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Stanley–Reisner rings for symmetric simplicial complexes,
G -semimatroids and Abelian arrangements

Alessio D’Alì and Emanuele Delucchi

Abstract. We extend the notion of face rings of simplicial complexes and simplicial posets to
the case of finite-length (possibly infinite) simplicial posets with a group action. The action
on the complex induces an action on the face ring, and we prove that the ring of invariants is
isomorphic to the face ring of the quotient simplicial poset under a mild condition on the group
action. We also identify a class of actions on simplicial complexes that preserve the homotopical
Cohen–Macaulay property under quotients.
When the acted-upon poset is the independence complex of a semimatroid, the h-polynomial

of the ring of invariants can be read off the Tutte polynomial of the associated group action.
Moreover, in this case an additional condition on the action ensures that the quotient poset is
Cohen–Macaulay in characteristic 0 and every characteristic that does not divide an explicitly
computable number. This implies the same property for the associated Stanley–Reisner rings.
In particular, this holds for independence posets and rings associated to toric, elliptic and, more
generally, .p; q/-arrangements.
As a byproduct, we prove that posets of connected components (also known as posets of

layers) of such arrangements are Cohen–Macaulay with the same condition on the characteristic.
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1. Introduction

1.1. Background. A classical construction associates a commutative ring, called
Stanley–Reisner ring, to every finite simplicial complex. In the wake of work by
R. Stanley, M. Hochster and G. Reisner in the 1970s, a rich research activity has
blossomed around this bridge between combinatorics and topology on the one side
and commutative algebra on the other, leading to major advances such as Stanley’s
proof of the Upper Bound Conjecture [53].
A recurring theme in this research area is to investigate properties of the class

of Stanley–Reisner rings associated to special (combinatorially defined) families
of simplicial complexes. A good example is given by simplicial complexes that

https://creativecommons.org/licenses/by/4.0/
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arise as the complex of independent sets of a matroid (“matroid complexes” [10]).
Such complexes are defined by abstract properties modeled on the family of linearly
independent subsets of a given collection of vectors in a vector space, and the
associated Stanley–Reisner rings have attracted a large body of work. A topic of
particular interest is a sequence of integers related to the Hilbert series of the defining
ideal, namely the coefficients of the ring’s h-polynomial, which is strongly related
to classical polynomial invariants of matroids. For instance, Stanley–Reisner rings
of matroids are Cohen–Macaulay [10], which implies positivity of said coefficients.
The study of the properties of such integer sequences, especially as it relates to
concavity properties, is a topical and active field [2] in which many questions and
conjectures remain open to date.

Simplicial posets are a generalization of posets of faces of simplicial complexes
(see Definition 3.1). Stanley [56] defined a “face ring” associated to any finite
simplicial poset which, in the special case of posets of faces of simplicial complexes,
is isomorphic to the classical Stanley–Reisner ring.

1.2. Motivation and context. The study of symmetries in the form of group actions
on simplicial complexes and on posets has classical roots [15, 17] and came into the
focus of growing interest over the last years. Significant results have been obtained
in the combinatorial study of algebraically defined objects [30,51] as well as in using
symmetries in order to advance in combinatorial problems [41, 45, 52], a special
mention being deserved by the impact of the study of group actions on topological
combinatorics [1, 40].
Moreover, as we will discuss below in more detail, recent developments in the

theory of arrangements lead to the study of structural aspects of group actions
on matroids and posets. A peculiarity of the latter setup is that it does not meet
the standard finiteness (or compactness) assumptions on which most of the extant
literature relies (here, to the above-mentioned references we add some specific
literature on group actions on posets, e.g., [55, 58]).
It is then natural to wonder about the algebraic implications of group actions on

complexes or posets in terms of the associated Stanley–Reisner rings. In fact, this
line of research has been pursued in the literature [32,49,54] but, again, always under
finiteness conditions. In particular, Victor Reiner proved that when a finite group G
acts on a balanced simplicial poset P preserving labels then, for every integer k
not dividing the cardinality of G, if P is Cohen–Macaulay in characteristic k then
so is the quotient poset P=G [49, Theorem 2.3.2]. Here we study the preservation
of the Cohen–Macaulay property in the case of (possibly infinite) groups acting on
(possibly infinite) complexes without balancing conditions.

1.3. Aim and results. We propose an enrichment of the Stanley–Reisner theory by
considering group actions on finite-dimensional (but possibly infinite) simplicial
complexes. In this context we find that the natural framework is that of finite-length
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simplicial posets. We associate a face ring R.P / to each such simplicial poset P
(Definition 5.1) and, given an action of a group G on the poset P , we study the ring
R.P /G of invariants of the induced action on the ring. We characterize precisely the
group actions for which the quotient poset P=G is again simplicial: these turn out to
be the type of actions called translative in [28] (Lemma 3.5). We prove that, given a
translative action of a groupG on a simplicial poset P , the ring of invariantsR.P /G

is isomorphic to the ringR.P=G/ associated to the quotient poset (Theorem 2).
We introduce a class of group actions we call decoupled (a condition strictly

stronger than translativity, see Definition 7.1) and we prove that quotients of posets
of faces of finite-dimensional homotopy Cohen–Macaulay simplicial complexes are
again homotopy Cohen–Macaulay when the action is decoupled and the group is
Abelian (Theorem 3).
Thenwe turn to thematroidal case, generalizing some of the properties of Stanley–

Reisner rings of matroids to the case of semimatroids with group actions. We obtain
that, if P is the poset of independent sets of a semimatroid and the group action is
refined (i.e., satisfies a condition stronger than translativity but that does not imply
decoupling), then the (finite) posetP=G (and the associated ring) is Cohen–Macaulay
in characteristic 0 and every characteristic not dividing an explicitly computable
number ı (Theorem 4). Such restrictions on the characteristic arise because we rely
on a classical lemma by Bredon [15], but they are not artefacts of the proof: see
Example 9.6 and [48, Section 8].
Moreover, the characteristic polynomial ofP=G and the h-polynomial of the ring

R.P=G/ are evaluations of the Tutte polynomial associated to any translative action
on a semimatroid [28, §3.4].
As a byproduct, we prove that the quotient of any rank-finite geometric semilattice

with respect to a translative and refined action is Cohen–Macaulay with the
same conditions on the characteristic as the associated poset of independent sets
(Theorem 5).

1.4. Application: Abelian arrangements. Many aspects of the classical theory of
arrangements of hyperplanes are currently being extended to encompass toric
arrangements and elliptic arrangements. The aim is a general topological and
combinatorial theory of Abelian arrangements. In the following we give a quick
primer in this subject and refer to Section 9 for more.
An Abelian arrangement is a finite set A of level sets of group homomorphisms

Gd ! G, where G is a complex algebraic group of dimension one.
In this context, a main combinatorial invariant is the poset of layers, i.e., the set

C.A/ WD fconn. comp. of \ X j X � Ag (1.1)

of (nonempty) connected components of intersections of subsets of A, partially
ordered by reverse inclusion [25, 61]. There is as of yet little understanding of the



188 A. D’Alì and E. Delucchi

structure of such posets beyond linear arrangements, except from the case of Weyl-
type arrangements where the posets are known to be shellable [27] based on the
explicit description given by Bibby [8].
In the case of hyperplanes (G D C) this poset has the structure of a geometric

lattice, and is equivalent to the arrangement’s matroid data. The case of toric
arrangements (G D C�) has recently been in the focus of a considerable amount
of research that was at first motivated by applications to commutative algebra [6]
and partition functions [25], but recently gained momentum as an independent topic.
Research on topological [21,24,46] and combinatorial [29,35,43] aspects of toric (and
elliptic,G D E, e.g., [7]) arrangements reaffirmed the importance of the posetC.A/.
In particular, the theory of arithmetic matroids [14, 23] was developed as a

combinatorial framework for toric arrangements, but the poset structure is not
described by the arithmeticmatroid (nor by an evenmore refined invariant, thematroid
over Z [31]): Pagaria [47] constructed two toric arrangements with non-isomorphic
posets of layers but isomorphic arithmetic matroid (resp. matroid over Z).
An attempt at a structural characterization of posets of layers of Abelian

arrangements (that distinguishes the examples of [47]) has been carried out in [28]
along the following lines (see Section 9 for a more precise treatment).
The universal covering space of Gd is Cd , and under the universal covering

morphism the arrangementA lifts to a periodic arrangementA� of affine hyperplanes.
An affine arrangement such as A� is customarily described by the associated
semimatroid [4, 28, 33] or, equivalently, by the poset C.A�/ which in this case
is naturally a geometric semilattice. The periodicity group acts naturally on this
poset, and the quotient poset is isomorphic to C.A/ [28, Remark 2.3]. The approach
of [28], then, is to study group actions on semimatroids (or, equivalently, on geometric
semilattices) and to view the quotients of such actions as the natural framework for
an abstract combinatorial theory of posets of layers of Abelian arrangements. In this
context, our results imply the following.

� To every Abelian arrangement is naturally associated a Stanley–Reisner ring
via the periodic semimatroid defined by A�. This ring is Cohen–Macaulay in
characteristic 0 and every characteristic not dividing an explicitly computable
number ıA, and its h-polynomial is an evaluation of the action’s Tutte polynomial.

� The poset of layers of every Abelian arrangement is Cohen–Macaulay in
characteristic 0 and every characteristic not dividing ıA, and its (rational)
homotopy type is determined by the Tutte polynomial of the associated action.

� In the special case of hyperplane arrangements, we recover the classical theory
of matroids and their Stanley–Reisner rings. In the case of (central) toric
arrangements our rings are isomorphic to constructions that appeared in previous
literature [36, 39], and the action’s Tutte polynomial is the arithmetic Tutte
polynomial [43].
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2. Group actions on posets

3. Simplicial structures

4. Topological and
algebraic aspects

5. Stanley-Reisner rings of
finite-length simplicial

posets

6. Induced actions and
invariant rings

7. Group actions and the
Cohen-Macaulay property

8. Semimatroids and
geometric semilattices

9. Abelian arrangements

Figure 1. Dependencies among the sections.

We obtain similar results also in the even broader context given by .p; q/-
arrangements, part of a class of arrangements in Abelian Lie groups studied by
Liu, Tran and Yoshinaga [37].

1.5. Structure of the paper. Section 2 has the twofold aimof introducing somebasic
material on group actions on posets and presenting an investigation of translative
(Section 2.2) and refined (Section 2.3) group actions. The technical lemmas proved
therein are the stepping stone towards our constructions.
Basics on complexes and posets are treated in Section 3, while some background

on topological and algebraic aspects is recalled in Section 4.
In Section 5 we define Stanley–Reisner rings for general finite-length simplicial

posets and prove that we recover the classical theory in the case of trivial actions
on finite posets. The naturality of translative actions with respect to taking invariant
rings, resp. poset quotients is discussed in Section 6.
Section 7 presents our result about preservation of homotopical Cohen–

Macaulayness under decoupled actions.
We then turn to the matroidal case in Section 8, where we introduce refined group

actions on (semi)matroids and prove our results on the Cohen–Macaulay property
for quotients of posets of independent sets and of flats. The application to the case
of Abelian arrangements and .p; q/-arrangements is discussed in Section 9, after a
quick review of the context.
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2. Group actions on posets

This section is devoted to recalling some basics about posets and laying some
groundwork for the rest of the article. As a reference, we can point to the book [3]
for a treatment of finite-length posets as well as the standard reference (for the finite
case) by Stanley [57].

2.1. Generalities on posets. A partially ordered set, for short poset, is a setP with a
partial order relation� (i.e., a reflexive, antisymmetric and transitive binary relation).
As usual, x < y means x � y; x ¤ y. We write x <� y if x < y and x � z < y

implies z D x (in this case we say that “y covers x”). We often only mention P
when the order relation is understood. Wewrite�P instead of�when clarification is
needed. A morphism of posets is an order-preserving function; it is an isomorphism
if it has an order-preserving inverse.

Example 2.1. Let n 2 N and let Bn denote the poset of all subsets of f1; 2; : : : ; ng
partially ordered by inclusion. A Boolean algebra on n elements is any poset
isomorphic to Bn.

Let Aut.P / denote the set of automorphisms of P , i.e., of all isomorphisms
from P to itself; Aut.P / is a group with respect to composition of functions.

Definition 2.2. An action G ˚ P of a group G on a poset P is a group
homomorphism G ! Aut.P /. As is customary, we write gp for the image of
any p 2 P under the automorphism associated to g 2 G.
We define the quotient P=G to be the set of all orbits of elements of P with a

binary relation Gp � Gq if gp � q for some g 2 G.

Remark 2.3. (i) The binary relation defined on P=G is always reflexive and
transitive, but in general it might fail to be antisymmetric.

(ii) If P=G is a poset then the canonical “quotient” map P ! P=G, p 7! Gp is a
well-defined order-preserving map.

A chain in a poset P is any totally ordered subset X � P . The length of a
chain X is the cardinal number jX j � 1. The length of the poset P is the maximum
length of a chain in P . The length of P is denoted `.P / and in general is allowed to
be infinite. The poset is called of finite length if `.P / <1. If all maximal chains of
a finite-length poset P have the same length, we call P pure.

Lemma 2.4. Let P be a finite-length poset. Then, for every action G ˚ P the set
P=G with the binary relation of Definition 2.2 is a partially ordered set. Moreover,
if P is pure then so is P=G.

