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Words, permutations,
and the nonsolvable length of a finite group

Alexander Bors� and Aner Shalev��

Abstract. We study the impact of certain identities and probabilistic identities on the structure
of finite groups. More specifically, let w be a nontrivial word in d distinct variables and let G
be a finite group for which the word map wG WG

d ! G has a fiber of size at least �jGjd for
some fixed � > 0. We show that, for certain words w, this implies that G has a normal solvable
subgroup of index bounded above in terms of w and �. We also show that, for a larger family of
words w, this implies that the nonsolvable length of G is bounded above in terms of w and �,
thus providing evidence in favor of a conjecture of Larsen.

Along the way we obtain results of independent interest on permutation groups; e.g. we
show, roughly, that most elements of large finite permutation groups have large support.
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1. Introduction

The purpose of this paper is twofold. The first is to obtain new results on permutation
groups, with emphasis on the support of their elements. The second is the study of
word maps and the impact of identities and probabilistic identities on the structure
of finite groups. It will turn out that these two goals are related: our results on
permutation groups, which are of independent interest, can be applied in the context
of word maps and probabilistic identities.

For a permutation group P �Sym.�/ and � 2P we let supp.�/ denote the num-
ber of points moved by � and supp.P / the number of points moved by some element
of P . We also let fix.�/ denote the number of fixed points of � , and deg.P / WDj�j.
Theorem 1.1. Let P � Sym.�/ be a permutation group (where P and � are not
assumed to be finite). Let c be a positive integer, and suppose supp.�/ � c for
all � 2 P . Then:
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(1) jP j � cŠ, with equality if and only if P Š Sc acting on supp.P /;
(2) supp.P / � 2.c � 1/.

Some remarks are in order. First, conclusions (1) and (2) above are immediate
if P is transitive, since then P contains a fixed-point-free permutation � , so

j�j D supp.�/ � c:

Secondly, if c D 1 then all the elements of P have support zero, so P D 1.
Finally, we claim that the bound in conclusion (2) above is also best possible at

least when c D 2k for some k 2 NC. To show this we use error correcting codes.
Let Hk � F2

k

2 be the Œ2k; k; 2k�1�2-Hadamard code (see e.g. [16, p. 248]). By its
definition, it is clear that there is a unique coordinate where all elements ofHk are 0;
we projectHk onto the 2k�1 other coordinates, resulting in a subspace zHk � F2

k�1
2

(which we regard as an additive group) with the following properties:
� every nonzero element of zHk has exactly 2k�1 nonzero entries (equal to 1);
� for each i 2 f1; : : : ; 2k � 1g, there is an element of zHk having entry 1 in the i -th
coordinate.

Set
� WD f1; : : : ; 2k � 1g � f0; 1g:

Consider the function f W zHk ! Sym.�/, where f .x1; : : : ; x2k�1/ is the product of
the transpositions ..i; 0/; .i; 1// for those i 2 f1; : : : ; 2k � 1g where xi D 1. Then,
f is an injective group homomorphism, so the image P WD f Œ zHk� is actually a
subgroup of Sym.�/, and it satisfies

supp.P / D j�j D 2.2k � 1/

and that all nontrivial elements of P have support size exactly 2 � 2k�1 D 2k .
LetC 2 N, and letP � Sym.�/ be a permutation group. We denote by SBC .P /

the set of all � 2 P whose support on � is of size at most C .
Theorem 1.2. There is a function f W .0; 1� � N ! Œ1;1/ such that the following
holds: Let � 2 .0; 1�, C 2 N, and assume that P � Sym.�/ is a permutation group
of finite degree such that jSBC .P /j � �jP j. Then,

jP j � f .�; C /:

Indeed, one may choose f to be the following function:

f .�; C / WD
�
b��1 C C C 1cŠ

�d8.C�log�/e
:

In other words, the above result shows that, if P is a finite permutation group,
and � is the probability that a random permutation in P has support at most C , then
the size of P is bounded above by f .�; C /.
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The next result provides refined bounds on jP j in terms of additional parameters.
Let t denote the number of orbits of P � Sym.n/, and let r denote the rank of P
(namely the number of orbits on ordered pairs of points). Clearly r � t2.
Proposition 1.3. With the above notation we have:

(1) The probability that a random element � 2 P satisfies supp.�/ > .1� �/n is at
least 1� t=.�n/ for any 0 < � < 1. Thus this probability tends to 1 as t D o.n/.

(2) The probability that a random element � 2 P satisfies supp.�/ > .1 � �/n � t

is at least 1 � .r � t2/=.�2n2/ for any 0 < � < 1. Thus this probability tends
to 1 as r � t2 D o.n2/.

Note that statement (1) of Proposition 1.3 implies that

deg.P / � t � P.supp.�/ � C/�1 C C;

which, adopting the notation fromTheorem 1.2 above, yields that deg.P /� t��1CC ,
and so

jP j � bt��1 C C cŠ :

Similarly, statement (2) of Proposition 1.3 implies that, with the above notation, we
have deg.P / �

p
r � t2��1 C t C C , which yields

jP j � b
p

r � t2��1 C t C C cŠ :

We now turn to our main results on word maps and probabilistic identities, some
of which apply the above results on permutation groups.

The impact of identities on the structure of groups has been a central research topic
for over a century. Major examples include the Burnside problems and their solutions,
the theory of group varieties, as well as parts of combinatorial and geometric group
theory.

In the realm of finite groups, Zelmanov’s solution to the Restricted Burnside
Problem bounds the order of a d -generator finite group satisfying the power identity
xn � 1 in terms of d and n [17,18]. The Hall–Higman reduction of this problem to
p-groups involves bounding the p-length of solvable groups satisfying this identity
for all primes p [4]. A recent related result of Segal bounds the generalized Fitting
height of finite groups satisfying xn � 1 in terms of n [13, Theorem 10].

More generally, in recent years there has been extensive interest in probabilistic
identities (defined below) of finite and residually finite groups. Finitely generated
linear groups which satisfy a probabilistic identity were shown in [7] to be virtually
solvable. Arbitrary residually finite groups satisfying a probabilistic identity were
shown in [8] (using results from [2]) to have nonabelian upper composition factors
of bounded size. Probabilistically nilpotent finite and infinite groups were recently
studied in [14] and in [10]. See also [9] for additional results on probabilistic aspects
of word maps.
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It is easy to see that every finite groupG has a normal series each of whose factors
is either solvable or a direct product of nonabelian finite simple groups. The smallest
number of nonsolvable factors in a shortest such series is defined by Khukhro and
Shumyatsky in [6] to be the nonsolvable length ofG, and is denoted by �.G/ (see also
Section 2 below for an alternative definition, which was also already given in [6, first
paragraph of the introduction]); while this concept was explicitly introduced and
studied in [6], the idea of writing a finite groupG as an extension of two finite groups
with smaller nonsolvable lengths for inductive purposes is already implicit in the
Hall–Higman paper, see [4, proof of Theorem 4.4.1].

In this paper we present some ideas relating identities and probabilistic identities
in finite groups with the nonsolvable length, and sometimes with the index of the
solvable radical. We combine some machinery already developed by the first author
in [3] (building on earlier work of Nikolov from [11]) with some new methods. Let
us now explain this in some more detail.

For a positive integer d , denote by F.X1; : : : ; Xd / the free group freely generated
by X1; : : : ; Xd . Elements of these groups are called words. For the definition of
probabilistic identity, let w 2 F.X1; : : : ; Xd / be a nontrivial word. Then for every
(not necessarily finite) group G, one has the word map wG WGd ! G, induced by
substitution into w. If G is finite and g 2 G, it makes sense to define

pw;G.g/ WD
1

jGjd
jf.g1; : : : ; gd / 2 G

d
j wG.g1; : : : ; gd / D ggj;

the proportion in Gd of the fiber of g under wG . For profinite groups G, pw;G.g/
denotes the (normalized) Haar measure (in Gd ) of the fiber w�1G .g/. We say that G
satisfies a probabilistic identity with respect tow and � 2 .0; 1� if and only if there is
an element g 2 G such that pw;G.g/ � �. A residually finite group is said to satisfy
a probabilistic identity if its profinite completion satisfies a probabilistic identity.

In this paper, we will be interested in the following property of nontrivial words:

Definition 1.4. A nontrivial word w 2 F.X1; : : : ; Xd / is called nonsolvable-length-
bounding (or NLB for short) if and only if there is a function fw W .0; 1� ! Œ0;1/

such that for every � 2 .0; 1� and every finite group G, if G satisfies a probabilistic
identity with respect to w and �, then �.G/ � fw.�/.

We can now state the following.

Conjecture 1.5. All nontrivial words are NLB.

This conjecture, due to Michael Larsen (private communication), seems very
challenging, in view of the fact that it is even unknown for � D 1, namely when w is
an identity of G.

Conjecture 1.6. The nonsolvable length of a finite group which satisfies a nontrivial
identity w � 1 is bounded above in terms of w.
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See also the last paragraph of [13] for a related problem, where the nonsolvable
length is replaced by the generalized Fitting height.

