW0 ! � � � ! Wt corresponding
to the trapezium �j satisfies the assumption of Lemma 4.26, since

t D hjC1 > c5jWt ja D c5jzj ja
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and by Lemma 9.16,
t D hjC1 � L

2
0jW0ja � c5jW ja

since L0 > c5. Hence BjC1 is a �-shaft by Lemma 4.26 since � < 1=2. We
obtain a contradiction with Lemma 9.18 since ıh � h � hjC1. Thus, the lemma is
proved.

Lemma 9.20. For every j 2 Œ1; L0 � 1�, we have hjC1 < .1 � .1=10c5N// hj .

Proof. By Lemma 9.19, we have jzj ja � hjC1=c5. Let us assume that

hjC1 �
�
1 �

1

10c5N

�
hj ;

that is the handle Cj of Ej has height at most hj =10c5N . By Lemma 9.13, at most
hj =10c5 maximal a-bands of Ej starting on zj can end on the .�; q/-cells of Ej .
Hence at least

jzj ja � hj =10c5 � jzj ja � 2hjC1=10c5 � 0:8hjC1=c5 > 0:7hj =c5

of them have to end on the path pj;jC1.
The path pj;jC1 has at most hj =10c5N � -edges. Hence by Lemma 6.1,

jpj;jC1j � hj � hjC1 C ı.0:7hj =c5 � hj =10c5N/ � hj � hjC1 C 0:6ıhj =c5;

and therefore by Lemma 9.7,

jpj;L�L0�3j � LN=2C hj C hL�L0�3 C 0:6ıhj =c5:

On the other hand by Lemma 9.7, we have

jxpj;L�L0�3j � hj C hL�L0�3 C 3NL0 C 3L0ıjW ja
� hj C hL�L0�3 C 3NL0 C 3L

�1
0 ıhjC1

by Lemma 9.16 and inequality h � hjC1. Hence,

jpj;L�L0�3j
jxpj;L�L0�3j

� .1C ı=10c5/

since hL�L0�3 � hL0C1 � hjC1 � hj and L0 � c5. We have a contradiction with
Lemma 9.9 since ı=10c5 > ". The lemma is proved by contradiction.

The proof of the next lemma is similar.

Lemma 9.21. For every j 2 Œ2; L0 � 1�, we have jzj ja � 2Nhj .
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Proof. Assume that jzj ja � 2Nhj . By Lemma 9.13, at most Nhj maximal
a-bands of Ej starting on zj can end on the .�; q/-cells of Ej . Hence at least
jzj ja �Nhj � Nhj of them has to end on the path pj;jC1. The path pj;jC1 has at
most hj � -edges. Hence by Lemma 6.1,

jpj;jC1j � hj � hjC1 C ı.Nhj � hj / D hj � hjC1 C ı.N � 1/hj ;

and therefore by Lemma 9.7,

jpj;L�L0�3j � LN=2C hj C hL�L0�3 C ı.N � 1/hj :

On the other hand by Lemmas 9.7 and 9.16, we have

jxpj;L�L0�3j � hj C hL�L0�3 C 3NL0 C 3L0ıjW ja

� hj C hL�L0�3 C 3NL0 C
3ıhj

L0
;

because h � hj . Since hj � h � hL�L0�3, we have

jpj;L�L0�3j
jxpj;L�L0�3j

� 1C ";

a contradiction by Lemma 9.9.

Lemma 9.22. There is no i 2 Œ2; L0 � 3� such that the histories

Hi�1 D HiH
0
D HiC1H

00H 0 D HiC2H
000H 00H 0

and the computation C with history Hi corresponding to the trapezium �i�1 satisfy
the following condition:

The historyH 000H 00H 0 has only one step, and for the subcomputation D with
this history, there is a sectorsQ0Q such that a state letter fromQ or fromQ0
inserts a letter increasing the length of this sector after every transition of D .

(�)

Proof. Recall that the standard base of M is built of the standard base B of M4 and
its inverse copy .B 0/�1 (plus letter t ). Due to this mirror symmetry of the standard
base, we have mirror symmetry for any accepting computation, in particular, for C

and D . Therefore proving by contradiction, we may assume that the a-letters are
inserted from the left ofQ.

Let Q be the maximal q-spoke of the subdiagram E0i � �i corresponding to
the base letter Q. If Q0 is the neighbor from the left q-spoke for Q (the spokes are
directed from the disk …), then the subpath x of zi between these two q-spokes has
at least hiC1 � hiC2 D kH 000k a-letters. Indeed, �i contains a copy � 0iC1 of �iC1,
the bottom of the trapezium �in�

0
iC1 is the copy z0iC1 of ziC1 and the top of it iz zi ,
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and so the subcomputation with history H 000 has already increased the length of the
Q0Q-sector. Thus, by Lemmas 9.20, 9.16, and the choice of L0 > 100c5N , we have

jxja � hiC1 � hiC2 �
1

10c5N
hiC1 � 10L0jW ja: (9.15)

Note that an a-band A starting on x cannot end on a .�; q/-cell from Q. Indeed,
otherwise by Lemma 9.12, there is a copy of this configuration in the diagram �i�1,
i.e. the copy of A ends on the copy of Q contrary the assumption that the rules of
computation with historyH 000H 00H 0 do not delete a-letters.

Let us consider the comb bounded by Q, Q0, x and the boundary path of �0
(without the cells from Q0). If the lengths of Q and Q0 are s and s0, respectively,
then there are jxj C s maximal a-bands starting on x and Q and ending either on Q0

or on @�0 since the comb has no maximal q-bands by Lemma 9.11. At most s0 < s
of these a-bands can end on Q0. Therefore at least jxj C s � s0 of them end on the
segment of the boundary path of �0 lying between the ends of Q0 and Q.

