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Abstract. We prove that all Gromov hyperbolic groups embed into the asynchronous rational
group defined by Grigorchuk, Nekrashevych and Sushchanskiı̆. The proof involves assigning
a system of binary addresses to points in the Gromov boundary of a hyperbolic group G,
and proving that elements of G act on these addresses by asynchronous transducers. These
addresses derive from a certain self-similar tree of subsets of G, whose boundary is naturally
homeomorphic to the horofunction boundary of G.
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Introduction

Let f0; 1g! denote the Cantor set of all infinite binary sequences. A homeomorphism
of f0; 1g! is said to be rational if there exists an asynchronous transducer (i.e. an
asynchronous Mealy machine) that implements the homeomorphism on infinite
binary strings. In [24], Grigorchuk, Nekrashevych and Sushchanskiı̆ observe that the
set of all rational homeomorphisms of f0; 1g! forms a group R under composition,
which they refer to as the rational group. They also observe that the group of rational
homeomorphisms of A! is isomorphic to R for any finite alphabet A with at least
two elements.

Here the word asynchronous refers to transducers that can output a finite binary
sequence of any length each time they take a digit as input. This is a generalization of
synchronous transducers, which are required to output a single binary digit each time
they take a digit of input. The asynchronous rational group R contains the group of
synchronous rational homeomorphisms corresponding to any finite alphabet.

Our main focus is on embedding questions for the rational group R. We prove:

Theorem 1. Every hyperbolic group embeds into R.

Here a hyperbolic group is a finitely generated group G whose Cayley graph
satisfies Gromov’s thin triangles condition (see [10]). This is a vast class of
finitely presented groups: in a precise sense, “generic” finitely presented groups
are hyperbolic [13, 42].

There are compelling practical features of groups realised as groups of
homeomorphisms ofCantor spaces realisable as finite-state transducers. For example,
one can directly understand how such group elements act on their respective Cantor
spaces and one can study the specific combinatorics of the transducers representing
these group elements. An example of the impact that can be created by realising group
elements this way is provided by Grigorchuk and Zuk. By realising the lamplighter
group as a group of synchronous automata, they are able to compute the spectrum of
the resulting group [25]. This yields a counterexample to a strong form of Atiyah’s
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conjecture about the range of values of the spectrum of L2-Betti numbers for closed
manifolds [23].

If we consider the case of the groups Aut.f0; 1; : : : ; n�1gZ; �/ of automorphisms
of (full) shift spaces, then Grigorchuk, Nekrashevych, and Suschanskiı̆ in [24]
answer a request by Kitchens for a new combinatorial realisation of elements of
those automorphism groups. Kitchens in [32] states that a major obstacle in the
progression of understanding groups of automorphisms of shift spaces has been a lack
of a practical combinatorial description for elements of these groups. Grigorchuk,
Nekrashevych, and Suschanskiı̆ give an embedding of Aut.f0; 1; : : : ; n � 1gZ; �/
in R. There is now a second realisation arising from the recent description of
the group Aut.Gn;r/ of automorphisms of the Higman–Thompson group Gn;r
(for 1 � r < n natural numbers) as a group of transducers acting on a specific
Cantor space Cn;r [8], which also exposed an unexpected connection between
subgroups of the outer automorphism group of the Higman–Thompson group Gn;r
andAut.f0; 1; : : : ; n�1gZ; �/. This connection arose through the study in [8,9] of the
special combinatorial properties of the transducers representing the group elements
of Aut.Gn;r/ for such n and r , and leads to an explicit combinatorial realisation of
elements of Aut.f0; 1; : : : ; n � 1gZ; �/ which exposes these groups’ structures as
non-split extensions over a central Z.

Groups of synchronous transducers have received much attention in the literature,
primarily as this class of groups contain numerous ‘exotic’ groups providing examples
of unusual or unexpected behaviour (e.g. [4, 21, 22, 27, 39, 40] provides a very
incomplete list of papers). While these groups do provide counterexamples to various
forms of the Burnside conjecture and Milnor’s conjecture, they also remain natural
in many ways. Indeed, this class houses well known foundational groups which arise
in other circumstances, including free groups [45], GLn.Z/ and its subgroups [11],
the solvable Baumslag–Solitar groupsBS.1;m/ [5], and the generalized lamplighter
groups .Z=nZ/ o Z [44].

On the other hand, comparatively little attention has been paid to themore complex
class of groups generated by asynchronous transducers, and the full asynchronous
rational groupR of Grigorchuk, Nekrashevych, and Sushchanskiı̆. It is known thatR
is simple and not finitely generated [7]. Also, while the word problem is solvable in
finitely generated subgroups of R [24], the periodicity problem for elements of R
has no solution [6]. Finally, the group R houses ‘exotic’ groups of another type: the
R. Thompson groups F , T , and V all embed into R [24], as do the Brin–Thompson
groups nV (see [6] for the embedding of the group 2V ) and groups such as the
Röver group V� (a finitely presented simple group which is marriage of Grigorchuk’s
group � with the R. Thompson group V , see [43]). Any group of synchronous
automata embeds into R, so R also contains the groups mentioned earlier.

The proof of Theorem 1 is dynamical as opposed to algebraic. Indeed, there is a
general dynamical procedure for showing that a group embeds into R, which can be
defined as follows.
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Definition 2. LetG be a group acting by homeomorphisms on a compact metrizable
space X . We say that the action of G on X is rational if there exists a quotient map
qW f0; 1g! ! X and a homomorphism 'WG ! R such that the diagram

f0; 1g!

q

��

'.g/ // f0; 1g!

q

��
X

g
// X

commutes for all g 2 G.
Note that every compact metrizable space is a quotient of the Cantor set f0; 1g! ,

so it makes sense to ask whether any action of a countable group on such a space
is rational. A group G that acts faithfully and rationally on a compact metrizable
space must embed into R. The converse holds as well, since any subgroup of R acts
faithfully and rationally on the Cantor set.

Now, every hyperbolic group G has a Gromov boundary @G, which is a compact
metrizable space (see [26], and more generally the survey [30]) on which G acts by
homeomorphisms. Our main theorem is the following:
Theorem 3. For any hyperbolic group G, the action of G on @G is rational.

This theorem can be generalized as follows.
Corollary 4. Let X be a geodesic, hyperbolic metric space, and let G be a group
acting properly and cocompactly by isometries on X . Then the action of G on @X is
rational.

Proof. By the Švarc–Milnor lemma [10, Proposition I.8.19], we know that X is
quasi-isometric toG. It follows thatG is hyperbolic, and there exists aG-equivariant
homeomorphism from @X to @G [10, Propositions III.1.9 and III.1.10].

These statements can be viewed as assigning a certain kind of symbolic dynamics
to the action of the group G on @G (or @X ). Specifically, the quotient map
qW f0; 1g! ! @G assigns one or more binary addressed to each point of @G, and
elements of G act on @G by asynchronous transducers. In fact, our binary coding
assigns exactly one binary address to each point in the well-known horofunction
boundary (or metric boundary) @h� of � (see, e.g. [2, 17, 29, 33, 37, 46–48]). The
horofunction boundary is compact and totally disconnected, and has the Gromov
boundary @� as a quotient [48]. Our construction computes the horofunction
boundary of � explicitly, and describes the action of G on @h� by asynchronous
transducers.

Symbolic dynamics for actions of hyperbolic groups on their boundaries have
been studied extensively. For example, following a suggestion of Gromov, Coornaert
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and Papadopoulos prove that a certain spaceˆ0 related to the horofunction boundary
(see Remark 1.31) is a subshift of finite type [14], and use this to give a symbolic
coding for the associated geodesic flow. Though our assignment of binary addresses
is similar in spirit to theirs, there does not seem to be a direct translation between
them, and so it is unclear whether the natural action of G on ˆ0 is rational.

It follows immediately from Theorem 3 that any hyperbolic group G that acts
faithfully on @G embeds into R. Unfortunately, it is possible for the action of G
on @G to have nontrivial kernel, which is always a finite normal subgroup of G as
long as G is non-elementary (see Proposition 1.18 below). However, as long as G
is nontrivial, it is easy to show that the free product G � Z is a non-elementary
hyperbolic group with no finite normal subgroups. It follows that G � Z embeds
into R, and hence G does as well, which proves Theorem 1 from Theorem 3.

Our proof of Theorem 3 begins by defining a very broad class of trees which have
a notion of rational homeomorphisms on their boundaries. We refer to these as self-
similar trees, and we prove in Section 2 that the group of rational homeomorphisms
of the boundary of a self-similar tree acts on the boundary in a rational way in the
sense of Definition 2. This seems to be a very general tool for proving that actions
are rational, and we hope that it will be helpful in other contexts.

Next we define a tree of subsets of any hyperbolic graph � , which we refer to
as atoms. Assuming a group G acts properly and cocompactly on � , we prove in
Section 3 that this tree is self-similar and its boundary is naturally homeomorphic
to the well-known horofunction boundary (or metric boundary) @h� of � . The
horofunction boundary is compact and totally disconnected, and has the Gromov
boundary @� as a quotient [48]. Our construction computes the horofunction
boundary of � explicitly, and describes the action of G on @h� by asynchronous
transducers. See Section 4 for an example of this construction.

Perhaps as evidence of the naturality or importance of the general construction,
we learned from the authors that the article [34] gives a similar construction, with the
goal of extending self-similar groups to act on the path space of a graph. While the
constructions given for the self-similar trees (in their language, self-similar groupoids)
are similar, the automata groups arising in [34] are quite different in nature from ours
(e.g. they are synchronous).

The transducers that arise in our construction appear to have a special flavour: in
all examples that we have computed, they act as prefix-exchange maps on a dense
open subset of the boundary. As such, the embeddings we construct are “almost”
embeddings of hyperbolic groups into Thompson’s group V . In [35], Lehnert and
Schweitzer use a push-down automaton that implements prefix exchanges on a finite
set of test points to prove that all finitely-generated subgroups of Thompson’s group V
are in the class of CoCF groups introduced by Holt, Röver, Rees, and Thomas [28]. If
this method can be extended, it may be possible to use our embedding to shed some
light on the question of whether hyperbolic groups are CoCF.
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Finally, note that while synchronous automata groups are always residually finite,
the same does not hold true for asynchronous automata groups. In particular, our
result does not yield any immediate information about the question of whether all
hyperbolic groups are residually finite (see [19, 31, 36, 41]).

Acknowledgements. We would like to thank Michael Whittaker for discussions
where we learned that our papers have somewhat similar constructions of the self-
similar tree andVolodymyrNekrashevych for interesting discussions about our results
in general.

1. Background

1.1. The rational group R. In this section we briefly recall the definitions of
transducers and rational homeomorphisms from [24]. We have modified some of the
definitions slightly to simplify the terminology.

Throughout this paper, if S is a set, we let S! denote the set of all infinite
sequences of elements of S , and we let S � denote the set of all finite sequences of
elements of S , including the empty sequence ".
Definition 1.1. A transducer consists of the following data:
(1) Two finite sets Ain and Aout called the input alphabet and output alphabet.
(2) A finite setQ whose elements are called states.
(3) An initial state q0 2 Q.
(4) A transition function t WQ � Ain ! Q.
(5) An output function oWQ � Ain ! A�out.

A transducer is synchronous if o.q; a/ is a single symbol in Aout for each q 2 Q
and a 2 Ain, and asynchronous otherwise. We allow both synchronous and asynch-
ronous transducers.

We can draw a transducer as a finite directed graph, as shown in Figure 1. Each
state of this transducer is a node of the graph, and the directed edges indicate the
transitions and output. Specifically, for each q 2 Q and a 2 Ain, there is a directed
edge in from q to t .q; a/ in the graph with label a j o.q; a/.

If T D .Ain; Aout;Q; q0; t; o/ is a transducer, an input string for T is any infinite
string a1a2 � � � 2 A!in . The corresponding output string is the concatenation

o.q0; a1/ o.q1; a2/ o.q2; a3/ � � � ;

where fqng is the sequence of states starting at the initial state q0 defined recursively
by qn D t .qn�1; an/.

Note that the output string may be finite if o.qn�1; an/ D " for all but finitely
many n, but we are interested in transducers whose output strings are always infinite.
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Figure 1. An asynchronous transducer on a three-letter alphabet f0; 1; 2g with initial state q0.

Such transducers are called nondegenerate. A nondegenerate transducer defines a
function A!in ! A!out from infinite input strings to infinite output strings.
Definition 1.2. LetAin andAout be finite sets. We say that a function f WA!in ! A!out is
rational if there exists a nondegenerate transducer with input alphabet Ain and output
alphabet Aout whose output string is f . / for each input string  2 A!in .

The following properties of rational functions are proven in [24]. We will prove
(2) and (3) in a more general setting in Section 2.2.
Proposition 1.3.
(1) Any rational function f WA! ! B! is continuous with respect to the product

topologies on A! and B! .

(2) If f WA! ! B! and gWB! ! C! are rational, then so is the composition g ıf .

(3) If f WA! ! B! is a rational bijection, then the inverse f �1WB! ! A! is
rational.

Definition 1.4. If A is a finite set with at least two elements, the rational group RA

is the group of all rational homeomorphisms of A! .
In particular, the binary rational group R2 is the group of all rational

homeomorphisms of the Cantor set f0; 1g! .
Proposition 1.5. For any two finite sets A and B with at least two elements, there
exists a rational homeomorphism A! ! B! , and therefore the rational groups RA

and RB are isomorphic.

Proof. See [24, Corollary 2.12].

Thus up to isomorphism there is only one rational groupR, whose simplest form is
the binary rational group R2. Other rational groups RA are just other manifestations
of this group. We will henceforth use the notation R for the rational group in cases
where the alphabet is unimportant.
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Note 1.6. In fact, Proposition 1.5 tells us that the rational groups RA and RB

corresponding to two alphabets A and B are actually conjugate, in the sense
that the action of RA on A! is conjugate to the action of RB on B! by a
homeomorphism A! ! B! . Being conjugate is the natural geometric notion of
equivalence for groups of homeomorphisms, and is stronger than saying that the two
groups are algebraically isomorphic.

It follows from this conjugacy that the definition of a rational action given in
Definition 2 does not depend on the alphabet. That is, if G is any group acting on
a compact metrizable space X and there exists a finite alphabet A, a quotient map
qWA! ! X , and a homomorphism 'WG ! RA such that q ı '.g/ D g ı q for
all g 2 G, then the action of G on X is rational.

When working with a rational group RA, it often helps to consider the infinite
directed tree A� of all finite strings over A. The root of A� is the empty string ", and
there is an edge from a string w1 to another string w2 whenever w2 D w1a for some
letter a 2 A. The Gromov boundary @A� of A� is naturally homeomorphic to A! .

If ˛ 2 A� is a finite string, we will let A�˛ denote the rooted subtree of A� with
root ˛, i.e. the set of all finite strings that have ˛ as a prefix. The boundary @A�˛
is naturally a subset of A! , consisting of all infinite strings in A! that have ˛ as a
prefix.

If S � A! is nonempty, the greatest common prefix of S is the longest string ˛
that is a prefix of all strings in S . If S has at least two points then ˛ must be a finite
string. In this case, ˛ is the deepest vertex (i.e. farthest vertex from the root) in A�
with the property that S � @A�˛ .
Definition 1.7. Let f WA! ! B! be a rational map. Let ˛ 2 A�, and suppose
that f .@A�˛ / has at least two points. Then the restriction of f to ˛ is the function
f j˛WA

! ! B! defined by

f .˛ / D ˇ f j˛. /

for all  2 A! , where ˇ denotes the greatest common prefix of f .@A�˛ /.
There is a useful characterization of rational functions based on their restrictions.

Theorem 1.8. Let A and B be finite sets and let f WA! ! B! be a continuous
function. Then f is rational if and only if the following conditions are satisfied:

(1) f has only finitely many different restrictions.

(2) For each ˛ 2 A� such that f .@A�˛ / is a one-point set f g, the string  2 B! is
eventually periodic.

Proof. See [24, Theorem 2.5].

We will use this theorem in Section 2.2 to generalize the notion of rational
functions to the boundary of arbitrary self-similar trees.
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1.2. Hyperbolic groups. In this section we briefly recall relevant facts about hyper-
bolic graphs and hyperbolic groups.

If � is a connected graph, a path in � is a sequence v0; v1; : : : ; vn of vertices such
that vi�1 and vi are connected by an edge for all 1 � i � n. The number n is called
the length of the path. A path between two vertices v and w is called a geodesic
if it has the minimum possible length, and the length of such a path is the distance
between v and w, denoted d.v;w/. This notion of distance defines a metric on the
vertex set of � , sometimes called the path metric.

Throughout this paper, we will regard a graph � as being the same as its vertex
set endowed with the path metric. In particular, we will write v 2 � to mean that v
is a vertex of � . Note that two such graphs are isomorphic if and only if they are
isometric.

For the following definition, a geodesic triangle in � with vertices v1; v2; v3 is a
triple

�
Œv1; v2�; Œv1; v3�; Œv2; v3�

�
, where each Œvi ; vj � is a geodesic from vi to vj .