Proof. We prove the first claim by contraposition: as noted in Remark 2.3 (i), the only
way in which P=G can fail to be a poset is that there are p; q 2 P and g; h 2 G such
that gp � q and hq � p but Gp ¤ Gq. If gp D q or hq D p then Gp D Gq, thus
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it must be gp < q and hq < p. But then, : : : g�1q > p > hq > hgp > hghq : : :

is an infinite chain in P . For the second claim, notice that for every maximal chain
� WD fGpigi2I in P=G we can choose gi 2 G so that gipi < gjpj whenever
Gpi < Gpj , for all i; j 2 I . Thus, ! WD fgipigi2I is a chain in P of the same
length as fGpigi2I . For every p 2 P , if ! ] fpg is a chain in P then�] fGpg is a
chain in P=G. Therefore, maximality of � implies maximality of !, and so purity
of P implies purity of P=G.

Given a poset P and an element x 2 P let P�x WD fp 2 P j p � xg and
consider it as a poset with the partial order induced from P . Given A � P let
P�A WD

T
a2A P�a be the set of lower bounds ofA. We defineP�x andP�A, the set

of upper bounds, analogously. A (lower) order ideal of a poset P is a subset a � P
such that x 2 a and y � x implies y 2 a. Examples of lower order ideals include
subsets of the type P�x , which we call principal lower order ideals (generated by x).
The lower order ideal generated byA � P isPjA WD

S
a2A P�x . Upper order ideals,

resp. principal upper order ideals, are defined accordingly.
The (closed) interval between two elementsx; y 2 P is the set Œx; y� WDP�x\P�y

with the induced partial order. The corresponding open interval is .x; y/ WD
Œx; y� n fx; yg.
If a poset P has a unique minimal element, this element is commonly denoted

by y0. Then fy0g D P�P and we say that P is bounded below. Analogously, P is
bounded above if it has a unique maximal element, usually denoted by y1. A poset
is called bounded if it is bounded below and above. We will often have to modify a
poset by adding or removing extremal elements, and thus we introduce the following
notation.

Notation 2.5. Given a bounded-below poset P ,
� xP WD P n fy0g denotes the poset obtained by removing the minimal element;

�
xxP denotes the poset obtained from by removing both y0 and y1 (if the latter exists).

Moreover, we will denote by A.P / the set of atoms of P , i.e., all p 2 P with y0 <� p.

Definition 2.6. We call a bounded-below poset graded if it possesses a rank
function, i.e., a function rkWP ! N such that rk.y0/ D 0 and rk.y/ D rk.x/ C 1
whenever x <� y. If such a rank function exists, then it is uniquely determined by
rk.x/ D `.P�x/.

To every graded, bounded-below poset P of finite length d is associated a char-
acteristic polynomial

�P .t/ WD
X
x2P

�P .y0; x/t
d�rk.x/;

where �P denotes the Möbius function of P , see [57, §3.7].
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Lemma 2.7. Let P be a graded poset (possibly of infinite length). Then, for every
action G ˚ P the set P=G with the binary relation of Definition 2.2 is a partially
ordered set.

Proof. Automorphisms of graded posets preserve the rank of elements. IfP=G were
not a poset, then, as in the proof of Lemma 2.3, we would find elements p; q 2 P
and g; h 2 G with gp < q < h�1p, in particular hgp < p, implying that the rank
of hgp is strictly smaller than that of p – a contradiction.

2.2. Translative actions. We introduce a class of actions on posets that has been
studied in [28] as a natural abstraction of the action induced by linear translations on
the poset of intersections of a periodic hyperplane arrangement, whence the name
(see Example 2.9 below). We refer to Section 9 for a more precise discussion of this
context.

Definition 2.8. An actionG ˚ P is called translative if, for everyp 2 P and g 2 G,
whenever the set fp; gpg has an upper bound (i.e., if P�fp;gpg ¤ ;) then p D gp.

Example 2.9. If A is any set of affine subspaces of a vector space and G is a group
of translations that permutes the elements of A, then the induced action of G on the
poset C.A/ (defined as in Equation (1.1)) is translative. In order to see this, consider
an affine subspace X 2 C.A/ and a translation g 2 G such that the set fX; gXg
is bounded above. This means that the intersection of the subspaces X and gX is
nonempty – but since translated subspaces are parallel, it must be X D gX .

Remark 2.10. If G ˚ P is a translative action, then

(i) the intersection of any G-orbit X 2 P=G with any lower interval P�p consists
of at most one element (this is a rephrasing of Definition 2.8);

(ii) if y � x, then stab.y/ � stab.x/ (since g 2 stab.y/ implies x; gx � y).

Remark 2.11. In particular, translative actions are related to actions on scwols in
the sense of [16, Chapter III.C, Definition 1.11] as follows. A translative action on a
finite length poset P induces an action on the scwol defined on the set P by putting
an arrow x ! y whenever x � y.

Lemma 2.12. Let G be a group acting translatively on a poset P . Then P=G is a
poset.

Proof. We have to check antisymmetry of the relation from Definition 2.2. For all
p; q 2 P , if Gp � Gq then p � gq for some g 2 G. Similarly, Gq � Gp

implies q � hp for some h 2 G. But then p � gq � ghp, and so the set fp; ghpg
is bounded above (by ghp). By translativity we have p D ghp and in particular
p D gq, implying Gp D Gq.
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Lemma 2.13. Let G be a group acting translatively on a poset P . Then, for every
p 2 P the restriction

'pWP�p ! .P=G/�Gp

of the quotient map is an isomorphism of posets.

Proof. By Remark 2.3 the function 'p is well-defined and order-preserving. The
definition of the ordering among orbits implies that every X � Gp contains a
representative x 2 X , x � p, and this representative is unique by Remark 2.10.
Then, the function

 W .P=G/�Gp ! P�p; X 7! X \ P�p

is well-defined. It is enough to show that  is an order-preserving inverse to 'p .
To see that  is order-preserving consider X � Y � Gp in P=G and notice that
X D G .X/ and Y D G .Y /. Then, X � Y implies that there is g 2 G such that
g .X/ �  .Y /. In particular, g .X/ � p, and thus with Remark 2.10 we have
g .X/ D  .X/: we conclude  .X/ �  .Y / as required.
We are left with proving that  and 'p are inverses. For every X 2 .P=G/�Gp

we have 'p ı  .X/ D G .X/ D X , thus 'p ı  D id.P=G/�Gp . Moreover, for
every q � p we have Gq \ P�p � fqg and by Remark 2:10 this inclusion is an
equality. Hence, we compute  ı 'p.q/ D  .Gq/ D q. Thus,  ı 'p D idP�p as
required.

Lemma 2.14. Let P be a poset and consider a translative action G ˚ P . Let
f WP ! P=G denote the quotient map as above. Then for every X 2 P=G

(i) f �1..P=G/�X / D
a

x2f �1.X/

P�x .

Moreover, for every x 2 P the following hold.
(ii) There is an isomorphism of posets

.P=G/�Gx ' P�x= stab.x/

and the action stab.x/ ˚ P�x is translative.
(iii) If stab.x/ is normal in G we can consider the group H WD G= stab.x/. Then,

H acts translatively on PjGx D f �1..P=G/�Gx/, and

.P=G/�Gx ' PjGx=H:

Proof. For part (i) we only need to show that the union on the right-hand side
is disjoint, and this follows immediately by translativity (see Remark 2.10). For
part (ii) write X D Gx and compare the definitions:

P�x=stab.x/ D fstab.x/y j y �P xg; .P=G/�X D fGy j y �P gx for some gg
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Now consider the map

P�x=stab.x/! .P=G/�X ; stab.x/y 7! Gy:

It is clearly well-defined and order-preserving. We will provide an order-preserving
inverse. Consider Y 2 .P=G/�X . By definition, there is y 2 Y such that y �P x.
By part (i) this y is unique up to the action of stab.x/. Thus the function

.P=G/�X ! P�x=stab.x/; Y 7! stab.x/y

is well-defined. A straightforward check proves that this function is also order-
preserving and it is indeed inverse to the previous. Translativity of stab.x/ ˚ P�x
follows from translativity of G ˚ P .
Let us now consider part (iii). By definition of the quotient poset, every Y 2

.P=G/�Gx is of the form Y D GyY for some yY � x. Translativity of G ˚ P

implies uniqueness of such a yY , thus we have defined an order-preserving map

'W .P=G/jGx ! P�Gx=H; Y 7! HyY :

A straightforward check shows that the obvious order-preserving map

 WPjGx=H ! .P=G/�Gx; Hy 7! Gy

is inverse to '. An easy check of the definition verifies the translativity claim and
concludes the proof.

We conclude with a remark that will allow us to “split” actions of Abelian groups.

Lemma 2.15. Let G be an Abelian group acting on a poset P . Then, for every
subgroup H of G,

(a) G=H acts on P=H , and .P=H/=.G=H/ D P=G;

(b) If the action G ˚ P is translative, then so is the action of G=H on P=H .

Proof. (a) ThatG=H acts onP=H is easy to check, using abelianity ofG. Moreover,
the orbit of any Hp 2 P=H under G=H is f.g CH/ � hp j h 2 H;g 2 Gg D Gp,
the orbit of p under G.

(b) If Hy � .g CH/ �Hx and Hy � Hx for some x; y 2 P and some g 2 G,
then we can choose elements h; h0 2 H with hx � y and .h0C g/x � y, and both x
and .h0�hCg/x are below .�h/y in P , whence .h0�hCg/x D x by translativity
of G ˚ P and thus .gCH/Hx D Hx, proving translativity of the action of G=H .
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In P=H : Hy

Hx .g CH/Hy

In P : y

hx .h0 C g/y

.�h/
.�h/y

x .h0 � hC g/y

Figure 2. Figure for the proof of Lemma 2.15 (b).

2.3. Refined actions. Let P be a graded poset of (finite) length d , and let G be a
finitely generated free Abelian group. Suppose thatG acts on P so that there is some
k 2 N satisfying

for all x 2 P , stab.x/ is a direct summand of G of rank k.d � rk.x//, (?)

where rk is the poset’s rank function (see Definition 2.6).
Remark 2.16. (i) SinceG is a finitely generated free Abelian group, the condition

for a subgroup H of G to be a direct summand of G is equivalent to H being
a pure subgroup, meaning that G=H has no torsion elements (equivalently,
nh 2 H implies h 2 H for every h 2 G and every n > 0). See [22, §16A].

(ii) For every x 2 P of maximal rank, (?) implies stab.x/ D f0g.
(iii) If P is bounded-below, then stab.y0/ D G since the action is rank-preserving,

and so (?) implies that G ' Zkd .
Definition 2.17 (Refined actions). We call a group action on a graded posetP refined
if it is translative and satisfies (?) for some k 2 N. If wewish to specify the number k,
we will call the action k-refined.
Lemma 2.18. Suppose that the action of G on P is k-refined for some k 2 N.

(i) For every x 2 P the action of the group stab.x/ on P�x is k-refined.

(ii) For every x 2 P the action of the group G= stab.x/ on PjGx is k-refined.

Proof. ByLemma2.14weknow that both actions stab.x/˚P�x andG=stab.x/˚PjGx
are translative. Thus we only have to check condition (?).
We start with (i). First, notice that P�x is graded of length d 0 WD d � rk.x/.

Call rk�x the rank function of P�x . Let G0 WD stab.x/ and consider y 2 P�x .
By Remark 2.10 (ii), translativity of the action implies that stabG.y/ � G0. Hence
stabG0.y/ D stabG.y/ and, by assumption, this group has rank

k.d � rk.y// D k.d � rk�x.y/ � rk.x// D k.d 0 � rk�x.y//;

as required. Moreover, recall that G0 is a direct summand of G, say G D G0 ˚H .
In particular, G0 is free Abelian. Finally, every torsion element in

G0= stabG0.y/ D stabG.x/= stabG.y/
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is a torsion element in

G= stabG.y/ D .G0 ˚H/= stabG.y/ D G0= stabG0.y/˚H:

Since by assumption stabG.y/ is pure inG, we conclude that stabG0.y/ is pure inG0.
Now let us turn to (ii). Notice that PjGx is graded of length d 00 WD rk.x/, and

its rank function rkjGx is the restriction of the rank function rk of P . Since the
original action satisfies (?) we can write G D H ˚ stab.x/ for some subgroup H ,
so G= stab.x/ is free Abelian. Write from now K WD G= stab.x/, fix y 2 PjGx
and consider stabK.y/. By definition there is g 2 G with gx � y. Hence, by
commutativity of G and with Remark 2.10 (ii),

stabG.x/ D stabG.gx/ � stabG.y/:

Thus,
stabK.y/ D stabG.y/= stabG.x/: (�)

From this we can prove purity of stabK.y/ as a subgroup ofK. Apply first the Snake
Lemma to get

K

stabK.y/
'

G

stabG.y/
and then note that the group on the right-hand side is torsion-free by assumption.
Moreover, using Equation (�) and property (?) for G ˚ P we can compute the rank
of stabK.y/ to be

.d � rk.y// � .d � rk.x// D rk.x/ � rk.y/ D d 00 � rkjGx.y/;

as required.

3. Simplicial structures

3.1. Simplicial posets.
Definition 3.1 (Compare [57]). A finite-length, countable posetP is called simplicial
if it has a unique minimal element, and for all p 2 P the lower interval P�p is a
Boolean algebra.

