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Subgroups of right-angled Coxeter groups
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Abstract.We associate cube complexes called completions to each subgroup of a right-angled
Coxeter group (RACG). A completion characterizes many properties of the subgroup such as
whether it is quasiconvex, normal, finite-index or torsion-free. We use completions to show that
reflection subgroups are quasiconvex, as are one-ended Coxeter subgroups of a 2-dimensional
RACG. We provide an algorithm that determines whether a given one-ended, 2-dimensional
RACG is isomorphic to some finite-index subgroup of another given RACG. In addition, we
answer several algorithmic questions regarding quasiconvex subgroups. Finally, we give a new
proof of Haglund’s result that quasiconvex subgroups of RACGs are separable.
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1. Introduction

In the highly influential article [37], Stallings introduced new tools to study subgroups
of free groups. A crucial idea in Stallings’ work is that given a finite set of words in
a free group, one can associate a labeled graph to this set, and perform a sequence
of operations, now known as “Stallings folds,” to this graph. The resulting graph is,
in some sense, a canonical object associated to the subgroup generated by the given
words. This topological viewpoint provided clean new proofs for many theorems
regarding subgroups of free groups. In [29], Kapovich–Miasnikov use Stallings’
ideas, recast in a more combinatorial form, to systematically study the subgroup
structure of free groups and to answer a number of algorithmic questions about such
free subgroups.
Arzhantseva–Olshanskii were the first to apply Stallings’ techniques to groups that

are not free in [7], and Arzhantseva uses these techniques to show quasiconvexity of
certain subgroups in [4]. More recently, Kharlampovich–Miasnikov–Weil use similar
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techniques to study several algorithmic questions for automatic groups (which include
RACGs) [30]. Beeker–Lazarovich, building on work of Brown [13], define a version
of Stallings folds forCAT(0) cube complexes, which they use to give a characterization
of finitely presented quasiconvex subgroups of cubulated hyperbolic groups, in terms
of hyperplane stabilizers [9]. Other related articles are discussed in Section 1.1.
The main goal of this article is to study subgroups of right-angled Coxeter groups

(RACGs) through generalizations of Stallings’ techniques. Restricting to RACGs
(rather than considering all automatic groups or CAT(0) cube complex groups)
allows for some stronger results. We do not make any hyperbolicity assumption,
which is often crucial in more general frameworks. Our approach is inspired by the
combinatorial methods used in [29], and is quite different from that of [9]. This is
further discussed in Section 1.1.
Given a finite simplicial graph � , the associated RACG W� is generated by

order two elements corresponding to vertices of � , with the additional relations that
two such generators commute if there is an edge in � between the corresponding
vertices. RACGs form a wide class of groups which have become central objects in
geometric group theory. We refer to [17] for a survey of recent work on these groups.
One interesting feature of RACGs is that they have a rich variety of subgroups,
which includes all free groups, RAAGs (right-angled Artin groups) [21] and surface
groups. Incredibly, all hyperbolic 3-manifold groups [1,40] and Coxeter groups [27]
are virtually subgroups of RACGs as well.
Given a subgroup G of a RACG W� , we abstractly define a completion of G

as an edge-labeled cube complex satisfying certain properties. If G is additionally
finitely generated, we explicitly build a standard completion for G by the following
procedure. Starting with a subdivided “rose” graph whose petals are labeled by the
words generating G, we perform a sequence of operations of three possible types:
fold, cube attachment, and cube identification. A completion � can always be
obtained as the direct limit of the complexes in this sequence. Many properties of
the subgroup G can be characterized in terms of properties of �, as summarized in
the following theorem:
Theorem A. Let G be a subgroup of the RACG W� . Then
(1) G is quasiconvex in W� if and only if G is finitely generated and every

(equivalently, some) standard completion for G is finite (Theorem 8.4);
(2) there exist characterizations of G having finite index (Theorem 6.6), G being

torsion-free (Proposition 4.6), and G being normal (Theorem 5.3) in terms of
properties of a completion of G;

(3) if G is torsion-free, then any completion is non-positively curved (Proposi-
tion 7.2) and has fundamental group isomorphic to G (Theorem 4.7).
We note that quasiconvex subgroups are always quasi-isometrically embedded

and, in RACGs, are separable [25]. We discuss the relation of our results to [9, 30]
and other works in Section 1.1.
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Our approach to producing completions is constructive. In particular, given a
quasiconvex subgroup, a finite completion can be explicitly constructed in finite time
(by Theorem A (1) and Proposition 3.5). Furthermore, as our completions are cube
complexes (and not just graphs as is the case in many generalizations of Stallings’
methods to non-free settings), powerful tools from cubical geometry can be applied
to study them. This enables us to use the characterizations in Theorem A to prove
several new results on subgroups of RACGs including showing that particular classes
of subgroups of RACGs are always quasiconvex and solving various algorithmic
problems (see Theorem B–Theorem E below).
We expect that Theorem A will have other applications. For instance, the

characterization of finite-index subgroups in Theorem A is an essential tool in our
proof of [18, TheoremB], which states that any 2-dimensional, one-endedRACGwith
planar defining graph is quasi-isometric to a RAAG if and only if it is commensurable
to a RAAG.
A given subgroup may have multiple completions. Indeed two completions

for a given subgroup need not even be homotopy equivalent (see Example 3.8).
Nevertheless, our results do not depend on the specific completions chosen. In fact,
the flexibility of choosing different generating sets and order of operations is useful in
our arguments. Despite the non-uniqueness of completions, every completion for G
has a 1-dimensional subcomplex called its core graph, and any two core graphs forG
are isomorphic (see Proposition 5.2).
Theorem A provides a tool to show that subgroups of a RACG are quasiconvex,