Definition 1.9. Let ı � 0. A connected graph � is ı-hyperbolic if for every geodesic
triangle

�
Œa; b�; Œa; c�; Œb; c�

�
in � and every vertex v 2 Œa; b�, there exists a vertex

w 2 Œa; c� [ Œb; c� so that d.v;w/ � ı.
We say that a graph � is hyperbolic if it is ı-hyperbolic for some ı � 0. This

definition is due to Gromov [26], and can be generalized to arbitrary metric spaces.
See [10] for a general introduction.

There is a natural notion of boundary for a hyperbolic graph, also introduced by
Gromov. If � is a connected graph, a geodesic ray in � is a sequence fvngn�0 of
vertices such that each initial subpath v0; : : : ; vn is a geodesic. Two geodesic rays
R D fvng and R0 D fv0ng are said to fellow travel if the sequence fd.vn; v0n/g of
distances is bounded. This is clearly an equivalence relation on geodesic rays, and
we denote the equivalence class of a geodesic ray R by ŒR�.
Definition 1.10. The Gromov boundary of � is the set

@� D
˚
ŒR� j R is a geodesic ray in �

	
:

Assuming the graph � is locally finite, there is a natural topology on @� which
gives it the structure of a compact metrizable space (see [10]). We will henceforth
assume that all graphs under consideration are locally finite.
Example 1.11. Any tree T is 0-hyperbolic, for if

�
Œa; b�; Œa; c�; Œb; c�

�
is a geodesic

triangle in T then Œa; b� � Œa; c� [ Œb; c�.
If we fix a point p 2 T , then every infinite path of distinct vertices starting at p

is a geodesic ray. No two such rays fellow travel, and the Gromov boundary @T can
be identified with the set of all such rays.
Example 1.12. Any graph that is quasi-isometric to the hyperbolic plane H2 is
hyperbolic. For example, the 1-skeleton of any tiling of H2 by congruent polygons
is hyperbolic. The Gromov boundary of such a graph is homeomorphic to a circle,
namely the circle of boundary points for the hyperbolic plane.
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Figure 2. The 1-skeleton of the order five square tiling of the hyperbolic plane.

One such graph is shown in Figure 2. This is the 1-skeleton of the order five
square tiling of the hyperbolic plane, i.e. the tiling by congruent regular quadrilaterals
(hyperbolic squares) with five squares meeting at every vertex. We will be using this
hyperbolic graph throughout this paper to illustrate our definitions and methods.

An isomorphism between two hyperbolic graphs induces a homeomorphism
between their boundaries, and in particular any automorphismof a hyperbolic graph�
induces a self-homeomorphism of @� . Thus any action of a group G on � by
isometries induces an action of G on @� by homeomorphisms.

More generally, if � and � 0 are quasi-isometric graphs, then � is hyperbolic if
and only if � 0 is hyperbolic, in which case @� is homeomorphic to @� 0.
Definition 1.13. A hyperbolic group is a finitely generated group whose Cayley
graph is hyperbolic.

Of course, a finitely-generated group has many possible Cayley graphs,
corresponding to the different finite generating sets. However, any two such Cayley
graphs are quasi-isometric, and hence they are all hyperbolic if any one of them is
hyperbolic. Moreover, the homeomorphism type of the boundary does not depend
on the generating set, so it makes sense to talk about the Gromov boundary @G of a
hyperbolic group as a compact metrizable space.
Example 1.14. Any finite group or more generally any virtually cyclic group is
hyperbolic. These are the elementary hyperbolic groups.
Example 1.15. Any finitely generated free group is hyperbolic, since the correspond-
ing Cayley graph is a tree. More generally, any virtually free group, such as any free
product of finite groups, is hyperbolic.
Example 1.16. A hyperbolic surface group is the fundamental group of a closed
surface with Euler characteristic � < 0. Such a group is hyperbolic, since its Cayley
graph can be viewed as the 1-skeleton of a tiling of the hyperbolic plane H2 by
congruent .4 � 2�/-gons.
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Example 1.17. Let � be a hyperbolic graph, and let G be a group acting on � by
isometries. We say that the action of G on � is proper if every vertex in � has
finite stabilizer, and cocompact if there are finitely many orbits of vertices in � .
If the action of G is proper and cocompact, then the Cayley graph of G must be
quasi-isometric to � , and thereforeG is hyperbolic. For example, the isometry group
of the 1-skeleton of the order five square tiling of the hyperbolic plane is hyperbolic
(see Example 1.12).

We do need a few nontrivial facts from the theory of hyperbolic groups. The first
is the following proposition, which we used in the introduction to prove Theorem 1
from Theorem 3.

Proposition 1.18. Let G be a non-elementary hyperbolic group. Then the kernel of
the action of G on @G is a finite normal subgroup of G.

Proof. Since G is non-elementary, the Gromov boundary @G is infinite (see [30,
Theorem 2.28]). Any element of infinite order has exactly two fixed points in @G
(see [30, Proposition 4.2(1)]), so no infinite order element is contained in the kernelK
of the action of G on @G. But every torsion subgroup of a hyperbolic group must be
finite (see [20, Corollaire 36]), and therefore K is finite.

Next, we will need the fact that hyperbolic groups have finitely many cone types.
Recall the following definition.

Definition 1.19. Let � be a graph, let G be a group acting by isometries on � , and
fix a vertex x0 2 � . For each x 2 � , the cone on x is the set

C.x/ D
˚
y 2 � j d.x0; y/ D d.x0; x/C d.x; y/

	
:

Two points x; x0 2 � have the same cone type if there exists a g 2 G so that gx D x0
and g C.x/ D C.x0/.

Note that a point y lies in a cone C.x/ if and only if there exists a geodesic
from x0 to y that goes through x. Figure 3 shows the cone types for the 1-skeleton
of the order five square tiling of the hyperbolic plane, where G is the full isometry
group.

The following theorem is due to Cannon [12] (see [10, Theorem 2.18]).

Theorem 1.20 (Cannon). Let � be a hyperbolic graph, let x0 2 � , and let G be a
group acting properly and cocompactly by isometries on � . Then � has only finitely
many cone types with respect to G and x0.

1.3. The horofunction boundary. Here we review the basic definition and proper-
ties of the horofunction boundary (or metric boundary) of a locally finite, connected
graph. The horofunction boundary can actually be defined for any complete metric
space; see [10] for a general introduction.
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(a) (b)

Figure 3. (a) Cones C.x/ and C.y/ for two points x and y in a hyperbolic graph � , where the
cone consists of all vertices in the shaded region. (b) Cone types in � if G is the full isometry
group. Red vertices have the same cone type as x and blue vertices have the same cone type
as y.

Let � be a locally finite, connected graph. As before, we put the path metric
on � , and we identify � with is vertex set. Let F.�;Z/ be the abelian group of all
integer-valued functions on � , and let xF .�;Z/ be the quotient of F.�;Z/ by the
subgroup of constant functions. That is, two functions f; g 2 F.�;Z/ are identified
in xF .�;Z/ if f � g is a constant function.

Notation 1.21. If f 2 F.�;Z/, we will let xf denote the corresponding element
of xF .�;Z/.

Note that F.�;Z/ D Z� forms a topological space under the product topology,
from which xF .�;Z/ inherits a quotient topology.

Definition 1.22.

(1) If x 2 � , the associated distance function is the function dx W� ! Z defined by

dx.y/ D d.x; y/

for all y 2 � .

(2) The canonical embedding i W� ! xF .�;Z/ is the map defined by

i.x/ D xdx

for all x 2 � .

Note that each xdx is an isolated point in i.�/, since xdx has a global minimum
at x. Thus i really is an embedding.
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Definition 1.23.
(1) The horofunction boundary of � , denoted @h� , is the set of limit points of i.�/

in xF .�;Z/.
(2) A function f W� ! Z is called a horofunction if xf 2 @h� .

Note that if f is a horofunction then so is f C C for any constant C 2 Z, and
these correspond to the same point in the horofunction boundary.

Note also that @h� is empty when � is finite, since i.�/ cannot have any limit
points. Thus a finite graph has no horofunctions.
Example 1.24. If � is an infinite path with vertex set N, then @h� is a single point.
In particular, the only horofunctions on � are

f .n/ D �nC C

for C 2 Z a constant. Note that xdm ! xf in xF .�;Z/ as m!1. In particular,

dm.n/ D jm � nj D

(
�nCm if n � m;
n �m if n > m;

for all m 2 N, so xdm agrees with xf on N \ Œ0;m�.
Example 1.25. If � is a bi-infinite path with vertex set Z, then @h� has two points,
corresponding to the horofunctions

f�1.n/ D nC C and f1.n/ D �nC C:

Again xdm ! xf1 as m!1, and xdm ! xf�1 as m! �1.
Example 1.26. Let � be the infinite square grid in the plane, with vertex set Z2.
Then @h� is homeomorphic to the union�

Z � f˙1g
�
[
�
f˙1g � Z

�
[
�
f˙1g � f˙1g

�
with the obvious topology [18]. For example, the horofunction

f .x; y/ D �x � y C C

corresponds to the point .1;1/, and the horofunction

f .x; y/ D jx � 5j � y C C

corresponds to the point .5;1/.
Proposition 1.27. Let f W� ! Z. Then the following are equivalent:
(1) f is a horofunction on � .
(2) For every finite set B � � there exist infinitely many x 2 � n B for which xdx

agrees with xf on B .
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Proof. For any finite set B � � , let

UB D fxg 2 xF .�;Z/ j xg agrees with xf on Bg:

It is easy to check that the sets UB form a neighborhood base for xF .�;Z/ at xf , so f
satisfies condition (2) if and only if xf is a limit point of i.�/.

Proposition 1.28. If � is a locally finite, connected graph, then @h� is compact and
totally disconnected.

Proof. Fix a point x0 2 � . For each x 2 � , let dx0 W� ! Z be the function

dx
0 .y/ D dx.y/ � dx.x0/:

Note then that dx0 .x0/ D 0 and xdx0 D xdx . By the triangle inequality, we know that

jdx
0 .y/j � d.x0; y/

for all y 2 � , so each dx0 lies in the infinite product

S D
Y
y2�

�
Z \ Œ�d.x0; y/; d.x0; y/�

�
:

This is a product of finite sets, whichmeans thatS is totally disconnected and compact.
Since f .x0/ D 0 for all f 2 S , the quotient map F.�;Z/! xF .�;Z/ is one-to-one
on S , so the image xS of S in xF .�;Z/ is homeomorphic to S . But i.�/ � S,
so @h� � xS since xS is closed, and the result follows.

Now suppose that G is a group acting by isometries on � . There is natural left
action of G on F.�;Z/ defined by

.gf /.p/ D f
�
g�1p

�
for all g 2 G, f 2 F.�;Z/, and p 2 � , and this descends to a left action of G
on xF .�;Z/. It is easy to check that the canonical embedding i W� ! xF .�;Z/ is
equivariant with respect to this action. In particular, gf is a horofunction on � for
any g 2 G and any horofunction f 2 F.�;Z/, and this gives us a left action of G
on @h� .
Theorem 1.29. Let � be a ı-hyperbolic graph with Gromov boundary @� and
horofunction boundary @h� , and let G be a group acting by isometries on � . Then
there exists a G-equivariant quotient map qW @h� ! @� .

Proof. See [48]. Note that @� and @h� are both compact Hausdorff spaces in this
case, so the surjection @h� ! @� defined in [48] is indeed a quotient map.

Thus, if we wish to show that G acts rationally on @� , it suffices to show that G
acts rationally on @h� . That is, if wewish to prove Theorem 3 (and hence Theorem 1),
it suffices to prove the following:
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Theorem 1.30. Let � be a ı-hyperbolic graph with horofunction boundary @h� ,
and let G be a group acting properly and cocompactly by isometries on � . Then the
induced action of G on @h� is rational.

Sections 2 and 3 are devoted to a proof of this theorem.
Remark 1.31. The horofunction boundary defined here is sometimes called the
“metric boundary”, and was introduced by Gromov in the study of nonpositively
curved manifolds [3]. The definition of horofunction that we are using is one
of two definitions suggested by Gromov in his 1987 essay introducing hyperbolic
groups [26], the other of which involves quasiconvex functions satisfying a distance-
like condition, and was later refined by Coornaert and Papadopolous. These two
definitions are inequivalent, e.g. in the case of Z � Z3 [1], though as M. Kapovich
observes these are equivalent up to uniformly bounded error, which is sufficient for
most geometric applications.

Coornaert and Papadopoulos have used their version of Gromov’s quasiconvex
horofunction definition to provide a precise statement and proof ofGromov’s assertion
that the spaceˆ0 of integral cocycles is a subshift of finite type [15,16], as well as to
provide a symbolic coding for the associated geodesic flow [14]. Our binary coding
of the horofunction boundary @h� is similar in spirit to their coding of the space ˆ0
of integral quasiconvex cocycles by a subshift of finite type, but there does not seem
to be any direct translation between them, nor have we found a way to use their coding
to show that the natural action of G on ˆ0 is rational.

2. Rational groups for self-similar trees

As we have seen, there is one version RA of the rational group R for each finite setA.
In this section, we generalize the definition of RA to allow for rational homeomorph-
isms between the boundaries of arbitrary self-similar trees. We will construct such a
tree in Section 3 for an arbitrary hyperbolic group.

As defined below, self-similar trees do not necessarily have canonical isomor-
phisms between subtrees, and therefore infinite descending paths in self-similar trees
do not correspond to infinite strings of symbols in a natural way. As a result, the
theory of rational homeomorphisms defined by transducers does not directly apply to
self-similar trees. In this section, we develop the theory of rational homeomorphisms
of the boundaries of self-similar trees using a generalization of the notion of having
finitely many restrictions, and then prove that the corresponding rational groups
embed in R.

Readers interested primarily in hyperbolic groups may want to skip over some
of the technical development in this section. For such readers, we recommend
reading the definition of a self-similar tree (Definition 2.1), the definition of a rational
homeomorphism (Definition 2.8), and our most general result on rational actions
(Corollary 2.31) before continuing to Section 3.
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We will use the following notation and terminology for trees throughout this
section:
� We will identify each tree T with its vertex set. In particular, the notation v 2 T
will mean that v is a vertex of T .

� The depth of a vertex v 2 T , denoted jvj, is the distance from v to the root of T .
� If v 2 T , we letTv denote the subtree ofT consisting of v and all of its descendants.
� If T is a locally finite rooted tree, the boundary of T is the space @T of all infinite
descending paths in T starting with the root.

� If v 2 T , we will think of @Tv as a subset of @T , namely the set of all infinite
descending paths that go through v. Such subsets are clopen in @T , and form a
basis for the topology on @T .

� If S � @T has at least two points, the deepest parent of S is the deepest vertex v
for which S � Tv .

� The standard ultrametric on @T is the metric d W @T � @T ! R defined by

d.p; q/ D 2�jvj

for p ¤ q, where v is the deepest parent of fp; qg.
� If 'WTv ! Tw is a rooted isomorphism between subtrees of T , we will let '�
denote the induced homeomorphism @Tv ! @Tw . Note that '� is a similarity
transformation with respect to the standard ultrametric, with

d
�
'�.p/; '�.q/

�
D 2jvj�jwjd.p; q/

for all p; q 2 @Tv .

2.1. Self-similar trees.
Definition 2.1. Let T be a locally finite rooted tree. A self-similar structure on T
consists of the following data:
(1) A partition of the vertices of T into finitely many types.
(2) For every pair u; v of vertices of T of the same type, a nonempty, finite set

Mor.u; v/ of (rooted) tree isomorphisms Tu ! Tv , each of which maps vertices
of Tu to vertices of Tv of the same type.

Elements ofMor.u; v/ are calledmorphisms, and are required to satisfy the following
conditions:
(a) If ' 2 Mor.u; v/, then '�1 2 Mor.v; u/.
(b) If ' 2 Mor.u; v/ and  2 Mor.v; w/, then  ' 2 Mor.u;w/.
(c) If ' 2 Mor.v; w/ and u 2 Tv , then the restriction 'jTu WTu ! T'.u/ is

in Mor
�
u; '.u/

�
.

A self-similar tree is a locally finite rooted tree T together with a self-similar structure
on T .
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Note 2.2. We will have some use for partial compositions of morphisms. If ' 2
Mor.v; w/,  2 Mor.x; y/, and Tw � Tx , we will let  ' denote the composition

Tv
'
�! Tw

 0

�! T .w/;

where  0 is the restriction of  . Similarly, if ' 2 Mor.v; w/,  2 Mor.x; y/, and
Tx � Tw , we will let  ' denote the composition

T'�1.x/
'0

�! Tx
 
�! Ty ;

where '0 is the restriction of '.
Using this notion of composition, conditions (a) through (c) can be summarized

by saying that the collection of all morphisms forms an inverse semigroup of
isomorphisms between subtrees of T .
Example 2.3. If A is a finite alphabet, then we can give A� the structure of a
self-similar tree as follows:
(1) There is only one type of vertex in A�.
(2) For each ˛; ˇ 2 A�, there is only one morphism '˛ˇ WA

�
˛ ! A�

ˇ
, namely the

prefix replacement
'˛ˇ .˛/ D ˇ . 2 A!/:

It is easy to check that this satisfies the required axioms.
In general, we say that a self-similar structure on a tree T is rigid if there is at most

one morphism between any two vertices of T . A self-similar tree whose self-similar
structure is rigid is said to be a rigid tree.

