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1. Introduction

1.1. Formulation of the theorem and corollaries. = The minimal non-decreasing
function d: N — N such that every word w vanishing in a group G = (A | R) and
having length ||w| < n is freely equal to a product of at most d(n) conjugates of
relators from R*!, is called the Dehn function of the presentation G = (A4 | R) [8].
In other words, the the value d(n) is the smallest integer that bounds from above
the areas of loops of length < n in the Cayley complex Cay(G), and so by van
Kampen’s Lemma, d(n) is equal to the maximal area of minimal filling diagrams A
with perimeter < n. (See Subsection 5.2 for the definitions.)

The values d(n) are defined if the set of generators A is finite. For a finitely
presented group (i.e. both sets A and R are finite), the Dehn function exists and it is
usually taken up to equivalence to get rid of the dependence on a finite presentation
of G (see [12]). To introduce this equivalence ~, let f and g be non-decreasing
functions N — R,;. We write f < g if there is a positive integer ¢ such that
f(n) <cg(cn)+ cn for every n € N. Two non-decreasing functions f and g on N
are called equivalent if f < gand g < f.

Note that for many functions (for example, for n%, n®(logn)? (loglogn)?, and
so on), their ~-equivalence classes coincide with their ®-equivalence classes, where
the symbol ® is borrowed from the theory of computational complexity: one says
that f(n) = ©(g(n)) if both properties f(n) = O(g(n)) and g(n) = O(f(n))
hold.
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The Dehn function d = dg of a finitely presented group G is also called an
isoperimetric function of G since it is equivalent to the usual isoperimetric function
of a simply connected Riemannian manifold M, provided G acts properly and co-
compactly on M by isometries. So the concept of Dehn function is derived from
geometry, and one can find much more regarding this connection in [9].

Another connection is to Computational Complexity. The algorithmic word
problem in a finitely presented group is decidable if and only if the Dehn function is
recursive, and the Dehn function of a group bounds the computational complexity of
the word problem. It was shown in [2] that conversely, every recursively presented
group G with decidable word problem embeds into a finitely presented group
whose Dehn function is only polynomially larger than the computational complexity
(the time function) of the word problem in G. In particular, groups with word
problem in NP are precisely the subgroups of finitely presented groups G with at
most polynomial Dehn functions dg.

For every positive integer «, there are (nilpotent) groups with Dehn func-
tion n® [1]. The first examples of Dehn functions n* with non-integer o can be found
in [6], where the description of possible exponents «, forming the isoperimetric
spectrum, was called the most fundamental question concerning isoperimetric
functions. (Obviously some conditions on the real exponent « are inevitable since the
set of real numbers is uncountable, while the set of non-isomorphic finitely presented
groups is countable.)

Almost all possible Dehn functions F(n) > n* of finitely presented groups were
described in [22] in terms of time functions of non-deterministic Turing machines.
By Theorem 1.2 of [22], to obtain a group with Dehn function F, it suffices to assume
that the function F is super-additive (i.e. F(m 4+ n) > F(m) + F(n) form,n € N)
and the integral part of {/F(n) is a time function of a non-deterministic Turing
machine (see the definition in [7]). As a corollary, it was proved in [22] that if « > 4
and the real number « is computable in time < 22", then there is a finitely presented
group with Dehn function equivalent to n* (One should use the integral part sign
for functions on N, but we omit this sign speaking on asymptotic behavior.). The
computability can be defined as follows.

Definition 1.1. Let T: N — N. A real number « is computable in time < T (m)
if there exists a Turing machine which, given a natural number m, computes a
binary rational approximation of « with an error O(27""), and the time of this
computation < 7' (m).

The algebraic and many transcendental numbers are computable much faster, and
so there are examples of groups with Dehn functions equivalent to n**¢, and so
on. If, conversely, for a real «, the function n* is equivalent to the Dehn function
of a finitely presented group, then for some ¢, the exponent « is computable in

time 22% [22].
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Still the class of Dehn functions < n* was unclear even though it has drawn

attention (see, for example, [4-6]). We note the paper [4] (also the references there),
where the Dehn functions equivalent to n* were constructed for special non-integer
exponents of the form o = 21log,(2p/q), where p and ¢ are integers, p > g > 0.

Since all finitely presented groups with subquadratic Dehn functions are
hyperbolic [3, 8, 14], i.e. their Dehn functions are in fact linear, the only interval
2 < o < 4 remained misty. To formulate a theorem that fills this gap, we need:

Definition 1.2. We say that a non-decreasing function f:N — N is suitable if the
following properties hold.

© f(n)*=0@).

¢ For every integer ¢ > 0, there is C > 0 such that f(cn) < Cf(n),i.e.
f(Om)) = O(f(n)).

¢ There is a (non-deterministic) Turing machine My recognizing the values of the
function f(n) with computation time O(n'/3).

It works as follows. An integer k > 0 is an input of My in the form ak for a
fixed letter a. The Turing machine My produces a value f(n) for some n > 1,
i.e. it obtains the word ¢/ on a special tape. Then My compares f(n) and k,
accepting k if k = f(n). It can accept the input word a* if and only if k = f(n)
for some natural number 7.

Theorem 1.3. For every suitable function f(n) and every integer s > 2, the function
F(n) = n® f(n)3 is equivalent to the Dehn function of a finitely presented group.

Given a suitable function f(n), we denote g(n) = f(n)3.

Corollary 1.4. If o > 2 and the real number o is computable in time O(2%"), then
there is a finitely presented group with Dehn function equivalent to n®.

Remark 1.5. It is easy to see that we have an equivalent statement when replacing 2
with any integer d > 1 both in the statement of Corollary 1.4 and in Definition 1.1
(resp., “binary” with “d-ary”). The formulation and the proof of Corollary 1.4 are
close to those for Corollary 1.4 of [22] (up to a minor inaccuracy in the formulation
of Corollary 1.4 [22]). However below we give a proof of our Corollary 1.4 since
one should draw it from different assumptions of Theorem 1.3.

Proof of Corollary 1.4. Assume that o is computable in time O(22"). Clearly, the
same property holds for the number 8 = %(oz — ), where s = [«].

Let M, be a (non-deterministic) Turing machine producing r = [#!/3] > 1 (in
unary) with time O(r). Then it computes [log, r] and m = [log, log, 7] (in binary)
with time O(r) using divisions by 2.
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It follows from the assumption of the corollary that one can recursively compute
binary rational numbers S, such that

IB—Bml =027 = 0((log,r)™") (1.1)

and the time of the computation of B, is O(r). Let My accomplish this computation.
In addition, one may assume that the number of digits in the binary expansion of 8,
is O(m). Therefore the computation of the product [8,,[log, r]] needs time at most
O((logy n)?). Since r = [n1/3], the Turing machine can now obtain the binary
presentation y, of [B,[log, n]] with time O((log, 7)) and error O(1).

Next, let M rewrite the binary presentation of y,, in unary (as a sequence of 1-s).
This well-known rewriting (e.g. see p.352 in [22]) has time complexity of the form
O(ym) = O(Bmlog, n). One more My-rewriting of this type applied to the unary
presentation of y,, (considered now as binary one), will have time complexity of the

form
OQr") = @(Z[ﬂm[logzn]HO(l)) — @(z[ﬂm[logzn]])‘

One can rewrite as
e(2frem) = ) = 0n'/?)

by inequalities (1.1) and B < 1/3, because log, n = O(2™).

During the last (deterministic) rewriting, one can count the number f(n) of
commands and obtain a word b/ on a special tape, where f(n) = On#). It
is easy to see that the rewriting can be defined so that the function f(n) is non-
decreasing.

One more tape of the Turing machine My under construction has the input
word a¥. It remains to check whether the lengths of the words /™ and a* are
equal or not. This takes the time O(f(n)) = O(n'/?). Since the time of the entire
procedure is O(n'/3), the function f(n) is suitable. Now by Theorem 1.3, the
function n® f(n)?® = On°n3#) = O(n®) is equivalent to the Dehn function of a
finitely presented group. 0

In particular, Corollary 1.4 implies:
Corollary 1.6. The functions n® for every real algebraic o > 2, the functions n™ 1,

nvVetl L are equivalent to Dehn functions of finitely presented groups. O

As we mentioned above, the analog of Corollary 1.4 for @ > 4 was proved in [22].
But weakening the restriction to & > 2 now, although uses S-machines, as in [22], it
requires substantially new ideas.

Theorem 1.3 gives a tremendous class of new Dehn functions of the form O (n*).
The following examples can be validated in absolutely similar way as Corollary 1.4.

Corollary 1.7. The functions n®(logn)®?, n®(logn)? (loglogn)?, ... are equivalent
to the Dehn functions of finitely presented groups, provided the real «, B, 7y, ... are
computable in time 022" ) and o > 2 oro =2 and > 0, ora =2, B = 0,
y>0,.... OJ
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Since every finitely presented group is a fundamental group of a connected closed
Riemannian manifold X and therefore acts properly and co-compactly by isometries
on its universal cover X, one can use Theorem 1.3 and Corollary 1.4 to formulate
one more

Corollary 1.8. For every function F(n) satisfying the assumption of Theorem 1.3,
there exists a closed connected Riemannian manifold X such that the isoperimetric
function of the universal cover X is equivalent to F(n).

In particular, if a real number oo > 2 is computable in time 0(22m ), then there
exists such a universal cover X with isoperimetric function equivalent to n®. 0

Since the condition o« > 2 is the best possible and the obtained upper bound for
the Dehn function must be equivalent to the lower one, all inequalities throughout
this paper should be uniformly sharp, up to multiplicative constants.

We collect all the definitions and terms at the end of the paper (see Subject index).
The next subsection presents a short outline of the plan.

1.2. Brief description of the proof of Theorem 1.3. The idea of simulation of the
commands of a Turing machine by group relations goes back to the works of
P.Novikov, W.Boone and many other authors (see [20,21]). However one has
to properly code the work of a Turing machine in terms of group relations, and
the interpretation problem for groups remains much harder than for semigroups,
because the group theoretic simulation can execute unforeseen computations with
non-positive words. Boone and Novikov secured the positiveness of admissible
configurations with the help of an additional “quadratic letter” (see [20, Ch. 12]).
However this old trick implies that the constructed group G contains Baumslag—
Solitar subgroups Bj > and has at least exponential Dehn function. Since we want to
obtain at most polynomial Dehn functions, we use the S-machines introduced in [22].
Those S-machines invented by M. Sapir can work with non-positive words on the
tapes and they are polynomially equivalent to classical Turing machines.

According to the original version, S-machines are special rewriting systems. All
necessary definitions are given in Subsection 2.1. On the other hand, the state, tape
and command letters of an S-machine can be regarded as group generators, and
the commands can be interpreted as defining relations (see Subsection 5.1). The
obtained group M is a multiple HNN-extension of a free group. Every computation
of the S-machine is simulated by van Kampen diagram over this group called trapezia
(Subsection 5.2).

To construct a finitely presented groups G with desired Dehn functions, one needs
to add to M aspecial relation called the hub. It consists of state letters. There are very
particular van Kampen diagrams, called disks, built of the hub and many trapezia
attached around.

It is proved in [22] that for every Turing machine My with time function 7 (n),
there is an equivalent S-machine M; with time function (and the generalized time
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function) ~ T(n)3. It follows that if an accepting computation starts with an input
of length ~ n, it has length ~ T'(n)3, and the computational disk has perimeter ~ n,
and so its area ~ nT(n)>. Since time functions are at least linear, this approach gave
the lower bound > n* for the Dehn function of G.

To get the linear time of accepting computation, in comparison with the length of
the initial configuration for an S-machine M5, one can add an additional tape, where
the whole history of the forthcoming computation is written. Then every command
will erase one letter on this tape. This trick gives disks with quadratic area with
respect to their perimeters.

However we want to construct disks with prescribed area F (), as in Theorem 1.3.
In this paper, we first prove this theorem for s = 2, i.e. for F(n) = O(n?), and in
the final Subsection 10.2, we show that the value of s can be increased, since a
non-difficult modification of the main S-machine M constructed in Subsection 4.1
linearly slows down the work of M.

The main S-machine is composed of the S-machine M, repeating the same
computation many times and another S-machine that can stop the computations of M,
after ~ g(n) such cycles with subsequent erasure of all the tapes and acceptance.
This gives the lower bound ~ ng(n) for the (general) time function and the lower
bound ~ F(n) for the areas of computational disks.

The obtainment of the upper bounds is the major job in this paper. First of
all, to obtain quadratic upper bound for the areas of trapezia, one needs a linear
bound of the space of every computation (i.e. the maximal lengths of all admissible
words of it) in terms of the lengths of the first and the last word. This task is
aggravated by inaccurate simulation of the work of Turing machines by S-machines
and so by group relations. Standard trapezia correspond to the prescribed work of
S-machines, but there are non-standard ones simulating undesired computations
when the same tape is simultaneously changed at both ends. The features of
standard (accurate) computations of the main S-machine and of non-standard ones
are considered in Subsections 4.2 and 4.3, respectively. To reduce the effect of non-
standard computations, the basic steps of the work alternate with control steps in the
definition of the main S-machine given in Subsection 4.1.

Whereas a non-standard computation has linearly bounded space in terms of the
lengths of the first and the last words (and so the width of corresponding trapezia is
linearly bounded too), there exist much wider trapezia in the standard case. Hence
standard trapezia can have too large areas in the group M. The new idea is decrease the
area of their boundary labels in the quotient group G. We do this in Subsection 10.1
applying the properties of long computations obtained in Subsection 4.5. It turned
out that wide trapezia with super-quadratic areas in M can be replaced, preserving the
boundary label, by diagrams of quadratic areas over G, i.e. by diagrams containing
hubs.

However before that, we prescribe artificial (but quadratic!) G-areas to special
“big” subtrapezia (Subsection 6.3), which leads to the definition of G-area for an
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arbitrary diagram over M or over G. A quadratic upper bound for the G-areas of
diagrams over M is given in Subsection 6.3. It turns out later, that the are diagrams of
quadratic area over G with the same boundary labels. The induction on the perimeter
is based on a non-trivial surgery. (See the proof of Lemma 6.16 in Subsection 6.3,
where we cut and paste diagrams.) In fact, we give an upper bound G -for area in terms
of the perimeter and the mixture of ¢- and 6-letters in the boundary label, because
different types of surgeries decrease either perimeter or the mixture. The mixture is
defined for arbitrary necklace with beads of two colors (see Subsection 6.2), and it is
bounded by the square of the number of beads, and so we finally obtain a quadratic
upper bound in terms of perimeter only.

Note that instead of the combinatorial length of words (length of paths, perimeter)
we consider a modified length, where different letters and syllabi have different
lengths (Subsection 6.1). With respect to this modified length | - |, the length of
the top/bottom of every g-band Q is just the number of 2-cells in Q, and the rim
f-bands with bounded number of (8, ¢)-cells can be removed from a diagram with
decrease of perimeter. Such properties are exploited in the paper many times. It is
easy to reformulate the final results in terms of the combinatorial length || - || since it
is ®-equivalent to | - |.

Our presentation of the group G (Subsection 5.1) is highly non-aspherical, and
so van Kampen diagrams with the same boundary label can differ widely. We choose
minimal diagrams in Section 7, i.e. reduced diagrams with minimal number of disks
and, for given number of disks, with minimal number of (8, ¢)-cells. We do not claim
that a minimal diagram has minimal area or minimal G-area for fixed boundary label,
but to obtain the upper bound for the Dehn function, it suffices to bound from above
the G-areas of minimal diagrams.

However, even one has quadratic estimates for G-areas of disk-free diagrams
(i.e. diagrams over M) and the required upper bound ~ F(n) for the areas of disks
(see the definition in Section 7), the “snowman” decomposition of diagrams in the
union of subdiagrams with single disk defined in [22], would give at least cubic upper
bound for the G-area of the entire minimal diagram. Thus, without new tools one
could only hope to weaken the restriction from [22] to o > 3.

The helpful property is that a minimal diagram cannot contain subdiagram formed
by a disk and a very special trapezium connected by a “shaft” (Section 7). At first
sight, it seems that such subdiagrams are extremely rare. But they become ordinary
if the work of an S-machine has sufficiently many control steps (Steps 1757 in
Subsection 4.1). Hence the absence of these exotic subdiagrams can help. And it
helps indeed provided the sum o of the lengths of all “shafts” (see Definition 7.7)
linearly bounded in terms of the perimeter.

To obtain such a linear estimate, in Section 8, we introduce designs formed by
two finite sets of segments and prove a pure combinatorial proposition. So there
are neither machines nor groups, nor van Kampen diagrams in Section 8, and the
reader can start with that short section. (Is there even shorter proof or a reference
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to a known property? Although the author did believe that the linear estimate took
place, he wasted time devising a proof.)

Since 0 < cn for some constant ¢ > 0, where # is the perimeter, one can estimate
the G-area of a diagram in terms of the sum n + o instead of n (Section 9), and this
is another new tool for obtaining the required upper bound for the area.

2. General properties of S-machines

2.1. S-machines as rewriting systems. There are several interpretations of S-mach-
ines in groups. In particular, one can define an S-machine as a group that is a multiple
HNN extension of a free group. Here we slightly modify the original definition [22]
using [19] and define S-machines as rewriting systems working with words in group
alphabets. The precise definition of an S-machine § is as follows.

The hardware of an S-machine § is a pair (Y, Q), where Q = ulN: 0@i and
Y = l_IlN= Yi (for convenience we always set Yo = Yn41 = 0). The elements
from Q are called state letters, the elements from Y are tape letters. The sets Q;
(resp., Y;) are called parts of Q (resp., Y).

The language of admissible words consists of all reduced words W of the form

ai gy wgil 2.1)

where every subword qiilu ,-qijill either:

* belongs to (Q; F(Y;1+1)Q j+1)E! for some j and u; € F(Yj41), where F(Y;) is
the set of reduced group words in the alphabet Yiil; or

* has the form qug ™! for some g € Qjandu € F(Y;41);0r

1

* is of the form ¢~ 'uq forq € Qj andu € F(Y;).

(The second and third items extend the definition of admissible words in comparison
with [22], and the language of admissible words is equal to the language from [19].)

We shall follow the tradition of calling state letters g-letters and tape letters
a-letters, even though we shall sometimes use letters different from g and a as state
or tape letters. The number of a-letters in a word W is the a-length |W|, of W.
Usually parts of the set Q of state letters are denoted by capital letters. They may
differ from Q; for some S-machines. For example, a set P would consist of letters p
with various indices. Then we shall say that letters in P are p-letters or P-letters.)
The length of a word W, i.e. the number of all letters in W, is denoted by ||W|.

If a group word W over Q UY has the form ugqu1g2u; . .. gsus, and g; € Q;E(}),
i =1,...,s, u; are group words in Y, then we shall say that the base of W is
base(W) = Q?E(}) Q/.ié) e Qf(;) Here Q; are just letters, denoting the parts of the
set of state letters. Note that the base is not necessarily a reduced word, and the
sign = is used for letter-by-letter equality of words. The subword of W between



320 A. Yu. Olshanskii

-letter will be called a Qf( -sector of W. A

+1 +1 1 =+l
the Qj(l.)-letter and the inj(it_Lll) Qi+
word can have many i) @G +1)-sectors.

Instead of specifying the names of the parts of Q and their order as in

Q=QoUQrU---UQp,

we say that the standard base of the S-machine is Q¢ ... Q. An admissible word
with standard base is called a configuration of the S-machine.

An S-machine also has a set of rewriting rules ®. To every € O, two
sequences of reduced words are assigned: [Uy,...,Up], [V1,..., V], and a subset
Y(0) = UY;(0) of Y, where Y;(0) C Y;. A rule has the form:

[Ur = Vi,....Un = Vi),

where the following conditions hold:

e Each of U; and Vj is a subword of an admissible word, both U; and V; have base
0¢0Q¢41...09r € =4L(@) <r = r(i)) and have a-letters from Y (9).

e li+1)=r@)+1fori=1,...,m—1.
e U; and V] must start with a Qg-letter and U, and V,, must end with a Q y -letter.

The pair of words U;, V; is called a part of the rule, and is denoted [U; — V;].

The notation 6: [U; — V1, ..., Uy — Vi) contains all the necessary information
about the rule except for the sets Y;(6). In most cases it will be clear what these
sets are, and very often the sets Y;(6) will be equal to either Y; or @. By default
Y;(0) =Y.

Every S-rule

0 = [U] —> Vl,...,Um —> Vm]
has an inverse
6~ =[Vi > Ur.....Viu = Unl.

which is also a rule of 8; we set Y;(07!) = Y;(#). We always divide the set of
rules ® of an S-machine into two disjoint parts, @ and ®~ such that for every
0 e®F, 071 € ® andforevery § € ®, 07! € ®F (in particular ©~! = ©, that
is any S-machine is symmetric). The rules from @ (resp., ©7) are called positive
(resp., negative). In particular, [U; — Uy;...; Uy, — U] is never an S-rule. It is
always the case that Y;(~!) = Y;(0) forevery i.

For every word U; = uoqiu1qi+1 - - - grur—i+1 from the definition of the rule 6,
we denote by U; its trimmed form qiu1qi+1 - - - qr starting and ending with state
letters. To apply an S-rule 6 to an admissible word W (2.1) means:

* to check if all tape letters of W belong to the alphabet Y (¢) and every state letter
of W is contained in some subword Ul.il of W,
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 if W satisfies this condition, then to replace simultaneously every subword

U = (qnagrer - q0) ™!
by subword

-1 -1 +1 _ —1 -1 +1 . .
(ug Viur_l+1) = (u, qullvl "'q;vr—l-i—lur_H_l) i=1,....m)

* to trim a few first and last a-letters (to obtain an admissible word starting and
ending with g-letters) followed by the reduction of the resulted word.

The following convention is important in the definition of S-machine:

After every application of a rewriting rule, the word is automatically reduced. The
reduction is not regarded as a separate step of an S-machine.

For example, applying the rule 6: [q1 — aq}b™", g2 — cq,d] to the admissible
word W = q1bq2dq5 ' q;! one first obtains the word

agyb~'beghddd ™" (g5) " e b(gy) T a,

then after trimming and reduction one has ¢} cq5d(q5) " ¢~ 1b(g})". But the rule 6
would not be applicable to W if Y,(0) = @ or Y»(0) = {a’}, where a’ # b.

If a rule 6 is applicable to an admissible word W (i.e. W belongs to the domain
of 0) then the word W is called 0-admissible, and W - 6 denotes the word obtained
after the application of 6.

A computation of length or time t > 0 is a sequence of admissible words Wy —
-+« — W; such that foreveryi = 0, ..., ¢ — 1 the S-machine passes from W; to W; 1
by applying one of the rules 6; from ®. The word H = 6, ... 6, is called the history
of the computation. Since W; is determined by W, and the history H, we use the
notation W; = Wy - H.

A computation is called reduced if its history is a reduced word. Clearly, every
computation can be made reduced (without changing the initial and final words of
the computation) by removing consecutive mutually inverse rules.

An S-machine is called recognizing if it has the following attributes. There are
admissible words with the standard base called input configurations and accept (stop)
configuration. There are input sectors (at least one) and other sectors are empty for
input configurations, and all sectors are empty for the accept one. (However in this
paper, some S-machines have no input or accept configurations.) The state letters of
the input (of accept) configuration form a special vector §; (vector So) whose letters
are involved in one rule only and are completely changed by this rule.

A configuration W is said to be accepted by an S-machine M if there exists at
least one computation, called accepting computation, which starts with W and ends
with the accept configuration.

Assume that M is an S-machine, and there is (only one) accept configuration.
Then the a-length |W|, of an input configuration W is the number of tape letters
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in W. If the configuration W is accepted, denote by T(W) the minimal time of
computations accepting it. Then the time function 7' (n) = Tps(n) is defined as
max{T (W)} over all accepted input configurations W with |W|, < n.

The generalized time function T'(n) is defined for every S-machine having a
unique accept configuration. The definition is similar to the above definition of time
function but one should consider all accepted configurations W, not just input ones.
Therefore T'(n) < T'(n). (Presumably, n, in the definition of 7'(n), corresponds to
the a-length of the accepted configurations.)

Time functions and generalized time functions are taken up to ®-equivalence.

2.2. Simplifying the rules of S -machines. We say that two recognizing S-machines
are equivalent if they have the same language of acceptable words and ®-equivalent
time functions. Next lemma simplifies the rules of S-machine. In particular, one
needs Property (1) to define trapezia (Definition 5.5).

Lemma 2.1. Every S-machine § is equivalent to an S-machine 8', where

(1) Every part U; — V; of every rule 8 has 1-letter base:
Ui = vigiviv1, Vi = vjqiu; 4,

where q;,q; are state letters in Q;.

2) In every part v;q;u;+1 — v.qiu’ ., ., we have that
YD qili+ i4i%i+1

loill + vl =1 and il + lluj oy < 1.
(3) Moreover, one can construct 8’ so that for every rule we have

> (il + 1041+l |+ ) < 1.

i

Proof. (1) Property (1) can be obtained after adding auxiliary state letters and

splittings the rules of §. Assume, for example, that the part U; — V; has 2-letter

base: gqiaq, — qia’q,. Then we introduce auxiliary state letters ¢; (1), ¢;(2)

(j =0,...,N) and replace the rule 6 by the product of three rules 6;, 6, and 03,

where

(61) For 6; and j > 1, we replace base letters g in V; by their ¢(1)-copies and
obtain the parts U; — V;(1), while the part Uy — V; is replaced by the two
parts g1a — ¢1(1), g2 — ¢2(1);

(6») For 6, and j > 1, we have now the parts V;(1) — V;(2), where V;(2) is a
copy of V; (1) after replacement g(1) — ¢(2), while the part U; — V; of 0 is
replaced by two parts g1 (1) — ¢1(2) with Y»(82) = @ and g»(1) — ¢2(2);

(63) For 03 and j > 1, we have V;(2) — V;, while the first part splits now as
q1(2) — g1a’ and 42(2) — g5.
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The key feature of the new S-machine § is in the following obvious property:

There is a one-to-one correspondence between computations wy — -+ — W of 5
(with any base) such that wo, w; do not have auxiliary q-letters and computations
of 8 connecting the same words. For every history H of such computation of 8, the
corresponding history of computation of S is obtained from H by replacing every
occurrence of the rule 0% by the 3-letter word (6,6,63)* .

Clearly, by applying this transformation to an S-machine § several times, we
obtain an equivalent S-machine satisfying Property (1).

(2) Suppose Property (2) is not satisfied for a part U; — V;. For example, suppose a
rule 6 of an S-machine & has the i th part of the form av;q;u; +1 — vjqju;_ ;, where
Uj41, Vi, U, v; are words in the appropriate parts of the alphabet of a-letters, v; is
not empty, a is an a-letter, g;, q; are g-letters (a very similar procedure can be done
in all other cases).

We want to replace 6 with two rules with smaller sums of lengths of their parts.
For this aim, we create a new S-machine 8 with the same standard base and the
same a-letters as §. In order to build §. , we add one new (auxiliary) g-letter g;
to each part of the set of g-letters, and replace the rule 6 by two rules 6’ and 6”.
The first rule 6" is obtained from 6 by replacing the part v;agiu;+1 — v;qju;
by agiui+1 — qGiuj ., and all other parts U; — V; by U; — §; (here g; is the
auxiliary g-letter in the corresponding part of the set of g-letters). The second rule 6”
is obtained from 6 by replacing the part v;aq;u;+1 — viqju; , by vig; — viq;,
and all other parts U; — V; by g; — V.

Note that the sum of lengths of words in all parts of 6’ (resp., #”) in § is smaller
than the similar sum for 6. Therefore, applying this transformation to an S-machine §
several times, we obtain an equivalent S-machine satisfying conditions (1) and (2).

(3) Similarly, one can obtain Property (3). O

If Y;+1(0) = @ for an S-machine with Property (1), then the corresponding

l
component U; — V; will be denoted U; — V; and we shall say that the rule 6 locks
the Q; Q;y1-sectors. In that case we always assume that U;, V; do not have tape

l
letters to the right of the state letters, i.e. it has the form v;q; — v}g}. Similarly,
these words have no tape letters to the left of the state letters if the Q;_; Q;-sector is
locked by the rule.

Remark 2.2. The definitions of an admissible word and a rule application given
in Subsection 2.1 coincide with the the definitions from [22] in case of standard
base. However computations do not change the base. So to obtain the statement
of Lemma 2.4, we may use the main property of computations with standard base
obtained in [22].
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S-machines resemble multi-tape Turing machines (or algorithms). (The main
difference is that a Turing machine does not deal with negative letters.) We do not
give an accurate definition of Turing machines here since from now on we will not
use them in this paper (see, for example [7] or [22] for the definition). However, it
is important that the S-machine S(M) constructed in [22] simulates the work of a
Turing machine M with time function 7'(n) as follows. (See [22, Lemma 3.1 and
Proposition 4.1], though we use simpler notation below.)

Let M have one input sector Y Z, and the input configurations have the form
W = yvz..., where v is a positive word in an alphabet A. Then there is an
S-machine S(M) with input configurations of the form

o(W) = y1a"z1...xy2025 ... 38" 23 ... yaw" 24,

where n = ||v]| (so S(M) has four input sectors with tape words «”, v, §” and w”,
respectively); the S-machine S(M) has time function ®(7 (n)?), and it accepts the
configuration o (W) if and only if the configuration W is accepted by M. Moreover,
the S-machine S(M) can be constructed so that for every configuration W € £
accepted by M with time T(W), the S-machine S(M) accepts this word with
time O(T(W)3).

Remark 2.3. The “moreover” part is not formulated in [22] explicitly, but it follows
from Proposition 4.1.3 (b) since every Turing machine can be easily modified so
that the length of every accepting computation is ®-equivalent to the space of this
computation.

In the present article, we will assume that the basic S-machine M; has only one
input sector. Therefore, M; has to have a few more rules in comparison with S(M).
The input configurations of M have the form

G(W) = J1Z1...X072%2... 73%3. .. JaZa,

where ¥ is a word in an alphabet A, which copies the alphabet A4 (so the only input
word is v). The following rules of M are added to the rules of S(M).
For every (positive) letter a € A, there is a rule

Pa: [J71 — 10, Yo — a@ 'Jaa, 3 — 738, j4 — )74(0],

where a is a copy of a in the alphabet a and all other sectors are locked by p,. They
also are locked by the connecting rule
— _ ¢ — _
,oz[yl = Y1, X = X, P2 = V2,...24 —>z4],
which switches on the S-machine S (M ). If an input word o (W) is accepted by S(M),

then o (W) is accepted by M, where v is a copy of v. Indeed, if a is the last letter of
the word v, then the application of the rule p, moves the state letter y, leftward and
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replaces a by a from the right of y,. After n rules of this type, one can obtain the
word v between y, and z,. These rules will also insert &”, §”, and »” in the sectors
Y171, Y3Z3 and Y4Z 4, respectively. So it remains to apply the rule p to obtain the
configuration o (W) accepted by S(M). Also for the times of computations, we see
that Tyt, G(W)) = O(Tsary (o (W)).

Conversely, assume that the configuration o (W) is accepted by M. Then the
history of this accepting reduced computation has to be of the form

H = HopH1p~'Hap... Hye 1,

where Hq, H,, ... contain ,offl-rules only and Hy, Hs, ... are histories of S(M).
However, H cannot have subwords of the form p_lHip. Indeed, if here H; is a
reduced word pffll ...pjil, then the tape word u’ in the XY, sector at the end of
the computation €; with history H; is obtained from the word u written there in
the beginning of €;, after free multiplication from the right by the reduced word
éTl ...a;'. But both u and v’ are empty since the rule p locks the X Y,-sector.
Hence t = 0 and so H; is empty, a contradiction.

Thus, H = HypH, and the X Y,-sector of the word o(W) - Hy is empty being
locked by p. Hence the history Ho has tobe pg, ... pq, if v = a; ...a,, and the tape
word in the Y, Z, sector of 6 (W) - Hy has to be v while the tape words in the sectors
Y1Z4, Y3Z5 and Y4Z4 become «”, §" and »" as it follows from the definition
of pg-rules. Hence o(W) - Hyp = o(W), and so o (W) is accepted my S(M)
and TM1 ((_I(W)) > TS(M) (O’(W)

It follows that the S-machine M; with one input sector enjoys the properties
of S(M) from [22]:

Lemma 2.4. Let My be a non-deterministic Turing machine accepting the language £
with a time function T (n). Then there is an S-machine My with a single input sector
accepting the language £ with time function ©-equivalent to T (n)>.

Moreover, the S-machine My can be constructed so that for every word W € £
accepted by Mgy with time T(W), the S-machine My accepts this word with
time (T (W)3).

Remark 2.5. Later we will assume that the Turing machine My recognizes the values
of some suitable function according to Definition 1.2.

2.3. Some elementary properties of S -machines. The base of an admissible word
is not always a reduced word. However the following is an immediate corollary of
the definition of admissible word.

Lemma 2.6 ([16, Lemma 3.4]). If the ith component of the rule 0 has the form
{
vigi —> viq,

i.e. Yi11(0) = 0, then the base of any 0-admissible word cannot have subwords

007 or 0;},0i1. O
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In this paper we often use copies of words. If A is an alphabet and W is a word
involving no letters from A*!, then to obtain a copy of W in the alphabet A we
substitute letters from A for letters in W so that different letters from A substitute
for different letters. Note that if U’ and V’ are copies of U and V respectively
corresponding to the same substitution, and U’ = V', then U = V.