Conjecture 1.6 is reduced to bounding the Fitting height h.G/ of finite solvable
groupsG satisfying a nontrivial identityw in terms ofw alone; indeed this reduction
follows from [6, Corollary 1.2].

It turns out that these two conjectures are related to problems regarding support
of elements in finite permutation groups, discussed above.

In [3], the first author studied another property of nontrivial words w, that of
being multiplicity-bounding (or MB for short), see [3, Definition 1.1.1]. This just
means that if a finite group G satisfies a probabilistic identity with respect to w and
� 2 .0; 1�, then for each nonabelian finite simple group S , the multiplicity of S as
a composition factor of G is bounded from above in terms of w, � and S . Several
stronger and weaker properties than that of being MB were also studied in [3], such
as the ones in the last two enumeration points of the following definition:
Definition 1.7. Let w 2 F.X1; : : : ; Xd / be a nontrivial word.
(1) A variation of w is a word obtained from w by “splitting variables”, i.e. by

adding, for each i 2 f1; : : : ; dg, to each occurrence of X˙1i in w some second
index.

(2) For a nonabelian finite simple group S , we say that w is a coset identity over S
if and only if there are ˛1; : : : ; ˛d 2 Aut.S/ such that wAut.S/ is constant on the
Cartesian product

Qd
iD1 S˛i of cosets of S in Aut.S/.

(3) w is called weakly multiplicity-bounding (or WMB for short) if and only if w is
not a coset identity over any nonabelian finite simple group.

(4) w is called very strongly multiplicity-bounding (or VSMB for short) if and only
if every variation of w is WMB.
For example, the wordX�11;5X�12;17X1;5X2;4 is a variation of the commutator word

X�11 X�12 X1X2. Note that our definition of a variation slightly differs from the one
in [3, Definition 2.4(2)], which included a technical restriction on the second indices
which one can assume w.l.o.g. anyway, but we will not need it here.

By a result of Larsen and the second author [8, Theorem 5.2], if a finite group G
satisfies a probabilistic identity with respect to w and �, then the orders of the
nonabelian composition factors of G are bounded from above in terms of w and �.
Letting Rad.G/ denote the solvable radical of a finite group G (namely the largest
solvable normal subgroup of G), this implies the following.
Corollary 1.8. A nontrivial word w is MB if and only if the assumption that a finite
group G satisfies a probabilistic identity with respect to w and � implies that the
radical index ŒG W Rad.G/� is bounded from above in terms ofw and �. In particular,
if w is MB then it is NLB.

The proof of this resultwill be given in Subsection 4.2 for the reader’s convenience.
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Hence, [3, Theorem 1.1.2] provides us with some examples of NLB words. Also
by [3, Theorem 1.1.2(1)], the shortest nontrivial words which are not MB are of
the form x8 where x is a variable. We will, however, be able to show that such
words are NLB, and the crucial observation is that while these words are not MB, in
particular not VSMB, they are “almost” VSMB, in the following exact sense:
Definition 1.9. Let w 2 F.X1; : : : ; Xd / be a nontrivial word. w is called almost
very strongly multiplicity-bounding (or almost VSMB for short) if and only if every
proper variation w0 of w (i.e. such that the number of variables occurring in w0 is
strictly larger than the number of variables in w) is WMB.

Our first main result relates the concepts of almost VSMB and NLB words:
Theorem 1.10. Almost VSMB words are NLB.

Thus, almost VSMB words satisfy Conjecture 1.5. This theorem is proved using
Theorem 1.2 above on permutation groups.

Using the above result, Corollary 1.8 and [3, Theorem 1.1.2(3)], the following is
immediate:
Corollary 1.11. Let w 2 F.X1; : : : ; Xd / be a nontrivial word of length at most 8.
Then w is NLB.

Theorem 1.10 and Corollary 1.11 provide evidence in favor of Larsen’s conjecture
mentioned above. We note that while X121 is also not MB, the authors cannot
exclude the possibility that all words of lengths 9, 10 and 11 are VSMB, in particular
NLB, thus possibly allowing to replace the constant 8 in Corollary 1.11 by 11.
However, compared to studying words of lengths up to 8 as done by the first author
in [3, Section 6], the computational cost of doing so even just for words of length 9
is considerable and would most likely require a medium- to large-scale parallel
computation. Still, with some more theoretical machinery, we will at least be able to
show the following:
Corollary 1.12. Let w 2 F.X1; : : : ; Xd / be a nontrivial word of length at most 11.
Then there is a constant Lw 2 N such that if a finite group G satisfies the identity
w � 1, then �.G/ � Lw .

Thus words of length at most 11 satisfy Conjecture 1.6. The proof of Coroll-
ary 1.12 is based on a result allowing one to infer, under certain assumptions on
a nontrivial word w, that if a finite group H without nontrivial solvable normal
subgroups satisfies the identity w � 1, then the so-called permutation part of H
(see Definition 4.1.1(1) below) satisfies a shorter identity. This result is formulated
in detail in Subsection 5.1 as Theorem 5.1.4.

Apart from new techniques for relating (probabilistic) identities with the
nonsolvable length, we will also give infinitely many new (i.e. not already implicit
in [3, Theorem 1.1.2(1)]) examples of both MB and non-MB words. Recall that the
power words xe areMB for all odd e (as shown in the above reference). Answering [3,
Question 7.1] we show the following.
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Theorem 1.13. Let x be a variable. Then the following hold:

(1) Let m be a positive integer such that every prime divisor l of m satisfies l � 1

.mod 225/. Then x2m is MB.

(2) Let e be a positive integer with e > 4 and 4 j e. Then xe is not MB.

Obtaining a better understanding for which positive integers e the word xe is
(or is not) MB is of intrinsic interest, but it also relates to bounding �.G/ in terms
of the group exponent exp.G/, see Subsection 6.1. We note that Theorem 1.13(2)
partially contradicts the first author’s result [3, Theorem 1.1.2(1)]; more precisely,
[3, Theorem1.1.2(1)]wrongly states thatx20 isMB, but it is not. However, as clarified
in an erratum on [3] prepared by the first author, [3, Theorem 1.1.2(1)] does become
true if one replaces the set f8; 12; 16; 18g in its statement by f8; 12; 16; 18; 20g (so 20
is the only exponent e for which the original version of [3, Theorem 1.1.2(1)] makes
a wrong statement on the MB property status of xe). Except for the paragraph at
hand, whenever we cite [3, Theorem 1.1.2(1)] in our paper (as we already did above),
we are actually always referring to the above mentioned corrected version of it.

Now that we have stated our main results, we give an overview of their
dependencies on the classification of finite simple groups (CFSG) and consequences
or precursor results thereof. In the following list of bullet points, the word
“elementary” means “does not require the CFSG”:
� Our results on permutation groups, Theorems 1.1 and 1.2 aswell as Proposition 1.3,
are elementary.

� Corollary 1.8 relies on [8, Theorem 5.2], which uses the CFSG.

� Theorem 1.10 depends on Lemmas 4.1.2 and 4.1.3, the former of which requires
the Schreier Conjecture, whereas the latter is elementary.

� Corollary 1.11 relies on [3, Theorem 1.1.2(3)], which in turn is based on [11,
Proposition 7], which uses the CFSG.

� Corollary 1.12 relies on Corollary 1.11, so it also depends on the CFSG. The
auxiliary results Theorem 5.1.4 and Proposition 5.2.1, which are also used in the
proof of Corollary 1.12, are elementary, though.

� The second statement in Theorem 1.13 is elementary, but the first depends on
a reduction argument from [11, proof of Proposition 7], which uses the CFSG.
As for auxiliary results, Lemma 6.1.1 requires the Feit–Thompson Theorem, and
Proposition 6.1.4 depends on Lemma 6.1.1. Lemmas 6.1.3, 6.2.1 and 6.2.2 are
elementary, although the fact that Lemma 6.1.3 implies Lemma 6.1.1 does use the
Feit–Thompson Theorem.

We conclude the Introduction with a consequence of Conjecture 1.5, that for every
word w ¤ 1 and every � 2 .0; 1�, the nonsolvable length of finite groups satisfying a
probabilistic identity with respect tow and � is bounded above in terms ofw and �. A
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profinite group G is said to be randomly free if, for any n � 1 and randomly chosen
elements g1; : : : ; gn 2 G (with respect to the normalized Haar measure on G),
the probability that g1; : : : ; gn freely generate a (discrete) free subgroup of rank n
is 1. The nonsolvable length of a profinite group G is defined to be the supremal
nonsolvable length of the finite quotients of G (with respect to open subgroups).

Conjecture 1.5 readily implies that profinite groups of infinite nonsolvable length
are randomly free. Indeed, this implication follows from [8, Lemma 1.4]. The
above (conditional) conclusion may be regarded as an extension of [8, Theorem 1.3],
showing that profinite groups are randomly free provided the sizes of their nonabelian
upper composition factors are unbounded.

