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Enriched pre-Lie operads and freeness theorems
Vladimir Dotsenko and Loic Foissy

Abstract. In this paper, we study the €-enriched pre-Lie operad defined by Calaque and Will-
wacher for any Hopf cooperad € to produce conceptual constructions of the operads acting
on various deformation complexes. Maps between Hopf cooperads lead to maps between the
corresponding enriched pre-Lie operads; we prove criteria for the module action of the domain
on the codomain to be free, on the left and on the right. In particular, this implies a new func-
torial Poincaré—Birkhoff—Witt type theorem for universal enveloping brace algebras of pre-Lie
algebras.

1. Introduction

Pre-Lie algebras, also known as right-symmetric algebras, appear in a wide range of
research areas from algebra and combinatorics to differential geometry and homotopy
theory. One of the early examples of a pre-Lie algebra structure is that on the (shifted)
Hochschild cohomology complex of an associative algebra which was famously used
by Gerstenhaber [19] to introduce a differential graded Lie algebra structure on that
complex. That differential graded Lie algebra controls deformation theory of associat-
ive algebras, illustrating an important thesis of contemporary deformation theory: any
reasonable deformation problem is controlled by an appropriate differential graded
Lie algebra [33,41]. Hochschild cohomology of an associative algebra has a structure
of an algebra over the homology of the little disks operad [22], prompting the celeb-
rated Deligne conjecture that chains of the operad of little disks act on the Hochschild
complex. In many existing proofs of that conjecture [20,26,36,47], one uses a remark-
able differential graded operad which is often referred to as the brace operad. In fact,
the existing terminology is a little bit confusing: Getzler [21] and Kadeishvili [24]
observed that the pre-Lie algebra structure on the shifted Hochschild complex can be
regarded as a part of a bigger structure (still concentrated in homological degree zero)
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which is also called a brace algebra. Such brace algebras also independently appeared
in the work of Ronco on free dendriform algebras [42], leading to the Cartier—Milnor—
Moore type theorem for dendriform algebras [6,43].

The two different brace operads are in fact intimately related, and their relation-
ship is best explained by the Willwacher’s theory of operadic twisting [9]: the twisting
procedure applied to the Getzler—Kadeishvili-Ronco brace operad is the differential
graded brace operad whose different versions were used in various proofs of the
Deligne conjecture. In their recent work on a higher version of Kontsevich’s form-
ality theorem, Calaque and Willwacher [5] generalised that approach and defined, for
any Hopf cooperad € (not necessarily commutative), the €-enriched operad PreLiee.
It is well known that elements of the classical pre-Lie operad are linear combinations
of labelled rooted trees [7], where vertices carry numeric labels coming from num-
bering the inputs of an operation. In the case of the operad PreLiee, the elements are
C-enriched labelled rooted trees, that is trees whose vertices carry, in addition to the
numeric labels, extra decorations from € whose arities match the number of inputs of
vertices. This type of decoration does not use elements of € as mere labels but rather
relies on the structure coming from €, and so has a clear commonality with the clas-
sical notion of enrichment from category theory, hence the terminology. In general,
throughout the paper, we use the word “decorated” when we talk about labels without
extra structure, and “enriched” when the extra structure on labels plays a key role in
the definitions.

Calaque and Willwacher established that the operad PreLie¢ acts on the under-
lying space of the deformation complex of any map from O to a given operad ¢’,
where O is the Koszul dual operad of the cooperad €; the corresponding differential
graded operad of €-enriched braces is then obtained by operadic twisting. A version
of this operad was implicitly defined within the general theory of natural operations
on deformation complexes proposed by Markl [34]; papers that utilise that theory in
the case of the operad Lie [35] and in the case of the associative operad [2, 3] men-
tion the general construction of braces on cohomology of operadic algebras, but that
direction does not seem to have been pursued until recently.

This paper studies the operad PreLiee from the algebraic viewpoint. Our main res-
ult concerns the map PreLieg — PreLiee arising from a Hopf cooperad map 8 — €.
We prove criteria relating natural properties of that map to freeness of PreLiee as a
PreLieg-module (on the left and on the right). Our arguments rely on proposing an
enrichment of another operad based on labelled rooted trees, the operad NAP intro-
duced by Livernet [29]. It is known that the composition rule in the operad NAP may
be viewed as retaining the “leading terms” of the composition in the operad PreLie; we
show that a version of that statement can be established and used in the enriched con-
text as well. Moreover, we obtain a new conceptual interpretation of the operad NAP
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and its generalisations via the left adjoint of the derivative functor from operads to
Cauchy monoids.