Lemma 2.7. Suppose that the base of an admissible word W is Q; Qi+1. Suppose
that each rule of a reduced computation starting with W = q;uq; +1 and ending with
W' = q;u'q; multiplies the Q; Q;y1-sector by a letter on the left (resp., right).
And suppose that different rules multiply that sector by different letters. Then:

(a) the history of computation is a copy of the reduced form of the word w'u™" read
from right to left (resp., of the word u™'u' read from left to right). In particular,
if u = v/, then the computation is empty;

(b) the length of the history H of the computation does not exceed ||u| + ||u’|

(c) for every admissible word qu"qj’,, of the computation, we have

1" < max (Jlall, fJa"]])-

Proof. (a) Part (a) is obvious.

(b) To prove part (b), we choose a word W; of the computation with shortest tape
word u;. This factorizes the history as H = H; H,, where H, is the history of the
subcomputation W; — W; 41 — --- — W', It follows that

Wil = [IWill + 1.

The next rule increases the length of admissible word again since the computation
is reduced and different rules multiply the sector by different letters, i.e. | W;y2|| =
[Wis1]l + 1. By induction, we have

" = Ml [l + [ Hz | = | H2]l.

To obtain the inequality ||u|| > || H1||, we consider the inverse computation W’ —
-+« — W. Hence
IH | = [[Hill + | H2ll < full + [l]].

(¢) The same argument proves Statement (c) since the length of u” is either between
lu; || and ||u’|| or between ||u; || and ||u]. O

Lemma 2.8. Suppose the base of an admissible word W is Q; Q;y1. Assume that
each rule of a reduced computation starting with W = qijuqi4+1 and ending with
W' = qju'q; | multiplies the Q; Q;+1-sector by a letter on the left and by a letter
from the right. Suppose different rules multiply that sector by different letters and

the left and right letters are taken from disjoint alphabets. Then:



Polynomially-bounded Dehn functions of groups 327
(a) for every intermediate admissible word W; of the computation, we have

IW; Il < max (|W I, [W’]]);
(b) the length of the history H of the computation does not exceed %(Hu |+ |-

Proof. (a) If we choose the word W¥; of minimal length, then after multiplications of
the form u; — u;+1 = au; b we have no cancellation from the left or from the right.
If we have the former option, then we will have no cancellation from the left after the
transition u; 1 — u; 42, and therefore

ligall < ligall < - < [lu'].

Hence |lu;| < |lu'|| if j > i. Analogously, |u;| < |u|lif j <i.

(b) The word u’ results from u after multiplication from the left and from the right by
reduced words of length | H |: i.e. u’ is freely equal to AuB, where ||A|| = |B| =
| H||. There can be cancellations in the products Au and u B but afterwards there are
no cancellations since the words A and B are written in disjoint alphabets. Hence
the reduced length of u’ is at least

A+ 1B = llull = 2 H | = [,
whence 2| H || < |lu| + ||u'|, as required. O

The following lemma is proved in [16, Lemma 3.7].

Lemma 2.9. Suppose the base of an admissible word W is Q; Q; U(resp., Qi_1 Qi)
Suppose each rule 0 of a reduced computation € starting with W = qjuq; !
(resp., q; 'ugq;), where u # 1, and ending with W' = g/’ (q}) " (resp., (¢})~"u'q))
has a part q; — agq;bg, where bq (resp., ag) is a letter, and for different 6-s the
bg-s (resp., ag-s) are different. Then the history of the computation has the form
H, sz Hs, where k > 0,

I Ho|l < min (lull, [']l),  [Hill < ull/2, and ||Hs| < [u']l/2. o
Lemma 2.10. Under the assumptions of Lemma 2.9, we have
[Wila < max ([lul, [lu]])

for every admissible word W; of the computation €.

Proof. 1t suffices to repeat the argument from the proof of Lemma 2.7 (c). O
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3. Aucxiliary S-machines and constructions

3.1. Primitive S-machines. Here we define a very simple S-machine Pr, which
has neither input nor accept configurations. As a part of other S-machines, it will be
used to read the tape words and to recognize a computation by its history and also to
check the order of state letters in the bases of computations.

The standard base of Pr has three letters Q! PQ?, where Q! ={q'}, P ={p', p?},
and Q2 = {g?}. The alphabet Y is Y ! LI Y2, where Y 2 is a copy of Y . The positive
rules of Pr are defined as follows.

e tla) = [q" — q', p' — a7 'pla’,q* — g?], where a is a positive letter
from Y1 and @’ is its copy from Y2.
Comment. The state letter p! moves left replacing letters a from Y'! by their
copies a’ from Y?2.

< 2 =g Sl pt - phg? - 7).
Comment. When p! meets ¢!, it turns into p2.

* P@)=1lq' > q".p*> > ap*@)".q*> > ¢*].
Comment. The state letter p? moves right towards g2 replacing letters a’ from Y2
by their copies a from Y'!.

Lemma 3.1. Let €: Wy — --- — W; be a reduced computation of the S-machine Pr
with the standard base and with t > 1. Then:

(1) if |Wila > |Wiztl|a for somei = 1,...,t — 1, then |Wit1|a > |Wila:
(2) |Wila = max(|Wola, |Wila) for everyi =0, 1,...,1;

Q) if Wo = q'up'q? and W; = q'vp?q? for some words u,v, then u = v,
|Wila = |Wola for everyi = 0,...,t,t =2k + 1, where k = |Wy|4, and p'
(resp., p?) meets q' in Wy (in W) and the sector Q' P is empty in Wy, and
in Wy 1, moreover, the history H of € is uniquely determined by Wy (by W;),
provided Wy and W; have the form q'up'q? and q'vp?q?; vice versa, the
history H uniquely determines words u and v under this assumption;

(4) it is not possible that Wy = q'up'q? and W, = q'vp'q? for some u, v, and it
is not possible that Wy = q'up?q? and W, = q'vp?q?;

(5) if Wo = qlup'q?® or Wy = q' pluq?, or Wy = q'up?q?, or Wy = ¢q' p*uq?
Sfor some word u, then |W;|, > |Wo|q foreveryi =0,...,t.

Proof. Note that each of the rules ({/)*!(a) (j = 1,2) either moves the state letter
left or moves it right, or deletes one letter from left and one letter from right, or insert
letters from both sides. In the later case, the next rule of a computation must be
again ¢ (j)*1(b) for some b, and if the computation is reduced, it again must increase
the length of the configuration by two. Therefore, Statement (1) is true and (2)



Polynomially-bounded Dehn functions of groups 329

is also true since one can choose a shortest W; and consider the subcomputation
W; — .-+ — W; and the inverse subcomputation W; — --- — W,.

Since £!2 locks Q! P-sector, the p-letter must reach ¢; moving always left to
change p! by p2, and so Wy = ¢'p!.... The next rule of the form ¢! (a)*! could
increase the length of the configuration, which would imply that all consecutive rules
have to have the same type and p! would never been replaced by p2, a contradiction.
Hence the next rule is {2, and arguing in this way, one uniquely reconstructs the
whole computation in case (3) for given Wy or W;, and vice versa, the history H
determines both u and v. Property (4) holds for same reasons.

Note that no rule of Pr changes the projection of a word onto the free group
with basis Y7 if the state letter are mapped to 1 and the letters from Y, are
mapped to their copies from Y;. Since the word u is mapped to itself, we have
lg'up'q?|s = ||u|| < |W;|a. The other cases of (5) are similar. O

Remark 3.2. Similar tricks will later be referred to as projection arguments.

Lemma 33. If Wy — .-+ — W; is a reduced computation of Pr with base
QIPP—I(QI)—I or (QZ)—]P—IPQ2 and Wy = qipiu(pi)—l(qi)—l (Z — 1’2)
or Wo = (¢")"H(pH)"Ywpiq’ (i = 1,2) for some words u, v, then |W;|, > |Wola
forevery j =0,...,t.

Proof. The statement follows from the projection argument (Remark 3.2). O

Remark 3.4. Also we will use the right analog Pr* of Pr: now p! should move
right, meet g2 locking P Q2-sector and turning into p2, and move back towards Q.

Remark 3.5. Assume that a standard base has two (or more) subwords of the form
0'PQ?2, for example Q' PO?P’Q3. Then one can define parallel or sequential
composition of two primitive S-machines.

For the parallel composition, the same rule changes both subwords with bases
O'PQ? and Q?P’Q3. One assumes that the tape alphabet of the sector Q2 P’
(of P'Q3)is a copy of the tape alphabet of the sector Q' P (of PQ?, resp.) and the
rules of Pr change simultaneously the subwords with bases Q' PQ? and Q?P’'Q3
(e.g. simultaneously moves left both p! and (p’)!, and so on). Every rule (e.g. {!(a))
is applicable to a word iff it is applicable to both these subwords.

In case of sequential work, we have a primitive S-machine working with one of
these two bases, say with Q! PQ?, while the sector P’ Q3 is locked with the state
letter (p’)!. The second primitive S-machine can compute with base Q2 P’ Q3 when
the sector PQ? is locked (and so the first S-machine stays idle) with state p2. For
this goal, one needs a connecting rule £2!; it locks the sector PQ? and changes the
state P-letters for new ones to switch off the first primitive S-machine and to switch
on the second one.

It is clear that in the same way one can define a more complex compositions P of
primitive S-machines, with several stages of parallel and sequential work. We will
consider compositions P, where every sector can be changed at one stage only.
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Lemma 3.6. Let us have a composition P of primitive S-machines with parallel
or/and sequential work, and €: Wy — --- — W; be a reduced computation of P with
standard base. Then:

@) |Wjla < max(|Wola, |W:la) for every configuration W; of €; moreover,
|W0|a <= |VVt|a

if every P-letter neighbors some Q-letter in the word Wy;
(b) t < |Woll + [|W:|| — 4; moreover,

12| W -4
if every P-letter neighbors some Q-letter in the word Wj.
Proof. (a) Let W, be a shortest word of the computation. Then either
Wrla = Wrgila =---=[Wila or [Wila = [Wrpila = -+ = [Ws| < [Wsiila

for some s. It follows that the number of sectors increasing their lengths by two at
the transition Wy — W,y is greater than the number of the sectors decreasing the
lengths by 2. Now it follows from Lemma 3.1 (1) that the same primitive S-machine
will continue increasing the lengths of the whole configurations, i.e.

[Wstila < [Wsizla < -+

So for every j > r, we have |W;|, < |W;|,. Similarly, we have |W,|, < |Wpla,
for j < r. Under the additional assumption about P-letters, W, is the shortest
configuration by the projection argument.

(b) If the rules of P do not change the lengths of configurations, then every control
letter runs back and forward only one time, and the inequality follows. (One takes
into account that the base has length at least 3.) If |W,|| < |W;+1]|| for some r,
then every next transition keeps increasing the length by Lemma 3.1 (1), and so the
inequality holds as well. O

3.2. S-machine with historical sectors. To control the space of computations, we
endow a given S-machine with historical sectors. Let us assume that an S-machine My
satisfies the conditions of Lemma 2.1 and has hardware (Q, Y'), where Q = L. O,
and the set of rules ®. The new S-machine M, has hardware

Qo,ruQI,ZUQL,«HQZ,[HQZJU-'-UQm’g, Y, =YiuXiuYou---UXy,—1UY,,,

where Q; ¢ and Q;, are (left and right) copies of Q;, X; is a disjoint union of
two copies of @, namely Xi¢ and X, ,. (There is neither Q¢ ¢, nor Q,, ,, nor X,
nor X,,.) The positive rules of M, are in one-to-one correspondence with the positive
rules of M.



Polynomially-bounded Dehn functions of groups 331

Ifo =[Uy = Vo,...,Un — Vi) is a positive rule of My with parts U; — V;
of the form v;q;ju; 41 — viqju; 11> then the corresponding two parts of the rule o
are U; g — Vg and U, — V; -, with

_ o _ _ ro
Ui,e = Vid4i 40, Vi,( =Viq;y4 and Ui,r =dqirUi+1, Vi,r = b@,iql',rui+1,

where ag; (resp., bg ;) is the copy of 6 in X;, (in X;,). We also claim that a
sector Q; Q1 is locked by 6y, if and only if the sector Q; Q; 11 is locked by 6
@i=1,....m—1).

Comment. Every computation of the S-machine M, with history H coincides with
the computation of M if one observes it only in working sectors Q; » Q;11,. In the
standard base, the working sectors of M, alternate with historical sectors Q; Qi .
Every positive rule 8, multiplies the content of the historical sector Q; ¢ Q; , by the
corresponding letter by ; from the right and by letter aa} from the left.

Remark 3.7. The state letters of the S-machine M; split when passing to M,. There
is a rule 6;, corresponding to the start (to the accept) rule 6 of M;. By definition,
the set of letters Y, (6y) has no letters from the right alphabets X; , (from the left
alphabets Xy ;) if 0 is the start (resp., the stop) rule of M.

However we do not define input/stop configurations of M, since the historical
sectors are never locked. By definition, every Q;_1,, Q;; is the working sector of M.
The input sector of M is the working sector corresponding to the input sector of M.

Remark 3.8. It follows from the definition of M, that only Properties (1) and (2) of
Lemma 2.1 hold for M, but not Property (3).

The sectors of the form Q; , Qi_el and Q; ! Q; » (in a non-standard base) are also
called historical. Historical sectors help to give a linear estimate of the space of
every computation Wy — --- — W; in terms of |W|| and || W]

Lemma3.9. Let Wy — --- — W; be a reduced computation of M, with base Q; 4 Q; »
and history H. Assume that the a-letters of Wy belong to one of the alphabets X; 4,
Xir. Then |H|| < [Wila and |Wola < [Wia

Proof. Let Wy =qvoq’ and assume that vg has no letters from X; . Then W; =q" v;q"”
with v, = uvou’, where u is a copy of H ™! in the alphabet X, ¢ and u’ is a copy
of H in X;,. So no letter of u’ is cancelled in the product uvou’, Therefore,
[Wela = llu'|| = [|H || and [Wi|a = [Wola O

Lemma 3.10. [f the base of an admissible word of the S-machine M, has length at
least 3, then it contains a historical sector.

Proof. The base contains a subword of the form Q'Q” Q" with three letters
from Q*!. It follows from the definition of admissible word that either Q' Q"-sector
or Q" Q" -sector is historical since every non-historical sector of the S-machine M,
has to have neighbor historical sectors. O
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Lemma3.11. Leta reduced computation Wy — Wy — - -+ — W; of the S-machine M,
have 2-letter base and the history of the form H = H, sz Hs (k > 0). Then for each
tape word w; between two state letters of W; (i = 0,1, ...,t), we have the inequality

lwi || < llwol + llwe |l + 2hy + 3h2 + 273,
where h; = |H;| (j = 1,2,3).
Proof. By Lemma 2.1 (2) and the definition of M,, we have
Mwill = llwi-1 Il <2

foreveryi = 1,...,t. Therefore fori < hj, wehave ||w;|| < ||wo||+2h;. Similarly,
|lwill < ||we]l + 2h3 fori > ¢t — hs. It remains to assume that h; <i <t — h3.
Denote by W; the words w; withi = hy + jh,, j =0,1,.... k. If

W1 = W() 'H2 = MW()U
for some words u and v depending on H; and on the sector, then
Wy, = uWiv = 142W()1)2

in free group, since the histories of the computations Wy — --- — W and W —

- — W, are both equal to H,. Hence W; = u’ Wyv/, where both 1 and v have
length at most 215 by Lemma 2.1 (2) and the definition of M.

By Lemma 8.1 from [18], the length of an arbitrary word W; is not greater than

el + Nl + IWoll + [IWell.

provided 0 < j <k.
If |i — jha| < ha/2 for some j, then |||w; || — ||W;||| < h2, and therefore

lwill < Nl + [[vll + [Woll + [ Will + h2.
Since | Wyl < ||lwoll 4+ 2k1 and | W || < ||w¢]| + 2h3, we obtain
lwi | < el 1ol lwo l| +llwe [ 4271 +2h3+hy < |lwol+|wel|42k1 +2h3+3h,
for every i, as required. O

Lemma 3.12. For any reduced computation Wy — --- — W; of My with base of
length at least 3, we have

[Wila < 9(1Wola + [Wila) (0<i <1).
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Proof. Let fltl e anl be the base of the computation. There are computations
with the same history H and bases Qi—ﬂ... £l oEl oEL L 0Fl L 0F,
1 im im Imy Img_q tmg

where each base has length 3 or 4. Hence it suffices to prove the lemma for any
computation with base of the form Q' Q” Q" or Q'Q” Q" Q*’. By Lemma 3.10,
every such computation contains a historical sector, say Q" Q"”. Consider two cases:

1. The historical sector has the form Q; Q; . By Lemma 2.8, we have
IH || < 5(1Wola + Wila)-

It follows from Lemma 2.1 (2) that ||Wit+1]la — |Wilal < 6 for every neighbor
admissible words. Therefore,

[Wila < max (|Wola. [Wila) + 31 H |
= max (|W0|av |VVt|a) + %(|W0|a + |VVt|a) = %(|W0|a + IW/t|a)

2. The historical sector has form Q; Ql_g1 or Ql_r1 Qir. Then one can apply

Lemma 2.9 to the sector Q” Q" and obtain the factorization H = Hy H¥ H3, with
k >0,

hy < min (Jull, [u'll), Ay < |lull/2, and k3 < |u'[/2,

where u and u’ are the a-words of Wy and W;, respectively in the historical sector
and hj = ||Hj| for j = 1,2, 3. Since every W; has at most three sectors, applying
Lemma 3.11 to each of them, we obtain:

[Wila < [Wola + [Wila + 3(2h1 + 3h2 + 2h3)
< Wola + [Wt|a + 3|Wola + 9min (|W0|aa |I/Vt|a) + 3| W]
< 9(|Wola + Wila). 0

3.3. Division S-machine. Here we start with an S-machine D;. This S-machine
has two input sectors with words a* and b* and checks whether 2k divides £ or not.

The standard base of Dy is S(1)S(2)T(1)T(2). The first input sector S(1)S(2)
has one-letter alphabet {a}, the second input sector 7' (1) 7 (2) has alphabet {b}. Also
we have one-letter alphabet {a’} for the sector S(2)7(1). We omit some parts of
the rules in the list below if these parts do not change configurations (e.g. s — s
for s € S(1) is a part of 7).

e 11:[51 > a_lsla/], [ty — Zlb_l], s1 € 812),t; € T().
Comment. The state letter s; moves left changing letter a by its copy a’, while #;
erases one letter b.

yl
e T12:[s > 5,851 > s3], s€S(1),s € S5(2).
Comment. The rule 71, locks the sector S(1)S(2) and replaces the state letter s,
by s5.
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o To:[so = asa(a)7Y, [t — ub7Y.
Comment. s, moves right toward 7'(1) replacing a’ by a, while #; erases the
letter b.

{
® T21- [Sz — Sl].
Comment. This rule locks the sector S(2)7 (1) and replaces s, by s7.

14 L
* T3 [S1 — ll], [ll — [2].
Comment. The state t, can appear if both sectors S(2)7°(1) and 7T(1)7(2) are
empty.

We call a transition W — W' given by the rule rlil or rzil wrong if it increases

the lengths of both sectors S(1)S(2) and S(2)7T(1).
Lemma 3.13. Let Wy — --- — W; be a reduced computation of the S-machine D,

with standard base and the first transition Wy — Wy is wrong. Then all subsequent
transitions are wrong too.

Proof. Let the first rule 6 be rli’l. Then the first transition (restricted to the sectors
S(1)S(2) and S(2)T(1)) has the form sus;vt; — sua™ls;(a’)*vt;, where the
words u, v, ua™ !, (a’)*'v are reduced. It follows that the only possible rule for the

next transition is 6 again, W contains reduced form sua¥2s;(a’)*2vt, and so on.
The case 6 = 3! is similar. O

Lemma 3.14. (1) Suppose we have a reduced computation Wy — -+ — W, of Dy,
where Wy = sa*s1t1b%t’, where t’ € TQ), and W, = ...t;t' (i = 1,2, i.e. the
sector T (1)T (2) is empty). Then the exponent £ is divisible by 2k.

(2) Conversely, if 2k divides £, then there is a computation
saksin bttt — oo = saFirt’

of length €| + |£/ k| + 1 for k # 0 and of length 1 for k = 0.

Proof. (1) If k = 0, then any transition given by l'lil or rzil would be wrong, and

by Lemma 3.13. one can never obtain W,, a contradiction. So we have no such
transition in the computation. But other rules do not change the exponent £. Hence
£ = 0. Thus, we assume further that k # 0.

By Lemma 3.13, there are no wrong transitions in the computation. Therefore if
the first rule is 8 = rlil, it has to move s; left. Moreover, we have 0% as the prefix
of the history, and

Wi = ss1(a’ )k, b%1

The next transition is not wrong, and the only possible next rule is 7y2. Now s5
has to move right, we have |k| such transitions, and obtain

W2k+1 = SClkS2t1be_2kt,.
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Since the next rule is not wrong, it has to be ;. If £ — 2k # 0, then the T (1)T(2)

sector is not locked, and the rule t3 does not apply. Thus the next transition

Wak 42 — Wor 43 is given by 0 again, and one should repeat the cycle obtaining
Wakt3 = saksat; b4k,

and so on; the rule 73 will never apply if £ — (2k)m # 0 for every m > 0.

There is another possibility for the firstrule: 8 = rz_ll. Since the second transition
cannot be wrong by Lemma 3.13, it is given by ‘(2:': . Then we will obtain cycles
as above, but having reverse direction. The rule 65 will never apply if £ + 2k # 0,
L+ 4k #0,.... Thus, Statement (1) is proved by contradiction.

(2) If £ = 2km or £ = —2km for some m > 0, the required computations can be
immediately constructed according to the samples from part (1) of the proof. O

Now we want to modify the S-machine D, as follows. To define the S-machine D,
we add one more part 7'(3) to the standard base. The sector 7'(2) T (3) serves to count
the number of cycles of the S-machine D;. So it is empty for the start configuration
of D5, and the rule 7, of Dy extended to the rule of D, has one more part: [t' — t/c],
where ' € T'(2). Clearly, Properties (1) and (2) of Lemma 3.14 hold for D, as well.
Moreover, repeating the proof of Property (2), we see that one obtains ¢™ in sector
T()T(3) withm = % when the sector 7'(1)7T(2) becomes empty.

The further modification is needed since we should check the divisibility by (2k)3,
which, in turn is necessitated by Lemma 2.4. The S-machine D3 has the same standard
base as D, but it checks divisibility by 2k three times, so its rules are subdivided in
three parts.

The rules of the first part are exactly the rules of the S-machine D,. The rule t3

of D, serves as a connecting rule between the rules of the first part and the rules of
the second part. The difference between these two parts is that the sectors 7 (1)7T(2)
and T (2)T (3) interchange their roles: a state letter from 7'(2) erases letters in the
sector 7'(2)T(3) when the analogs of t; and 1, work, and a state letter from 7°(1)
add one letter to the sector 7(1)7(2) when the analog of 17 is applied. (We do
not introduce notation for all state letters and all rules since we do not need them.)
The rules of the third part are absolutely similar to the rules of Dy, i.e. the sector
T(2)T(3) is locked.
Remark 3.15. Thus, one can repeat the argument from the proof of Lemma 3.14 (1,2)
three times to conclude that starting with an input configuration, the S-machine D3
can empty all the sectors, except for sector S(1)S(2) if and only if the exponent £ is
divisible by (2k)3.

Finally, we add a rule 7 erasing a-letters of the sector S(1).S(2) with non-trivial
part [s — sa~'] for s € S(1) locking other sectors, and if all the sectors become
empty, one more rule 7¢ (the stop rule) locks all the sectors and changes all the state
letters for the letters of the stop configuration. Let us denote the obtained S-machine
by D4.
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Lemma 3.16. (1) Suppose we have a reduced accepting computation Wo— - -+ — W,
of Dy, where Wy = sa¥s1t,b%t't" is an input configuration. Then the exponent £
is divisible by (2k)3.

(2) Conversely, if (2k)* divides {, then there is an accepting computation starting
with Wy = saksi11:b4t't" of length ©(|€] + |k|).

Proof. Properties (1), (2) follows from similar properties of D3 mentioned in Rem-
ark 3.15. O

The next modification is obtained by adding historical sectors to the standard base
of D4. The approach is similar to that described in Subsection 3.2. The standard
base of D5 is

S()rS2)eSQ), T(M)eT (), T(2)T(2),T(3)es

and the rules of D5 are the extensions of the rules of D4 to historical sectors as this
was defined in Subsection 3.2. The following lemma is an analog of Lemma 3.12.

Lemma 3.17. For any reduced computation Wy — --- — W, of the S-machine D5
with base of length at least 3, we have

Wila < 9(1Wola + IWrla) (0O<i<r).
3.4. Control state letters. The work of the main S-machine will be checked by
control state letters running back and forward along the sectors from time to time.
The control letters behave as p-letters of the primitive S-machines Pr or Pr*.

Suppose M is an S-machine with a standard base Q¢Q;... Q5. We denote
by M, the S-machine with standard base

PoUQoURyUPLUQiURyU---UPg LI Qg U R,

For every rule 6 of M, its ith part [v;q;u;+1 — v;qju; ] is replaced in M, with

14
three parts

-0 . { . .
[vip" = vip'] [ai = qi]. [P uier — rujy, ] (3.1)
. . L {
@=0,...,s, p* € Pi, " € R;). Here we should use one more — if there is — in

the definition of the component of M.

Comment. Thus, the sectors P; Q; and Q;R; are always locked, and three state
letters p’, g*, r' work together in M, as the single ¢’ in M. Of course, such
a modification is useless for solo work of M. But it will be helpful when one
constructs a composition of M, with other S-machines, because the control letters
from the parts P; and R; will work when M, stands idle.
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4. The main S-machine

4.1. Definitions of machines M3—Mg. We use the S-machine M, from Subsec-
tion 3.2 and auxiliary S-machines to compose the main machine needed for this
paper.

At first we add control state letters to M, and obtain S-machine M3z as it was
defined in Subsection 3.4. Let the standard base of My be Q¢ Q1 ... Qg, where sectors
0001, 0203,...,0s-1 0 are working sectors, Qs—1 Oy is the input sector, and
01072, O3Qy, ... are historical sectors. Then the standard base of M3 is

PoQoRoP1O1R; ... PsOsRy,

where P; (resp., R;) contains control p-letters (r-letters),i = 0,...,s.

Since the rules of M3 treat every syllable P; Q; R; as a single base letter, the
working and the historical sectors for M3 are of the form R;_; P;. In particular,
every historical sector has the form R;_; P; with even i.

The rules of the next S-machine My will be partitioned in subsets corresponding
to ten steps with auxiliary rules 6(ij ) connecting ith and jth steps. The state letters
are also disjoint for different steps. Therefore we need @, which is the disjoint
union of ten subsets, $y, which is the disjoint union of ten subsets, and so on. Thus,
the rules of different steps of a computation on M4 must be separated by connecting
rules.

We want to combine the S-machines M3, the machine (Ds). (i.e. the S-machine
(Ds) from Subsection 3.3 endowed with control state letters), and compositions
of primitive S-machines introduced in Subsection 3.1. We interbreed the input
sector of M3 and the first sectors of (Ds).. Namely, the state letters from Qg1
and from S(1), will be included in the part @;_; of the new S-machine My, QO
and S(2), will be included in @;. The reader will see below that at some steps of
computations, the part of base @;_; R;—1 Ps Qs Rs works as M3 while at other steps
it works as Ds.

The new S-machine My repeats the computation of M3 many times and Ds
bounds the number of such cycles. The standard base of My is

PoQoRoP1QIR ... Pi1Qs_ 1 Rs_1 PsQsRs x PE(2), R x
PUT ) RYEPLT (1), RY P2ET (2), RPEPHT T (2), R PHT (3) R,

(Starting with &s_1, this base looks looks like the base of Ds equipped with control
P- and R-parts.) The historical sectors of the form R;_;P; with even i are called
big historical sectors while R¢P VT and R24 P27 are small historical sectors. The
sector Rz is also small historical one. It corresponds to the sector S(2)¢S(2),
of D5 .

The rules of My will be partitioned in subsets ®;— and ®; (i = 1,...,5)
corresponding to ten Steps. We will not list all state letters here since it would be
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complicated and not too helpful. It suffices to define the work of M4 at different steps
as a composition of the S-machines defined in Section 3.

The Steps 17,27,...,5  are control steps, where the copies of primitive
S-machines work. For example, we want to put Step 2~ between Step 1 and Step 2
(see Fig. 1). So we define the composition Pj,— of primitive S-machines working
after the connecting rule 6(127) and the composition P,,— of primitive S-machines
working after #(272)~!, provided the inverse of the canonical computation of P5,—
should follow right after the canonical computation of P,—.

Thus, to define the control S-machine of Step 2~ below, one should define the
order of the work of primitive components for Pj,- and P,,— and choose either
p-letters or r-letters to be control letters for these primitive components.

Remark 4.1. The control steps are used for double purpose. If the base of
a computation is standard, then the history of a control step restores all the
configurations (Lemma 4.5 (1)). If the base is not reduced, then the control steps and
the right order of the work of their primitive components redound to a linear bound
of the space of the computation in terms of the lengths of the first and the last words
(Lemma 4.13).

By default, every connecting rule 6(ij) locks a sector if this sector is locked by
all rules from ®); or if it is locked by all rules from © ;. It also changes all state letters
used at Step i by there copies from the disjoint set of state letters used at Step j .

Il g2l 2 P 3 el 3 :47_f+. 4

Figure 1. Graph of steps of S-machine My4.

Step 1~. This is a control step between Steps 2 and 1. So we define below the
canonical work of the S-machines P,—; and P;-;, keeping in mind that the last rule
(as ¢! in Remark 3.5) of the canonical computation of P,—; switches on the inverse
computation for the canonical one of P;—;. This conjunction of the S-machines P,—
and P;— is the S-machine of Step 1~ denoted by P;-.

Let us define P,—. At first, we have the parallel work of primitive S-machines
in all big historical sectors, and control r-letters run forward and back according the
rules from Subsection 3.1. The tape alphabet for every such primitive S-machine is
the left alphabet X; ¢ of the big historical sector.

The next primitive S-machine (see Remark 3.5 for the definition of composition)
starts working similarly in the input subsector of M3 after the above mentioned
primitive S-machines stop working.
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Then we have parallel work of primitive S-machines in the small historical sectors.
Again, the running control letters are r-letters.

Finally, the primitive S-machine is switched on that checks the input word (of D5)
between R" and P2-¢ (with running state letters from Rj).

The running control letters of P;;— are r-letters again (not p-letters), and this
S-machine is a copy of P,;— with another set of state letters.

The transition rule 8(171) changes all state letters of Step 1~ by their copies
in Step 1, which contain the letters of the start vector 57 of Mj. It locks all sectors
except for historical sectors, the sector R;_1 Ps (we can call it the input since it comes
from the input sectors of M3) and the sector R P2,

The (1™ 1)-admissible words may involve the copies pl.l’* and rl.l’* of the letter p'!
of a primitive S-machine Pr, but no copies of p2. They may contains letters from
alphabets X; ¢ but not from X .

Step 1. The rules 8(My) from @f restricted to the base PoQoRg ... PsQs R are
just the (copies of the) positive rules 6 of M3. They do not change other sectors and
lock the sector R2" P3¢,

Comment. At Step 1, My works as the S-machine M3.

The connecting rule 8(127) changes the state letters by their copies in disjoint
alphabet, in particular, the letters from the accept vector 5o of M; are replaced
by their copies. The 6(127)-admissible words have no letters from “left”
alphabets X;,. Besides, the rule 6(127) “removes” one letter in the sector
R p2L: [bp;,g g (p;’g)l]-

Step 2. This step is similar to Step 17, the difference in the definition of the
S-machine P,- working at Step 27 is that alphabets X;; should be replaced by
alphabets X; , (i = 1,...,s) and the control letters are p-letters (not r-letters).

Comment. The copies of primitive S-machine check several sectors again.

The transition rule 8(272) replaces all state letters of Step 2~ with their copies
in Step 2, and the letters of the accept vector §; of M; are among them. It locks
non-historical sectors except for the sector R 1" P2,

Step 2. The positive rules from ®, are just copies of the negative rules from ;.

Comment. M4 works as at Step 1, but reverses the computation procedure.
The connecting rule 6(217) completes the cycle.
The connecting rule 6(237) makes possible the final Steps 37—6.

Step 37. As at Step 17, the S-machine P3- is the conjunction of two S-machines:
P,3;- and P33—, where the first one is just a copy of P,;— with a different set of state
letters.

For the S-machine P33—, the running state letters are r-letters too. Its canonical
work is as follows. At first, the primitive S-machines simultaneously check the small
historical sectors. Then the next primitive S-machine checks the sector RLT JPz’e,
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then the input sector Ry is checked, and finally the big historical sectors are
simultaneously checked.