This paper is organized as follows. In Section 2 we introduce some notation.
Section 3 is devoted to permutation groups and the support of their elements. This is
where results 1.1, 1.2 and 1.3 are proved. In Section 4we study probabilistic identities
and prove Theorem 1.10 and Corollary 1.11. Section 5 is devoted to identities and
the proof of Corollary 1.12. Finally, in Section 6, we prove Theorem 1.13 as well
as a few results on the impact of power word identities on the group structure. In
particular we show there that the nonsolvable length of a finite group is bounded
above by the exponent of its Sylow 2-subgroups.

2. Some notation and prerequisites

We first discuss an equivalent, but more explicit (though also more technical)
definition of �.G/.

Definition 2.1. Let G be a finite group.

(1) We denote by Rad.G/ the solvable radical of G, the largest solvable normal
subgroup of G.

(2) We denote by Soc.G/ the socle of G, the subgroup of G generated by all the
minimal normal subgroups of G.

(3) We define sequences .Gk.G//k�1, .Rk.G//k�1, .Hk.G//k�1, and .Tk.G//k�1
of characteristic sections of G recursively as follows:

(a) G1.G/ WD G.
(b) For k � 1, Rk.G/ WD Rad.Gk.G//.
(c) For k � 1,Hk.G/ WD Gk.G/=Rk.G/.
(d) For k � 1, Tk.G/ WD Soc.Hk.G//.
(e) For k � 2, Gk.G/ WD Hk�1.G/=Tk�1.G/.

We call a finite groupH semisimple if and only if Rad.H/ is trivial, i.e. if and only
if H has no nontrivial solvable normal subgroups. For the basic structure theory of
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finite semisimple groups (from which several of the subsequently listed facts follow),
see [12, pp. 89ff].

For every finite group G, the groups Rk.G/ are by definition all solvable,
the groups Hk.G/ are semisimple, and the groups Tk.G/ are direct products
of nonabelian finite simple groups. Moreover, since Hk.G/ embeds into the
automorphism group of Tk.G/, we have that Tk.G/ is trivial if and only
if Hk.G/ is trivial, so there is a unique non-negative integer �0.G/ such that
T1.G/; : : : ; T�0.G/.G/ are all nontrivial and Tk.G/ D f1g for k > �0.G/. Actually,
�0.G/ D �.G/, by [6, first paragraph in the introduction].

We now introduce some more notation and terminology that will be used
throughout the paper. We denote by N the set of natural numbers (including 0)
and by NC the set of positive integers. When f WX ! Y is a function andM � X ,
thenfjM denotes the restriction off toM , andf ŒM� denotes the element-wise image
of M under f . Euler’s constant will be denoted by e (which is to be distinguished
from the variable e). For c > 1, we denote by logc the base c logarithm, and log
denotes loge. For a set �, the symmetric group on � is denoted by Sym.�/, and
for n 2 NC, Sym.n/ denotes the symmetric group on f1; : : : ; ng. The group of
units of a field K is denoted by K�, and the algebraic closure of K by xK. For a
prime power q, the finite field with q elements is denoted by Fq . For a subset M
of a finite group G, we denote by exp.M/ the least common multiple of the orders
of the elements of M . Finally, for a nonabelian finite simple group S and a word
w 2 F.X1; : : : ; Xd /, a coset word equation with respect to w over S is an equation
of the form w.s1˛1; : : : ; sd˛d / D ˇ where ˛1; : : : ; ˛d ; ˇ are fixed automorphisms
of S , and s1; : : : ; sd are variables ranging over S (so that the solution set of such an
equation is always a subset of Sd ).

3. Permutation groups

In this section we prove our results on permutation groups, the support of their
elements and its distribution.

We first prove Theorem 1.1.

Proof. Wefirst assume� is finite, and then deduce the result without this assumption.
Set n D j�j. We may assume P has no orbits of size 1 in its action on �, since

we may delete these orbits from �, thereby obtaining a subset �0 D supp.P /, and
regard P as a permutation group on �0.

Suppose P has t orbits on �, of sizes n1; : : : ; nt > 1. Then,

jP j � n1Š � � �nt Š :

Since supp.�/ � c for all � 2 P , we have fix.�/ � n � c for all � 2 P .
Consider the random variable X D fix.�/, where � 2 P is assumed to be chosen
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uniformly at random. Then, by the Cauchy–Frobenius Lemma (“The lemma that is
not Burnside’s”),

E.X/ D t:

This yields t � n � c. In fact, since fix.1/ D n we have t > n � c, hence
tX
iD1

.ni � 1/ D n � t � c � 1:

Since ni � 2 we have ni � 2.ni � 1/, and so

supp.P / D
tX
iD1

ni � 2

tX
iD1

.ni � 1/ � 2.c � 1/:

This proves part (2).

To prove part (1) we claim that
tY
iD1

ni Š �

�
1C

tX
iD1

.ni � 1/

�
Š ;

with equality if and only if t D 1. We prove the claim by induction on t . The case
t D 1 is trivial, so suppose t � 2.

Induction hypothesis yields
t�1Y
iD1

ni Š �

�
1C

t�1X
iD1

.ni � 1/

�
Š :

Set d D 1C
Pt�1
iD1.ni � 1/. Then, since d � 2g we have

nt Š < .d C 1/.d C 2/ � � � .d C nt � 1/:

Hence,
tY
iD1

ni Š � dŠnt Š < dŠ.d C 1/.d C 2/ � � � .d C nt � 1/

D .d C nt � 1/Š D

�
1C

tX
iD1

.ni � 1/

�
Š ;

proving the claim. We conclude that

jP j �

tY
iD1

ni Š �

�
1C

tX
iD1

.ni � 1/

�
Š � cŠ ;

with equality if and only if P D Sc , proving part (1).
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Suppose now � is infinite. Let �0 be the support of P , as above. We claim
that �0 is finite, hence, regarding P as a permutation group on �0, we reduce to the
finite case.

To prove the claim, choose �1 2 P and denote its support by B1. If B1 D �0

then �0 has size at most c and we are done. Otherwise there exists �2 2 P with
support B2 which is not contained in B1. If B1 [ B2 D �0 we are done. Otherwise
we proceed so that in step i we choose �i 2 P with supportBi which is not contained
in �i�1 WD [i�1jD1Bj . Let Pi � P be the subgroup generated by �1; : : : ; �i and let
�i D [

i
jD1Bj . Then �i is finite (of size at most ci ) and Pi � Sym.�i /. By the

finite case we have
j�i j D supp.Pi / � 2.c � 1/:

Since the sequence j�j j is increasing the process must stop, which means that, for
some i , �0 D �i is finite. This completes the proof.

Next, we prove Theorem 1.2.

Proof. This is clear ifC D0, since then SBC .P /Dfid�g, whence jSBC .P /j��jP j
is equivalent to jP j � ��1, and

��1 � b��1 C 1c � b��1 C 1cŠ �
�
b��1 C 1cŠ

�d8 log��1e
:

The assertion is also clear if C � deg.P /. So we may henceforth assume that
1 � C < deg.P /. We first show the following claim:

“If P is transitive, then deg.P / � ��1 C C .”

To see that this claim holds true, consider the random variableX D fix.�/, where
� 2 P is assumed to be chosen uniformly at random. Then as noted in the proof of
Theorem 1.1, by the Cauchy–Frobenius Lemma, E.X/ D 1.

Moreover, the Markov inequality (see for instance [1, p. 265]) shows that, for each
positive integer k,

P.X � k/ �
E.X/
k
D
1

k
:

Applied with k WD deg.P / � C , this yields

P.� 2 SBC .P // �
1

deg.P / � C
;

so that
� �

1

deg.P / � C
;

or equivalently, deg.P / � ��1 C C . This concludes the proof of the above claim.
The claim yields in particular that the asserted upper bound on jP j holds when P

is transitive. Let us now give an argument for general P . Let� D �1 t � � � t�t be
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the partition of � into the orbits of P . For i D 1; : : : ; t , denote by Pi � Sym.�i /
the (transitive) image of P under the restriction homomorphism

�i WP ! Sym.�i /; � 7! �j�i
:

Observe that �i ŒSBC .P /� � SBC .Pi /, and so jSBC .Pi /j � �jPi j as well. Hence if,
for any i 2 f1; : : : ; tg, one has j�i j > ��1CC , one gets a contradiction to the above
claim. So we may assume that j�i j � ��1 C C for each i D 1; : : : ; t ; in particular,

jPi j � b�
�1
C C cŠ :

Aiming for a contradiction, assume now additionally that

jP j >
�
b��1 C C C 1cŠ

�d8.C�log�/e
:

Then,
jP j�

b��1 C C cŠ
�j > 1

for j D 0; 1; : : : ; d8.C � log �/e, allowing us to choose, for s WD d8.C � log �/e, a
length s sequence .i1; : : : ; is/ of pairwise distinct indices from f1; : : : ; tg such that
for each j 2 f1; : : : ; sg,

cj WD j�ij Œker.�i1/ \ � � � \ ker.�ij�1
/�j � 2:

What this means is that among all the elements of P , there occur c1 � 2 distinct
values in the i1-th coordinate, and after fixing any of the c1 many values in the i1-th
coordinate and considering only such elements of P , there still occur c2 � 2 distinct
values in the i2-th coordinate, and after fixing both the i1-th and i2-th coordinate,
there still occur c3 � 2 distinct values in the i3-th coordinate, and so on.