There are several motivations for our result. Freeness of the left module struc-
ture allows one to prove that free PreLiee-algebras are free as PreLieg-algebras,
generalising known results like the second author’s theorem [17]. Freeness of the
right module can be used in the categorical framework for Poincaré—Birkhoff—Witt
theorems developed in the first author’s joint work with Tamaroff [15], implying a
functorial PBW type theorem for universal enveloping PreLie¢-algebras of PreLieg-
algebras. In particular, our results lead to a functorial PBW type theorem for universal
enveloping brace algebras of pre-Lie algebras, and, as a byproduct, to another proof
of a functorial PBW type theorem for universal enveloping dendriform algebras of
pre-Lie algebras first proved in [15]. A weaker PBW type theorem for universal
enveloping brace algebras of pre-Lie algebras was recently proved by Li, Mo, and
Zhao [28] using Grobner—Shirshov bases. Their methods lead to normal forms in
universal enveloping algebras and as such are useful for applications, but our result in
particular implies that the PBW isomorphisms can be chosen functorially with respect
to algebra morphisms.

This is a short note, and we do not intend to overload it with excessive recollec-
tions. All vector spaces in this paper are defined over a field k of characteristic zero.
When writing down elements of operads, we use small latin letters as placeholders; if
one works with algebras over operads that carry nontrivial homological degrees, there
are extra signs which arise from applying operations to arguments via the usual Koszul
sign rule. Readers whose expertise comes from combinatorics are invited to consult
the monograph [32] for intuition on algebraic operads. However, for some specific
definitions and notation as well as the viewpoint that emphasises the combinatorics
of species, we lean towards the monograph [1]. In particular, we use the notation x
for the Hadamard tensor product of species and the notation - for the Cauchy tensor
product of species, so that

(PxQU)=PUI)®aA),
@)= P PU)AK).

I=JuK

The singleton species is denoted X. We use the notation uCom and uAss for the
operads of unital commutative associative algebras and unital associative algebras,
respectively. A species whose variations play a central role in this note is that of
labelled rooted trees; it satisfies the functional equation

RT = X - uCom(RT).
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In plain words, this equation means that the datum of a labelled rooted tree consists
of the root label and a possibly empty disjoint union of labelled rooted trees on the
remaining labels (which is nothing but a uCom-product of labelled rooted trees).

2. The monoid enriched operad NAP and its algebraic properties
Let § be a species. The species RTs of §-decorated rooted trees is defined by a func-

tional equation
RTs = X - §(RT).

RTs() = P Q) S(inr().

TeRT(I) il

Explicitly, we have

Elements of RTs are labelled rooted trees where each vertex is additionally decorated
by an element of § whose arity matches the number of incoming edges of that vertex.
It is be convenient to think of these trees as elements of the arity zero component of
the free operad generated by §; later in this note, elements of non-zero arities will
also become relevant for one of the key constructions.

The following definition goes back to works of Mendez and his collaborators [37,
39,40], which in fact date before the “renaissance of operads” in the mid-1990s. For
brevity, we shall use the term “Cauchy monoid” for monoids in the monoidal category
of species with respect to the Cauchy tensor product.

Definition 1. Let M be a Cauchy monoid. We define an operad structure on the spe-
cies RTy as follows. The result of insertion of a decorated rooted tree S inside a
vertex labelled i of another decorated rooted tree 7" has the underlying labelled rooted
tree where S is grafted in the place of the vertex i, and all the subtrees growing from
the vertex i in 7 are grafted at the root of S. The decorations of all vertices except
for the root of S remain the same, while the label of the root of S becomes equal to
the product ab € M, where a is the decoration of the vertex i in the decorated tree T
and b is the original decoration of the root of the tree S. This operad is denoted NAP 4
and is called the M-enriched non-associative permutative operad.

In all examples in the literature that we are aware of, only commutative Cauchy
monoids M are used. For instance, if M = uCom with its natural Cauchy monoid
structure, one obtains the operad NAP of Livernet [29]; the cases of some other com-
mutative monoids M are behind the NAP-flavoured operads considered in [13] and
in [45]. However, this construction is valid for all Cauchy monoids, and in some cases
produces operads very different from NAP, as we shall see below.
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Example 1. Let us give an example of a calculation in the operad NAP . Suppose
that a, b € M({1}), and let bb denote the image in B({1,2}) of the tensor b ® b in
B{1}) ® B({2}) under the product map B - B — B. Then we have

G.¢) 3o (.o
B Go GO (G a,
@ - @ Ox @ - @ Ox @ )
2.9) 2.9
Here ¢ € 8B(D) is the unit of B, and vertex labels like 1, » mean that the vertex is
labelled by 1 and additionally decorated by b.

We shall now give a presentation of the operad NAP, by generators and relations.
Recall that a labelled rooted tree T is called a corolla if for each of its non-root
vertices v, we have in; (v) = @. We define an M-corolla to be a corolla for which the
non-root vertices are decorated by the unit of M.