The connecting rule 6(373) cannot be applied to an admissible word having
a-letters from right alphabets of historical sectors.

Step 3. The rules from ®3 extend the rules of S-machine D5 as follows. The rules
of D5 on the configurations with base

S()rS2)eS2), T T (), T(2)eT(2),T(3)e 4.1)

are now the rules of Step 3 on the base

Py 1Qs—1 Re—1 Ps Qs Ry P 8(2), R x
PHT () RYPY T (1), R PHT (2) RFEP?T T (2), R P>4T (3), R

with control letters, according to the definition given in Subsection 3.4, but the control
letters do not work at this step, and so 2177 (1), R " in this base behaves as T(1),
in (4.1), and so on.

The rules of ®3 do not change big historical sectors and lock non-historical sectors
of M3, except for the input sector Rs_1 Ps.

Comment. After standard work with consecutive Steps 1~ — 2 and control Step 37,
the (copy of) S-machine Ds checks if the length of a-word in the sector R-¢ P27
divisible by the eight cubes of the a-length of the input sector.

The rule 8(347) locks all sectors except for historical ones. It cannot be applied
to a word having a-letters from left alphabets of small historical sectors.

Step 47. The tape alphabets of the control S-machine P4- are right alphabets X; ,
for small historical sectors and left alphabets for big historical sectors. All working
sectors are locked.

The first half of P4— is the S-machine P34—. Its running control letters are
p-letters, and the canonical work starts with parallel work of primitive S-machines in
all small historical sectors followed by the parallel work of primitive S-machines
in the big historical sectors.

The second S-machine P44— starts with parallel work of primitive S-machines in
all small historical sectors with control r-letters followed by parallel work of primitive
S-machines in all big historical sectors with control p-letters.

Step 4. The rules of ®4 simultaneously erase the letters from small historical sectors.
The corresponding parts of the positive rules are

rjl.,ex — rjl.’e (j=1273)

for every positive letter x from the right alphabet of a small historical sector.
The connecting rule 8(457) locks all sectors except for big historical sectors.



Polynomially-bounded Dehn functions of groups 341

Step 57. We define Ps— = P45-. The control p-letters simultaneously check the
big historical sectors, while all other sectors are locked.
The connecting rule 6(5~5) locks all sectors except for big historical sectors.

Step 5. The rules of ®5 simultaneously erase the letters from big historical sectors.
The corresponding parts of the positive rules are

xp}—>p} (G=1,...,9)

for every positive letter x from the left alphabet of a big historical sector.
The accept command 6y from ®5 can be applied when all the sectors are empty.
So it locks all the sectors, changes the state letters and terminates the work of My.
So M4 has a unique accept configuration.

Lemma 4.2. Let a computation € of an S-machine P;— (i = 1,...,5) start with a
connecting rule  and end with a connecting rule 8’ # 071, Then for every sector
of the standard base, there is a rule in the history of € locking this sector.

Proof. We consider P1- only. Since the computation starts with (217) and ends
with (17 1), all the primitive S-machines listed in the definition of the S-machine P;-
have to start and finish their work. So every sector of the standard base is locked
either by 8(217) or by 6(171), or by a rule of a primitive S-machine of the
form ¢ 12. see Subsection 3.1 and Lemma 3.1 there, because every sector unlocked
by these connecting rules is checked by one of the primitive S-machines forming the
S-machine P;-. ]

Remark 4.3. Every cycle of the Steps 17!, 1,27, 2 just changes the length of the
sector R P2 by 1. (See the definition of the connecting rule #(127).) If this
length ¢ becomes divisible by 8k3, where k is the length of the input sector of M3,
the copy of the S-machine (Ds). can accept at Step 3, and one can obtain the
stop configuration of My after Steps 47,4,57,5. Hence the shortest accepting
computation has at most ®(k3) = ©(g(n)) cycles of the Steps 171, 1,27, 2 if the
length of the sector R P24 is O(n).

This is an informal answer to the question why the division S-machine is needed.
Indeed, if an auxiliary S-machine just checks if £ is equal to k3, then the number of
cycles as above could be ®(n), which would lead to at least cubic Dehn function.

Another question: Since we want to repeat the cycle of the Steps 171, 1, 27, 2
O(f(n)?) times, why does M, recognize the values f(n) instead of g(n) = f(n)3?
Because the Turing machine has to take time at least ®(g(n)) to recognize g(n). By
Lemma 2.4, the S-machine M; should work as long as ®(g3(n)) or longer for the
same goal. If g(n) is “almost” linear function, then this approach makes the time
function of M; almost cubic, and the growth of the Dehn function we are going to
construct, becomes almost biquadratic.
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Let B be the standard base of My and B’ be its disjoint copy. By M5 we denote
the S-machine with standard base B(B’)~! and rules (Ms) = [, 8], where 6 € ®
and O is the set of rules of My. So the rules of ®(Ms5) are the same for My-part
of M5 and for the mirror copy of My. Therefore we will denote ®(Ms) by © as well,
assuming that the sector between B and (B’)~! is locked by any rule from ©.

Finally, the main S-machine M = Mg is a cyclic analog of M5. We add one more
base letter {t}. So the standard base of Mg it {t}B(B’)~!{t}, where the part {¢} has
only one letter ¢ and the first part {¢} is identified with the last part. (For example,
{tB(B')"1{t}B(B’)~! can be a base of an admissible word for M. Furthemore,
sectors involving ¢! are locked by every rule from ®. The stop word Wy(M) is
defined accordingly: every letter in the standard base B(B’)~! of M is replaced by
the corresponding letters from the stop word of M.

The “mirror” symmetry of the base of M will be used in Lemma 9.22. For a
different purpose mirror symmetry of Turing machines was used in the papers of
W. W. Boon and P. S. Novikov (see [20]).

4.2. Standard computations of M. The history H of a reduced computation of M
can be factorized so that every factor corresponds to one of the Steps 17—5. If, for
example, H = H'H”H"”, where H' is a product of rules from Step 2, H” has only
one rule #(217) and H'” is a product of rules from Step 17, then we say that the
step history of the computation (or its type) is (2)(217)(17) or just (2)(17) since
the only rule connecting the computations of Steps 2 and 1~ is 8(217) and for the
most asymptotic estimates of the length of steps (e.g. || H”||) or of the lengths of their
admissible words, it does not matter to which of the two possible steps the connecting
rule is attributed.

There are no computations of some types, say (1)(3), as it immediately follows
from the definition of connecting rules (and from Fig. 1). In this subsection, we
eliminate some other subwords in step histories.

Lemma 4.4. (1) There are no reduced computations of M with step histories

(1~ 1)(1)(171), (217)(2)(217), and (237)(2)(237)
(with (127)(1)(127) and (272)(2)(272))

if the base of the computation contains at least one big historical sector ... Py
(resp., big historical sector Ry . ..).

(2) There are no reduces computations of M with step histories
(373)(3)(373) (with (347)(3)(347))

if the base of the computation contains a small historical sectors ... P* (resp.,
a small historical sectors R* . ..).
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Proof. (1) We consider only the type (171)(1)(171) since other variants are similar.
Indeed, if the history H of the part (1) is non-empty, then a state p-letter inserts a
copy of H~! in historical letters of the alphabet X; , (see Subsection 3.2). Recall
that the words with non-empty subwords over X, are not 8;—;-admissible, but
we should have 6;—;-admissible words both in the beginning and at the end of the
subcomputation with history H, a contradiction.

(2) The proof is similar. O

Lemma 4.5. (1) There are no reduced computations of M with step histories of the
form

@ HEE))
fori =1,...,5 if the base is standard.

(2) Let the base of a computation €: Wy — --- — W; be standard and € has one of
the step histories

@IHAHATD), (127)(27)(272), (237)B7)(73),
(347744, (45)(57)(79).

Then all admissible words of € are uniquely defined by the history H of €,
[Wola = [Wila = -+ = |Wila, and |[H|| < 4] Wol.

Proof. (1) Consider only the step history (217)(17)(217) and the work of the
primitive S-machines switched on by the rule (217). If one of the rules ¢! (a)*!
of this primitive S-machine (see Subsection 3.1) does not move a control state letter
right/left, but instead just insert @’*! from the right and aT' from the left, then the
rule ¢12 is not applicable since the sector is not locked. So the next rule should
be ¢1(b)*! which is not the inverse one for ¢ (a)*!. Hence the control state letter
has to insert letters from both sides without cancellations, and neither ¢! nor (¢£12)~!
can be ever applied, a contradiction.

Therefore the primitive S-machine must work canonically, as it was described in
Subsection 3.1 (also see Lemma 3.1 (2)). Hence the history of its work uniquely
restores the words in the sectors controlled by this primitive S-machine.

Hence the first primitive S-machine has to complete its canonical work and switch
on the next primitive S-machine according to the definition of P;- for Step (17), and
so on. Thus, one never obtains a 6(217)~!-admissible word, a contradiction.

(2) By Lemma 3.1 (3), the histories of the primitive S-machines subsequently
restore the tape words in all unlocked sectors. Lemma 3.6 applied to € and to
the inverse computation, implies equalities | Wy |, = |[Wila = -+ = |W;|a, and gives
|H| < 4||Wo| if one takes into account that both the S-machine P,;- and Py;-
control each of the sectors. O
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Lemma 4.6. There are no reduced computations with standard base and step
histories (57)(4)(57).

Proof. Assume such a computation exists. Note that the small historical sectors are
empty at the both transitions (457). However every rule of Step 4 multiplies the
word in the small historical sector by a letter x, and one obtains no cancellations of
these letters since the computation is reduced and different rules multiply by different
letters. Hence the part (4) is empty, and the lemma is proved by contradiction. [

Below we need a rougher subdivision of the history of a reduced computation
with standard base. We say that the Steps 1 — 4~ are fundamental steps and the
Steps 4, 57, 5 are erasing steps. So the block history of every computation of M
is a subword of (F)(E)(F)(E)..., where (F) (where (E)) are maximal parts of
the history with fundamental (resp., erasing) steps only. The separating rules for
neighbor blocks are 6(4-4)*1,

Lemma 4.7. [f the block history of a computation is (E), then its step history is a
subword of the word (4)(57)(5)(57)(4).

Proof. Proving by contradiction and taking into account Lemma 4.5 (1), we should
get a subword (57)(4)(57) in the step history, contrary to Lemma 4.6. O

Lemma 4.8. Let Wy — --- — W; be a computation with block history (E). Then:
(1) |Wjla < max (|Wola. |Wila) for j =0.1,....1;

(2) t = 10([Woll + IW;])).

Proof. (1) If the history has only one Step 4 or 5, then Statement (1) follows from
Lemma 2.7 (c). For single Step 5~ it follows from Lemma 3.6 (a).

If there is Step 5 in the computation, then by Lemma 4.7 we have only one
maximal subcomputation Wy — --- — W, of Step 5. Here |Wi |, < |Wp|, since Wy
has no non-empty sectors except for big historical sectors, which are unchanged
at Steps 4, while Steps 5~ cannot decrease the sum of length of these sectors by
projection argument (see Remark 3.2). Hence it suffices to prove Statement (1) for
subcomputations with step histories H’ and H”, where H'(5)H" is the step history.
Therefore we may prove Statement (1) under assumption that there are no Steps 5 in
the step history.

For the step history (4)(57), the a-length of the configuration separating two steps
cannot be longer than the final configuration by projection argument, which reduce
the proof to one-step histories.

(2) By Lemma4.7, we have at most 5 steps, and by Property (1) it suffices to prove (2)
for one-step histories but with coefficient 2. Indeed such estimates for the lengths of
histories are obtained for Steps 4,57, 5 in Lemmas 2.7 (b) and 3.6 (b). L]
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Lemma 4.9. Let Wy — --- — W; be a computation with block history (F).

(1) Then the step history of this computation is a subword of the word

W(m) = (47)3)EHAHMEH@)Y"BHB)IE)

for some non-zero integer m.

(Here we define (17)(1)(27)(2) ™" = ()27)(1)(17).)

(2) If the step history is equal to 'W(m) for some m # 0, then the exponent m is
divisible by (2k)3, where k is the a-length of the input sector Rs_ Py after the
application of the connecting rule 6(373).

(3) If the step history is equal to

(AHMHEH@Y™BHB)ET)

and the history starts with a connecting rule, then the exponent m is congruent
to | modulo (2k)3, where k is as in Statement (2) and b* is the tape word of the
sector RV P24 in the beginning of the computation.

Proof. (1) Since the block history is (F'), Lemmas 4.5 (1) and 4.4 forbid “reverse
moves” §! HOF! in the history, where H is a one-step history and 6 is a connecting
rule, Statement (1) follows from the definition of connecting rules between steps
(see Fig. 1).

(2) Let us restrict the subcomputation with step history (373)(3)(347) to the input
sector R_1 P and the sector K" £2-*. Then we can apply Lemma 3.14 to conclude
that the exponent / of the tape word b’ in the sector R!-" £2-¢ at the beginning of this
computation is divisible by (2k)3. Similarly, for b'" at the end of the computation
with step history (347)(3)(373), we obtain that /' is divisible by (2k’)3, where k' is
the a-length of the sector R Ps.

Note that a computation with step history (171)(1)(27)(2)(217) (or step history
(171 (1)(27)(2)(237)) does not change the a-length of the sector R;_; P since it
is preserved by the S-machine P,- by Lemma 3.1 and the history of Step 2 is inverse
(of the copy) of the history of Step 1 here. The same is true for the subcomputations
with step history (217)(17)(171) and (237)(37)(373) by Lemma 3.1. So k' = k
and [’ — [ is divisible by (2k)> by Lemma 3.14.

On the other hand, every rule 6(127) multiplies the tape word in the sector
R P24 by b~ Therefore £'—f = m, whence m is divisible by (2k)3, as required.

(3) The proof is similar to the proof of Statement (2). ]
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4.3. Computations with faulty bases.
Lemma 4.10. If the step history of a reduced computation € of M is

21H)AH A1), (127)(27)(272), (237)(37)B73),
(47744, or (457)(57)(579),

then:
(1) the base of € is a reduced word;

(2) thefirst letter of the base, the length of the base and the history H of € completely
determine the computation €.

Proof. (1) This follows from Lemmas 4.2 and 2.6.

(2) Consider for example the step history (217)(17)(171). By Property (1) and
the definition of admissible word, the base of € is determined by its length and the
first letter. Since every sector unlocked by #(217) has to be checked by a primitive
S-machine, the copy of the content of this sector is contained in the history of the
computation as a product of the letters of the form ¢! (a)*! defined for the particular
primitive S-machine. O

Lemma 4.11. Suppose that a reduced computation Wy — --- — W; of Step 1 or 2
(of Step 3) starts with a connecting rule. Assume that the length of its base B is
bounded from above by a constant Ny, and B has a big historical sector (a small
historical sector, resp.) of the form RP (with indices). There is a constant c = c¢(Ny)
such that |Wyla < c|W;|a.

Proof. Let Vo — -+ — V; be the restriction of the computation to the sector with
base RP. By Lemma 3.9, we have t < |V;|, and |Vola < |Vila-
It follows from lemma 2.1 (2) that

[Wola < [Wila + 2Not < [Wila + 2No|Vila < (2No + D|Wia.
It suffices to choose ¢ = 2Ny + 1. ]
Definition 4.12. We call a base of M faulty if:

e it starts and ends with the same base letter,
* it has no proper subwords with this property, and

¢ it is a not a reduced word.

Note that if there is a computation € with a faulty base U; ... U; ... U (where
U, = Uj), then one can replace every admissible word of this computation by the
cyclic shift of it with faulty base U; ... UsUy ... U;—1 U; and obtain the cyclic shift €’
of €.

The following is the main lemma of this subsection.
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Lemma 4.13. There is a constant C = C(M), such that for every reduced
computation €: Wy — --- — W; of M with a faulty base and every j = 0,1,...,t,
we have

[Wila < C max ([Wola. [Wila).

Proof. 0. If the faulty base is not of the form (pp~!p)*! for some control state

letter p (or r)), then the words W, ..., W; have to contain non-control state letters.
Hence we can replace the computation € by a cyclic shift of it and suppose further
that the first and the last letters of Wy, ..., W, are not control letters.

1. By Lemma 4.10, the step history (and the inverse step history) has no subwords

C1IHADHATD, (127)(27)(272), (237)(37)(73),
(347)(47)(474), and (457)(5)(575).

2. Assume that the history has only one Step (27) and the base is (pp~!p)~! for
some control state letter p (or r)). Obviously, the running letter p cannot lock any
sector and so every rule has the same type (either £! (*) or £2(x) as in Subsection 3.1).

If |Wjti1la > |Wjl|a for some j, then one of two sectors (e.g. the first one)
increases its length by 2, while another one does not decrease the length under the
transition W; — W; 1. But then the first sector of W;, has to increase again by 2
since the computation is reduced. It follows that

IWit1| < [Wjga] <--- < W]

Hence the length of every admissible word does not exceed max(|Wo|a, |Wr|a).

If the faulty base has no subwords of the form (pp~! p)*!, the same inequality
for a computation with history of Step 2~ follows from Lemmas 3.1 and 3.3. Thus,
one may assume further that the step history is not (27). Similarly, it is neither (17)
nor (37), nor (47), nor (57).

3. Assume there is (1) in the step history. Then by item 1, the set of steps is either
@ {(D)}, () {(1), (17)}, () {(1), (27)}, or (d) we have the subword (17)(1)(27) in

the step history (or in the inverse step history).

3a. In this case, the required inequality follows from Lemma 3.12. (Recall that by
definition the connecting rule 8(127) inserts/deletes one letter, but this small change
of length is not an obstacle.)

3c. Assume that the step history is (27)(1) (or (1)(27)) and Wy — --- — W is
a maximal subcomputation with step history (27). Then [Wy|, > |W;|, by the
projection argument. Therefore it suffices to prove the statement of the lemma for
a subcomputations with step histories (27) and (1). For the case (27), we refer to
item 2. The case (1) is considered in item 3a. Thus, we assume further that the step
history has length at least 3.
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Suppose the step history has a subword (27)(1)(27). Then the base (or the inverse
base) has no big historical sectors R ... (with indices) by Lemma 4.4.

So the only possible bases for big historical sectors have form £ ~!%. The state
control letters of such sector should start running at Step (27) after the application
of the connecting rule 6(127) but they cannot ever meet state letter from R and will
run forever, and |W;|, > |Wj|, by Lemma 3.3, if W; is obtained at the application
of §(127). Hence one can cut the computation at W; reducing the problem to items 2
and 3a. If there are no big historical sectors, then there are no working sectors of
the S-machine M3. The other sectors of M (which could come from the base of Ds)
do not work at Steps (1) and cannot decrease their length starting from a connecting
rule at Steps (27) by Lemma 3.1. This makes the statement of the lemma obvious
for them.

Hence one may assume that there are no subwords (27)(1)(27), and so the step
history is (1)(27)(1).

Suppose the base has a big historical sector RJ (with indices). Then for the
maximal subcomputation W, — --- — W; of Step 1, we have |W,|, < ¢|W;|, by
Lemma4.11 because the length of a faulty base is bounded by a constant Ny depending
on the S-machine M only. Hence one can reduce our task to the subcomputations
with the step histories (1) and (27). (Of course, the constant in the desired inequality
changes when we pass to step histories involving more types of steps.) Hence we
assume further that the base has no big historical sectors R .

Also there are no big historical sectors $ 1% because state control letters of
such sector should start running after the application of the connecting rule 6(127)
but they cannot ever meet state letter from &R and will run forever by Lemma 3.3; the
last Step 1 will not be reached.

So all big historical sectors (if any) are of the form R~ 1R. Recall that the
alphabets for the 6(127)*! -admissible words are X; -, and so the word in this alphabet
will be conjugated at Step 1 by the letters from the disjoint alphabets X; 4 in sectors
with bases ﬂ?i__llﬁi_l. Hence after application of (127)~!, each rule of Step 1
will increase the length of such sector by 2. By Lemmas 3.10 and 2.1, we have
[Wila < -+ < |W;|q if the last Step 1 starts with W,.. This reduces the problem to
the subcomputations with the step histories (1) and (27) again.

If there are no big historical sectors, then we have no working sectors except for
the sectors of the S-machine D5 because one may assume that the left-most sector of
the standard base of M, is always locked and because the base is faulty. The other
sectors (which could come from the base of Ds) do not work at Steps (1) and cannot
decrease their length towards Wy or W; at Steps (27) by Lemma 3.1. This makes the
statement of the lemma obvious for them and completes case 3c.

3b. This case is similar to 3c up to exchange of R with # and X; ; with X; ;.

3d. Assume that the step history has a subword (17)(1)(27). Then there are no
big historical sectors £ 14 and KR! since the conjugation in free group given
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by Step 1 cannot transform a non-trivial word in the alphabet X; ¢ in a word in the
alphabet X; ,. So all big historical sectors have base of the form R (or inverse one).

Consider the word W; obtained after the application of the last connecting
rule (127)*'. Only big historical sectors of W; are not locked (except for the
sectors of the S-machine D5, which are not touched by Step 1). If the next step is 1,
then its rules cannot make the historical sector shorter by Lemma 3.9. If the next step
is 27, then no sector becomes shorter by Lemma 3.1. The same is true for Step 1~
if it follows Step 1. Repeating this procedure, we have |W;|, < |W;|,. Therefore
one can reduce Case 3d to previous cases by subdivision of the computation along
the transitions between Steps 1 and 2~. (The occurrences of #(127) and §(127)~!
in the history of the computation have to alternate in Case 3d inserting/deleting the
same letter, and so this does not affect the desired inequality.)

Thus, we may assume further that there are no Steps 1 in the computation.

4. We may also assume that there are no Steps 2 in the computation. The proof
copies the proof at item 3 with subcases (a) {(2)} (b) {(2), (27)}, (¢) {(2), (37)}, and
(d) where one considers the subword (27)(2)(37) and the word W; provided by the
last connecting rule §(272)*!.

5. If there is Step 5 in the step history, then we cannot have steps except for 5 and 5~
by item 1. It follows from the definition of Step 5~ and Lemma 3.1 (4) that the
subword (5)(57)(5) in the step history is not possible if there is a big historical sector
with base of type RP. By Lemma 3.3, historical sectors with base ! are not
possible too. However the historical sectors with base RR~! do not change words
at Step 5. It follows that the word W; obtained after the transition from (57) to (5)
is not longer than W; (see similar argument at item 3d). So one reduces the task to
shorter step histories.

Thus, one may assume that there are no subwords (5)(57)(5) in the step history.
Therefore assuming that there is (5) in the step history, we should consider only
the history (57)(5)(57) or its subwords. Again the rules 6(5~5) defines a word W,
which is not longer than W; by Lemma 3.1. This reduce the task to step histories (57)
and (5). For (57), the problem is solved in item 2, and it is solved by Lemma 2.7 (c)
for (5).

Thus one may assume from now that there are no Steps (5) in the step history.

6. If there is (57) in the step history, then by items 1 and 5, there are no other
steps except for (4) and (47). However the transition (457) provides us with the
shortest words in the computations since neither computations of Step 5~ nor those
from (4) can make big historical sectors shorter by Lemmas 3.1 and 3.3. So cutting
the computation along such transitions, we can decrease the number of steps. Since
a single Step 5~ is eliminated in item 2, we may further assume that there are no
Steps (57) in the computation.
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7. If there is (4) in the step history, then by items 1 and 6, there are no other steps
except for (47). For such histories we will repeat some arguments from item 3c using
now small histories instead of big ones.

The case with a single Step (47) is eliminated by item 2. The brief history (4) is
also eliminated by Lemma 2.7 (c) (for small historical sectors RJ) and Lemma 2.10
(for small historical sectors RR~'). Assume that the step history is (47)(4)
and Wy — --- — W, is a maximal subcomputation with step history (47).
Then, |Wy|a > |W;|a by the projection argument. Therefore the problem is reduced
to single step histories Thus, we assume further that the step history has length at
least 3.

Assume that there is a subword (4)(47)(4) in the step history and there is the
letter R in the base. Then it cannot follow by ﬁs_l, because the letter from R must
start running right after the connecting rule 6(4=4)~! and it cannot ever reach the
part &, so the next connecting rule 8(4~4) cannot appear, a contradiction. Hence
there is a sector Ry . It follows that there is K¢ in the base since the sectors
between & and R"¢ are locked by 6(4~4). Then we obtain #'-" and all other parts
of small historical sectors.

Also there is the part #_; in the base, becase all the sectors between Ps_1
and R are locked by 68(4™4). Hence right after the sector R is checked by the
first primitive S-machine of P44—, a letter from #s_; starts running checking the
big historical sectors, and again, there should be the part Rs;—5 in the base, since
otherwise the next occurrence of (4~ 4) does not happen.

This implies it turn, that there is $s—5 in the base, and so on, that is we have
all the sectors of the standard base of M and the base of our computation has no
cancellation, contrary to the definition of faulty base.

Hence there are no parts R in the base, provided (4)(47)(4) is a subword of the
step history. Similar argument shows that there are no R4 and R?*. (For example,
if there is K¢, then there is a rule locking the sector R'¢P 1" by the definition
of primitive S-machines; this rule has to lock sector R too, and so the part R
occurs in the base too.) Hence nothing changes at Steps 4, since only R-letters can
erase the small historical sectors. The transition (447) provides us with the shortest
words in the computations since neither computations of Step 4~ nor those from (4)
can make small historical sectors shorter by Lemmas 3.1 and 3.3. So cutting the
computation along such transitions, we can decrease the number of steps. Therefore
we may further assume that there are no subwords (4)(47)(4) in the step history.

Thus, the step history is (47)(4)(47), and as above it can be subdivided in one-
step histories. Therefore we may assume from now that there are no Steps 4 in the
step history.

8. Now we assume that there is Step 4™ in the step history.
Suppose the step history has a subword (47)(3)(47). Then the base has no
small historical sectors R* ... by Lemma 4.4 (2). So the only possible bases for
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small historical sectors are (P*")~1 25" or P~1P. The state control letters of such
sectors should start running after the application of the connecting rule 6(347) but
they cannot ever meet state R-letters and will run forever, whence |W; |, > |W;|, by
Lemma 3.3, if W; is obtained at the application of 6(347). So the whole step history
is (47)(3)(47). Hence one can cut the computation at W; reducing the problem to
item 2 and Lemma 3.17. If there are no small historical sectors, then there are no
sectors of the S-machine D5 changed at Step 3. The other sectors (which could come
from the base of M;) do not work at Steps 3 and cannot decrease their length when
starting from a connecting rule at Steps 4~ by Lemma 3.1. As usual, this allows
induct on the number of steps.

Hence one may assume that there are no subwords (47)(3)(47). The subwords
(37)(3)(37) are eliminated in the same way.

Assume that the step history has a subword (37)(3)(47). Then there are no small
historical sectors with non-reduced bases U U ! since the conjugation in free group
given by Step 3 cannot transform a non-trivial word in the alphabet X; ¢ in a word in
the alphabet X; ,. So all small historical sectors have base of the form R & (or inverse
ones).

Consider the word W; obtained after the application of the last connecting rule
6(347)*!. Only small historical sectors of W; are not locked (except for the sectors
of S-machine M3, which are not touched by Step 3). If the next step is (3), then its
rules cannot make the historical sector shorter by Lemma 3.9. If the next Step (47),
then no sector becomes shorter by Lemma 3.1. The same is true for Step 37 if it
follows Step 3. Repeating this procedure, we have |W;|, < |W;|,. Therefore one
can reduce the problem to shorter step histories.

Assume that the step history is (3)(47)(3). This resembles item 3¢, but below we
consider small historical sectors instead of the big ones.

Suppose the base has a small historical sector R>¢P" or RyP. Let W, —

- — W; be the maximal subcomputation with step history (3). Then we obtain
inequality |W; |, < c|W;|, by Lemma 4.11. Hence one can reduce our task to the
subcomputations with the step histories (3) and (47). Therefore we assume further
that the base has no small historical sectors of the form RP.

Also there are no small historical sectors (P )~ 1P%" (or P~1P), because
state control letters of such sector should start running after the application of the
connecting rule 6(347) but they cannot ever meet state letter from R and will run
forever by Lemma 3.3; the last Step 3 will not be reached.

So all small historical sectors are of the form R*>*(R¥4)~! (or Ry R 1) But then
the word from such a sector in “right” alphabet will be conjugated at Step 3 by the
letters from a left alphabet. Hence after application of #(34)~!, each rule of Step 3
will increase the length of such sector by 2. By Lemmas 3.10 and 2.1, we have
[Wila < --+ < |W;]g if the last Step 3 starts with W,.. This reduces the problem to
the subcomputations with the step histories (3) and (47) again.
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If there are no such sectors, then there are no sectors of the S-machine D5 changed
at Step 3 since the base is faulty. The other sectors (which could come from the base
of M5) do not work at Steps 3 and cannot decrease the length towards W, or W; at
Steps 3. This makes the statement of the lemma obvious.

It remains to consider the brief history (3)(4™) and apply the projection argument
to the part (47). (Compare with case (27)(1) in item 3c.)

Hence one may assume from now that there are no Steps 4~ in the computation.

9. If there is Step 3 in the step history, then there are no steps except for 3 and (37).
As in item 8, one may assume that the length of step history is at least 3. Then the
subwords (37)(3)(37) can be eliminated by the same argument we used in item 8
to eliminate subwords (47)(3)(47). It remains to consider computations with step
history (3)(37)(3). Again, one refer to item 8 since one can eliminate such history
in the way the histories (3)(47)(3) were eliminated in item 8.

The lemma is proved. O

4.4. Space and time of M-computations with standard base.

Lemma 4.14. Let €: Wy — --- — W; be a computation with standard base and
step history (217)(17)(1)(27)(2)(217). Then the configuration W; is a copy of Wy
except for the sector RV P21 and the mirror copy of it, whose lengths in Wy and W,
differ by one.

If H(17) and H(27) are the histories of the subcomputations €(17) and €(27)
of € with step histories (217)(17)(171) and (127)(27)(217), respectively, then

HHAD = IHEDI] = 2.

Proof. The subcomputations €(17) and €(27) do not change the a-words in the
historical sectors by Lemma 3.6(a), and so the histories of Steps 1 and 2 are inverse
copies of each other. Taking into account that the transition (127) changes the length
of the sector R¥" P2 (and the mirror it) by 1, we obtain the first statement of the
lemma.

After the sector R'” 2 changes length by one, the primitive S-machine check-
ing this sector changes the computation time by 2, as it follows from Lemma 3.1 (3).
This proves the second statement. O

Recall that the blocks (E) and (F') of a history were defined before Lemma 4.7.

Lemma 4.15. (1) If a configuration Wy is accepted and 0-admissible for a rule 0
from block (E), then there is a reduced accepting computation Wy — -+ — W,
with block history (E) and t < 3||Wo|;

(2) There is a constant ¢y depending on M only, such that for any computation
C: Wy — -+ = W; of M, which is the beginning of a reduced accepting
computation with block history (E) or (F)(E), we have

Wil < c1(IWoll + 5)
forevery j =0,...,t, where s is the length of the step history.
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Proof. (1) Note that all the sectors of W; are empty. It follows that all the words
in big historical sectors of Wy are copies of the same word since every rule of M
multiplies the tape words of these sectors by the copies of the same letter or does not
change all these words. Similarly, the tape words in the small historical sectors (and
in their mirror sectors) are copies of each other.

If the small historical sectors of W, are non-empty, then 6 is a rule of Step 4.
So there is an accepting computation erasing all the letters of this sector (and of its
mirror copy). The length of the next control Step 5~ will be at most 2|| Wy || by the
definition of the S-machine Ps— and Lemma 3.1 (3). Then the rules of Step 5 can
erase all tape letters in the big historical sectors (and their mirror copies). This gives
the total upper estimate t < 2||Wy|| + ||Woll, as required. If 6 is a rule of Step 5~
or 5, then the estimate is even better.

(2) If the computation is accepting and has type (E), then the step history is a
suffix of the word (4)(57)(5) by Lemma 4.7. The rules of Step 5~ cannot increase
the lengths of configurations by Lemma 3.1. Clearly, the rules of Steps 4 and 5
cannot insert letters too. Hence ||[W;|| < [Ws||, and so it suffices to prove the same
inequality under the assumption that j < r, where Wy — - — W, is the maximal
subcomputation with block history (F).

By Lemma 4.9, the step history of this subcomputation is a suffix of the word

W(m) = (47))EHIHMEH@)Y"GHG)E)

for some non-zero integer m.
At first we consider the subcomputations €; with step histories

(@IHADHMEHEEIT)*.

By Lemma 4.14, we conclude that in the beginning and at the end of €;, the difference
of lengths of configurations is equal to £2. The number of such subcomputations €;
does not exceed s/2.