Since this segment has s � s0 � -edges, its length is at least s � s0 C ıjxja by
Lemma 6.1. This inequality, Lemma 9.10 and inequality (9.15) imply

jpi;L�L0�3j � jqi;L�L0�3j

� LN=2C hi C hL�L0�3 C
ı

10c5N
hiC1

� LN=2C hi C hL�L0�3 C 10ıL0jW ja:

Therefore,

jpi;L�L0�3j �
7ı

100c5N
hiC1 > 3L0N C hi C hL�L0�3 C 3ıL0jW ja

� jxpi;L�L0�3j; (9.16)

by Lemma 9.7, and since� is a minimal counter-example, we obtain by the definition
of F.x/, g.x/ and inequality (6.4) that

AreaG
�
‰0iC1;L�L0�3

�
� N4F

�
nC ��.�/ �

7ı

100c5N
hiC1

�
CN3g.n/�

�
‰0i;L�L0�3

�
� N4F

�
nC ��.�/

�
�N4

7ın

100c5N
hiC1g.n/CN3g.n/�

�
‰0i;L�L0�3

�
: (9.17)

By Lemma 9.16, jW ja � L�20 hi , and by Lemma 9.17, hi > ı�1 > 100L0N ,
whence

jxpi;L�L0�3j � 2hi C 3L0N C 3ıL0jW ja �
�
2C 0:03C

3ı

L0

�
hi � 2:1hi ;
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and by Lemma 9.9, we have

jpi;L�L0�3j � .1C "/jxpi;L�L0�3j < 2:2hi : (9.18)

By Lemmas 6.16 and 6.7 (a) and inequalities (9.18) and (9.16), the G-area
of ‰i;L�L0�3 does not exceed

N2
�
2jpi;L�L0�3j

�2
CN1�.‰i;L�L0�3/ � N2.4J C 4/jpi;L�L0�3j

2

� 5N2.4J C 4/h
2
i : (9.19)

By Lemma 9.1, the G-area of … is bounded by c6F.j@…j/. The inequalities
(9.16) and (9.18) imply the inequality

j@…j < Ljxpi;L�L0�3j < Ljpi;L�L0�3j < 3Lhi :

Therefore one may assume that the constant c7 is chosen so that

AreaG.…/ < c6F
�
j@…j

�
< c7F.hi / D c7h

2
i g.hi / � c7h

2
i g.n/: (9.20)

(Recall that hi � n=2 here since hi is the number � -bands crossing Bi ; they start
and end on @�.) It follows from (9.19) and (9.20) that

AreaG
�
x�i;L�L0�3

�
� 5N2.4J C 4/h

2
i C c7h

2
i g.n/: (9.21)

Figure 18. �.‰0
iC1;L�L0�3

/ � �.‰0
i;L�L0�3

/.

We need an estimate for �.‰0iC1;L�L0�3/��.‰
0
i;L�L0�3

/ now. To obtain it, we
observe that by Lemma 9.5, the common q-edge f of the spoke Bi and @� separates
at least hi�1 � hi D m1 � -edges of the path pi�1;i andm2 ones lying on pi;L�L0�3,
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where m2 D hi C hi;L�L0�3 (see Fig. 18). Since the number of q-edges of p is less
than 3K0L < J by Lemma 9.6, one decreases �.‰0iC1;L�L0�3/ at least by m1m2
when erasing the black bead on f in the necklace on @‰0iC1;L�L0�3 by Lemma 6.7
(d,b,c). Hence,

�
�
‰0iC1;L�L0�3

�
� �

�
‰0i;L�L0�3

�
� m1m2

D .hi�1 � hi /.hi C hL�L0�3/

�
1

c5N
hi�1.hi C hL�L0�3/

by Lemma 9.20. This inequality and Lemma 9.8 applied to ‰0iC1;L�L0�3, imply

�.�/ � �
�
‰0i;L�L0�3

�
� �2Jn.hiC1 C hL�L0�3/C

1

10c5N
hi�1.hi C hL�L0�3/:

Note that .hiC1 C hL�L0�3/ � 2hiC1 by (9.1) and (9.7). Hence,

N3�.�/ �N3�
�
‰0i;L�L0�3

�
� �4N3JnhiC1 C

N3

10c5N
hi�1.hi C hL�L0�3/: (9.22)

It follows from (9.21, 9.22, 9.17) that

AreaG.�/ � AreaG
�
‰0i;L�L0�3

�
C AreaG

�
x�i;L�L0�3

�
� N4F

�
nC ��.�/

�
�N4

7ın

100c5N
hiC1g.n/

CN3g.n/�
�
‰0i;L�L0�3

�
C 5N2.4J C 4/h

2
i C c7h

2
i g.n/

� N4F
�
nC ��.�/

�
CN3�.�/g.n/ �N4

7ın

100c5N
hiC1g.n/

�
N3

10c5N
hi�1.hi C hL�L0�3/g.n/

C 4N3JnhiC1g.n/C 5N2.4J C 4/h
2
i C c7h

2
i g.n/:

We come to a contradiction since we obtain inequality

AreaG.�/ � N4F
�
nC ��.�/

�
CN3�.�/g

�
nC ��.�/

�
;

because

N4
7ı

100c5N
> 4N3J and

N3

10c5N
> 5N2.4J C 4/C c7:
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Lemma 9.23. There exists no counter-example �, and therefore

AreaG.�/ � N4F
�
nC ��.�/

�
CN3�.�/g.n/

for any minimal diagram � with j@�j D n.

Proof. Recall that for j D 1; : : : ; L0 � 1, we have

hjC1 <
�
1 �

1

10c5N

�
hj

by Lemma 9.20, and by Lemmas 9.19 and 9.21, we have inequalities jzj ja � hjC1=c5
and jzkja � 2Nhk for 2 � k � L0 � 1. One can choose an integer � D �.M/
(it depends on the S-machine M only as c5 and N ) so that�

1 �
1

10c5N

��
<

1

6Nc5
;

and so hjC1 > 6Nc5hk if k � j � 1 � �. Hence,

jzj ja � hjC1=c5 � 6Nhk > 3jzkja:

If L0 is large enough, say L0 > 2000�, one can obtain 1000 indices

j1 < j2 < � � � < j1000 < L0

such that for i D 2; : : : ; 1000, one obtains inequalities

jzji�1 ja > 3jzji ja and hji�1 � hji�1C1 > 6c5Nhji : (9.23)

Let C WW � W0 ! � � � ! Wt be the computation corresponding to the
trapezium �j2 . Since it contains the copy � 0j2C1 of �j2C1, which in turn contains a
copy of �j2C2 and so on, we have some configurationsW.k/ in C (k D 1; : : : ; 999),
that are the labels of some zik and jW.k C 1/ja > 3jW.k/ja for k D 1; : : : ; 998. If
for some k we were obtain one-step subcomputation

W.k/! � � � ! W.k C 4/;

then the statement of Lemma 4.27 would give a subcomputation

W.k C 1/! � � � ! W.k C 4/

contradicting to the statement of Lemma 9.22. Hence no five consecutive words
W.k/-s are configuration of a one-step subcomputation, and so the number of steps
in W.1/! � � � ! W.999/ in at least 100.