The previous example put a rigid self-similar structure on A�, but other self-
similar structures are possible.
Example 2.4. Let A be a finite alphabet, and let G be a group of automorphisms
of A�. Following Nekrashevych [38], we say that G is self-similar if it is closed
under restrictions, i.e. for each g 2 G and ˛ 2 A� the automorphism gj˛WA� ! A�

defined by
g.˛/ D g.˛/ gj˛./ . 2 A�/

is again an element of G.
Now suppose that G is a finite self-similar subgroup of Aut.A�/. For example,

if A has n elements, then the symmetric group Sn acts on A� by permuting symbols,
and the image of Sn in Aut.A�/ is a finite self-similar group. Then G induces a
self-similar structure on A� as follows:
(1) There is only one type of vertex in A�.
(2) For each g 2 G and ˛; ˇ 2 A�, there is a morphism g˛ˇ WA

�
˛ ! A�

ˇ
defined by

g˛ˇ .˛/ D ˇ g./ . 2 A�/:

It is easy to check that this satisfies the required axioms.
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Figure 4. A directed multigraph � and the corresponding path language tree L.�; v0/. Vertices
of type v0 are shown in blue, and vertices of type v1 are shown in red.

Of course, there are also self-similar trees with more than one type of vertex.
Example 2.5. Let � D .V;E/ be a finite directed multigraph with edge set E, and
fix an initial vertex v0 2 V . The corresponding path language L.�; v0/ � E� is the
set of all finite directed paths e1e2 � � � en in � that begin at v0. This set has the natural
structure of a locally finite tree, whose root is the empty path ", and whose boundary
@L.�; v0/ is the set of all infinite directed paths in � starting at v0. An example of
such a tree is shown in Figure 4.

We can define a self-similar structure on L.�; v0/ as follows:
(1) Two paths p; q 2 L.�; v0/ have the same type if and only if p and q end at the

same vertex of � .
(2) For each pair p; q of paths ending at the same vertex w, we define a single

morphism 'pqWL.�; v0/p ! L.�; v0/q by

'pq.pr/ D qr

for every finite directed path r in � starting at w. We will refer to 'pq as a prefix
replacement morphism.

It is easy to check that this satisfies the required axioms, and gives L.�; v0/ the
structure of a rigid tree.

It turns out that, for any self-similar tree T , the underlying tree is isomorphic
to a path language as described above. In particular, define the type graph � of a
self-similar tree T as follows:
(1) There is one vertex in � for each vertex type in T .
(2) Given a pair t1; t2 of vertices in � , the number of directed edges in � from t1

to t2 is equal to the number of children of type t2 that each vertex of type t1 has
in T .

Then it is easy to construct an isomorphism of trees L.�; t0/ ! T , where t0 is the
type of the root vertex of T , though the morphisms of L.�; t0/ need not be the same
as the morphisms of T . However, we will show in Proposition 2.21 that, in the case
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of a rigid tree, it is always possible to construct an isomorphism from a path language
that respects the self-similar structure.

2.2. Rational homeomorphisms. Our next goal is to define the group of rational
homeomorphisms of @T .
Definition 2.6. Let T and T 0 be self-similar trees, let f W @T ! @T 0 be a
homeomorphism, and let v and w be vertices of T of the same type. We say
that f has equivalent restrictions at v and w if there exist vertices x and y of T 0 of
the same type andmorphisms 'WTv ! Tw and WT 0x ! T 0y such that f .@Tv/ � @T 0x ,
f .@Tw/ � @T

0
y , and the diagram

@Tv

f

��

'� // @Tw

f

��
@T 0x  �

// @T 0y

commutes, where '�W @Tv ! @Tw and  �W @T 0x ! @T 0y are the induced homeo-
morphisms.
Proposition 2.7. Let f W @T ! @T 0 be a function. Then “f has equivalent
restrictions at v and w” is an equivalence relation on vertices of T .

Proof. For the reflexive property, if v is a vertex of T , then it suffices to let ' D idv ,
x and y be the root of T 0, and  D idx D idy . The symmetric property is clear, by
inversion of ' and  .

For the transitive property, let u, v, and w be vertices of T of the same type, and
suppose f has equivalent restrictions at u and v and also at v and w. Then there
exist vertices x; y of T 0 of the same type and y0; z of T 0 of the same type with

f .@Tu/ � @T
0
x; f .@Tv/ � @T

0
y \ @T

0
y0 ; f .@Tw/ � @T

0
z

and morphisms ' 2 Mor.u; v/, '0 2 Mor.v; w/,  2 Mor.x; y/, and  0 2
Mor.y0; z/ making the following diagrams commute:

@Tu

f

��

'� // @Tv

f

��
@T 0x  �

// @T 0y

@Tv

f

��

'0� // @Tw

f

��
@T 0y0  0�

// @T 0z

Note that either y D y0, or y is a descendant of y0, or y0 is a descendant of y.
If y D y0 then we are done, since it suffices to use x, z, and the compositions
'0 ı ' 2 Mor.u;w/ and  0 ı  2 Mor.x; z/. If y is a descendant of y0, then
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we can replace y0 by y, z by  0.y/, and  0 by its restriction to arrive in the case
where y D y0. Similarly, if y0 is a descendant of y, then we can replace y by y0, x
by  �1.y0/, and  by its restriction to arrive in the case where y D y0.

Definition 2.8. Let T and T 0 be self-similar trees. A homeomorphism f W @T ! @T 0

is rational if it has only finitely many different equivalence classes of restrictions.

Wewill show in Proposition 2.10 that this definition of a rational homeomorphism
is a generalization of the definition given in [24]. First we need the following
fundamental proposition.

Proposition 2.9. Let T and T 0 be self-similar trees, let f W @T ! @T 0 be a
homeomorphism, and let v and w be vertices of T of the same type. Suppose
that f .@Tv/ and f .@Tw/ each have at least two points, let x be the deepest parent
of f .@Tv/ in T 0, and let y be the deepest parent of f .@Tw/ in T 0. Then f has
equivalent restrictions at v and w if and only if x and y have the same type and
there exist morphisms 'WTv ! Tw and  WT 0x ! T 0y making the following diagram
commute:

@Tv

f

��

'� // @Tw

f

��
@T 0x  �

// @T 0y

Proof. Clearly the given condition implies that f has equivalent restrictions at v
andw. For the converse, suppose that f has equivalent restrictions at v andw. Then
there exist vertices r and s of T 0 and morphisms 'WTv ! Tw and �WT 0r ! T 0s such
that f .@Tv/ � @T 0r , f .@Tw/ � @T 0s , and the diagram

@Tv

f

��

'� // @Tw

f

��
@T 0r ��

// @T 0s

commutes. Since f .@Tv/�@T 0r and x is the deepest parent of f .@Tv/, we know that x
is a descendant of r , and similarly y is a descendant of s. We claim that �.x/Dy.

Since '� is a homeomorphism, we know that '�.@Tv/ D @Tw , so

f .@Tw/ D f
�
'�.@Tv/

�
D ��

�
f .@Tv/

�
� ��.@T

0
x/ D @T

0
�.x/:

Since y is the deepest parent of f .@Tw/, it follows that y is a descendant of �.x/.
But similarly,

f .@Tv/ D f
�
'�1� .@Tw/

�
D ��1�

�
f .@Tw/

�
� ��1� .@Ty/ D @T��1.y/
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so xmust be a descendant of��1.y/, and therefore�.x/ D y. Since� is amorphism,
it follows that x and y have the same type, and the restriction  WT 0x ! T 0y of � is a
morphism with the desired properties.

For the following proposition, recall from Example 2.3 that ifA is a finite alphabet
then A� has the natural structure of a self-similar tree. The boundary @A� of this
tree is homeomorphic to A! .
Proposition 2.10. Let A1 and A2 be finite alphabets with at least two symbols. Then
a homeomorphism f WA!1 ! A!2 is rational in the sense of Definition 2.8 if and only
if it is rational in the sense of Definition 1.2.

Proof. Let ˛; ˇ 2 A�1 . Let ; ı 2 A�2 be the greatest common prefixes (i.e. deepest
parents) of f

�
@.A�1 /˛

�
and f

�
@.A�1 /ˇ

�
, respectively. Then the restrictions f j˛

and f jˇ defined in Definition 1.7 are equal if and only if the diagram

@.A�1 /˛

f

��

.'˛ˇ/� // @.A�1 /ˇ

f

��
@.A�2 / .'ı/�

// @.A�2 /ı

commutes, where '˛ˇ W .A�1 /˛ ! .A�1 /ˇ and 'ı W .A�2 / ! .A�2 /ı are the prefix
replacement morphisms. By Proposition 2.9, the diagram above commutes if and
only if f has equivalent restrictions at ˛ and ˇ in the sense of Definition 2.6, and
therefore f j˛ D f jˇ if and only if f has equivalent restrictions at ˛ and ˇ in the
sense of Definition 2.6. The result now follows immediately from Definition 2.8 and
Theorem 1.8.

Remark 2.11. In an effort to simplify the exposition, we are only considering rational
homeomorphisms between the boundaries of self-similar trees. It would be possible
to develop a more general theory of rational functions by including a requirement
similar to condition (2) in Theorem 1.8. In particular, if T 0 is a self-similar tree,
we say that a point p 2 @T 0 is a rational point if there exist distinct x; y 2 T 0 with
p 2 @T 0y � @T 0x and a morphism 'WT 0x ! T 0y such that '�.p/ D p. These are
the analogs in @T 0 of eventually periodic points in A� for a finite alphabet A. We
could then define a continuous function f W @T ! @T 0 to be rational if it satisfies the
following conditions:
(1) f has finitely many equivalence classes of restrictions.
(2) For each v 2 T , if f .@Tv/ is a single point, then this must be a rational point

in @T 0.
This would agree with the existing definition of rational in the case of a continuous
function A!1 ! A!2 , where A1 and A2 are finite alphabets.



144 J. Belk, C. Bleak and F. Matucci

We now wish to prove that the rational homeomorphisms of @T form a group. To
simplify the initial development of our theory, we will restrict our class of self-similar
trees.

Definition 2.12. A self-similar tree T is branching if every vertex in T has at least
two children.

If T is branching, then @T has no isolated points, and is therefore homeomorphic
to the Cantor set. Each basic clopen set @Tv is also homeomorphic to a Cantor set, and
has v as its deepest parent. Moreover, if T and T 0 are branching and f W @T ! @T 0

is a rational homeomorphism, then @Tv has at least two points for every v 2 V ,
so f .@Tv/ always has a deepest parent.

For now, we will develop our theory only for branching self-similar trees, though
we will extend to a larger class of self-similar trees in Section 2.5.

Proposition 2.13. Let T , T 0, T 00 be branching self-similar trees, and let f W @T!@T 0

and gW @T 0 ! @T 00 be rational homeomorphisms. Then the composition

g ı f W @T ! @T 00

is rational.

Proof. Let E be an equivalence class of vertices of T under the equivalence relation
“f has equivalent restrictions at v and w”. Note that there are only finitely many
such E, since f is rational. Therefore, it suffices to prove that g ı f has finitely
many equivalence classes of restrictions on E.

For each v 2 E, let r.v/ denote the deepest parent of f .@Tv/ in T 0, which exists
since T and T 0 are branching. By Proposition 2.9, for every pair of vertices v;w 2 E,
there exist a pair of morphisms 'vw WTv ! Tw and  vw WT 0r.v/ ! T 0

r.w/
making the

following diagram commute:

@Tv

f

��

.'vw/� // @Tw

f

��
@T 0
r.v/ . vw/�

// @T 0
r.w/

Put an equivalence on E by v � w if g has equivalent restrictions at r.v/ and r.w/.
Since g is rational, there are only finitely many equivalence classes. Let E 0 be such
an equivalence class. It suffices to show that g ı f has finitely many equivalence
classes of restrictions on E 0.

For each v 2 E 0, let s.v/ denote the deepest parent of g
�
@T 0
r.v/

�
in T 00, which

exists since T 0 and T 00 are branching. By Proposition 2.9, for each v;w 2 E 0, there
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exist morphisms �vw WT 0r.v/ ! T 0
r.w/

and �vw WT 00s.v/ ! T 00
s.w/

making the following
diagram commute:

@T 0
r.v/

g

��

.�vw/�// @T 0
r.w/

g

��
@T 00
s.v/ .�vw/�

// @T 00
s.w/

Fix a vertex u 2 E 0. For each v 2 E 0 let �vWTr.u/ ! Tr.u/ be the morphism
�v D  

�1
uv �uv . We claim that, for v;w 2 E 0, the composition g ı f has equivalent

restrictions at v and w whenever �v D �w . Since Mor.r.u/; r.u// is finite, it will
follow immediately from this that g ı f has only finitely many different restrictions
on E 0.

Let v;w 2 E 0 and suppose that �v D �w . Then  �1uv �uv D  �1uw�uw , so the
following diagram commutes, including the central square if we allow inverse arrows:

@Tu

f
��

.'uw/�

%%

.'uv/
�

yy
@Tv

f
��

@T 0
r.u/

. uw/� %%. uv/�yy

@Tw

f
��

@T 0
r.v/

g

��

@T 0
r.w/

g

��
@T 00
s.v/

@T 0
r.u/

g

��

.�uv/�
ee .�uw/�

99

@T 00
s.w/

@T 00
s.u/

.�uv/�

ee

.�uw/�

99

In particular, the outer octagon gives us the commutative square

@Tv

gıf

��

�
'uw'

�1
uv

�
� // @Tw

gıf

��
@T 00
s.v/ �

�uw�
�1
uv

�
�

// @T 00
s.w/

and therefore g ı f has equivalent restrictions at v and w.

Proposition 2.14. LetT andT 0 be branching self-similar trees, and let f W @T ! @T 0

be a rational homeomorphism. Then the inverse f �1W @T 0 ! @T is rational.
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Proof. For each v in T 0, let r.v/ be the deepest parent of f �1.T 0v/ in T , which exists
since T and T 0 are branching. Put an equivalence relation � on the vertices of T 0
by v � w if f has equivalent restrictions at @Tr.v/ and @Tr.w/. Since f is rational,
there are only finitely many such equivalence classes. Let E be such an equivalence
class. It suffices to prove that f �1 has only finitely many different restrictions on E.

Fix a vertex u 2 E, and for each v 2 E let s.v/ be the deepest parent of f .@Tr.v//
in T 0, which exists since T and T 0 are branching. By Proposition 2.9, for each v 2 E
there exist morphisms 'vWTr.v/ ! Tr.u/ and vWT 0s.v/ ! T 0

s.u/
making the following

diagram commute:

@Tr.v/

f

��

.'v/� // @Tr.u/

f

��
@T 0
s.v/ . v/�

// @T 0
s.u/

Now since f �1.@T 0v/ � @Tr.v/, we know that

@T 0v � f .@Tr.v// � @T
0
s.v/

for each v. Since T 0 is branching, it follows that v is a descendant of s.v/. Then,
 v.v/ is some descendant of s.u/. We claim that the set

f v.v/ j v 2 Eg

is finite and thatf �1 has equivalent restrictions atv;w2E whenever v.v/D w.w/.
This will prove that f �1 has only finitely many different restrictions on E.

To prove that there are only finitely many possibilities for  v.v/, recall that r.v/
is the deepest parent of f �1.@T 0v/ in T . But,

'v.r.v// D r.u/

and
.'v/�

�
f �1.@T 0v/

�
D f �1

�
. v/�.@T

0
v/
�
D f �1

�
@T 0 v.v/

�
;

so r.u/ must be the deepest parent of f �1
�
@T 0
 v.v/

�
in T , i.e. r

�
 v.v/

�
D r.u/.

But since f �1 is continuous, it is uniformly continuous with respect to the standard
ultrametrics on @T 0 and @T . In particular, there exists a k > 0 such that

d.v;w/ �
1

2k
) d

�
f �1.v/; f �1.w/

�
<

1

2jr.u/j

for all v;w in T 0. It follows that jr.v/j > jr.u/j whenever jvj � k, so there are only
finitely many vertices v for which r.v/ D r.u/. Thus there are only finitely many
possibilities for  v.v/.



Rational embeddings of hyperbolic groups 147

Now suppose that v;w 2 E and  v.v/ D  w.w/. Then  �1w  v maps v to w,
so let �WTv ! Tw be the restriction of this morphism. Then �� agrees with
. w/

�1
� . v/� on @T 0v , and in particular the following diagram commutes:

@Tr.v/
.'�1w 'v/� // @Tr.u/

@T 0v

f �1

OO

��
// @T 0w

f �1

OO

We conclude that f �1 has equivalent restrictions at v and w.