by showing that their associated completions must be finite. We apply this approach
to subgroups of W� generated by reflections, i.e., conjugates of the generators
corresponding to vertices of � . We call such subgroups reflection subgroups. More
precisely, we prove:
Theorem B (Theorem 10.5). Every finitely generated reflection subgroup of a RACG
is quasiconvex.
Wenext turn our attention toCoxeter subgroups, i.e. subgroups that are isomorphic

to some abstract finitely generated Coxeter group. A result proved independently by
Dyer [23] and Deodhar [22] shows that every reflection subgroup of a RACG is
a Coxeter subgroup. The converse to this statement is not true in general (see
Remark 11.6), but we show that it holds under certain hypotheses:
Theorem C (Theorem 11.4, Corollary 11.5). Every one-ended Coxeter subgroup of
a 2-dimensional RACG is a reflection subgroup. Consequently, every such Coxeter
subgroup is quasiconvex by Theorem B.
Completions can be used to answer several algorithmic questions about subgroups

of RACGs. For instance, we consider the problem of finite-index embeddability
between RACGs:
Theorem D (Theorem 12.8). There is an algorithm (explicitly constructed in Sec-
tion 12) which, given a one-ended, 2-dimensional RACG W� , and any RACG W�0 ,
determines whether or not W�0 is isomorphic to a finite-index subgroup of W� .
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The above theorem gives an algorithm that can often determine when two RACGs
are commensurable; thus, it provides a tool for studying commensurability classifica-
tion. A few specific families of RACGs have been classified up to commensurability
(see [16, 19, 28]), but not much is known in general. We remark that the precise
statements of Theorem C and Theorem D use a significantly weaker hypothesis than
one-endedness.
As noted above, whenG is quasiconvex, a finite completion forG can be computed

in finite time. Consequently, we can provide algorithms to check several properties
of G:
Theorem E. Let G be a quasiconvex subgroup of a RACG W� , given by a finite
generating set of words inW� . Then there exist algorithms (explicitly constructed in
Section 13) to solve the following problems.

(1) Determine whether or not G is torsion-free.

(2) Determine the index of G in W� (even if infinite).

(3) Given a word w representing an element g 2 W� , determine whether or not a
positive power of g is in G.

(4) Determine whether or not G is normal in W� .

Finally, we use completions to recover some known results. Specifically, we
give new proofs of the well known result that RACGs are residually finite (see
Theorem 9.3), and of a result of Haglund that every quasiconvex subgroup of a
RACG is separable (see Theorem 9.5).
We note that much of the work presented here can also be used to study RAAGs.

Any RAAG A embeds as a finite-index subgroup of a RACGW by a construction of
Davis–Januszkiewicz [21]. Thus, one can construct a completion for G considered
as a subgroup of W , and then use Theorem A and Theorem E to study properties
of G as a subgroup of A.

1.1. Relation to other works. EveryRACGW� admits an automatic structure whose
associated language consists of reduced, i.e. geodesic, words of W� [12]. Thus, the
algorithms provided by Kharlampovich–Miasnikov–Weil in [30] for quasiconvex
subgroups of automatic groups apply to RACGs. These include computing their
intersections and (in some cases including hyperbolic groups) the conjugacy and
almost malnormality problems. The algorithmic applications in [30] are distinct
from those in our Theorems D and E. We note that, for automatic groups satisfying
an additional assumption which does not hold for all RACGs, [30] gives an algorithm
for (2) of Theorem E, i.e. determining the index of a quasiconvex subgroup.
To provide the algorithms above, Kharlampovich–Miasnikov–Weil show that

finite Stallings-like graphs can be constructed for subgroups that are quasiconvex
with respect to an automatic structure. We refer to [30] for a precise definition, but
note that the 1-skeleton of every completion, in our sense, is a Stallings-like graph.
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However, completions have strictly stronger properties than Stallings-like graphs.
For instance, completions are cube-full, which means they do not have “missing
relations” (see Section 3). A priori, there is no guarantee that a Stallings-like graph
can be completed to a finite cube-full complex, and this is what we prove can be done
for quasiconvex subgroups of RACGs (see Theorem A). The cube-full property is
essential to our arguments. It allows us to prove, in many cases, that completions
are non-positively curved, which is a crucial step in our proofs of Theorem B and
Theorem D.
Another important property of the completion of a subgroup G < W� is that,

given any geodesic word w of W� representing an element of G, there exists a loop
with label w in the completion. Stallings-like graphs do not necessarily have this
property, which can be traced back to the fact that, in general, the language associated
to a geodesically automatic structure is strictly smaller than the set of geodesic words.
Additionally, loops in a completion whose labels are reduced expressions for the
same group element have Hausdorff distance proportional to the number of “moves”
required to get from one expression to the other (see Section 4). These properties are
used throughout our paper.
To produce Stallings-like graphs, Kharlampovich–Miasnikov–Weil begin with

a construction similar to ours and many others: they start with a rose graph, and
alternately fold and “add relations.” For each folded graph ƒ in the resultant
sequence, they use a separate algorithm, which involves constructing a new automaton
associated toƒ, to check if the graph obtained is Stallings-like (and stopping if it is).
In contrast, our algorithm only involves checking, at each stage, whether the complex
is folded and cube-full (and stopping if it is). Consequently, it is a more practical
algorithm for doing explicit computations in RACGs.
The name “completion” is inspired by the terminology in [30], which talks of a