Remark 3.2. Every simplicial poset is graded in the sense of Definition 2.6.
In particular, if P is a simplicial poset and p 2 P , then rk.p/ equals the
number of elements of the Boolean algebra P�p , i.e., P�p is isomorphic to Brk.p/
(cf. Example 2.1).
Definition 3.3. We also recall from [56] the definition of the f -vector of a finite
simplicial poset P of length d ,

f .P / WD .f�1.P /; : : : ; fd�1.P //; where fi .P / WD jfx 2 P j rk.x/ D i C 1gj;
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;

a b c

`1 `3 `2 `4

T1 T2

Figure 3. A finite simplicial poset P that is not the poset of faces of a simplicial complex.

and of the associated h-polynomial

hP .t/ WD t
d

dX
iD0

fi�1.P /

�
1 � t

t

�d�i
:

Remark 3.4. The h- and the characteristic polynomial of a simplicial poset P are
related as follows:

�P .t/ D

dX
iD0

fi�1.P /.�1/
i td�i D .t � 1/dhP

�
1

1 � t

�
:

This follows using the fact that for every element x of rank r in a simplicial poset P
the Möbius function satisfies �P .y0; x/ D .�1/r , see [57, Example 3.8.3].
The following lemma expresses the fact that focussing on simplicial posets is

natural when considering translative group actions.
Lemma 3.5. Let G be a group acting on a simplicial poset P . Then P=G is a
simplicial poset if and only if the action is translative.

Proof. That quotients of simplicial posets by translative actions are simplicial is an
immediate consequence of Lemma 2.7 and Lemma 2.13.
For the reverse implication, consider a group G acting by automorphisms on

a poset P and suppose that P=G is a simplicial poset. Given y 2 P , since
automorphisms preserve poset rank, we know that the rank of y in P equals the
rank of Gy in P=G. Simpliciality of P and P=G then implies that

jP�y j D j.P=G/�Gy j:

By way of contradiction suppose now that the action is not translative. This
means that we can choose y so that there are x 2 P , g 2 G with x < y, gx < y and
gx ¤ x. In particular, the quotient map P�y ! .P=G/�Gy is not injective. Since
this map is surjective by definition, we conclude

jP�y j > j.P=G/�Gy j;

a contradiction.
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3.2. Simplicial complexes. Let V be a set. An abstract simplicial complex on the
vertex set V is a family † of finite subsets of V that is closed under taking subsets
(i.e., � 2 † and � � � implies � 2 †). We will assume that every one-element
subset of V is in †.
Example 3.6. To every finite-length poset P is canonically associated a simplicial
complex �.P /, called the order complex of P . The set of vertices of �.P / is the
set P and a subset of P defines a simplex if and only if it is totally ordered.
Elements of † are called faces (or simplices), and every face � 2 † has a

dimension dim � WD j� j � 1. The dimension of † is then the maximum of the
dimensions of its faces: this can be an infinite cardinal, and we call † finite-
dimensional if its dimension is finite. It is customary to call † pure (or pure-
dimensional) if all maximal faces of † have the same dimension.
The set † partially ordered by inclusion is a simplicial poset P†, graded by

cardinality of its elements. The poset P† is pure if the complex † is. The atoms
of P† correspond to the single-element subsets of V . Every actionG ˚ P† induces
an action on V and, vice versa, the action on the whole poset is determined by the
action on V .
Remark 3.7. Given a translative action G ˚ P†, for every x 2 P† we have

stab.x/ D
\
v2x

stab.v/:

(In fact, translativity implies stab.x/ � stab.v/ for every v 2 x, see Remark 2.10 (ii).
Since † is a simplicial complex, every g 2

T
v2x stab.v/ fixes x because it fixes all

its vertices.)
In particular, from Remark 3.7 we conclude that for every translative action

G ˚ P† the associated action on† satisfies Bredon’s condition (A), see [15, §III.1].
Remark 3.8. Let G ˚ † be a group action on a simplicial complex. In general, the
set of orbits of simplices does not have the structure of a simplicial complex, but only
a natural partial order P†=G. If this partially ordered set is in fact of the form P†0
for some simplicial complex †0, then we call †0 the quotient of † and write †=G.
Lemma 3.9. Let G ˚ P be a translative group action on a finite-length simplicial
poset. Then the induced action on�.P / is regular in the sense of Bredon [15, §III.1].
In particular, there is an isomorphism of simplicial complexes�.P /=G ' �.P=G/.

Proof. The first part of the claim is based on the following property:

if both p1 < p2 < � � � < pk and g1p1 < g2p2 < � � � < gkpk
are simplices of�.P / then there is someg 2 G withgpi D gipi
for all i .

(#G)

We prove this for translative group actions by induction on k following [15,
Proposition 1.1]. The claim is trivial for k D 1. Let then k > 1, by induction
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hypothesis we can assume that there is g 2 G with gpi D gipi for all i < k. This
means that

p1 < p2 < � � � < pk�1 < g
�1gkpk :

Then both pk�1 and g�1gkpk�1 are below g�1gkpk , thus by translativity

g�1gkpk�1 D pk�1:

Then g�1gk fixes all of p1 < � � � < pk�1, and therefore gipi D gpi D gkpi for
all i < k. Then, gk is the desired element with gkpi D gipi for all i � k. Now
G ˚ �.P / is regular if (#H ) holds for the action of every subgroup H of G. But
the action of every subgroup of a group acting translatively is also translative, thus
the first part of the claim is proved.
Now for the second part of the claim notice first that regularity of an action implies

that the quotient simplicial complex is well-defined [15, p. 117]. Consider the natural
order-preserving map

P�.P/=G ! P�.P=G/; Gfp1 < � � � < pkg 7! Gp1 < � � � < Gpk :

Moreover, given Gp1 < � � � < Gpk in P�.P=G/ we can choose representatives of the
orbits g1p1 < g2p2 < � � � < gkpk and, with (#G), we find g 2 G with gpi D gipi
for all i . Hence,

fGp1; : : : ; Gpkg D Gfp1; : : : ; pkg

and the (order-preserving) map

P�.P=G/ ! P�.P/=G; Gp1 < � � � < Gpk 7! G.p1 < � � � < pk/

is well-defined and inverse to the previous one, giving an isomorphism of posets
P�.P/=G ' P�.P=G/. In particular, since �.P=G/ is by definition a simplicial
complex, the quotient simplicial complex �.P /=G is well-defined and isomorphic
to �.P=G/.

Remark 3.10. Notice that Bredon’s definition of quotient simplicial complex agrees
with ours in the sense that P†=G D P†=G whenever the action is regular. Therefore,
the previous lemma is a slight extension of the discussion in [15, p. 117].

Remark 3.11. Given � 2 P†, then the poset P�� is again the poset of faces of a
simplicial complex. More precisely, consider the set V 0 WD f� 0 2 P† j � <� � 0g.
Then, P�x ' P†0 , where †0 D fX � V 0 j [X 2 †g, which is isomorphic to the
link of x in †. (Recall, e.g., from [11, §9.9], that the link of a face � in a simplicial
complex† is the simplicial complex lk.�/ WD f� 2 † j � \� D ; and � [� 2 †g.)
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4. Topological and algebraic aspects

4.1. Topology. Every abstract simplicial complex as defined in the previous section
has a geometric realization [44, Chapter 1, §2]which is unique up to homeomorphism.
Hence, every abstract simplicial complex has a well-defined homotopy type.
Moreover, to every partially ordered setP we can associate the abstract simplicial

complex of all finite chains in P . This is called the order complex of P (notice that
its dimension equals the length of P ). Thus a well-defined homotopy type can be
associated to every partially ordered set. Order-preserving maps induce simplicial
maps of order complexes and, thus, continuous maps between geometric realizations.
When we will discuss topological attributes of a poset we will always think of them
as referred to the order complex. For instance, with Hi .P /, �i .P / etc. we will
mean the homology or homotopy groups of the order complex. For a more careful
introduction and a broader account of the scope of combinatorial algebraic topology
see, e.g., [11, 34].

4.1.1. Connectivity. Given an integer t 2 N we call a simplicial complex †
t -connected if it is nonempty, connected and the homotopy groups �i .†/ are trivial
for all i D 1; : : : ; t . Analogously we call † t -acyclic over a ring R if the reduced
homology zHi .†;R/ is trivial for i D 0; : : : ; t . We extend these definition by saying
any nonempty P to be “.�1/-acyclic” and “.�1/-connected”.
If a d -dimensional complex † is .d � 1/-connected or .d � 1/-acyclic, then we

will say that it is “well-connected” or “acyclic through codimension 1”.
Remark 4.1 (On shellability). A simplicial complex † is called shellable if there
exists a well-ordering � on its set M of maximal simplices so that for all � 2
Mnmin�M, the intersection of � with the subcomplex†�� induced by the simplices
inM�� is a pure simplicial complex of dimension dim � � 1.
An alternative, operationally advantageous characterization is the following: for

all m1; m2 2 M such that m1 � m2, there is m3 2 M with m3 � m2 and x 2 m2
such that m1 \m2 � m3 \m2 D m2 n fxg, see [12, Lemma 2.3].
If a pure simplicial complex † of dimension d is shellable, then it has the

homotopy type of a wedge of .d � 1/-dimensional spheres, and thus it is well-
connected (see [12, Theorem 4.1]).
We state for later reference the following lemma, summarizing results by Mirzaii

and van der Kallen and by Björner, Wachs and Welker.
Lemma 4.2 (cf. [42, Theorem 3.8] and [13, Corollary 3.2]). Let f WP ! Q be a
poset map. Fix t � 0 and suppose that for all q 2 Q
(1) Q>q is .t � `.Q<q/ � 2/-connected, and
(2) the fiber f �1.Q�q/ is `.Q<q/-connected.
Then the homotopy groups of P and Q agree up to (and including) degree t . In
particular, P is t -connected if and only if Q is t -connected.
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The same holds, whenP andQ are finite, replacing t -connectivity by t -acyclicity
over any given field k.

Remark 4.3. Suppose that P and Q are graded posets of the same length d , Q is
pure and f is rank-preserving. Then Lemma 4.2 with t D d � 1 can be stated as
follows. Suppose that, for all q 2 Q, (1) Q>q is well-connected and (2) f �1.Q�q/
is well-connected. Then Q is well-connected if and only if P is. In order to see that
this claim reduces to Lemma 4.2 under the stated conditions, notice that

.t � `.Q<q/ � 2/ D .d � `.Q<q/ � 3/ D .`.Q>q/ � 1/

(the last equality uses purity ofQ) and that

`.Q<q/ D `.Q�q/ � 1 D `.f
�1.Q�q// � 1

(the last equality holding since f is rank-preserving).

4.1.2. Cohen–Macaulay complexes and posets. We will be concerned with a
well-known property of simplicial complexes with strong commutative-algebraic
implications.

Definition 4.4. We will call a simplicial complex † of dimension d homotopy
Cohen–Macaulay if for every face � 2 † (including the case � D ;) the link lk.�/
of � in † is .dim.lk.�// � 1/-connected. For any given ring of coefficients R, we
call † “Cohen–Macaulay over R” if lk.�/ is .dim.lk.�// � 1/-acyclic over R. For
every k 2 N, we will say

“† is CM.k/”

to signify that † is Cohen–Macaulay over every ring whose characteristic is either 0
or does not divide k. As usual, we can define the Cohen–Macaulay properties and
notations for any poset P by reference to the associated order complex �.P /.

Remark 4.5. We recall from [11, §11.9] the following characterization of Cohen–
Macaulay posets. LetP be a poset of finite length, and denote by yP the poset obtained
from P by adding a unique minimal element if P is not bounded below and a unique
maximal element if P is not bounded above. Then, P is homotopy Cohen–Macaulay
(resp. Cohen–Macaulay in a given characteristic k) if and only if every open interval
.x; y/ � yP is .`.x; y/ � 1/-connected (resp. .`.x; y/ � 1/-acyclic).

4.1.3. Euler characteristic. As a last piece of preparation let us consider Euler
characteristics of posets. We let �.P / denote the reduced Euler characteristic of
the order complex of P , which can be expressed for instance by the alternating sumP
i�0.�1/

i dim zHi .�.P /;Q/ of the dimensions of the rational homology groups
of �.P /. (From this, the standard Euler characteristic an be recovered by adding 1,
see [57].) We give for completeness a proof of the following elementary lemma.
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Lemma 4.6. Let P be a bounded-below poset. Then

�. xP / D ��P .1/:

If P is also bounded above, then

�. xxP / D �P .0/:

Proof. Key is the following interpretation of the Möbius function of a bounded
poset P known as “Hall’s theorem” [57, Proposition 3.8.5]:

�P .y0; y1/ D �.
xxP /: (4.1)

Now, if P is bounded below let PC denote the poset P with a unique maximal
element y1 adjoined (regardless of whether P already has a unique maximal element
or not). Then,

�. xP / D �.
SSPC/ D �PC.y0; y1/:

On the other hand, by definition of the Möbius function [57, Chapter 3, §7]

�PC.y0; y1/ D �
X
y0�x<y1

�PC.y0; x/ D �
X
x2P

�P .y0; x/ D ��P .1/:

We conclude that �. xP / D ��P .1/ when P is bounded below.
If P is bounded above and below, from Equation (4.1) follows immediately that

�P .0/ D �P .y0; y1/ D �.
xxP /:

4.2. Algebra. Given a finite simplicial complex † and a field k, consider the poly-
nomial ring kŒxv j v 2 V � whose variables are indexed by vertices of †. Therein
define the ideal

I† WD

�Y
v2�

xv j � 62 †

�
generated by all monomials corresponding to non-faces of †.
Definition 4.7. The Stanley–Reisner ring of a finite simplicial complex † is the
quotient

R.†/ WD kŒxv j v 2 V �=I†

Remark 4.8. One of the basic facts about Stanley–Reisner rings is that the Cohen–
Macaulay property for† (seeDefinition 4.4) implies the (algebraic) Cohen–Macaulay
property for the ring R.†/ over every field. Moreover, † is Cohen–Macaulay in
a given characteristic k if and only if R.†/ is (algebraically) Cohen–Macaulay in
characteristic k. See [50] for this algebraic counterpart of the Cohen–Macaulay
property.
Remark 4.9. Stanley defined an analogous ring associated to every finite simplicial
poset. We will review this definition in Section 5.2.
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`3
T2
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`3

b c

b `4 c

Figure 4. The poset X.P / associated with the simplicial poset P from Figure 3 in Section 3.1.
Since each order ideal of P of the form d�e is the poset of faces of a simplicial complex,
we use here such (labeled) simplicial complexes for visualization purposes. For instance,
dfT1; T2ge D P6T1 \ P6T2 is represented above by the empty triangle with vertices fa; b; cg
and edges f`1; `2; `3g, whereas dfT1; `4ge D dfT2; `4ge D dfT1; T2; `4ge is represented by
the disconnected simplicial complex with two points b and c.