Corollary 2.15. If T is a branching self-similar tree, then the set of all rational
homeomorphisms of @T forms a group under composition.

This is the rational group associated with T , denoted RT . The next two
subsections are devoted to proving the following theorem.
Theorem 2.16. Let T be a branching self-similar tree. Then the associated rational
group RT is isomorphic to the binary rational group R2. Indeed, the action of RT

on @T is conjugate to the action of R2 on f0; 1g! .

2.3. Rigid structures.
Definition 2.17. Let T be a self-similar tree. A rigid structure for T is a family f'vwg
of morphisms, with one morphism 'vw WTv ! Tw for each pair .v; w/ of vertices
of T of the same type, satisfying the following conditions:
(1) 'vw 'uv D 'uw for all triples .u; v; w/ of the same type.

Tu

'uw   

'uv // Tv

'vw

��
Tw

(2) If v0 is a descendant of v and w0 D 'vw.v0/, then 'v0w0 is the restriction of 'vw
to Tv0 .
Note that if f'vwg is a rigid structure for T then 'vv 'vv D 'vv for any vertex v

of T , and hence 'vv is the identity isomorphism of Tv . It follows that 'wv D '�1vw
for all pairs .v; w/.
Proposition 2.18. Every self-similar tree has a rigid structure.

Proof. Let T be a self-similar tree. Choose a set A of vertices of T that contains the
root vertex and has exactly one vertex of each type. If v is a vertex of T , a marking
of v will be an element of Mor.v; a/, where a is the vertex in A having the same type
as v.
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Let B be the set of all vertices that are children of vertices in A. Choose a
marking �b for each vertex b 2 B. We now define a marking  v for each vertex
v 2 T inductively as follows:

(1) If r is the root of T , then  r is the identity isomorphism of T .

(2) If v is a vertex of T with marking v andw is a child of v, let b D  v.w/ denote
the corresponding child of  v.v/, and let

 w D �b v;

where the composition on the right is partial, as described in Note 2.2

For each pair of vertices .v; w/ of T of the same type, let 'vw D  �1w  v . We claim
that f'vwg is a rigid structure for T .

Clearly 'vw 'uv D 'uw for every triple .u; v; w/ of vertices of the same type.
For restrictions, suppose that v and w have the same type and v0 is a child of v. Let
w0 D 'vw.v

0/. Let a D  v.v/ D  w.w/, and let b D  v.v0/ D  w.w0/. Then

'v0w0 D  
�1
w0  v0 D  

�1
w ��1b �b v D  

�1
w ib  v D  

�1
w  v iv0 D 'vw iv0 ;

where each ix denotes the identity map on Tx , and we are again using partial
compositions. We conclude that 'v0w0 is the restriction of 'vw to Tv0 , as desired.

Note that a rigid structure is itself a self-similar structure on T . If T is a self-
similar tree and f'vwg is a rigid structure on T , the corresponding rigid tree is
the self-similar tree having the same underlying graph as T but with f'vwg as its
self-similar structure.

Proposition 2.19. Let T be a branching self-similar tree, let f'vwg be a rigid
structure on T , and let T 0 be the corresponding rigid tree. Then the rational
homeomorphisms of @T are the same as the rational homeomorphisms of @T 0.

Proof. Note that the identity map i W @T 0 ! @T is rational. In particular, for any
vertices v;w 2 T 0 of the same type, we have a commutative diagram

@T 0v

i

��

.'vw/� // @T 0w

i

��
@Tv

.'vw/�

// @Tw

and therefore i has equivalent restrictions at v and w. Conjugating by i , we deduce
that any rational homeomorphism of @T is also a rational homeomorphism of @T 0,
and vice versa.
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2.4. Rigid trees andR2. In this subsection we complete the proof of Theorem 2.16.
Definition 2.20. Let T and T 0 be self-similar trees and let ˆWT ! T 0 be an
isomorphism of rooted trees. We say that ˆ is an isomorphism of self-similar trees
if the following conditions are satisfied:
(1) Two vertices v;w 2 T have the same type if and only ˆ.v/ and ˆ.w/ have the

same type in T 0.
(2) For every pair v;w of vertices of T of the same type, ˆ conjugates Mor.v; w/

to Mor
�
ˆ.v/;ˆ.w/

�
.

For the following theorem, we say that a directed multigraph � is branching if
each vertex in � has at least two outgoing edges.
Proposition 2.21. Let T be a branching, rigid self-similar tree. Then the type
graph � for T is branching, and there exists an isomorphism of self-similar trees
ˆWT ! L.�; t0/, where t0 is the type of the root vertex in T

Proof. Since T is branching, � must be branching as well. Let v0 be the root of T ,
and let V be a set of vertices in T that contains the root and has exactly one vertex
of each type. Let � WT ! V be the function that assigns to each vertex x 2 T the
vertex �.x/ 2 V having the same type as x. Then we can think of the elements of V
as the vertices of � , with one directed edge ew in � from v to �.w/ for each v 2 V
and each child w of v.

For any two vertices x; y 2 T of the same type, let  x;y denote the morphism
from x to y. Define a tree isomorphism ˆWL.�; v0/! T inductively by ˆ."/ D v0
and

ˆ.pew/ D  v;ˆ.p/.w/

for each path p in � from v0 to v and each edge ew starting at v. Note that �.ˆ.p//
is always the endpoint of p, and therefore two paths p; q in L.�; v0/ have the same
type if and only if ˆ.p/ and ˆ.q/ have the same type in T .

Now let p and p0 be paths in � from v0 to some vertex v 2 V , and let 'p;p0 2
Mor.p; p0/ be the prefix replacement, i.e.

'p;p0.pq/ D p
0q:

We claim that
 ˆ.p/;ˆ.p0/

�
ˆ.pq/

�
D ˆ

�
'p;p0.pq/

�
for every path q in � starting at v. We proceed by induction on q. Note that the
statement is trivially true for q D ". Now suppose it is true for some path q from v

to v0, and let ew be an edge in � starting at v0. Then,

 ˆ.p/;ˆ.p0/
�
ˆ.pqew/

�
D  ˆ.p/;ˆ.p0/

�
 v0;ˆ.pq/.w/

�
:

But  ˆ.p/;ˆ.p0/
�
ˆ.pq/

�
D ˆ

�
'p;p0.pq/

�
D ˆ.p0q/, so since T is rigid

 ˆ.p/;ˆ.p0/ ı  v0;ˆ.pq/ D  v0;ˆ.p0q/:
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Now,

 ˆ.p/;ˆ.p0/
�
ˆ.pqew/

�
D  v0;ˆ.p0q/.w/ D ˆ.p

0qew/ D ˆ
�
'p;p0.pqew/

�
:

We conclude that ˆ is an isomorphism of self-similar trees.

Proposition 2.22. Let � D .V;E/ be a finite, directed, branching multigraph, and
let v0 2 V . Then there exists a rational homeomorphism from L.�; v0/ to the Cantor
set f0; 1g! .

Proof. For each vertex v 2 V , choose a complete binary prefix code for the edges
of E with initial vertex v. Together, these codes define an encoding function
cWE ! f0; 1g�, which we can extend to a function cWE� ! f0; 1g� by

c.e1e2 � � � en/ D c.e1/ � c.e2/ � � � � � c.en/:

Let f W @L.�; v0/! f0; 1g! be the function

f .e1e2 � � � / D c.e1/ � c.e2/ � � � � :

By construction f is bijective. We claim that f is rational.
Let p and q be any two directed paths in � from v0 to the same vertex w,

and let 'pqWL.�; v0/p ! L.�; v0/q be the prefix replacement morphism. Let
'c.˛/;c.ˇ/W f0; 1g

�
c.p/
! f0; 1g�

c.q/
be the prefix replacement morphism between the

corresponding subtrees of f0; 1g�. Then it is easy to check that the diagram

@L.�; v0/p

f

��

'� // @L.�; v0/q

f

��
@f0; 1g�

c.p/  �

// @f0; 1g�
c.q/

commutes. Since L.�; v0/ has only finitely many different types, this proves that f
is rational.

Proof of Theorem 2.16. Let T be a branching self-similar tree. By Proposition 2.18,
there exists a rigid structure on T , giving us a rigid tree T 0. By Proposition 2.19, we
know that RT D R0T . By Proposition 2.21, there exists a finite, directed, branching
multigraph � D .V;E/ and a vertex v0 2 V so that T 0 is isomorphic toL.�; v0/. Let
ˆWT 0 ! L.�; v0/ an isomorphismof self-similar trees, and letˆ�W @T 0 ! @L.�; v0/
be the associated rational homeomorphism. By Proposition 2.22, there exists a
rational homeomorphism hWL.�; v0/! f0; 1g! . Thus, the mapping

f 7! h ıˆ ı f ıˆ�1 ı h�1

is an isomorphism from RT to R2. Indeed, hıˆ conjugates the action of RT on @T
to the action of R2 on f0; 1g! .
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2.5. Non-branching trees. In this section we deal with the case of non-branching
self-similar trees. Note that such trees may have isolated points in their boundaries.

Definition 2.23. A self-similar tree T is without dead ends if every vertex of T has
at least one child.

We wish to extend our theory of rational homeomorphisms to self-similar trees
without dead ends. Specifically, we wish to prove that the set RT of rational
homeomorphisms for such a tree forms a group, and that this group embeds into
the binary rational group R2.

Definition 2.24. Let T be a tree without dead ends. A subtree Tv � V is called an
isolated branch if:

(1) @Tv is a single point, and

(2) there does not exist an ancestor w of v such that @Tv D @Tw .

As long as v is not the root, condition (2) is equivalent to saying that the parent
of v has at least two children. Note that isolated branches of T are in one-to-one
correspondence with isolated points in @T .

Definition 2.25. Let T be a tree without dead ends. The expansion of T is the
treeEŒT � obtained by replacing each isolated branch Tv of T by a copy of the infinite
binary tree f0; 1g�.

More formally, each vertex of EŒT � is either:

(1) a vertex v 2 T that does not lie in an isolated branch, or

(2) a pair .v; ˛/, where Tv is an isolated branch of T and ˛ 2 f0; 1g�.

Vertices of the first type are called old vertices, and vertices of the second type are
new vertices. Descendants in EŒT � are defined as follows:

(1) If v is an old vertex, then the descendants of v in EŒT � consist of all old vertices
that are descendants of v in T , together with all new vertices .w; ˛/ for which w
is a descendant of v in T .

(2) The descendants of a new vertex .v; ˛/ are all pairs .v; ˇ/ for which ˛ is a prefix
of ˇ.

Note then that each isolated branch Tv in T has a corresponding infinite binary
tree EŒT �.v;"/ of new vertices in EŒT �.

We place a self-similar structure on EŒT � as follows:

(1) If v and w are old vertices in EŒT �, then v and w have the same type in EŒT �
if and only if they have the same type in T . For each morphism 'WTv ! Tw ,
there is a corresponding morphism EŒ'�WEŒT �v ! EŒT �w , which maps each
old vertex v0 2 EŒT �v to '.v0/, and maps each new vertex .v0; ˛/ 2 EŒT �v
to
�
'.v0/; ˛

�
.



152 J. Belk, C. Bleak and F. Matucci

(2) Any two new vertices .v; ˛/ and .wˇ/ inEŒT � have the same type, with a unique
morphism '.v;˛/;.w;ˇ/WEŒT �.v;˛/ ! EŒT �.w;ˇ/ defined by

'.v;˛/;.w;ˇ/.v; ˛ / D .w; ˇ /

for all  2 f0; 1g�.
It is easy to check that this satisfies the axioms for a self-similar structure.

Now, observe that each point in @EŒT � consists of either:
(1) a non-isolated point in @T , or
(2) a pair .p;  /, where p is an isolated point in @T and  2 f0; 1g! .
If f W @T ! @T 0 is a homeomorphism, then f must map isolated points of @T to
isolated points of @T 0, and therefore f induces a homeomorphism

EŒf �W @EŒT �! @EŒT 0�

defined by EŒf �.p/ D f .p/ if p is a non-isolated point in @T , and EŒf �.p;  / D
.f .p/;  / if p is an isolated point in @T and  2 f0; 1g! .

Note that this operation satisfies

EŒf ı g� D EŒf � ıEŒg�

for any homeomorphisms gW @T ! @T 0 and f W @T 0 ! @T 00. Similarly, EŒf �1� D
EŒf ��1 for any homeomorphism f W @T ! @T 0.
Lemma 2.26. Let T and T 0 be self-similar trees without dead ends, and let
f W @T ! @T 0 be a homeomorphism. Then f is rational if and only if the induced
homeomorphism EŒf �WEŒT �! EŒT 0� is rational.

Proof. Let v and w be old vertices of EŒT � of the same type. Since @Tv and @Tw
each have at least two points, the images f .@Tv/ and f .@Tw/ each have at least two
points, so they have deepest parents x and y, respectively. These must be old vertices
of EŒT 0�, and indeed are the deepest parents of EŒf �.@EŒT �v/ and EŒf �.@EŒT �w/,
respectively. Then for any twomorphisms 'WTv ! Tw and WT 0x ! T 0y , the diagram

@Tv

f

��

'� // @Tw

f

��
@T 0x  �

// @T 0y

commutes if and only if the diagram

@EŒT �v

EŒf �

��

EŒ'�� // @EŒT �w

EŒf �

��
@EŒT 0�x

EŒ ��

// @EŒT 0�y

commutes, so f has equivalent restrictions at v and w if and only if EŒf � has
equivalent restrictions at v and w.



Rational embeddings of hyperbolic groups 153

Finally, if .v; ˛/ and .w; ˇ/ are new vertices of EŒT �, then the diagram

@EŒT �.v;˛/

EŒf �

��

.'.v;˛/;.wˇ//� // @EŒT �w

EŒf �

��
@EŒT 0�.f .v/;˛/

.'.f.v/;˛/;.f.w/ˇ//�

// @EŒT 0�.f .w/;ˇ/

commutes, soEŒf � has equivalent restrictions at .v; ˛/ and .w; ˇ/. It follows that f
is rational if and only if EŒf � is rational.

Lemma 2.26 allows us to eliminate isolated branches from any tree without dead
ends. That is, we can now assume that our tree T without dead ends also has no
isolated branches. For such a tree, any vertex with only one child must eventually
have a descendant with two or more children.
Definition 2.27. Let T be a self-similar tree without dead ends or isolated branches.
(1) A vertex v 2 T is essential if v has at least two children.
(2) The simplification of T is the tree SŒT � consisting of all essential vertices of T .

That is, SŒT � is the tree of all essential vertices of T , where v is a descendant ofw
in SŒT � if and only if v is a descendant ofw in T . Note then that an essential vertexw
is a child in of an essential vertex v in SŒT � if and only if w is a descendant of v
in T and each intermediate vertex on the path from v to w in T has only one child.
Since each vertex in SŒT � has the same number of children as in T , the tree SŒT � is
branching.

We can put a self similar structure on SŒT � by simply restricting morphisms of T .
That is, if v andw are essential vertices in T , then v andw have the same type in SŒT �
if and only if they have the same type in T . Given any morphism 'WTv ! Tw , we
define a morphism SŒ'�WSŒT �v ! SŒT �w obtained from ' by restricting to the
essential vertices.

It is not hard to see that @SŒT � is naturally homeomorphic to @T , since an infinite
descending path in T is completely determined by which essential vertices it passes
through. If f W @T ! @T 0 is a homeomorphism, we let SŒf �W @SŒT � ! @SŒT 0� be
the induced homeomorphism.
Lemma 2.28. Let T and T 0 be self-similar trees without isolated branches, and
let f W @T ! @T 0. Then f is rational if and only if the induced homeomorphism
SŒf �W @SŒT �! @SŒT 0� is rational.

Proof. We claim first that, if v and w are essential vertices of T of the same type,
then f has equivalent restrictions at v and w if and only if SŒf � has equivalent
restrictions at v and w. To see this, let x and y be the deepest parents of f .@Tv/
and f .@Tw/, respectively, which exist since T and T 0 have no isolated branches. Note
that x and y must be essential, since otherwise they would not be deepest parents.
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Moreover, x and y are the deepest parents of SŒf �.@SŒT �v/ and SŒf �.@SŒT �w/,
respectively. Then for any two morphisms 'WTv ! Tw and  WT 0x ! T 0y , the
diagram

@Tv

f

��

'� // @Tw

f

��
@T 0x  �

// @T 0y

commutes if and only if the diagram

@SŒT �v

SŒf �

��

SŒ'�� // @SŒT �w

SŒf �

��
@SŒT 0�x

SŒ ��

// @SŒT 0�y

commutes, which proves the claim.
It follows immediately that SŒf � is rational whenever f is rational. For the

converse, suppose that SŒf � is rational. For each v 2 T , let r.v/ denote the
deepest parent of @Tv , i.e. the first descendant of v that is essential. Note then
that @Tr.v/ D @Tv for each v, since every infinite descending path in T that passes
through v must pass through r.v/ as well. Put an equivalence relation � on the
vertices of T by v � w if v and w have the same type and f has equivalent
restrictions at r.v/ and r.w/. Since SŒf � is rational, we know from the previous
paragraph that f has only finitely many equivalence classes of restrictions at essential
vertices, which means that � has only finitely many equivalence classes. Let E
be such an equivalence class. It suffices to prove that f has only finitely many
equivalence classes of restrictions on E.