“completion process” for constructing Stallings-like graphs. We caution the reader
that our completions are not the same as the canonical completions considered in [26].
We mention some other works which use generalizations of Stallings’ methods to

study algorithmic and structural properties of subgroups, referring to [30] for a more
detailed summary.
Arzhantseva–Olshanskii use Stallings-like graphs to study groups that are generic

in a certain statistical sense [7]. They define a series of operations, now known as AO-
moves, that, when applied to a Stallings-like graph, preserve the subgroup associated
to it. These techniques have been generalized to the free product setting in [38]
and [24], and the latter uses a notion conceptually similar to our completions. In a
series of articles, Arzhantseva and Arzhantseva–Cherix utilize Stallings-like graphs
to prove that several results hold generically in finitely presented groups [2–4, 6].
Notably, Stallings-like graphs are first used to show quasiconvexity of subgroups
in [4].
McCammond–Wise use a generalization of Stallings’ construction to study

local quasiconvexity and coherence in groups satisfying certain small cancellation
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conditions [32]. Schupp uses Stallings graphs to show that certain extra-large type
Coxeter groups (which don’t include RACGs) are locally quasiconvex and to answer
algorithmic questions [36].
Beeker–Lazarovich define a version of Stallings folds for CAT(0) cube complexes

and use it to give a characterization of finitely presented quasiconvex subgroups
of hyperbolic groups that act geometrically on CAT(0) cube complexes [9]. This
generalizes work of Brown on hyperbolic VH square complexes [13]. The Beeker–
Lazarovich characterization is different in nature to ours; it is in terms of finiteness
and quasiconvexity properties of stabilizers of hyperplanes, conditions which are not
necessarily easier to check algorithmically. Despite also using folds, their procedure
follows a very different outline. Given a hyperbolic groupH acting geometrically on
a CAT(0) cube complex X , and a finitely presented subgroup G, they start with an
equivariant mapK ! X , whereK is the universal cover of the presentation complex
of G. They then apply a “resolution process” (generalizing work of Dunwoody)
which uses the pullback in K of the wall structure of X to produce an unbounded
CAT(0) cube complex Y . Next, folds are G-equivariantly applied to Y to obtain the
cube complex associated to H . In contrast, our completion process is algorithmic
in nature (our starting point is an explicit generating set), and the results we obtain
do not require any hyperbolicity and finite-presentation hypotheses. Indeed, many
RACGs are not even relatively hyperbolic. On the other hand, we strongly rely on
combinatorial properties of RACGs which do not hold in the generality of cubulated
groups.
Other authors have studied “cores” associated to quasiconvex subgroups. For

instance, Sageev–Wise show that relatively quasiconvex subgroups of relatively
hyperbolic groups acting on a finite-dimensional, locally finite CAT(0) cube complex
admit a convex core [35]. This generalizes ideas of Haglund [25], who shows that a
quasiconvex subgroup G of a RACG acts cocompactly on the combinatorial convex
hull †.G/ of G in the Davis complex. Indeed the quotient †.G/=G is very close
to being a completion (one has to take care, as cubes may be folded along midcubes
under this quotient). We note that characterizations of quasiconvexity using this
approach cannot immediately be used to answer algorithmic questions.
In the spirit of Theorem D, Kim–Koberda find conditions for a RAAG to be

realized as a (not necessarily finite-index) subgroup of another in terms of properties
of the associated extension and clique graphs [31]. Using their work, Casals-Ruiz
gives an algorithm which determines if a 2-dimensional RAAG is isomorphic to a
subgroup of another RAAG [15].

Acknowledgements. The authors would like to thank Jason Behrstock, Anthony
Genevois, Ilya Kapovich, Sang-hyun Kim, Thomas Koberda, Ignat Soroko, and the
referee for comments. The second author would like to thank Nir Lazarovich and
Michah Sageev for helpful conversations.
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2. Preliminaries

Given a graph � , we denote the vertex and edge sets of � by V.�/ and E.�/,
respectively.

2.1. Right-angled Coxeter groups. We summarize some well known facts regard-
ing right-angled Coxeter group (RACGs) which are needed throughout this article.
We refer the reader to [17] for a survey on RACGs and to [20] and [10] as references
on Coxeter groups.
Let � be a simplicial graph with finite vertex set S D V.�/ and edge set

E D E.�/. The RACG W� associated to � is the group given by the presentation:

W� D hS j s
2
D 1 for s 2 S; st D ts for .s; t/ 2 Ei:

We say that S is a standard Coxeter generating set for W� . Given s; t 2 V.�/,
we write m.s; t/ D 1 if s D t , m.s; t/ D 2 if s is adjacent to t and m.s; t/ D 1
otherwise.
We refer to the elements of S as letters. A word w in W� is a (possibly empty)

sequence of letters in S . Let w D s1 : : : sn be a word in W� , where si 2 S for
1 � i � n. We let jwj D n denote the length of w. If w0 is another word in W�
such that w and w0 are equal as elements ofW� , then we say that w0 is an expression
for w. We say that w is reduced if jwj � jw0j for any expression w0 for w. Finally,
we define the support of w, denoted by Support.w/, to be the set of vertices of �
which appear as a letter in w.
Given a graph � and a subset V 0 of V.�/, the graph� induced by V 0 is the graph

which has vertex set V 0 and an edge between two vertices of V 0 if and only if there
is an edge between them in � . We also say that � is an induced subgraph of � .
Throughout this article, given any simplicial graph � , we will always denote

by W� the corresponding RACG. If � is an induced subgraph of a graph � ,
then W� is naturally isomorphic to the subgroup of W� generated by the generators
corresponding to vertices of � (see for instance [20]). Such a subgroup of W� is
called a special subgroup.
Given a vertex v of � , the link of v, denoted by link.v/, is the set of all vertices

of� which are adjacent to v. The star of v, denoted by star.v/, is the set link.v/[fvg.
We will often consider the special subgroup of W� generated by the link or star of a
vertex.
Recall that a graph is a clique if any pair of distinct vertices of the graph are

adjacent. A RACG W� is finite if and only if � is a clique. Furthermore, W�
is one-ended if and only if � is connected and does not contain a clique which
separates � [33]. We say a graph is triangle-free if it does not contain a subgraph
that is a clique with three vertices, i.e. a triangle. If � is triangle-free, we say that the
RACG W� is 2-dimensional.
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Agraph� decomposes as a join graph� D �1?�2 if there are induced subgraphs
�1 and �2 of � such that V.�/ D V.�1/ [ V.�2/ and v1 and v2 are adjacent in �
for all v1 2 V.�1/ and v2 2 V.�2/. The graph � decomposes as a join � D �1 ?�2
if and only if W� D W�1

�W�2
.