It follows now from Lemmas 4.9 and 4.7 that the step history of �j2n� , where �
is the copy of �L0 in �j2 , has a subword

..21�/.1�/.1/.2�/.2/.21�//˙1:
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Without loss of generality we assume that the exponent is C1. Therefore the
history Hj2C1 of �j2 can be decomposed as H 0H 00H 000, where H 00 has step history
.12�/.2�/.2�2/; kH 0k � kH 00k by Lemma 4.14 and kH 0k � h since HL0 is a
prefix ofH 0.

Since hj1C1 > 2hj2 by (9.23), the history Hj1C1 of �j1 has a prefix H 0H 00H�,
where kH�k D kH 0k � kH 00k, and so the t -spoke Bj1C1 has a t -subband C starting
with @… and having the historyH 0H 00H�.

For any factorization C D C1C2C3 with kC1k C kC2k � kCk=3, the history
of C2 contains the subhistory H 00, since kH�k D kH 0kj � kH 00k. It follows that C

is a �-shaft, because � < 1=3. The shaft has length at least kH 0k � h contrary to
Lemma 9.18. We come to the final contradiction in this section.

10. Proof of Theorem 1.3

10.1. Dehn function of the group G .
Lemma 10.1. For every big trapezia �, there is a diagram z� over G with the same
boundary label, such that the area of z� does not exceed 2AreaG.�/.

Proof. Consider the computationC WV0 ! � � � ! Vt corresponding to�. According
to Definition 6.8, one may assume that

AreaG.�/ D c5h
�
kV0k C kVtk

�
since otherwise z� D �.

� is covered by L trapezia �1; : : : ; �L with base xvx, where xv (or the inverse
word) is a cyclic shift ot the standard base of M. By Remark 5.8 all �1; : : : ; �L are
copies of each other. Let us apply Lemma 4.25 to any of them, say to�1, whose top
and bottom have labels W0 and Wt . If we have Property (1) of that lemma, then the
area of �1 does not exceed c4h.kW0k C kWtk/ since every maximal � -band of �1
has at most c4.kW0k C kWtk/ cells in this case. Hence area of � does not exceed

Lc4h
�
kW0k C kWtk

�
� 2c4h

�
kV0k C kVtk

�
< c5h

�
kV0k C kVtk

�
D AreaG.�/;

i.e. z� D � in this case too.
Hence one may assume that Property (2) of Lemma 4.25 holds for �1. By that

Lemma, items (b,d), the corresponding cyclic shifts W 00 and W 0t are accepted, and
there is a factorization of C D C1C2C3 (we use the same letter for the computations
corresponding to �, to �1, and for the revolving computation with standard base),
where

C1WW
0
0 ! � � � ! W 0n1 ; C2WW

0
n1
! � � � ! W 0n1Cn2

and C3WW
0
n1Cn2

! � � � ! W 0n1Cn2Cn3 .n1 C n2 C n3 D t /;
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where
max

�
kW 0n1k; kW

0
n1Cn2

k
�
� max

�
kW0k; kWtk

�
and for each Ci , either:
(d1) kW 0j k � c4max

�
kW 00k; kW

0
t k
�
, for every configuration Wj of Ci ; or

(d2) there are accepting computations for the first and the last configuration of Ci
with historiesH 0i andH

00
i such that kH 0ik C kH

00
i k < ni .

So � is built of at most three trapezia, where �.i/ (i D 1; 2; 3) corresponds
to the computations Ci . Since their tops and bottoms have lengths at most
max.kV k0; kVtk/, it suffices to estimate the area of z�.i/ for i D 1; 2; 3. Again,
we have z�.i/= �.i/ in the case (d1).

Assume that we have Property (d2) for Ci . Denote by U1 and U2 the first and the
last configurations of Ci with standard base. By (d2),

kU1k; kU2k � max
�
kW0k; kWtk

�
:

By Property (d2), there is an accepting computations D of length � ni for U1,
and we may assume that D is the shortest such computation. Then case (b) of
Lemma 4.20 gives a contradiction of the form ` < `=100 for the length ` of the
computation D . Hence we should have case (a), and so every configuration of D

has length at most c4kU1k. If � is the trapezium corresponding to D with bottom
(top) label U1 (resp., WM ), then the lengths of its � -bands are less than 2c4kU1k
by Lemma 6.1 and therefore the area of � is less than 2nic4kU1k � 1. Therefore L
copies of � can be attached to an auxiliary hub so that one gets an auxiliary disk…1

of area
� 2Lnic4kU1k � 3c4nikV.1/k;

where V.1/t is the label of the bottom of �.i/ up to cyclic permutations. Thus, the
word V.1/ is equal to the boundary label of…1. Similarly, one can construct a disk
of area

� 3c4nikV.2/k

for the top of �.2/.
Denote by �� the diagram � without maximal rim x-band. So �� has the

boundary p1q1p�12 q�12 , where Lab.p1/ and Lab.p2/ are the boundary labels of the
disks …1 and …2 (up to cyclic permutations) and Lab.q/1 � Lab.q/2 since two
x-bands with the same history have the same boundary labels.