Proposition 1. The operad NAPy is generated by M-corollas. If we denote by
(r;$1,...,8m)a the corolla with the root labelled by r, the non-root vertices labelled
by s1,...,Sm, and the root decoration o, all relations in the operad NAPy follow
from the relations

((rist,..o8n)astt, o tm)g = (FiS1,. . Sty s tm)ap- (1)

Proof. Relations (1) follow from the rule for the operad composition. Moreover, these
relations already imply that there is a species surjection RTy —> NAP,(. Indeed,
one can use them to show that the operad NAP, is spanned by iterated insertions
of generators avoiding insertions at the root vertex, and the combinatorics of those
iterated insertions is precisely the combinatorics of M-enriched labelled rooted trees.
Consequently, all relations in NAP ¢ follow from (1). ]

Relations (1) lead to a different interpretation of the operad NAP,,. Recall that
for an operad O, the species derivative d(() defined by the formula

AO)(I) = O(I U {x})

has a natural structure of a Cauchy monoid (via composition of operations using just
the slot *), see, for example, [38, Section 3.4.3]. It turns out that the functor NAP can
be interpreted as a version of the enveloping operad of a graded algebra defined and
studied in [11]; the reader is encouraged to consult [48] where a general set-up for
studying similar functors is established.

Proposition 2. The derivative functor from operads to Cauchy monoids admits a left
adjoint, which is given by the functor NAP.



V. Dotsenko and L. Foissy 28

Proof. We have to prove that
Hommonoids(Mv 8((9)) = Homoperads (NAP,M s (9)

We first note that the Frobenius reciprocity law for group representations implies that
for all » > 0 we have

Homs, (M (n). Resg"*' (O(n + 1)) 2 Homs, ., (Indg" ' (M(n)). O(n + 1)).

Since
Resy'™ ' (O(n + 1)) = (0)(n)

as S, -modules and

Indg"* ' (M(n)) = (X - M)(n + 1)

as S,+1-modules, the Frobenius reciprocity isomorphisms assemble into an isomor-
phism
Homgpecies (M, 0(0)) =2 Homgpecies (X - M, O).

Homomorphisms of Cauchy monoids are maps of species which are compatible with
the products. On the other hand, the species X - M is precisely the species of M-
corollas, and morphisms of operads from NAP to @ are maps of generators that are
compatible with the relations between them. Examining the relations (1), we see that
the conditions we impose in the two cases coincide. ]

Since the composition of left adjoint functors is itself a left adjoint, we arrive at
the following result which shows that operads arising from the functor NAP do not
have to exhibit any familiar NA P-type features.

Corollary 1. For a free Cauchy monoid M, the operad NAP y is free.

We shall now prove two results on module freeness for the functor NAP. The first
of them is completely straightforward, while the second one exhibit interesting unex-
pected subtleties. We invite the reader to compare the two theorems of this section
with [10, Theorem 4]; while the relationship between these results is not at all direct,
they follow the same logic.

Theorem 1. Let B, € be two connected Cauchy monoids, and let ¢: B — € be a
Cauchy monoid homomorphism, making € a B-bimodule. We shall consider the left
NAPg-module structure on NAPg arising from the map of operads

NAP(¢): NAPg — NAPe .

If the Cauchy monoid € is free as a left B-module, the operad NAPe is free as a left
NAPg-module.
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Proof. Letus denote by £ a species that freely generates € as a left 8-module, so that
on the level of species we have an isomorphism € = 8 - £. Using that isomorphism,
we may think of each vertex label of a €-decorated labelled rooted tree as a combin-
ation of labels each of which splits the set of incoming edges into an ordered disjoint
union of a set decorated by 8B and a set decorated by £. Let us take an individual
tree T’ for which each set of incoming edges of each vertex comes with a splitting
like that. Let us consider the maximal connected subgraph 7 of that tree containing
the root whose edges are all decorated by B. We note that in the operad NAPe we
can write 7" as a composition

T/ = y(Ty‘SlavSm)’

where for each i the set of input edges of the root vertex of the tree S; is decorated
by &£. Since the left B-module € is free, this representation leads to a well defined
map of species

NAP¢ — NAPg oT,

where Tzlz is the species of all €-decorated rooted trees for which the input edges of
the root vertex are decorated by &£. Moreover, the map

NAPg o7} <> NAPe¢ o NAPe — NAPe

obtained from the obvious embedding and the operadic composition is the inverse of
the map we constructed, and the resulting isomorphism of species

NAP¢ = NAPg o7}
is immediately seen to be a left NAPg-module isomorphism. |

The theorem we just proved makes one wonder whether the same is true for right
modules. Originally, we thought that it was the case, and it was not until thorough
reading of the anonymous referee that we became convinced that one needs additional
assumptions for that. For the reader’s convenience, let us offer an example illustrating
a problem that may emerge.

Example 2. Consider the Cauchy monoid 8B generated by two elements x, y € 8(1)
subject to one sole relation xx = yy. Furthermore, consider the Cauchy monoid €
generated by three elements 7, x, y € B(1) subject to relations xx = yy, xr = yr =
rr = 0. Then there is an obvious map 8 — €, and it is immediate to see that €
is a free right 8-module (generated by the unit and r). Let us show that the operad
NAPe is not free as a right NAPg-module. For that, we shall consider the following
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equalities in the operad NAPe:

We observe that the equality of the element on the left and the element on the right is a
nontrivial relation in the right NAPg-module NAPeg: the presence of the decoration r

are indecomposable elements of that module.

implies that the elements

This example means that we need to impose some constraints, and in fact, gives a
good hint as to what constraint to impose. The final result is as follows.