We say that a subgroup of a Coxeter group is a Coxeter subgroup if it is
isomorphic to some finitely generated Coxeter group. In our setting, it follows
from [20, Theorem 12.3.4] and [10, Proposition 1.1.1] that Coxeter subgroups are
themselves RACGs:

Proposition 2.1. Let G be a Coxeter subgroup of a RACG, then G is a RACG.

We will need the following definition in Section 12.

Definition 2.2. Given a graph � and s 2 V.�/, let ƒ be the subgraph of � induced
by V.�/ n fsg. We define D.�; s/ to be the graph consisting of the union of two
copies of ƒ which are identified along the subgraph of ƒ induced by link.s/.
It is well known thatWD.�;s/ is isomorphic to the kernelK of the homomorphism

�sWW� ! Z2 defined by �s.s/ D 1 and �s.t/ D 0 for all t 2 V.�/ n fsg. To see
this, first observe that K is generated by

T D ft; sts j t 2 V.�/ n fsgg:

Since T consists of reflections, a result proved independently by Dyer [23] and
Deodhar [22] implies that K is a Coxeter group, and K is therefore a RACG by
Proposition 2.1. By the criterion in the first paragraph of [23], the set T 0 is a Coxeter
generating set, where T 0 consists of all reduced reflections r in K with the property
that for every reflection r 0 ¤ r in K, the word r 0r cannot be represented by a word
of length less than jr j. It is easily seen from Tits’ solution to the word problem that
T � T 0. Since both these sets generate K and as no subset of T 0 can generate K, it
follows that T D T 0, and consequently, that K is isomorphic to WD.�;s/.

2.2. The word problem in RACGs. We discuss Tits’ solution to the word problem
and the deletion property in RACGs. We refer the reader to [20] or [10] for more
details.
Let w D s1 : : : sn be a word in the RACG W� . Suppose that m.si ; siC1/ D 2

for some 1 � i � n. Then we may “swap” the letters si and siC1 to obtain another
expression w0 D s1 : : : si�1siC1sisiC2 : : : sn for w. We say that w0 is obtained
from w by a swap move or by swapping si and siC1. On the other hand, if si D siC1
(as vertices of �) for some 1 � i � n, then we can obtain an expression w0 D
s1 : : : si�1siC2 : : : sn for w by cancelling si and siC1.
Let w be a word in W� , and let w0 be a reduced expression for w. There exists

a sequence of words w D w1; : : : ; wm D w0 such that wiC1 is obtained from wi by
either a swap move or a cancellation. This is known as Tits’ solution to the word
problem. We call such a sequence of expressions for w a sequence of Tits moves.
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Given a word w D s1 : : : sn in W� , suppose si D si 0 D s for some 1� i <i 0�n
and that m.s; sj / D 2 for all i < j < i 0. It follows that

w0 D s1 : : : si�1siC1 : : : si 0�1si 0C1 : : : sn

is an expression for w. We say that w0 is obtained from w by a deletion (as two
occurrences of s have been deleted). We remark that this definition is slightly stronger
than the classical definition of a deletion in general Coxeter groups. The deletion
property states that if w is a word inW� such that w is not reduced, a deletion can be
applied to w. The proof of this fact is similar to that of the corresponding statement
for the standard definition of a deletion [8]. The deletion property guarantees that a
reduced expression for w can be obtained by performing a sequence of deletions.
The following lemma, which is required later, easily follows from the deletion

property.
Lemma 2.3. Let h and k be reduced words in a RACGW� . Then there is a reduced
expression yhyk for the word hk such that yhs1 : : : sm is a reduced expression for h and
sm : : : s1yk is a reduced expression for k where si 2 V.�/ for 1 � i � m.

2.3. Cube complexes. A cube complex is a cell complex whose cells are Euclidean
unit cubes, Œ�1

2
; 1
2
�n, of varying dimension. We refer the reader to [14] and to [41]

for a background on cube complexes.
Let � be a simplicial graph. A cube complex is �-labeled if every edge in its

1-skeleton is labeled by a vertex of � . In this article, the labels of a �-labeled cube
complex will be the generators of the RACG W� . Given a simplicial path ˛ in the
1-skeleton of a �-labeled complex, the label of ˛ is the word formed by the sequence
of labels of consecutive edges in ˛.
We say that a cube complex � is non-positively curved if the (simplicial) link

of each vertex in � is a flag complex. (Recall that a simplicial complex is called
a flag complex if any finite clique in its 1-skeleton spans a simplex.) If � is both
non-positively curved and simply connected then � is a CAT(0) cube complex.
A path in the cube complex � is a simplicial path in its 1-skeleton. Given a

path p, we denote by jpj the number of edges in p. Given two paths, p and p0,
such that the endpoint of p is equal to the startpoint of p0, we let pp0 denote their
concatenation. A loop in a complex is defined to be a closed path (possibly with
backtracking). We define a graph-loop to be an edge in a complex that connects a
vertex to itself.
We will work with the combinatorial path metric on cube complexes. Namely,

given two vertices of �, we define their distance to be the length of a shortest path
in � between them.
A midcube of a cube c D Œ�1

2
; 1
2
�n is the restriction of one of the coordinates

of c to 0. A hyperplane H in � is a maximal collection of midcubes in �, such
that for any two midcubesm andm0 inH , it follows there is a sequence of midcubes
m D m1; : : : ; mn D m

0 inH such thatmi\miC1 is a midcube in� for all 1 � i < n.
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The carrier of a hyperplaneH , denoted by N.H/, is the set of all cubes which have
non-empty intersection withH . IfH intersects an edge e, then we say that e is dual
toH .
Let � be a CAT(0) cube complex. A path 
 in � is geodesic if and only if

every hyperplane is dual to at most one edge of 
 . Thus, if 
 is geodesic then j
 j
is equal to the number of hyperplanes intersecting 
 . Given a hyperplane H in �,
� n H contains exactly two components, and the carrier N.H/ is convex in the
combinatorial path metric. We refer the reader to [41, Chapters 3.2 and 3.3] for
proofs of these well known facts.