Now consider � WP !
Qs
jD1 Pij , the projection of P to the coordinates number

i1; : : : ; is . The image �ŒP � still satisfies that

jSBC
�
�ŒP �

�
j � �j�ŒP �j;

but on the other hand,

SBC
�
�ŒP �

�
�

�
.�i1 ; : : : ; �is / 2 �ŒP � �

sY
jD1

Pij j

9M � f1; : : : ; sg W
�
jM j D C and �ir D id�r

for all r 2 f1; : : : ; sg nM
��
:

Letting d1 � d2 � � � � � ds be such that the multisets fc1; : : : ; csg and fd1; : : : ; dsg
are equal, this yields the following upper bound on the proportion of elements in�ŒP �
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with support size at most C :

1

j�ŒP �j
jSBC

�
�ŒP �

�
j �

1

d1 � � � ds

 
s

C

!
d1 � � � dC

D

�
s
C

�
dCC1 � � � ds

�

� es
C

�C
2s�C

D

�
2es
C

�C
2s

:

We thus get the desired contradiction if we can argue that�
2es
C

�C
2s

< �: (3.1)

Recall that s D d8.C � log �/e, and set s0 WD s
C
, so that s D C � s0. Then,�

2es
C

�C
2s

D
.2es0/C

2s
0C
D

�2es0
2s
0

�C
D

� es0

2s
0�1

�C
;

and that last expression is strictly smaller than � if and only if

s0 � log2 s0 � 1 >
1 � 1

C
log �

log 2
:

Now by definition,

s0 D
s

C
D
d8.C � log �/e

C
� 8

�
1 �

log �
C

�
� 8;

and so
s0 � log2 s0 � 1 �

1

2
s0:

Hence, Formula (3.1) is implied by

s0 > 2 �
1 � 1

C
log �

log 2
D

2

log 2

�
1 �

1

C
log �

�
;

which is clear by definition of s0.

We now prove Proposition 1.3.

Proof. The Markov inequality applied in the proof of the above theorem shows that,
for any fixed � > 0 we obtain (substituting k D �n),

P
�
supp.�/ > .1 � �/n

�
� 1 � t=k D 1 �

t

�n
;

which tends to 1 provided t D o.n/. Part (1) follows.
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For part (2)we use the secondmomentmethod for the randomvariableX D fix.�/
(� 2 P ). Then E.X/ D t , and as is well known, by applying the Cauchy–Frobenius
Lemma to the action of P on f1; : : : ; ng2, one also gets E.X2/ D r . Therefore,

Var.X/ D E.X2/ � E.X/2 D r � t2:

By the Chebyshev inequality (see for instance [1, p. 267]) we have

P
�
jX � E.X/j � k

�
�

Var.X/
k2

:

Writing k D �n we obtain

P
�
jX � t j < �n

�
� 1 �

r � t2

�2n2
:

Clearly, jX � t j < �n implies fix.�/ < t C �n, which yields

supp.�/ D n � fix.�/ > .1 � �/n � t:

The result follows.

We conclude this section with the following example, which shows that (in the
notation used in Proposition 1.3(2)) r � t2 is not always in o.n2/:
Example 3.1. Let P D D6 D Sym.3/ in its regular action on itself (hence on 6
points). Then P is sharply 1-transitive. For m 2 NC, m � 2, let Gm be the set of
lengthm sequences E� D .�1; : : : ; �m/ 2 Pm such that ord.�i / D 2 for i D 1; : : : ; m
and jf�1; : : : ; �mgj � 2. Note that each such sequence E� is a generating sequence
for P . Set km WD jGmj, denote by �.m/i , for i D 1; : : : ; m, the projection Pm ! P

to the i -th coordinate, and let

Pm WD h.�
.m/
1 .E�//E�2Gm

; : : : ; .�.m/m .E�//E�2Gm
i � P Gm Š P km :

Then Pm is a km-fold subdirect power of P ; in particular, all orbits �j , for j D
1; : : : ; km, of Pm are of length 6. Note also that the m listed generators of Pm are
pairwise distinct, so that jPmj � m. For each j 2 f1; : : : ; kmg and each ! 2 �j , the
point stabilizer .Pm/! consists only of even length products of the listed generators
ofPm; in particular, for each l 2 f1; : : : ; kmg, the restriction of each element of .Pm/!
to �l is contained in the unique index 2 subgroup of the corresponding (sharply 1-
transitive) action of P D D6 on �l . Hence, .Pm/! is intransitive on each orbit �l
of Pm, whence each Cartesian product�j ��l of orbits of P splits into at least two
distinct orbits under the component-wise action of P 2. In particular,

r.Pm/ � 2t.Pm/
2;

and so

r.Pm/ � t .Pm/
2
� t .Pm/

2
D k2m D

�6km
6

�2
D

�deg.Pm/
6

�2
D

1

36
deg.Pm/2:
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4. Probabilistic identities

This section is concerned with the proofs of Theorem 1.10 and Corollary 1.11.
We will introduce another word property, that of being permutation-part-bounding
(see Definition 4.1.1(2)), which is stronger than the property of being NLB (see
Lemma 4.1.2(2)). Using Theorem 1.2, we will be able to show that almost VSMB
words are permutation-part-bounding (see Lemma 4.1.3). For the sake of complete-
ness, we will also give a proof of Corollary 1.8 in Subsection 4.2.

4.1. Permutation-part-boundingwords. Wenow introduce anotherword property
that will be relevant for the proof of Theorem 1.10:
Definition 4.1.1. Consider the following notations and concepts:
(1) LetH be a nontrivial finite semisimple group, say

S
n1

1 � � � � � S
nr
r � H � Aut.Sn1

1 � � � � � S
nr
r /

D
�
Aut.S1/ o Sym.n1/

�
� � � � �

�
Aut.Sr/ o Sym.nr/

�
;

where S1; : : : ; Sr are pairwise nonisomorphic nonabelian finite simple groups and
n1; : : : ; nr 2 NC. For i D 1; : : : ; r , denote by �i WH ! Aut.Si / o Sym.ni / the
projection to the i -th coordinate, and let Hi be the image of H under �i , which
is again semisimple, with socle Sni

i . We introduce the following notations for
isomorphism invariants ofH :
(a) P.H/ WD H=

�
H \ .Aut.S1/n1 � � � � �Aut.Snr

r //
�
for the so-called permutation

part ofH , whichwe can view naturally as a subgroup of Sym.n1/�� � ��Sym.nr/.
(b) Perm.H/ for the multiset fP.H1/; : : : ; P.Hr/g, and
(c) MPO.H/ for the number maxfjP.Hi /j j i D 1; : : : ; rg.

(2) Let w 2 F.X1; : : : ; Xd / be a nontrivial word. We say that w is permutation-
part-bounding (or PPB for short) if and only if there is a function fw W .0; 1�! Œ1;1/

such that for every nonsolvable finite group G satisfying a probabilistic identity with
respect to w and �, MPO.H1.G// � fw.�/.

Clearly, MB words are PPB. Moreover, we have the following:
Lemma 4.1.2. The following hold:
(1) Let G be a finite group. ThenH2.G/ is a section of

Q
P2Perm.H1.G//

P .
(2) PPB words are NLB.

Proof. For (1): By definition,

H2.G/ D G2.G/=R2.G/ D
�
H1.G/=Soc.H1.G//

�
=Rad

�
H1.G/=Soc.H1.G//

�
:

It is thus sufficient to show thatG2.G/ D H1.G/=Soc.H1.G// has a solvable normal
subgroup N such that G2.G/=N is isomorphic to a subgroup of

Q
P2Perm.H1.G//

P .
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Letting Soc.H1.G// Š Sn1

1 � � � � � S
nr
r , where S1; : : : ; Sr are pairwise nonisomor-

phic nonabelian finite simple groups and n1; : : : ; nr 2 NC, we may view, up to
natural isomorphism,

S
n1

1 � � � � � S
nr
r � H1.G/ � Aut.Sn1

1 � � � � � S
nr
r /:

We then find that

N WD
�
.Aut.S1/n1 � � � � � Aut.Sr/nr / \H1.G/

�
=.S

n1

1 � � � � � S
nr
r /

,! Out.S1/n1 � � � � � Out.Sr/nr

is a suitable choice.
For (2): Let w 2 F.X1; : : : ; Xd / n f1g be PPB, and assume that G is a finite

group that satisfies a probabilistic identity with respect to that word w and some
given � 2 .0; 1�. We want to bound �.G/ in terms of w and �. If G is solvable, then
�.G/ D 0, so assume that G is nonsolvable. Then,

jMPO.G=Rad.G//j D jMPO.H1.G//j � fw.�/;

where fw is as in the definition of PPB words. In other words, jP j � fw.�/ for
each P 2 Perm.G=Rad.G//. Moreover, by [8, Theorem 5.2], there is anNw.�/ > 0
such that all nonabelian composition factors of G have order at most Nw.�/. In
particular, the number of nonisomorphic simple direct factors in Soc.G=Rad.G// is
bounded from above byNw.�/ (because for each k � 1, the number of isomorphism
types of nonabelian finite simple groups up to order k is at most k, as the orders of
nonabelian finite simple groups are even and for each given order, there are atmost two
nonisomorphic nonabelian finite simple groups of that order). Using statement (1),
it follows that

60�.G/�1 � jH2.G/j � j
Y

P2Perm.G=Rad.G//

P j � fw.�/
Nw.�/;

and thus,
�.G/ �

1

log 60
Nw.�/ logfw.�/C 1:

In particular, the proof of Theorem 1.10 is now reduced to the following, which
we will show next:
Lemma 4.1.3. Almost VSMB words are PPB.