Theorem 2. Let B, € be two connected Cauchy monoids, and let ¢: B — € be a
Cauchy monoid homomorphism, making € a 8B-bimodule. We shall consider the right
NAPg-module structure on NAPg arising from the map of operads

NAP(¢): NAPg — NAPe .

Suppose that one of the following conditions holds:

o the Cauchy monoid 8B is free,

e the Cauchy monoid 8B is free commutative.

Then the operad NAPe is free as a right NAPg-module.

Proof. Letus denote by R C € a species that freely generates € as a right 8-module,
so that on the level of species we have € =~ R - 8. Using that isomorphism, each

€-decorated labelled rooted tree can be written as a combination of trees for which
each label of each internal vertex is a product

x-yeR(J)®B(K)C R-B;

here J U K is the set of the input edges of that internal vertex. Moreover, because of
our hypothesis on 83, we may assume that

y=y1-yp € B(K)) ®---® B(K)p)
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is a product of generators of B (either defined uniquely or uniquely up to permutation
of factors). For an individual tree 7" like that, we shall refer to the edges from J as
r-edges and to the edges from K as b-edges.

For the following definition, we shall fix a vertex j of our tree 7’. We shall call j
important if the maximal subtree of 7" rooted at j contains at least one r-edge. For
an important vertex j, let

X yreyp € ﬂ(])@ﬁﬁ’(Kl)@”'@e@(Kp)

be the decomposition of its label. We shall call the B-factor y; very good if for each
b-edge e from K;, all of its descendant edges (edges e’ for which the path to the root
from e’ passes via e) are b-edges as well. Very good factors more or less determine
what can be factored out as the right action of the operad NAPg: it is at this point
that it becomes important whether 8 is free as a Cauchy monoid or as a commutative
Cauchy monoid, and we shall now explain how to deal with both cases.

Case 1. If the Cauchy monoid B is free, all the “terminal” very good B-factors of
important vertices can be factored out. To make this precise, for each important ver-
tex j, we define the subtree 7; of T’ as follows: it is rooted at j and includes all
descendants of j for which the path to the root passes via an edge from Ky, for each s
such that the factors yy, ..., y, are all very good. (In particular, for some vertices j,
the subtree T} consists just of the vertex j: this means that the last 8-factor y, is
not very good.) Then in the operad NAPe we can write any tree 7’ with the set of
important vertices {J1, ..., jm} as a composition

T =y(S;Tj,....T;,),

where the tree S has m vertices, and the last B-factor of each of them, if exists, is not
very good. Such trees S span a species that we denote 7.

Case 2. If the Cauchy monoid 8B is free commutative, all the very good factors of
important vertices can be factored out. Namely, for each important vertex j, we define
the subtree 7; of T’ as follows: it is rooted at j and includes all descendants of j
for which the path to the root passes via an edge from K, for each s such that the
factor ys is very good. (In particular, for some vertices j, the subtree 7; consists just
of the vertex j: this means that this vertex has no very good B-factors.) Then in the
operad NAPe we can write any tree T’ with the set of important vertices {j1, ..., jm}
as a composition
T' = y(S:Tj,..... Tj,),

where the tree S has m vertices, and each of them has no very good B-factors. Such
trees S span a species that we denote 7.
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Combining the freeness of the right 8-module € with the freeness of the Cauchy
monoid B, in each of these two cases our composition formula leads to a well defined
map of species NAPe — T o NAPg. Moreover, the map

T4 o NAPg <> NAPe o NAPe — NAPe

obtained from the obvious embedding and the operadic composition is the inverse of
the map we constructed, and the resulting isomorphism of species

NAP¢ = 7} o NAPg

is immediately seen to be a right NAPg-module isomorphism. ]

3. The Hopf cooperad enriched operad PreLie and its algebraic
properties

The operad NAP is, in a sense, a degeneration of a much more interesting operad on
the linearisation of the species of rooted trees, the pre-Lie operad. Let us recall the
construction of that operad due to Chapoton—Livernet [7]. The underlying species of
the operad PreLie is also the species RT of labelled rooted trees, but the insertion of a
labelled rooted tree S at a vertex i of a labelled rooted tree T is equal to the sum

Z ToifS,

Fring G)—=>J

where the sum is over all functions f from the set of incoming edges of the vertex
labelled i to the set J of vertices of S; the labelled rooted tree T' oif S is obtained
by grafting the tree S in the place of the vertex i, and grafting the subtrees growing
from the vertex i in T at the vertices of S according to the function f, so that the set
of incoming edges of each vertex j becomes ing(j) U f~!(j). Of course, the NAP
insertion corresponds to the function f for which f~!(j) = @ for all j different from
the root.

We are not aware of a way to generalise this construction to an operad structure
on RTj where M is an arbitrary Cauchy monoid; it turns out that the right structure
on the species of decorations is that of a Hopf cooperad. The corresponding definition
was originally given by Calaque and Willwacher [5, Section 3.1.2]; we spell it out in
detail to ensure consistency with our terminology and notation.