2.4. Disk diagrams in cube complexes. We now recall some basic facts about disk
diagrams, and refer to [40] and [41] for further details.
In the setting of cube complexes, a disk diagram D is a contractible, finite, 2-

dimensional cube complex (i.e., a square complex) equippedwith a planar embedding
‰WD ! R2. The map ‰ gives a natural cellulation of the 2-sphere S2 D R2 [1.
We call the path traced by an attachingmap of the cell containing1 in this cellulation
the boundary of D and denote it by @D.
Given a cube complex�, a disk diagram over� is a disk diagramD which admits

a mapˆWD ! �mapping n-cubes isometrically onto n-cubes (i.e., a combinatorial
map). As the edges of the cube complexes we consider in this article will be labeled,
we accordingly further require the edges ofD to be labeled and the map fromD to�
to respect this labeling.
Given a closed null-homotopic loop pWS1 ! �, the van Kampen Lemma says

that there exists a disk diagram in� given by someˆWD ! �, and an identification
of @D with S1 such thatˆ restricted to @D is equal, as a map, to p (see, for instance,
[41, Lemma 3.1]).
Given a disk diagram D in � and an edge e of D, the dual curve intersecting e

is the hyperplane in D dual to e. As D is planar, a dual curve in D can intersect at
most two edges along @D.
LetW� be a RACG. The Cayley graph ofW� (with the usual presentation) is the

1-skeleton of a CAT(0) cube complex (the Davis complex) whose 2-cells correspond
to the commuting relations between generators (see for instance [20]). In this setting,
a�-labeled disk diagram over the Davis complex ofW� has the property that opposite
sides of squares must have the same label. In particular, we can define the type of
a dual curve to be the label of an edge (equivalently, all edges) intersecting the dual
curve. Furthermore, if two dual curves intersect, then their types are adjacent vertices
of � . These observations are used in the following technical lemma which is useful
in later sections. Note that any word considered in the lemma below could be the
empty word.
Lemma 2.4. Let w and z be words that are equal as elements of a RACG W� .
Suppose that w D w0w00 and z D z0z00, where w0, w00, z0 and z00 are words in W� ,
and suppose that z0 is reduced. Let D be a disk diagram whose boundary label,
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starting from a base vertex v, is wz�1. Let ˛w0 and ˛z0 be the oriented paths
starting at v in @D whose labels, read in the direction of the orientation, are w0
and z0, respectively. Suppose further, that every dual curve intersecting ˛w0 also
intersects ˛z0 . Then z0 has a reduced expression w0x, where x is some word in W� .

Proof. LetH1; : : : ;Hk , with k D j˛w0 j, be the dual curves intersecting ˛w0 ordered
by the orientation of ˛w0 (i.e. for i < j ,Hi \˛w0 occurs beforeHj \˛w0 along this
orientation). This order is well-defined, since eachHi necessarily also intersects ˛z0
by hypothesis, and therefore intersects ˛w0 exactly once.
Let e1; : : : ; ek be the first k edges of ˛z0 ordered by its orientation. If Hi

intersects ei for each 1 � i � k, then we are done. For then w0 is precisely the initial
subword of z0 of length k. Otherwise, let c be the smallest integer such thatHc does
not intersect ec . In particular, the initial subword of w0 of length c � 1 is equal to the
initial subword of z0 of length c � 1.
We claim that we can construct a new disk diagram D0 with boundary label

w0w00.yz00/�1, such that y is a reduced word equal in W� to z0, every dual curve
intersecting the part of @D0 with labelw0 also intersects the part of @D0 labeled y, and
the initial subword of y of length c is equal to the initial subword of w0 of length c.
The lemma then follows by iteratively applying this claim.
Orient the edges of ˛z0 with the induced orientation from ˛z0 . Let e be the edge

of ˛z0 that intersectsHc . Define ˇ to be the subpath of ˛z0 from v to the initial vertex
of e if c D 1 and from the terminal vertex of ec�1 to the initial vertex of e otherwise.
If H is a dual curve intersecting ˇ, then H ¤ Hi for 1 � i � c by construction,
and H cannot intersect ˛z0 twice, since z0 is reduced. Thus, any such H must
intersectHc . It follows that the label s of e commutes with the label b of ˇ. We may
now attach a jbj � 1 rectangle with label bsb�1s to the @D by identifying the sides
labeled b and s of the rectangle with ˇ and e respectively, to get a new diagram D0.
Define y to be the word obtained from z0 by replacing the subword labeled bs by sb.
It is clear by construction thatD0 has the properties in the claim.

3. A complex for subgroups of a RACG

The main goal of this section is to define a completion of a subgroup of a RACG,
and to construct completions for finitely generated subgroups. We begin by defining
a completion of a �-labeled complex as the direct limit of a certain sequence of
�-labeled complexes. We then show that there is a natural labeled graph associated
to any finite generating set, such that a completion of this graph is also a completion
of the group generated by the set.

3.1. Completion of a complex. Let � denote a simplicial graph. In this paper, we
only consider �-labeled cube complexes whose labeled cubes have two additional
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properties. Firstly, any pair of edges dual to a common mid-cube have the same label.
As a result, hyperplanes in the cube complex have a well-defined label. Secondly,
given a cube in such a complex and a set of edges of this cube which are all incident to
a common vertex, no two edges in this set have the same label, and the full subgraph
of � induced by the vertices of � corresponding to the labels of the edges in this set
is a clique. When we mention a �-labeled cube complex, it will be implicit that the
labeling has these additional properties.
Let C be a �-labeled cube complex. We describe three operations that can be

applied to C to produce a new �-labeled cube complex.