If we attach disks …1 and …2 along their boundaries to the top and the bottom
of��, we obtain a diagram, whose boundary label is trivial in the free group. Hence
there is a diagram E with two disks whose boundary label is equal to the boundary
label of �� and the area is less than

� 3c4ni .kV.1/k C kV.2/k:
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If we attach one x-band of length ni to E, we construct the required diagram z�.i/
of area at most

� 3c4ni
�
kV.1/k C kV.2/k

�
C ni < c5ni

�
kV.1/k C kV.2/k

�
:

The proof of Lemma 10.1 shows that the area of a minimal diagram with some
boundary label V can be much greater than the area of V , which is equal to the
minimal number of cells in all diagrams with boundary label V over the presentation
(5.1)–(5.2). So to obtain the lower bound for the Dehn function of G, we prove in
the next lemma that these two areas “almost equal” for the words having no � -letters.
Lemma 10.2. Let .tW /L D 1 in G, where the reduced word W has no � -letters
and no letters t˙1. Then there exists a reduced diagram � over the presentation
(5.1)–(5.2) such that it has exactly one hub, has boundary label V � .tW /L and
Area.�/ � 2Area.V /.

Proof. Let �0 be a diagram over the presentation (5.1)–(5.2) of G with boundary
label .tW /L, where

Area.�0/ D Area.tW /L:

We say that � is a disk subdiagram of�0 if it has reduced boundary, has exactly one
hub and every � -cell of � (if any) belongs in a � -annulus surrounding this hub. The
diagram �0 can be covered by a family of subdiagrams � , where each � is either a
disk subdiagram or a � -cell and different subdiagram of this covering S0 have no cells
in common. Let A.S0/ be the sum of the areas of all disk subdiagram from S0 plus
doubled number of the single � -cells from S0. By A.�0/ we denote the minimum
of the numbers A.S0/ over all such coverings S0. Clearly,

A.�0/ � 2Area.�0/ D 2Area.V /;

and so it suffices to prove that a reduced diagram � with boundary label .tW /L and
minimal possible value of A.�/ has exactly one disk, because

Area.�/ � A.�/ � A.�0/:

Below we fix the covering S of � such that A.�/ D A.S/. Note that every
� -annulus of � surrounds at least one disk by Lemma 5.3 since the diagram � is
reduced.

By induction on the number of � -annuli in a disk subdiagram � 2 S, we see
that the boundary label of � has the form .tU /L. Therefore there is only one
cyclic shift of the word .tU /L starting with tU . Note that there are no two distinct
disk subdiagrams �1 and �2 in S whose boundaries share at least two t -edges,
provided there are no other disk subdiagrams between �1 and �2, because such pair
of subdiagrams could be canceled out, which would decrease the value of A.�/.

Assume that S has at least one single � -cell. Let T be the maximal � -band of �
containing this cell. It has to be a � -annulus, where every cell is a member of S
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since T can end neither on @� nor on the boundary of a disk subdiagram from S.
So one can choose a minimal � -annulus T whose cells do not belong to the disk
subdiagrams from the family S, and T surrounds a subdiagram E having no single
� -cells from S.

The reduced diagramE must contain disk subdiagrams by Lemma 5.3. Hence as
in Lemma 7.2, we have a disk graph, where there are no two different edges connecting
neighbor disk subdiagrams inE (and crossing the t -edges on the boundaries of these
subdiagrams) provided there are no other disk subdiagrams between these two edges
of the disk graph. Hence there is a disk subdiagram � in E sharing a boundary
subpath q with a side of T , where Lab.q/ D .tU /L�4t . After the transposition of T

and � we can obtain a new disk subdiagram � 0 with

Area.� 0/ � Area.�/C L.uC 1/;

where u is the number of cells between two neighbor .�; t/-cells in T . However, the
transposition removes .L � 4/uC L � 3 cells from T and add at most 4uC 3 new
cells. Since

.L � 4/uC L � 3 � 4u � 3 >
L

2
.uC 1/;

we have a new diagram and new covering S0 after the transposition, where
A.S0/ < A.S/, because the single � -cell is taken with coefficient 2 in the above
definition of A.�/; a contradiction.

Thus, the covering S has no single .�; q/-cells. Then the standard argument
implies that S has at most one disk subdiagram (see Lemma 7.3). The diagram �

cannot be a diagram over M since all t -letters occur in the boundary label .tV /L
with exponent C1, and so the t -edges of @� cannot be connected in � by a t -band.
Thus, the number of hubs of � is 1.

Lemma 10.3. The Dehn function d.n/ of the group G is equivalent to F.n/.

Proof. To obtain the upper bound for d.n/ (with respect to the finite presentation
ofG given in Section 5), it suffices, for every wordW vanishing inG with kW k � n,
to find a diagram overG of areaO.F.n//with boundary labelW . Since jW j � kW k,
van Kampen’s lemma and Lemma 9.16 provide us with a minimal diagram � such
that

AreaG.�/ � N4F
�
nC ��.�/

�
CN3�.�/g.n/

for some constants N3 and N4 depending on the presentation of G. By Lemmas 8.5,
6.7 (a), and the definition of �.�/, the right-hand side does not exceed

N4F..1C c/n/CN3Jn
2g.n/:

Since F.O.n// D O.F.n// and n2g.n/ D F.n/, we conclude that

AreaG.�/ � C0F.n/

for some constant C0.
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Recall that in the definition of G-area, the subdiagrams, which are big trapezia
�; � 0; : : : , can have common cells in their rim q-bands only. By Lemma 10.1,
any big trapezia � from this list with top p1 and bottom p2 can be replaced by a
diagram z� with (combinatorial) area at most 2AreaG.�/. When replacing all big
trapezia �; � 0; : : : in this way, we should add q-bands for the possible intersection of
big trapezia, but for every � of height h, we add at most 2h new cells. So the area of
the modified diagram E is at most

3AreaG.�/ � 3C0F.n/:

Hence the required diagram is found for given word W .
To obtain the lower bound for d.n/, we will use the series of M-accepted

words V.n/ of (combinatorial) length‚.n/ constructed in the proof of Lemma 4.23.
Since V.n/L D 1 in G, it will be suffice to bound from below the areas of the
diagrams �.n/ given by Lemma 10.2: �.n/ has boundary label V.n/L, exactly
one disk and the area equal to Area.V .n/L/ up to a multiplicative factor from the
segment Œ1; 2�.

A q-band starting on the hub � of�.n/ cannot end on it since all occurrences of a
particular q-letter in the hub relation have the same exponent. Hence the spokes of �
end on LN q-edges of @�. Hence � has L trapezia corresponding to an accepting
reduced computation C for V.n/, and it suffices to get a lower bound for the area of
one trapezium � .