We feel that it would be beneficial to the reader to have a reminder of precise defin-
itions related to operads and to Hopf cooperads so that there is no confusion among
the existing variations of that notion (for example, the references [18,25] assume Hopf
cooperads commutative while the references [1,22] do not).
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Definition 2. A cooperad is a coassociative comonoid in the category of species
equipped with the operation o’ defined by

P Q@ =[[(Pmeam)™

We remark that for each cooperad €, we may use the structure map A: € — € o' €
followed by appropriate counit maps € — €(1) — k to get a cooperad with respect
to the definition involving “composition coproducts™ [18]. It is well known that for
each tree T with the set of leaves I there is a map Ar:€(I) — T¢(€)(1) from
the component of the cooperad € with the indexing set / to the component of the
cofree cooperad on € with the same indexing set; we shall refer to this map as the
decomposition map according to the tree 7. We refer the reader to [18, Theorem 9.1.9
and Section C.1] for a discussion of this construction in the case of €(0) = {0} and
€ (1) = k; if one merely needs to construct the map, and not establish an equivalence
of several different definitions, these assumptions are not necessary, and the map Ar
is readily available.

Definition 3. A Hopf cooperad is a monoid in the symmetric monoidal category
(Coop, x, uCom™) arising from the “standard” (factor-wise) structure of a cooperad
on the Hadamard product €; x €, of two cooperads. In plain words, a Hopf cooperad
is a cooperad € equipped with an associative product p: € x € — € and a unit map
n: uCom* — € which are morphisms of cooperads and satisfy the usual axioms of
the product and the unit in a monoid. A Hopf cooperad € is said to be connected if
the map 719: k = uCom™(0) — €(0) is an isomorphism.

The next result is essentially a dual of [30, Theorem 2.3.3]; because of its import-
ance for our arguments, we give a complete proof. A particular case of this result is
also implicit in [5].

Proposition 3. Let € be a connected Hopf cooperad. Then the underlying species
of € can be given a structure of a Cauchy monoid (denoted by €°). This Cauchy
monoid structure depends only on the Hopf cooperad structure on €, and therefore it
is functorial with respect to maps of cooperads.

Proof. Because of the connectedness assumption, the composite
/ ®n ®my)Sm
€(n) — (€' €)(n) — (E(n +m) ® (E(1)*" ® €(0)*™))
— (C(n +m) ® (k2 ® €(0)®™))>" )
of the full cooperad decomposition map, the projection on the appropriate summand

of € o’ € (the summand of (€(n 4+ m) ® € *+t™)Sntm where we take the terms
of €' +™) (1) corresponding to partitions into 7 singletons, and rearrange terms using
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the symmetric group actions using the standard identification of invariants with coin-
variants), and the cooperad counit €(1) — k can be viewed as a map

e(n) — € +m)S" C €(n + m).
Consequently, for all 7, J we have a sequence of maps
Cl)®EJ)—CcluJ)yeluJ)—-¢elulJ), 3)

where the last arrow is simply the product in the algebra €(/ U J); the datum of all
such maps is precisely a map v: € - € — €. The associativity of v follow from the
fact that p is a morphism of cooperads, from the associativity of the product u, and
from the coassociativity and counitality of the cooperad decomposition maps. Let us
show that the element 1 € k = €(0) is the unit of the associative product v. We note
that since the unit map 7 is a morphism of cooperads, the image of the composite

k = €(0) — (€ €)(0) > (E(n) ® €0)®")™ @)

of the full cooperad decomposition map and the projection on the appropriate com-
ponent of € o’ € sends the basis element 1 €k =€ (0) to the 1, (1) ® 1®", where 1, (1)
is the image of the basis element 1 €k =uCom™ (n) under the unit map 7: u"Com™ — €.
Since 1, (1) is precisely the unit of the associative algebra € (n), this proves the unit
axiom for the product v. Consequently, € acquires a Cauchy monoid structure. ]

We are now ready to define the protagonist of this paper, the operad PreLiee.

Definition 4. Let € be a connected Hopf cooperad. We shall define an operad struc-
ture on RTe as follows. Let S, T be two €-decorated rooted trees. The insertion
operation T o; S, where i is a vertex of T, is defined by the formula
> 18ls
fring ()—J
generalising the Chapoton—Livernet formula, which we shall now describe. First, the
if applied
to the underlying rooted trees of 7 and S. The decorations of vertices of this tree

underlying (non-decorated) rooted tree of TSif S is given by the operation o

are as follows. For each vertex coming from the tree 7' (except for the vertex i), its
decoration is equal to its decoration in the tree T'. For decorations of vertices coming
from the tree S, one has to invoke the cooperad structure of €. Note that the opera-
tion oif changes the sets of incoming edges for vertices coming from the tree S: the
set of incoming edges of each vertex j becomes ing(j) LI f~1(j). We shall define
an auxiliary tree S; s which is obtained from the underlying rooted tree of S by cre-
ating at each its vertex labelled j new half-edges (leaves) indexed by the set f~1(j).
The full set of leaves of the tree S;, ¢ is ing (i), therefore one may apply the cooperad
decomposition map Ag; . to an element ¢ € €(inr(i)); since in this tree the set of
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incoming edges of each vertex j is ing(j) U f~1(j), the decomposition map gives
an element from
Q€lins(/)u /'), 5)
jeJ