The number of one-step subcomputations, which are not subcomputations of
any €;, is at most 7. The transitions of some of them (17, 27,37, 47) do not increase
the lengths of configurations by Lemma 3.6 (a). All transitions of each other step
(1,2, 3) can increase the a-length but Lemma 4.11 bounds possible enlargement from
above. This proves Statement (2). ]

Lemma 4.16. Let a history H of a computation €: Wy — --- — W; with standard
base have type (F) and end with a connecting rule. Suppose that € is a beginning
of a reduced accepting computation and there are at most 10 steps in €. Then for a
constant ¢c; = ¢o(M), we have

[H | < c2l[Woll.
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Proof. Recall that the length of the history is linearly bounded for each of the steps in
terms of the lengths of their configurations (Lemma 2.7 for Steps 4 and 5, Lemma 3.9
for Steps 1, 2 and 3, Lemmas 4.5(2) and 3.1 (1) for control steps.) The lengths of
these configurations are linearly bounded in Lemma 4.15 (2). Taking into account
that the number of steps is at most 10 we come to the desired inequality. O

Lemma 4.17. There is a constant c3 such that for any accepted configuration W,
which is 0(2, 17) %! -admissible, there exists an accepting computation with block
history (F)(E) of length at most c3(k® + 1)(|Wo|| + k3), where k is the a-length
of the input sector R P of the word Wy. The number of steps in this computation is
less than 32k3 + 4.

Proof. By Lemma 4.15 (1), an accepted word 6-admissible for a rule 6 from
block (E) can be accepted by a computation having only one block. Hence it
suffices to consider computations with block histories (F)(E).

By Lemma 4.9, the step history of block (F') is a word

(IHMHEH@"GHG)E)

for some integer m since Wy is 6(217)*! admissible.

Assume that [m| > (2k)3. Then the rule §(127) occurs at least (2k)> + 1 times in
the history. The rule #(127) permanently changes the length of the sector R!-" P2
by one multiplying it by the same letter. On the other hand, by Lemma 4.14, the

subcomputations with step histories

@IHADHMEHEEI )

do not change the a-word of length k in the input sector RsJ. Therefore there is a
transition (not the last one), where the a-length of the sector R!" P24 s divisible
by (2k)3, and so the transition to Step 3 was possible earlier by Lemma 3.16 (2).
Hence it suffices to prove the lemma under the assumption |m| < (2k)3, and so the
number of steps does not exceed 4|m| + 3 < 32k + 3 by Lemma 4.7.

The length of the history is linearly bounded for each of the steps in terms of
the lengths of the configurations (Lemma 2.7 for Steps 4 and 5, Lemma 3.9 for
Steps 1, 2 and 3, Lemmas 4.5(2) and 3.1 (1) for control steps.) The lengths of these
configurations are linearly bounded in Lemma 4.15 (2). Taking into account that the
number of steps is linearly bounded in terms of m and |m| < (2k)3, we come to the
desired inequality. O

We will consider a suitable function function f(n) and the functions g(n)
and F(n) from Definition 1.2 under the assumption that s = 2 in that definition.
(The inequality s > 3 will appear in the last Subsection 10.2.) So the recognizing
Turing S-machine My is taken from that definition and M; is given by Lemma 2.4.
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Without loss of generality, one may assume that the values of f(n) are greater
than some constant, for instance, for every integer n > 1, we have

f(n) = 5. 4.2)

Besides, it is convenient to enlarge the domain of those functions assuming that
they are defined for every real x > 0. One may assume that f(x) is still positive
for x > 0 and non-decreasing.

Lemma 4.18. For every x > 0 and d € [0, x), we have
d
F(x)—F(x—d)> —F(x) =dxg(x).
X

Proof. Note that F(x)/x? > F(x —d)/(x — d)? since the function g(x) is non-
decreasing. Hence

(x—d)?
F(x)— F(x—d) > F(x)(l - T>

2dx —d? dx d

Lemma 4.19. Let €: Wy — --- — W; be a computation of M with block history (F')
and the step history of this computation contains a subword

(1))@ (217

Let k be the a-length of the input sector RgP of a 62~ 1)*!-admissible
configuration W; in €. Then (a) k = f(n), for somen > 1, (b) k = O(f(|Wol))),
and (¢) k> = O(||Wo|).

Proof. Claim (c) follows from (b) since f(n)? = O(n).

To prove (b) statement, it suffices to prove that k = O(f(r)), where r is the
length of a big historical sector of Wy. We have r’ < r, where r’ is the length of a
big historical sector of W; by Lemma 4.9; indeed, the computation W; — --- — W)
cannot decrease the length of it by Lemma 3.6 (a) applied to the control steps and
Lemma 3.9 applied to Steps 1 and 2. (Step 3 does not change this sector.) For the
same reason r”" < r’, and k = k” where r” is the length of a big historical sector
of the first configuration Dg of a subcomputation D of €*! with the step history
(171)(1)(127) and k” is the a-length of the input sector R;P of Dy. Hence it
suffices to prove that k” = O(f(r")).

The subcomputation of Step 1 (restricted to the base of M3) is actually the
computation of M,. If we ignore the historical sectors, we have the accepting
computation of M; with input sector a*’. By the definition of My and M,
k" = f(n) for some n > 1, the accepting computation of My has length ©(n'/3),
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and so the number of rules at Step 1 is ®(n) by Lemma 2.4. Hence r” > ®O(n),
because D¢ contains the history of Step 1 written in big historical sectors. Hence,
k" = f(n) = O(f(r")). Since k = k", Property (a) is obtained as well. O]

Lemma 4.20. Let Wy be an accepted word and €: Wy — --- — W; be a reduced
computation of M with block history (E), where the computation either length-non-
increasing or length-non-decreasing, or (F)(E), where the block (E) is a length-
non-increasing subcomputation, or (F). Then:

@ [[W;ll < camax ([Woll, [Will) (j = 0,....1), where ca = ca(M); or

(b) there are accepting computations for Wy and W; with block histories (E)
or (F)(E) and histories Hy and H; such that

[ Holl + [ H: |l < /100,
the history H of € has a factorization H = H(1)H (2) H(3), where
IHMDI. [H@2)] < /100,
H(2) is of type
(@IHADHMHEH@)I)™
with |m| > c3 and the lengths of the subhistories of H(2) of type
(@IDHIHMHERH@) 1)

are less than t /10.

Proof. If € is of type (E), then Property (a) follows since € either non-increases or
non-decreases the lengths of configurations.

Let € have type (F)(E). Again we obtain Property (a) by Lemma 4.15 (2) if the
number of steps in block (F') is less than 10.

Otherwise, by Lemmas 4.7 and 4.9, block (F') contains a subword

(@IHADHMEHEEIT N

in the step history, and by Lemma 4.14, the corresponding computations €; just
multiply the words in the sector K" 22 (and in its mirror copy) by a letter b or
by b~! depending on the sign of the exponent, while the length k of the word in the
sector R is not changed.

The history corresponding to the block (F) is Hy H, H3, where the length of the
step history at most 4 for H; and H3, H; has the form

(@IHAHMEH@ I )™,
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and H is the history of the subcomputation Wy, — -+ — Wy, — --- — Wj, starting
with 6(217)%1, and every W, is a 0(217)*!-admissible word. If

w = max (||Ws‘()||7 “WTm H)’

then by Lemma 4.14,

m—1 m
max ( R LADNLA ||) > w|w=2[+- -+ w=2|m—1|| = [m|w/2. (4.3)

i=0 i=1

Hence the sum of the lengths of the subcomputations €y, ..., €,_1 is at least
|m|w by Lemma 3.1 for the Steps 1~ and 2~ of these subcomputations. Therefore,
I Hz || > [m|w.

Now if max (|| Wy ||, |W;]|) = w’ > w, then the length of every W; with j < s¢
or j > sy, is bounded by c;(w’ + 10) by Lemma 4.15 (2), and the same estimate
works if W; is a configuration of some subcomputation €;. Hence we have the
inequality of item (a) of the lemma.

So we assume now that w’ < w. Let k be the a-length of the input sector Ry P
of the word Wy,. If m > ¢2k3, then ¢ > ||Hz| > c¢2k3w. We also have that each of
the subcomputations €; with step histories

(@IHANHMHEHR)EIT)!

have length less than 1’—0. This follows from the property, that the difference of the
lengths of €; and €;4; is at most 4 (the computational time for control step can
change by 2 by Lemma 4.14, but the number of such subcomputations is at least
3 > 1000).

Let Wy, = Vo — --- — V; be a shortest accepting computation for Wy, with a
history Hy. To estimate d from above, we may assume by Lemma 4.15 (1) that its
block history is either (E) or (F)(E). The step history of block (E) has length at
most 3 by Lemma 4.7.

If the number of steps in Hg is atmost 10, then || Hg|| = O(||Wp||) by Lemma4.16.
Otherwise by Lemma 4.9, Hy = H'H”, where H' has step history

(@IHIDHMEH@EIT)*H
and H'H" starts with a §(217)*!-admissible configuration Wj,. By Lemma 4.17,

IH H"|| < ca(k® + D([ Wi, |l + £3)

< e3(k + D(w + k%) = e3(k> + 1) O(w) 9

since k3 = O(w) by Lemma 4.19.
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Thus by (4.4),
|H'H"|| < c2k*w/400 < || Hy| /400 < (s — r)/400

if c3 is large enough. To estimate the length of the shortest accepting computation
for Wy, it remains to estimate so = | H||, but this value does not exceed
cow < c§k3w/800 < t/400 by Lemma 4.16. Therefore,

| Holl < t/400 + ¢ /400 = ¢ /200 < || H»||/200.

Similarly, we obtain
| He |l < /200 < || H2[|/200.

Now define H(1) = Hy, H(2) = H,, and H(3) = H3H, where H is of type (E)
and so has at most 3 steps, and H(3) has less than 10 steps. To obtain Property (2)
of the lemma if m > c§k3, it remains to estimate H(3). Indeed, by Lemmas 4.15 (2)
and 4.16, we have

IHG) = I1H3]l + I H| < caw + 3w < /100.

Assume now that |m| < c2k3. Then the number of steps s in the subcomp-
utation € does not exceed 10c2k> + 20. Therefore for every configuration W; of €,
we obtain from Lemmas 4.15 (2) and 4.19 that

Wi < cr(w + 10c2k> 4 20) = ¢1c20(w') < cqw/,

if ¢4 is big enough, and we have Property (a).
The same argument works if the block history is just (F'). O

Lemma 4.21. Let Wy be an accepted word and €: Wy — --- — W; be a reduced
computation of M with block history of the form (E)(F)...(F)(E), where the
first (the last) block (E) is a length-non-decreasing (resp., length-non-increasing)
subcomputation. Then there are accepting computations for Wy and Wy with block
histories (E) or (F)(E) and histories Hy and H; such that ||Hy|| + || H|| < t/100.

Proof. Since the word W, is 6-admissible for a rule 6 of block E, we have
|Hol|l < 3||Ws|| by Lemma 4.15 (1), and ||Wy|| < ||Ws||, where €": Wy — --- — W,
is the subcomputation corresponding to the first occurrence of (') in the block history
of €, because the rules of the first block (£) does not decrease the lengths.

Let k and m be the parameters of €’ defined as in the proof of Lemma 4.20. Note
that m # 0 by Lemmas 4.9 (1) and 4.5 (1) since €’ starts with #(4=4)~!. Due to the
maximality of €', one can apply Lemmas 4.9 (2) and 4.19 (a) to €’ and obtain

lm| > (2k)®> > 1000
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since the length k of any word accepted by M; and M5, is at least 5 by (4.2). Then,
as in Lemma 4.20, we obtain that the length of €’ is at least

2| Wil + 2l Wsll =2 + -+ + 2] | Ws | — 1998,

which is at least 1000|| W; || and at least 1000|| Wy || > 300|| Ho||.

Similarly we have that the length of €” is greater than 300|| H;||, where the
computation €” corresponds to the last occurrence of (F) in the block history of €.
It follows that || Ho|| + || H;|| < ¢/100. O

Lemma 4.22. Let Wy be an accepted word, €: Wy — --- — W; be a reduced
computation of M and Hy, H; be the histories of the shortest computations accepting
Wo and W;, respectively. Then:

(1) € is a product of at most three subcomputations

CiWo— o> Wy, CaWy — = Woign,,
and \63:Wn1+n2 —> s > Wn1+n2+n3 (n1 +ny+n3=t),
where
max ([ Wa, [l |Way 4, [1) < max ([Woll, W)
and for every €; (i = 1,2, 3) either:
@ [[W;] < ca max(||W0||, ||Wt||), for every configuration W; of €;, where
cs = ca(M); or

(b) there are accepting computations for the first and the last configuration
of €; with block histories (E) or ((F)(E) and histories H] and H]'" such
that |H]|| + || H'|| < n;/100.

(2) The sum of lengths of all maximal subcomputations of € with block history (E)
does not exceed 3(|W ||o + || W) + ¢/100.

Proof. (1) If the block history of € is (F'), then the entire computation € satisfies
either (a) or (b) by Lemma 4.20. If the block history of € is (E)(F), we consider
the subcomputation

Wy — - —> W

corresponding to the first block (E) of the step history. If W,, has minimal length
in €’, then the subcomputation

Wy, = > W

is length-non-decreasing; this follows from Lemma 2.7 for Steps 4 and 5 and from
Lemma 3.6 for Step 4~. Similarly, the subcomputation

W()—>'~-—> I/Vn1
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is length-non-increasing. Since ||W,, || < ||Ws|| we can again apply Lemma 4.20 to
the subcomputations

Wo—--—W,, and W, —---— W,.

Therefore we assume that there are at least three blocks.
Consider the subcomputation

W= W

corresponding to the first block (£) occured in the step history. It has a maximal
length-non-increasing part W, — --- — W, as in the previous paragraph.

Observe that ||W,|| < ||Wo|. Indeed, only historical sectors can be unlocked
in W, but neither control S-machine can increase the lengths of these sectors in
the computation W, — --- — W, with block history (F) by Lemma 3.1, nor the
computations of Steps 1, 2, 3 can do this by Lemma 3.9.

Since || Wy, || < [|Wr|| < ||[Wo||, we can apply Lemma 4.20 to the subcomputation

Cr:Wy — - = Wy,

and obtain one of the properties (a) or (b) for it. Similarly, we consider the last
block (E) in the block history of € and define the subcomputation €5 starting with
W, +n, Whose length does not exceed the length of W;, and so either (a) or (b) holds
for €3. We have n, = 0 if the block history is (F)(E)(F).

If there are at least two blocks (E), then the middle computation €, satisfies the
assumptions of Lemma 4.21, and so Property (b) holds for it.

(2) The subdivision of each subcomputation corresponding to a (£) according the
sample of part (1) gives the required estimate. Namely, if a subcomputation D is a
product D; D, D3 with block history (E)(F)(E) satisfying Lemma 4.21, then we
obtain that the length of £ plus the length of D; is less than 0.01 of the length
of D5,. If D has brief history (E) or (F)(E), or (E)(F), the we refer to Lemma 4.20.

O

Lemma 4.23. For every accepted word Wy of length at most n there is an accepting
computation of length O (nf(n)>) with number of steps O(f(n)3). The generalized
time function T'(n) of M is equivalent to ®(nf(n)?).

Proof. By Lemma4.15 (1), given an accepted word Wy of length n, there is a shortest
accepting computation Wy — --- — W; with block history either (E) or (F)(E) .
We denote by H its history. The step history of block () has length at most 3|| W ||
by Lemma 4.7 and contains at most three steps.

If the number of steps in H is at most 10, then

IH] = O(IWol) = O(n)
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by Lemma 4.16. Otherwise by Lemma 4.9, H = H{ H, H3, where H; has less than
10 steps and H» has step history

(1HMHEHEY™
and H, H3 starts with a 6(217)*!-admissible configuration W;. By Lemma 4.17,
|HaHs || < c3(k + D(|W; | +&3),

where k is the length of the sector R in W, and the number of steps in H, H3
is O(k?) (and so the number of steps in the entire H is O(k?)). Here,

IWjll < c1(|Wola + 10) = O(n)

by Lemma 4.15 (2).
Since k = O(f(|W;]))) = O(n) and k* = O(||W;||) by Lemma 4.19, we have

O(k*) = O(f(n)®)
for the number of steps and
IH 3| < e3> + D(IW; ]| + &%) = e3(f(1)*) O(n) = O(n)g(n)

by the definition of the functions f(n) and g(n).

The length of each of each one-step subhistory of H; is bounded by 4¢1 (|Wo |4+ 10)
(use Lemma 3.6 (b) for Steps 17,27, 37, 47,57, Lemma 2.8 (b) for Steps 1, 2, and 3,
and Lemma 2.7 for Steps 4 and 5). Hence the length of the whole history H is
also O(n)g(n), as required.

To bound 7’ (n) from below, we will construct a series of accepted words V(n)
of length ®(n). The base of every V(n) is standard, and V(n) is 6(2™ 1)-acceptable.
The input sector RsP contains aX, where k = f(n) > 0, the word in the sector
R2LP3L s bl where | = O(n) > 8k> and [ congruent to 4k > modulo 8k3. (There
is such / since k> = f(n)®> = O(n).) Each of the big historical sectors of V(n)
contains the history of an accepting computation for M, written in the alphabets X; 4.
The length of this history is O(n) by the definition of the suitable function f(#n), the
definition of the machines My — M, and Lemma 2.4). Each of the small historical
sectors contains the history of the computation of D5 (also in left alphabets) that
checks that [ — 4k3 is divisible by 8k3. Since / = ©(n), this history has length O(n)
by Lemma 3.16. Thus, we have ||V, || = ©(n).

Every word V(n) is accepted. Indeed, the rules of Step 1~ can check all the
sectors since the base is standard. Then the rules of Step 1 can accept f(n), 6(127)
replaces b’ with b*~!. The rules of Step 2~ check the sectors again, the history
of Step 2 copies the inverse history of Step 1, it restores the alphabets X; ; in big
historical sectors. Then we repeat the cycle decreasing the exponent at b by one
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again. After 4k such cycles we obtain b’ —4k* in the sector R24 P3¢, where | — 4k3
is divisible by 8k3, and therefore after Step 37, Step 3 can complete its work by
Lemma 3.16 (b). It remains to erase all tape letters using the rules of block (£) and
stop computing after the rule 6y is applied.

Now let us estimate from below the length of arbitrary (reduced) computation

Vin) =Wy — - —> W,.
By Lemma 4.9, we have the block (F') of the form
((AHMHEH@N™GHB3)E)
in the history, where m = 4k> (mod 8k?) by Lemma 4.9 (2). Hence,
Im| > 4k> = 4f(n)°.

The history of every subcomputation with step history ((17)(1)(27)(2))*! has
length at least ®(n) for the following reason. Every configuration of it has a word
in the sector R2¢P3¢ of length O(n) since this length belongs to the segment
[l —4k3,1]. So by Lemma 3.1, one needs ®(n) rules to check this sector at the
control steps 1~ and 2.

Therefore the length of the computation Wy — --- — W is at least 4k3@(n) =
O(nf(n)?), as desired. Since we obtain the required lower bound for every n and
Vil = ©(n), the lemma is proved. O

Remark 4.24. A subcomputation with step history

(@17 A7) () E2)(2)(217)*!

does not change the length of the sector R2-* P3¢ by Lemma 3.6 applied to steps (17)
and (27). Hence we have the same property for computations ((17)(1)(27)(2))™
starting and ending with connecting rules. Thus, above we obtained ®(nf(n)3)
configurations of length at least ®(n) for any computation accepting the word V(n).

We call a base B of a reduced computation (and the computation itself) revolving
if B = xvx for some letter x and a word v, and B has no proper subword of this
form.

If v = vz, for some letter z, then the word zv,x v, z is also revolving. One can
cyclically permute the sectors of revolving computation with base xvx and obtain
a uniquely defined computation with the base zv,xv;z, which is called a cyclic
permutation of the original computation. The history and lengths of configurations
do not change when one cyclically permutes a computation.
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Lemma 4.25. There is a constant c4 = c4(M) such that following holds. For any
computation €: Wy — --- — W; of M with a revolving base xvx either:

(1) we have the inequality
IW; Il < camax (| Woll. [Well),

for every word W; of €, where c4 = c4(M); or

(2) we have the following properties:

(a) the word xv is a cyclic permutation of the standard base B = B(M) or
Of B_l,'
(b) the corresponding cyclic permutations W and W, of the words Wy and W;

are accepted words;

(c) the step history of € (or of the inverse computation) contains subwords
217)A7)A71) and (127)(27)(272);

and

(d) € is a product of at most three subcomputations

CrWy —> o> W, *CZ;W';I_>..._>W’

np’ ni+ny’
i/ ’ _
and G Wy qn, = > Wy inyyns (M1 +n2+n3=1),

where
max (| W, [I. W, 1n,1I) < max ([Woll. |W;])

and for each €;, either:

D) W] < ca max([|Wgll, W/ ), for every configuration Wj of €;; or

(d2) there are accepting computations for the first and the last configuration
of €; with histories H/ and H|' such that ||H!| + |H/"|| < n; and
the corresponding block histories are either (E) or (F)(E).

Proof. If the computation is faulty, then Property (1) is given by Lemma 4.13
since ¢4 > C. If it is non-faulty, then we have all sectors of the base in the same
order as in the standard base (or its inverse), and we obtain Property (2a). Therefore
we may assume now that the base xv is standard and Property (1) does not hold.

If the block history of € is (E), we obtain a contradiction with Lemma 4.8
since ¢4 > 1.

If the computation has only one step of type (F'), then Property (1) follows from
Lemmas 3.6, 3.12 and 3.17, a contradiction again. So there is a connecting rule 8
from block (F') in the history.
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Assume there is a block (F') in the block history of €, and this block has at least
8 steps. Then by Lemma 4.9, the step history of € has a subword

(@I)A)MEHE@)EIT)E,

and Property (c) follows. Moreover the words at the big (small) history sectors
are copies of the same word since the subcomputations of Step (17) (or 27) have
simultaneously controlled these sectors. Therefore after a number of such cycles one
can obtain the length of the sector R"" P2¢ divisible by 8k> (where k is the length
of the sector R;J), which by Lemma 4.9 (2), makes possible to accept after the
Steps 37, 3,47,4,5. So one obtains Properties (a), (b), and (c). Then Property (d)
follows from Lemma 4.22.

If there are no such blocks (F'), then there are no subwords (E)(F)(E) in the
block history by Lemmas 4.9 and 4.5. Hence the block history is (F)(E)(F) or a
subword of this word. Let configuration W, and W, subdivide € in single block
computations. Then ||W/|| < c3||W;]|, because there are at most 7 steps in the
subcomputation W, — --- — W, and each step transition from Wj’ towards W can
multiply the length by at most c¢. (See Lemma 3.6 for control steps and Lemma 4.11
for Steps 1, 2, and 3.) Analogously, we have ||W/|| < c3||[W]||. Since for every step
the lengths of all configurations are linearly bounded in terms the first and the last
configurations (see Lemmas 3.12, 3.17 3.6 (a)) we have

W/ < c3max (|Wgll, [W/1])

if j <rorj > s. So to obtain Property (1) (and a contradiction), it suffices to
linearly bound the configurations in the subcomputation W, — --- — W in terms of
max(||W/[, [|[W/ ). This is done in Lemma 4.8 (1). Thus, the proof is complete. []

4.5. Two more properties of standard computations. Here we prove two lemmas
needed for the estimates in Section 9. The first one says (due to Lemma 4.5 (2))
that if a standard computation € is very long in comparison with the lengths of the
first and the last configuration, then it can be completely restored if one knows the
history of €, and the same is true for the long subcomputations of €. This makes the
auxiliary parameter o (A) useful for some estimates of areas of diagrams A. The
second lemma is helpful for the proof of Lemma 9.23 in Section 9.

Lemma 4.26. Let €: Wy — --- — W; be a reduced computation with standard base,
where t > cs max(|Wo |, ||W;||) for sufficiently large constant cs = c¢5(M). Suppose
the word Wy is accepted. Then any subcomputation D: W, — --- — Wy of € (or the
inverse for D) of length at least 0.4t contains one of the words

@1IHADHATD), (127)(27)(272), (237)(37)(373), (347)(4)(¢™ 4

in the step history.
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Proof. If the block history of € is (F'), we refer to Lemma 4.20 as follows.

Assume that Property (a) of that lemma holds. Then every step of the
computation £ has length at most 4c4 max(||Wo||, || W:||) by Lemma 3.9 for Steps 1,
2, and 3 and by Lemma 3.6 (b) for other steps. Hence the number of steps in & has to
be at least 10 since the length of its history is at least 0.4c5 max(||Wo |, ||W;||) and c5
can be chosen large enough. It follows from Lemma 4.9 (1) that the step history of DD
contains subwords

217)(A7)(A7T) and (127)(27)(272),

as required.

If Property (a) of Lemma 4.20 fails, then by Property (b), we have a sub-
computation of length > 0.98¢ with step history ((17)(1)(27)(2))*", where
every cycle with block history ((17)(1)(27)(2))*! has length < ¢/10. Then the
subcomputation & of length > 0.4t has to contain such a cycle, and so the step
history of & contains (127)(27)(272), as required. Thus, we may assume that the
block history of € is not (F).

If the block history of & contains a subword (E)(F)(E), then the statement
follows from Lemma 4.9 (where Lemma 4.5 eliminates the case m = 0). So the
block history of D is a subword of (F)(E)(F). By Lemma 4.22 (2), the length of
the (E)-subcomputation of P is less than

£/100 + 3(|Woll + W) < 1/50.

So one of the (F')-subcomputations of O has length > (0.4 — 0.02)¢/2 = 0.19¢.

Case 1. Assume that there is a block (£) in the block history of £, and without loss
of generality, we may assume that the computation £ has a subcomputation

DWW, —> - > W,

of type (F) with j —r > 0.19¢ and the subcomputation of type (E) occurs after £’
in O. Proving by contradiction, we conclude that the step history of D’ is (47) since
a longer step history would provide us with the subword

CEDICIIC I

in the step history of D.
Suppose the subcomputation

Wo = - —> W,

also has a block (E). Then € has a subcomputation with block history (E)(F)(E).
Let the subcomputation € correspond to the middle block (F). Then the first and
the last configurations of € are admissible for some rules of type (). Therefore by
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Lemma 4.15 (1), one can construct an auxiliary computation € = €'€€”, where
the first factor (the third one) starts (resp., ends) with Step (5). Then by Lemmas 4.9
and 4.19 for €, the subcomputation € of € has a subcomputation of type (F) with
step history

(AHMHEH@)™ BHG)E).

|my| > 8k3 > 1000, and the subcomputation corresponding to the last Step (47) has
length > 0.19z. It follows that at least 1000 control steps of the form (17) or (27)
should have length > 0.19¢ since their control S-machines have to check the big and
small historical sectors too (and the length of the historical sectors are unchanged by
the rules of

(AHMHEH@)™ BGHG)E)).

We obtain a contradiction since 1000 x 0.19¢ > ¢.

Thus, the computation &: Wy — --- — W is of type (F'). Hence | W; || < ||[Ws,
because only historical sectors can be unlocked in W}, but neither control S-machine
can decrease the lengths of these sectors in the computation W; — --- — W, with
block history () by Lemma 3.1, nor the computations of Steps 1, 2, and 3 can do
this by Lemma 3.9.

If the step history of & ends with (347)(47)(4™4), then

[Woll = [|W; || = 0.19¢/4 > 0.04¢

by Lemma 3.6, which contradicts to the assumption of the lemma. Hence the step
history of & is (47), and s0 0.19¢ < 4||W,|| by Lemma 3.6 (b), a contradiction again.

Case 2. The block history of D is (F). Since the block history of € is not (F) but a
subword of (F)(E) ..., we conclude without loss of generality, that € begins with a
maximal subcomputation &: Wy — --- — W, of type (F), where r < u < t. Then
as in Case 1, we have | W, || < |[Woll.

Now consider the options (a) and (b) provided by Lemma 4.20 for &. The
option (b) is eliminated exactly as in the second paragraph of the proof of the current
lemma, where ¢ can be replaced by 0.4¢ since u > r —s > 0.4¢. Hence we have
by (a) that every configuration W; of & satisfies the inequality || W; || < c4||Wo|| since
Wil < [Woll. Then the length of every single step of & cannot exceed 4c4||Wp||
(see Lemma 3.6 (b) for control steps and 2.8 for Steps 1, 2, and 3). Here we have
4c4 < ¢5/10 by the choice of ¢s.

Since s —r > 0.4t > 0.4¢5||Wp||, we see that the length of the step history of
is at least 4. It follows from Lemma 4.9 that the step history of O contains one of the
words mentioned in the formulation of Lemma 4.26. 0

Lemma 4.27. Let a reduced computation Wy — --- — W, start with an accepted
word Wy, have standard base, and have step history of length 1. Assume that for
some index j, we have |Wj|q > 3|Wy|q. Then there is a sector Q Q' such that a state
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letter from Q or from Q' inserts a letter increasing the length of this sector after any
transition of the subcomputation W; — --- — W,.

Proof. Let the step history be (1). Note that all big historical sectors of any
configuration W; have the same content (up to taking a copy) since the word W)
is accepted. Assume that no rule of the subcomputation D: Wy — - — W;
increases the length of big historical sectors. Then by Lemma 2.8 (b) the length of
the history of O does not exceed &, where & is the a-length of such sectors.

Every rule of the subcomputation £ can change the length of any working sector
at most by 1. (See Lemma 2.1 (3)). Hence if its length in W, is £, its length in W; is
at most £ + h. It follows that |W;|, < 3|Wj|4, because the working sectors of M, and
its historical sectors alternate in the standard base. This contradicts to the assumption
of the lemma.

Thus, there is a rule in the history of & increasing the length of a big historical
sector Q Q’. It has to insert a letter from X; ¢ from the left and a letter from X; ,
from the right. Since the obtained word is not a word over one of these alphabets,
Step 1 is not over, and the next rule has to increase the length of the sector again in
the same manner since the computation is reduced. This procedure will repeat until
one gets W;. This proves the statement. The same proof works for Steps 2 and 3. (In
the later case, one will consider small historical sectors.)

It follows from the definition of Step 4 (of Step 5) that every rule either increase
or decrease the length of small (resp., of big) history sectors. If any rule increases
it, then all the next rules will increase the lengths of these sectors too. Hence the
argument of the previous paragraph works for Steps 4 and 5 as well.

For the control Steps 1757, the statement of the lemma follows from Lem-
ma 3.1 (1): if we have a transition of a primitive S-machine, where the control state
letter increases the length of a sector, then it will keep increasing it in any reduced
computation. 0

5. Groups and diagrams

5.1. The groups. Every S-machine can be simulated by finitely presented group
(see [22] and also [17,19]). Here we apply such a construction to the S-machine M.
To simplify formulas, it is convenient to change the notation. From now on we shall
denote by N the length of the standard base of M.

Thus the set of state letters is Q = UzN=0 Q;,where Oy =09 = {t},Y = Llfv=1 Yi,
and O is the set of rules of the S-machine M.

The finite set of generators of the group M consists of g-letters corresponding
to the states Q, a-letters corresponding to the tape letters from Y, and 6-letters
corresponding to the rules from the positive part @ of © (the same letter as for the
S-machine).
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The relations of the group M correspond to the rules of the S-machine M. Recall
that the cyclic S-machine M satisfies Property (1) of Lemma 2.1, and so every rule
6 € ®* of it has the form

0:[Uo — Vo....Un — Vi ]

where Uy = Uy and Vy = V. For every such rule 6, we introduce the following
relation of the group M.

Ui9i+1 =9,'Vl', Qjazaej, i,j =0,...,N (5.1)

for all a € Y;(0). (Here Oy = 6p.) The first type of relations will be called
(0, q)-relations, the second type - (6, a)-relations.

Finally, the required group G is given by the generators and relations of the
group M and by one more additional relation, namely the hub-relation

W) =1, (5.2)

where W)y is the accept word (of length N') of the S-machine M and the exponent L
is a large enough integer. (It depends on M and will be made more precise later.) The
corresponding cells in van Kampen diagrams looks like hubs in the net of g-bands
(see pictures in [15, 20, 22]).

5.2. Van Kampen diagrams. Recall that a van Kampen diagram A over a present-
ation P = (A | R) (or just over the group P) is a finite oriented connected and
simply—connected planar 2—complex endowed with a labeling function

Lab: E(A) — A*%!,

where E(A) denotes the set of oriented edges of A, such that Lab(e™!) = Lab(e) .
Given a cell (that is a 2-cell) IT of A, we denote by 911 the boundary of I1; similarly,
dA denotes the boundary of A. The labels of dIT and A are defined up to cyclic
permutations. An additional requirement is that the label of any cell IT of A is
equal to (a cyclic permutation of) a word R*!, where R € R. The label and the
combinatorial length ||p|| of a path p are defined as for Cayley graphs.

The van Kampen Lemma states that a word W over the alphabet A1 represents
the identity in the group P if and only if there exists a diagram A over P such that
Lab(dA) = W, in particular, the combinatorial perimeter ||0A|| of A equals ||W|.
([11, Ch.5, Theorem 1.1]; our formulation is closer to Lemma 11.1 of [13]). The
word W representing 1 in P is freely equal to a product of conjugates to the words
from R*!. The minimal number of factors in such products is called the area of the
word W. The area of a diagram A is the number of cells in it. By van Kampen
Lemma, Area(W) is equal to the area of a diagram having the smallest number of
cells among all diagrams with boundary label Lab(dA) = W.
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We will study diagrams over the groups M and G. The edges labeled by
state letters (= g-letters) will be called g-edges, the edges labeled by tape letters
(= a-letters) will be called a-edges, and the edges labeled by 8-letters are 6-edges.