Fold operation. A fold operation corresponds to collapsing a pair of adjacent edges
with the same label into a single edge. More precisely, for i D 1; 2, let ei be an edge
in C with endpoints v and vi , where e1 ¤ e2, but two or more of the vertices v,
v1, v2 could be equal. Furthermore, suppose that e1 and e2 have the same label.
Temporarily orient the edge ei from v to vi (choosing the orientation arbitrarily
if v D vi , i.e. if ei is a graph-loop). Then the fold operation consists of forming
a quotient of C by identifying e1 and e2 so that their orientations agree, and then
forgetting the orientation.
We remark that although the fold map corresponding to e1 and e2 is not unique

when one of these edges is a graph-loop, this does not affect any of our applications.

Cube identification operation. This is a higher dimensional analogue of a fold oper-
ation. Consider a collection of two or more distinct i -cubes in C , with i � 2, whose
boundaries are equal. A cube identification operation consists of forming the quotient
ofC in which all of the i -cubes in the collection have been identified to a single cube.
Note that the 1-skeleton does not change in this process.

Cube attachment operation. Consider an i -tuple e1; : : : ; ei of edges in C , with
labels s1; : : : ; si , which are all incident to a single vertex v. Suppose furthermore,
that the vertices corresponding to s1; : : : ; si in � form an i -clique. A cube attachment
operation consists of adding an i -cube c to C by identifying the edges e1; : : : ; ei to i
edges in c which are all incident to a single vertex of c. In the process, we add some
vertices and edges to C . Each new edge added is dual to a mid-cube of c which
is also dual to a unique edge in the set fe1; : : : ; eig. This induces a labeling on the
newly added edges, making the resultant complex �-labeled.

We say a complex is folded if no fold or cube identification operation can be
performed to it. As fold operations and cube identification operations reduce the
number of cells, any finite complex C can be transformed into a folded complex
through finitely many such operations.
We say a complex is cube-full if for any i -tuple of edges all incident to the same

vertex such that the vertices corresponding to their labels form an i -clique in � , there
exists an i -cube of C whose boundary contains these i edges.
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Given a connected finite �-labeled complex X , consider a possibly infinite
sequence:

�0 D X
f0
�! �1

f1
�! �2 � � �

where for each i , the map fi W�i ! �iC1 is either a fold, cube identification or cube
attachment operation. Let �X be the direct limit of this sequence. If �X is folded
and cube-full, we call �X a completion of X . We say

�0 D X
f0
�! �1

f1
�! �2 � � � ! �X

is a completion sequence for X . We sometimes leave the maps fi out of the notation
when these maps are not relevant. We also set yf WX ! �X as the direct limit of the
maps ffig.

Example 3.1. Let �1 be the graph in Figure 1. The right of the figure shows a
completion sequence for the �1-labeled complex X . The completion � is obtained
from X by a fold operation followed by a cube attachment operation. Note that not
all labels of � are shown.

a

b

c d e

a ad

b c

e

B
b c

ad e

B

a a a

b

b

bc

c

c

d e

B

�1 X D �0 �1 �2 D �

Figure 1. A completion � for the �1-labeled complex X .

Example 3.2. Figure 2 shows a graph �2 and a �2-labeled complex X . A standard
completion �0 of X (see Definition 3.4) is shown on the right (the labels of �0 are
omitted). The cube complex �0 is topologically a bi-infinite cylinder.

a b

d c

a b

d c

�2 X �0

: : : : : :: : :

Figure 2. A completion �0 for the �2-labeled complex X .

Additional examples of completions can be found in Examples 6.8, 8.5 and 10.6.
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Proposition 3.3 (Existence of a completion). Given any finite �-labeled complexX ,
there exists a completion �X of X .

Proof. We set �0 D X and build �i inductively. Suppose a finite complex �i was
obtained from �0 by a sequence of fold, cube identification and cube attachment
operations. We iteratively perform fold and cube identification operations to �i to
obtain the complexes �iC1; �iC2; : : : ; �iCj , where �iCj is folded. (This includes
the case i D 0.) As �i is finite, we conclude that j (and hence �iCj ) is finite as
well.
Next we describe a sequence of operations to be performed to the finite folded

complex �iCj . Choose a vertex v of �iCj . Consider a maximal tuple of edges
incident to v such that their labels form a clique in � . If there is no cube in �iCj
whose boundary contains the tuple of edges, then attach an appropriately labeled
cube of the appropriate dimension along the tuple of edges. Do this for each such
maximal tuple at v, and then proceed to do the same for all the vertices of�iCj . The
result is a sequence of complexes�iCjC1; �iCjC2; : : : ; �iCjCk , such that each one
is obtained from the previous one by attaching an n-cube for some n to an n-tuple of
edges of�iCj which are all incident to a single vertex of�iCj . As�iCj is finite we
conclude that k (and hence �iCjCk) is finite. We then repeat the above procedure
starting with the finite complex �iCjCk .
Let �X be the direct limit of these complexes. Consider a pair of edges, say

e and f , in �X incident to the same vertex v. It follows that some �i contains
preimages of e and f which are incident to the same vertex. Consequently, there is
some folded �i 0 , with i 0 � i , which contains preimages of e and f that are incident
to the same vertex. Thus, if e and f have the same label, then their preimages in�i 0
must be identified. A similar argument shows that two cubes with the same boundary
in �X must be identified. It follows that �X is folded.
Let e1; : : : ; en be edges all incident to a common vertex v 2 �X whose labels

form an n-clique in � . There is some folded �i which contains a preimage v0 of v
and preimages e01; : : : ; e0n of e1; : : : ; en so that e0i ; : : : ; e

0
n are all incident to v0. As a

result of the procedure described above, some �iCj is the complex resulting from
a cube attachment operation where an n-cube, say c, is attached to the image of the
edges e01; : : : ; e0n in�iCj�1. Thus, the image of c in�X is an n-cube containing the
edges e1; : : : ; en. This shows �X is cube-full.