At the same time, original decoration of the tree S belongs to

Q) elins (/). 6)

jeJ

To obtain the decoration in TSif S of each vertex j coming from the tree S, one has
to compute the product

C(ing (j) U f71(j)) ® E(ing (j)) = Cling () U f~'(j)) ® €ling () L f~1(j))
— C(ing(j) U f()))

(defined analogously to the sequence of maps (3)) of the decoration arising from the
decoration of the vertex i under the decomposition map and the decoration of the
vertex j in S. The collection of all insertion operations 7 o; S makes the collec-
tion of €-decorated rooted trees an operad which is denoted PreLiee and called the
C-enriched pre-Lie operad. The construction € + PreLiee (creating the €-enriched
pre-Lie operad from a Hopf cooperad €) is functorial in €: if ¢: € — D is a map of
connected Hopf cooperads, there is an induced map

PreLie(¢): PreLiee — PreLiey .

Remark.

1. If € is a usual associative and coassociative bialgebra, one can regard it as a
Hopf cooperad supported at arity one. One can extend it in an obvious way by
an element 1 of arity zero; the pre-Lie operad constructed of this Hopf cooperad
can be interpreted as a linearised version of the “word operad” We [12,23].

2. For the case € = uCom®*, the decorations of vertices are “trivial” (each decor-
ation is determined by the number of input edges), and one obtains the pre-Lie
operad PreLie itself.

3. For the case € = uAss™*, decorating each vertex of a tree with an associative
(co)operation indexed by the inputs is the same as considering planar rooted
trees. Moreover, the way decorations are used in the definition above in fact
leads to the classical construction of the brace operad via substitutions of planar
rooted trees [6, 16].

As we mentioned above, the sum defining insertion formula in the operad PreLie
includes the term describing the tree insertion in the operad NAP; this allows to utilise
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the operad NAP as a technical tool in results about the pre-Lie operad [4, 17]. We shall
now see that the same is true for the operad PreLiee, so that the operad structure of
PreLiee “deforms” the operad structure of NAPe by adding lower terms. We believe
that one can make the word “deforms” precise using a formalism similar to that of [44,
45], but it is not going to play a role in our arguments which rely on the following
elementary combinatorial observation.

Proposition 4. Let us consider for each tree T € RT(I), the induced partial order
onl. Foranyi € I, and for any tree S € RT(J), the Chapoton—Livernet composition
T o; S in the operad PreLie is the sum of all trees whose partial order on I o; J
refines the order obtained from the orders on I and on J by identification of the root
vertex of S with i and whose restrictions to I and to J coincide with the partial orders
prescribed by S and by T, respectively.

Proof. This is an immediate reformulation of the definition. ]

This result allows us to refer to the term T oif S corresponding to the function f
for which f~1(j) = @ for all j different from the root, that is the insertion in the
operad NAP, as the leading term for the composition in PreLie. Similarly, we refer to
the term T?Sl.f S corresponding to the function f for which f~1(j) = @ for all j dif-
ferent from the root as the leading term for the composition in PreLiee. We shall now
see that this leading term is given by the composition in the operad NAPe« associated
to the Cauchy monoid €° from Proposition 3.

Proposition 5. In the law for the insertion operation T o; S in the operad PreLiee, the
leading term is precisely the insertion of S at the vertex i of S in the operad NAPe-s.

Proof. By definition, the underlying labelled rooted tree of T o; S is obtained by the
insertion in the operad NAP. Let us examine the €-decoration of that tree. According
to the general rule, one must compute the cooperad decomposition of the decoration
of i corresponding to certain tree I". That tree I" is obtained from the labelled rooted
tree of S by adding at its root vertex r extra incoming half-edges that are indexed by
the set in7 (7). As an example, for a concrete insertion 7' o; S we have

We note that cooperad decomposition map corresponding to this tree is obtained in
two steps. The first is the decomposition

C(in7(i)) — €(inr (i) Uing(r)),
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which is a particular case of the maps (2) used to define the Cauchy monoid structure,
and the second is made of maps (4) which reproduce the decomposition maps in the
cooperad uCom*. As a consequence, multiplying the decorations of vertices of S by
the decorations obtained by applying this decomposition map to the decoration of the
vertex i in T simply multiplies the label of the root vertex of S by the label of i on the
left; all other decorations are elements 7; (1) which are the units of the corresponding
algebras. Therefore, we recover the operad structure of NAPeg-. ]

This calculation has one important implication.
Corollary 2. The operad PreLiee is generated by €-corollas.

Proof. This follows from Proposition | by an inductive argument using refinement of
partial orders. |

We shall now prove the following result which is the main theorem of this paper.

Theorem 3. Let B, € be connected Hopf cooperads, and let ¢p: B — € be a map of
Hopf cooperads. We consider the corresponding map of Cauchy monoids ¢°: B°*— €°,
the B*-bimodule structure on the Cauchy monoid €° defined using the map ¢°, and
the PreLieg-bimodule structure on PreLiee arising from the map of operads

PreLie(¢): PreLieg — PreLiee .