We denote by |pla, ([Pl [Plq) the a-length (resp., the 0-length, the g-length) of
a path/word p, i.e. the number of a-edges/letters (the number of §-edges/letters, the
number of g-edges/letters) in p.

The cells corresponding to relation (5.2) are called hubs, the cells corresponding
to (0, g)-relations are called (8, g)-cells, and the cells are called (0, a)-cells if they
correspond to (6, a)-relations.

A van Kampen diagram is reduced, if it does not contain two cells (= closed 2-
cells) that have a common edge e such that the boundary labels of these two cells are
equal if one reads them starting with e (if such pairs of cells exist, they can be removed
to obtain a diagram of smaller area and with the same boundary label). To study
(van Kampen) diagrams over the group G we shall use their simpler subdiagrams
such as bands and trapezia, as in [2, 15,22], etc. Here we repeat one more necessary
definition.

Definition 5.1. Let Z be a subset of the set of letters in the set of generators of the
group M. A Z-band B is a sequence of cells 1, ..., m, in a reduced van Kampen
diagram A such that:

» Every two consecutive cells r; and 77; 4+ in this sequence have a common boundary
edge e; labeled by a letter from Z*1.

e Each cell 7;, i = 1,...,n has exactly two Z-edges in the boundary 9d7;, el.__l1
and e; (i.e. edges labeled by a letter from Z*!) with the requirement that either

both Lab(e;_1) and Lab(e;) are positive letters or both are negative ones.
e If n = 0, then B is just a Z-edge.

The counter-clockwise boundary of the subdiagram formed by the cells 7y, . . . , 7,
of B has the factorization e !q;fq, ! where e = e is a Z-edge of 7y and f = e, is
an Z-edge of 7,,. We call q the bottom of 8B and q the fop of 8B, denoted bot(B)
and top(B). Top/bottom paths and their inverses are also called the sides of the
band. The Z-edges e and f are called the start and end edges of the band. If n > 1
but e = f, then the Z-band is called a Z-annulus.

We will consider g-bands, where Z is one of the sets Q; of state letters for
the S-machine M, 6-bands for every 6 € ©, and a-bands, where Z = {a} C Y.
The convention is that a-bands do not contain (8, g)-cells, and so they consist of
(8, a)-cells only.

Remark 5.2. To construct the top (or bottom) path of a band B, at the beginning
one can just form a product X; ...X, of the top paths x;-s of the cells ny,...,m,
(where each 7; is a Z-bands of length 1). No #-letter is being canceled in the word
W = Lab(x;) ...Lab(x,) if 8 is a g- or a-band since otherwise two neighbor cells
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of the band would make the diagram non-reduced. For similar reason, there are no
cancellations of g-letters in W if B is a 8-band

If B is a f-band then a few cancellations of a-letters (but not g-letters) are
possible in W. (This can happen if one of 7;, 7; 41 is a (6, g)-cell and another one
is a (6, a)-cell.) We will always assume that the top/bottom label of a 6-band is a
reduced form of the word W. This property is easy to achieve: by folding edges with
the same labels having the same initial vertex, one can make the boundary label of a
subdiagram in a van Kampen diagram reduced (e.g. see [13] or [22]).

If the path (e”!q;f)*! or the path (fq;'e™!)®! is the subpath of the boundary
path of A then the band is called a rim band of A. We shall call a Z-band maximal
if it is not contained in any other Z-band. Counting the number of maximal Z-bands
in a diagram we will not distinguish the bands with boundaries e_lqlfqz_1 and
fq, e !qy, and so every Z-edge belongs to a unique maximal Z-band.

We say that a Z;-band and a Z,-band cross if they have a common cell and
ZiNZy=0.

Sometimes we specify the types of bands as follows. A g-band corresponding to
one of the letters ¢ of the base is called a ¢-band.

The papers [2,15, 18] contain the proof of the following lemma in a more general
setting. (In contrast to [15, Lemma 6.1] and [18, Lemma 3.11], we have no x-cells
here.)

Lemma 5.3. A reduced van Kampen diagram A over M has no q-annuli, no 6-annuli,
and no a-annuli. Every 0-band of A shares at most one cell with any q-band and
with any a-band. O

If W = x1...x, is a word in an alphabet X, X’ is another alphabet, and
¢: X — X'U{1} (where 1 is the empty word) is a map, then p (W) = ¢ (x1) ... p(xn)
is called the projection of W onto X’. We shall consider the projections of words in
the generators of M onto ® (all 6-letters map to the corresponding element of ©,
all other letters map to 1), and the projection onto the alphabet {Q¢ LI--- LU On—_1}
(every g-letter maps to the corresponding Q;, all other letters map to 1).

Definition 5.4. The projection of the label of a side of a g-band onto the alphabet ®
is called the history of the band. The step history of this projection is the step history
of the g-band. The projection of the label of a side of a #-band onto the alphabet
{Qo,..., On—1} is called the base of the band, i.e. the base of a #-band is equal to
the base of the label of its top or bottom.

As for words, we may use representatives of Q j-s in base words.

Definition 5.5. Let A be a reduced diagram over M, which has boundary path of the
form pl_lql pzqgl, where p; and p; are sides of g-bands, and q;, q> are maximal
parts of the sides of #-bands such that Lab(q;), Lab(q,) start and end with g-letters.

Then A is called a trapezium. The path q; is called the bottom, the path q5 is
called the fop of the trapezium, the paths p; and p, are called the left and right sides
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of the trapezium. The history (step history) of the g-band whose side is p; is called
the history (resp., step history) of the trapezium; the length of the history is called
the height of the trapezium. The base of Lab(q;) is called the base of the trapezium.

q2

P2

Trapezium a1

Figure 2. Band and trapezium.

Remark 5.6. Notice that the top (bottom) side of a §-band 7~ does not necessarily
coincide with the top (bottom) side q, (side q;) of the corresponding trapezium of
height 1, and q5 (q) is obtained from top(7") (resp., bot(7")) by trimming the first
and the last a-edges if these paths start and/or end with a-edges. We shall denote
the trimmed top and bottom sides of 7 by ttop(7) and tbot(7"). By definition, for
arbitrary 6-band 7, ttop(7") is obtained by such a trimming only if 7 starts and/or
ends with a (6, g)-cell; otherwise ttop(7) = top(7). The definition of thot(7") is
similar.

By Lemma 5.3, any trapezium A of height # > 1 can be decomposed into 6-bands
T1, ..., Ty connecting the left and the right sides of the trapezium. The word written
on the trimmed top side of one of the bands 7; is the same as the word written on
the trimmed bottom side of 41, i = 1,...,h. Moreover, the following lemma
claims that every trapezium simulates the work of M. It summarizes the assertions
of Lemmas 6.1, 6.3, 6.9, and 6.16 from [18]. For the formulation (1) below, it is
important that M is an S-machine. The analog of this statement is false for Turing
machines. (See [17] for a discussion.)

Lemma 5.7. (1) Let A be a trapezium with history 61...64 (d > 1). Assume

that A has consecutive maximal 0-bands Ty, ... Ty, and the words U; and V;
are the trimmed bottom and the trimmed top labels of T; (j = 1,...,d). Then

the history of A is a reduced word, Uj, V; are admissible words for M, and

M=U-0,Ua=V,....Us =V, Vg =Ug - 04.

(2) For every reduced computation U — --- — U - H =V of M with |H| > 1
there exists a trapezium A with bottom label U, top label V, and with history H .

Using Lemma 5.7, one can immediately derive properties of trapezia from the
properties of computations obtained earlier.
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If H = 6;...60; is a subword of the history 0; .. .6, from Lemma 5.7 (1), then
the bands 77, . .., 7; form a subtrapezium A’ of the trapezium A. This subtrapezium
is uniquely defined by the subword H' (more precisely, by the occurrence of H’ in
the word 6 . ..60;), and A’ is called the H'-part of A.

We say that a trapezium A is standard if the base of A is the standard base B
of M or B™!, and the step history of A (or the inverse one) contains one of the words

217)AH AT, (127)(27)(272), (237)(37)B73),
(B4 4), (45)(5)G75).

Remark 5.8. By Lemmas 5.7 and 4.10 (2), given the history H, one can reconstruct
the entire standard trapezium A.

Definition 5.9. We say that a trapezium I is big if:

(1) the base of A or the inverse word has the form xvx, where xv a cyclic shift of
the L-s power of the standard base;

(2) the diagram I" contains a standard trapezium.

Lemma 5.10. Let A be a trapezium whose base is xvx, where x occurs in v
exactly L — 1 times and other letters occur < L times each (where L is as in (5.2)).
Then either A is big or the length of a side of every 0-band of A does not exceed
cs(IW N+ IW' ), where W, W' are the labels of its top and bottom, respectively.

Proof. Thediagram A is covered by L subtrapezia I'; (i = 1,..., L) with bases xv; x.
Assume that the the step history of A (or inverse step history) contains one of the
subwords

@1IH)HADHATD), (127)(27)(272), (237)(37)(373), (347)(4H (4™ 4).

Then by Lemma 4.5 (2) (and 5.7), the base of A has the form (xu)%x, where xu
is a cyclic shift of the standard base (or the inverse one) and the diagrams I';-s
(i =1,...,L)are just copies of each other. Since A contains a standard subtrapezia,
it is big.

Now, under the assumption that the step history has no subwords mentioned in
the previous paragraph, it suffices to bound the the length of a side of every 6-band
of arbitrary T'; by < c4(||V|q + ||V']]), where V and V' are the labels of the top and
the bottom of T;.

Assume that the word xv; x has a proper subword yuy, where u has no letters y,
and any other letter occurs in u at most once. Then the word yuy is faulty since v;
has no letters x. By Lemma 4.13, we have

|Uj|a < C max (|U0|a, |Ut|a)

for every configuration U; of the computation given by Lemma 5.7 restricted to the
base yuy. Since ¢4 > C, it suffices to obtain the desired estimate for the computation
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whose base is obtained by deleting the subword yu from xv; x. Hence inducting on
the length of the base of I';, one may assume that it has no proper subwords yuy,
and so the base of I'; is revolving. Now the required upper estimate for I'; follows
from Lemma 4.25 (see (1) and (2c¢) there). O

5.3. Parameters. The following constants will be used for the proofs in this paper.

AN <K <Kes K Lo < L<KK<KJ
<8 l'gee e K Ny € Ny € N3 € Ny (5.3)

For each of the inequalities of this paper, one can find the highest constant (with
respect to the order <) involved in the inequality and see that for fixed lower constants,
the inequality is correct as soon as the value of the highest one is sufficiently large.
This principle makes the system of all inequalities used in this paper consistent.

6. Diagrams without hubs

6.1. A modified length function. Let us modify the length function on the words
and paths. The standard length of a word (a path) will be called the combinatorial
length of it. From now on we use the word “length” for the modified length. We set
the length of every g-letter equal 1, and the length of every a-letter equal to a small
enough number § so that

J§ < 1. (6.1)

We also set to 1 the length of every word of length < 2 which contains exactly
one 6-letter and no g-letters (such words are called (0, a)-syllables). The length of a
decomposition of an arbitrary word in a product of letters and (6, a)-syllables is the
sum of the lengths of the factors. The length |w| of a word w is the smallest length
of such decompositions. The length |p| of a path in a diagram is the length of its
label. The perimeter |0A| of a van Kampen diagram is similarly defined by cyclic
decompositions of the boundary dA.

The next statement follows from the above definitions and from the property of
(8, q)-relations and their cyclic shifts: The subword between two g-letters (between
f-letters) in arbitrary (6, g)-relation is a syllable (has at most one g-letter and at most
two a-letters).

Lemma 6.1. Let s be a path in a diagram A having ¢ 0-edges and d a-edges. Then:
(a) |s| = max(c,c + (d — c)é).
(b) |s| = c if s is a top or a bottom of a q-band.

(c) for any product s = $18; of two paths in a diagram, we have

st + [s2] > |s| > [s1] + [s2] — 0. (6.2)
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(d) Let T be a 0-band with base of length ly,. Let l, be the number of a-edges in the
top path topp(T). Then the length of T (i.e. the number of cells in T ) is between
lg — Iy and 1, + 31p. O
Lemma 6.2. Let A be a van Kampen diagram whose rim 6-band T has base with at
most K letters. Denote by A\’ the subdiagram A\T . Then |[0A| — |0A'| > 1.

Proof. Let s be the top side of 7 and s C dA. Note that the difference between
the number of a-edges in the bottom s’ of 7~ and the number of a-edges in s cannot
be greater than 2K, because every (6, g)-relator has at most two a-letters. Hence
|| — |s| < 2K§. However, A’ is obtained by cutting off 7 along §’, and its boundary
contains two f-edges fewer than A. Hence we have [sg| — [sy| > 2 — 26§ for the
complements so and s’y of s and §’, respectively, in the boundaries dA and dA’.
Finally,
[0A] —|0A"| >2—28 —2K§ — 48 > 1

by (6.1) and (6.2). O

We call a base word w tight if:

(1) for some letter x the word w has the form uxvx, where the letter x does not
occur in ¥ and x occurs in v exactly L — 1 times;

(2) every proper prefix w’ of w does not satisfy Property (1).
Lemma 6.3. If a base w of a 0-band has no tight prefixes, then |w| < Ko, where
Ko =2LN.

Proof. The hub base includes every base letter L times. Hence every word in this
group alphabet of length > Ky + 1 includes one of the letters L 4 1 times. O

From now on we shall fix a constant K such that
K > 2Ky =4LN. (6.3)
Definition 6.4. We say that a reduced diagram I' is a comb if it has a maximal
g-band @ (the handle of the comb), such that:
(C1) bott(@) is a part of dI", and every maximal 6-band of I" ends at a cell in @.
If in addition the following properties hold:

(C3) one of the maximal #-bands 7 in I" has a tight base (if one reads the base
towards the handle); and

(C3) other maximal #-bands in I" have tight bases or bases without tight prefixes,

then the comb is called tight.
The number of cells in the handle @ is the height of the comb, and the maximal
length of the bases of the 6-bands of a comb is called the basic width of the comb.

Notice that every trapezium is a comb.
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T

Figure 3. Comb.

Lemma 6.5 ([19, Lemma 4.10]). Let | and b be the height and the basic width
of a comb " and let T1,...T; be consecutive 0-bands of T (as in Figure 3). We
can assume that bot(77) and top(T;) are contained in dU. Denote by a = |0['|,
the number of a-edges in the boundary of T, and by o the number of a-edges
on bot(71). Then a + 21b > 2ay, and the area of T’ does not exceed cobl? + 2al
for some constant co = co(M).

We say that a subdiagram I' of a diagram A is a subcomb of A if T" is a comb,
the handle of I" divides A in two parts, and I" is one of these parts.

Lemma 6.6. Let A be a reduced diagram over G with non-zero area, where every
rim 0-band has base of length at least K. Assume that:

(1) A is a diagram over the group M ; or
(2) A has a subcomb of basic width at least K.

Then there exists a maximal q-band @ dividing A in two parts, where one of the
parts is a tight subcomb with handle Q.

Proof. (1) Let 7y be a rim band of A (Fig 1). Its base w is of length at least K, and
therefore w has disjoint prefix and suffix of length Ky since K > 2K, by (6.3). The
prefix of this base word must have its own tight subprefix wy, by Lemma 6.3 and the
definition of tight words. A g-edge of Ty corresponding to the last g-letter of w; is
the start edge of a maximal g-band @’ which bounds a subdiagram I'’ containing a
band T (a subband of Jy) satisfying Property (C,). It is useful to note that a minimal
suffix w, of w, such that w; s tight, allows us to construct another band @” and a
subdiagram I'”” which satisfies (C5) and has no cells in common with T,

Thus, there are @ and I" satisfying (C,). Let us choose such a pair with minimal
Area(I"). Assume that there is a 6-band in I" which does not cross @. Then there
must exist a rim band 7; which does not cross @ in I'. Hence one can apply the
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construction from the previous paragraph to 77 and construct two bands @; and @,
and two disjoint subdiagrams I'; and I'; satisfying the requirement (C,) for I.
Since 'y and TI'; are disjoint, one of them, say ', is inside I". But the area of I'; is
smaller than the area of I', and we come to a contradiction. Hence I" is a comb and
condition (C1) is satisfied.

Assume that the base of a maximal 8-band ¥ of I" has a tight proper prefix (we
may assume that 7~ terminates on @), and again one obtain a g-band @ in I, which
provides us with a smaller subdiagram T’ of A, satisfying (C,), a contradiction.
Hence T satisfies Property (C3) as well.

(2) The proof is shorter since a comb is given in the very beginning. O

Q1 9 Q

Figure 4. Lemma 6.6.

6.2. Mixture on the boundaries of diagrams. We will need a parameter of dia-
grams introduced in [16]. It was called mixture.

Let O be a circle with two-colored finite set of points (or vertices) on it, more
precisely, let any vertex of this finite set be either black or white. We call O anecklace
with black and white beads on it. We want to introduce the mixture of this finite set
of beads.

Assume that there are n white beads and n’ black ones on O. We define sets P;
of ordered pairs of distinct white beads as follows. A pair (01, 02) (01 # 02) belongs
to the set P; if the simple arc of O drawn from o0 to 0, in clockwise direction has at
least j black beads. We denote by w7 (O) the sum Z}(=1 #P; (the J-mixture on O).
Below similar sets for another necklace O’ are denoted by P’ ;. In this subsection,
J > 1, but later on it will be a fixed large enough number J from the list (5.3).

Lemma 6.7 ([16, Lemma 6.1]). (a) us(0) < J(n? —n).

(b) Suppose a necklace Q' is obtained from O after removal of a white bead v. Then
#P'j < #P; for every j, and juy(0) —Jn < uy(0') < us(0).
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(¢c) Suppose a necklace O’ is obtained from O after removal of a black bead v. Then
#P'; <#P; forevery j, and uy(0’) < ny(O).

(d) Assume that there are three black beads v1, va, v3 of a necklace O, such that the
clockwise arc v1—v3 contains v, and has at most J black beads (excluding vq
and v3), and the arcs v1—v, and v,—v3 have m1 and m, white beads, respectively.
If O’ is obtained from O by removal of v, then 1y (0') < wy(0) —mym,y. O

For any diagram A over G, we introduce the following invariant (A) = uy(dA)

depending on the boundary only. To define it, we consider the boundary d(A), as a

necklace, i.e. we consider a circle O with ||0A|| edges labeled as the boundary path

of A. By definition, the white beads are the mid-points of the §-edges of O and black
beads are the mid-points of the g-edges O. Then, by definition, the mixture on dA

is w(A) = g (0).

6.3. Quadratic upper bound for quasi-areas of diagrams over M. The Dehn
function of the group M is greater that the required function F(n) = n? f(n)3. For
example, it is cubic if f(n) = const. However we are going to find the Dehn function
of G, and first we want to bound the areas of the words vanishing in M with respect to
the presentation of G. For this goal we artificially introduce the concept of G-area.
The G-area of a big trapezia can be much less that the real area of it in M. This
concept will be justified at the end of this paper, where some big trapezia are replaced
by diagrams with hubs, but having lesser areas.

Definition 6.8. The G-area Areag(I") of a big trapezium I' is, by definition, the
minimum of the half of its area (i.e. the number of cells) and the product

esh([[top(T) | + [Ibot(I)]]).

where £ is the height of I" and ¢5 is the constant from (5.3).

To define the G-area of a diagram A over M, we consider a family S of big
subtrapezia (i.e. subdiagrams, which are trapezia) and single cells of A such that
every cell of A belongs to a member X of this family, and if a cell IT belongs to
different ¥; and X, from X, then both ¥; and X, are big subtrapezia of A with
bases xvix, xv,x, and ITis a (6, x)-cell. (In the later case, the intersection X1 N X,
must be an x-band.) There is such a family “covering” A, e.g. just the family of all
cells of A.

The G-area of S is the sum of G-areas of all big trapezia from S plus the number
of single cells from S (i.e. the G-area of a cell II is Area(IT) = 1). Finally, the
G-area Areag (A) is the minimum of thea G-areas of all “coverings” S as above.

It follows from the definition that Areag(A) < Area(A) since the G-area of a
big trapezium does not exceed a half of its area.

Lemma 6.9. Let A be a reduced diagram, and every cell w of A belongs in one of

subdiagrams Ay, ..., Ay, where any intersection A; N A either has no cells or it
is a g-band, Then Areag(A) < > -, Areag(A;).
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Proof. Consider the families Sy, ..., S, given by the definition of G-areas for the
diagrams Ay, ..., A,,. ThenthesetS = S; U---US,, “covers” the entire A according
to the above definition. This implies the required inequality for G-areas. O

We will show that for some constant N, and N; the G-area of any reduced
diagram A over M with perimeter n does not exceed Non? + Niuu(A). (Using the
quadratic upper bound for @ (A) from Lemma 6.7 (a), one deduces that the G-area
is bounded by N’n? for some constant N’.) Roughly speaking, we are doing the
following. We use induction on the perimeter of the diagram. First we remove
rim 6-bands (those with one side and both ends on the boundary of the diagram)
with short bases. This operation decreases the perimeter and preserves the sign of
Non? + Niju(A) — Areag(A), so we can assume that the diagram does not have
such bands. Then we use Lemma 6.6 and find a tight comb inside the diagram with a
handle €. We also find a long enough ¢g-band €’ that is close to €. We use a surgery
which amounts to removing a part of the diagram between €’ and € and then gluing
the two remaining parts of A together. The main difficulty is to show that, as a result
of this surgery, the perimeter decreases and the measure and the mixture change in
such a way that the expression Non? 4+ Niu(A) — Areag(A) does not change its
sign. In the proof, we need to consider several cases depending on the shape of the
subdiagram between €’ and €. Note that neither Non? nor Nyu(A) nor Areag(A)
alone behave in the appropriate way as a result of the surgery, but the expression
N>n? + Niju(A) — Areag (A) behaves as needed.

Remark 6.10. We introduced the surgery and used induction mentioned above in [19,
Lemma 6.2] to obtain a worse upper bound n2 log n for the area. But there were neither
mixture, nor G (just M), nor G-area in [19], and a different definition for length | * |
was used there. Besides, we will use an auxiliary function ®(x) in the proof to be
able to repeat in part our argument later, for diagrams over G. So we shall prove
Lemma 6.16 anew to obtain the better estimate.

So, N; and N, are big enough constants from the list (5.3). Here “big enough”
means that they satisfy the inequalities used in the proof of Lemma 6.16 (such that
as (6.13), (6.14), (6.15), (6.26), (6.30), (6.32), (6.34), (6.39)). Each of them has the
form N; > % (i = 1,2), where the right-hand side * does not depend on Nj; (but
depends on the constants introduced earlier). Since the number of inequalities is
finite, the right choice of Ny, N, is possible.

Let ®(x) be an arbitrary function defined for real x > 0 such that ®(x) = x2¢(x)
for a non-decreasing function ¢ (x) > 0 with ¢(1) > 1 and

P(x) —Dd(x —y) = xyp(x) forO0<y <x. (6.4)

Remark 6.11. For this section, it suffices to take quadratic ®(x) and ¢(x) = const.,
but to estimate the G-area of diagrams with hubs, we will take the functions ®(x) =
F(x) and ¢ (x) = g(x), satisfying inequality (6.4) by Lemma 4.18.
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We are going to prove that the G-area of a reduced diagram A over M does
not exceed N, ®(n) + N1gp(n)u(A), where n = |dA|. Arguing by contradiction in
the remaining part of this section, we consider a counter-example A with minimal
perimeter n. Of course, its G-area is positive, and, by Lemma 5.3, we have at least
two 6-edges on the boundary dA, and so n > 2.

If I is a comb with handle € and 8 is another maximal g-band in I, then B
cuts up I" in two parts, where the part that does not contain € is a comb I'/ with
handle 8. It follows from the definition of comb, that every maximal 6-band of I
crossing B connects B with €. If B8 and € can be connected by a 6-band containing
no (6, g)-cells, then I’ is called the derivative subcomb of T'. Note that no maximal
0-band of I" can cross the handles of two derivative subcombs.

Lemma 6.12. (1) The diagram A has no two disjoint subcombs I'1 and ', of basic
widths at most K with handles 81 and B, such that some ends of these handles
are connected by a subpath x of the boundary path of A, where X has at most N
q-edges.

(2) The boundary of every subcomb T" with basic width s < K has 2s q-edges.

Z2

Figure 5. Lemma 6.12.

Proof. We will prove Statements (1) and (2) using simultaneous induction on A =
Area(I'y) + Area(I';) (resp., on A = Area(I")). Arguing by contradiction, we
consider a counter-example with minimal A.

(1) Since the area of I'; (i = 1,2) is less than A, we may use Statement (2), and so
we have at most 2K ¢ edges in dT7;.

Let &7 and &, be the lengths of the handles 87 and B, of I'; and I',, resp.
Without loss of generality, we assume that #; < h,. Denote by y;z; the boundaries
of I'; (i = 1,2), where y; is the part of A and z; is the side of the handle of T
(so y1Xy» is the part of the boundary path of A, see Fig. 5 (1)). Then each of the
0-edges e of y; is separated in dA from every 6-edge f of y, by lessthan4K + N < J
g-edges. Hence every such pair (e, f) (or the pair of white beads on these edges)
makes a contribution to w(A).
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Let A’ be the diagram obtained by deleting the subdiagram I'y from A. When
passing from dA to dA’, one replaces the 0-edges from y; by the 0-edge of z;
belonging to the same maximal 6-band. The same is true for white beads.

But each of the /1 45 pairs in the corresponding set P’ of white beads is separated
in A’ by less number of black beads than the pair defined by A. Indeed, since the
handle of T'; is removed when one replaces dA by dA’, two black bead at the ends
of this handle are removed, and therefore

p(A) = u(A') = hih, (6.5)

by Lemma 6.7 (d).
Let o be the number of a-edges in dT';. It follows from Lemma 6.5 that the area,
and so the G-area of 'y, does not exceed C;(h1)? + 2ah;, where C; = coK.

Remark 6.13. The constants C1, C,, Cq2, C3 are not included in the list (5.3) since
their values chosen here make sense only in the present subsection.

Since the boundary of A’ has atleast two g-edges fewer than A and |z, | =h; <|y1],

we have |[0A’| < |0A| — 2. Moreover, we have from Lemma 6.1 (a) and Lemma 5.3
that

|0A] — [dA"] = y = max (2, 8( — 2hy)), (6.6)

because the top/bottom of $B; has at most /27 a-edges.
This inequality, inequality (6.5), and the inductive assumption related to A’, imply
that the G-area of A’ is not greater than

No®(n —y) + Nig(n)p(A) — Nigp(n)hih.

Adding the G-area of I'; and using inequality (6.4), we see that by Lemma 6.9, the
G-area of A does not exceed

No®(n) — Nayn + Nigp(n)u(A) — Nip(n)hihy + CihT + 2ah;.

Since h; < hy and ¢(n) > 1, this will contradict the choice of the counter-example A
when we prove that

— Noyn — Nihi + Cihi 4 2ahy < 0. (6.7)
If « < 4hy, then inequality (6.7) follows from the inequalities y > 2 and
Ny > Cy + 8. (6.8)

Assume that @ > 4h1. Then by (6.6), we have y > %50{ and Noyn > 2ah; since
n > 2hy by Lemma 5.3, and
N, > 2871, (6.9)

Since Nlh% > Clh% by (6.8), the inequality (6.7) follows.
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(2) If there are at least two derivative subcombs of I', then one can find two of
them satisfying the assumptions of Statement (1) (moreover, with |x|; = 0), and
Area(I';) + Area(I;) < Area(I') = A, a contradiction. Therefore there is a most
one derivative subcomb I'’ in T" (Fig. 5 (2)). In turn, I'” has at most one derivative
subcomb I'”, and so one. It follows that there are no maximal ¢g-bands in T except
for the handles of I/, T, .... Since the basic width of I" is s, we have s maximal
g-bands in T", and the lemma is proved. O

Lemma 6.14. There are no pair of subcombs T" and ' in A with handles X and X’
of length £ and {' such that T’ is a subcomb of T, the basic width of T does not
exceed Ko and €/ < (/2.

X1

X'
Xy, R

Figure 6. Lemma 6.14.

Proof. Proving by contradiction, one can choose I'' so that £’ is minimal for all
subcombs in I" and so I' has no proper subcombs, i.e. its basic width is 1 (Fig. 6). It
follows from Lemma 6.5 that for o = |T'|,, we have

Areag(I'') < Area(I"’) < co(I")? + 2al’. (6.10)

Let A’ be the diagram obtained after removing the subdiagram I’ from A. The
following inequality is the analog of (6.6) (where & is replaced by £)

|0A] —[9A"] > y = max (2, 8(x — 21")). 6.11)

The g-band X contains a subband € of length I”. Moreover one can choose €
so that all maximal 6-bands of T crossing the handle X’ of T, start from €. These
#-bands form a comb T'” contained in T, and in turn, T'” contains T'". The two parts
of the complement X'\€ are the handles of two subcombs E; and E, formed by
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maximal 6-bands of I", which do not cross X’. Let the length of these two handles
be £ and £,, respectively, and so we have £ + €, =1 —1’ > I’. (E1 or E, can be
empty; then £; or £, equals 0.)

It will be convenient to assume that I' is drawn from the left of the vertical
handle X. Denote by yz the boundary path of I', where y is the right side of the
band X. Thus, there are /1 (resp., /2) 8-edges on the common subpath x; (subpath x,)
of z and 0E; (and 0F,).

By Lemma 6.12 (2), the path z contains at most 2K g-edges, because the basic
width of I" is at most K.

Consider the factorization z = X,xx1, where x is a subpath of dI"’. Tt follows
that between every white bead on x; (i.e. the middle point of the 6-edges on x;)
and a white bead on x we have at most 2K black beads (i.e. the middle points of
the g-edges of the path x). Since J is greater than 2K, every pair of white beads,
where one bead belongs to x and another one belongs to x; (or, similarly, to x»)
contributes 1 to u(A). Let P denote the set of such pairs. By the definition of E;
and E,, wehave #P = 1'({, + 45) =1'(I = 1") > (I')>.

When passing from dA to dA’, one replaces the left-most 6-edges of every
maximal 6-band from I'/ with the right-most 8-edges lying on the right side of X'.
The same is true for white beads. But each of the [’(I — ) pairs in the corresponding
set P’ of white beads is separated in dA’ by less number of black beads since the
g-band X’ is removed. Therefore every pair from P’ gives less by 1 contribution to
the mixture, as it follows from the definition of mixture. Hence pu(A) — u(A’) >
I'(I =1y > (I")>. This inequality, inequality (6.11), and the inductive assumption
related to A’, imply that the G-area of A’ is not greater than

N2 ®(n —y) + Nig(n)p(A) — Nigp(n)(€)>.

Adding the G-area of IV (6.10) and applying inequality (6.4), we see that the G-area
of A does not exceed

N2®(n) + Nigp(m)u(A) = Nayn — Nig(n)(I')? + co(I')* + 201,
This will contradict the choice of the counter-example A when we prove that
— Nayn — Ni(I)* + co(I')* + 2al’ < 0, (6.12)

because ¢(n) > 1. Consider two cases:

(a) Let o < 4l’. Then inequality (6.12) follows from the inequalities y > 2 and

N1 >co + 8. (6.13)

(b) Assume that @ > 4/’. Then by (6.11) we have y > %505 and Noyn > 2al’ since
n > 2l > 4]’ by Lemma 5.3, and

Ny > 871 (6.14)
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Since N1 (1) > co(I")? by (6.13), the inequality (6.12) follows.
Thus, the lemma is proved by contradiction. O

Lemma 6.15. A has no rim 0-band whose base has s < K letters.

-
— I

Af

Figure 7. Rim 6-band.

Proof. Assume by contradiction that such a rim 8-band 7~ exists, and top(7") belongs
in d(A) (Fig. 7). When deleting 7, we obtain, by Lemma 6.2, a diagram A’ with
[0A’| < n — 1. Since top(7) lies on dA, we have from the definition of the length,
that the number of a-edges in top(7) is less than 1 (n — s). By Lemma 5.1, the
length of T is at most 3s + 8 !(n —s) < §~'n. Thus, by applying the inductive
hypothesis to A’, we have that G-area of A is not greater than

Na®(n — 1) + Nip(m)pu(A) + 8 'n
because ((A’) < u(A) by Lemma 6.7 (b). But the first term of this sum does not
exceed N, ®(n) — Non by (6.4), and so the entire sum is bounded by
N2®(n) + Nig(n)p(A)
provided
Ny > 6§71 (6.15)

This contradicts to the choice of A, and the lemma is proved. 0
Lemma 6.16. The G-area of a reduced diagram A over M does not exceed

N2 ®(n) + Nig(n)pu(A),
where n = [0A|.

Proof. We continue studying the hypothetical minimal counter-example A. By
Lemma 6.15, now we can apply Lemma 6.6 (1). By that lemma, there exists a tight
subcomb I' C A. Let 7 be a 8-band of I" with a tight base.

The basic width of T is less than Ky by Lemma 6.3. Since the base of T is tight,
it is equal to uxvx for some x, where the last occurrence of x corresponds to the
handle @ of I, the word u does not contain x, and v has exactly L — 1 occurrences
of x. Let @' be the maximal x-band of T" crossing T at the cell corresponding to the
first occurrence of x in uxvx (Fig. 8 (a)).
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Figure 8. Lemma 6.16.