Proof. Let w be an almost VSMB word, let � 2 .0; 1�, and assume that a finite
nonsolvable group G satisfies a probabilistic identity with respect to w and �. Then
every quotient of G also satisfies a probabilistic identity with respect to w and �; in
particular, writing

Soc.H1.G// D Sn1

1 � � � � � S
nr
r ;
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where S1; : : : ; Sr are pairwise nonisomorphic nonabelian finite simple groups and
n1; : : : ; nr 2 NC, for i D 1; : : : ; r , the groupH1;i .G/, defined as the projection of

H1.G/ � Aut.Sn1

1 / � � � � � Aut.Snr
r /

to the i -th coordinate, satisfies a probabilistic identity with respect to w and �. Note
that up to isomorphism,

S
ni

i � H1;i .G/ � Aut.Sni

i / D Aut.Si / o Sym.ni /;

and that when setting

P1;i .G/ WD P.H1;i .G// ,! Sym.ni /;

one has by definition that

Perm.H1.G// D fP1;i .G/; : : : ; P1;r.G/g:

Our goal is to find an upper bound in terms ofw and� onmaxfjP1;i .G/j j iD1; : : : ; rg.
To that end, fix i 2 f1; : : : ; rg, and for notational simplicity, write S instead of Si ,

n instead of ni ,H instead ofH1;i .G/, and P instead of P1;i .G/. For � 2 P , denote
by Supp.�/ the set of points moved by � (so that, using the notation from Section 3,
supp.�/ D jSupp.�/j). Recall from above that H satisfies a probabilistic identity
with respect to w and �, so we can fix an element h D .ˇ1; : : : ; ˇn/ 2 H such
that pw;H .h/ � �.

Note: Ifw is a repetition-free word, i.e. if the maximum multiplicity of a variable
in w is 1 (no variable occurs more than once in w), then the probabilistic identity
implies that jH j � ��1; in particular, jP j � ��1 then, and we are done. So we may
assume that w is not repetition-free.

Writing w D x
�1

1 � � � x
�`

`
, where ` is the length of w, �1; : : : ; �` 2 f˙1g and

x1; : : : ; x` 2 fX1; : : : ; Xd g, we canfind indices j1; j2 2 f1; : : : ; `gwith j1 < j2 such
that xj1

D xj2
, xj 6D xj1

for all j 2 fj1 C 1; : : : ; j2 � 1g, and the (possibly empty)
word segment x

�j1C1

j1C1
� � � x

�j2�1

j2�1
is repetition-free. Moreover, for j D 1; : : : ; `, define

the word

vj WD

(
x
�1

1 � � � x
�j�1

j�1 if �j D 1;
x
�1

1 � � � x
�j

j if �j D �1;

see also [3, Lemma 2.7] and our Notation 5.1.1(1), and set v WD v�1j1
vj2

, see also
Notation 5.1.1(2). Note that by choice of j1 and j2, v is a nonempty reduced word
in which some variable occurs with multiplicity 1.

We bound the number of solutions to the equation w.y1; : : : ; yd / D h,
where y1; : : : ; yd are variables ranging over H , in a Soc.H/-coset-wise counting
argument. More precisely, fix first a d -tuple .�1; : : : ; �d / 2 P d . There are two
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fundamentally different cases in the counting argument, according to whether or
not v.�1; : : : ; �d / 2 SBC.�/.P /, where

C.�/ WD `2 �
log.2=�/

log.1C 1=.Nw.�/` � 1//

and Nw.�/ is chosen such that all nonabelian composition factors of a finite group
that satisfies a probabilistic identity with respect tow and � have order at mostNw.�/.

(1) Assumefirst thatv.�1; : : : ; �d /…SBC.�/.P /, i.e. that supp.v.�1; : : : ; �d //>C.�/.
For each k D 1; : : : ; d , fix one of the Œ.H \Aut.S/n/ W Sn�many cosets of Sn inH
that have permutation part �k , say with coset representative .˛k;1; : : : ; ˛k;n/�k , and
consider the equation

w
�
.s1;1˛1;1; : : : ; s1;n˛1;n/�1; : : : ; .sd;1˛d;1; : : : ; sd;n˛d;n/�d

�
D h

D .ˇ1; : : : ; ˇn/ ;

where the sk;t , for k D 1; : : : ; d and t D 1; : : : ; n, are variables ranging over S . As
described in [3, Lemma 2.7], this equation can be rewritten into the conjunction of
the single word equationw.�1; : : : ; �d / D  and the system of coset word equations
over S with respect to some variations of w whose t -th equation, for t 2 f1; : : : ; ng,
looks like this:�

s�.1/;��1
1
.t/˛�.1/;��1

1
.t/

��1
� � �
�
s�.`/;��1

`
.t/˛�.`/;��1

`
.t/

��`
D ˇt ;

where � is the unique function f1; : : : ; `g ! f1; : : : ; dg such that xj D X�.j / for
j D 1; : : : ; `, and �j D vj .�1; : : : ; �d / for j D 1; : : : ; `.

Hence, for each t 2 Supp.v.�1; : : : ; �d //, the underlying word of the �j1
.t/-th

coset word equation in the above equation system is a proper variation of w, as
follows by considering the j1-th and j2-th factors in the product on the left-hand side:
�.j1/ D �.j2/ (i.e. w has the same variable, possibly with different exponents˙1, in
those positions), but

��1j1
.�j1

.t// D t 6D .��1j2
�j1

/.t/ D ��1j2
.�j1

.t//

(so the second indices of the variables at those positions in the �j1
.t/-th coset word

equation are different). As w is assumed to be almost VSMB, this implies that
each coset word equation labeled by an index from �j1

ŒSupp.v.�1; : : : ; �d //� is not
universally solvable; in particular, since jS j � Nw.�/, its proportion of solutions
(among the variables that occur in it) is at most 1 � .1=Nw.�/l/.

But as in [3, proof of Lemma 2.12], since j�j1
ŒSupp.v.�1; : : : ; �d //�j > C.�/,

we can find at least dC.�/=`2e pairwise distinct indices in �j1
ŒSupp.v.�1; : : : ; �d //�

such that the corresponding equations in the above system have pairwise disjoint
occurring variable sets (i.e. they are “pairwise independent”), and this implies that
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the proportion of solutions (in Snd ) of the entire system of equations is at most�
1 �

1

Nw.�/`

�dC.�/=`2e

�

�
1 �

1

Nw.�/`

�C.�/=`2

D
�

2
;

where the equality is by definition of C.�/.

(2) Assume now that v.�1; : : : ; �d / 2 SBC.�/.P /. Then we do not give a nontrivial
upper bound on the number of solutions per d -tuple of socle cosets with permutation
parts .�1; : : : ; �d /, but we note that since v contains some variablewithmultiplicity 1,
the proportion of such d -tuples .�1; : : : ; �d / in P d is exactly 1

jP j
jSBC.�/.P /j.

In combination, this yields the following:

� � pw;H .h/ �
�

2
C

1

jP j
jSBC.�/.P /j;

and thus,
1

jP j
jSBC.�/.P /j �

�

2
;

so that an application of Theorem 1.2 shows that jP j can indeed be bounded from
above in terms of w and �, as required.

4.2. Proof of Corollary 1.8. Let G be a finite group. Assume first that

ŒG W Rad.G/� � C

for some constant C > 0. Then since Rad.G/ is solvable (i.e. it only has abelian
composition factors), for each nonabelian finite simple group S , the multiplicities of
S inG andG=Rad.G/ are the same. It follows that ŒG W Rad.G/�, and henceC , is an
upper bound on the product of the orders of the nonabelian composition factors ofG,
counted with multiplicities. In particular, the maximum multiplicity of a nonabelian
composition factor of G is at most log60.C /. This shows the implication “(” in the
first sentence of Corollary 1.8.