Fix a vertex u2E. For each v2E, let s.v/ denote the deepest parent of f .@Tv/,
and let 'vWTr.u/ ! Tr.v/ and  vWTs.u/ ! Ts.v/ be morphisms that make the
following diagram commute:

@Tr.u/

f

��

.'v/� // @Tr.v/

f

��
@T 0
s.u/ . v/�

// @T 0
s.v/

Choose also for each v 2 E a morphism �vWTv ! Tu. Since �v is a tree
isomorphism, it must map r.v/ to r.u/ and hence Tr.v/ to Tr.u/. Then the
composition �v'v is a morphism Tr.u/ ! Tr.u/. We claim that f has equivalent
restrictions at two vertices v;w 2 E whenever �v'v D �w'w . Since there are only
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finitely many morphisms Tr.u/ ! Tr.u/ in T , it will follow from this that f has only
finitely many equivalence classes of restrictions on E, and therefore f is rational.

Let v;w 2 E and suppose that �v'v D �w'w . Then we have a commutative
diagram

@Tv
.�v/� // @Tu @Tw

.�w/�oo

@Tr.v/

id

OO

f

��

@Tr.u/

f

��

.'w/� //.'v/�oo @Tr.w/

f

��

id

OO

@T 0
s.v/

@T 0
s.u/. v/�

oo
. w/�

// @T 0
s.w/

In particular, the outer square

@Tv

f

��

.��1w �v/� // @Tw

f

��
@T 0
s.v/ . w 

�1
v /�

// @T 0
s.w/

commutes, so f has equivalent restrictions at v and w.

This immediately gives us the following result in the case that there are no isolated
branches.
Corollary 2.29. Let T be a self-similar tree without dead ends or isolated branches.
Then the set RT of rational homeomorphisms of T forms a group under composition,
and this group isomorphic to R2. Indeed, the action of RT on @T is conjugate to the
action of R2 on f0; 1g! .

Proof. By Lemma 2.28, the rational homeomorphisms of T are the same as the
rational homeomorphisms of SŒT �. But SŒT � is branching, so the conclusion follows
from Theorem 2.16.

For a tree that does have isolated branches, we get the following result.
Theorem 2.30. Let T be a self-similar tree without dead ends. Then the set RT

of rational homeomorphisms of T forms a group under composition. Moreover, the
action of RT on @T is rational in the sense of Definition 2, and in particular RT

embeds into R2.

Proof. From Lemma 2.26, we know that a homeomorphism f W @T ! @T is rational
if and only if the induced homeomorphism EŒf �W @EŒT � ! @EŒT � is rational.
Moreover, note that EŒfg� D EŒf �EŒg� for all f; g 2 RT and EŒf �1� D EŒf ��1
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for all f 2 RT . Since the rational homeomorphisms of EŒT � form a group by
Corollary 2.29, it follows that the rational homeomorphisms of T form a group as
well.

Now clearly the homomorphism f 7! EŒf � is an embedding of REŒT � into RT ,
and since REŒT � is isomorphic to R2 by Corollary 2.29 it follows that RT embeds
into R2. Moreover, Corollary 2.29 tells us that the action of REŒT � on @EŒT � is
conjugate to the action of R2 on f0; 1g! , so we can use REŒT � instead of R2 to prove
that the action of RT on @T is rational. Let qW @EŒT � ! @T be the quotient map
which is the identity on the non-isolated points of @T and maps fpg � f0; 1g! to p
for each isolated point p of T . Then clearly the diagram

@EŒT �

q

��

EŒf � // @EŒT �

q

��
@T

f
// @T

commutes for each f 2 RT , and this proves that the action of RT on @T is rational
in the sense of Definition 2.

Note that RT need not be isomorphic to R2 if T has isolated branches. For
example, if T is a self-similar tree whose boundary @T consists of finitely many
isolated points, then RT is a finite symmetric group.

Theorem 2.30 gives us the following test for whether an action is rational, which
we use in Section 3 to prove Theorem 1.30, and hence Theorems 1 and 3.
Corollary 2.31. Let G be a group acting on a compact metrizable space X , and
let T be a self-similar tree without dead ends. Suppose there exists a quotient map
qW @T ! X and a homomorphism 'WG ! RT such that the diagram

@T

q

��

'.g/ // @T

q

��
X

g
// X

commutes for all g 2 G. Then the action of G on X is rational.

3. Rational actions of hyperbolic groups

Let � be a locally finite, connected hyperbolic graph, and let G be a group acting
properly and cocompactly by isometries on � . For example, G could be any
hyperbolic group and � could be its Cayley graph. In this section, we construct a self-
similar tree T whose boundary @T is naturally homeomorphic to the horofunction
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boundary @h� , and we show that the action of G on @h� induces a rational action
of G on @T .

As in Section 1, we will identify � with its set of vertices under the path metric d .
We fix a base vertex x0 2 � , and define the length `.x/ of any vertex x 2 � to be its
distance from the base vertex. Let

Bn D fx 2 � j `.x/ � ng and Sn D fx 2 � j `.x/ D ng

denote the n-ball and n-sphere, respectively, centered at x0.
If x 2 Sn, a successor to x is any element of SnC1 \ C.x/, where C.x/ denotes

the cone on x, and a predecessor for x is any element of Sn�1 for which x is a
successor.

3.1. The tree of atoms.
Definition 3.1. Let B be a finite set of vertices in � .
(1) Given any point x 2 � , the corresponding atom is the set

A D
˚
y 2 �

ˇ̌
xdy agrees with xdx on B

	
:

Let A.B/ be the collection of all such atoms.
(2) The shape algebra forB , denoted S.B/, is the algebra of sets generated byA.B/.
Notes 3.2.
(1) The atoms in A.B/ form a partition of � , and therefore each element of S.B/ is

a disjoint union of atoms. Thus the elements of A.B/ are precisely the atoms in
the Boolean algebra S.B/.

(2) If B � B 0 are finite sets, then each atom for B 0 is a subset of some atom for B .
It follows that S.B/ � S.B 0/.
Each atom A comes with a function xdA 2 xF .B;Z/, which agrees with xdx on B

for each x 2 A. We refer to this as the distance function for A.
For example, Figure 5(a) shows the four atoms derived from a certain three-point

subset of a hyperbolic graph. The corresponding shape algebra has 16 different
sets, namely all possible disjoint unions of these four atoms. Figure 5(b) shows the
distance function for each of the four atoms.
Proposition 3.3. Each finite set B � � has only finitely many different atoms.

Proof. Fix a point p 2 B . By the triangle inequality, we know thatˇ̌
xdx.q/ � xdx.p/

ˇ̌
� d.p; q/

for all x 2 � and q 2 B . But there are only finitely many different functions
f WB ! Z satisfying f .p/ D 0 andˇ̌

f .q/
ˇ̌
� d.p; q/

for all q 2 B , and therefore there can be only finitely many atoms
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(a) (b)

Figure 5. (a) Four atoms derived from a three-point subset B of a hyperbolic graph � . Each
atom consists of the vertices of � that lie in the shown region. (b) The distance functions xdA
for A 2 A.B/, with additive constants chosen so that the minimum value is 0 for each.

Now if we fix a base vertex x0 2 � , we get a sequence of balls in �:

fx0g D B0 � B1 � B2 � � � �

Taking the corresponding atoms gives us a sequence of partitions of �:

A.B0/; A.B1/; A.B2/; : : :

Each of these partitions is a refinement of the previous one, with A.B0/ having only
one atom, namely the whole graph � . For example, Figure 6 shows the atoms of
A.B1/ and A.B2/ for the 1-skeleton of the order five square tiling of the hyperbolic
plane.

Because each A.Bn/ is a refinement of the previous, the disjoint union

1a
nD0

A.Bn/

has the structure of a rooted tree. It turns out that the boundary of this tree is naturally
homeomorphic to � [ @h� , where @h� is the horofunction boundary of � . That is,
the boundary is homeomorphic to the closure of i.�/ in xF .�;Z/ (see Definitions 1.22
and 1.23).

Because we are interested in @h� specifically, we would like to restrict to a subtree
whose boundary is precisely @h� . As we will see, it suffices to consider only the
atoms in each A.Bn/ that have infinite cardinality. This motivates the following
definition.
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Figure 6. The atoms of A.B1/ and A.B2/ for the order five square tiling of the hyperbolic
plane. There are 11 atoms in A.B1/ and 36 atoms in A.B2/.

Definition 3.4. For each n � 0, let An.�/ be the set of infinite atoms in A.Bn/. The
tree of atoms for � is the disjoint union.

A.�/ D
1a
nD0

An.�/:

Note that, since A.�/ is defined as a disjoint union, an element of A.�/ is
technically an ordered pair .n; A/, where n � 0 and A 2 An.�/. This distinction is
sometimes relevant, for it is possible for the same set A to be an atom in An.�/ for
two different values of n. However, we will often abuse notation and treat elements
of A.�/ as subsets of � , with the understanding that each atom A 2 A.�/ knows
which An.�/ it comes from.

Note also that the tree A.�/ has no dead ends. In particular, since the union of
the atoms in An.�/ is the complement of a finite set in � and every atom in An.�/

is infinite, each atom in An.�/ must contain at least one atom from AnC1.�/.
The following proposition tells us that the atoms of An.�/ move away from any

finite set as n!1.
Proposition 3.5. If n � 1, then each one-point subset of Bn�1 is an atom in A.Bn/.
Thus every atom of An.�/ is contained in the complement of Bn�1.

Proof. We say that a function f 2 F.�;Z/ has a local minimum at a point p 2 �
if f .p/ < f .q/ for every vertex q that is adjacent to p. Note that adding an arbitrary
constant to f does not change the positions of the local minima, so it makes sense to
talk about local minima for an element xf 2 xF .�;Z/.

Now, for any x 2 � it is not hard to see that the distance function xdx has a
local minimum of x, and this is the only local minimum for xdx on � . If x; y 2 �
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and x ¤ y, it follows that xdx and xdy cannot agree on any subset of � that contains x
and all of its neighbors. In particular, if x 2 Bn�1, then Bn contains x and all of its
neighbors, so xdx does not agree with xdy on Bn for any y ¤ x, which proves that fxg
is an atom in A.Bn/.

We will prove the following theorem in the next section.
Theorem 3.6. The boundary of the tree of atoms A.�/ is naturally homeomorphic
to the horofunction boundary @h� of � .

After this is done, the next task is to endow the tree A.�/ with a self-similar
structure. First, if A 2 An.�/ and m � n, let

Am.A/ D fA
0
2 Am.�/ j A

0
� Ag:

The union
A.�/A D

a
m�n

Am.A/

is the subtree of atoms rooted at A.
Definition 3.7. LetA1 2 Am.�/ andA2 2 An.�/ be atoms. We say that an element
g 2 G induces a morphism from A1 to A2 if the following conditions are satisfied:
(1) gA1 D A2.
(2) g.A1 \ BmCk/ D A2 \ BnCk for all k � 0.
(3) For each k > 0 and each A01 2 AmCk.A1/, there exists an A02 2 AnCk.A2/ such

that gA01 D A02.
The corresponding morphism is the isomorphism 'WA.�/A1 ! A.�/A2 of subtrees
defined by condition (3). We say that A1 and A2 have the same type if there exists a
morphism from A.�/A1 to A.�/A2 .
Notes 3.8.
(1) Condition (2) is equivalent to saying that

`.gp/ � n D `.p/ �m

for all p 2 A1.
(2) Clearly the composition of two morphisms is a morphism, and the inverse of a

morphism is a morphism.
Proposition 3.9. For all A1; A2 2 A.�/, there are only finitely many morphisms
A.�/A1 ! A.�/A2 .

Proof. It suffices to prove that there are only finitely many morphisms from an
atom A 2 A.�/ to itself. Let S be the set of elements of A of minimum length
(i.e. minimum distance to the base vertex). If 'WA.�/A ! A.�/A is a morphism
corresponding to an element g 2 G, then it follows from condition (2) that gS D S .
Since S is finite and G acts properly on � , there are only finitely many such g, and
therefore only finitely many morphisms from A to A.
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We will say that two atoms A1; A2 2 A.�/ have the same type if there exists a
morphism A.�/A1 ! A.�/A2 . Unfortunately, it is not easy to prove that there are
only finitely many types of atoms in A.�/, and indeed this is the first part of our
theory that requires � to be hyperbolic. After developing some geometric machinery
in Sections 3.3 and 3.4, we prove in Section 3.5 that A.�/ has only finitely many
types, thereby endowing A.�/ with a self-similar structure.

Finally, we prove the following theorem in Section 3.6.

Theorem 3.10. The group G acts on the boundary of A.�/ by rational homeo-
morphisms.

By Theorem 3.6 and Corollary 2.31, it follows that G acts rationally on the
horofunction boundary @h� (Theorem 1.30) and hence the Gromov boundary @�
(Theorem3), and if this action is faithful thenG embeds inR (Theorem1). Therefore,
we will have all of our chief results upon completing the proof of Theorem 3.10.

3.2. Infinite atoms and the horofunction boundary. We begin by associating to
each atom a certain subset of the horofunction boundary.

Definition 3.11. Let B � � be finite. Given any atom A 2 A.B/, the shadow of A
is the set

@A D
˚
xf 2 @h� j xf agrees with xdA on B

	
:

The following proposition explains our interest in infinite atoms.

Proposition 3.12. LetB � � be a finite set, and letA 2 A.B/. Then the shadow @A
is nonempty if and only if A is infinite.

Proof. Suppose first that @A is nonempty, and let xf 2 @A. Then by Proposition 1.27,
there exist infinitely many points x 2 � such that xdx agrees with xf on B , and it
follows that A is infinite.

Conversely, suppose that A is infinite. Let

B D B0 � B1 � B2 � � � �

be an ascending chain of finite sets whose union is � . Then we can find a descending
chain

A D A0 � A1 � A2 � � � � ;

where each An is an infinite atom in A.Bn/. Then each xdAn is a restriction of the
next, and their union is a function xf 2 xF .�;Z/. Clearly xf agrees with xdA on B .
We claim that f is a horofunction.

Let B 0 � � be any finite set. Since
S
nBn D � , there exists an n 2 N so that

B 0 � Bn. SinceAn is infinite, there exist infinitelymany points x for which xdx agrees
with xf on Bn, and it follows from Proposition 1.27 that f is a horofunction.
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Proposition 3.13. Let B � � be finite. Then the sets˚
@A j A 2 A.B/ and A is infinite

	
are a partition of @h� into clopen sets.

Proof. Since xdA and xdA0 disagree onB for any twoA;A0 2 A.B/, the corresponding
shadows are disjoint, and we know from Proposition 3.12 that they are all nonempty.
To prove that the union of the shadows is all of @h� , let f W� ! Z be a horofunction.
By Proposition 1.27, there exists an x 2 � such that xdx agrees with xf on B .
Let A 2 A.B/ be the atom containing x. Then xdx agrees with xdA on B , so xf agrees
with xdA on B , and therefore xf 2 @A. Finally, observe that each @A is open in @h� ,
since the preimage in F.�;Z/ is open in the product topology. Since there are only
finitely many @A, it follows that each @A is also closed.

Proof of Theorem 3.6. To show that @A.�/ is homeomorphic to @h� , we begin by
defining a function hW @h� ! @A.�/ as follows. Given a point xf 2 @h� , we know
from Proposition 3.13 that there exists for each n 2 N an atom An 2 An.�/ whose
shadow contains xf . Then for each n, the distance functions xdAn and xdAnC1 must
both agree with xf on Bn, and therefore xdAn is the restriction to Bn of xdAnC1 . It
follows that the sequence fAng is nested, with A0 � A1 � � � � , so it corresponds
to an infinite descending path in the tree A.�/. Let h. xf / be this path. Note that h
is continuous since the sets f@A.�/A j A 2 A.�/g form a basis for the topology
on @A.�/, and h�1.@A.�/A/ D @A is open in @h� for each A.

To prove that h is bijective, let

A0 � A1 � A2 � � � � :

be any infinite descending path in A.�/, whereAn 2 An.�/ for each n. Then xdAnC1
agrees with xdAn on Bn for each n, and therefore

@A0 � @A1 � @A2 � � � � :

Since each @An is closed and @h� is compact, the intersection
T1
nD0 @An contains at

least one point. This maps to fAng under h, and therefore h is surjective. Moreover,
if f and f 0 are horofunctions such that xf ; xf 0 2

T1
nD0An, then for each n both xf

and xf 0 agree with xdAn on Bn, and therefore xf and xf 0 agree with each other on Bn.
Since this holds for every n, it follows that xf D xf 0, so the intersection

T1
nD0An

is a single point. This proves that h is injective and hence bijective. Since @h�
and @A.�/ are compact Hausdorff spaces, it follows that h is a homeomorphism.