1. If the Cauchy monoid €* is free as a left B*-module, the operad PreLic® is
free as a left PreLie®-module.

2. Ifthe Cauchy monoid B° is free commutative and the Cauchy monoid €° is free

B

as a right B°-module, the operad PreLie® is free as a right PreLie™ -module.

Proof. From Theorems 1 and 2, we already know that

1. if the Cauchy monoid €° is free as a left 8°-module with the species of gen-
erators £, the operad NAPe- is free as a left NAPg.-module with the species of
generators ‘Tjé of all €-decorated rooted trees for which the input edges of the root
vertex are decorated by £,

2. if the Cauchy monoid B° is free commutative and the Cauchy monoid €° is
free as a right B°-module with the species of generators R, the operad NAPe- is free
as aright NAPg--module with the species of generators T spanned by €-decorated
rooted trees for which the vertices have no very good B-factors.

We claim that the same species of generators work in each of the two cases, that is

1. if the Cauchy monoid €° is free as a left B°-module with the species of gen-
erators £, the operad PreLiee is free as a left PreLieg-module with the species of
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generators Té of all €-decorated rooted trees for which the input edges of the root
vertex are decorated by &£,

2. if the Cauchy monoid B° is free commutative and the Cauchy monoid €° is
free as a right B°-module with the species of generators R, the operad PreLieg is free
as aright PreLie g-module with the species of generators T spanned by €-decorated
rooted trees for which the vertices have no very good 8B-factors.

To establish that, we shall use Proposition 5. Indeed, since the compositions in the
operad NAPeg- are the leading terms of the compositions in the operad PreLie¢, each
linear independence in the PreLieg-module PreLiee follows from the same linear
independence in the NAPg+-module NAPe- as the coefficients in composition change
by an upper triangular matrix corresponding to refinement of partial orders. ]

We remark that for any Hopf cooperad B, the Cauchy monoid B°* has a gen-
erator ¢ of arity one corresponding to a section of the counit map; that element ¢
generates a non-free Cauchy submonoid uCom™, and hence the Cauchy monoid B°
cannot be free. Thus, the first possibility of Theorem 2 cannot occur in this case, and
one may focus on the case of a free commutative Cauchy monoid.

4. Applications and further directions

4.1. Verification of the freeness condition for the unit map

Let us indicate two situations when € is free as a $8-module in the particular case
B = uCom™ (and the map ¢: uCom™ — € equal to the unit of the Hopf cooperad €).
Proposition 6. Suppose that one of the following conditions holds:

1. the Hopf cooperad € is augmented, i.e. there is a map of Hopf cooperads
£:€ — uCom™ such that en = id.

2. components of the cooperad € are finite-dimensional, the corresponding
Cauchy monoid €° is commutative, and € is a Hopf cooperad with comulti-
plication, i.e. there is a map of Hopf cooperads v: € — uAss®*.

Then the (uCom™)*-module action on €* via the unit map is free (on the left and on
the right).

Proof. To establish this result in the augmented case, we note that the composite

€ > € o € - uCom™ '€

made of the cooperad structure and the augmentation clearly defines a uCom™-co-
algebra structure on €. Moreover, since € is a Hopf cooperad, the Cauchy mon-
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oid structure on € and the thus defined uCom™-coalgebra satisfy the Hopf compat-
ibility relation in the symmetric monoidal category of species with respect to the
Cauchy tensor product. From the running connectedness assumption, it follows that
the Cauchy monoid €° is the twisted universal enveloping algebra of the twisted Lie
algebra of primitive elements [31,46], and the Cauchy monoid (uCom™)* is its subal-
gebra which is the universal envelope of the one-dimensional Lie subalgebra spanned
by the singleton species. From the analogue of the theorem of Poincaré-Birkhoff—
Witt for twisted universal envelopes, it follows that €° is free as a (uCom™)*-module,
both on the left and on the right.

To establish the result in the case of a cooperad with comultiplication, one starts
in the similar way and obtains a map

€ > € € — uAss* €,

which may be used to define a uAss*-coalgebra structure on €. Moreover, we assumed
the Cauchy monoid € to be commutative, so we have a commutative Cauchy monoid
structure and the coassociative coalgebra structure related by the Hopf compatibil-
ity relation. Thus, dualising the previous argument, we observe that €° is a free
commutative Cauchy monoid, and hence a free module (both on the left and on
the right) over the Cauchy submonoid generated by the singleton species, which is
exactly (uCom™)*. [

One important instance where the first situation described by the proposition
applies is the case of a Hopf cooperad obtained as cohomology cooperad of a topolo-
gical operad made of connected spaces; in this case the augmentation is the map that
kills all elements of positive homological degree. An instance of the second situation
is the case of the cooperad uAss* itself, which we shall now discuss in detail.