5. Stanley–Reisner rings of finite-length simplicial posets

5.1. The definition. Throughout the section,P will be a simplicial poset. Letmax.P /
denote the set of maximal elements ofP . Given a nonempty collection � � max.P /,
we denote by d�e the order ideal of P given by

T
t2� P6t . Note that d�e is the poset

of faces of a simplicial complex. The associated Stanley–Reisner ring will be denoted
by Rd�e. When d�e D fy0g, one has that Rd�e D k. For any set bounded above inside
a given d�e, the join in d�e is well-defined.
Following Yuzvinsky [60], we call X.P / the set

fd�e j ; ¤ � � max.P /g

of all (lower) order ideals d�e � P coming from nonempty collections � � max.P /,
with the partial order given by

d�e 6X.P/ d� 0e if and only if d�e � d� 0e:

Any poset can be made into a topological space by considering the Alexandrov
topology, where the open sets are the upper sets of the poset. Any sheaf (say, of
commutative rings) on a poset is then completely determined by the assignment of
a covariant functor from the poset (seen as a category as in Remark 2.11) to the
category of commutative rings (see, e.g., [5]).
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kŒa; b; c� kŒa; b; c� kŒb; c�

kŒa; b; c�

.abc/

kŒb; c�

.bc/

1C ab C abc 1C ab 1C b2c

1C ab

1

Figure 5. On the left, the sheaf Y.P / on the poset X.P / from Figure 4; on the right, one of the
global sections of Y.P /. Data are here organized in the same shape as Figure 4.

With this in mind, again following [60], we define the sheaf of commutative rings
Y.P / on the poset X.P / by the assignments

X.P / 3 d�e 7! Rd�e�
d�e 6X.P/ d� 0e

�
7! �

d�e

d� 0e
WRd�e� Rd� 0e;

where �d�e
d� 0e
WRd�e� Rd� 0e is the natural projection.

Definition 5.1. The Stanley–Reisner ring of P is then the ring of (global) sections

R.P / WD �.Y.P //:

We view any q 2 R.P / as anX.P /-tuple of polynomials, and for every d�e 2 X.P /
we denote by qd�e 2 Rd�e the component associated to d�e. The variables of qd�e are
indexed by the atoms in d�e.
With a slight abuse of notation, we will reserve the letter � to denote both a

maximal element ofP and a minimal element ofX.P /, since every minimal element
df�ge of X.P / is uniquely determined by the choice of a maximal element � of P .
In particular, we will write q� for qdf�ge.
Let us record here a simple observation that will come in handy in what follows.

Definition 5.2. Let p 2 P and recall that we write A.P / for the set of atoms of P .
We say that a monomial m D

Q
v2A.P/ x

˛v
v is supported at p if ˛v D 0 for all

v 2 A.P / n P6p .
Lemma 5.3. Let q 2 �.Y.P //, p 2 P , �; � 0 2 max.P / such that p 6 �; � 0. Then
the monomials supported at p appear with the same coefficients inside q� and q� 0 .

Proof. Since p 2 P6� \ P6� 0 , any monomial supported at p appears inside q�
(respectively, q� 0)with the same coefficient it has inside qd�e2Rd�e, where �Df�; � 0g.
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5.2. The finite case. In this section we show that, in the finite case, we recover the
classical constructions.
Fix a field k. Given a finite simplicial poset P , we let zS be the polynomial ring

kŒxp j p 2 P � (with the grading given by deg.xp/ D rk.p/) and S WD zS=.xy0 � 1/
be its dehomogenization with respect to xy0. Given an order ideal a inside P and
p; q 2 a, let ua.p; q/ be the (possibly empty) set of minimal common upper bounds
in a of p and q. In symbols,

ua.p; q/ WD fz 2 a j z > p; q and Àz0 2 a s.t. z > z0 � p; qg:

We define �IPa to be the following ideal of zS :
�IPa WD .xp j p … a/C

�
xpxq � xp^q

X
z2ua.p;q/

xz j p; q 2 a; p; q incomparable
�
;

where the sum
P
z2ua.p;q/

xz is taken to be zero when p and q have no common
upper bound in a (in this case, the generator xpxq � xp^q

P
z2ua.p;q/

xz is simply
the monomial xpxq). Let then IPa be the dehomogenization of �IPa with respect to xy0,
i.e. the ideal of S obtained from �IPa by setting to 1 all occurrences of the variable xy0.
Definition 5.4 ([56, Section 3]). To every finite simplicial poset P there are two
associated rings, �AP WD zS= �IPP ; AP WD S=I

P
P :

Note that AP is a finitely generated positively graded algebra with .AP /0 D k.

Proposition 5.5 ([56, Section 3]). When P is the poset of faces of a finite simplicial
complex †, then AP coincides with R.†/. In general, the algebraic h-polynomial
ofAP (i.e. the numerator of the Hilbert series ofAP expressed as a rational function)
coincides with hP .t/, the combinatorial h-polynomial of the simplicial poset P (see
Definition 3.3).

If the poset P is Cohen–Macaulay (in some characteristic), then so are AP
and �AP (in the same characteristic).

Let us record here a technical observation that will come in handy while proving
Proposition 5.7 below.

Lemma 5.6. Let P be a finite simplicial poset and a a lower order ideal of P .
Then IPa is a radical ideal.

Proof. By [20, Proposition 16.23] it is enough to check that �IPa is radical, i.e. zS= �IPa
is reduced. Now note that zS= �IPa Š zT =�I aa , where zT D kŒxp j p 2 a�. By [56,
Lemma 3.4], zT =�I aa is an algebra with straightening law on a (seen as a poset on its
own) and hence is reduced, as desired.
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Proposition 5.7. Let P be a finite simplicial poset and let a, b be order ideals of P .
Then

(1) IPa C IPb D I
P
a\b (and hence the correspondence a 7! IPa reverses inclusions);

(2) IPa \ IPb D I
P
a[b.

Proof. For brevity’s sake, given elements p and q in P , we will use the symbol yp^q
defined in the following way:

yp^q WD

(
1 if p ^ q D y0;
xp^q otherwise.

We now proceed to the proof.

(1) By definition,

IPa C I
P
b D .xp j p … a/

C

�
xpxq � yp^q

X
z2ua.p;q/

xz j p; q 2 a; p; q incomparable
�

C .xp j p … b/C

�
xpxq � yp^q

X
z2ub.p;q/

xz j p; q 2 b; p; q incomparable
�

D .xp j p … a \ b/

C

�
xpxq � yp^q

X
z2ua.p;q/

xz j p; q 2 a; p; q incomparable
�

C

�
xpxq � yp^q

X
z2ub.p;q/

xz j p; q 2 b; p; q incomparable
�
:

Now pick two incomparable elements p, q in a and consider the generator

xpxq � yp^q
X

z2ua.p;q/

xz :

� If at least one of p and q does not lie in b, then the whole generator is superfluous.
� If both p and q lie in b, one rewrites the generator as

xpxq � yp^q
X

z2ua\b.p;q/

xz;

since any xz corresponding to an upper bound in a n b of p and q is superfluous.
The claim now follows.
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(2) It is enough to prove that IPa D
T
q2a I

P
.q/
, where .q/ denotes the principal order

ideal generated by the element q. Note that, by part (1), IP
.q/
� IPa for any q 2 a.

Moreover, for a D ; the claim holds trivially (taking the empty intersection of ideals
to be the ring S ). Let then a be nonempty.
Since by Lemma 5.6 IPa is radical, it is enough to prove that, whenever a prime

ideal } in S contains IPa , then it also contains the prime ideal IP.q/ for some q 2 a.
To prove this, consider the (nonempty) set of maximal elements in a. There are

two cases:
(i) There is exactly one maximal elementM in a. In this case,

} � IPa D I
P
.M/

and we are done.
(ii) There are at least two maximal elementsM ,M 0 in a. In this case the monomial

xMxM 0 must belong to IPa and hence the prime ideal } is forced to contain at
least one of xM and xM 0 . Without loss of generality, say xM 2 }. Then,

} � IPa C .xM / D I
P
anfM g:

Since P is finite and case (ii) gives us a reduction from a to a strictly smaller
order ideal a n fM g, we are bound to meet case (i) at some point. Notice that the
element we eventually find in case (i) will not in general be maximal in the original
order ideal a.

Corollary 5.8. The ideals IPa in S , ordered by inclusion, form a distributive lattice
with respect to sum and intersection.

Proof. This is a direct consequence of Proposition 5.7, since order ideals of P form
a distributive lattice with respect to intersection and union [57, §3.4].

Theorem 1. For every finite simplicial poset P ,

R.P / D AP ;

i.e., we recover Stanley’s ring associated to P .

Proof. Let fp1; : : : ; pkg denote the maximal elements of P . The sheaf Y.P /
on X.P / satisfies the hypotheses of [18, Example 3.3] and hence we get a full
description for the global sections of Y.P /:

�.Y.P // D S=

k\
iD1

IP.pi / D S=I
P
P ;

where the last equality comes from Proposition 5.7.
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Remark 5.9. After completing our work, we became aware of work of Lü and
Panov [38] from which our Theorem 1 follows. Moreover, notice that Brun and
Römer [19] prove the analogous statement for �AP .
Notice that our proof also produces a minimal prime ideal decomposition of IPP

into the IP
.pi /
.

6. Induced actions and invariant rings

We now want to bring group actions into the picture, proving that every group action
on a simplicial poset induces an action on the associated ring. Moreover, if the
action is translative we will prove that the ring of invariants is isomorphic to the ring
associated to the quotient poset.
In this section we let P be a simplicial poset with set of atoms A.P / (see

Notation 2.5).

6.1. The induced action on R.P/. Consider an action G ˚ P of a group G by
automorphisms of P . Given g 2 G, let us define !g as the automorphism of
kŒxv j v 2 A.P /� obtained by sending xv into xgv . Given a nonempty collection
� � max.P /, let g� WD fgt j t 2 �g. One has that the assignment p 7! gp induces
an isomorphismof (posets of faces of) simplicial complexes d�e

Š
�! dg�e. Hence,!g

induces a ring isomorphism !g WRd�e
Š
�! Rdg�e between the corresponding Stanley–

Reisner rings. Moreover, if � 6X.P/ � 0, then the following diagram commutes:

Rd�e Rdg�e

Rd� 0e Rdg� 0e:

!g

�
d�e

d�0e
�
dg�e

dg�0e

!g

(6.1)

Definition 6.1. Consider a simplicial poset P with an action of a group G. Given
any element q D .qd�e/d�e2X.P/ ofR.P / and any g 2 G define the X.P /-tuple gq
by

gqd�e WD !
g.qdg�1�e/:

Lemma 6.2. For any given action of a group G on a simplicial poset P by
automorphisms, the assignment

G �R.P /! R.P /; .g; q/ 7! gq

defines an action of G by (ring) automorphisms on R.P /.

Proof. Let us first check thatgq is indeed a global section ofY.P /: given � 6X.P/ � 0,
one has that

�
d�e

d� 0e
.gqd�e/ D �

d�e

d� 0e
ı !g.qdg�1�e/
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D !g ı �
dg�1�e

dg�1� 0e
.qdg�1�e/ by the commutativity of (6.1)

D !g.qdg�1� 0e/ since q is a section
D gqd� 0e:

Hence for everygwe have awell-definedmap'g WR.P /! R.P /, q 7! gq. That'g
is a ring homomorphism follows from the fact that !g is a ring homomorphism and
that elements (X.P /-tuples) ofR.P / are added and multiplied componentwise.
Finally, one checks that G ! Aut.R.P //, g 7! 'g is a group homomorphism

as desired.

6.2. Invariant rings for translative actions. From now on we will require that the
action of G be translative. Recall that, under these hypotheses, the quotient P=G is
again a simplicial poset. Let us denote by f WP ! P=G the standard projection to
the quotient. Given p 2 P , as usual we use the notationGp to denote f .p/ 2 P=G.
Consider � 2 max.P /, † 2 max.P=G/ such that G� D †. By Lemma 2.13,

translativity allows us to define the following ring isomorphism:

kŒxv j v 2 A.P / \ P6� � Š kŒxV j V 2 A.P=G/ \ .P=G/6†�:

��
†

�†�

For each g 2 G, considering

!g WkŒxv j v 2 A.P / \ P6� �
Š
�! kŒxv j v 2 A.P / \ P6g� �

yields
�
g�
† ı !

g
D ��† and !g ı �†� D �

†
g� : (6.2)

We now have all the ingredients for the main result of the section.

Theorem 2. Let G be a group acting translatively on the simplicial poset P . Then
there is a ring isomorphism R.P /G Š R.P=G/.