3.3. Nearest neighbors and visibility. In this section we develop some geometric
tools that will be essential in our proofs.
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Figure 7. A point x and a finite subset B of a hyperbolic graph � . Here N.x;B/ D fng and
V.x; B/ D fn; vg. In particular, n is a nearest neighbor to x, while v is visible from x but is
not a nearest neighbor.

Definition 3.14. Let B � � be a finite set, and let x 2 � .
(1) A point p 2 B is called a nearest neighbor for x if

d.p; x/ � d.q; x/

for all q 2 B . We let N.x;B/ denote the set of nearest neighbors to x in B .
(2) A point p 2 B is visible from x if

d.p; x/ < d.p; q/C d.q; x/

for all q 2 B n fpg. We let V.x; B/ denote the set of points in B that are visible
from x.
Equivalently, a point p 2 B is visible from x if

Œp; x� \ B D fpg

for every geodesic Œp; x� from p to x.
Clearly N.x;B/ � V.x; B/, i.e. every nearest neighbor to x in B is visible

from x. However, there are sometimes points in B that are visible from x but are not
nearest neighbors, as shown in Figure 7.
Proposition 3.15. Let B � � be a finite set, and let x; y 2 � be points that lie in the
same atom of A.B/. Then,

N.x;B/ D N.y;B/ and V.x; B/ D V.y;B/:

Proof. For the first statement, observe that a point p 2 B lies inN.x;B/ if and only
if

dx.q/ � dx.p/ � 0
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for all q 2 B . But xdx and xdy agree on B , so

dx.q/ � dx.p/ D dy.q/ � dy.p/

for all x; y 2 B , which implies that N.x;B/ D N.y;B/.
A similar argument holds for V.x; B/. Specifically, a point p 2 B lies in V.x; B/

if and only if
dx.p/ � dx.q/ < d.p; q/

for all q 2 B . Again, the quantity on the left depends only on xdx , so it follows that
V.x; B/ D V.y;B/.

If B � � is a finite set and A 2 A.B/ we will let

N.A;B/ and V.A;B/

denote the set of points inB that are nearest neighbors to points inA and visible from
points in A, respectively. That is, N.A;B/ D N.x;B/ and V.A;B/ D V.x; B/ for
all x 2 A. This is well-defined by Proposition 3.15.

Though nearest neighbors are fairly natural, visibility may see like a strange
concept. The following proposition explains our interest in visibility.
Proposition 3.16. Let B � � be a finite set, let p 2 B , and let x 2 � . Then there
exists a geodesic from p to x that contains a point of V.x; B/.

Proof. Let .q1; : : : ; qn/ be any geodesic from q1 D p to qn D x. Let qi be the last
point in this geodesic that lies inB . If qi is visible from x we are done. Otherwise, we
can replace .qi ; qiC1; : : : ; qn/ with another geodesic from qi to x that intersects B at
a later point. Continuing in this fashion, we eventually obtain a geodesic that contains
a point of V.x; B/.

The proposition above is actually the defining property of V.x; B/. Specifically,
if B � � is a finite set, x 2 � , and P � B , the following are equivalent:
(1) V.x; B/ � P .
(2) For every point p 2 B , every geodesic from p to x contains a point of P .
Condition (1) implies condition (2) by Proposition 3.16, while condition (2) implies
condition (1) since every visible point p 2 B has a geodesic Œp; x� that intersects B
only at p.

We can use Proposition 3.16 to obtain a useful test for whether a given point lies
in a given atom.
Lemma 3.17. LetB � � be finite, let x 2 � , and let P � B be any set that contains
V.x; B/. Then, for all b 2 B ,

d.b; x/ D min
p2P

�
d.b; p/C d.p; x/

�
:



Rational embeddings of hyperbolic groups 165

Proof. Let b 2 B , and let m be the given minimum. By the triangle inequality,

d.b; x/ � d.b; p/C d.p; x/

for allp 2 P , and therefore d.b; x/ � m. For the reverse inequality, Proposition 3.16
tells us that there exists a geodesic Œb; x� from b to x that intersects V.x; B/. Let
p 2 Œb; x� \ V.x; B/. Then p 2 P and

d.b; p/C d.p; x/ D d.b; x/;

which proves that m � d.b; x/.

Proposition 3.18. Let B � � be a finite set. Let x 2 � and A 2 A.B/, and let
P � B be any set containing V.x; B/ [ V.A;B/. Then x 2 A if and only if xdx
agrees with xdA on P .

Proof. If x 2 A, then xdx and xdA must agree on all of B , and therefore xdx agrees
with xdA on P . For the converse, suppose that xdx agrees with xdA on P . Let y 2 A,
and note that V.y;B/ D V.A;B/ � P and xdx and xdy agree on P . By Lemma 3.17,
we know that

dx.b/ D min
p2P

�
d.b; p/C dx.p/

�
and dy.b/ D min

p2P

�
d.b; p/C dy.p/

�
for all p 2 B . Since xdx and xdy agree on P , it follows that xdx and xdy agree on all
of B . Then xdx agrees with xdA on B , so x 2 A.

3.4. A membership test for atoms. In this section we use the notions of nearest
neighbors and visibility to obtain a useful test for whether a given point x 2 � lies in
a given atom of A.�/.

Recall that Bn denotes the n-ball in � centered at the base vertex x0. Note that
if x is any point in � with `.x/ � n, then N.x;Bn/ and V.x; Bn/ are both subsets
of the n-sphere Sn. If particular, N.x;Bn/ is precisely the set of points in Sn that lie
on geodesics from x0 to x.

The following fundamental proposition helps us pin down the locations of the
points in V.x; Bn/. Though we assumed at the beginning of Section 3 that � is
ı-hyperbolic, the following proposition is the first time we make use of this fact.

Proposition 3.19. Let x2� , let n�`.x/, and let p2V.x; Bn/. Let x0; x1; : : : ; x`.x/
be a geodesic from x0 to x and let p0; p1; : : : ; pn be a geodesic from x0 to p. Then,

d.xi ; pi / � 4ı C 2

for all 0 � i � n.
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Proof. Let 0 � i � n. If i � 2ı C 1 we are done, so suppose that i > 2ı C 1.
Let Œp; x� be a geodesic from p to x. Since p is visible from x, this intersects Bn
only at p. Let j D min.n � 1 � ı; i/ and note that j < n � ı, which means that
the point pj does not lie within ı of any point on Œp; x�. Since � is ı-hyperbolic, it
follows that d.pj ; xk/ � ı for some k. Note then that jj � kj � ı, so

ji � kj � ji � j j C jj � kj � .ı C 1/C ı D 2ı C 1:

Then,

d.xi ; pi / � d.xi ; xk/C d.xk; pj /C d.pj ; pi /

� ji � kj C ı C ji � j j � .2ı C 1/C ı C .ı C 1/ D 4ı C 2:

This proposition motivates the following definition.
Definition 3.20. Let x 2 � , let n � `.x/, and let p 2 Sn. We say that p is proximal
to x if there exists a geodesic p0; p1; : : : ; pn from x0 to p such that

d.xi ; pi / � 4ı C 2

for all 0 � i � n and every geodesic x0; x1; : : : ; xm from x0 to x. We let P.x; Sn/
be the set of points in Sn that are proximal to x.

By Proposition 3.19, every point in Bn that is visible to x must be proximal to x,
i.e. V.x; Bn/ � P.x; Sn/.

The advantage of P.x; Sn/ over V.x; Bn/ is that there is a useful inductive test to
check whether a point p 2 Sn is proximal to x, as shown in the following proposition.
Proposition 3.21. Let n � 1, let x 2 � with `.x/ � n, and let p 2 Sn. Then p is
proximal to x if and only if:
(1) p has a predecessor that is proximal to x, and
(2) d.p; q/ � 4ı C 2 for all q 2 N.x;Bn/.

Proof. Suppose that p is proximal to x, and let p0; p1; : : : ; pn be a geodesic from x0
to p satisfying the definition of proximality. Then pn�1 is a predecessor for pn and is
clearly proximal, with p0; p1; : : : ; pn�1 being the required geodesic. Furthermore,
if q is a nearest neighbor to x in Bn, then there must exist a geodesic x0; : : : ; x`.x/
from x0 to x such that xn D q, and it follows that

d.q; p/ D d.xn; pn/ � 4ı C 2:

For the converse, suppose that p satisfies conditions (1) and (2). Let pn�1 be a
predecessor to p that is proximal to x, and let p0; : : : ; pn�1 be a geodesic from x0
to pn�1 satisfying the definition of proximality. Note then that p0; : : : ; pn�1; p is a
geodesic from x0 to p. Let x0; : : : ; x`.x/ be a geodesic from x0 to x. We know that

d.xi ; pi / � 4ı C 2
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for all 0 � i � n � 1. Moreover, the point xn must lie in N.x;Bn/, and therefore

d.p; xn/ � 4ı C 2;

which proves that p is proximal to x.

Corollary 3.22. If x 2 � and n � `.x/, then P.x; Sn/ has diameter at most 8ı C 4.

The proposition above showed that P.x; Sn/ is in some sense determined by
nearest neighbors. The following proposition carries this idea further.
Proposition 3.23. Let n � 0, let x; y 2 � with `.x/ � n and `.y/ � n, and suppose
that N.x;Bn/ � N.y;Bn/. Then P.y; Sn/ � P.x; Sn/.

Proof. We use induction on n. The statement is obvious for n D 0, since

P.x; S0/ D P.y; S0/ D fx0g:

For n > 0, suppose that
N.x;Bn/ � N.y;Bn/;

and let p 2 P.y; Sn/. We know from Proposition 3.21 that p has a predecessor
p0 2 P.y; Sn�1/. But N.x;Bn�1/ � N.y;Bn�1/, since N.x;Bn�1/ consists of
all predecessors of elements of N.x;Bn/, and similarly for y. From our induction
hypothesis, it follows that

P.y; Sn�1/ � P.x; Sn�1/;

so p0 2 P.x; Sn�1/. But,
d.p; q/ � 4ı C 2

for all q 2 N.y;Bn/, and hence d.p; q/ � 4ıC2 for all q 2 N.x;Bn/, which proves
that p 2 P.x; Sn/ by Proposition 3.21.

Corollary 3.24. Let n � 0, and let x; y 2 � with `.x/ � n and `.y/ � n. If x and y
lie in the same atom of A.Bn/, then

P.x; Sn/ D P.y; Sn/:

Proof. By Proposition 3.15 we know that N.x;Bn/ D N.y;Bn/ D N.A;Bn/, so
the result follows from Proposition 3.23.

IfA 2 An.�/, wewill letP.A; Sn/ denote the set of points inSn that are proximal
to points in A, i.e. P.A; Sn/ D P.x; Sn/ for any x 2 A. This is well-defined by
Corollary 3.24.

We now show how to use proximal points to determine whether a given point lies
in a given atom.



168 J. Belk, C. Bleak and F. Matucci

Proposition 3.25. Let x 2 � and A 2 An.�/. Then x 2 A if and only if:
(1) x 2 C.p/ for all p 2 N.A;Bn/, and
(2) xdx agrees with xdA on P.A; Sn/.

Proof. Clearly x satisfies the given conditions if it lies in A. For the converse,
suppose that x satisfies the given conditions. Since

N.x;Bn/ D fp 2 Sn j x 2 C.p/g;

it follows from condition (1) that N.A;Bn/ � N.x;Bn/, so by Proposition 3.23 we
have P.x; Sn/ � P.A; Sn/. Then,

N.x;Bn/ � V.x; Bn/ � P.x; Sn/ � P.A; Sn/;

so N.x;Bn/ D N
�
x; P.A; Sn/

�
. (In general N.x;B/ D N.x;B 0/ whenever B 0 �

B � � and N.x;B/ � B 0.) But similarly,

N.A;Bn/ � V.A;Bn/ � P.A; Sn/;

so N.A;Bn/ D N
�
A;P.A; Sn/

�
. But xdx agrees with xdA on P.A; Sn/ by

condition (2), which implies that

N
�
x; P.A; Sn/

�
D N

�
A;P.A; Sn/

�
;

and hence N.x;Bn/ D N.A;Bn/. Then P.x; Sn/ D P.A; Sn/ by Proposition 3.23.
By Proposition 3.19, this set contains V.x; Bn/ [ V.A;Bn/, so it follows from
Proposition 3.18 that x 2 A.

3.5. Finitely many types. In this section we exploit our membership test for atoms
(Proposition 3.25) to prove that the tree A.�/ has only finitely many different types
of atoms. The difficult part here is to construct a sufficient number of morphisms
between atoms, so the main technical result for this section is a test for whether a
given element of G induces a morphism between two given atoms.

First we introduce a little notation. Given a nonempty subset P � � , a function
f 2 F.P;Z/, and a group element g 2 G, let gf 2 F.gP;Z/ be the function
defined by

.gf /.p/ D f
�
g�1p

�
for all p 2 gP . Note that if f and f 0 differ by a constant, then gf and gf 0 differ by
a constant, so for any xf 2 xF .P;Z/ we get a well-defined g xf 2 xF .gP;Z/.
Definition 3.26. Let A 2 Am.�/ and A0 2 An.�/. We say that an element g 2 G
induces a geometric equivalence from A to A0 if:
(1) g P.A; Sm/ D P.A0; Sn/,
(2) g xdA agrees with xdA0 on P.A0; Sn/, and
(3) g C.p/ D C.gp/ for all p 2 P.A;Pm/.
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Here is the main technical result for this section:
Proposition 3.27. Let A 2 Am.�/ and A0 2 An.�/, and let g 2 G. If g induces a
geometric equivalence from A to A0, then g induces a morphism from A to A0.

As we will see in Section 4 (Note 4.1), the converse of this proposition is not
true, so this test does not allow us to detect all morphisms of A.�/. However, it does
provide us with a sufficient number of morphisms to prove the following result.
Corollary 3.28. The tree A.�/ has finitely many types of atoms.

Proof. Since P.A; Sm/ has diameter at most 8ıC 4 (Corollary 3.28), there are only
finitely many possibilities for P.A; Sm/ modulo the action of G. Moreover, since
the action of G is proper and � has finitely many cone types, there are only finitely
many choices for C.p/ for each p 2 P.A; Sm/, and there are only finitely many
choices for the restriction of xdA to P.A; Sm/. By Proposition 3.27, two atoms with
corresponding choices have the same type, and therefore there are only finitely many
types of atoms.

The rest of this section is devoted to a proof of Proposition 3.27.
Lemma 3.29. Let A 2 Am.�/ and A0 2 An.�/, and let g 2 G. If g induces a
geometric equivalence from A to A0, then:
(1) g N.A;Bm/ D N.A0; Bn/,
(2) gA D A0, and
(3) g.A \ BmCk/ D A0 \ BnCk for all k � 0.

Proof. For statement (1), observe that the points of N.A;Bm/ are precisely the
points at which xdA achieves its minimum value on Bm. Indeed, since N.A;Bm/ �
P.A; Sm/, the points of N.A;Bm/ are precisely the points of P.A; Sm/ on which
the restriction of xdA achieves its minimum value. Since

g P.A; Sm/ D P.A
0; Sn/

and g xdA agrees with xdA0 on P.A0; Sn/, it follows that g N.A;Bm/ is precisely the
set of points ofP.A0; Sn/ on which the restriction of xdA0 achieves its minimum value,
and therefore

g N.A;Bm/ D N.A
0; Bn/:

Statement (2) uses our membership test for atoms (Proposition 3.25). Let x2A,
and observe that x 2 C.p/ for all p 2 N.A;Bm/. Since g is a geometric equivalence
and N.A;Bm/ � P.A; Sm/, we know that

g C.p/ D C.gp/

for all p 2 N.A;Bm/, so gx 2 C.gp/ for all p 2 N.A;Bm/. By statement (1), we
know thatg N.A;Bm/ D N.A0; Bn/, and thereforegx 2 C.q/ for all q 2 N.A0; Bn/.
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Moreover, since xdx agrees with xdA on P.A; Sm/, we see that xdgx D g xdx agrees
with g xdA D xdA0 on P.A0; Sn/, and therefore gx 2 A0 by Proposition 3.25. This
proves that gA � A0, and the reverse inclusion follows from the fact that g�1 is a
geometric equivalence from A0 to A.

For statement (3), let k > 0 and fix any pointp 2 N.A;Bm/. Thenp 2 N.x;Bm/
for all x 2 A, which means that for each x 2 A there exists a geodesic from x0 to x
that goes through p. Since `.p/ D m, it follows that

A \ BmCk D fx 2 A j d.x; p/ D kg:

Moreover, gp 2 N.A0; Bn/ by statement (1), so similarly

A0 \ BnCk D fy 2 A
0
j d.y; gp/ D kg:

Since gA D A0 by statement (2), it follows that g.A \ BmCk/ D A0 \ BnCk .

Lemma 3.30. Letp2� , letp0 be a successor top, and let g2G. If g C.p/DC.gp/,
then gp0 is a successor to gp, and g C.p0/ D C.gp0/.