4.2. The “classical” brace operad

As we mentioned above, the operad PreLie s+ is the operad Br whose algebras are
classical brace algebras of [21,24,42]. The unit map uCom™ — uAss* leads to an op-
erad map

PreLie = PreLie,cy,pn* — PreLieyaz+ = Br,

which was previously constructed directly in [8].

Theorem 4. The brace operad Br is free as a left PreLie-module and as a right
PreLie-module.

Proof. According to the second part of Proposition 6, the Cauchy monoid (uAss*)* is
a free module (on either side) over the free commutative Cauchy monoid (uCom™)®,
so Theorem 3 applies. |
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This result has two immediate consequences, which we record below.

Corollary 3.
1. Free brace algebras are free when considered as pre-Lie algebras [17].

2. There exists an analytic endofunctor U such that the underlying vector space
of the universal enveloping brace algebra of a pre-Lie algebra L is isomorphic
to U(L) functorially with respect to pre-Lie algebra maps.

Proof. The first statement is immediate from the freeness as a left module: if we have
a left PreLie-module isomorphism Br 2 PreLie OTJIi’ the free brace algebra Br(V) is
isomorphic to the free pre-Lie algebra generated by ’J’é ).

The second statement follows from the freeness as a right module: if we have a
right PreLie-module isomorphism Br =~ TJR’, o PreLie, the result of [15, Theorem 3.1]
implies that the endofunctor U := T works: the underlying vector space of the
universal enveloping brace algebra of a pre-Lie algebra L is isomorphic to g (L)
functorially with respect to pre-Lie algebra maps. ]

It turns out that the second of those results can be immediately used to give a new
proof of the following statement that was first proved in [15, Theorem 4.6]

Corollary 4. There exists an analytic endofunctor 'V such that the underlying vec-
tor space of the universal enveloping dendriform algebra of a pre-Lie algebra L is
isomorphic to V(L) functorially with respect to pre-Lie algebra maps.

Proof. From earlier work of Chapoton [6] and Ronco [43], it follows that the operad
of dendriform algebras Dend is a free right Br-module; in fact, the “natural” space of
generators of that module is Ass™: each free dendriform algebra Dend(V') has a struc-
ture of a cofree conilpotent coassociative coalgebra, and the space of cogenerators of
that coalgebra is precisely Br(V'). Since we just proved that there is a right PreLie-
module isomorphism Br = T o PreLie, we have a right PreLie-module isomorphism

Dend = Ass™ o Br = Ass* oTg o PreLie,

and therefore the result of [15, Theorem 3.1] implies that the endofunctor V :=
Ass™(T}) works: the underlying vector space of the universal enveloping dendriform
algebra of a pre-Lie algebra L is isomorphic to Ass™ (74 (L)) functorially with respect
to pre-Lie algebra maps. |

This last argument raises a natural question as to whether it is possible to define
a C-enriched version of the dendriform operad so that the operad PreLiee acts on
primitive elements in Ass®-Dende-bialgebras.
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4.3. Minimal species of generators of the operad PreLie¢

According to Corollary 2, the operad PreLiee is generated by €-corollas. Analysing
the argument that proves this result, it is in fact easy to prove that if X generates the
Cauchy monoid €°, then the operad PreLiee is generated by X -corollas.

Example 3. It is well known that the operad PreLie = PreLie,c,,* has two different
sets of generators: it can be generated by one binary operation (the pre-Lie product)
or by the so called “symmetric braces” [27]. The symmetric braces are exactly all
uCom™-corollas. However, if we regard the Hopf cooperad uCom™ as an algebra for
the operad uCom, it is isomorphic to the free algebra on the singleton species, and the
binary generator of PreLie corresponds to the corolla with one root and one non-root
vertex, with the root vertex decorated by the singleton species.

In the case of the brace operad, we obtain its minimal set of generators that seems
to have never been studied before.

Proposition 7. The operad Br is generated by Lie*-corollas.

Proof. We already saw that considering the operad PreLie, .+ amounts to consider-
ing planar rooted trees; in this case the corollas are the classical braces. To determine
the species of generators of the Cauchy monoid (uAss*)®, we invoke the dual of the
Cartier-Milnor—-Moore theorem which easily implies that (uAss™)* is isomorphic to
the free commutative Cauchy monoid generated by the species Lie®*. |

It would be interesting to study the combinatorics of this presentation, as well as
minimal presentations of the operad PreLiee for other choices of €. It is also reas-
onable to try and describe an analogue of the brace operad that acts on the Harrison
complex of a commutative associative algebra. The Koszul dual cooperad of the com-
mutative operad is Lie* which does not have a Hopf structure, so the approach of [5]
is not directly applicable in this case.

4.4. Relationship to the twisting procedure

Every operad PreLiee receives the unit map from the operad PreLie,c,, = PreLie,
and therefore a map from the operad Lie; therefore, as pointed in [5], to each such
operad one may apply the construction of operadic twisting [9]. It would be interesting
to determine which of the operads PreLiee have interesting homotopical properties
with respect to operadic twisting, for example, for which of them one has

Hy(Tw(PreLiee), dry) = Lie,

generalising the existing results for the pre-Lie and the brace operad, see [14].
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