Remark 6.3. A result in the same vein as Theorem 2 was proved by Reiner [49,
Theorem 2.3.1] for label-preserving group actions on finite balanced simplicial
complexes. Such actions are translative in our sense, hence we recover Reiner’s
theorem in this case.

Proof. We will define two mutually inverse ring homomorphisms ' and  between

R.P /G D �.Y.P //G and R.P=G/ D �.Y.P=G//:
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1. Definition of '. Let 'W�.Y.P //G ! �.Y.P=G// be the map of rings defined
for each q 2 �.Y.P //G and dT e 2 X.P=G/ by

.'.q//dT e WD �
†
dT e ı �

�
†.q� /;

where † 2 max.P=G/ is such that dT e � .P=G/�† (in other words, † is any
minimal element of X.P=G/ lying below dT e) and � 2 f �1.†/.

2. The map ' is well-defined. First of all, once † is fixed, due to the G-invariance
of q it makes no difference which representative � we pick inside f �1.†/. More
precisely, one has that

�
g�
† .qg� / D �

g�
† ı !

g.q� / since q is G-invariant
D ��†.q� / due to (6.2):

Let us now check that the definition of ' is independent on the choice of †. Let
us pick .†; �/; .†0; � 0/ as in the definition above and let us show that

�†
dT e ı �

�
†.q� / D �

†0

dT e ı �
� 0

†0.q� 0/: (6.3)

To do this, it is enough to check that any nonzero monomial in RdT e appears
with the same coefficient on both sides of (6.3). We will use the notation hm; f i to
denote the coefficient of the monomial m in the polynomial f . Let us fix a nonzero
monomialM in RdT e. By definition,M must be supported at an element ‡ 2 dT e.
By construction, one has that ‡ 6P=G † and ‡ 6P=G †0. One can now choose
� 2 f �1.‡/ such that � 6P � and � 6P g� 0 for some g 2 G. Note that, by
construction, �†�M and �†

0

g� 0M represent the same monomial (supported at �), which
we will denote by m. By Lemma 5.3 we then have that hm; q� i D hm; qg� 0i. We
now get the desired result, since

hM;�†
dT e ı �

�
†.q� /i D hM; �

�
†.q� /i D hm; q� i D hm; qg� 0i

D hM; �
g� 0

†0 .qg� 0/i D hM; �
� 0

†0.q� 0/i D hM;�
†0

dT e ı �
� 0

†0.q� 0/i:

Since the restrictionmaps behave well, one has that '.q/ is indeed a global section
of Y.P=G/ and thus ' is well-defined.

3. Definition of  . Let

 W�.Y.P=G//! �.Y.P //G

be the map of rings defined for eachQ 2 �.Y.P=G// and d�e 2 X.P / by

. .Q//d�e WD �
�
d�e ı �

G�
� .QG� /;

where � 2 max.P / is such that d�e � P�� .
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4. The map  is well-defined. We need to check that  is independent on the choice
of � , i.e. that, given � and � 0 as above,

��
d�e ı �

G�
� .QG� / D �

� 0

d�e ı �
G� 0

� 0 .QG� 0/: (6.4)

Let us consider a nonzero monomial m in Rd�e supported at p 2 d�e. Note that
��G�m and �

� 0

G� 0m represent the same monomial (supported at Gp), which we will
denote byM . Since Gp 6P=G G�;G� 0, by Lemma 5.3 one has that hM;QG� i D
hM;QG� 0i. This leads us to the desired result, since

hm;��
d�e ı �

G�
� .QG� /i D hm; �

G�
� .QG� /i D hM;QG� i D hM;QG� 0i

D hm; �G�
0

� 0 .QG� 0/i D hm;�
� 0

d�e ı �
G� 0

� 0 .QG� 0/i:

Again,  .Q/ is a global section of Y.P / since restriction maps behave well. We
still need to check that  .Q/ is G-invariant. This is indeed the case, since for each
Q 2 �.Y.P=G//, d�e 2 X.P /, and g 2 G one has that

g .Q/dg�e D !
g
ı  .Q/d�e

D !g ı ��
d�e ı �

G�
� .QG� /

D �
g�

dg�e
ı !g ı �G�� .QG� / by the commutativity of (6.1)

D �
g�

dg�e
ı �G�g� .QG� / due to (6.2)

D  .Q/dg�e:

It follows that  is well-defined.

5. ' and  are inverses. Finally, it is easy to see that ' and  are inverse to each
other. Given q 2 �.Y.P //G , for every d�e 2 X.P / one has that

 .'.q//d�e D �
�
d�e ı �

G�
� .'.q/G� /

D ��
d�e ı �

G�
� ı �G�G� ı �

�
G� .q� / choosing � inside f �1.G�/

D ��
d�e ı �

G�
� ı ��G� .q� /

D ��
d�e.q� /

D qd�e:

Analogously, givenQ 2 �.Y.P=G// one has that, for every dT e 2 X.P=G/,

'. .Q//dT e D �
†
dT e ı �

�
†. .Q/� / D �

†
dT e ı �

�
† ı �

�
� ı �

†
� .Q†/

D �†
dT e ı �

�
† ı �

†
� .Q†/

D �†
dT e.Q†/ D QdT e:
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7. Group actions and the Cohen–Macaulay property

Definition 7.1. We call an action H ˚ † on a pure d -dimensional simplicial
complex decoupled if it is translative and there is a decomposition

H D

dM
iD0

Hi

with Hi ¤ f0g for all i and such that every maximal simplex � 2 max† can be
written as � D fx0; : : : ; xd g with Hi D stabH .� n xi / for all i D 0; : : : ; d . If
dim.†/ D 0 we further require that stabH .�/ D f0g for all � 2 † n f;g.
Remark 7.2. If a group action H ˚ † is decoupled, then H acts freely on the set
of facets of †, i.e., stabH .ˇ/ D f0g for every maximal face ˇ of †. This holds by
definition if dim.†/ D 0. If dim.†/ > 0 and hˇ D ˇ for some h 2 H , then (by
translativity) h.ˇ n fxg/ D .ˇ n fxg/ for all x 2 ˇ and thus h is in the intersection
of (at least two, since dim.†/ > 0) of theHi - which is the trivial group because the
sum of theHi is direct. Thus, h is the identity element.
Remark 7.3. Here and in the following, given any group action G ˚ † on a
simplicial complex and any � 2 † we will write

†jG� WD f� 2 † j � � g� for some g 2 Gg

for the set of faces in the orbit of � . This is a simplicial complex.
Lemma 7.4. Let H ˚ † be a decoupled action. Then, for all � 2 † and all facets
ˇ 2 max† with � � ˇ, the following hold.
(a) stabH .�/ D

L
x2ˇn� stabH .ˇ n fxg/.

(b) The decoupled action H ˚ † induces a decoupled action of stabH .�/ on the
link of � in †. The associated decomposition is the direct sum stated in part (a).

(c) Suppose thatH is Abelian and let L WD
L
x2� stabH .ˇ n fxg/. Then, the action

of L on †jH� is isomorphic to that of the quotient H= stabH .�/. Moreover, this
action is decoupled with associated decomposition

L D
M
x2�

stabL.� n fxg/: (7.1)

Proof. (a) Write ˇ D fx0; : : : ; xd g and � D fx0; : : : ; xkg, in accordance with the
decompositionH D ˚iHi . Given h 2 H consider its (unique) expansion

h D h0 ˚ � � � ˚ hd ; hi 2 Hi :

Now, by translativity, h 2 stabH .�/ means hixi D xi for all i � k, and this
implies that hi is the identity element in Hi (otherwise hi would be a nontrivial
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element in Hi \ stabH .fxig/ D stabH .ˇ/, contradicting Remark 7.2). Therefore,
h 2

L
i>kHi . For the right-to-left inclusion suppose h 2

L
i>kHi , i.e., the

element hi is the identity inHi for all i � k. Then,

hxi D .h0; : : : ; hd /xi D xi

for all i � k (where we use that hi 2 stabH .fxj g/ for all i ¤ j ) and therefore
h 2 stabH .�/.

(b) By Lemma 2.14 (ii), the action of stabH .�/ on the link of � is translative. Let
� 2 max.lk†�/ and let ˇ WD � ] � be the corresponding facet of †. Since † is
pure and � is fixed, every such � has the same cardinality, and so lk†� is pure.
As in part (a), we write ˇ D fx0; : : : ; xd g and � D fx0; : : : ; xkg according to the
decoupled decomposition ofH . In particular, by part (a) we have that

stabH .�/ D
dM

iDkC1

Hi D

dM
iDkC1

stabH .ˇ n fxig/:

Since by translativity

stabH .ˇ n fxig/ D stabstabH .�/.� n fxig/

for every i 2 fk C 1; : : : ; dg, we get the claim.

(c) Write for short K WD stabH .�/. By definition, H D L ˚ K. Thus, L is a
valid choice as a set of representatives for the classes of the quotient H=K, with
.g ˚K/.h˚K/ D .gh˚K/ inH=K. Moreover, for each � 2 †jH� we have

K D stabH .�/ � stabH .�/

by translativity and because H is Abelian. Thus, for g 2 L and every � 2 †jH� we
have that g� D .g˚K/� and so the actions ofH=K and L on †jH� are equivalent
under the natural isomorphism L! H=K, g 7! g ˚K.
Since P†jGx D .P†/jGx , by Lemma 2.14 (iii) the action of L is translative.

To prove that it is decoupled, notice first that †jGx is pure because the action is
rank-preserving. Moreover,

stabL.� n fxg/ D stabH .� n fxg/ \ L D stabH .ˇ n fxg/

for all x 2 � , where the first equality is by definition and the second equality follows
from part (a). Now write � D fx0; : : : ; xkg and let Li WD stabL.� n fxig/, so that
L D

L
i Li is the decomposition stated in (7.1). Every maximal simplex of the orbit

of � is of the form � 0 WD fx00; : : : ; x0kg where x
0
i D hxi for all i and some h, and

all x0i are pairwise distinct. Now, for every i D 0; : : : ; k, we have

stabL.� 0 n fx0ig/ D
\
j¤i

stabL.fx0j g/ D
\
j¤i

stabL.fxj g/ D stabL.� n fxig/ D Li ;
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as required (the second equality holds becauseH is Abelian, the first and third since
the action is translative).

Proposition 7.5. Let H ˚ † be a decoupled action of an Abelian group H and fix
� 2 †. Then, †jH� is a shellable simplicial complex.

Proof. By Remark 7.2, the set M of facets of †jH� is in bijection with L WD
H= stabH .�/, a group whose action on†jH� is decoupled by Lemma 7.4 (c). Let us
consider this bijection,

�WM ! L D

kM
iD1

Li

with Li D stabL.� n fxig/, where we write � D fx1; : : : ; xkg. Notice that Lj �
stabL.xi / for all i ¤ j . In particular, for everym 2M and all i D 1; : : : ; k we have

m \ Lxi D �.m/ixi : (�)

The idea now is to use � as a labeling of the elements of M . Choose a well-
order �i of each Li that begins with the identity element 0i and choose any linear
extension of the cartesian product of the �i s. Via � this induces a total (well-)
order � on M . We will use the following property of �: if �.m/i D 0i ¤ �.m0/i
and �.m/j D �.m0/j for all j ¤ i , then m � m0.
We want to show that � is a shelling order for†jH� . By Remark 4.1 it is enough

to prove the following.
Claim. Letm1; m2 2M withm1 � m2. Then, there ism3 2M withm3 � m2 and
m1 \m2 � m3 \m2 D m2 n fx

0g for some x0 2 m2.

Proof of the claim. First notice that, since � is injective, �.m1/ and �.m2/ must
differ in at least one component, say the 1st. In particular, �.m2/1 ¤ 01.
Consider l WD .�.m2/1 ˚ 02 ˚ � � � ˚ 0k/ 2 L and let m3 WD .�l/m2. A direct

computation shows that

�.m3/j D

(
�.m2/j j ¤ 1;

01 j D 1:

We conclude:
� m3 � m2 because �.m3/1 D 01 ¤ �.m2/1;
� since by assumption �.m1/1 ¤ �.m2/1, using Equation (�) we obtainm1\m2 �
m3 \m2;

� choosing x0 WD �.m2/1x1 (i.e., the unique element of m2 \ Lx1), we have
m3 \m2 D m2 n fx

0g.

Theorem 3. Let H ˚ † be a decoupled action of an Abelian group. If † is
homotopy Cohen–Macaulay, then so is P†=H .
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Proof. We proceed by induction on the dimension d of †, the claim being trivial
for d D 0. Let then d > 0 and suppose that the claim holds for all pure simplicial
complexes of dimension strictly smaller than d . In order to prove the Cohen–
Macaulay property for P†=H we will show that open intervals in2P†=H are well-
connected (see Remark 4.5 for this criterion and for notation).
Translativity of the action implies that

(i) P†=H is a simplicial poset. Thus, every open interval .x; y/ � P†=H is homo-
topy equivalent to a sphere of dimension `.x; y/, and is therefore well-connected.

(ii) ForH� 2 P†=H , Lemma 2.14 (ii) gives an isomorphism

.P†=H/>H� ' ..P†/>� /= stabH .�/:

Now .P†/�� is the poset of faces of the link of � in † (see Remark 3.11), which is
(homotopy) Cohen–Macaulay because † is. Moreover, by Lemma 7.4 (b) the action
of stabH .�/ on the link of � is decoupled. If H� is not the minimal element of
P†=H , then the dimension of the link of � is less than d , so we can apply the
induction hypothesis and conclude that .P†=H/>H� is homotopy Cohen–Macaulay
(and, in particular, well-connected).
We are now left with proving that P†=H is well-connected. For this, we want to

apply Lemma 4.2, in the reformulation of Remark 4.3, to the quotient map

SP† 7! P†=H:

Since the complex † is pure, so are the posets P† and, via Lemma 2.4, P†=H .
Item (ii) above verifies immediately condition (1) of Remark 4.3, while condition (2)
holds by Proposition 7.5 and the fact that the barycentric subdivision of a well-
connected complex, being homeomorphic to the complex itself, is well-connected.