Now assume that for each nonabelian finite simple group S , the multiplicity of S
in G is at most CS for some constant CS > 0 that may depend on S . Assume
also that the maximum order of a nonabelian composition factor of G is bounded
from above by another constant C > 0. Then let D be the maximum value of CS ,
where S ranges over the (finitely many) nonabelian finite simple groups of order at
most C , so that any nonabelian composition factor of G occurs with multiplicity
at most D. It follows that the socle T1.G/ of G=Rad.G/, which is of the form
S
n1

1 � � � � � S
nr
r where S1; : : : ; Sr are pairwise nonisomorphic nonabelian finite

simple groups and n1; : : : ; nr 2 NC, satisfies

jT1.G/j � C
Dr
� CCD;
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where the latter inequality uses that there are at most C distinct isomorphism types
of nonabelian finite simple groups of order at most C (as was already observed in the
proof of Lemma 4.1.2(2) above). This concludes the proof of the implication “)”
in the first sentence of Corollary 1.8.

For the second sentence (the “In particular”), just observe that

ŒG W Rad.G/� �
1Y
kD1

jTk.G/j � 60
�.G/:

This concludes the proof of Corollary 1.8.
We thus have the following implication diagram between the various word

properties considered in this paper:

VSMB almost VSMB

MB PPB NLB

WMB

4.3. Proofs ofTheorem1.10 andCorollary 1.11. The proof ofTheorem 1.10 is imm-
ediate by combining Lemmas 4.1.2 and 4.1.3. For Corollary 1.11, note that by [3,
Theorem 1.1.2(3)], all nontrivial words w of length at most 8 are almost VSMB, so
that we can conclude by an application of Theorem 1.10.

5. Identities

In this section, we are concerned with the proof of Corollary 1.12. This is based
on a result stating that if each member of a certain subset of the variations of a
given nontrivial word w is WMB, then there is a nontrivial word v of length strictly
shorter than w (actually, v can be chosen to be some proper segment of w) such that
if a finite semisimple group H satisfies the identity w � 1, then the permutation
part P.H/ satisifies the identity v � 1. For the precise formulation of this result,
see Theorem 5.1.4.

5.1. Segment identities. As noted in the Introduction, we will prove a result
(Theorem 5.1.4 below) which will allow us to show that under certain assumptions,
if a finite semisimple group H satisfies some identity w � 1, then the permutation
part P.H/ satisfies a shorter identity v � 1, where v is some proper segment of w.
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Let us first introduce some notations and terminology and then formulate and prove
Theorem 5.1.4.
Notation 5.1.1. Let w 2 F.X1; : : : ; Xd /, say w D x

�1

1 � � � x
�`

`
where ` is the length

of w, and for i D 1; : : : ; `, xi 2 fX1; : : : ; Xd g and �i 2 f˙1g.
(1) For i D 1; : : : ; `, set

Ii .w/ WD

(
x
�1

1 � � � x
�i�1

i�1 if �i D 1;
x
�1

1 � � � x
�i

i if �i D �1:

(2) For 1 � i < j � `, set

�i;j .w/ WD Ii .w/
�1Ij .w/:

Note the following two simple facts:
Remark 5.1.2. Using the notation from Notation 5.1.1, we note the following:
(1) The words �i;j .w/ are segments of w.
(2) �i;j .w/ is empty if and only if j D i C 1, �i D �1 and �j D �iC1 D 1. In

particular, since w is reduced, �i;j .w/ is always nonempty if i and j are such
that xi D xj .

(3) �i;j .w/ D w if and only if i D 1, j D `, �1 D 1 and �` D �1.
Definition 5.1.3. Let w 2 F.X1; : : : ; Xd /, with notation as in Notation 5.1.1.
Moreover, let w0 D y

�1

1 � � �y
�`

`
be a variation of w, and let 1 � i < j � `.

We say that w0 is an .i; j /-split variation of w if and only if xi D xj and yi 6D yj .
Theorem 5.1.4. Let w 2 F.X1; : : : ; Xd /, with notation as in Notation 5.1.1. Also,
assume that for some given i; j 2 f1; : : : ; `g with i < j and xi D xj , all .i; j /-split
variations of w are WMB. Then, if a finite semisimple group H satisfies the identity
w � 1, the permutation part P.H/ satisfies the identity�i;j .w/ � 1. In particular,
there is a nontrivial word v 2 F.X1; : : : ; Xd / of length strictly smaller than ` such
that P.H/ satisfies the identity v � 1.

Proof. The “In particular” follows from the main statement, as by Remark 5.1.2(1,2),
�i;j .w/ is a nonempty segment of w, and so usually, one will simply choose
v WD �i;j .w/, unless �i;j .w/ D w, which by Remark 5.1.2(3) can only happen
if w D xvx�1 with v 2 F.X1; : : : ; Xd / n f1g is not cyclically reduced, in which
case H , and thus P.H/ satisfies the identity v � 1. We thus focus on the proof of
the main statement now.

Say, Soc.H/ D S
n1

1 � � � � � S
nr
r , where S1; : : : ; Sr are pairwise nonisomorphic

nonabelian finite simple groups and n1; : : : ; nr 2 NC. Then, H is a subdirect
product of semisimple groups Hk , k D 1; : : : ; r , such that Soc.Hk/ D S

nk

k
for

each k, and such that P.H/ is a subdirect product of the permutation parts P.Hk/,
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for k D 1; : : : ; r . Hence, it suffices to show that each P.Hk/ satisfies the identity
�i;j .w/ � 1. This shows that we may assume w.l.o.g. that Soc.H/ D Sn for some
nonabelian finite simple group S and some n 2 NC.

Aiming for a contradiction, we will also assume that P.H/ does not satisfy
�i;j .w/� 1. Then we can fix �1; : : : ; �d 2 P.H/ with �i;j .w/.�1; : : : ; �d / 6D id.
Moreover, we fix m0 2 f1; : : : ; ng with �i;j .w/.�1; : : : ; �d /.m0/ 6D m0, and set

m1 WD Ii .w/.�1; : : : ; �d /.m0/:

Finally, we fix automorphism tuples

Ęk D .˛k;1; : : : ; ˛k;n/ 2 Aut.S/n;

for k D 1; : : : ; d , such that Ęk�k 2 H .
By assumption, we have that

wH .S
n
Ę1�1; : : : ; S

n
Ęd�d / D f1H g:

In particular, letting sk;m, for k D 1; : : : ; d and m D 1; : : : ; n, be variables ranging
over S , then by [3, Lemma 2.7], we have that a certain system of n coset word
equations over S in the variables sk;m is universally solvable, and setting

�t WD It .w/.�1; : : : ; �d /

for t D 1; : : : ; l and denoting by � the unique function f1; : : : ; `g ! f1; : : : ; dg such
that for t D 1; : : : ; `, xt D X�.t/, one of the equations from the system is�

s�.1/;��1
1
.m1/

˛�.1/;��1
1
.m1/

��1
� � �
�
s�.`/;��1

`
.m1/

˛�.`/;��1
`
.m1/

��`
D 1: (5.1)

Note that by assumption, �.i/ D �.j /, but also

��1j .m1/ D
�
Ij .w/.�1; : : : ; �d /

��1
.m1/

D
�
�i;j .w/.�1; : : : ; �d /

�1
� Ii .w/.�1; : : : ; �d /

�1
�
.m1/

D �i;j .w/.�1; : : : ; �d /
�1.m0/ 6D m0 D �

�1
i .m1/:

Hence, Equation (5.1) is a universally solvable coset word equation over S with
respect to some .i; j /-split variation w0 of w. But by assumption, S does not satisfy
any coset identity with respect to w0, which is the desired contradiction.

5.2. A consequence of Theorem 5.1.4. Using Theorem 5.1.4, we can show the
following, which will be used in the proof of Corollary 1.12:
Proposition 5.2.1. Let w 2 F.X1; : : : ; Xd /, with notation as in Notation 5.1.1.
Also, assume that for some given k 2 f1; : : : ; dg, �w.Xk/ � 3. Finally, let i; j 2
f1; : : : ; `g with i < j such that xi D xj D Xk . If a finite semisimple group H
satisfies the identity w � 1, then P.H/ satisfies �i;j .w/ � 1; in particular, P.H/
satisfies a nontrivial identity of length strictly shorter than `.
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Proof. The proof of the “In particular” is as for Theorem 5.1.4. For the main
statement: Since �w.Xk/ � 3 < 2 � 2, in each .i; j /-split variation w0 of w, there
will be a variable that occurs with multiplicity exactly 1. Hence w0 is VSMB, in
particular WMB, by [3, Proposition 3.1(1)].