ByRemark 4.24,� has at least‚.ng.n//maximal � -bands of length at least‚.n/.
Therefore the area of � is at least ‚.F.n//. Since k@.�/k D ‚.n/, the Dehn
function d.n/ is bounded from below by a function equivalent to F.n/, as required.

10.2. Supercubic Dehn functions. Here we show that for the Dehn functions F.n/
obtained earlier, one can construct a finitely presented group with Dehn func-
tion nF.n/. This will complete the proof of Theorem 1.3. For this goal we modify
the control S-machines used in the definition of the S-machine M. The unnecessary
extra-control will just slow down the work of M. The construction resembles the
one from Subsection 4.2 of [16]. We will modify only the S-machine P defined in
Subsection 3.1. The copies of the auxiliary primitive S-machine Z.A/ will work
between the applications of the (copies of) the rules of P.

For every set of letters A, let A0, A00, and A000 be disjoint copies of A, the maps
a 7! a0, a 7! a00 and a 7! a000 identifyAwithA0,A00 andA000, respectively. Let

 �
Z be

the S -machines with tape alphabet A0tA00tA000, state alphabet fLgtK tP tfRg,
with the following positive rules.

�1.a/ D
�
L

`
! L; k.1/! k.1/; p.1/! .a00/�1p.1/a000; R! R

�
; a 2 AI

�2 WD
�
L

`
! L; k.1/

`
! k.2/; p.1/! p.2/; R! R

�
I
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�3.a/ D
�
L

`
! L; k.2/! k.2/; p.2/! a00p.2/.a000/�1; R! R

�
I

�4 D
�
L

`
! L; k.2/! k.3/; p.2/

`
! p.3/; R! R

�
:

The rules of
�!
Z are similar, but the moving base letter is K, while the sector PR

is locked.
To define the composition P ı f�!Z; �Z g we insert the base of �Z (and

�!
Z ) between

every two consecutive state letters of P. In this subsection, we assume that P has the
standard baseQ0Q1 : : :QN (and forget more detailed earlier notation).

For every i D 1; : : : ; N , we make copies Y 0i , Y
00
i , and Y

000
i of the alphabet Yi of P

(i D 1; : : : ; N ). Let ‚ be the set of positive commands of P. The set of state letters
of P ı f�!Z; �Z g is

S0 tK1 t P1 t S1 tK2 t P2 t � � � t PN [ SN ;

where

Pi D
˚
p.i/; p.i;1/; p.i;0/; p.�;i/.1/; p.�;i/.2/; p.�;i/.3/ j � 2 ‚

	
;

Ki is defined similarly for i D 1; : : : ; N , Si D Qit.Qi�‚/. Thus the state lettersL
andR of the copies of the S-machines

�!
Z and

 �
Z are identified with the corresponding

S -letters. We shall call the state letters from Pi -s and Ki -s the p-letters, and the
other state letters (i.e. the copies of the state letters of P), the basic state letters.

The set of tape letters of P ı f�!Z; �Z g is

Y D Y1 t � � � t Y3N D Y
0
1 t Y

00
1 t Y

000
1 t Y

0
2 t Y

00
2 t Y

000
2 t � � � t Y

0
N t Y

00
N t Y

000
N :

Assume � is a positive P-rule of the form�
s0u1 ! s00u

0
1; v1s1u2 ! v01s

0
1u
0
2; : : : ; vN sN ! v0N s

0
N

�
;

where si ; s0i 2 Qi , and vi -s, ui -s are words in Y . Then this rule is replaced in
P ı f�!Z; �Z g by positive

x� D

24s.�;0/ `
! .s0/.�;0/; k.�;1/.3/u1 ! k.�;1/.1/u01; v1p

.�;1/.3/
`
! v01p

.�;1/.1/;

s.�;1/
`
! .s0/.�;1/; k.�;2/.3/u2 ! k.�;2/.1/u02; v2p

.�;2/.3/
`
! v02p

.�;2/.1/; : : : ;

35
with Y3i�2.x�/ D ;, Y3i�1.x�/ D Y 00i .�/, and Y3i .x�/ D Y

000
i .�/.

Now we want to describe the alternating work of the auxiliary S-machines
 �
Z .�;i/

and
�!
Z .�;i/. Normally each of them is switched on exactly once in the frame of the

rule � , but the sequence of their turning on depends on � . First, we need the following
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transition rule ��.�/. This rule adds � to all state letters and turns all k.j / and p.j /
into k.�;j /.1/ and p.�;j /.1/:�
si

`
! s.�;i/; k.j / ! k.�;j /.1/; p.j /

`
! p.�;j /.1/; i D 0; : : : ; N; j D 1; : : : ; N

�
:

Then the S-machines
�!
Z .�;1/; : : : ,

�!
Z .�;N/ and

 �
Z .�;1/; : : : ,

 �
Z .�;N/ are switched

on in a specific order (defined below) after the rule ��.�/ is applied. So the state
letters k.�;j /.1/, p.�;j /.1/ (j D 1; : : : ; N ) successively turn into k.�;j /.3/, p.�;j /.3/,
find themselves just after si�1- and before si -letters, respectively, and the rule x� can
be applicable.

After an application of x� , the S-machines

�!
Z .�;1/; : : : ;

�!
Z .�;N/ and

 �
Z .�;1/; : : : ;

 �
Z .�;N/

are switched on again in the following order.
Assume that the rule � is a rule of a primitive S-machine P . (Recall that P

is composed from primitive machines.) The S-machine P can work in several
sectors. (For example, � can be the control rule checking all the big historical sectors
simultaneously.) Let i be the minimal index such that Si has a control running state
letter of P . Then the rule x� first switches on the S-machines

 �
Z .�;j / for j D i and

simultaneuosly for all other j -s, where Sj is also has a control running state letter
of P . The last rule �4 of this S-machine switches on the S-machine

 �
Z .�;i�1/ and

similar S-machines in similar sectors (e.g. in all small historical sectors if the sectors
Si�2Si�1 is a small historical sector). The next S-machine is

 �
Z .�;i�2/, if it did not

work ealier, and so on. Then the S-machines
�!
Z .�;iC1/; : : : subsequently work, except

for the sectors, where the auxiliary Z-machines worked earlier.
The same S-machines work after the application of the rule ��.�/ but they are

switched on in the inverse order.
Finally, the transition rule �C.�/ removes the index � from all state letters, and

turns all p.�;j /.3/ into p.j /:�
s.�;i/

`
! si ; k

.�;j /.3/! k.j /; p.�;j /.3/! p.j /; i D 0; : : : ; N; j D 1; : : : ; N
�
:

For every admissible wordW of P with standard base, let �.W / be the admissible
word of P ı f�!Z; �Z g obtained by inserting state letters k.i/ and p.i/ next to the right
of each si�1 and next to the left of each si , i � N .