8. Semimatroids and geometric semilattices

In our context, a natural analogue to matroids in classical Stanley–Reisner theory are
(group actions on) semimatroids and geometric semilattices.

8.1. Semimatroids and geometric semilattices. Semimatroids are abstract struc-
tures, introduced independently by Ardila and Kawahara [4, 33], that are intuitively
best described as axiomatizations of the intersection pattern of a locally finite set A
of affine hyperplanes (although the abstract theory is much more general [28, §4]).
Given such a set, one can single out the family K of all subsets with nonempty
intersection. The local finiteness assumption implies thatK is an abstract simplicial
complex on the vertex set A. Moreover, every nonempty intersection of hyperplanes



216 A. D’Alì and E. Delucchi

is an affine subspace with a well-defined codimension: this allows us to define a
function �WK ! N that associates to every element of K the codimension of the
corresponding intersection. The triple .A;K; �/ is an example of a semimatroid.
Formally, a semimatroid is any triple S WD .S;K; �/ consisting of a set S , a finite-

dimensional simplicial complex K on the vertex set S and a function �WK ! N
satisfying a list of axioms that we will not need to specify (see [4,33] for the original
definition and [28] for the infinite case). The rank of the semimatroid S is the
maximum value of �, which we denote by �.S/. The axioms imply that this is a finite
number.
Associated to every semimatroid S are two posets:

� The poset of independent sets is the set

I.S/ WD fI 2K j �.I / D jI jg

partially ordered by inclusion. This is the poset of faces of an abstract simplicial
complex on the vertex set S .

� The poset of closed sets (or flats) is the set

L.S/ WD fF 2K j �.F 0/ > �.F / for all F 0 © F g

partially ordered by inclusion.

Remark 8.1. Both posets are geometric semilattices in the sense of Wachs and
Walker [59]. In particular, they are bounded-below and pure [59, Proposition 2.4].
Moreover, every geometric semilattice is the poset of flats of a (possibly infinite)
semimatroid [28, Theorem E].

We now review a notion of group actions on semimatroids. The guiding intuition
here is that, in the context of our motivating example, we would like to model
periodic affine hyperplane arrangements – i.e., arrangements on which a discrete
group of translations acts. In fact, when the semimatroid is associated to an affine
arrangement of hyperplanes, the poset of flats is isomorphic to the poset of all
intersections of subspaces in the arrangement ordered by reverse inclusion (see, e.g.,
Section 9).

Definition 8.2 (Compare [28, §3]). LetG be a group. AG-semimatroid SWG ˚ S is
an action of G on a semimatroid S D .S;K; �/, i.e., an action of G by permutations
of S that preservesK and �. Furthermore, we require that there is a finite number of
orbits of elements ofK . The rank ofS is �.S/ WD �.S/, the maximum of � overK .
Such a G-semimatroid is called translative if, for every s 2 S , fg.s/; sg 2 K

implies g.s/ D s. The G-semimatroid is called (k-)refined if, in addition to being
translative, G is a free Abelian group and there is k 2 N such that, for every x 2K ,
stab.x/ is a direct summand of rank k.�.S/ � �.x//.
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Every G-action on a semimatroid S induces an action of G by automorphisms
on the posets I.S/ and L.S/. If the G-semimatroid is translative, resp. refined, then
so are the induced actions on both posets. Conversely, every action on I.S/ induces
an action on S and every action on a geometric semilattice induces an action on the
associated (simple) semimatroid.
Definition 8.3. Given a G-semimatroid SWG ˚ S define the posets

KS WDK.S/=G; IS WD I.S/=G; PS WD L.S/=G:

Remark 8.4. (i) By the finiteness requirement in Definition 8.2, IS, PS andKS

are all finite.
(ii) Both IS and PS are pure (e.g., by Lemma 2.4), bounded-below and graded of
length �.S/. The poset rank of an element X of either poset equals �.X/.

(iii) If S is a translative G-semimatroid, then IS andKS are simplicial posets.
The above definitions and terminology were motivated in [28] by the case of

periodic affine hyperplane arrangements related to Abelian arrangements, as we will
discuss later. However, these definitions are strictly more general, see [28].
Definition 8.5. Let ES WD S=G denote the (finite) set of orbits of elements of S.
The support of an orbit is given by the function

SuppWKS ! 2ES ; Gfx1; : : : ; xkg 7! fGx1; : : : ; Gxkg:

For every ˛ 2K , we will write supp.˛/ WD Supp.G˛/, the support of the orbit of ˛.
In general, given A � ES we let mS.A/ WD jSupp�1.A/j be the number of all

orbits X 2KS such that SuppX D A, thusm.A/ ¤ 0 if and only if A 2 SuppKS.
Moreover, for A � ES write �.A/ for the rank �.X/ of any X 2 Supp�1.A/ and

let S WD .ES;Supp.KS/; �/.
Remark 8.6. The set Supp.IS/ is a simplicial complex. The triple S is a semimatroid
if and only ifSWG ˚ S is translative [28, Theorem A]. In this case, Supp.IS/ is the
associated simplicial complex of independent sets.

8.2. Tutte polynomials and h-polynomials.
Definition 8.7. Let SWG ˚ S denote a translative action of G on a semimatroid S
of rank d . The Tutte polynomial of S is

TS.x; y/ WD
X
A�ES

mS.A/.x � 1/
d��.A/.y � 1/jAj��.A/:

Remark 8.8. Notice that A � ES is central in the semimatroid S if and only if
mS.A/ ¤ 0, hence TS.x; y/ is a “weighting” of the Tutte polynomial of S defined
in [4]. If S is associated to the action of the group of translations of a periodic
hyperplane arrangement and S is in fact a matroid, then TS.x; y/ is the arithmetic
Tutte polynomial of the corresponding toric arrangement [43].
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Lemma 8.9. Let S be a translative G-semimatroid of rank d . Then
(i) the h-polynomial of the simplicial poset IS is

hIS.t/ D t
dTS.1=t ; 1/;

and the characteristic polynomial of IS is

�IS.t/ D .�1/
dTS.1 � t ; 1/:

(ii) the characteristic polynomial of the poset PS is

�PS.t/ D .�1/
dTS.1 � t ; 0/:

Proof. Item (ii) is [28, Theorem F]. In order to prove item (i), start by noticing that
the number of orbits of independent sets of rank i in IS is

fi�1.IS/ D
X
A�ES

�.A/DjAjDi

mS.A/:

Therefore, with Remark 8.4 (ii) we can write

hIS.t/
df.
D td

dX
iD1

fi�1.P /

�
1 � t

t

�d�i
D td

X
A�ES
�.A/DjAj

mS.A/

�
1 � t

t

�d��.A/

D td
X
A�ES

mS.A/

�
1

t
� 1

�d��.A/
0jAj��.A/

df.
D tdTS

�
1

t
; 1

�
:

The formula for the characteristic polynomial of IS follows with Remark 3.4.

8.3. Some structure theory of G -semimatroids. In this section we let SWG ˚ S

denote the action of a group G on a semimatroid S D .S;K; �/. First, let us recall
the notion of contraction and deletion for semimatroids. In the following, given
any collection X � 2S of subsets of a set S and given any A � S , we write
X=A WD fX � S n A j X [ A 2 Xg and XŒA� WD fX 2 X j X � Ag (the latter
system of sets is commonly also written asX n .S n A/).
Definition 8.10 (see, e.g., [4, § 7]). Let S D .S;K; �/ be a semimatroid and let
˛ � S . The restriction of S to ˛ is the semimatroid

SŒ˛� WD
�
˛;KŒ˛�; �jKŒ˛�

�
If ˛ 2K , we can also define the contraction of ˛ in S as

S=˛ WD .S n ˛;K=˛; �=˛/;

where �=˛.X/ WD �.X [ ˛/ � �.˛/ for all X 2K=˛.
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Remark 8.11. For the poset of independent sets we have I.SŒ˛�/ D I.S/Œ˛�.
Complexes of independent sets of semimatroids are shellable; in particular, they
are homotopy Cohen–Macaulay [9].

Remark 8.12. For everyA�Supp.KS/we can choose ˛2K such that supp˛DA.
IfG is Abelian andS is translative, then stab.˛/ D

T
s2˛ stab.s/ does not depend on

the choice of ˛. In particular, stab.A/ is well-defined as the stabiliser of any such ˛.

Definition 8.13. Let SWG ˚ S be a refined G-semimatroid and let X � ES. As is
customary, write [X WD

S
x2X x. The restriction of S to X is

SŒX�WG= stab.X/ ˚ SŒ[X�:

Moreover, for any A 2KS we define the contraction

S=AW stab.˛/ ˚ S=˛;

where ˛ is any representative of the orbit A, i.e., A D G˛.

Remark 8.14. For every ˛ 2K there are poset isomorphisms

L.S=˛/ ' L.S/�cl.˛/; I.S=˛/ ' I.S/�ˇ ;

where ˇ is any maximal independent subset of ˛ and cl denotes semimatroid closure
(see [28, Definition 3.27]). Thus,

PS=G˛ ' .PS/�G˛

for every G˛ 2 PS, and
IS=G˛ ' .IS/�Gˇ

for all ˛ 2K and every maximal independent ˇ � ˛.

Remark 8.15. From Lemma 2.14 and Lemma 2.18 follows that restrictions and
contractions of refined G-semimatroids are refined.

8.4. Refined quotients of independence complexes. In this section let SWG ˚ S

be a refined action.

Definition 8.16. Given any X D fx1; : : : ; xkg 2 Supp.IS/ let

G.X/ WD G= stabG.X/; H .X/
WD

kM
iD1

H
.X/
i ; whereH .X/

i WD stabG.X/.Xnfxig/:

Notice that, for all i ¤ j ,

H
.X/
i \H

.X/
j � stabG.X/.X/ D 0 in G.X/:
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Therefore, the sum defining H .X/ is direct in G.X/ and so H .X/ is free Abelian of
maximal rank in G.X/. Thus, we can define the number

ıS.X/ WD ŒG
.X/
W H .X/�:

Moreover, let
ıS WD lcmfıS.X/ j X 2 Supp ISg:

This definition is motivated by the following fact.

Lemma 8.17. Let X 2 Supp. SIS/. Then ISŒX� is acyclic through codimension 1 in
characteristic 0 and every characteristic not dividing ıS.X/.

Proof. Recall thatSŒX� isG.X/˚SŒ[X�, and induces a refined actionG.X/˚IŒ[X�.
As a set, IŒ[X� is an abstract simplicial complex, and it is pure by Remark 8.1.
Moreover, the induced action H .X/ ˚ IŒ[X� is decoupled with respect to the
decomposition

H .X/
D

kM
iD1

H
.X/
i :

In order to see this notice first that, since SŒX� is refined, the rank of the (free
Abelian) groupH .X/

i is a nonzero multiple of �.X/ D jX j, and sinceX is not empty
by assumption we conclude thatH .X/

i is not the trivial group. The fact that the action
of G.X/ is refined also implies that the stabilizer of any maximal element of IŒ[X�

is
stabH .X/.X/ � stabG.X/.X/ D f0g;

thus the action ofH .X/ is free on facets.
Now write X D fx1; : : : ; xkg. Given ˇ D fs1; : : : ; skg with si 2 xi for all i , we

have
stabH .X/.ˇ n fsig/ D stabG.X/.X n xi / D H

.X/
i ;

where the first equality holds because freeness on facets implies that in the definition
ofH .X/ every summand other than stabG.X/.X n xi / fails to stabilize some element
of ˇ n fsig.
Thus, the poset IŒ[X�=H .X/ is homotopy Cohen–Macaulay by Theorem 3,

since IŒ[X� is shellable (see Remark 8.11). Moreover, the action of the (finite)
group K WD G.X/=H .X/ on IŒ[X�=H .X/ is translative (Lemma 2.15 (b)). Now by
Lemma 2.15 (a) we have

ISŒX� '
�
IŒ[X�=H .X/

�
=K;

and the claim follows with Lemma 3.9 and [15, Chapter III, Theorem 2.4].
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We now proceed with two properties of the numbers ıS.
Lemma 8.18. If X � Y in Supp.IS/, then ıS.X/ divides ıS.Y /. In particular,

ıS D lcmfıS.B/ j B 2 max Supp.IS/g;

i.e., ıS can be computed as the least common multiple of the ıS.B/ where B ranges
over the bases of the semimatroid S.

Proof. Translativity of the action implies stabG.Y / � stabG.X/ and thus the
existence of a surjective (quotient) homomorphism � WG.Y / ! G.X/. Now, for
every y 2 Y nX ,

stabG.Y n fyg/ � stabG.X/

and therefore
�
�
stabG.Y /.Y n fyg/

�
D f0g:

On the other hand, if x 2 X then

stabG.Y n fxg/ � stabG.X n fxg/

and, passing to the quotients,

�
�
stabG.Y /.Y n fxg/

�
� stabG.X/.X n fxg/:

Thus, � restricts to a mapH .Y / ! H .X/, and so it induces a group homomorphism
qWG.Y /=H .Y / ! G.X/=H .X/ fitting in the following diagram where we see that
(e.g. by the Snake Lemma) the cokernel of q is trivial.