5.3. Proof of Corollary 1.12. By [3, Theorem 1.1.2(3)] and Corollary 1.11, it
suffices to consider words w of lengths 9, 10 or 11. We start with the length 9
case. Then the existence of Lw (actually, with Lw D 0) is clear if w is a power
of single variable. So we may also assume that w contains at least two distinct
variables. But if the total number of variables occurring in w is at least 3, then
since 9 < 3 � 4, there is a variable occurring with multiplicity at most 3 in w. Hence,
by Proposition 5.2.1, P.H1.G// satisfies an identity v � 1 for some word v of length
at most 8. By Corollary 1.11, v is NLB, and so P.H1.G// satisfying v � 1 entails
that �.P.H1.G/// (and thus �.G/) is bounded from above by some constant, as
required.

So we may henceforth assume that w D w.x; y/ is a two-variable word, and
moreover (by an argument as in the previous paragraph, using Proposition 5.2.1), we
may assume that each variable that occurs in w does so with multiplicity at least 4.
Since 9 < 2 � 5, one of the two variables, say w.l.o.g. x, occurs with multiplicity
exactly 4 in w. Using the notation of Notation 5.1.1 for w (with l D 9, of course),
fix a pair .i; j / with 1 � i < j � 9 and xi D xj D x.

Wewill now argue that each .i; j /-split variationw0 ofw isWMB. Since�w.x/ D
4 < 3 � 2, at least one of the variables in w0 derived from x, say x0, must occur
with multiplicity at most 2. If �w0.x0/ D 1, w0 is VSMB, in particular WMB,
by [3, Proposition 3.1(1)]. So assume that �w0.x0/ D 2. The segment between
the two occurrences of .x0/˙1 in w0 is of length at most 7, and thus it is VSMB
by [3, Theorem 1.1.2(3)]. In view of this and [3, Proposition 3.1(2,3)], w0 is VSMB,
in particular WMB.

An application of Theorem 5.1.4 now yields that P.H1.G// satisfies an identity
of the form v � 1 where v is a word of length at most 8. Again, by Corollary 1.11,
v is NLB, and so �.P.H1.G/// is bounded from above by some constant.

The arguments for words of length ` 2 f10; 11g are largely similar, so we only
sketch them. The first paragraph of the above argument can almost literally be carried
over, replacing 9 by `, of course, and not only referring to Corollary 1.11 at the end,
but also to the cases of length 9 resp. lengths 9 and 10 already done by then. In the
two-variable case w D w.x; y/ with �w.x/; �w.y/ � 4, since ` < 2 � 6, we get that
one of the two variables, say w.l.o.g. x, occurs with multiplicity 4 or 5 in w. When
choosing the pair .i; j / with 1 � i < j � ` with xi D xj D x, one must also
choose it such that the difference j � i is maximal among all such pairs. This way, in
the third paragraph of the argument, it is ensured that the segment s between the two
occurrences of x0 in w0 is of length at most ` � 3 (not just ` � 2, as in the argument
for length 9 words). For ` D 10, one can then conclude as in the length 9 case, and
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for ` D 11, one needs the additional observation that s cannot be an 8-th or .�8/-th
power of a single variable, for then some variable (necessarily y) occurs in w with
multiplicity at least 8, so that �w.x/ � 3, a contradiction.

6. Power words

The aim of this section is two-fold: Firstly, to discuss, in Subsection 6.1, a few results
on the structure of finite groups G satisfying a power word identity xe � 1 (i.e. such
that the group exponent exp.G/ divides e). These results are closely related to
observations, stated explicitly by Segal in [13, Theorem 10 and its proof] but already
implicit in a paper by Hall and Higman [4, proof of Theorem 4.4.1], on the impact
of power word identities on the generalized Fitting height of the group. Secondly,
in Subsection 6.2, we will prove Theorem 1.13, which provides infinitely many new
examples both of MB and of non-MB power words xe .

6.1. Identities. It is clear by a result of Segal [13, Theorem 10] that for each positive
integer e, if a finite groupG satisfies the identityxe � 1 (in otherwords, if exp.G/ je),
then �.G/ is bounded from above in terms of e (actually, Segal’s result says that the
same holds true if �.G/ is replaced by the generalized Fitting height of G, which
is an upper bound on �.G/). Now Segal’s proof uses the following, which is based
on [4, proof of Theorem 4.4.1] and the Feit–Thompson theorem:
Lemma 6.1.1. Let x be a variable, let e 2 NC, and let H be a nontrivial finite
semisimple group satisfying the identityxe � 1 (in particular, e is even). Then,P.H/
satisfies the identity xe=2 � 1.

The aim of this subsection is two-fold: Firstly, to show a slightly stronger variant
of Lemma 6.1.1 (see Lemma 6.1.3 below), and secondly, to use a Segal-like argument
for gaining a simple explicit upper bound on the nonsolvable length �.G/ in terms
of exp.G/ (see Proposition 6.1.4 below).

Let us start with the stronger version of Lemma 6.1.1, for which we introduce the
following:
Definition 6.1.2. Let x be any fixed variable. Call a positive integer e good if and
only if the word xe is MB, and otherwise, call e bad. Moreover, for fixed e 2 NC,
denote by BAD.e/ the set of all positive divisors of e that are bad.
Lemma 6.1.3. Let x be a variable, let e 2 NC, and let H be a nontrivial finite
semisimple group satisfying the identity xe � 1 (in particular, e is bad). Then P.H/
satisfies the identity xe= gcd.BAD.e// � 1.

Proof. We may w.l.o.g. assume that Sn � H � Aut.Sn/ for some nonabelian finite
simple group S and some n 2 NC (as H is, in general, a subdirect product of such
groups, and likewise, P.H/ is a subdirect product of the permutation parts of those
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groups). Fix � 2 P.H/. We will show that � can only have cycles of lengths of the
form e

d
where d 2 BAD.e/, and once we will have shown that, we will be done, as

this implies that

ord.�/ j lcmd2BAD.e/
e

d
D

e

gcd.BAD.e//
:

So let � D .i1; : : : ; i`/ be a length ` cycle of � . Note firstly that ` j e, sinceP.H/,
being a quotient of H , also satisfies the identity xe � 1. Now fix .˛1; : : : ; ˛n/ 2
Aut.S/n such that .˛1; : : : ; ˛n/� 2 H . It follows that for all s1; : : : ; sn 2 S ,�

.s1˛1; : : : ; sn˛n/�
�e
D 1;

and the expression on the left-hand side can be written as an element of Aut.S/n
whose i`-th entry is �

si`˛i`si`�1
˛i`�1

� � � si1˛i1
�e=`

;

which must in particular also be 1 for all choices of si1 ; : : : ; si` 2 S . This shows
that S satisfies a coset identity with respect to xe=`, and so e=` is bad by [3,
Proposition 2.9(3)], i.e. ` D e=d for some d 2 BAD.e/, as required.

Note that by [3, Corollary 5.2], all bad positive integers are even, and so in
Lemma 6.1.3,

gcd.BAD.e// � 2;

whence Lemma 6.1.3 does imply Lemma 6.1.1, as asserted above. While it is true
that the greatest common divisor of all bad positive integers is 2 (since, for example,
8 and 18 are bad by [3, Theorem 1.1.2(1)]), and thus that Lemma 6.1.3 does not
always provide strictly stronger information than Lemma 6.1.1, in some cases, it is
better. As a somewhat extreme example, note that

BAD.30/ D f30g

by [3, Theorem 1.1.2(1)], and so by Lemma 6.1.3,H satisfying the identity x30 � 1
implies that P.H/ is trivial (as opposed to it just satisfying the identity x15 � 1,
which is what Lemma 6.1.1 gives).

Using the bound from Lemma 6.1.1, we will now show, similarly to Segal’s proof
of [13, Theorem 10]:
Proposition 6.1.4. For every finite group G, �.G/ � �2.exp.G//.

Proof. By induction on v WD �2.exp.G//. If v D 0, then G is solvable by the Feit–
Thompson Theorem, so �.G/ D 0, and the bound is clear in that case. Now assume
that v � 1, and also assume that G is nonsolvable (otherwise, again, �.G/D0 and
the bound is clear). Then since G satisfies the identity xexp.G/ � 1, so does

H1.G/ D G=Rad.G/:
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By Lemma 6.1.1, it follows that P.H1.G// satisfies the identity xexp.G/=2 � 1, and
thus, by the induction hypothesis,

�.G/ � 1 D �.P.H1.G/// � �2.exp.G/=2/ D �2.exp.G// � 1;

which yields the desired bound, �.G/ � �2.exp.G//.

6.2. New examples of MB and non-MB power words. In this subsection, we are
concerned with the proof of Theorem 1.13. It relies on the following two lemmas of
some independent interest:
Lemma 6.2.1. Let w 2 F.X1; : : : ; Xd /, let S be a nonabelian finite simple group,
and let ˛1; : : : ; ˛d 2 Aut.S/. The following are equivalent:
(1) w.S˛1; : : : ; S˛d / 6D fw.˛1; : : : ; ˛d /g.
(2) w.S˛1; : : : ; S˛d / 6D f1g.