Assume thatW ! W � � is a computation of the S-machine P with standard base
and a positive rule � . Then, by the definition of P ı f�!Z; �Z g, we have the canonically
defined reduced computation

� � � ! �.W /! �.W / � x� ! � � �
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starting and ending with words whose state letters have no � -indices and all other
words do have � -indices. The computation of P ı f�!Z; �Z g with these properties is
unique by Lemma 3.1 (3) since the S-machines

�!
Z and

 �
Z are primitive. Thus the

following claim is true.
Lemma 10.4 (similar to [16, Lemma 4.24]). For every computation W ! W � � of
the S-machine P with standard base and a positive rule � , there is a unique reduced
P ı f�!Z; �Z g -computation

� � � ! �.W /! �.W / � x� ! � � �

starting and ending with words whose state letters have no � -indices and all other
words have � -indices. The history of this computation starts with ��.�/ and ends
with �C.�/.

For every admissible word W of P ı f�!Z; �Z g with the standard base, let �.W /
be the word obtained by removing state k- and p-letters, � -indices of state letters,
and the indices that distinguish a-letters from the left and from the right of k- and
p-letters. After possible cancellations of a-letters, we obtain an admissible word
of P. Note that we have

Given a computation C of the S-machine P ı f�!Z; �Z g with standard base and
history H involving a x� -rule , we define the projection �.C/ of it, which is a
computation of P. To obtain it, one removes all transitions given by �-rules and
replaces the configurations by their projections. Note that this operation makes sense
since �-rules do not change the projection of the word onto a word in Yi . The
projection �.H/ of the history is defined in obvious way: one forgets the �-rules and
removes bars over � -rules.
Lemma 10.5 (see [16, Lemma 4.28]). If C is a reduced computation of P ı f�!Z; �Z g
with standard base, then �.C/ is a reduced computation of P.

Proof. Assume that we have a subword x�H 0x��1 in the history H of C , where H 0
has no rules of the form x� . If H 0 is non-empty, then one obtains a contradiction by
Lemma 3.1 (4) applied to the work of the primitive S-machines

�!
Z .�;i/ and

 �
Z .�;i/ .

Hence �.H/ is a reduced history.

Below we change some formulations of Subsection 3.1 as applied to P ı f�!Z; �Z g.
Lemma 10.6 (duplicate of Lemma 3.1). Let C WC0 ! � � � ! Ct be a reduced
computation of the S-machine P ı f�!Z; �Z g with the standard base and with t � 1.
Then the following properties hold:

(1) If jCi ja > jCi�1ja for some i D 1; : : : ; t � 1, then

jCi ja � jCiC1ja � jCiC2ja � � � � :
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(2) jCi ja � max.jC0ja; jCt ja/ for every i D 0; 1; : : : t .
(3) Assume that the words C0 and Ct have a-letters only from the subalphabets Y 00i

.i D 1; : : : ; N / and that for the primitive S-machines P forming P, all their
subwords in �.C0/ and �.Ct / look like in Lemma 3.1 (3), i.e. as q1up1q2 and
q1vp2q2 for some words u; v in the notation of Lemma 3.1. Then a-words in
the corresponding sectors of C0 and Ct are equal, jCi ja D jC0ja for every
i D 0; : : : ; t and t D ‚.s2/, where s D jC0ja.

(4) Assume that the words C0 and Ct have a-letters only from the subalphabets Y 00i
.i D 1; : : : ; N / and that for the primitive S-machines P forming P, all their
subwords in �.C0/ and �.Ct / look like in Lemma 3.1 (4). Then it is not possible
that the configurations C0 and Ct have the same set of state letters.

(5) If C0 (or Ct ) satisfies the assumptions of item (3), then

jCi ja � jC0ja

(respectively, jCi ja � jCt ja) for every i D 0; : : : ; t .

Proof. Let us start with Property (1). If

Ci D Ci�1�
.�;i/
1 .a/˙1

(or Ci D Ci�1�
.�;i/
2 .a/˙1), then p.1/.�;i/ inserts letters from both sides and the

next rule of the computation must be again .�.�;i/1 /˙1.c/ for some c. It again must
increase the length of the configuration by two, and so on.

If Ci D Ci�1x� for some x� -rule, then the transition �.Ci�1/ ! �.Ci / increases
the length by Lemmas 10.5 and 3.1 (1). The work of

�!
Z .�;i/;

 �
Z .�;i/ cannot decrease

configuration length by Lemma 3.1 (5) for these primitive S-machines. Therefore
Statement (1) is true and Statement (2) is also true since one can choose a shortest Cj
and consider the subcomputation

Cj ! � � � ! Ct

and inverse subcomputation
Cj ! � � � ! C0:

To prove equalities jCi ja D jC0ja in Statement (3), one just apply Lemma 3.1 (3)
first, to �.C/ and second, to the maximal subcomputations ofZ-machines. Since the
length of �.C/ is 2kC 1 by that Lemma, and if k > 0 the maximal subcomputations
of Z-machines work with configurations of lengths k � 1; k � 2; : : : ; 1, we obtain
the later claim of (3) by summation.

Property (4) follows from Lemma 3.1 (4) applied to the computation�.C/ and the
maximal subcomputations of Z-machines. Property (5) follows from the projection
argument as in Lemma 3.1 (5).
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Lemma 10.7 (duplicate of Lemma 3.3). If C0 ! � � � ! Ct is a reduced computation
of P with base Si�1KiK�1i S�1i�1 or S�1i P�1i PiSi and C0 has a-letters from the
alphabet Y 00i only. Then,

jCi ja � jC0ja

for every i D 0; : : : ; t .