0 H .Y / G.Y / G.Y /=H .Y / 0

0 H .X/ G.X/ G.X/=H .X/ 0

0 coker.q/ 0:

� q

Surjectivity of q implies that ıS.X/ D jG.X/=H .X/j divides ıS.Y / D jG.Y /=H .Y /j.

Lemma 8.19. Let A 2 KS. Then ıS=A divides ıS. In particular, CM.ıS=A/ im-
plies CM.ıS/.

Proof. Choose ˛ 2 K such that A D G˛ and a ˇ D fs1; : : : ; skg 2 I maximal
such that ˇ � ˛. Then, letK WD stabG.˛/ D stabG.ˇ/ (the equality because of [28,
Lemma 8.1.(b)], where only translativity is used) and notice that IS=A ' I�ˇ=K

(by Remark 8.14 and Lemma 2.14 .(ii)).
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Given X 2 Supp.IS=A/, choose � D fskC1; : : : ; slg such that X D Supp.K�/
and ˇ ] � 2 I, and let

X 0 WD Supp.G.ˇ ] �// 2 Supp.IS/:

It is now enough to prove that, for every such X , ıS=A.X/ divides ıS.X 0/. In
order to do that, first notice that with the notation introduced above we have

K= stabK.X/
df
D stabG.ˇ/= stabstabG.ˇ/.�/
df
D stabG.ˇ/= stabG.ˇ/ \ stabG.�/

D stabG.ˇ/= stabG.ˇ [ �/
df
D stabG.X0/.ˇ/;

where the equality at the break of the line uses translativity of the action (Remark 3.7).
Using this identity and noticing that, for every i D k C 1; : : : ; l we have

stabstab
G.X
0/ .ˇ/

.� n fsig/ D stabG.X0/.ˇ ] � n fsig/;

we can expand the definitions. We start by writing

ıS=A.X/ D

�
stabG.X0/.ˇ/ W

lM
iDkC1

stabG.X0/.ˇ ] � n fsig/
�
:

Let us call U the direct sum on the right-hand side. We compare this with

ıS.X
0/ D

�
G.X

0/
W

lM
iD1

stabG.X0/..ˇ ] �/ n fsig/
�
:

Now since the action of G.X 0/ is refined, we can write G.X 0/ D stabG.X0/.ˇ/˚W
for some subgroup W . Setting for brevity

U 0 WD

kM
iD1

stabG.X0/.ˇ ] � n fsig/;

it is now enough to prove that the map

f W
stabG.X0/.ˇ/

U
!
stabG.X0/.ˇ/˚W

U ˚ U 0
; g C U 7! g ˚ 0C U ˚ U 0

is an injection. In fact, in this case ıS=A.X/ D j stabG.X0/.ˇ/=U j is the cardinality
of a subgroup of a group of cardinality ıS.X 0/, thus the former divides the latter.
Now injectivity of f is a straightforward computation, thus the lemma is proved.
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Theorem 4. Let S be a refined G-semimatroid. Then SIS is CM.ıS/ (i.e., Cohen–
Macaulay in characteristic 0 and every characteristic that does not divide ıS).

Proof of Theorem 4. We use Remark 4.5 and proceed by induction on the rank ofS,
the case of rank 0 being trivial. Suppose then that S has positive rank and notice
that, for every X 2 SIS, the poset .IS/>X ' IS=X is CM.ıS=X / by induction
hypothesis, and thus also CM.ıS/ by Lemma 8.19. Since every lower open interval
in SIS is the boundary of a simplex (because IS is a simplicial poset), in order to
prove the claim it is enough to prove that SIS is acyclic through codimension 1 in
characteristic 0 and every characteristic that does not divide ıS.
To this end, consider the restriction of the (order-preserving) support map

SuppW SIS ! Supp.IS/:

Since the action is translative, by Remark 8.6 the poset Supp.IS/ is the geometric
semilattice of independent sets of a semimatroid — and thus it is pure and homotopy
Cohen–Macaulay [9]. In particular, Supp.IS/>Supp.X/ is well-connected (and hence
acyclic through codimension 1 in any characteristic) for all X 2 IS. Now, one also
checks that, for every X 2 SIS,

Supp�1
�
Supp.. SIS/�X /

�
D ISŒX�:

By Lemma 8.17, this poset is acyclic through codimension 1 in characteristic 0
and every characteristic not dividing ıS.X/. Now an application of Lemma 4.2 to
the order-preserving map Supp proves the claim (compare also Remark 4.3).

8.5. On Stanley–Reisner rings of G -semimatroids. In analogy with (and extend-
ing) classical matroid theory, it is now natural to state the following definition.
Definition 8.20. Given a G-semimatroid S let

RS WD R.IS/

be the Stanley–Reisner ring of S.
From our results the following facts follow immediately.

Proposition 8.21. Let S be a G-semimatroid of rank d .
� If S is translative, RS is isomorphic to the Stanley ring associated to the (finite)

simplicial poset IS.
� If G is the trivial group, RS is isomorphic to the classical Stanley–Reisner ring

of the (independence complex of the) underlying (semi)matroid.
� If S is refined, then the poset IS isCM.ıS/, and in particular it is .d �2/-acyclic

in every characteristic that does not divide ıS, thus

zHd�1.IS;Q/ ' Q�TS.0;1/:
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� If S is refined, then the associated Stanley–Reisner ring is Cohen–Macaulay in
characteristic 0 and every characteristic that does not divide ıS, withh-polynomial

hIS.t/ D t
dTS.1=t; 1/:

8.6. On refined quotients of geometric semilattices. As a byproduct of our prev-
ious considerations we can prove the following result on the topology of quotients of
geometric semilattices.
Theorem 5. If S is a refined G-semimatroid, then the poset SPS is CM.ıS/.
We postpone the proof of this theorem until after some preparatory work.

Remark 8.22. The restriction on the characteristic in Theorem 5 is only due to the
corresponding limitation in Theorem 4. In fact, Proposition 8.24 shows that in any
contraction-closed class of group actions on semimatroids, SPS is Cohen–Macaulay
“of the same class” as SIS.
Corollary 8.23. More precisely, if SWG ˚ S is a refined action on a semimatroid of
rank d ,

zHi
�
SPS;Q

�
D

(
f0g if i � d � 2;
QTS.0;0/ if i D d � 1:

If P =G is bounded above, then clearly P=G n fy0g is contractible. In this case,

zHi
� SSPS;Q

�
D

(
f0g if i � d � 2;
Q�TS.1;0/ if i D d � 1:

Proof. The Corollary’s claim for i � d � 2 is a reformulation of the connectivity
claim in the theorem. The claims for i D d � 1 follow using Lemma 4.6 and
Lemma 8.9.

The following proposition is the key tool in the proof of Theorem 5.
Proposition 8.24. If SIS as well as every PS=p for all p 2 SPS are well-connected,
then SPS is homotopy Cohen–Macaulay. The homological version of the claim also
holds (by fixing a characteristic, say k, and replacing “well-connected” with “acyclic
in characteristic k through codimension 1” and “homotopy Cohen–Macaulay” with
“Cohen–Macaulay in characteristic k”).

Proof. By Remark 4.5 we have to prove that every open interval .x; y/ � �PS is
.`.x; y/ � 1/-connected (resp., if a characteristic k is fixed, .`.x; y/ � 1/-acyclic
in characteristic k). If y ¤ y1 this is true because Lemma 2.13 implies that
bounded intervals in PS are isomorphic to bounded intervals in L.S/, but bounded
intervals inL.S/ are geometric lattices [59, Theorem 2.1], hence their reduced order
complexes are (homotopically) well-connected (and in particular acyclic through
codimension 1 in every characteristic). We have to prove that, for every Gx 2 PS,
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the poset .PS/>Gx is .`..PS/>Gx/ � 1/ D .rk..PS/�Gx/ � 2/-connected (resp.
.rk..PS/�Gx/�2/-acyclic in characteristick). IfGx 2 SPS this is true by assumption
since, with Lemma 2.14, we have that .PS/�Gx D PS=Gx .
We are left with proving that SPS is .�.S/ � 2/-connected (resp. -acyclic). This

will follow from the assumption on IS via Lemma 4.2. The posets SIS and SPS are
both graded of the same length .�.S/ � 1/. The equivariant and rank-preserving
poset map clW I.S/! L.S/ given by semimatroid closure (see [28, Definition 3.27])
induces a rank preserving poset map

f W SIS !
SPS; GI 7! G cl.I /:

The claim now follows by Lemma 4.2 applied to f with t D .�.S/�2/: we only
check that lemma’s assumptions. Let henceforth rk denote the rank function of the
poset PS and fix p 2 SPS. Then, rk.p/ > 0 and `.. SPS/<p/ D rk.p/� 2 (where we
take the length of the empty poset to be �1).

(1) By Lemma 2.18 (i) and Lemma 2.14 (ii), the poset . SPS/>p is isomorphic to
PS=p and thus by assumption it is .d � rk.p/�2/ D .t�`.. SPS/<p/�2/-connected
(resp. -acyclic over K).

(2) We are left with showing that f �1.. SPS/�p/ is .rk.p/ � 2/-connected. This
will follow from the fact that it is isomorphic to the poset of (proper) faces of the
independence complex of a rank rk.p/ matroid, which is classically known to be
.rk.p/ � 2/-connected [10], and thus in particular also .rk.p/ � 2/-acyclic in every
characteristic. This isomorphism is proved in the next claim which, then, concludes
the proof of the theorem.
More precisely, we fix a representative F 2 p and consider the (rank rk.p/)

matroid SŒF �, the restriction of S to F . We write IŒF � for the poset of independent
sets of this matroid and note that the poset of flats of SŒF � is naturally isomorphic
to L.S/�F .
Claim. We claim that the quotient map by theG-action induces a poset isomorphism


 W xIŒF �! f �1.. SPS/�p/:

Proof of the claim. Since both posets are finite, it will suffice to prove that 
 is a
bijective order-preserving map. Write L instead of L.S/ for brevity, and consider
the diagram

f �1.. SPS/�p/ . SPS/�p

xL�FxIŒF �

f




cl
˛
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where cl is the closure map of the matroid SŒF � and ˛WX 7! GX denotes the
restriction of the quotient map of the action on L. The maps f , cl and ˛ are rank-
preserving by definition, and ˛ is a poset isomorphism because the group action is
translative.
For every I 2 xIŒF �, since I � F and cl.F / D F we have cl.I / 2 xL�F .

Unwrapping the definitions we see that

f 
.I / D G cl.I / D ˛ cl.I / 2 . SPS/�p;

thus the map 
 is well-defined and the diagram commutes. That 
 is order-preserving
follows because it is the restriction of the (order-preserving) quotient map on I.S/.
Moreover, given any q 2 f �1.. SPS/�p/ consider the element X WD ˛�1.f .q//

and let I � X be such that q D GI . Then I is independent and I � X � F , hence
I 2 xIŒF � and clearly 
.I / D GI D q, hence 
 is surjective.
Finally, any I 0 2 xIŒF � with 
I 0 D q D GI satisfies gI 0 D I for some g 2 I

hence, by translativity of the action on I.S/, we must have I D I 0 and so 
 is
injective.
As a bijective order-preserving map between finite posets, 
 is a poset-isomorph-

ism as claimed.

Proof of Theorem 5. We argue by induction on d WD �.S/. The claim trivially
holds if �.S/ D 0. Now suppose that S has rank d > 1 and that the claim holds
in every lower rank. By Theorem 4, SIS is CM.ıS/. Moreover, for every p 2 SPS

by induction hypothesis the poset PS=p is CM.ıS=p/, hence in particular CM.ıS/
(Lemma 8.19). Thus, we conclude by applying Proposition 8.24.

9. Applications to arrangements

In this section we show that our definitions, and the level of generality of our
theorems, do encompass one of the main motivating examples, namely that of
certain algebraically defined arrangements of submanifolds which generalize the
classical setting of arrangements of hyperplanes in vector spaces. Just as every
hyperplane arrangement has an associated (semi)matroid, these larger classes of
geometric objects have a natural associated G-semimatroid (the case of hyperplanes
being recovered by trivial group actions). Here we review the definition of Abelian
(incl. toric and elliptic) arrangements and of .p; q/-arrangements, and we prove
that the associated Stanley–Reisner rings satisfy our theorems. Even though
.p; q/-arrangements can be seen as generalizations of Abelian arrangements (see
Remark 9.7), we treat Abelian arrangements separately because they (and especially
their subclass of toric arrangements) are in the focus of a substantial dedicated
literature, see §1.4.
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9.1. Abelian arrangements. As was briefly discussed in the introduction, one of
our main motivations comes from the theory of arrangements, and in particular
from the desire to uniformly treat Abelian arrangements in a way that generalizes the
classical theory of hyperplane arrangements (see, e.g., [26]). Tomake the definition in
Section 1.4 slightly more explicit, letG stand for one ofC;C� orE, an elliptic curve,
seen as complex algebraic groups, and let ƒ be the lattice of group homomorphisms
Gd ! G. Any choice of a1; : : : ; an 2 ƒ and b1; : : : ; bn 2 G determines an
arrangement

A WD fHi WD a
�1
i .bi / j i D 1; : : : ; ng

of hypersurfaces in Gd . We call this an Abelian arrangement. It is called a linear,
toric, elliptic arrangement ifG isC, respectivelyC� orE. The arrangement is called
essential if the ai ’s span a full-rank sublattice of ƒ.
A central arrangement is one where bi D idG for all i D 1; : : : ; n. A deep

enumerative-combinatorial study of central arrangements, with special attention
to the linear and toric case, has led to the introduction of arithmetic Tutte
polynomials [43] and arithmetic matroids [14, 23]. Questions about commutative-
algebraic interpretations of some of the polynomials arising in this context led
to attempts at modeling the poset I.A/ of “independent sets” in the linear and
(central) toric case, defined to be the set of pairs .X; c/ where X is a (Q-)linearly
independent subset of faigi and c is a connected component of the intersection of
the corresponding hypersurfaces [36, 39].1
In the general (noncentral) case, one may still look at the poset of layers C.A/

described in Section 1.4. The arithmeticmatroid of the faigi as well as— in the linear
and toric case — the rational cohomology algebra of the arrangement’s complement
can be recovered from C.A/ [21]. On the other hand, Pagaria [47] exhibited a pair
of central toric arrangements with isomorphic arithmetic matroids (and matroids
over Z) but non-isomorphic posets of layers.
In order to model these posets we take the approach of [28], and consider the

(topological) universal covering morphism

�WCd
! Gd :

The lift of A through this universal covering is a set A� of (affine) complex
codimension 1 subspaces which is invariant under deck transformations. Now, the
group of deck transformations acts by translations on Cd and is isomorphic to Zkd ,
with k D 0; 1; 2 according to whether we are in the linear, toric, respectively the
elliptic case.