We consider the smallest subdiagram I'"” of A containing all the 8-bands of T’
crossing the x-band @’. It is a comb with handle @, C @. The comb I" is covered
by a trapezium I'y placed between @ and @, and the comb I'y with handle @'. The
band @’ belongs to both I'; and I';. The remaining part of I' is a disjoint union of
two combs I'; and I'y whose handles @5 and @4 contain the cells of @ that do not
belong to the trapezium I';. The handle of T is the composition of handles @3, @,
@4 of '3, T and T4 in that order.

Let the lengths of @3 and @4 be /3 and /4, respectively. Let /’ be the length of
the handle of I'". Then by Lemma 6.14, we have

l/>l/2 and l=l/+l3+l4 (616)
Fori € {3,4} and o; = |0 |4, Lemma 6.5 gives inequalities
A; < Cil + 204;, (6.17)

where A; is the G-area of I';. (We take into account that G -area cannot exceed area.)
Let p3, p4 be the top and the bottom of the trapezium I';. Here p;l (resp., p4_1)
shares some initial edges with 0's (with dT'4), the rest of these paths belong to the
boundary of A. We denote by d3 the number of a-edges of p3 and by d} the number
of the a edges of p3 which do not belong to I';. Similarly, we introduce dy4 and dj.
Let A5 be the G-area of ['. Then by Lemma 5.10 and the definition of the G-area
for big trapezia, we have

Ay < Col'(ds + dy + 1) (6.18)

for some constant C5 < 8§71, because the basic width of I'; is less than K.
Now we observe that the handle @, of I'” is a copy of @' because both maximal
g-bands of the trapezium I', correspond to the same basic letter x.
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This makes the following surgery possible. The diagram A is covered by two
subdiagrams: I' and another subdiagram A, having only the band @ in common.
We construct a new auxiliary diagram by attaching I'; to A; with identification of
the of the band @’ of T'; and the band @,. We denote the constructed diagram by A.

Ay is a reduced diagram because every pair of its cells having a common edge,
has a copy either in I'; or in A;. Now we need the auxiliary:

Lemma 6.17. The G-area Ag of Ay is at least the sum of the G-areas of I'1 and Aq
minus .

Proof. Consider a minimal “covering” S of Ay from the definition of G-area, and
assume that there is a big trapezium E € S, such that neither I'; nor A; contains it.
Then E has a base ywy, where (yw)*! is a cyclic permutation of the Lth power of
the standard base, and the first y-band of E is in I'7, but it is not a subband of @’.

Since the history H of the big trapezium E is a subhistory of the history of I',,
we conclude that T, is a big trapezium itself, and therefore (xv)*! is an Lth power
of a cyclic shift of the standard base (or of the inverse of it). Since the first y occurs
in uxvx before the first x it follows that we have the (L + 1)-th occurrence of y before
the last occurrence of x in the word uxvx. But this contradicts to the definition of
tight comb I'.

Hence every big trapezium from S entirely belongs eitherto I'; orto A ;. Therefore
one can obtain “coverings” S’ and S” of these two diagrams if (1) every ¥ from S is
assigned either to S’ or to §” and then (2) one add at most [’ single cells since the
common band @’ in Ag should be covered twice in disjoint diagrams I'; and A;.
These construction complete the proof of the lemma. O

By Lemma 6.9, the G-area of A does not exceed the sum of G-areas of the five
subdiagrams 'y, I'5, '3, I'4, and A. But the direct estimate of each of these values is
not efficient. Therefore we will use Lemma 6.17 to bound the G-area of the auxiliary
diagram A built of two pieces I'; and A;.

It follows from our constructions and Lemmas 6.9 and 6.17, that

Areag(A) < Ap + Az + Ag + Ao + . (6.19)

Now we continue proving Lemma 6.16.

Let p? be the segment of the boundary 9I'3 that joins @ and I', along the boundary
of A (Fig. 8 (b)). It follows from the definition of d3, d}, /3, and a3, that the number
of a-edges lying on p? is at least a3 — (d3 — d}) — 1.

Let uz be the part of A that contains p> and connects @ with @’. It has /3
0-edges. Hence we have, by Lemma 6.1, that at least

|us| > max (13, I3 + 5(|p3|a — 13)) > max (13,13 + 5(0(3 —(ds — dé) — 213)).

Since w3 includes a subpath of length d} having no f-edges, we also have by Lem-
ma 6.1 (c) that [uz| > I3 + §(df — 1).
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One can similarly define p* and uy for I'y. When passing from dA to Ay we
replace the end edges of @', u; and uy by two subpaths of d@ having lengths /3
and /4. Let ng = |0Ay|. Then it follows from the previous paragraph that

n—ng>2+8(max(0,d; — 1,03 — (d3 — dj) — 215)
+ max (0. dy — 1,4 — (ds — d}) — 214)).  (6.20)

In particular, ngp < n — 2. By the inductive hypothesis,
Ag = N2®(no) + N1 (no)n(Ao). (6.21)

We note that the mixture ;£(Ag) of Ag is not greater than w(A)—1’(I—1"). Indeed,
by Lemma 6.14 (2), one can use the same trick as in Lemma 6.14 as follows. For
every pair of white beads, where one bead corresponds to a 6-band of I'; and another
one to a f-band of I'; or I'y, the contribution of this pair to w(Ag) is less than the
contribution to A. It remains to count the number of such pairs: I'(I5+14) = [(I-1").

Therefore, by inequalities (6.21) and (6.4), the G-area of A is not greater than

No®(n)+ N1 (n) i (A)—Non(n—no)—Nip (n)l'(I=1")+ Ar+ A3+ As+1". (6.22)

In view of inequalities (6.18), (6.17), and (6.19), to obtain the desired contradiction,
it suffices to prove that

Nzn(n — no) + Nll/(l — l,) > Clzl,(dg, +d4 + 1) + C12(13% + 142
+ 20315 + 20t4l4 + l/, (6.23)

where C1, = max(Cq, C3).
Since [ = I’ + I3 + Iy, it suffices to prove that

Nzn(n—no)—i—Nll’(l—l’) > C31,(d3+d4+1)+C3(l32.+142_)+2063l3+20(4l4, (6.24)

where C3 = Cq5 + 1.
Note that we can assume that

Cz; > 1. (6.25)
First we can choose N; big enough so that
Ni'(1=1")/3 > C3(l3 + 14)* > C3(15 + 13).
Indeed, by (6.16), we obtain

N N
le/(z E 71(13 + 1) (I3 + 1),

so it is enough to assume that
Ny > 3Cs. (6.26)
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We also have that N
7211(11 —no) > Csl’, (6.27)

because n —ng > 2,n > 2l ,and N, > C; by (6.26).
It remains to prove that

N ON
Tzn(n —no) + le/(z — 1"y > C3l'(d3 + dy) + 20305 + 20414, (6.28)

We assume without loss of generality that o3 > o4, and consider two cases:

(a) Suppose a3 < 2C3(I —1'). Since d; < a; +d] fori = 3,4, by inequality (6.20),
we have

ds+ds <oz +ag —|—d§ -I—d‘/‘ < 4C3(! —l/) —|—8_1(n—n0) +2—-2871
<4C3(1=1") + 87 (n —ny).

Therefore,

N
%l’(l -1+ 72n(n —ng) = 4CH' (L —1") + C387 ' (n — no)!’

(6.29)
> C3l'(d3 + da)
since we can assume that
Ny > 12C%, N2J2 > C387%. (6.30)
We also have by (6.16):
N N
=1z S+ 1)U + 1)
Ny os + og (6.31)
> — I3+1 20313 + 204l
=3 4, (I3 +14) > 20303 + 20414
since we can assume that
Ny > 24C;. (6.32)

The sum of inequalities (6.29) and (6.31) gives us the desired inequality (6.28).
(b) Assume now that oz > 2C5(I —I’). Then, applying Lemma 6.5 to the comb I'z,
we obtain : 5

ds — dé < 50[3 + Kol < 60(3 (6.33)

H < . o3
sincels <[ -1 < T and

C; > 3K,. (6.34)

We also have | 5
dy — d‘/‘ < 5064 + Kols < 60[3.
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These two inequalities and inequality (6.20) lead to
o) -1
d3+d4§§0{3+8 (n —nyp).

It follows from (6.33) that

1 2 1
(s —d}) =23 > ~as — ——a3 > ~as,
a3z — (dz — d3) 32 cos 2C30!3_7063

since /3 <[ —1' < 2‘%33 and C3 > 42 by (6.25). Therefore, by (6.20),

1
n—nop> 58053.
Thus, by (6.35),
d3 + d4 < 138_1(11 — no).

Since 2/” < n and n — ny > 2, inequality (6.37) implies

N.
—n(n = no) > Csl'(ds + da).
because we can assume that
Ny > C3871

(N, > 21C387! is enough).
Inequalities (6.36), (6.39), a3 > a4, and 4(I3 + I4) < n give us

N 7
?211(11 —ng) > ECg,S_l(n —no)n > 203(l3 + lg) > 2033 + 20414.

The inequality (6.28) follows now from inequalities (6.38), and (6.40).

7. Minimal diagrams over G

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

Given a reduced diagram A over the group G, one can construct a planar graph
whose vertices are the hubs of this diagram plus one improper vertex outside A, and

the edges are maximal 7-bands of A.

Let us consider two hubs I1; and I1; in a reduced diagram, connected by two
neighbor 7-bands €; and €; 41, where there are no other hubs between these ¢-bands.
These bands, together with parts of dI1; and 0115, bound either a subdiagram having
no cells, or a trapezium W of height > 1 (Fig. 9). The former case is impossible since
in this case the hubs have a common 7-edge and, the diagram is not reduced since all
cyclic permutations of the word (Wj,)% starting with ¢ are equal. We want to show
that the latter case is not possible either if the diagram A is chosen with minimal

number of hubs among the diagrams with the same boundary label.
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P M,

Figure 9. Cancellation of two hubs.

Indeed, both the top and the bottom labels of W are equal to the word (Wyst)*!,
and removing €; 1 from W, we get a subdiagram W’ with top/bottom label (Wj,)*!
and the same label V' of its sides. It follows that Wy, and V' commute in the group M.
Hence the word U = (Wi )' " LV(Wa )L~V ~lis equal to 1 in M. But U is the
boundary label of a subdiagram I' containing W’ and both IT; and IT,. Hence
one can replace I with a diagram over M, decreasing the nubmer of hubs in A, a
contradiction.

If W is an M-accepted word, then the word (W) is equal to 1 in G. To see this,
one can glue up L copies Ay, ..., Ay ot the trapezia corresponding to the accepting
computation of W, identifying the right side of each A; and the left side of A; 1
(indices are taken modulo L). The obtained annulus has inner boundary labeled by
the hub word (Wys)~, and so the hole can be glued up by a hub cell.

Asin[22] and [15], we will increase the set of relations of G by adding the (infinite)
set of disk relators (W) for every accepted word W. So we will consider diagrams
with disks, where every disk cell (or just disk) is labeled by such a word (W)*L.
(In particular, the hub is a disk.)

Again, if two disks are connected by two ¢-bands and there are no other disks
between these 7-bands, then one can reduce the number of disks in the diagram. For
this aid, it suffices to replace the disks with hubs and the cells corresponding to the
defining relations of M, and apply the trick exploited above.

Definition 7.1. We will call a reduced diagram A minimal if:

(1) the number of disks is minimal for the diagrams with the same boundary label;
and

(2) A has minimal number of (6,t)-cells among the diagrams with the same
boundary label and with minimal number of disks.

Clearly, a subdiagram of a minimal diagram is minimal itself.

Thus, no two disks of a minimal diagram are connected by two ¢-bands, such
that the subdiagram bounded by them contains no other disks. This property makes
the disk graph of a reduced diagram hyperbolic, in a sense, if the degree L of every
proper vertex (= disk) is high (L > 1). Below we give a more precise formulation
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(proved for diagrams with such a disk graph, in particular, in [22, Lemma 11.4] and
in [15, Lemma 3.2]).

Lemma 7.2. If a a minimal diagram contains at least one disk, then there is a disk T1

in A such that L —3 consecutive maximal t-bands B1, . .., By_3 start on 011, end on

the boundary A, and for any i € [1, L — 4], there are no disks in the subdiagram T';

bounded by B;, B;+1, 011, and A (Fig. 10). O
B, B

Figure 10. Lemma 7.2.

A maximal g-band starting on a disk of a diagram is called a spoke.

Lemma 7.2 implies by induction on the number of hubs:

Lemma 7.3 (see [16, Lemma 5.19]). If a reduced diagram A has m > 1 hubs, then
the number of spokes of A ending on the boundary 0A, and therefore the number
of q-edges in the boundary path of A, is greater than mLN /2 . O

Recall the following transformation for diagrams with disks, exploited earlier
in [15,22]. Assume there is a disk IT and a 8-band T subsequently crossing some
spokes 81, ..., By which start (say, counter-clockwise) from I1. Assume that k > 2
and there are no other cells between IT and the bottom of 7, and so there is a
subdiagram I" formed by IT and 7.

We describe the transposition (band moving construction in the terms of [22]) of
the disk and the band as follows. We have a word V' = Wt ...t W) _t written on
the top of the subband 7 of 7, that starts on B and ends on Bj. The bottom ¢
of 7 is the subpath of the boundary path q.qs of IT (Fig. 11).

Note that W) = W, = ... = Wj_; and t W is an accepted word by Lemma 5.7.
Therefore one can construct a new disk IT with boundary label (tW;)~ and
boundary s;s,, where Lab(s;) = V. Also one construct an auxiliary band 7 with
top label Wl_lt_1 R Wl_l, where the number of occurrences of ! is L —k, and
attach it to s; !, which has the same label. Finally we replace the subband 7 by 7"
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(and make cancellations in the new 6-band T if any appear). The new diagram T
formed by IT and 7 has the same boundary label as I".

Figure 11. Transposition of a 6-band and a disk.

Remark 7.4. After the transposition, the first (6, 7)-cells of z-spokes By, . . ., By are
removed and the total number of common (6, 7)-cells of the new spokes B1, . .., By
of IT and T is less than the number of common (8, ¢)-cells of By, ..., By and T at

least by k. In particular, if k > L — k, then the number of (6, 7)-cells in T is less
than the number of (6, t)-cells in I". This observatiom implies

Lemma 7.5. Let A be a minimal diagram.

(1) Assume that a 0-band Ty crosses k t-spokes 81, ..., By starting on a disk T1,
and there are no disks in the subdiagram Ao, bounded by these spokes, by Tg
and by T1. Then k < L /2.

(2) Assume that there are two disjoint 0-bands T and 8 whose bottoms are parts of
the boundary of a disk I1 and these bands correspond to the same rule 0 (if their
histories are read towards the disk). Suppose T crosses k > 2 t-spokes starting
on OI1 and 8 crosses { > 2 t-spokes starting on 0I1. Then k + £ < L/2.

(3) A contains no 0-annuli.

(4) A 0-band cannot cross a maximal q-band (in particular, a spoke) twice.

Proof. (1) Since every cell, except for disks, belongs to a maximal #-band, it follows
from Lemma 5.3 that there is a 8-band 7 such that 7~ crosses all By, ..., B and Ay
has no cells between 7 and I1. If &k > L/2, then by Remark 7.4, the transposition
of IT and 7 would decrease the number of (0, ¢)-cells in A, a contradiction, since A
is a minimal diagram.

(2) As above, let us transpose T and T1. This operation removes k (6, 1)-cells but
add L — k new (60, t)-cells in 7. However £ (8, 1)-cells of & and £ (0, t)-cells of T
will form mirror pairs, and so after cancellations one will have at most L —k —2£ new
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(0, t)-cells. This number is less than k if k 4+ £ > L /2 contrary to the minimality of
the original diagram. Therefore k + ¢ < L/2.

(3) Proving by contradiction, consider the subdiagram A’ bounded by a 6-annulus.
It has to contain disks by Lemma 5.3. Hence it must contain spokes 81, ..., 813
introduced in Lemma 7.2. But this contradits to item (1) of the lemma since
L—-3>1L/2

(4) The argument of item (3) works if there is a subdiagram A’ of A bounded by an
g-band and a 6-band. O

The transposition transformation will be used for extrusion of disks from quasi-
trapezia. The definition of a quasi-trapezium sounds as the definition of trapezium,
but quasi-trapezia may contain disks. (So a quasi-trapezium without disks is a
trapezium.)

Lemma 7.6. Let a minimal diagram T be a quasi-trapezium with standard
factorization of the boundary as pl_lqlpzqz_ L Then there is a diagram T such
that:

(1) the boundary of T is (p}) " qyp5(q5) ™", where
Lab(p’;) = Lab(p;) and Lab(q';) = Lab(q;)

for j =1,2;
(2) the numbers of hubs and (8, q)-cells in T' are the same as in T;

(3) the vertices (p',)— and (p',)— (the vertices (p)+ and (p',)+) are connected by
a simple path s1 (by s3, resp.) such that we have three subdiagrams 'y, 2, '3
of TV, where Ty is a trapezium with standard factorization of the boundary
(p) " tsiphsy ! and all cells of the subdiagrams Ty and T3 with boundaries
q;s7! and s>(q)) ™! are disks;

(4) all maximal 0-bands of T and all maximal 0-bands of T'y have the same number
ot (0, t)-cells (equal for T and T'5).

Proof. Every maximal 8-band of I" must connect an edge of p; with an edge of p,;
this follows from Lemma 7.5 (3). Hence we can enumerate these bands from bottom
to top: 71,..., 94, where h = |p1]| = |p2|-

If T has a disk, then by Lemma 7.2, there is a disk IT such that at least L — 3
t-spokes of it end on q; and q2, and there are no disks between the spokes ending
on q; (and on ). By Lemma 7.5 (2), atleast L —3 — L /2 > 2 of these spokes must
end on q; (resp., on qy).

If IT lies between 7, and 7,1, then the number of its z-spokes crossing 77
(crossing T;41) is at least 2. So one can make a transposition of IT with each of
these two 6-bands. So we can move the disk toward q; (or toward q,) until the
disk is extruded from the quasi-trapezium. (We use that if k ¢-spokes B4y, ..., Bx
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of IT end on (1, then after transposition, we again have k ¢-spokes B_l, R ﬁk of I
ending on q; see the notation of Remark 7.4.)

No pair 7 and 74 corresponds to two mutual inverse letters of the history. This
is clear if there are no discs between these 0-bands. If there is a disk, then this is
impossible too by Lemma 7.6 (2) since one could choose a disk IT as in the previous
paragraph. So the projection of the label of p; on the history is reduced.

Let us choose i such that the number m of (6, t)-cells in 7; is minimal. It follows
that I" has at least hm (0, t)-cells.

If the disk IT lies above 7;, we will move it upwards using transpositions. So
after a number of transpositions all such (modified) disks will be placed above the
0-band number A and form the subdiagram I';. Similarly we can form I's moving
other disks downwards.

In the obtaining diagram I, lying between I'; and I's, every 0-band is reduced
by the definition of transpositions. The neighbor maximal 8-band of ', cannot
correspond to mutual inverse letters of the history since the labels of p; and p) are
equal. It follows that the diagram I'; (without disks) is a reduced diagram, and so it
is a trapezium of height 4.

The 6-band 7; did not participate in the transpositions. Therefore it is a maximal
0-band of I';. Hence the trapezium I', contains exactly mh (6, t)-cells, which does
not exceed the number of (6,¢)-cells in I'. In fact these two numbers are equal
since I' is a minimal diagram. So every maximal 6-band of I" and every maximal
0-band of I'; has m (6, t)-cells. O

We say that a history H is standard if there is a standard trapezium with history H .

Definition 7.7. Suppose we have a disk IT with boundary label (tW)~ and B be a
t-spoke starting on IT. Suppose there is a subband € of B, which also starts on IT
and has a standard history H, for which the word ¢ W is H -admissible. Then we call
the z-band € a shaft.

For a constant A € [0; 1/2) we also define a stronger concept of A-shaft at IT
as follows. A shaft € with history H is a A-shaft if for every factorization of the
history H = HyH, H3, where ||Hq || + || H3|| < A||H ||, the middle part H> is still a
standard history. (So a shaft is a 0-shaft).

Lemma 7.8. Let I be a disk in a minimal diagram A and € be a A-shaft at T1 with
history H. Then € has no factorizations € = €,€,€5 such that:

(a) the sum of lengths of €1 and €3 do not exceed A|H ||; and
(b) A has a quasi-trapezium T such that top (or bottom) label of T has L + 1

occurrences of t and €, starts on the bottom and ends on the top of I.

Proof. Proving by contradiction, we first replace I' by a trapezium I'" according
to Lemma 7.6. The transpositions used for this goal do not affect neither IT nor €
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since € crosses all the maximal 6-bands of I'. Also one can replace I'” by a trapezium
with shorter base and so we assume that the base of it starts and ends with letter 7.

For the beginning, we assume that € is a shaft (i.e. A = 0). Then it follows from the
definition of shaft and Remark 5.8 that bot(I"") is labeled by (tW)L¢, where (t W)L
is the boundary label of II. One can remove the first or the last maximal ¢-band
from I'" and obtain a subtrapezium I'”” whose boundary label coincides with the
label of ATT (up to cyclic permutation), and dT'” shares a ¢-edge with 91T (Fig. 12
with A = 0). It follows that the subdiagram A’ = TT U I'’” has boundary label freely
equal to Lab(top(I"”')). However Lab(top(I'”) = (tW')L, where tW' = (tW) - H
by Lemma 5.7, and so there is a disk IT’ with boundary label (tW’)~. Therefore
the subdiagram A’ can be replaced by a single disk. So we decrease the number of
(0, t)-cells contrary to the minimality of A.

I‘JI

A0

Figure 12. Lemma 7.8.

Now we consider the general case, where € = €, €,€3. As above, we replace I’
by a trapezium I'” and obtain a trapezium I'”” after removing of one ¢-band in I'.
To obtain a contradiction, it suffices to consider the diagram A’ = [T U €;€, U T’
(forgetting of the complement of A" in A) and find another diagram A” with one disk
and fewer (0, t)-cells such that Lab(dA”) = Lab(dA’) in the free group.

Since both histories H and H, (and so H H,) are standard, one can enlarge I'”/
and construct a trapezium I’ with history H; H>. (The added parts £ and E, are
dashed in Figure 12 with A > 0). Note that we add < A| H||L new (8, t)-cells since
every maximal f-band of T""” has L such cells. As in case A = 0, this trapezium I""”
and the disk IT can be replaced by one disk IT’. However to obtain the boundary
label equal to Lab(dA’), we should attach the mirror copies 3; and 3, of E; and E;
to TT". The obtained diagram A” has at most A||H||L (6, t)-cells, while A’ has
at least ||Hz||L = (1 — A)|| H]| (6,1)-cells. Since A < 1 — A, we have the desired
contradiction. O

Lemma 7.8 will be used to obtain a linear bound, in terms of perimeter |dA|, for
the sum of lengths ¢ = 0, (A) of all A-shafts in a minimal diagram A, which make
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possible to exploit o, as an inductive parameter along with |dA|. One more tool
needed to linearly bound o, is a combinatorial proposition of two finite systems of
disjoint segments on Euclidean plane proved in the next section.

8. Designs in topological disk

By D, we denote Euclidean closed disk of radius 1. Let T be a finite set of disjoint
chords (plain lines in Fig. 13) and Q a finite set of disjoint simple curves in O (dotted
lines in Fig. 13). One may think of a curve as a non-oriented broken line, i.e. it is
built from finitely many finite segments. To distinguish the elements from T and Q,
we will say that the elements of Q are arcs.

We shall assume that the arcs belong to the open disk D?, an arc may cross a
chord transversally at most once, and the intersection point cannot coincide with one
of the two ends of an arc.

Under these assumptions, we shall say that the pair (T, Q) is a design.

By definition, the length |C| of an arc C is the number of the chords crossing C.
The term subarc will be used in natural way; obviously one has |D| < |C|if D is a
subarc of an arc C.

We say that an arc C is parallel to an arc C, and write C; || C, if every chord
(from T) crossing C; also crosses C,. So the relation || is transitive. (The arc of
length 2 is parallel to the arc of length 5 in Fig. 13.)

Figure 13. Design.
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Definition 8.1. Given A € (0; 1) and an integer n > 1, Property P (A, n) of a design
says that for any n different arcs Cy,..., C,, there exist no subarcs Dq,..., Dy,
respectively, such that

|Di| > (1 —1)[G]

foreveryi =1,...,nand Dy || D2 || -+ || Da.
By definition, the length £(Q) of the set of arcs Q is defined by the equality

LQ = IC|. 8.1)

CceQ

The number of chords will be denoted by #T. The goal of this subsection is to
prove the following:

Theorem 8.2. There is a constant ¢ = c(A, n) such that for any design (T, Q) with
Property P(A,n), we have
Q) =< c(#T). (8.2)

To prove Theorem 8.2, we may assume that Q has no arcs of length 0 and that
every chord is crossed by an arc. Also we may assume that #T > 1 since otherwise
all the arcs are parallel, and Property P(A,n) implies that the number of arcs is at
most n — 1; therefore one can take ¢c = n — 1.

Every chord T divides the disk & in two half-disks. If one of these half-disks
contains no other chords, we call the chord T peripheral and denote the peripheral
half-disk (without chord) by Or.

An arc D is called an extension of an arc C if C is a subarc of D. (An extension
need not be an element of Q.) We will consider only extensions of C € Q such that
replacing C by D we again obtain a design (T, Q') (but Property P(A,n) can be
violated for the new design).

An arc C of a design is called maximal if there exists no extension D of C

with |D| > |C].
Lemma 8.3. Ler (T, Q) be a design with #T > 1. Then all the arcs C1,C3, ...
from Q have maximal extensions D1, D», ... forming a set of arcs Q' such that the
design (T, Q') has the following property: for every arc D;, its ends belong to two
different peripheral half-disks.

Proof. Since no arc can cross a chord twice and the set of chords is finite, there is
a system of maximal arcs D1, D5, ... such that every D; is an extension of C;. It
suffices to prove that the ends of every D; belong to peripheral half-disks.

Assume that we have an end 0 of an arc D = D; and o belongs to no peripheral
half-disk. Let us choose the direction for D toward o, and assume that 7" is the last
chord crossed by D. Let H be the half-disk defined by T', where the point o belongs
to. The half-disk H is not peripheral, and so it contains a chord 7’ # T. None of
such T’ could be crossed by D because otherwise D had to cross the chord T at least
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twice. We may assume that 7" is the closest to o in the sense that one can connect o
and T’ by a path p inside H, p consequently intersect £ arcs D;,, ..., D;, from the
set {D1, D3, ...}, and the number £ is minimal.

If ¢ = 0, then using p one could extend D so that the extension crosses 7”. If £ > 0
we come to a contradiction too. Indeed, let us consider a small neighborhood U
of D;,, which contains neither points of other arcs, nor the boundary points of . If
one can bypath D;, in U moving around it, thereby replacing p by a path p’ having {—1
intersections with arcs (see Fig. 14 (a)), we get a contradiction. Otherwise going
around D;, in U clockwise or counter-clockwise one will cross an interval of some
chord T” # T from H (Fig. 14 (b)). Then one can use U to connect o with the
chord 7" and an extention of D crosses T"”, a contradiction again. O

Figure 14. Lemma 8.3.

To continue the proof of Theorem 8.2, we modify the number #T, taking every
chord T with a weight v(7'). By definition:
v(T) =1, if T crosses exactly one arc from Q,

v(T) =2, if T crosses exactly two arcs,

v(T) =2n—2, if T crosses exactly 2n — 2 arcs,

v(T) =2n—1, if T crosses at least 2n — 1 arcs.

Clearly, we have

#T <v(M) = Y 0(T) < (2n — DAT.

TeT
Therefore, instead of (8.2), it suffices to prove the following inequality

Q) =d v(T) (8.3)
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for some d = d(A,n) > 0. We will prove (8.3) for any d > % by induction on
the number of arcs in Q. If there is only one arc, then it is nothing to prove since
£(Q) < #T in this case. So we will assume that there are at least two arcs.

Assume that there is an arc C, which, after one choose a direction, can be
factorized as C1C,C3, where:

(@) |C1| +|C3] = A|C]|; and
(b) every chord crossing C; or C3 has weight at most 2n — 2.

Let us remove C from Q. We obtain a new design (T, Q’). Here T’ has the same
chords as T, but their weights change. Obviously, Property P(A,n) holds for the
design (T’,Q’). Hence by inductive hypothesis, the inequalty £(Q’) < d v(T’) is
true.

Also we have £(Q) = £(Q’) + |C| and

v(T) > v(T') + |C1| +|C3| = v(T') + A|C]|
since all chords crossing C; and C3 loss their weight by 1. It follows that
€Q) =4Q) +|C| =d v(T) + |C| =d(v(T) + AC[) = d v(T),

as desired, since d > AL

It remains to obtain a contradiction assuming thatno arc C € Q has a factorization
with Properties (a) and (b). In other words, every arc C € Q has a subarc D maximal
with respect to the following properties:

(A) |D] > (1=2)[C]; and
(B) the first and the last chords crossing D have weight 2n — 1.

We denote by (T, Q) the design obtained after the transition C — D for every arc C.
Here we assume that T contains the chords from T, which cross some arcs from Q
Observe that all chords of weight 2n — 1 from T have the same weight in T, as it
follows from the definition of Q. (We do not claim Property P(A, n) for (T, Q).)

Let T be a peripheral chord from T. It is crossed by (at least) 2n — 1 arcs
D1, ..., Dau_q since T is the first/last chord crossmg the arcs.

By Lemma 8.3, there are maximal extensions Dl, .. D2n 1of Dy, ..., Dyy—1,
respectively. Moreover, such extensions can be constructed for every peripheral
chord, and the two ends of every extension must belong to different peripheral half-
disks of the design (T, Q).

Suppose one can choose n extension, say ﬁl, ey D starting in OT and endlng in
the same half-disk O7: (T’ € T). Then every chord of T crossing D; has to cross D
for 1 <i,j < n. The same is true for the chords of T disposed between T and T’
Since D; starts with D; and D starts with D, the inequality |D;| < |D ;| implies
that every chord of T crossing D; has to cross D; too. Therefore assuming that
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|Dq| <--- <|Dy|, wehave Dy || --- || D,. However this violates Property P(A,n)
for the arcs Cy, ... Cy since |D;| > (1 — A)|C;| foreveryi = 1,...,n.

Thus, there are no n arcs among 51, el 52,,_1 connecting the half-disk Of
with the same peripheral half-disk. We see that for every peripheral half-disk Of
one can find three arcs, say D;, D i» Dy connecting O with three different peripheral
half-disks.

Now let us choose one vertex in every peripheral half-disk (e.g, on the boundary
of the disk &) and connect it with three other vertices using the triples of arcs
obtained in the previous paragraph. We obtain an outerplanar graph with at least
four vertices, where every vertex has degree at least 3. However there exist no such
graphs ([10, Corollary 11.9]). The obtained contradiction completes the proof of
Theorem 8.2. 0

Remark 8.4. One may allow the ends of arcs to belong to the boundary of D, and
then the same inequalty (8.2) holds since one can cut off the ends of every arc C
preserving the length of C.

Let us have a parameter A € [0,1/2). For every t-spoke B of a minimal
diagram A, we choose the A-shaft of maximal length in it (if a A-shaft exists). If B
connects two disks IT; and IT,, then there can be two maximal A-shafts: at IT; and
at IT,. We denote by 0, (A) the sum of lengths of all A-shafts in this family.

Lemma 8.5. There is a constant ¢ = c(A) such that o, (A) < c|dA| for every
minimal diagram A over the group G.

Proof. Let us associate the following design with A. We say that the middle lines
of the maximal #-bands (they cross 0-edges of the bands in the middle points)
are the chords and the middle lines of the maximal A-shafts are the arcs. Here
we use two disjoint middle lines if two maximal A-shafts share a (0, t)-cell. By
Lemma 7.5 (3), (4), we obtain a design, indeed.

Observe that the length |C| of an arc is the number of cells in the A-shaft and
#T < |0A|/2 since every maximal 6-band has two 6-edges on dA.

Thus, by Theorem 8.2, it suffices to show that the constructed design satisfies the
condition P (A, n), where n does not depend on A.

Let n = 2L + 1. If Property P(A,n) is violated, then we have n maximal
A-shafts €y,..., €, and a subband D of €y, such that |D| > (1 — 1)| €|, and every
maximal 8-band crossing £ must cross each of €, ..., €,. (Here |B| is the length
of a t-band B.) It follows that each of these -bands crosses at least L + 1 maximal
t-bands. (See Lemma 7.5 (3), (4). Here we take into account that the same 7-spoke
can generate two arcs in the design.) Hence using the A-shaft €; one can construct a
quasi-trapezium of height ||, which contradicts the statement of Lemma 7.8. [J
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9. Upper bound for G -areas of diagrams over the group G

By definition, the G-area of a disk I1 is just the minimum of areas of diagrams over
the presentation ((5.1), (5.2)) of G having the same boundary label as IT.