We note that by Lemma 6.2.1, [3, Corollary 5.2] may be viewed as a direct
consequence of Nikolov’s earlier result [11, Proposition 10].
Lemma 6.2.2. Let f 2 NC be odd, let S D PSL2.3f /, and let ˛ be an auto-
morphism of S with nontrivial diagonal part and whose field part is of order f .
Then, exp.S˛/ D 4f .

Computer calculations show that the statement of Lemma 6.2.2 is also true for
f 2 f2; 4g, so it might actually hold for all f 2 NC. Let us now prove these two
lemmas before proceeding with the proof of Theorem 1.13.

Proof of Lemma 6.2.1. For “1) 2”: We will show the contraposition: Assume that

w.S˛1; : : : ; S˛d / D f1g:

Then, since w.˛1; : : : ; ˛d / 2 w.S˛1; : : : ; S˛d /, it follows that w.˛1; : : : ; ˛d / D 1,
and so

w.S˛1; : : : ; S˛d / D f1g D fw.˛1; : : : ; ˛d /g;

as required.
For “2) 1”: Let ˇ 2 w.S˛1; : : : ; S˛d / n f1g � Aut.S/ n f1g. Then there is

an s 2 S with ˇs 6D ˇ. But,

ˇs 2 w.S˛1; : : : ; S˛d /
s
D w..S˛1/

s; : : : ; .S˛d /
s/ D w.S˛1; : : : ; S˛d /:

It follows that jw.S˛1; : : : ; S˛d /j � 2. In particular, w.S˛1; : : : ; S˛d / cannot be
equal to the singleton fw.˛1; : : : ; ˛d /g, as required.

Proof of Lemma 6.2.2. We view S D PSL2.3f / as the subgroup of PGL2.3f /
consisting of the images under the canonical projection GL2.3f / ! PGL2.3f /
of all matrices in GL2.3f /whose determinant is a square in F3f . Note that the order
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of every element of S˛ is divisible by f and that by [5, Proposition 4.1], .S˛/f
lies in some copy of PGL2.3/ Š Sym.4/ inside the simple Chevalley group A1.F3/
containing S . In particular, each element order in .S˛/f lies in f1; 2; 3; 4g, so we
are done if we can show the following two statements:
� For all s 2 S , ord..s˛/f / … f1; 3g.
� There is an s 2 S with ord..s˛/f / D 4.
Let us start with the first statement. Write ˛ D s0ı� where s0 2 S , ı is any fixed
element of PGL2.3f / n PSL2.3f /, and � is a field automorphism of order f (not
necessarily the entry-wise Frobenius automorphism x 7! x3). Then for each s 2 S ,

.s˛/f D .ss0ı�/f D .ss0ı/.ss0ı/� � � � .ss0ı/�
f�1

;

and so, since ss0ı 2 PGL2.3f / n PSL2.3f / and f is odd, it follows that the order
of .s˛/f is even. This concludes the proof of the first statement.

For the second statement, denote again by � the common field part of the elements
of S˛. Since PGL2.3/ Š Sym.4/, we have that

PGL2.3/ n PSL2.3/ D PGL2.3/ n PGL2.3/0

contains an element g� GL2.3/ of order 4. Observe that the lift g 2 GL2.3/ of
g� GL2.3/ must have determinant �1, for its determinant must be a non-square
in F3. But since f is odd, �1 is also a non-square in F3f , so ˇ WD g� GL2.3f /
lies in PGL2.3f / n PSL2.3f / and also has order 4. Since ˇ is centralized by �
and gcd.4; f / D 1, it follows that ˇ� 2 S˛ has order 4f , as required.

We are now ready for the:

Proof of Theorem 1.13. Let us start with the proof of statement (2), because it is
shorter and easier. Firstly, note that since x8 is not MB by [3, Theorem 1.1.2(1)], we
also have that x8k is not MB for any k 2 NC (if a finite group satisfies a probabilistic
identity with respect to x8 and �, it also satisfies one with respect to x8k and �). We
may thus assume that e � 4 .mod 8/; in other words, e D 4f for some odd f 2 NC

with f > 1. But by Lemma 6.2.2, if ˛ 2 Aut.PSL2.3f // is as in the formulation of
Lemma 6.2.2, then �

PSL2.3f /˛
�e
D f1g;

whence e is bad by [3, Proposition 2.9(3)].
We nowgive the proof of statement (1). First, note that the assumption implies that

each prime divisor ofm is larger than 226. We need to show that for every nonabelian
finite simple group S and all ˛ 2 Aut.S/, .S˛/2m 6D f˛2mg. By [3, Theorem 5.1],
it suffices to show this for S of one of the two forms PSL2.pf / or Suz.22kC1/. In
what follows, we denote by ˆS the field automorphism group of S , which is cyclic,
generated by �, the entry-wise Frobenius automorphism a 7! ap (for this to make
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sense in the Suzuki case, view Suz.22kC1/ as a subgroup of GL4.22kC1/ as in [15]).
As in the proof of Lemma 6.2.2 above, we view PSL2.pf / as a subgroup of

PGL2.pf / D Inndiag.PSL2.pf //;

and we denote the image of a matrixM 2 GL2.pf / under the canonical projection
GL2.pf /! PGL2.pf / by xM .
(1) Case: S D Suz.22kC1/. Then,

Out.S/ D ˆS D h�i;

so we may choose ˛ D �t for some t 2 f0; : : : ; 2kg. Then ˛ centralizes

Frob.20/ Š Suz.2/ � S:

In particular, there is an s 2 S of order 5 − 2m centralized by ˛. It follows that

.s˛/2m D s2m˛2m 6D ˛2m:

(2) Case: S D PSL2.pf /. We make a subcase distinction:
(a) Subcase: p D 2. Then,

Out.S/ D ˆS D h�i;

so we may choose ˛ D �t for some t 2 f0; : : : ; f � 1g. Then ˛ centralizes

Sym.3/ Š PSL2.2/ � S:

In particular, there is an s 2 S of order 3 − 2m centralized by ˛. It follows that

.s˛/2m D s2m˛2m 6D ˛2m:

(b) Subcase: p > 2. Then,

Out.S/ D Outdiag.S/:ˆS D
˝�
� 0
0 1

�
S
˛
:h�i;

where � is some fixed generator of F�
pf . We may thus choose ˛ D

�
� 0
0 1

� �
�t for

some � 2 f0; 1g and some t 2 f0; : : : ; f � 1g. If � D 0, then we can conclude
as in Subcase (1), using that PSL2.p/ contains an element of order 3. So assume
that � D 1. We make a subsubcase distinction:
(i) Subsubcase: p�7 or gcd.f; t/>1. Note that the centralizer of ˛ in Inndiag.S/D
PGL2.pf / contains the element

˛ord.�
t /
D ˛f= gcd.f;t/ D

 Qf=.gcd.f;t/�1/
kD0

�p
kt

0

0 1

!

D

 Qf=.gcd.f;t/�1/
kD0

�p
k gcd.f;t/

0

0 1

!
D

�
�.p

f �1/=.pgcd.f;t/�1/ 0

0 1

�
;
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whose order is pgcd.f;t/ � 1. In particular, since

ŒInndiag.S/ W S� D 2;

there is an s 2 S of order .pgcd.f;t/ � 1/=2 centralized by ˛. We will now argue that
.pgcd.f;t/ � 1/=2 does not divide 2m, then we can conclude as in Subcase (1). To
that end, note that by the subsubcase assumption, .pgcd.f;t/ � 1/=2 > 2, so it suffices
to show that .pgcd.f;t/ � 1/=2 is not of the form n or 2n for some n > 1 that is odd
and satisfies the congruence n � 1 .mod 225/.
� If .pgcd.f;t/ � 1/=2 D n. Then,

2nC 1 D pgcd.f;t/:

By assumption, n � 1 .mod 3/, so that 3 j 2nC1 and thusp D 3. But 2nC1 > 3,
so one would need to have 9 j 2nC 1, which is impossible since n � 1 .mod 9/
by assumption.

� If .pgcd.f;t/�1/=2 D 2n. Then,

4nC 1 D pgcd.f;t/:

By assumption, n � 1 .mod 5/, so that 5 j 4nC1 and thusp D 5. But 4nC1 > 5,
so one would need to have 25 j 4nC 1, which is impossible since n � 1 .mod 25/
by assumption.

(ii) Subsubcase: p 2 f3; 5g and gcd.f; t/ D 1 (i.e. �t is a generator of ˆS ). By
Lemma 6.2.1, it suffices to show that

.S˛/2m 6D f1g:

Since f D ord.�t / j ord.s˛/ for all s 2 S , this is clear if f − 2m, so assume
that f j 2m. Note that by the argument from the previous subsubcase, we always
have that .p � 1/f j ord.˛/. In particular, if p D 5, or if p D 3 and f is even,
then 4 j ord.˛/, so that ord.˛/ − 2m and we are done. So we may assume that
p D 3 and f is odd. But then Lemma 6.2.2 yields that some element in S˛ has
order divisible by 4; in particular, the .2m/-th power of that element is nontrivial, as
required.
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