Proof. The statement follows from the projection argument 3.2 as in Lemma 3.3.

Let us call the constructed S-machine P ı f�!Z; �Z g biprimitive.
To define the modified S-machine M04 we insert two more base letters

in each pair Ri�1 and Pi of the standard base, i.e. this base has the sub-
words Qi�1Ri�1R

0
i�1P

0
iPiQi I now the first big historical sector is R00P

0
1 (instead

of R0P1). In the definition of Step 1�, we now replace the rules of the primitive
control S-machines with the rules of the corresponding biprimitive machines. By
definition, at all other steps the control S-machines are just primitive, i.e. the sectors
Ri�1R

0
i�1 and P 0iPi are locked, there are no �-rules, and two base letters of the

locked sectors work as one letter of a primitive S-machine.
Thus, only at Step 1�, the biprimitive S-machine P0 works.

Lemma 10.8 (duplicate of Lemma 3.6). Let C WW0 ! � � � ! Wt be a reduced
computation of P0 with standard base. Then:

(a) jWj ja � max.jW0ja; jWt ja/ for every configuration of C ; moreover, jW0ja �
� � � � jWt ja if every control P - and R-letter neighbors some Q-letter and
P 0-letter (R0-letter) neighbors a P -letter (resp., an R-letter) in the word W0;

(b) we have t D O.kW0k
2 C kWtk

2/, moreover, t D O.kWtk
2/ if every p-letters

and control letters has a neighbor in the word W0 as in item (a).

Proof. (a) The first property is given by Lemma 10.6 (2). Under the additional
assumption for control letters and p-letters, W0 is the shortest configuration by the
projection argument.

(b) Let us say that a subcomputation without x� -rules in the history is a Z-sub-
computation. If the computation is a Z-subcomputation, then the statement (b)
follows from Lemma 3.6 (b) for the (composition of) primitive S-machines.
Otherwise we chose a x� -transition Wr ! WrC1 with minimal

min
�
kWrk; kWrC1k

�
:

Without loss of generality, one may assume that this minimum is kWrk. Lemma 3.6
(a) for �.C/ and for Z-subcomputations implies that kW kr � kWik for every i , and
therefore it suffices to bound the histories of length-non-decreasing computations

C 0WWr ! � � � ! Wt and C 00WWr ! � � � ! W0:
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The length of �.C 0/ is at most 2kWtk by Lemma 3.6 (b) for the S-machine P.
By the same lemma for maximal Z-subcomputations, the length of every maximal
Z-subcomputation is at most 2kWtk too. Since the number of such maximal
subcomputations is at most 2kWtk, we have that t � r D O.kWtk/

2. Similarly,
we obtain r D O.kW0k/

2, and the the first estimate of (b) is obtained. For the
second estimate, one can choose r D 0, since the whole computation C is length-non
decreasing by Lemma 10.6 (5), (1).

We see that Lemmas 10.6 (3) and 10.8 (b) provide us with quadratic estimate
of the computation time for the biprimitive S-machine against the linear time for
S-primitive machines. This have a few consequences mentioned below.

For the same function f .x/ recognized by the original Turing machine and
F.x/ D x2g.x/, we define the function g.x/ to be equivalent to xf .x/3 now.

The extra sectors of the biprimitive S-machine do not affect the work of all other
steps except for 1� since they are locked therein.

The formulation of Lemma 4.5(1) is unchanged but the proof is now based
on Lemma 10.6 (4). For the step history .21�/.1�/.1�1/ in the formulation of
Lemma 4.5(2), we have now

kHk D O
�
kW0k

2
�
;

which follows from Lemma 10.8 (b). The estimates of kHk for other step histories
mentioned in Lemma 4.5(1) remain unchanged. Also we add an item to the
formulation of Lemma 4.5:
(3) Let the history of a reduced computation

C WW0 ! � � � ! Wt

with standard base have a subword x�1H x�2, where x�1 and x�2 are x� -rules of the
S-machine P0 and H has only �-rules of P0. Then all configurations of C are
uniquely determined byH ,

jW1ja D � � � D jWt�1ja and kWj k D ‚
�
kHk

�
for j � t .
The proof of this statement follows the proof of Lemma 4.5 (2), but now one

refers to Lemma 10.4 instead of Lemma 3.1 (3).
To the assumption of Lemma 4.10, we add:

“or the history of the computation C has a subword �1H�2, where �1 and �2 are
x� -rules of the S-machine P0 andH has only �-rules of P0”.

In the proof of Lemma 4.10 (2), one should use the following property. The compu-
tation of the biprimitive S-machine does not change the length of configurations by
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Lemma 10.8 (a). Hence the reduced computation of it is canonical by Lemma 10.4,
and the history restores the tape words.

Consider the single Step 1� in item 2 of the proof of Lemma 4.13. If we have the
work of primitive S-machines only, then the proof is unchanged. If there is a x� -rule
of the biprimitive S-machine in the computation C , we condider the projection �.C/,
where the a-lengths of all configurations are at most

C
�
jW0ja C jWt ja

�
by Lemma 4.13. It remains to consider maximal subcomputation Wr ! � � � ! Ws
of Z-machines, where

jWr ja; jWsja � C
�
jW0ja C jWt j

�
a
:

By Lemma 3.6 (a) we have

jWi ja � max
�
jWr ja; jWsja

�
� C

�
jW0ja C jWt ja

�
for r � i � s, as required.

In item 3 of the proof of Lemma 4.13, the base letters of the first big historical
sector should be replaced by their dashed duplicates.

The estimate kHk � c2kW0k of Lemma 4.16 changes now by the quadratic
estimate kHk � c2kW0k2 due to the application of Lemma 10.8 (b). Respectively,
the upper bound

c3.k
3
C 1/

�
kW0k C k

3
�

of Lemma 4.17 is now replaced by

c3.k
3
C 1/

�
kW0k

2
C k3

�
:

The formulation of Lemma 4.20 does not change since comparing the lengths of
histories, we now increase all of them. In particular, we have now in equation (4.3)
that

2w2 C 2.w � 1/2 C � � � C 2.w � .m � 1//2 � jmjw2=2;

we have that the difference of lengths of subcomputations Ci�1 and Ci does not
exceed 10w, we have kH0k D O.w2/ and obtain

kH 0H 00k � c2.k
3
C 1/O.w2/;

which leads to the same estimates for kH0k and kHtk since the constant c4 can be
chosen large enough.