1The definitions in [36, 39] are formally in terms of pairs .X; g/ where g is a torsion element of the
quotient group ƒ=hXiZ. Such torsion elements are however in (natural) bijection with the connected
components of the intersection of the hypersurfaces determined by the elements ofX (see, e.g., [28,43]).
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Example 9.1. Let us take G D C� and d D 3, so that ƒ D Z3. Consider the
arrangement defined by a1; : : : ; a4 given as the columns of the matrix241 1 1 3

0 5 0 5

0 0 5 5

35
and b1 D � � � D b4 D 0. The associated arrangement A is a central and essential ar-
rangement in the torus .C�/3, and it was first considered in [46]. The arrangementA�
is the set fHi;j gi;j2Z of all hyperplanesHi;j D fz2C3 j aiz

T D j g.
As is well known [4,28], every affine hyperplane arrangement such asA� defines

a semimatroid whose semilattice of flats is isomorphic to the arrangement’s poset of
intersections. In our case, associated to A� we have a semimatroid S D .S;K; rk/
with L.S/ ' C.A�/. On this semimatroid the group of deck transformations acts,
defining a Zkd -semimatroid SA.
Lemma 9.2. Let A be an Abelian arrangement. Then SA is well-defined. Moreover,
(i) ISA

' I.A/;
(ii) PSA

' C.A/;
(iii) SA is refined if A is essential.
More precisely, SA is 0; 1; 2-refined according to whether A is a linear, toric or
elliptic essential arrangement.
Remark 9.3. IfA is toric and central, then TSA

.x; y/ corresponds to the arithmetic
Tutte polynomial of the list of elements a1; : : : ; an of the Abelian group ƒ, see [43].

Proof of Lemma 9.2. We start with a general remark by recalling that K is given
by all sets of hyperplanes with nonempty intersection. Orbits of K under the deck
transformation group correspond bijectively to pairs .X; c/ where X � A and c is a
connected component of the intersection of the hypersurfaces in X .
Since A is finite and any intersection has only finitely many components, the

finiteness-of-orbits condition in Definition 8.2 follows and so SA is well-defined.
For (i) and (ii), notice that I.S/ and L.S/ are subsets of K , and orbits of the

induced action are, respectively,
� for ISA

: pairs .X; c/ where the characters defining the elements ofX are linearly
independent (overQ);

� for PSA
: pairs .X; c/ where the characters defining the elements of X form a

subset of faigi that is closed under linear dependency (overQ).
Comparing these descriptions with the definitions given above, claims (i) and (ii)
follow.
For (iii) we first notice that the action is translative (see Example 2.9), then we

separate the three cases. In the linear case, the group is trivial, hence the action is
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clearly 0-refined. In the toric and elliptic case we can choose coordinates so that the
action of the deck transformation group coincides with addition by elements of the
sublattices Lt WD Zd � Cd , resp. Le WD Zd C iZd � Cd . The stabilizer subgroup
of an affine subspaceW equals the stabilizer subgroup of its translate at the originW0,
namelyW0\Lt , resp.W0\Le . Being pure, the stabilizer is a direct summand ofLt ,
resp. Le , of rank equal to dimC W (resp. 2 dimC W ). Now, essentiality of A implies
that theminimal intersections ofA� have dimension 0, and so that the poset rank ofW
in C.A�/ equals the codimension ofW : �.W / D d � dimC W . The stabilizer ofW
has then rank d � �.W / (resp. 2.d � �.W //). Via the isomorphism C.A�/ ' L.S/

we conclude that the stabilizer of every subset X 2 K , which coincides with the
stabilizer of the intersection associated toX , has rank d ��.X/ (resp. 2.d ��.X//).
This proves thatSA is 1-refined, resp. 2-refined depending on whether we are in the
toric or elliptic case.

We are naturally led to the following definition.
Definition 9.4. Let A be an Abelian arrangement. The Stanley–Reisner ring of A is
R.A/ WD RSA

.
Our point of view allows us to also immediately deduce some properties of those

rings for the general case of Abelian arrangements, which we state in the following
summary of our results in the general context of the theory of Abelian arrangements.
Theorem 6. Let A be an Abelian arrangement (i.e., a linear, toric or elliptic
arrangement) with associated G-semimatroid SA. Let r denote the rank of SA

and recall the number ıSA
from Definition 8.16.

(i) The poset C.A/ is CM.ıSA
/. Moreover,

�C.A/.t/ D .�1/
rTSA

.1 � t; 0/:

Its (topological) Betti numbers are evaluations of the action’s Tutte polynomial
according to Corollary 8.23.

(ii) The simplicial poset I.A/ is CM.ıSA
/, and its characteristic polynomial is

�I.A/.t/ D .�1/
rTSA

.1 � t; 1/:

(iii) The arrangement’s Stanley–Reisner ring R.A/ is Cohen–Macaulay in charac-
teristic 0 and every characteristic not dividing ıSA

. This ring is isomorphic
to the ring of invariants of the Stanley–Reisner ring associated to the periodic
hyperplane arrangement A�.

(iv) The h-polynomial of R.A/ is t rTSA
.1
t
; 1/.

Proof. Item (i) is Theorem 5, item (ii) follows from Theorem 4 and [9, 59], (iii)
combines Theorem 2 and Theorem 1. Finally, (iv) follows with Lemma 8.9 (i).
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Remark 9.5. Notice thatwhenA is central and toric, via the case k D 1 of Lemma9.2
we recover the ring of [36, 39], where item (iv) of Theorem 6 is proved in the
corresponding situation.
Example 9.6 (Continued from Example 9.1). The additive group of translations
G WD Z3 � C3 acts on the arrangementA� and hence also on its semimatroid. Every
intersection X of the hyperplanes from A� is parallel to some linear subspace X0
obtained intersecting the hyperplanes of the arrangement A0 WD fHi;0giD1;:::;4. Any
translation stabilizes globally X if and only if it stabilizes X0: hence X and X0 have
the same stabilizer subgroup. Now, stab.X0/ D Z3\X0 is a direct summand of Z3,
free of rank equal to the dimension of X0 and X , namely — since L.A�/ is ordered
by reverse inclusion— equal to .3� rk.X//, showing that the actionSWG ˚ L.A�/

is 1-refined as is expected for a toric arrangement.
Let us now compute the number ıS. A maximal independent set of the

semimatroid associated toA� is a tripleB WD fHi1;j1 ;Hi2;j2 ;Hi3;j3g of hyperplanes
whose intersection is nonempty (and has dimension 0). Now, the stabilizer of B is
trivial, therefore G.B/ D G. We have

H
.B/
1 D stabG.B nHi1;j1/ D Z3 \Hi2;0 \Hi3;0;

a subgroup of rank 1 of which we can choose a generator w1, and similarly we can
choose generators w2 for H .B/

2 and w3 for H .B/
3 . These wi are well-defined up

to sign reversal. Then, ıS.B/ D j det.w1; w2; w3/j. The following table lists the
different values for all possible B .

B (ordered) w1 w2 w3 ıS.B/

H1;�;H2;�;H3;�

0BB@ 5

�1

�1

1CCA
0BB@01
0

1CCA
0BB@00
1

1CCA 5

H1;�;H2;�;H4;�

0BB@ 5

�1

�2

1CCA
0BB@ 0

1

�1

1CCA
0BB@00
1

1CCA 5

H1;�;H3;�;H4;�

0BB@ 5

�2

�1

1CCA
0BB@ 0

1

�1

1CCA
0BB@01
0

1CCA 5

H2;�;H3;�;H4;�

0BB@ 5

�2

�1

1CCA
0BB@ 5

�1

�2

1CCA
0BB@ 5

�1

�1

1CCA 5
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We conclude that ıS D gcdf5; 5; 5; 5g D 5, hence both I.A/ and C.A/ are
Cohen–Macaulay in characteristic 0 and every characteristic that does not divide 5.
In fact, as was computed in [48, Section 8], for both posets the first integer homology
group is Z=5Z (while the second homology group is free in both cases).

9.2. .p; q/-arrangements. We close by considering a class of arrangements intro-
duced by Liu, Tran and Yoshinaga [37], which we call “.p; q/-arrangements”. Given
two integers p; q 2 N, consider the connected Abelian Lie group

Gp;q WD .S
1/p �Rq:

Every a 2 Zd induces a group homomorphism 'aW .Gp;q/
d 7! Gp;q; z 7!

P
aizi .

Every finite subset A � Zd n f0g defines the .p; q/-arrangement

A WD fker 'a j a 2 Ag:

Remark 9.7. Central linear arrangements can be naturally regarded as .0; 2/-
arrangements; central toric arrangements as .1; 1/-arrangements, and central elliptic
arrangements as .2; 0/-arrangements.
We can identify the universal cover ofGp;q withRp�Rq , and the arrangementA

in .Gp;q/
d lifts to aZpd -periodic arrangementA� of affine subspaces in .Rp�Rq/d .

Lemma 9.8. The poset of intersections C.A�/ is a geometric semilattice. Thus, A
naturally defines a Zpd -semimatroid SA.

Proof. Write .Gp;q/
d as ..S1/d /p � .Rd /q . Then, for every homomorphism 'a the

hypersurface ker 'a is of the form .Ka/p � .H .0/
a /q , where

Ka WD
˚
x 2 .S1/d j

Q
i .xi /

ai D 1
	

and, for every k 2 Z, we define the hyperplane

H .k/
a WD

˚
y 2 Rd j

P
i aiyi D k

	
:

Accordingly, passing to the universal cover, the elements of the arrangement A� are
all affine subspaces of the form

Sa;k WD H .k/
a � : : : �H

.k/
aœ

p times

�H .0/
a � : : : �H

.0/
aœ

q times

for a given k 2 Z and a 2 A.
Consider the affine hyperplane arrangement B WD fH .k/

a j a 2 A; k 2 Zg in Rd

and, for every affine subspace V of Rd , let V0 denote its translate at the origin. Then

C.A�/ D fV p � V
q
0 j V 2 C.B/g
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from which we see that there is a poset isomorphism C.A�/ ' C.B/: Now, C.B/
is a geometric semilattice because B is an arrangement of hyperplanes. This proves
that C.A�/ is a geometric semilattice.
The action of Zpd on C.A�/ is induced by its action on A� as the deck

transformation group of the universal covering of .Gp;q/
d , which coincides with

the action (by translations) of the discrete subgroup

Zpd � f0gqd � Rdp �Rdq:

This action is translative because it falls under Example 2.9. Moreover, the stabilizer
of any V p � V q0 2 C.A�/ is the subgroup�

Zpd � f0gqd
�
\
�
V
p
0 � V

q
0

�
;

which is a direct summand of rank dimV p0 D p dimV . Now, via the isomorphism
C.A�/ ' C.B/ we see that the rank of V p � V q0 in C.A�/ equals the rank of V
inC.B/, which is the codimension ofV . We conclude that the action isp-refined.

In analogy with the previous sections we make the following definition.
Definition 9.9. Let A be a .p; q/-arrangement. The Stanley–Reisner ring of A is
R.A/ WD RSA

.
Notice that, if A is the .p; q/ arrangement associated to a linear, toric or elliptic

arrangement (cf. Remark 9.7) we recover the rings defined in Subsection 9.1. In
general, we immediately obtain the following analogue of Theorem 6.
Theorem 7. Let A be a .p; q/-arrangement with associated G-semimatroid SA.
Let r denote the rank of SA and recall the number ıSA

from Definition 8.16.
(i) The poset C.A/ is CM.ıSA

/. Moreover,

�C.A/.t/ D .�1/
rTSA

.1 � t; 0/:

Its (topological) Betti numbers are evaluations of the action’s Tutte polynomial
according to Corollary 8.23.

(ii) The simplicial poset ISA
is CM.ıSA

/, and its characteristic polynomial is

.�1/rTSA
.1 � t; 1/:

(iii) The arrangement’s Stanley–Reisner ring R.A/ is Cohen–Macaulay in charac-
teristic 0 and every characteristic not dividing ıSA

.
(iv) The h-polynomial of R.A/ is t rTSA

�
1
t
; 1
�
.

Remark 9.10. For a .p; q/-arrangement A, the Tutte polynomial ofSA in the sense
of [28], which we mention in Theorem 7 above, equals the Gp;q-Tutte polynomial
considered by Liu, Tran and Yoshinaga [37, Proposition 3.6 and §4].
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