Proof. Note first that, for any point p 2 � , the set of successors to p is precisely the
set of points in C.p/ that are adjacent to p. Moreover, if p0 is a successor to p, then

C.p0/ D fx 2 C.p/ j d.x; p/ D d.x; p0/C 1g:

Since G acts by isometries, the lemma follows immediately.

If x 2 � and n 2 N, let An.x/ denote the atom of A.Bn/ that contains x. Note
that

A0.x/ � A1.x/ � A2.x/ � � � �

and that An.x/ 2 An.�/ if and only if An.x/ is infinite.
Lemma 3.31. Let x 2 � , let m; n � 1, and let g 2 G. Suppose that Am.x/
and An.gx/ are both infinite, and suppose that g induces a geometric equivalence
from Am�1.x/ to An�1.gx/. Then g induces a geometric equivalence from Am.x/

to An.gx/

Proof. Let y D gx. Since Am.x/ and An.y/ are both infinite, we know from
Proposition 3.5 that `.x/ � m and `.y/ � n. Let X be the set of all successors
of elements of P.x; Sm�1/, and let Y be the set of all successors of elements
of P.y; Sn�1/.

We have g P.x; Sm�1/ D P.y; Sn�1/ as g is a geometric equivalence between
Am�1.x/ and An�1.y/. Also, g C.p/ D C.gp/ for every point p 2 P.x; Sm�1/.
By Lemma 3.30, it follows that gX D Y and g C.p/ D C.gp/ for all p 2 X . In
particular, since P.x; Sm/ � X by Proposition 3.21, we know that g C.p/ D C.gp/
for all p 2 P.x; Sm/.
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Next observe that

N.x;Bm/ � V.x; Bm/ � P.x; Sm/ � X;

and similarly for y. It follows that N.x;Bm/ D N.x;X/ and N.y;Bn/ D N.y; Y /.
Since gx D y and gX D Y , it we conclude that g N.x;Bm/ D N.y;Bn/. But

P.x; Sm/ D fp 2 X j d.p; q/ � 4ı C 2 for all q 2 N.x;Bm/g

by Proposition 3.21, and similarly for y, so g P.x; Sm/ D P.y; Sn/.
Finally, since g xdx D xdy and xdx agrees with xdAm.x/ on P.x; Sm/ and xdy agrees

with xdAn.y/ on P.y; Sn/, it follows that g xdAm.x/ agrees with xdAn.y/ on P.y; Sn/,
and therefore g is a geometric equivalence from Am.x/ to An.y/.

Proof of Proposition 3.27. Let A 2 Am.�/, let A0 2 An.�/, and let g 2 G be a
geometric equivalence from A to A0. We must show that g induces a morphism from
A.�/A to A.�/0A.

Note first that

gA D A0 and g.A \ BmCk/ D A
0
\ BnCk

for each k � 0 by Lemma 3.29. We claim that for k � 0 and each Ak 2 AmCk.A/,
there exists anA0

k
2 AnCk.A

0/ such that g induces a geometric equivalence fromAk
to A0

k
. By Lemma 3.29, it will follow that gAk D A0

k
, which will prove that g

induces a morphism.
We proceed by induction on k. We know the statement holds for k D 0, since

Ak D A and A0
k
D A0 in this case. For k > 0, since Ak is infinite and the union of

the atoms in AnCk.A
0/ is the complement of a finite set in A0, we can choose a point

x 2 Ak such that gx lies in some infinite atomA0
k
2 AnCk.A

0/. Let y D gx, and let

Ak�1 D AmCk�1.x/:

By our induction hypothesis, there exists an atom A0
k�1
2 AnCk�1.A

0/ such that g
induces a geometric equivalence fromAk�1 toA0k�1. By Lemma 3.29, we know that
gAk�1 D A

0
k�1

, so
A0k�1 D AnCk�1.y/:

By Lemma 3.31, we conclude that g induces a geometric equivalence from

AmCk.x/ D Ak to AnCk.y/ D A
0
k;

which completes the induction.

3.6. Proof of rationality. Our goal in this section is to prove Theorem 3.10, i.e. that
the action of G on @A.�/ is rational.

If g 2 G, we define the magnitude of g, denoted jgj, to be the distance from the
base vertex x0 to gx0. For example, if � is the Cayley graph of G, then jgj is the
word length of g. Note that jgj D jg�1j for all g 2 G.
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Proposition 3.32. Let g 2 G with jgj D k, and let A 2 An.�/ for some n � k.
Then there exists a unique A0 2 An�k.�/ so that gA � A0.

Proof. Observe that
j`.gx/ � `.x/j � jgj D k

for all x 2 � . It follows easily that Bn�k � gBn. Since A 2 A.Bn/, we know that
gA 2 A.gBn/, and therefore gA � A0 for some A0 2 A.Bn�k/. This A0 is unique
since the atoms of A.Bn�k/ are disjoint.

Note 3.33. It follows immediately from this proposition that the homeomorphism
of @A.�/ induced by an element g 2 G is Lipschitz with respect to the standard
ultrametric, with Lipschitz constant 2jgj. Indeed, since g�1 is Lipschitz as well, it
follows that the homeomorphism induced by g is biLipschitz.

Proposition 3.32 prompts the following definition.

Definition 3.34. A mapping triple is an ordered triple .g; A;A0/, where

(1) g 2 G,

(2) A 2 An.�/ for some n � jgj, and

(3) A0 is the atom from An�jgj.�/ that contains gA.

By Proposition 3.32, for every g 2 G and every A 2 An.�/ where n � jgj, there
exists a unique A0 2 An�jgj.�/ such that .g; A;A0/ is a mapping triple.

Proposition 3.35. Let .g; A;A0/ be amapping triple, where jgj D k andA 2 An.�/.
Then there exist points p 2 P.A; Sn/ and q 2 P.A0; Sn�k/ so that d.gp; q/ � 2k.

Proof. Fix a point x 2 A, and note that gx 2 A0. Since n � k, we know that
g�1x0 2 Bn. By Proposition 3.16, there exists a geodesic Œg�1x0; x� from g�1x0
to x that goes through a point p 2 V.A;Bn/. Let Œx0; gx� be the image of this
geodesic under g, and let q 2 N.A0; Bn�k/ be the point at which this geodesic
crosses Sn. Note that p 2 P.A; Sn/ and q 2 P.A0; Sn�k/. Since `.p/ D n, we
know that

n � k � `.gp/ � nC k:

Since `.q/ D n � k and gp; q 2 Œx0; gx�, it follows that d.gp; q/ � 2k.

If g 2 G, let Lg W @A.�/! @A.�/ be the homeomorphism induced by g.

Proposition 3.36. Let .g; A1; A01/ and .g; A2; A02/ be mapping triples, and suppose
there exists an h 2 G so that:

(1) h induces a morphism from A01 to A
0
2, and

(2) g�1hg induces a morphism from A1 to A2.

Then Lg has equivalent restrictions at A1 and A2.
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Proof. Let  2 Mor.A01; A02/ and ' 2 Mor.A1; A2/ be the induced morphisms, and
note that  �W @A01 ! @A02 is a restriction of Lh and '�WA1 ! A2 is a restriction
of Lg�1hg . Then the diagram

@A1

Lg

��

'� // @A2

Lg

��
@A01  �

// @A02

commutes sinceLgLg�1hg D LhLg , soLg has equivalent restrictions atA1 andA2.

Proof of Theorem 3.10. Fix an element g 2 G with jgj D k. Given a mapping triple
.g; A;A0/ with A 2 An.�/, define the signature of .g; A;A0/ to be the following
information:
(1) The sets g P.A; Sn/ and P.A0; Sn�k/.
(2) The functions g xdA on g P.A; Sn/ and xdA0 on P.A0; Sn�k/.
(3) The set g C.g�1p/ for each p 2 g P.A; Sn/, and the cone C.q/ for each

q 2 P.A0; Sn�k/.
We say that two mapping triples .g; A1; A01/ and .g; A2; A02/ with A1 2 Am.�/ and
A2 2 An.�/ have equivalent signatures if there exists an h 2 G so that:
(1) hg P.A1; Sm/ D g P.A2; Sn/ and hP.A01; Sm�k/ D P.A02; Sn�k/,
(2) hg xdA1 agrees with g xdA2 on g P.A2; Sn/, and h xdA0

1
agrees with xdA0

2

on P.A02; Sn�k/, and
(3) hg C.g�1p/ D g C.g�1hp/ for all p 2 g P.A1; Sm/ and hC.q/ D C.hq/ for

all q 2 P.A01; Sm�k/.
By Propositions 3.27 and 3.36, if .g; A1; A01/ and .g; A2; A02/ have equivalent
signatures, then Lg has equivalent restrictions at A1 and A2. In particular, h clearly
induces a morphism from A01 to A02 by Proposition 3.27, and it is easy to show using
Proposition 3.27 that g�1hg induces a morphism from A1 to A2.

Finally, it is not hard to see that there are only finitely many equivalence classes
of signatures for a given g 2 G. In particular, each of the sets g P.A; Sn/ and
P.A0; Sn�k/ has diameter at most 8ı C 4, so by Proposition 3.35 the union

g P.A; Sn/ [ P.A
0; Sn�k/

has diameter at most 16ı C 8C 2k. Thus there are only finitely many possible pairs�
g P.A; Sn/; P.A

0; Sn�k/
�

up to the action ofG. Once such a pair is chosen, there are only finitely many possible
choices for parts (2) and (3) of the signature. We conclude that Lg has only finitely
many restrictions, so Lg is rational.
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Figure 8. The atoms of A.B1/.

4. An example

In this sectionwework out a specific example of a tree of atoms and the corresponding
rational homeomorphisms. Let � be the 1-skeleton of order five square tiling of the
hyperbolic plane (see Example 1.12), and fix a vertex x0 of � . LetG be the group of
orientation-preserving isometries of � . We will demonstrate a rational action of G.

4.1. The atoms. We begin by classifying the atoms in � . As in any graph, the first
atom is the whole graph � , which is the only atom of A0.�/, and is the root of the
tree of atoms. We will refer to this atom as having type A.

Figure 8 shows the atoms ofA.B1/. There is one finite atom, namely the singleton
set fx0g, as well as ten infinite atoms, which we have labeled with the digits 0; : : : ; 9.
As suggested by the shapes, there are two types of infinite atoms here:
� Atoms 0, 2, 4, 6, and 8 are bounded by two geodesic rays and a geodesic segment.
These atoms all have the same type, which we will refer to as type B.

� Atoms 1, 3, 5, 7, and 9 are bounded by two geodesic rays. These atoms all have
the same type, which we will refer to as type C.

Thus the root of the tree of atoms has type A, with ten children in A1.�/ of types B
and C:

A

B C B C B C B C B C

Figure 9 shows the distance functions xdA associated with the singleton atom fx0g
and the atoms 0 and 5. In each case, the additive constant has been chosen so that xdA
has a minimum value of 0 on B1.
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Figure 9. Distance functions xdA on B1 for three different atoms from A.B1/.

Figure 10. The atoms of A.B2/.

Of course, the atoms of A.B1/ are subdivided further in A.B2/. Figure 10 shows
the atoms ofA.B2/, with the new subdivisions indicated in blue. As you can see, each
atom of type B from A.B1/ has been subdivided into four atoms in A.B2/, and each
atom of type C from A.B1/ has been subdivided into three atoms in A.B2/. Thus,
A.B2/ has a total of 36 atoms. Of these, only 30 are infinite, and therefore A2.�/

has 30 elements.
Figure 11 shows a close-up of atom 0 from A.B1/, which has type B, as well

as the subdivision of this atom in A.B2/. As the figure suggests, a type B atom is
subdivided into one singleton atom, two atoms of type B, and one atom of type C.
Thus every type B node in the tree of atoms has three children of types B, C, and B:

B

B C B
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0

00

01

02

Figure 11. Subdividing an atom of type B.

5

52

51

50

Figure 12. Subdividing an atom of type C.

Figure 12 shows a close-up of the type C atom in A.B1/ immediately to the left of
the base vertex, as well as its subdivision in A.B2/. As the figure suggests, a type C
atom is subdivided into two atoms of type C and one atom of a new type, which we
refer to as type D. Type D atoms have a “pentagon” shape, and are bounded by two
geodesic rays and two geodesic segments in the hyperbolic plane. Thus every type C
node in the tree of atoms has three children of types C, D, and C:

C

C D C
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Figure 13. (a) The distance function xdA for atom 01. The one for atom 00 is the same except
that the value for the blue vertex changes to 2. (b) The distance function xdA for atom 51. The
one for atom 50 is the same except that the value for the blue vertex changes to 0.

510

Figure 14. Subdividing an atom of type D.

Figure 13 shows the distance functions xdA for the atoms 01 and 51.
Finally, Figure 14 shows the subdivision in A.B3/ of this same atom of type C.

As the picture suggests, the type D child atom is subdivided in the next level into a
singleton atom and an atom of type B. Thus every type D node in the tree of atoms
has exactly one child of type B:

D

B
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A
0;2;4;6;8 //

1;3;5;7;9

��

B

0;2




1

��
C

0;2

JJ 1
// D

0

OO

Figure 15. The type graph for the tree of atoms. Directed edges with multiple labels represent
multiple edges.

The type graph for the full tree of atoms is shown in Figure 15. By Proposition 2.21,
the tree A.�/ is isomorphic to the set of all finite directed paths in this graph starting
at A, and @h� is naturally homeomorphic to the space of all infinite directed paths in
this graph starting at A.
Note 4.1. Not every pair of atoms of the same type in A.�/ are geometrically
equivalent in the sense of Definition 3.26. In particular, since � is not a tree the
hyperbolic constant ı is at least 1, so 2ı C 1 � 3. Then it follows easily from the
definition of proximal points (Definition 3.20) that P.x; Sn/ D Sn whenever n � 3,
and in particular P.A; S1/ D S1 for all A 2 A1.�/ and P.A; S2/ D S2 for all
A 2 A2.�/. Since S1 has five vertices and S2 has fifteen vertices, it follows that no
atom in A1.�/ is geometrically equivalent to an atom in A2.�/, even though both
A1.�/ and A2.�/ contain atoms of types B and C.

4.2. The group. LetG be the group of orientation-preserving isometries of� . Since
we are restricting to orientation-preserving isometries, there is a unique morphism
between any two atoms of the same type, so the tree of atoms is rigid.

The group G has presentation

hr; s
ˇ̌
r5; s2; .rs/4i;

where
(1) r is a counterclockwise rotation by 2�=5 at the base vertex x0, and
(2) s is a rotation by � at the point p shown in Figure 16.
The rational homeomorphism for r is given by the formulas:

r.0ˇ/ D 2ˇ; r.1/ D 3; r.2ˇ/ D 4ˇ; r.3/ D 5; r.4ˇ/ D 6ˇ;

r.5/ D 7; r.6ˇ/ D 8ˇ; r.7/ D 9; r.8ˇ/ D 0ˇ; r.9/ D 1;

where ˇ can be any infinite path in the type graph starting at B, and  can be any
valid infinite path in the type graph starting at C.
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p

Figure 16. The group G is generated by the stabilizer of x0 and a 180ı rotation at the point p.

(a) (b)

Figure 17. Two subdivisions of @h� into atoms.

The formula for s is more complicated. Figure 17(a) shows a subdivision of �
into certain atoms of A.B1/ and A.B2/. From this subdivision, we can see that:

s.0ˇ/ D s0.ˇ/; s.1/ D s1./; s.2ˇ/ D 9f .ˇ/; s.3/ D 92;

s.4ˇ/ D 00ˇ; s.5/ D 01; s.6ˇ/ D 02ˇ; s.7/ D 10;

s.8ˇ/ D 1 xf .ˇ/; s.9/ D s9./;

where ˇ,  , and ı represent any infinite paths in the type graph starting at B, C,
and D, respectively, and

s0.0ˇ/ D 4ˇ; s0.1/ D 5; s0.2ˇ/ D 6ˇ;

s1.0/ D 7; s1.1ı/ D 8h.ı/; s1.2/ D 8g./;

s9.0/ D 2xg./; s9.1ı/ D 2xh.ı/; s9.2/ D 3:
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Figure 17(b) shows a refinement of this subdivision that can be used to deter-
mine f , xf , g, xg, h, and xh:

f .0ˇ/ D 0f .ˇ/; f .1/ D 02; f .2ˇ/ D 10ˇ;

xf .0ˇ/ D 10ˇ; xf .1/ D 20; xf .2ˇ/ D 2 xf .ˇ/;

g.0/ D 1; g.1ı/ D 2h.ı/; g.2/ D 2g./;

xg.0/ D 0xg./; xg.1ı/ D 0xh.ı/; xg.2/ D 1;

h.0ˇ/ D 0ˇ; xh.0ˇ/ D 2ˇ:

Each of the letters s, s0, s1, s9, f , xf , g, xg, h, and xh represents an equivalence class
of atoms on which s has equivalent restrictions, and there are also classes for the
identity functions idB , idC , and idD corresponding to types B, C, and D, respectively.
The atoms corresponding to each restriction type are as follows:

� s: the root atom only,
� s0: atom 0 only,
� s1: atom 1 only,
� s9: atom 9 only,
� f : 20n for any n � 0,
� xf : 12n for any n � 0,
� g: 12n for any n � 0,

� xg: 90n for any n � 0,
� h: 12n1 for any n � 0,
� xh: 90n1 for any n � 0,
� idB : all other type B atoms,
� idC : all other type C atoms,
� idD: all other type D atoms.