The change of linear estimates by quadratic ones in the proof of Lemma 4.21 just
sharpens the required inequalities.

Lemma 4.23 claims now that the generalized time functionT 0.n/ of the S-machine
M 0 is equivalent to n2f 3.n/. Thus, we multiply the generalized time function
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of M by n. This is sufficient for the upper bound. Indeed the replacements of the
form kWj k ! kWj k2 in the proof of the modified Lemma 4.23 can multiply the
generalized time function at most by n since it is shown there that kWj k D O.n/ for
every configurationWj . The lower bound obtained in the original Lemma 4.23 must
also be multiplied by n now. Indeed, the time of the constructed subcomputations
with step history

..21�/.1�/.1/.2�/.2/.21�//˙1

will be at least‚.n2/ now (instead of‚.n/) since by Lemma 10.6 (3), we have such
lower bound for the Step 1�.

Similar replacement should be made in Remark 4.24: There are ‚.n2f .n/3/
configurations of length at least ‚.n/ for any computation accepting the word V.n/.

The statement of Lemma 4.26 is modified now by adding the words:

“or the history of C has a subword x�1H x�2, where x�1 and x�2 are x� -rules of the
S-machine P0 andH has only �-rules of P0”.

If the step history of C is .F / and Property (a) of Lemma 4.20 holds we have the
same proof as in the original Lemma 4.26 since the length of a subcomputation of
Step 1� is at most

5max
�
kW0ka; kWtka

�
provided the history ofD has no subwords x�1H x�2. Indeed, in this case, the history of
any subcomputation of Step 1� is a subword ofH 0x�H 00, whereH 0 andH 00 have only
�-rules of P0, and one can bound each of kH 0k and kH 00k by 2c4.kW0ka; kWtka/
applying Lemma 3.6 (b).

The formulation of Lemma 4.27 remains unchanged for all steps except for
Step 1�. If the step is 1�, we add the assumption that the history has no x� -rules of
the S-machine P0. Since the biprimitive S-machine P0 works as a primitive one in the
later case, the proof does not change.

The set of standard trapezia is enlarged now, namely, a trapezium with standard
base having a subword x�1H x�2 in the history, where x�1 and x�2 are x� -rules of the
S-machine P0 andH has only �-rules of P0, is also standard by definition.

The above modification of Lemma 4.27 changes the proof of Lemma 9.23 as
follows. One obtains a contradiction if for some k, there is one-step subcomputation

W.k/! � � � ! W.k C 4/;

where the step differs from 1� or the step is 1� and the history of this subcomputation
has no x� -rules of the S-machine P0. Hence either every subcomputation

W.k/! � � � ! W.k C 8/

has at least two steps, and so the computation

W.1/! � � � ! W.999/
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has at least 100 steps, which leads to a contradiction as in the original proof of
Lemma 9.23, or for some k, one obtains at least two x� -rules in the history of

W.k/! � � � ! W.k C 8/;

i.e. the history of this subcomputation has a subword x�1H x�2, where x�1 and x�2 are
x� -rules of the S-machine P0 andH has only �-rules of P0. In the later case one should
use the modified Lemma 4.10 (instead of the original Lemma 4.10) to complete the
proof.

Lemma 9.23 proves Theorem 1.3 for s D 2. In the present subsection, we have
modified the main S-machine and the corresponding groups M and G so that the
modified Lemma 9.23 provides us with the statement of Theorem 1.3 for s D 3. One
canmake further modifications, which similarly slow down the work of the previously
modified S-machines. This will give the proofs of Theorem 1.3 for s D 4; 5; : : : .
However we can leave the details to the reader taken into account that for s � 4,
Corollary 1.4 is obtained in [22]. Thus, the proof of Theorem 1.3 is complete.

Acknowledgements. The author is grateful to Mark Sapir for useful discussions and
to the anonymous referees for numerous comments.

Subject index

�j , 406
� 0j , 406
N�, 402
N�ij , 403
N�0, ‰0, ‰0ij , 406
‰, ‰ij , 401
‰0, 402
‰0ij , 403
��, 399
�, 319
�, 312
`
!, 323

a-band, 369
a-edge, 369
a-length, 319
a-letter, 319, 367
accept configuration, 321
accepted configuration, 321

admissible word, 319
application of a rule, 320
arc, 395
area of diagram, 368
area of word, 368

B1; : : : ;BL�3, 400
Br , 401
band, 369
base of � -band, 370
base of word, 319
basic width of comb, 374
bead, 376
big trapezium, 372
block history, 344
bottom of band, 369
bottom of trapezium, 370

chord, 395
clove, 401



Polynomially-bounded Dehn functions of groups 431

comb, 374
combinatorial length k�k, 319
composition of S-machines, 329
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history of trapezium, 371
hub cell, 369
hub relation, 368

input configuration, 321

J -mixture on a necklace, 376

Lab.�/, 368
length of arc, 395
locked sector, 323

main S-machine, 337
maximal band, 370
minimal diagram, 389
mixture on the boundary, 377
modified length function j � j, 373
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q-band, 369
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reduced computation, 321
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rim band, 370
rule, 320

S-machine, 319
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S-machine checking disibility, 333
sector, 320
shaft, �-shaft, 393
side of band, 369
sides of trapezium, 370
spoke, 390
standard base, 320
standard history, 393
standard trapezium, 372
start/end edges, 369
state letter, 319
step history, 342
step history of a band, 370
step history of a trapezium, 371
steps of M4,M5, andM6 DM, 337
subcomb, 375
suitable function, 314

‚-equivalence, 312
� -band, 369
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� -letter, 367
.�; a/-cell, 369
.�; a/-relation, 368
.�; q/-cell, 369
.�; q/-relation, 368
t -band, 370
tape letter, 319
tight base, 374
tight comb, 374
time function, 322
top of band, 369
top of trapezium, 370
transposition of disk and � -band, 390
trapezium, 370

working sector, 331

yj , 406

zj , 406
Z-annulus, 369
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