Definition 3.4 (Standard Completion). We call the completion algorithm given in
the proof of Proposition 3.3 a standard completion and the associated sequence
�0 ! �1 ! � � � ! �X a standard completion sequence.

We show that if a completion is finite, then there is indeed an algorithm to obtain
it that terminates.
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Proposition 3.5. Let X be a �-labeled complex. Consider a standard completion
sequence

X D �0 ! �1 ! � � � ! �:

If � is finite, then the completion sequence is finite, i.e. � D �N for some N .

Proof. As � is finite, by the definition of a direct limit, for someM and all n �M ,
�n contains an isometrically embedded subcomplex Yn isometric to �, and the
natural map f W�n ! � is a label-preserving isometry when restricted to Yn. As
we have a standard completion, there exists an N �M such that �N is folded.
We claim �N D �. Suppose instead that YN ¨ �N . If �N n YN contains a

vertex or an edge, then since�N is connected, it follows that some vertex v 2 YN is
incident to an edge e that is not contained in YN . Let s be the label of e. As �N is
folded, no edge in YN that is incident to v has label s. However, the continuous map
f W�N ! � sends e to an edge incident to f .v/ labeled by s. This is a contradiction.
Thus YN and �N have the same 1-skeleton.
Suppose there is a 2-cell c in �N n YN . Then the boundary @c of c is contained

in YN . Since �N folded, there is no cube in YN with boundary @c. However, f
sends @c to the boundary of a cube in�, and f .c/ is a cube in�with boundary f .@c/,
leading to a contradiction. Thus �N and � have the same 2-skeleton. Proceeding
inductively, we conclude that �N D �

3.2. Completion of a subgroup. In this subsection, we define the completion of a
subgroup of a RACG and show a completion is guaranteed to exist for any finitely
generated subgroup.

Definition 3.6 (Completion of a subgroup). Let G be a subgroup of a RACG W� ,
and let � be a connected �-labeled cube complex with basepoint the vertex B 2 �.
We say that .�;B/ is a completion of G if

(1) � is folded and cube-full;

(2) given any loop in � based at B , its label is a word which represents an element
of G;

(3) for any reduced wordw inW� which represents an element ofG, there is a loop l
based at B with label w.

Remark 3.7. When B is not relevant, we may simply say � is a completion of G.

Example 3.8. Let G be a finite subgroup of W� generated by adjacent vertices a
and b in � . Let X be the rose graph consisting of one vertex, one graph-loop labeled
by a and one graph-loop labeled by b. Let �1 and �2 respectively be the torus and
Klein bottle obtained by attaching a (square) 2-cell to X . Then both �1 and �2 are
completions for G.
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When the group G < W� is finitely generated, we can construct a completion
for G as follows. Let G be generated by the finite generating set of words

SG D fwi D si1si2 : : : simi
j 1 � i � ng;

where sij 2 V.�/ for each i; j . We associate to SG the following�-labeled complex.
We begin with a single base vertex B . For each generator wi , we attach a circle
subdivided to have mi edges, such that edges of this circle are sequentially labeled,
beginning at B , by the letters sij for 1 � j � mi . We denote this based complex by
.X.SG/; B/ and call it the SG-complex.
Let � be a completion of X.SG/ with completion sequence

X.SG/ D �0 ! �1 ! �2 ! � � � ! �:

By a slight abuse of notation, we use B to denote the image of the base point B in�i
for any i , as well as in �. The next few lemmas show that � is a completion of G.
Lemma 3.9. LetG be a subgroup of a RACGW� , given by a finite generating set SG .
Let � be any completion of X.SG/, where .X.SG/; B/ is the SG-complex. If w is a
reduced word in W� which represents an element of G, then w is the label of some
loop in � based at B .

Proof. Let X.SG/ D �0 ! �1 ! �2 ! � � � ! � be a completion sequence
for X.SG/, and let w be a reduced word in W� which represents an element of G.
As SG is a generating set of G, it follows that w is equal in W� to a word

w0 D h1 : : : hk , where hi 2 SG for each i . By construction, for each 1 � i � k,
there is a loop li based at B in �0, with label hi . Let l be the loop in �0 formed as
a concatenation of loops: l1l2 : : : lk . Let yl be the image of l in �. Then yl has the
same label as l .
As w0 and w are equal as elements of W� , the word w can be obtained from w0

through a sequence of Tits moves. Suppose the first Tits move in this sequence is a
swap performed to w0 to obtain a new word w00.
We claim w00 is the label of a loop in � as well. Note that there are adjacent

edges e and f of yl , labeled by s and t where s; t 2 V.�/ and m.s; t/ D 2, such
that w0 D a1 : : : aistaiC1 : : : am and w00 D a1 : : : ai tsaiC1 : : : am, with aj 2 V.�/.
As m.s; t/ D 2 and � is cube-full, there must be a square Q in � whose boundary
contains ef . We now obtain the desired loop by replacing ef in yl with the opposite
path in the boundary ofQ.
On the other hand, suppose the first Tits move is a cancellation. In other words,

w0 D a1 : : : aissaiC1 : : : am is replaced by w00 D a1 : : : am where s 2 V.�/ and
ai 2 V.�/ for each i . As � is folded, yl must traverse an edge e, labeled by s, twice
consecutively. It follows that either e is a graph-loop or that yl traverses e in one
direction and immediately backtracks in the other direction. In either case, we can
simply remove these two occurrences of the edge e from yl to obtain a new loop based
at B with label w00.