References

[1] https://mathoverflow.net/questions/328741
[2] D. Alessandrini, L. Liu, A. Papadopoulos, and W. Su, The horofunction compactification

of Teichmüller spaces of surfaces with boundary, Topology Appl., 208 (2016), 160–191.
Zbl 1343.32008 MR 3506976

[3] W. Ballmann, M. Gromov, and V. Schroeder,Manifolds of nonpositive curvature, Progress
in Mathematics, 61, Birkhäuser Boston, Inc., Boston, MA, 1985. Zbl 0591.53001
MR 823981

[4] L. Bartholdi, V. A. Kaimanovich, and V. Nekrashevych, On amenability of automata
groups, Duke Math. J., 154 (2010), no. 3, 575–598. Zbl 1268.20026 MR 2730578

[5] L. Bartholdi and Z. Šuník, Some solvable automaton groups, Topological and asymptotic
aspects of group theory, 11–29, Contemp. Math., 394, Amer. Math. Soc., Providence, RI,
2006. Zbl 1106.20021 MR 2216703

[6] J. Belk and C. Bleak, Some undecidability results for asynchronous transducers and the
Brin–Thompson group 2V , Trans. Amer. Math. Soc., 369 (2017), no. 5, 3157–3172.
Zbl 1364.20015 MR 3605967

https://mathoverflow.net/questions/328741
https://zbmath.org/?q=an:1343.32008
http://www.ams.org/mathscinet-getitem?mr=3506976
https://zbmath.org/?q=an:0591.53001
http://www.ams.org/mathscinet-getitem?mr=823981
https://zbmath.org/?q=an:1268.20026
http://www.ams.org/mathscinet-getitem?mr=2730578
https://zbmath.org/?q=an:1106.20021
http://www.ams.org/mathscinet-getitem?mr=2216703
https://zbmath.org/?q=an:1364.20015
http://www.ams.org/mathscinet-getitem?mr=3605967


Rational embeddings of hyperbolic groups 181

[7] J. Belk, J. Hyde, and F. Matucci, On the asynchronous rational group,Groups Geom. Dyn.,
13 (2019), no. 4, 1271–1284. Zbl 07154976 MR 4033505

[8] C. Bleak, P. Cameron, Y. Maissel, A. Navas, and F. Olukoya, The further chameleon
groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the
Higman groups Gn;r , submitted. arXiv:1605.09302v2

[9] C. Bleak, P. Cameron, and F. Olukoya, Automorphisms of shift spaces and the Higman-
Thompson groups: the two-sided case, 2020. arXiv:2006.01466

[10] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren
der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999. Zbl 0988.53001
MR 1744486

[11] A. M. Brunner and S. Sidki, The generation of GL.n;Z/ by finite state automata, Internat.
J. Algebra Comput., 8 (1998), no. 1, 127–139. Zbl 0923.20023 MR 1492064

[12] J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups,
Geom. Dedicata, 16 (1984), no. 2, 123–148. Zbl 0606.57003 MR 758901

[13] C. Champetier, Propriétés statistiques des groupes de présentation finie (French), Adv.
Math., 116 (1995), no. 2, 197–262. Zbl 0847.20030 MR 1363765

[14] M. Coornaert and A. Papadopoulos, Symbolic dynamics and hyperbolic groups, Lecture
Notes in Mathematics, 1539, Springer-Verlag, Berlin, 1993. Zbl 0783.58017 MR 1222644

[15] M. Coornaert and A. Papadopoulos, Horofunctions and symbolic dynamics on Gromov
hyperbolic groups, Glasg. Math. J., 43 (2001), no. 3, 425–456. Zbl 1044.20027
MR 1878587

[16] M. Coornaert and A. Papadopoulos, Symbolic coding for the geodesic flow associated to a
word hyperbolic group,Manuscripta Math., 109 (2002), no. 4, 465–492. Zbl 1045.20036
MR 1946714

[17] F. Dal’bo, M. Peigné, and A. Sambusetti, On the horoboundary and the geometry of rays of
negatively curved manifolds, Pacific J. Math., 259 (2012), no. 1, 55–100. Zbl 1260.53068
MR 2988483

[18] M. Develin, Cayley compactifications of abelian groups, Ann. Comb., 6 (2002), no. 3-4,
295–312. Zbl 1021.05045 MR 1980341

[19] S. M. Gersten, Problems on automatic groups, in Algorithms and classification in
combinatorial group theory (Berkeley, CA, 1989), 225–232, Math. Sci. Res. Inst. Publ.,
23, Springer, New York, 1992. Zbl 0781.20022 MR 1230636

[20] E. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov
(Bern, 1988), Progr. Math., 83, Birkhäuser Boston, Boston, MA, 1990. Zbl 0731.20025
MR 1086657

[21] R. I. Grigorčuk, On Burnside’s problem on periodic groups (Russian), Funktsional. Anal.
i Prilozhen., 14 (1980), no. 1, 53–54. Zbl 0595.20029 MR 565099

[22] R. I. Grigorchuk, Solved and unsolved problems around one group, in Infinite groups:
geometric, combinatorial and dynamical aspects, 117–218, Progr. Math., 248, Birkhäuser,
Basel, 2005. Zbl 1165.20021 MR 2195454

[23] R. I. Grigorchuk, P. Linnell, T. Schick, and A. Żuk, On a question of Atiyah, C. R. Acad.
Sci. Paris Sér. I Math., 331 (2000), no. 9, 663–668. Zbl 0969.57022 MR 1797748

https://zbmath.org/?q=an:07154976
http://www.ams.org/mathscinet-getitem?mr=4033505
http://arxiv.org/abs/1605.09302v2
https://arxiv.org/abs/2006.01466
https://zbmath.org/?q=an:0988.53001
http://www.ams.org/mathscinet-getitem?mr=1744486
https://zbmath.org/?q=an:0923.20023
http://www.ams.org/mathscinet-getitem?mr=1492064
https://zbmath.org/?q=an:0606.57003
http://www.ams.org/mathscinet-getitem?mr=758901
https://zbmath.org/?q=an:0847.20030
http://www.ams.org/mathscinet-getitem?mr=1363765
https://zbmath.org/?q=an:0783.58017
http://www.ams.org/mathscinet-getitem?mr=1222644
https://zbmath.org/?q=an:1044.20027
http://www.ams.org/mathscinet-getitem?mr=1878587
https://zbmath.org/?q=an:1045.20036
http://www.ams.org/mathscinet-getitem?mr=1946714
https://zbmath.org/?q=an:1260.53068
http://www.ams.org/mathscinet-getitem?mr=2988483
https://zbmath.org/?q=an:1021.05045
http://www.ams.org/mathscinet-getitem?mr=1980341
https://zbmath.org/?q=an:0781.20022
http://www.ams.org/mathscinet-getitem?mr=1230636
https://zbmath.org/?q=an:0731.20025
http://www.ams.org/mathscinet-getitem?mr=1086657
https://zbmath.org/?q=an:0595.20029
http://www.ams.org/mathscinet-getitem?mr=565099
https://zbmath.org/?q=an:1165.20021
http://www.ams.org/mathscinet-getitem?mr=2195454
https://zbmath.org/?q=an:0969.57022
http://www.ams.org/mathscinet-getitem?mr=1797748


182 J. Belk, C. Bleak and F. Matucci

[24] R. I. Grigorchuk, V. Nekrashevych, and V. Sushchanskiı̆, Automata, dynamical systems,
and groups, Proc. Steklov Inst. Math., (2000), no. 4(231), 128–203. Zbl 1155.37311
MR 1841755

[25] R. I. Grigorchuk and A. Żuk, The lamplighter group as a group generated by a 2-
state automaton, and its spectrum, Geom. Dedicata, 87 (2001), no. 1-3, 209–244.
Zbl 0990.60049 MR 1866850

[26] M. Gromov, Hyperbolic groups, in Essays in group theory, 75–263, Math. Sci. Res. Inst.
Publ., 8, Springer, New York, 1987. Zbl 0634.20015 MR 919829

[27] N. Gupta and S. Sidki, On the Burnside problem for periodic groups,Math. Z., 182 (1983),
no. 3, 385–388. Zbl 0513.20024 MR 696534

[28] D. F. Holt, S. Rees, C. E. Röver, and R. M. Thomas, Groups with context-free co-
word problem, J. London Math. Soc. (2), 71 (2005), no. 3, 643–657. Zbl 1104.20033
MR 2132375

[29] L. Ji and A.-S. Schilling, Toric varieties vs. horofunction compactifications of polyhedral
norms, Enseign. Math., 63 (2017), no. 3-4, 375–401. Zbl 1402.14065 MR 3852176

[30] I. Kapovich and N. Benakli, Boundaries of hyperbolic groups, in Combinatorial and
geometric group theory (New York, 2000/Hoboken, NJ, 2001), 39–93, Contemp. Math.,
296, Amer. Math. Soc., Providence, RI, 2002. Zbl 1044.20028 MR 1921706

[31] I. Kapovich and D. T. Wise, The equivalence of some residual properties of word-
hyperbolic groups, J. Algebra, 223 (2000), no. 2, 562–583. Zbl 0951.20029 MR 1735163

[32] B. P. Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov
shifts, Universitext, Springer-Verlag, Berlin, 1998. Zbl 0892.58020 MR 1484730

[33] T. Klein and A. Nicas, The horofunction boundary of the Heisenberg group, Pacific J.
Math., 242 (2009), no. 2, 299–310. Zbl 1189.53040 MR 2546714

[34] M. Laca, I. Raeburn, J. Ramagge, and M. F. Whittaker, Equilibrium states on operator
algebras associated to self-similar actions of groupoids on graphs, Adv. Math., 331 (2018),
268–325. Zbl 1392.37007 MR 3804678

[35] J. Lehnert and P. Schweitzer, The co-word problem for the Higman–Thompson group
is context-free, Bull. Lond. Math. Soc., 39 (2007), no. 2, 235–241. Zbl 1166.20025
MR 2323454

[36] I. G. Lysionok, Problem 22 of “Problem Session”, in Geometric and Combinatorial
Group Theory (Edinburgh, 1993), 322–325, LMS Lecture Notes Series, 204, Cambridge
University Press, Cambridge, 1995.

[37] H. Miyachi, Extremal length boundary of the Teichmüller space contains non-Busemann
points, Trans. Amer. Math. Soc., 366 (2014), no. 10, 5409–5430. Zbl 1318.32020
MR 3240928

[38] V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117,
American Mathematical Society, Providence, RI, 2005. Zbl 1087.20032 MR 2162164

[39] V. Nekrashevych, Iteratedmonodromy groups, inGroups St Andrews 2009 in Bath. Volume
1, 41–93, London Math. Soc. Lecture Note Ser., 387, Cambridge Univ. Press, Cambridge,
2011. Zbl 1235.37016 MR 2858850

https://zbmath.org/?q=an:1155.37311
http://www.ams.org/mathscinet-getitem?mr=1841755
https://zbmath.org/?q=an:0990.60049
http://www.ams.org/mathscinet-getitem?mr=1866850
https://zbmath.org/?q=an:0634.20015
http://www.ams.org/mathscinet-getitem?mr=919829
https://zbmath.org/?q=an:0513.20024
http://www.ams.org/mathscinet-getitem?mr=696534
https://zbmath.org/?q=an:1104.20033
http://www.ams.org/mathscinet-getitem?mr=2132375
https://zbmath.org/?q=an:1402.14065
http://www.ams.org/mathscinet-getitem?mr=3852176
https://zbmath.org/?q=an:1044.20028
http://www.ams.org/mathscinet-getitem?mr=1921706
https://zbmath.org/?q=an:0951.20029
http://www.ams.org/mathscinet-getitem?mr=1735163
https://zbmath.org/?q=an:0892.58020
http://www.ams.org/mathscinet-getitem?mr=1484730
https://zbmath.org/?q=an:1189.53040
http://www.ams.org/mathscinet-getitem?mr=2546714
https://zbmath.org/?q=an:1392.37007
http://www.ams.org/mathscinet-getitem?mr=3804678
https://zbmath.org/?q=an:1166.20025
http://www.ams.org/mathscinet-getitem?mr=2323454
https://zbmath.org/?q=an:1318.32020
http://www.ams.org/mathscinet-getitem?mr=3240928
https://zbmath.org/?q=an:1087.20032
http://www.ams.org/mathscinet-getitem?mr=2162164
https://zbmath.org/?q=an:1235.37016
http://www.ams.org/mathscinet-getitem?mr=2858850


Rational embeddings of hyperbolic groups 183

[40] V. Nekrashevych and S. Sidki, Automorphisms of the binary tree: state-closed subgroups
and dynamics of 1/2-endomorphisms, in Groups: topological, combinatorial and
arithmetic aspects, 375–404, London Math. Soc. Lecture Note Ser., 311, Cambridge
Univ. Press, Cambridge, 2004. Zbl 1144.20305 MR 2073355

[41] G. Niblo (ed.), Geometric group theory 1991 problem list, in Geometric group theory,
Vol. 1 (Sussex, 1991), 208–212, London Math. Soc. Lecture Note Ser., 181, Cambridge
Univ. Press, Cambridge, 1993. MR 1238528

[42] A. Yu. Ol’shanskiı̆, Almost every group is hyperbolic, Internat. J. Algebra Comput., 2
(1992), no. 1, 1–17. Zbl 0780.17025 MR 1167524

[43] C. Röver, Constructing finitely presented simple groups that contain Grigorchuk groups,
J. Algebra, 220 (1999), no. 1, 284–313. Zbl 0940.20034 MR 1714140

[44] P. V. Silva and B. Steinberg, On a class of automata groups generalizing lamplighter
groups, Internat. J. Algebra Comput., 15 (2005), no. 5-6, 1213–1234. Zbl 1106.20028
MR 2197829

[45] M. Vorobets and Y. Vorobets, On a free group of transformations defined by an automaton,
Geom. Dedicata, 124 (2007), 237–249. Zbl 1183.20024 MR 2318547

[46] C. Walsh, The horofunction boundary of the Hilbert geometry, Adv. Geom., 8 (2008),
no. 4, 503–529. Zbl 1155.53335 MR 2456635

[47] C. Walsh, The action of a nilpotent group on its horofunction boundary has finite orbits,
Groups Geom. Dyn., 5 (2011), no. 1, 189–206. Zbl 1262.20045 MR 2763785

[48] C. Webster and A. Winchester, Boundaries of hyperbolic metric spaces, Pacific J. Math.,
221 (2005), no. 1, 147–158. Zbl 1177.53042 MR 2194149

Received 14 October, 2019

J. Belk, School of Mathematics and Statistics, University of St Andrews,
St Andrews KY16 9SS, UK
E-mail: jmb42@st-andrews.ac.uk

C. Bleak, School of Mathematics and Statistics, University of St Andrews,
St Andrews KY16 9SS, UK
E-mail: collin.bleak@st-andrews.ac.uk
F. Matucci, Dipartimento di Matematica e Applicazioni,
Université degli Studi di Milano-Bicocca, Milan 20125, Italy
E-mail: francesco.matucci@unimib.it

https://zbmath.org/?q=an:1144.20305
http://www.ams.org/mathscinet-getitem?mr=2073355
http://www.ams.org/mathscinet-getitem?mr=1238528
https://zbmath.org/?q=an:0780.17025
http://www.ams.org/mathscinet-getitem?mr=1167524
https://zbmath.org/?q=an:0940.20034
http://www.ams.org/mathscinet-getitem?mr=1714140
https://zbmath.org/?q=an:1106.20028
http://www.ams.org/mathscinet-getitem?mr=2197829
https://zbmath.org/?q=an:1183.20024
http://www.ams.org/mathscinet-getitem?mr=2318547
https://zbmath.org/?q=an:1155.53335
http://www.ams.org/mathscinet-getitem?mr=2456635
https://zbmath.org/?q=an:1262.20045
http://www.ams.org/mathscinet-getitem?mr=2763785
https://zbmath.org/?q=an:1177.53042
http://www.ams.org/mathscinet-getitem?mr=2194149
mailto:jmb42@st-andrews.ac.uk
mailto:collin.bleak@st-andrews.ac.uk
mailto:francesco.matucci@unimib.it

	Background
	The rational group \mathcal R
	Hyperbolic groups
	The horofunction boundary

	Rational groups for self-similar trees
	Self-similar trees
	Rational homeomorphisms
	Rigid structures
	Rigid trees and \mathcal R_2
	Non-branching trees

	Rational actions of hyperbolic groups
	The tree of atoms
	Infinite atoms and the horofunction boundary
	Nearest neighbors and visibility
	A membership test for atoms
	Finitely many types
	Proof of rationality

	An example
	The atoms
	The group

	References