Lemma 9.1. There is a constant ce such that the G-area of any disk does not exceed
ce F(|0I1)).

Proof. The disk IT can be built of a hub and L standard accepting trapezia over M .
By Lemma 4.23, and the definition of the functions f(n), g(n), there are such trapezia
of height

O(IIaTTll/L)g (I9T1]l/L) = O(|aT1|)g(|9TT]).

The step history of these trapezia has length

o(f(1a11))’) = o(jarm))

by Lemma 4.23. Therefore the length of every 6-band in it is O(|dI1]) by Lem-
mas 4.17 and 6.1 (a), (d). The statement of the lemma follows. ]

By definition, the G-area of a minimal diagram A over G is the sum of G-
areas of its disks plus the G-area of the complement. For the complement, as in
Subsection 6.3, we consider a family S of big subtrapezia and single cells of A such
that every cell of A belongs to a member X of this family, and if a cell II belongs
to different ¥, and X, from X, then both ¥, and 3, are big subtrapezia of A with
bases xvix, xvpx, and IT is an (6, x)-cell.) Hence the statement of Lemma 6.9 holds
for minimal diagrams over G as well.

We want to prove that for big enough constants N3 and Ny,

Area(A) < NaF (n +02(A)) + Na(A)g(n)

for every minimal diagram A with perimeter n. For this goal, we will argue by
contradiction in this section and study a counter-example with minimal n + o0 (A).

Lemma 9.2. The diagram A has no rim 0-bands with base of length at most K.

Proof. The functions F(x) and g(x) satisfy the definition given for ®(x) and ¢ (x),
and the inequality (6.4) by Lemma 4.18. Hence the proof of Lemma 6.15 works for
the minimal counter-example over G. It suffices to replace N, and Ny by N4 and N3,
replace n by n + 0,(A), and notice that the value of o, does nor increase when
passing from A to A’. O

By Lemma 6.16, A has at least one disk. Using Lemma 7.2, we fix a disk II
in A such that L — 3 consecutive maximal ¢-bands By, ..., B _3 start on dA, end
on the boundary 911, and for any i € [1, L — 4], there are no disks in the subdiagram
bounded by B;, B;+1, 01, and IA. (See Fig. 10.)
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We denote by ¥ = cI(I1, B;, Br—_3) the subdiagram without disks bounded
by the spokes 81, B3 (and including them) and by subpaths of the boundaries
of A and II, and call this subdiagram a clove. Similarly one can define the cloves
\Ifij =C1(H,£i,£j)if1 <i<j<L-3
Lemma 9.3. The clove ¥ = cl(I1, By, Br—3) has no subcombs of basic width at
least K.

Proof. Proving by contradiction, we may assume that there is a tight subcomb I" by
Lemma 6.6 (2). Then contradiction appears exactly as in the proofs of Lemmas 6.12—
6.16, since Lemma 4.18 allows us to define ®(x) = F(x). It suffices to replace N,
and Ny with N4 and N3, replace n with n + 0, (A), and notice that the value of o
does not increase when passing from A to A since no z-band of I' is a part of a
spoke. O

The statements of auxiliary Lemmas 6.12, 6.14, and 6.21 holds as well for the
minimal counter-example over G. Below we use the following analog of Lemma 6.12:

Lemma 9.4. (1) The counter-example A has no two disjoint subcombs I'y and ',
of basic widths at most K with handles €, and €, such that some ends of these
handles are connected by a subpath x of the boundary path of A with |x|; < N.

(2) The boundary of every subcomb T" with basic width s < K has 2s q-edges. [
Lemma 9.5. (1) Every maximal 0-band of ¥ crosses either By or B 1.

(2) There existsr, L/2 —3 <r < L/2, such that the 8-bands of ¥V crossing B3
do not cross By, and the 0-bands of ¥ crossing 81 do not cross By 1.

Proof. (1) If the claim were wrong, then one could find a rim 6-band T in W,
which crosses neither 81 nor 87_3. By Lemma 9.2, the basic width of T is greater
than K. Since (1) a disk has LN spokes, (2) no g-band of W intersects 7 twice by
Lemma 5.3 (3), 7 has at least K g-cells, and (4) K > 2Ky + LN, there exists a
maximal g-band €’ such that a subdiagram I"” separated from ¥ by €’ contains no
edges of the spokes of IT and the part of 7 belonging to I'' has at least K¢ g-cells
(Fig. 15).

If T/ is not a comb, and so a maximal #-band of it does not cross €’, then I’
must contain another rim band 7’ having at least K g-cells. This makes possible to
find a subdiagram I'’”” of T such that a part of 7 is a rim band of I'” containing at
least K¢ g-cells, and I'” does not contain €’. Since Area(I'’) > Area(l'”’) > ---,
such a procedure must stop. Hence, for some i, we obtain a subcomb I'® of basic
width > K, contrary to Lemma 9.3.

(2) Assume there is a maximal 6-band 7 of W crossing the spoke B;. Then assume
that 7 is the closest to the disk I, i.e. the intersection of 7 and 8; is the first cell
of the spoke B;. If B1,..., B, are all the spokes crossed by T, then r < L/2 by
Lemma 6.3. Since the band 7 does not cross the spoke B; 41, no other #-band of W
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crossing B; can cross B, 41 and no H-band crossing the spoke B3 can cross B;.
The same argument shows that  + 1 > L /2 — 2 if there is a 8-band of W crossing
the spoke By,_3. ]

Figure 15. Lemma 9.5.

For the clove W = cl(m, 81, Br—3) in A, we denote by p = p(¥) the common
subpath of dW and dA starting with the z-edge of $8; and ending with the 7-edge
of B7_3. Similarly we define the (outer) path p;; = p(¥);; for every smaller
clove \I’ij .

Lemma 9.6. Every path p;;+1 (i = 1,..., L —4) has less than 3K g-edges.

Proof. Let a maximal g-band € of W start on p; ;41 and do not end on I1. Then it
has to end on p; ; +; too.

If T is the subdiagram without disks separated by €, then every maximal 8-band
of I" has to cross the g-band € since its extension in W must cross either B3 or 87,3
by Lemma 9.5. Therefore I" is a comb with handle €.

Consider the g-bands of this kind defining maximal subcombs I'y, I'5,..., Tk
in ¥; ; +1. The basic width of each of them is less than Ky by Lemma 9.3. Therefore,
k < 1 since otherwise one can get two subcombs contradicting to Lemma 9.4 (1),
because there are at most N + 1 maximal g-bands starting on 0IT in W; ;4;. By
Lemma 9.4 (2), such a subcomb has at most 2Ky g-edges in the boundary. Hence
there are at most 2Ky + N < 3K, g-edges in the path p; ;1. 0

We denote by A the subdiagram formed by IT and W, and denote by p the path
top(B1)u”'bot(B) L5,

where u is a subpath of 91, such that p separates A from the remaining subdiagram ¥’
of A (Fig. 16).
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Figure 16. Boundaries of ¥ and ¥’.

Similarly we define subdiagrams A; i, paths
pi,j = top(Bi)ui_jlbot(B)J_»l,

where u;; is a subpath of 9T1, and the subdiagrams W/ It

We denote by Hi,..., Hr_3 the histories of the spokes Bj,...,Br_3 (read
starting from the disk IT) and by /A1,...,hr_3 their lengths, i.e. the numbers of
(8,1t)-cells. By Lemma 9.5, these lengths non-increase and then non-decrease as
follows:

hi>hy>--->hy, hpy1 <---<hp_3 (L/2-3=<r=<L/2), O

and therefore H; is a prefix of H; (H; isaprefix Hjy() fori =1,...,r — 1
(resp.,for j =r +1,...,L —4).

Recall that the boundary label of dTT has the form WX i.e. it is the Lth power of
an accepted word W.

Lemma 9.7. We have the following inequalities
Pijl <hi +h; +(L—j+D|W|-1
and, ifi <randj >r + 1, then
IPij| = [pijle + IPijlg = hi +hj +(j —i)N + 1.

Proof. The first iequality follows from Lemma 6.1 (b) since the path w;; has
L — j +i — 1t-edges. To prove the second inequality, we observe that the path |p;;|
has (j —i)N + 1 g-edges and it has h; + h; 6-edges by Lemma 9.5. O

The large constants L and Ly are chosen so that

Ly<L. 9.2)
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Lemma 9.8. If j —i > L/2, then we have
w(A) = w(W;;) > =2Jn(hi + hj) = =2Jnlp;;|.

Proof. The number of g-edges in the path p;; (or in the path u;;) does not exceed the
similar number for p;; provided j —i > L/2. Therefore any two white beads o, o’
of the necklace on dA, provided they both do not belong to p;;, are separated by at
least the same number of black beads in the necklace for A as in the necklace for W; i
(either the clockwise arc 0—o’ includes p;; or not). So such a pair contributes to (1 (A)
at least the amount it contributes to y(\W;;). Thus, to estimate p£(A) — pu(V;;) from
below, it suffices to consider the contribution to w(¥’) for the pairs o, o', where
one of the two beads lies on p;;. The number of such (unordered) pairs is bounded
by n(h; + h;) by Lemma 9.5. Taking into account the definition of p of diagrams
and inequalities (9.1), we get the required inequality. O

Lemma 9.9. If j —i > L/2, then the following inequality holds:
Ipij| < (1 + &)[pij .

where & = N4_1/2. Moreover, we have

pij| +0a(Aij) < (1 + )Pyl
Proof. 1t suffices to prove the second statement. Let d be the difference

Ipij| + o (Aij) — [Pij]

and assume by contradiction that d > ¢|p;;|. Then

d > |pij| + oa(Aij) — e 'd,
whence

d =147 (Ipij| + oa(Aij)) = §(|Pij| + 05 (Aij)) > % 9.3)

where by definition, y = |p;;| + o4 (A;)).
We have
(10A] + 02()) — (J0W};] + 0,(¥})) = d > 0,

because [JA| — [0W;;] > |pi;| — |pij| and o (Aij) + UA(\i';j) < 0, (A). Therefore
for x = n 4+ 0 (A), we obtain from the minimality of the counter-example A that
Areag (¥];) < NaF(x — d) + N3 (¥};)g(n)
< NaF(x) = NaF(x)x7'd + N3p(A)g(n) + 2N3J nlpij |g (n)
< NyF(x) + N3p(A)g(n) — NaF(x)x~'d + 2N3Jnyg(n) (94)
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by Lemma 9.8, inequality o (‘Iflfj)) < 0,(A), and Lemma 4.18. By Lemma 9.7,
|pij| < |pij| + |0I1], and so the perimeter [0W;; | is less than 2|p;;| + [dTT|. Since

01| < L|pij| < L(Ipij| + 0a(Ai))),

we have 3
|0W;;| < 2+ L)|pij| + Loa(Aij) < (L +2)y. 9.5)

By the inequalities N> > Ny, (9.5), Lemmas 6.16 and 6.7 (a), the G-area of W;;
does not exceed

Na(2 + L)?y? 4+ Nip(Wy) < Na(J + D)2+ L)?y2. (9.6)
By Lemma 9.1, the G-area of Il does not exceed
c6F(|3H|) < cGF((L + 2)y),

and by definition of the functions f and F, there is a constant ¢; = ¢7(L) such that
Areag(TT) < c7F(y).
This estimate and (9.6) give the inequality

Areag(A;;) < No(J + )2+ L)*y* + ¢7F(y),
and we obtain with (9.4) that
Areag(A) < NaF(x) + N3ju(A)g(n) — Ny F(x)x'd
+2N3Jnyg(n) + No(J + )2 + L)?y? + c7F(y).

To obtain the desired contradiction, it suffices to show that here, the number
T = N4F(x)x~'d/3 is greater than each of the last three summands. Recall that

F(x)x ! =xg(x) > ng(n), d>ey/2by(9.3), &= N4_1/2,

and so
T >2N3Jnyg(n)

if N4 is large enough in comparison with N3 and other constants chosen earlier. Also
we have
T > No(J + )2+ L)?y?,

because x = n + 0 (A) > |pij| + O,\(Zij) =y, and so
F(x)x7'd > xg(x)ey/2 > ey?/2.
Finally, T > c¢7 F(y) since

F(x)x™'d > xg(x)ey/2 > y*g()e/2 = eF(y)/2. O
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For every path p; ;11 we will fix a shortest path q; ;+1 homotopic to p; ;4+; in
the subdiagram W;;, such that the first and the last #-edges of q; ; +1 coincide with
the first and the last 7-edges of p;;4+1. For j > i + 1 the path q;,; is formed by
Qii+1s.-.,qj—1,7. The following lemma is similar to the second part of Lemma 9.7.

Lemma 9.10. Ifi <rand j > r + 1, then
laij| > |dijlo + |Qijlq = hi +h; +(j —i)N + 1. O

Let \Il?j (let WO, A%) be the subdiagram of W;; (of W, of A) obtained after
replacement of the subpath p;; (of p ) by q;; (by q = q1,7—3, resp.) in the boundary.

Lemma 9.11. (1) The subdiagram \If?j has no maximal q-bands except for the
q-spokes starting from 0T1.

(2) Every 0-band of \IJ?J- is crossed by the path q;; at most once.

Proof. Assume there is a g-band @ of \IJ?J. starting and endingon q;;. Then j =i 41
and q; ;+1 = uevfw, where @ starts with the g-edge e and ends with the g-edge f.
Let @ have length £. Then |v| > £ since every maximal 0-band of \I'l(-), ;41 crossing @
has to end on the subpath v. So one has |evf| = £ + 2, and replacing the subpath evf
by a side of @ of length £ one replaces the path q; ; +1 with a shorter homotopic path
by Lemma 6.1. This contradicts to the choice of q; ; 41, and so the first statement is

proved. The prove of the second statement is similar. 0

It follows from Lemma 9.5 that between the spokes B and 841 (1 < j <r—1),
there is a trapezium I'; of height /1 ;.41 with the side 7-bands 8,41 and i)’}, where i)’;
is the beginning of length /1, of the z-spoke B,. Similarly, we have trapezia I';
forr +1 < j <L —4. ByLemma9.11 (2), every trapezium I'; is contained in
both ¥; ;11 and ‘IJ?, j+1- The bottoms y; of all trapezia I'; belong to dIT and have
the same label Wt. We will use z; for the tops of these trapezia. Since I'j and I'j 4
(2 < j < r —1) have the same bottom labels and the history H is a prefix of H;_1,
by Lemma 5.7, h; different 6-bands of I';_; form the copy F} of the trapezium I';

with top and bottom paths z; and y/;, =y, 1.

We denote by E; (by E? ) the comb formed by the maximal 6-bands of ¥; ;1
(of ‘I'?’jﬂ, resp.) crossing the z-spoke 8 but not crossing 8,41 (1 < j <r —1);
See Fig. 17. Its handle €; of height 2 ; —h j 11 is contained in 8. The boundary 0E;
(resp., SE?) consists of the side of this handle, the path z; and the path p; ;1
(the path q;,j 41, respectively).

Assume that a maximal a-band A of E? (2 < j < r —1) starts on the path z;
and ends on a side a-edge of a maximal g-band € of E;.). Then A, a part of € and a
partz of z; bound a comb V.



Polynomially-bounded Dehn functions of groups 407

—

Bii c

Figure 17. Lemma 9.12.

Lemma 9.12. There is a copy of the comb V in the trapezium I’ = T° j_l\F;.

Proof. The subpath z of z; starts with an a-edge e and ends with a g-edge f. There is
acopy z' of z in z} starting with ¢’ and ending with f". Note that the §-cells 7 and 7’
attached to f and to f' in V and in T are copies of each other since they correspond
to the same letter of the history. Now moving from f to e, we see that the whole
maximal 6-band 77 of V containing 7 has a copy in I'. Similarly we obtain a copy
of the next maximal 8-band 75 of V, and so on. O

Lemma 9.13. At most N a-bands starting on the path'y j can end on the (0, q)-cells
of the same 0-band. This property holds for the a-bands starting on z; too.

Proof. We will prove the second claim only since the proof of the first one is similar.

Assume that the a-bands A1, .. ., /4, start from z; and end on some (6, g)-cells of a
f-band 7. Let Ty be the minimal subband of 7, where the a-bands A, ..., A1

end and z; be the minimal subpath of z;, where they start. Then by Lemma 5.3,
every maximal g-band starting on z; has to cross the band 7y and vice versa. Hence
the base of 7 is a subbase of the standard base (or of its inverse). Since every rule
of M can change at most N — 2 a-letters in a word with standard base, all (8, g)-cells
of Jo have at most N — 2 a-edges, and the statement of the lemma follows. O

Without loss of generality, we assume that
h=hryr1 =hp—1,-3. 9.7
Lemma 9.14. Ifh < L3|W |, then the number of trapezia T j with the properties
Zjla = [Wla/csN
forjelLo+ 1,r—1orjelr+1,L—Lo—5], islessthan L/5.
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Proof. Consider I'; as in the assumption of the lemma with j € [Lo + 1,r — 1].
The subcomb E? has at most N maximal g-bands by Lemma 9.11. So there are at

most N maximal a-bands starting on z; and ending on each of the #-bands of E?.
Proving by contradiction, we have at least L|W |, /5¢5N such a-bands forall j € S,
where S the set of integers in [Lo + 1,7 — 1[JU [r + 1, L — Lo — 5]; denote this set
of a-bands by A. But the number of maximal 8-bands in all such subcombs E;.) does
not exceed 2h. Therefore at least L|W|,/5¢sN — 2hN bands from A end on the
subpaths q; ;+1 for j € S. Therefore by Lemmas 9.10 and 6.1, we have

|pL()+1,L—L()—5| = |qL()+1,L—L()—5|
> hro+1 +ho-ro-s + LN/2 + 8(L|W|a/5¢sN — 2hN)
>hrg+1 +hr—ry—s + LN/2 4+ 8L|W|,/10cs N (9.8)

since

2hN <2L3N|W|, < L3|W|4/10csN < L|W|,/10csN

by the choice of L and L (9.2).
Also by Lemma 9.7, we have

PLo+1,L-Lo—5| < hpg+1 +hi—1q—5 +3LoN + 3LoS|W ],
< hrg+1 +hr—ry—5 +3LoN + SL|W|4/20c5N, 9.9
because by the choice of L, 3Lo < L/20csN. Since
hpg+1 +ho—rg—s <2h <2L3|W|, < L|W|q4,

—-1/2

L is chosen after csN,and e = N, is chosen after L, the inequality

IPLo+1,L—Lo—5] >

— > >1+e¢
|pL0+1,L—L0—5| 20C5N

follows from (9.8) and (9.9), contrary to Lemma 9.9. The lemma is proved by contra-
diction. O

Lemma 9.15. If h < L3|W,|, then the histories Hy and Hp_3 have different first
letters.

Proof. Let 7 and & be the maximal #-bands of W crossing B; and Br_s,
respectively, and the closest to the disk I1. Let they cross k and £ spokes of II,
respectively. By Lemma 9.14,

k+¢>L—L/5-3Ly>2L/3,

and also k,£ > 2 since L/2 —3 < r < L/2. It follows from Lemma 7.5 that the
first letters of H; and H _3 are different. O
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Lemma 9.16. We have h > L%|W |,.
Proof. 1If this inequality is wrong, then by Lemma 9.14, there are at least
L—L/5—3Ly>0.7L

trapezia I'; with |z |, < |W|s/c5N, and one can choose two such trapesia I'y and Iy
suchthatk <r,£ >r + 1land £ —k > 0.6L. Since Hy1q (resp., Hy) is a prefix
of H; (of Hy_3), it follows from Lemma 9.15 that the first letters of Hy; and Hy
are different.

Since the bottoms of I'y and I'y (which belong to dA) have the same label, one
can construct an auxiliary trapezium E identifying the bottom of a copy of I'y and
the bottom of a mirror copy of I'y. The history of E'is H U Hj 1, which is a reduced
word since the first letters of Hy and H, are different, i.e. E is a trapezium indeed
by Lemma 5.7.

The top and the bottom of E have a-lengths less than |W|,/c5s N. Without loss
of generality, one may assume that hg1 > hy, and so hgyq > t/2, where ¢ is the
height of E.

Note that the difference of a-lengths |W |, — |W|,/csN > |W|,/2, and so

hiv1,he > |Wa/2N (9.10)

since the difference of a-lengths for the top and the bottom of every maximal
f-band of E does not exceed N. Therefore t > |W|,/N, and the computation
corresponding E satisfies the assumption of Lemma 4.26.

So for every factorization H'H” H'" of the history of 'y, where

IH'| + 12"l < AlH"H"H"|,

we have ||H”| > 0.4t, since A < 1/5. Therefore by Lemma 4.26, the spoke By
is a A-shaft.

Using Lemma 9.7, we obtain:
IPr+1.l + 0 (Dks1,6) = hicqr + he + 0.6LN + hypy. 9.11)

By inequality (9.10), we have L|W |, < 2LN8hg41 < hg4+1 by the choice of §
and by Lemma 9.7,

IPr+1,6l < hk41 +he +04LN +04LS\W g < hjp1 + hg + hg41/2 +0.4LN.
(9.12)

The right-hand side of the inequality (9.11) divided by the right-hand side of (9.12)

is greater than 1.1 (because hg41 > hg), which contradicts Lemma 9.9. Thus, the
lemma is proved. O
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Lemma 9.17. We have h; > §~! foreveryi = 1,..., Ly.

Proof. By inequalities (9.7) and (9.1), we have h; > hy_;,—3. Proving by contra-
diction, we obtain |W|, < h; < 8§~ by Lemma 9.16. Then,

IPiL—Lo—3] < hi +hi—ro—3 +3Lo(N +87'8) < h; + hp_1,—3 +4LoN
by Lemma 9.7, and
Ipi.L—Lo—3| = hi + hp—1,—3 + LN/2.
Since h; +hp—r1,-3 < 267! and 4LyN < LN/4, we see that

[Pi,z—Lo—3I

— >14+8>1+¢
IPi,L—Lo—3]
contrary to Lemma 9.9. The lemma is proved by contradiction. O

Lemma 9.18. None of the spokes 81, ..., BL, contains a A-shaft at I1 of length at
least §h.

Proof. On the one hand, by Lemmas 9.7 and 9.16,

IPLo+1,L-Lo—3| < hrg+1 +hL—ry—3 + 3Lo(N + 8|W|a)
< hL()+l + hL—L()—3 + 3LO(]V + 5L0_2h) (913)
On the other hand, by Lemma 9.7,

PLo+1,L-Lo—3| > hig+1 +hr—1,—3 + (L —3Lo)N. 9.14)

If the statement of the lemma were wrong, then we would have o (A) > 8h, and
inequalities (9.13) and (9.14) would imply that

IPLo+1,L—Lo—3] — PLo+1,L-Lo—3| + 0A(A) > (L — 6Lo)N — 3Ly '8h + Sh
> LN/2 + 8h)2.

The right-hand side of the last inequality divided by the right-hand side of (9.13) is
greater than e = N, 1 2, because & > hp,41,hr—1,—3, which would contradict to
Lemma 9.9. Thus, the lemma is proved. O

Lemma 9.19. Forevery j € [1, Lo — 1], we have |z;|a > hjy1/cs.

Proof. If|zj|qs < hj+1/cs, then the computation €: Wy — --- — W, corresponding

to the trapezium I'; satisfies the assumption of Lemma 4.26, since

t =hjt1 > cs|Wila = cslzjla
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and by Lemma 9.16,
t = hj+1 > L%|W0|a > cs5|Wla

since Lo > c¢s. Hence 8B4 is a A-shaft by Lemma 4.26 since A < 1/2. We
obtain a contradiction with Lemma 9.18 since 62 < h < hj. Thus, the lemma is
proved. O

Lemma 9.20. Forevery j € [1, Lo — 1], we have hj 1 < (1 —(1/10¢csN)) h;.

Proof. By Lemma 9.19, we have |z;|, > hj11/cs. Let us assume that

hjv1 = (1 - 10015N)hj’

that is the handle €; of E; has height at most /1, /10cs N. By Lemma 9.13, at most
h;/10cs maximal a-bands of E; starting on z; can end on the (6, g)-cells of E;.
Hence at least

|Zj|a —h‘j/10C5 > |Zj|a —Zhj+1/1065 > 0.8hj+1/05 > 0.7hj/65

of them have to end on the path p; ;1.
The path p;, j 11 has at most /1, /10cs N 6-edges. Hence by Lemma 6.1,

pjj+1l=hj—hjs1+68(0.7h;/cs —hj/10csN) > hj —hjy1 4+ 0.68h;/cs,
and therefore by Lemma 9.7,
IPj.L-Lo-31 = LN/2+hj +hp—1,-3+0.68h;/cs.
On the other hand by Lemma 9.7, we have
Pji—-1o-3| <hj+hp—r,—3 +3NLo+3LoS|W|,
<hj+hr—ry—3+3NLo+3Ly"8h; 11
by Lemma 9.16 and inequality # < & ;4. Hence,

— > (1 + 5/10C5)
|pj,L—L()—3|

since hp—ry-3 < hpy+1 < hj+1 < hjand Lo > cs. We have a contradiction with
Lemma 9.9 since §/10c5 > €. The lemma is proved by contradiction. O

The proof of the next lemma is similar.

Lemma 9.21. Forevery j € [2, Lo — 1], we have |zj|, < 2Nh;.
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Proof. Assume that |z;|, > 2Nhj;j. By Lemma 9.13, at most N/ ; maximal
a-bands of E; starting on z; can end on the (6, g)-cells of E;. Hence at least
|zjl¢ — Nhj > Nh; of them has to end on the path p; ;4. The path p; ;4 has at
most 4 0-edges. Hence by Lemma 6.1,

Pjj+1l = hj—hjpr +8(Nhj—hj) = hj—hjir+ 8N = Dhy,
and therefore by Lemma 9.7,
Pj,L-L£o-3| = LN/2 4+ hj + hp_1,—3 + 8(N — D)h;.
On the other hand by Lemmas 9.7 and 9.16, we have

Pjr-1o-3| <hj+hp_1,—3+3NLo+3LoS|W|,

36h,
<hj+hi-ro-3+3NLo +
0

because h < h;. Since h; > h > hy_1,_3, we have
J J 0

|I_)j,L—L0—3| St
IPj,L—Lo—3]

a contradiction by Lemma 9.9. O
Lemma 9.22. There isno i € [2, Lo — 3] such that the histories
Hl_l — HlH/ — Hl+1H//H/ — Hi+2H///H//H/

and the computation € with history H; corresponding to the trapezium T';_; satisfy
the following condition:

The history H" H"” H' has only one step, and for the subcomputation D with
this history, there is a sectors Q' Q such that a state letter from Q or from Q' (%)
inserts a letter increasing the length of this sector after every transition of D.

Proof. Recall that the standard base of M is built of the standard base B of M4 and
its inverse copy (B’)™! (plus letter ¢). Due to this mirror symmetry of the standard
base, we have mirror symmetry for any accepting computation, in particular, for €©
and O. Therefore proving by contradiction, we may assume that the a-letters are
inserted from the left of Q.

Let @ be the maximal g-spoke of the subdiagram Ei0 C T corresponding to
the base letter Q. If @’ is the neighbor from the left g-spoke for @ (the spokes are
directed from the disk IT), then the subpath x of z; between these two g-spokes has
at least h;+1 — hij+2 = | H"'|| a-letters. Indeed, T'; contains a copy I'/,; of ' 41,
the bottom of the trapezium I';\T ; is the copy z;_ ; of z;+ and the top of it iz z;,
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and so the subcomputation with history H"’ has already increased the length of the
Q' Q-sector. Thus, by Lemmas 9.20, 9.16, and the choice of Lo > 100cs N, we have

Xla = hiy1 — hiya = 10C5Nhi+1 > 10Lo|W|q. (9.15)

Note that an a-band + starting on x cannot end on a (6, g)-cell from @. Indeed,
otherwise by Lemma 9.12, there is a copy of this configuration in the diagram I';_;,
i.e. the copy of 4 ends on the copy of @ contrary the assumption that the rules of
computation with history H”” H"” H' do not delete a-letters.

Let us consider the comb bounded by @, @', x and the boundary path of A°
(without the cells from @’). If the lengths of @ and @’ are s and s’, respectively,
then there are |x| + s maximal a-bands starting on x and @ and ending either on @’
or on dA since the comb has no maximal ¢g-bands by Lemma 9.11. At most s’ < s
of these a-bands can end on @’. Therefore at least |x| + s — s’ of them end on the
segment of the boundary path of A° lying between the ends of @’ and Q.

Since this segment has s — s’ 6-edges, its length is at least s — s" + §|x|, by
Lemma 6.1. This inequality, Lemma 9.10 and inequality (9.15) imply

IPi,L—Lo—3| = |Qi,L—1o—3]

]
>ILN/2+h; +hp_p - —h;
>LN/24h; + LL03+106_5N i+1
>LN/24+hi +hp—1,-3 + 106Lo|W|,.
Therefore,
78
Ipi,L—Lo—3] — mhi+l >3LoN +hi +hp—p,—3 + 38Lo|W|a

> |Pi,L—Lo-3. (9.16)

by Lemma 9.7, and since A is a minimal counter-example, we obtain by the definition
of F(x), g(x) and inequality (6.4) that

Areag (qu{+1,L—L()—3)

768
mhi—ﬂ) + N3g(n),u(\lll’-’L_L0_3)

7én
< N4F(I’l + CTA(A)) — N4m

< N4F(n +oi(A) —

hiv1g(n) + Nagm)u(¥; ;. _3). (9.17)

By Lemma 9.16, |W|, < Ly?h;, and by Lemma 9.17, h; > §~!' > 100LoN,
whence

_ 36
Pi—ro—3| < 2hi + 3LoN + 36Lo|W |, < (2 10.03 + L—)h,- <2.1h;,
0
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and by Lemma 9.9, we have
IPi,L—ro—3| =< (1 +&)|pi,L—1o—3] < 2.2h;. (9.18)

By Lemmas 6.16 and 6.7 (a) and inequalities (9.18) and (9.16), the G-area
of ¥; 1_1,—3 does not exceed

N2(2|pi,L—L0—3|)2 + N1 (Wi 1—r9-3) < Na(4J + D)|pi,L—ro—3]
< 5Ny (4J + 4)h?. (9.19)

By Lemma 9.1, the G-area of IT is bounded by ¢ F(|0I1]). The inequalities
(9.16) and (9.18) imply the inequality

|3H| < L|I_’i,L—L0—3| < L|pi,L_L0_3| < 3Lh,’.
Therefore one may assume that the constant c¢7 is chosen so that
Areag (I1) < C6F(|8H|) < c7F(h;) = c7h?g(hi) < c7h?g(n). (9.20)

(Recall that #; < n/2 here since h; is the number 6-bands crossing B;; they start
and end on dA.) It follows from (9.19) and (9.20) that

Areag (Ai,L-1y-3) < 5N2(4J + Hh7 + c7hig(n). (9.21)

Pi-1, B;_
f is a black bead ;

B

h; — h;—1 6-bands

<

Figure 18. u(\D;+1’L_LO_3) - M(‘I’,{,L—Lo—ﬂ'

We need an estimate for /‘(‘IJ;+1,L—LO—3) — ,u(\IJl’.,L_LO_3) now. To obtain it, we

observe that by Lemma 9.5, the common g-edge f of the spoke B; and A separates
atleast h;_y — h; = m; 0-edges of the path p;_; ; and m ones lying on p; 11,3,
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where my = h; + h; 1—1,—3 (see Fig. 18). Since the number of g-edges of p is less
than 3K¢L < J by Lemma 9.6, one decreases pL(\IJ;+1’L_L0_3) at least by mim,
when erasing the black bead on f in the necklace on B\IJI’. H1,L—Lo—3 by Lemma 6.7
(d,b,c). Hence,

“(‘I’;H,L—Lo—s) - M(\pz{,L—LO—3) > mimy
= (hi—1 —hi)(hi +hp—Ly-3)

1
> —hi_1(h; +hp_p,—
Z N 1(hi +hp—r1y-3)

by Lemma 9.20. This inequality and Lemma 9.8 applied to W; +1,L—Lo—3’ imply

(D) = (W 1 1,-3)

1
>=2Jnhiy1 +hp—r,-3) + mhi—l(hi +hp—1,-3).

Note that (hi4+1 + hr—r,—3) < 2hi+1 by (9.1) and (9.7). Hence,

N3p(A) = Nap(W 11 -3)

N3
> —4N3Jnhi41 + mhi—l(hi +hr-ry-3). (9.22)

It follows from (9.21, 9.22, 9.17) that
Areag(A) < Areag (W] ;. 3) + Areag (AjL—r,-3)

76n

< N4F(n + 01(A)) — N4 TN
5

+ Nag(mu(V) 1 1, 3) +5N2(4J + 4h] + c7h7g(n)
76n

IOOCSN

hi—1(hi +hp—ry,—3)g(n)

hiv18(n)

< N4F (n + 04(A)) + N3p(A)g(n) — N4 hiv1g(n)

N3
10cs N
+ 4N3Jnh;418(n) + 5N2 (4 + &) + c7h?g(n).

We come to a contradiction since we obtain inequality
Areag (A) < NgF (n + 05 (A)) + N3p(A)g(n + oa(A)),

because

78
> 4NsJ and
*100cs N 34 106N

> 5N2(4J =+ 4) =+ Cc7. OJ
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Lemma 9.23. There exists no counter-example A, and therefore
Areag(A) < NoF (n + 0(A)) + Nap(A)g(n)

Sfor any minimal diagram A with |0A| = n.

Proof. Recall thatfor j = 1,..., Lo — 1, we have

hjt1 < (1 — )h i

Il 10csN /™7
by Lemma 9.20, and by Lemmas 9.19 and 9.21, we have inequalities |z; |, > hj11/cs
and |zx|, < 2Nhy for 2 < k < Lo — 1. One can choose an integer p = p(M)
(it depends on the S-machine M only as ¢5 and N) so that

1 o 1

('~ Toean) < aver
106‘5N 6N05

andso hjy1 > 6Ncshy if k — j —1 > p. Hence,

1Zjla > hjt1/cs = 6Ny > 3|zi]q.
If Ly is large enough, say Ly > 2000p, one can obtain 1000 indices
J1 < J2 <- < j100 < Lo
such that fori = 2, ..., 1000, one obtains inequalities
|Zji—1 |a > 3|Zji |a and hji—l > hji—1+1 > 6C5Nhji. (9.23)

Let €W = Wy — --- — W; be the computation corresponding to the
trapezium I'j,. Since it contains the copy F}z 41 0f ['j,4+1, which in turn contains a
copy of I'j, 1> and so on, we have some configurations W(k)in € (k = 1,...,999),
that are the labels of some z;, and |W(k + 1)|, > 3|W(k)|, fork =1,...,998. If
for some k we were obtain one-step subcomputation

W(k) — - — W(k + 4),
then the statement of Lemma 4.27 would give a subcomputation
Wk+1)—---—>Wk+4

contradicting to the statement of Lemma 9.22. Hence no five consecutive words
W (k)-s are configuration of a one-step subcomputation, and so the number of steps
in W(1) = .-+ — W(999) in at least 100.

It follows now from Lemmas 4.9 and 4.7 that the step history of I';,\I', where I"
is the copy of I',, in I'j,, has a subword

(@IHADHMEHEEIT ).

J2>



Polynomially-bounded Dehn functions of groups 417

Without loss of generality we assume that the exponent is +1. Therefore the
history Hj,+1 of I'j, can be decomposed as H'H"” H", where H" has step history
(127)(27)(272). |H'|| > |[H"| by Lemma 4.14 and ||H'|| > h since Hp, is a
prefix of H'.

Since hj, 41 > 2hj, by (9.23), the history Hj, 41 of I';, has a prefix H'H"H*,
where | H*|| = ||[H'|| = ||H"|), and so the ¢-spoke B, +1 has a z-subband € starting
with dI1 and having the history H'H"” H*.

For any factorization € = €;€,€3 with ||| + [|€2] < [|€]|/3, the history

of €, contains the subhistory H"”, since ||H*| = ||H'||| = ||H"||. It follows that €
is a A-shaft, because A < 1/3. The shaft has length at least | H'|| > & contrary to
Lemma 9.18. We come to the final contradiction in this section. O

10. Proof of Theorem 1.3

10.1. Dehn function of the group G.

Lemma 10.1. For every big trapezia A, there is a diagram A over G with the same
boundary label, such that the area of A does not exceed 2 Areag (A).

Proof. Consider the computation €: Vy — --- — V; corresponding to A. According
to Definition 6.8, one may assume that

Areag(A) = esh(|Vol + IV:]))

since otherwise A = A.

A is covered by L trapezia Ay, ..., Ay with base xvx, where xv (or the inverse
word) is a cyclic shift ot the standard base of M. By Remark 5.8 all Ay, ..., A are
copies of each other. Let us apply Lemma 4.25 to any of them, say to Ay, whose top
and bottom have labels W, and W;. If we have Property (1) of that lemma, then the
area of A does not exceed c4(||Wo|| + ||[W;||) since every maximal 6-band of A;
has at most c4(||Wo|| + ||W;||) cells in this case. Hence area of A does not exceed

Lesh(IWoll + W) < 2eah(IIVoll + IVell) < esh(IVoll + Vill) = Areag(A),

i.e. A = A in this case too.

Hence one may assume that Property (2) of Lemma 4.25 holds for A;. By that
Lemma, items (b,d), the corresponding cyclic shifts W and W, are accepted, and
there is a factorization of € = €€, €3 (we use the same letter for the computations
corresponding to A, to Ay, and for the revolving computation with standard base),
where

CLWyg—= o= W, ., CW, == W,

n’ nitny
Y ’ _
and C3 Wy ny == Wy tpyiny, (1 +n2+n3=1),
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where
max ([|[W,, [, Wy, 4n, ) < max ([[Woll, [W:]l)

and for each €;, either:
1) Wl < camax (|Wl, [W/l), for every configuration W; of €;; or

(d2) there are accepting computations for the first and the last configuration of €;
with histories H/ and H/ such that || H| + [|H/|| < n;.

So A is built of at most three trapezia, where A(i) (i = 1,2,3) corresponds
to the computations €;. Since their tops and bottoms have lengths at most
max(||V ||o, || V4|), it suffices to estimate the area of A(i) fori = 1,2,3. Again,
we have A(i)= A(i) in the case (d1).

Assume that we have Property (d2) for €;. Denote by U; and U, the first and the
last configurations of €; with standard base. By (d2),

IO 1021 < max ([Woll, | W 1))

By Property (d2), there is an accepting computations D of length < n; for Uy,
and we may assume that D is the shortest such computation. Then case (b) of
Lemma 4.20 gives a contradiction of the form £ < £/100 for the length £ of the
computation . Hence we should have case (a), and so every configuration of
has length at most c4||U;||. If T is the trapezium corresponding to & with bottom
(top) label U; (resp., Wys), then the lengths of its 8-bands are less than 2¢4||U ||
by Lemma 6.1 and therefore the area of I is less than 2n;c4| Uy || — 1. Therefore L
copies of I' can be attached to an auxiliary hub so that one gets an auxiliary disk I
of area

< 2Lnica||Ur]l < 3can;[|[V(D],

where V (1)t is the label of the bottom of A(i) up to cyclic permutations. Thus, the
word V(1) is equal to the boundary label of IT;. Similarly, one can construct a disk
of area

<3can; V)|

for the top of A(2).

Denote by A_ the diagram A without maximal rim x-band. So A_ has the
boundary p1qip;'q; ', where Lab(p;) and Lab(p,) are the boundary labels of the
disks IT; and II, (up to cyclic permutations) and Lab(q); = Lab(q), since two
x-bands with the same history have the same boundary labels.

If we attach disks I1; and IT, along their boundaries to the top and the bottom
of A_, we obtain a diagram, whose boundary label is trivial in the free group. Hence
there is a diagram E with two disks whose boundary label is equal to the boundary
label of A_ and the area is less than

< 3eani (VD[ + V.
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If we attach one x-band of length n; to E, we construct the required diagram Z(z)
of area at most

< eani (VD] + V) + ni < esni (IVD] + V). 0

The proof of Lemma 10.1 shows that the area of a minimal diagram with some
boundary label V' can be much greater than the area of V', which is equal to the
minimal number of cells in all diagrams with boundary label V' over the presentation
(5.1)-(5.2). So to obtain the lower bound for the Dehn function of G, we prove in
the next lemma that these two areas “almost equal” for the words having no 6-letters.

Lemma 10.2. Let tW)L = 1 in G, where the reduced word W has no 0-letters
and no letters t*'. Then there exists a reduced diagram A over the presentation
(5.1)~(5.2) such that it has exactly one hub, has boundary label V = (W)L and
Area(A) < 2 Area(V).

Proof. Let Ag be a diagram over the presentation (5.1)—(5.2) of G with boundary
label (W)L, where
Area(Ag) = Area(t W)L,

We say that I' is a disk subdiagram of A if it has reduced boundary, has exactly one
hub and every 8-cell of I" (if any) belongs in a #-annulus surrounding this hub. The
diagram A can be covered by a family of subdiagrams I", where each T' is either a
disk subdiagram or a 8-cell and different subdiagram of this covering Sy have no cells
in common. Let A(Sy) be the sum of the areas of all disk subdiagram from S¢ plus
doubled number of the single 6-cells from Sg. By A(Ag) we denote the minimum
of the numbers A(Sy) over all such coverings Sg. Clearly,

A(Ap) < 2Area(Ag) = 2 Area(V),

and so it suffices to prove that a reduced diagram A with boundary label (: W)L and
minimal possible value of A(A) has exactly one disk, because

Area(A) < A(A) < A(Ay).

Below we fix the covering S of A such that A(A) = A(S). Note that every
f-annulus of A surrounds at least one disk by Lemma 5.3 since the diagram A is
reduced.

By induction on the number of f-annuli in a disk subdiagram ' € S, we see
that the boundary label of T' has the form (tU)L. Therefore there is only one
cyclic shift of the word (tU )% starting with U. Note that there are no two distinct
disk subdiagrams I'; and I'; in S whose boundaries share at least two 7-edges,
provided there are no other disk subdiagrams between I'; and I',, because such pair
of subdiagrams could be canceled out, which would decrease the value of A(A).

Assume that S has at least one single 0-cell. Let T be the maximal 6-band of A
containing this cell. It has to be a #-annulus, where every cell is a member of S
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since 7 can end neither on dA nor on the boundary of a disk subdiagram from S.
So one can choose a minimal #-annulus 7~ whose cells do not belong to the disk
subdiagrams from the family S, and 7 surrounds a subdiagram E having no single
0-cells from S.

The reduced diagram E must contain disk subdiagrams by Lemma 5.3. Hence as
in Lemma 7.2, we have a disk graph, where there are no two different edges connecting
neighbor disk subdiagrams in E (and crossing the 7-edges on the boundaries of these
subdiagrams) provided there are no other disk subdiagrams between these two edges
of the disk graph. Hence there is a disk subdiagram I" in E sharing a boundary
subpath q with a side of 7, where Lab(q) = (U)X ~*¢. After the transposition of 5~
and " we can obtain a new disk subdiagram I"” with

Area(I'") < Area(T') + L(u + 1),

where u is the number of cells between two neighbor (6, ¢)-cells in 7. However, the
transposition removes (L — 4)u + L — 3 cells from 7 and add at most 4u + 3 new
cells. Since

L
(L—4)u—|—L—3—4u—3>5(u+1),

we have a new diagram and new covering S’ after the transposition, where
A(S) < A(S), because the single 6-cell is taken with coefficient 2 in the above
definition of A(-); a contradiction.

Thus, the covering S has no single (6, g)-cells. Then the standard argument
implies that S has at most one disk subdiagram (see Lemma 7.3). The diagram A
cannot be a diagram over M since all ¢-letters occur in the boundary label (1V)%
with exponent +1, and so the 7-edges of dA cannot be connected in A by a #-band.
Thus, the number of hubs of A is 1. L]

Lemma 10.3. The Dehn function d(n) of the group G is equivalent to F(n).

Proof. To obtain the upper bound for d(n) (with respect to the finite presentation
of G given in Section 5), it suffices, for every word W vanishing in G with | W || < n,
to find a diagram over G of area O (F'(n)) with boundary label W. Since |W| < |W |,
van Kampen’s lemma and Lemma 9.16 provide us with a minimal diagram A such
that

Areag (A) < NgF (n + 05 (A)) + N3p(A)g(n)

for some constants N3 and N4 depending on the presentation of G. By Lemmas 8.5,
6.7 (a), and the definition of @ (A), the right-hand side does not exceed

NaF((1 + c)n) + N3Jn’g(n).
Since F(O(n)) = O(F(n)) and n>g(n) = F(n), we conclude that
Areag(A) < CoF(n)

for some constant Cy.
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Recall that in the definition of G-area, the subdiagrams, which are big trapezia
I,T’,..., can have common cells in their rim g-bands only. By Lemma 10.1,
any big trapezia I' from this list with top p; and bottom p, can be replaced by a
diagram I" with (combinatorial) area at most 2 Areag (I'). When replacing all big
trapezia I, T, . .. in this way, we should add ¢-bands for the possible intersection of
big trapezia, but for every I" of height /1, we add at most 2/ new cells. So the area of
the modified diagram E is at most

3 Areag(A) < 3CyF(n).

Hence the required diagram is found for given word W.

To obtain the lower bound for d(n), we will use the series of M-accepted
words V(n) of (combinatorial) length ®(n) constructed in the proof of Lemma 4.23.
Since V(n)Y = 1 in G, it will be suffice to bound from below the areas of the
diagrams A(n) given by Lemma 10.2: A(n) has boundary label V(n)L, exactly
one disk and the area equal to Area(V(n)L) up to a multiplicative factor from the
segment [1, 2].

A g-band starting on the hub 7 of A(n) cannot end on it since all occurrences of a
particular g-letter in the hub relation have the same exponent. Hence the spokes of 7
end on LN g-edges of dA. Hence A has L trapezia corresponding to an accepting
reduced computation € for V(n), and it suffices to get a lower bound for the area of
one trapezium I".

By Remark 4.24, I" has at least ® (ng(n)) maximal 8-bands of length at least © (n).
Therefore the area of I is at least ®(F(n)). Since ||d(A)|| = ®(n), the Dehn
function d(n) is bounded from below by a function equivalent to F(n), as required.

O

10.2. Supercubic Dehn functions. Here we show that for the Dehn functions F(n)
obtained earlier, one can construct a finitely presented group with Dehn func-
tion n F(n). This will complete the proof of Theorem 1.3. For this goal we modify
the control S-machines used in the definition of the S-machine M. The unnecessary
extra-control will just slow down the work of M. The construction resembles the
one from Subsection 4.2 of [16]. We will modify only the S-machine P defined in
Subsection 3.1. The copies of the auxiliary primitive S-machine Z(A4) will work
between the applications of the (copies of) the rules of P.

For every set of letters A4, let A’, A”, and A" be disjoint copies of A, the maps

ar>ad',ar> a’anda > a identify A with A’, A” and A", respectively. Let (Zbe
the S-machines with tape alphabet A’ LI A” LI A””, state alphabet {L} U K U P LI{R},
with the following positive rules.

0@ =[L 5> Lk(1) = k(1) p(1) > @) p()a”.R > R]. a e A;

22:=[L > L.k(1) 5 k(). p(1) - p(2).R — R]:
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1@ =[L > L.kQ) - k@), p@) —a"p@)@”")"". R — R]:
24 =[L > L.kQ2) > k(3). p2) > p(3).R — R].

The rules of 7 are similar, but the moving base letter is K, while the sector PR
is locked.

— <« D —

To define the composition P o { Z, Z } we insert the base of Z (and Z ) between
every two consecutive state letters of P. In this subsection, we assume that P has the
standard base Qo Q) ... Oy (and forget more detailed earlier notation).

Foreveryi = 1,..., N, we make copies Y/, Y/, and Y;” of the alphabet Y; of P
@ =1,...,N). Let ® be the set of positive commands of P. The set of state letters

of Po{Z,Z)is
SoUK UP,US,UKyU PyU---U Py USy,
where
P = {p@, p®D, p&O p@i(1), p®0(2), p@D(3) | 6 € B},

K; isdefined similarly fori = 1,..., N, S; = Q; U(Q; x®). Thus the state letters L

— <«

and R of the copies of the S-machines Z and Z are identified with the corresponding
S-letters. We shall call the state letters from P;-s and K;-s the p-letters, and the
other state letters (i.e. the copies of the state letters of P), the basic state letters.

The set of tape letters of P o {?, (Z} is
Y=Y uU---uYay=Y/uy/uy"uy,uy,uy,"u---u¥yuYyuYy.
Assume 0 is a positive P-rule of the form
[sou1 — squi, visiuz — visius, ... onsy = vysy].
where si,slf € Q;, and v;-s, u;-s are words in Y. Then this rule is replaced in

= <
Po{Z, Z} by positive

14 14
7 |50 > GOOO KD Gy~ KOV, v p D E) S v p DD,
sOD S (6D kO (3)y, — k@D ()l vp@2(3) = vy p @D (1), ...,
with ¥3; 2(6) = 0, Y3;_1(6) = Y/ (), and Y3;(F) = ¥;"(6).
Now we want to describe the alternating work of the auxiliary S-machines VAR

and Z @), Normally each of them is switched on exactly once in the frame of the
rule 6, but the sequence of their turning on depends on 6. First, we need the following
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transition rule y_(6). This rule adds 6 to all state letters and turns all /) and p®/)
into k@) (1) and p©7)(1):

[s; = @D k) 5 k@D(1) pO 5 p@D1) j =0, N.j=1.....N]

Then the S-machines 7(9’1), e 7 O.N) and ?(9’1), e ZO.N) are switched
on in a specific order (defined below) after the rule y_(60) is applied. So the state
letters k@) (1), p@ (1) (j = 1,..., N) successively turn into k©-/)(3), p(®-/)(3),
find themselves just after s;_;- and before s;-letters, respectively, and the rule 6 can
be applicable.

After an application of 6, the S-machines

FON_FOM pq FOO_ FEN

and
are switched on again in the following order.

Assume that the rule 6 is a rule of a primitive S-machine &#. (Recall that P
is composed from primitive machines.) The S-machine J can work in several
sectors. (For example, 6 can be the control rule checking all the big historical sectors
simultaneously.) Let i be the minimal index such that S; has a control running state
letter of . Then the rule 6 first switches on the S-machines (Z(e’j ) for j =i and
simultaneuosly for all other j-s, where S; is also has a control running state letter
of . The last rule y4 of this S-machine switches on the S-machine ?(9,1‘—1) and
similar S-machines in similar sectors (e.g. in all small historical sectors if the sectors
Si;—»S;—1 is a small historical sector). The next S-machine is <Z(9’i ~2)_if it did not
work ealier, and so on. Then the S-machines 7(9’”1), ... subsequently work, except
for the sectors, where the auxiliary Z-machines worked earlier.

The same S-machines work after the application of the rule y_(68) but they are
switched on in the inverse order.

Finally, the transition rule y(6) removes the index 6 from all state letters, and
turns all p@®7)(3) into p):

N L . . . .
[s@) = 5, k@D 3) —» kD, pOD3) - pU) i =0,...,N,j=1,....N]

For every admissible word W of P with standard base, let ¢ (W) be the admissible

word of P o {7, (Z_} obtained by inserting state letters k@ and p® next to the right
of each s;_1 and next to the left of each s;,7 < N.
Assume that W — W - 0 is a computation of the S-machine P with standard base

and a positive rule 6. Then, by the definition of P o {7, ?}, we have the canonically
defined reduced computation

o (W) > (W) -0 — -
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starting and ending with words whose state letters have no #-indices and all other
9 e

words do have 6-indices. The computation of P o {Z, Z} with these properties is
<«

unique by Lemma 3.1 (3) since the S-machines 7 and Z are primitive. Thus the
following claim is true.

Lemma 10.4 (similar to [16, Lemma 4.24]). For every computation W — W - 0 of
the S-machine P with standard base and a positive rule 0, there is a unique reduced

- <
Po{Z, Z} -computation
v (W) > (W) -0 — -

starting and ending with words whose state letters have no 0-indices and all other
words have 0-indices. The history of this computation starts with x—(6) and ends
with y+(0).

For every admissible word W of P o {7 (Z} with the standard base, let 7w (W)
be the word obtained by removing state k- and p-letters, 8-indices of state letters,
and the indices that distinguish a-letters from the left and from the right of k- and
p-letters. After possible cancellations of a-letters, we obtain an admissible word
of P. Note that we have o

Given a computation € of the S-machine P o {Z, Z} with standard base and
history H involving a @-rule , we define the projection w(€) of it, which is a
computation of P. To obtain it, one removes all transitions given by y-rules and
replaces the configurations by their projections. Note that this operation makes sense
since y-rules do not change the projection of the word onto a word in Y;. The
projection 7 (H ) of the history is defined in obvious way: one forgets the y-rules and
removes bars over 0-rules.

Lemma 10.5 (see [16, Lemma 4.28]). If € is a reduced computation of P o {?, <Z}
with standard base, then 7w (€) is a reduced computation of P.

Proof. Assume that we have a subword 6H’67" in the history H of €, where H’
has no rules of the form 6. If H' is non-empty, then one obtains a contradiction by

. C . . Z(0,i) S50,0)
Lemma 3.1 (4) applied to the work of the primitive S-machines Z -*) and Z'%"" .
Hence 7 (H) is a reduced history. O

Below we change some formulations of Subsection 3.1 as applied to P o {?, <Z}.

Lemma 10.6 (duplicate of Lemma 3.1). Let €:Cy — --- — C; be a reduced

computation of the S-machine P o {7, ?} with the standard base and with t > 1.
Then the following properties hold:

(1) If |Cilg > |Ci=1]a for somei = 1,...,t — 1, then

|Cila < 1Cit1la < |Cig2la <---
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(2) |Cila < max(|Cola,|Ctla) foreveryi =0,1,...¢t.

(3) Assume that the words Co and C; have a-letters only from the subalphabets Y’
(i = 1,...,N) and that for the primitive S-machines P forming P, all their
subwords in w(Co) and 7 (Cy) look like in Lemma 3.1 (3), i.e. as q¢'up'q? and
q'vp?q? for some words u, v in the notation of Lemma 3.1. Then a-words in
the corresponding sectors of Cy and C; are equal, |Ci|la = |Cola for every
i=0,...,tandt = O(s?), where s = |Co|a.

(4) Assume that the words Co and C; have a-letters only from the subalphabets Y’
(i = 1,...,N) and that for the primitive S-machines P forming P, all their
subwords in w(Cy) and w(Cy) look like in Lemma 3.1 (4). Then it is not possible
that the configurations Cy and Cy have the same set of state letters.

(5) If Cy (or Cy) satisfies the assumptions of item (3), then
|Ci|a = |C0|a
(respectively, |Ci|q = |Cylq) for everyi =0, ... ,t.

Proof. Let us start with Property (1). If

0
€ = ?f’i_lxﬁ D(a)*!

(or € = &-1){5””

(a)*"), then p(1)®? inserts letters from both sides and the
next rule of the computation must be again ( X(la”))il (c) for some c. It again must
increase the length of the configuration by two, and so on.

If €; = €;_10 for some 8-rule, then the transition 7(C;—;) — 7(€;) increases

the length by Lemmas 10.5 and 3.1 (1). The work of ?(e’i), ?‘9’” cannot decrease
configuration length by Lemma 3.1 (5) for these primitive S-machines. Therefore
Statement (1) is true and Statement (2) is also true since one can choose a shortest C;
and consider the subcomputation

Ci— = (
and inverse subcomputation

Cj —>—>C0

To prove equalities |C;|, = |Co|, in Statement (3), one just apply Lemma 3.1 (3)
first, to 7 (€) and second, to the maximal subcomputations of Z-machines. Since the
length of 7 (€) is 2k + 1 by that Lemma, and if £ > 0 the maximal subcomputations
of Z-machines work with configurations of lengths k — 1,k —2,..., 1, we obtain
the later claim of (3) by summation.

Property (4) follows from Lemma 3.1 (4) applied to the computation 7 (€) and the
maximal subcomputations of Z-machines. Property (5) follows from the projection
argument as in Lemma 3.1 (5). ]
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Lemma 10.7 (duplicate of Lemma 3.3). If Coy — --- — C; is a reduced computation
of P with base Si_1K; Ki_lSi__l1 or Si_lPi_lPi Si and Cy has a-letters from the
alphabet Y/ only. Then,

|Cila = |Cola

foreveryi =0,...,t.

Proof. The statement follows from the projection argument 3.2 as in Lemma 3.3. [J

Let us call the constructed S-machine P o {7, ?} biprimitive.

To define the modified S-machine M) we insert two more base letters
in each pair R;—; and &; of the standard base, i.e. this base has the sub-
words @; 1 R; 1 R;_, P{Pi@;; now the first big historical sector is R(P; (instead
of RoP1). In the definition of Step 1~, we now replace the rules of the primitive
control S-machines with the rules of the corresponding biprimitive machines. By
definition, at all other steps the control S-machines are just primitive, i.e. the sectors
Ri_lﬁg_l and :Pi/ P; are locked, there are no y-rules, and two base letters of the
locked sectors work as one letter of a primitive S-machine.

Thus, only at Step 17, the biprimitive S-machine P’ works.

Lemma 10.8 (duplicate of Lemma 3.6). Let €: Wy — --- — W; be a reduced
computation of P’ with standard base. Then:

@ |Wjla < max(|Wola, |W;la) for every configuration of €; moreover, |Wp|, <

-+« < |Wila if every control P- and R-letter neighbors some Q-letter and
P’'-letter (R’ -letter) neighbors a P-letter (resp., an R-letter) in the word Wy;

(b) we have t = O(|Wol|? + |W;||?), moreover, t = O(||W;||?) if every p-letters
and control letters has a neighbor in the word Wy as in item (a).

Proof. (a) The first property is given by Lemma 10.6 (2). Under the additional
assumption for control letters and p-letters, W, is the shortest configuration by the
projection argument.

(b) Let us say that a subcomputation without f-rules in the history is a Z-sub-
computation. If the computation is a Z-subcomputation, then the statement (b)
follows from Lemma 3.6 (b) for the (composition of) primitive S-machines.
Otherwise we chose a f-transition W, — W, 41 with minimal

min (”WrH, ||Wr+1 ||)

Without loss of generality, one may assume that this minimum is || W, ||. Lemma 3.6
(a) for 7 (€) and for Z-subcomputations implies that ||W ||, < ||W;| for every i, and
therefore it suffices to bound the histories of length-non-decreasing computations

€W, —---—>W, and €": W, - ... > W,.
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The length of 7(€’) is at most 2||W;|| by Lemma 3.6 (b) for the S-machine P.
By the same lemma for maximal Z-subcomputations, the length of every maximal
Z-subcomputation is at most 2||W;| too. Since the number of such maximal
subcomputations is at most 2||W;||, we have that t — r = O(||W;||)>. Similarly,
we obtain r = O(||Wy||)?, and the the first estimate of (b) is obtained. For the
second estimate, one can choose r = 0, since the whole computation € is length-non
decreasing by Lemma 10.6 (5), (1). ]

We see that Lemmas 10.6 (3) and 10.8 (b) provide us with quadratic estimate
of the computation time for the biprimitive S-machine against the linear time for
S-primitive machines. This have a few consequences mentioned below.

For the same function f(x) recognized by the original Turing machine and
F(x) = x2g(x), we define the function g(x) to be equivalent to x f'(x)3 now.

The extra sectors of the biprimitive S-machine do not affect the work of all other
steps except for 17 since they are locked therein.

The formulation of Lemma 4.5(1) is unchanged but the proof is now based
on Lemma 10.6 (4). For the step history (217)(17)(171) in the formulation of
Lemma 4.5(2), we have now

IH || = O(IIWoll?).

which follows from Lemma 10.8 (b). The estimates of || H || for other step histories
mentioned in Lemma 4.5(1) remain unchanged. Also we add an item to the
formulation of Lemma 4.5:

(3) Let the history of a reduced computation
CWo— > W

with standard base have a subword 51 H 52, where 51 and 52 are O-rules of the
S-machine P' and H has only y-rules of P'. Then all configurations of € are
uniquely determined by H,

Wila =+ = [Wi—1la and |W;|| = ©(|H]|)

for j <t.
The proof of this statement follows the proof of Lemma 4.5 (2), but now one

refers to Lemma 10.4 instead of Lemma 3.1 (3).
To the assumption of Lemma 4.10, we add:

“or the history of the computation € has a subword 01 H6,, where 61 and 0, are
O-rules of the S-machine P’ and H has only x-rules of P'”.

In the proof of Lemma 4.10 (2), one should use the following property. The compu-
tation of the biprimitive S-machine does not change the length of configurations by
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Lemma 10.8 (a). Hence the reduced computation of it is canonical by Lemma 10.4,
and the history restores the tape words.

Consider the single Step 1™ in item 2 of the proof of Lemma 4.13. If we have the
work of primitive S-machines only, then the proof is unchanged. If there is a f-rule
of the biprimitive S-machine in the computation €, we condider the projection 77 (€),
where the a-lengths of all configurations are at most

C(IWola + [Wila)

by Lemma 4.13. It remains to consider maximal subcomputation W, — -.- — W
of Z-machines, where

Wrlas [Wsla < C(1Wola + [Wi])

[— a'
By Lemma 3.6 (a) we have
[Wila < max (lWr|a, |I’Vs|a) = C(|W0|a + |VVt|a)

forr <i <s, as required.

In item 3 of the proof of Lemma 4.13, the base letters of the first big historical
sector should be replaced by their dashed duplicates.

The estimate |H|| < cz||Wp|l of Lemma 4.16 changes now by the quadratic
estimate || H || < c2||Wo||? due to the application of Lemma 10.8 (b). Respectively,
the upper bound

c3(k + D(IIWoll + &%)

of Lemma 4.17 is now replaced by
c3(k® + D)(I[Woll* + £3).

The formulation of Lemma 4.20 does not change since comparing the lengths of
histories, we now increase all of them. In particular, we have now in equation (4.3)
that

202 + 2w —1)2 4+ 42w — (m —1)* > |m|w?/2,

we have that the difference of lengths of subcomputations €;_; and €; does not
exceed 10w, we have || Hy|| = O(w?) and obtain

IH'H"| < c2(k® + 1) O(w?),

which leads to the same estimates for || Hy| and || H;|| since the constant c4 can be
chosen large enough.

The change of linear estimates by quadratic ones in the proof of Lemma 4.21 just
sharpens the required inequalities.

Lemma4.23 claims now that the generalized time function 7"’(n) of the S-machine
M’ is equivalent to n? f3(n). Thus, we multiply the generalized time function
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of M by n. This is sufficient for the upper bound. Indeed the replacements of the
form |W;| — |[W;||* in the proof of the modified Lemma 4.23 can multiply the
generalized time function at most by 7 since it is shown there that ||W; || = O(n) for
every configuration W;. The lower bound obtained in the original Lemma 4.23 must
also be multiplied by n» now. Indeed, the time of the constructed subcomputations
with step history
(@IHADHMHEH@ )

will be at least ®(n?) now (instead of ®(n)) since by Lemma 10.6 (3), we have such
lower bound for the Step 17

Similar replacement should be made in Remark 4.24: There are ©(n2 f(n)3)
configurations of length at least ®(n) for any computation accepting the word V' (n).

The statement of Lemma 4.26 is modified now by adding the words:

“or the history of € has a subword §1H 52, where 51 and 52 are O-rules of the
S-machine P’ and H has only x-rules of P"”.

If the step history of € is (F) and Property (a) of Lemma 4.20 holds we have the
same proof as in the original Lemma 4.26 since the length of a subcomputation of
Step 17 is at most

5max (| Wolla W lla)

provided the history of & has no subwords 51 H 52. Indeed, in this case, the history of
any subcomputation of Step 1~ is a subword of H’60 H”, where H’ and H” have only
x-rules of P, and one can bound each of |H’|| and ||H”| by 2c4(|[Wolla, | W: |la)
applying Lemma 3.6 (b).

The formulation of Lemma 4.27 remains unchanged for all steps except for
Step 17. If the step is 17, we add the assumption that the history has no 0-rules of
the S-machine P’. Since the biprimitive S-machine P’ works as a primitive one in the
later case, the proof does not change.

The set of standard trapezia is enlarged now, namely, a trapezium with standard
base having a subword §1H 52 in the history, where 51 and 52 are O-rules of the
S-machine P’ and H has only y-rules of P, is also standard by definition.

The above modification of Lemma 4.27 changes the proof of Lemma 9.23 as
follows. One obtains a contradiction if for some k, there is one-step subcomputation

Wk) — - — W(k + 4),

where the step differs from 17 or the step is 1~ and the history of this subcomputation
has no 6-rules of the S-machine P'. Hence either every subcomputation

W(k) — -+ — W(k +8)
has at least two steps, and so the computation

W(l) — --- — W(999)
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has at least 100 steps, which leads to a contradiction as in the original proof of
Lemma 9.23, or for some k, one obtains at least two 6-rules in the history of

W(k) — - — W(k +8),

i.e. the history of this subcomputation has a subword 51 H 52, where 51 and 52 are
f-rules of the S-machine P’ and H has only y-rules of P’. In the later case one should
use the modified Lemma 4.10 (instead of the original Lemma 4.10) to complete the
proof.

Lemma 9.23 proves Theorem 1.3 for s = 2. In the present subsection, we have
modified the main S-machine and the corresponding groups M and G so that the
modified Lemma 9.23 provides us with the statement of Theorem 1.3 for s = 3. One
can make further modifications, which similarly slow down the work of the previously
modified S-machines. This will give the proofs of Theorem 1.3 for s = 4,5,....
However we can leave the details to the reader taken into account that for s > 4,
Corollary 1.4 is obtained in [22]. Thus, the proof of Theorem 1.3 is complete.
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S-machine checking disibility, 333 0-letter, 367
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shaft, A-shaft, 393 (0, a)-relation, 368
side of band, 369 (0, g)-cell, 369
sides of trapezium, 370 (8, g)-relation, 368
spoke, 390 t-band, 370
standard base, 320 tape letter, 319
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standard trapezium, 372 tight comb, 374
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subcomb, 375 working sector, 331
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