Subgroups of RACGs 253

By repeating this procedure for each Tits move, we obtain a loop in � with
label w.

Lemma 3.10. Let � be a �-labeled complex obtained by applying either a fold,
cube identification or cube attachment operation to the �-labeled complex x�. Let
F W x� ! � be the natural map. Let B be a vertex of � and let xB be a vertex that
is in the preimage under F of B . Let w be the label of a loop l in � based at the
vertex B . Then there exists a loop xl in x� based at xB , with label xw, such that xw and
w represent the same element of the RACG W� .

Proof. We analyze each type of operation separately:

Cube identification operation. IfF is a cube identification operation, then� and x�
have the same 1-skeleton. Thus l is the image of a loop xl in x� with the same label
as l .

Fold operation. Suppose F is a fold, and let B D u1; : : : ; um D B be the vertices
of l listed sequentially by the orientation of l .
Suppose some vertex, say v, of � has preimage F �1.v/ D fxv1; xv2g. As only a

single edge is folded in a fold operation, there is at most one such vertex. Let xf1
and xf2 be the two edges in x� which are folded and let f be the edge in � which
is their image. Let s be the label of f . The endpoints of f must be v and some
vertex v0 (which is possibly equal to v).
We say a vertex or edge of l has unique preimage if its preimage under F is a

single vertex or edge. It is straightforward to check that l can be subdivided into
subpaths of the five types described below (though not all the types may be used):

(1) An edge p from u D ui to u0 D uiC1 where u and u0 each have unique preimage.

(2) A path p from u D ui to u0 = ui 0 , where u and u0 each have unique preimage,
and uj D v for every i < j < i 0.

(3) A path p from B D u1 to u D ui , where u has unique preimage and uj D v

for j < i .

(4) A path p from u D ui to B D um, where u has unique preimage and uj D v

for j > i .

(5) p D l and ui D v for all i .

We claim that for each path p of a type described above, there is a path xp in x�
such that the label of p and the label of xp are equal in W� . Additionally, the image
under F of the endpoints of xp are equal to the endpoints of p. Finally, if p is of
type 3, then xp begins at xB , if p is of type 4 then xp ends at xB and if p is of type 5,
then xp begins and ends at xB . The lemma clearly follows from this claim. We proceed
to prove the claim for each type of subpath of l .
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Type 1. Let p D e be the edge in l between u D ui and u0 D uiC1. Let xu and xu0 be
the unique preimages of u and u0 under F . The preimage F �1.e/ is either a single
edge between xu and xu0 or is a pair of edges between xu and xu0 (in this case the fold
operation identifies this pair of edges to get e). Let xe be a choice of edge in F �1.e/.
We define xp to the path that traverses xe. Clearly xp and p have the same label.

Type 2. In this case p consists of an edge e1 from u to v, followed by a collection of
graph-loops q1; : : : ; qk based at v, followed by an edge e2 from v to u0.
Let xu and xu0 be the unique preimages of u and u0. Let xe1 and xe2 be edges (not

necessarily unique) in the preimage of e1 and e2 respectively. Let xq1; : : : ; xqk each be
a choice of edge in the preimages of q1; : : : ; qk . For each 1 � i � k, the edge xqi is
either a graph-loop at xv1, a graph-loop at xv2 or an edge between xv1 and xv2.

u

v

u0e1 e2

f

q1 qk: : :

v0

xu

xv1

xu0xe1 xe2

xf1

xf2

xq1 xqik0�1
: : :

xv0

xqik0
: : :
xqik00�1

xqik00

xqik

:::

xv2

xu

xv1

xe1

xf1 xf2

xv0

xqi1 xqik0�1
: : :

xe2 xu0

xqik0
:::

xqik00�1

xqik00 xqik: : :

Figure 3. The graph on the top shows a path of type 2 in �. The two graphs below it show
the two possible choices of preimages for p. The graph-loops xqi1

; : : : ; xqik0
form a subsequence

of the graph-loops xq1; : : : ; xqk consisting of those based at xv1. Similarly, xqik0
; : : : ; xqik00�1

are
edges between xv1 and xv2 and xqik00 ; : : : ; xqik

are graph-loops based at xv2. Note that some of the
vertices and edges shown may actually be equal x�. For instance, it could be that xf1 D xe1.

Let xz be the path from xv1 to xv2 obtained by traversing xf1 and then xf2. Note that
the label of xz is equal to the identity element ofW� as xf1 and xf2 have the same label.
Form the path

xp D xe1 xp0xq1 xp1xq2 xp2 : : : xqk xpkxe2;

where for 1 � i < k, we define xpi to either be xz, xz�1 or the empty word in order for
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the endpoint of xqi to coincide with the startpoint of xqiC1. The paths xp0 and xpk are
defined similarly in order for the endpoint of xe1 to coincide with the startpoint of xq1,
and in order for the endpoint of xqk to coincide with the startpoint of xe2. The claim
then follows for this case as the label of xp is equal as an element of W� to the label
of p.

Type 5. In this case v D B and l consists of a sequence of graph-loops q1; : : : ; qk .
Let xq1; : : : ; xqk be a choice of edges in the preimages of q1; : : : ; qn. As above, these
preimages consist of graph-loops at xv1 or xv2, and edges between xv1 and xv2. We may
define the path

xp D xp0xq1 xp1 : : : xqk xpk;

where xpi , for 1 � i < k, is defined similarly as in the previous case. Note that xB is
either equal to xv1 or xv2. We then define xp0 to either be xz D xf1 xf2, xz�1 or the empty
path in order to guarantee xp begins at xB . Similarly define xpk to guarantee that xp
ends at xB .

Types 3 and 4. The proofs in these cases are very similar to those above, and are
omitted.

Cube attachment operation. Suppose � is obtained by attaching a cube c to e1 [
� � � [ en � x�, where for 1 � i � n, ei is an edge labeled si from a vertex v to a
vertex vi (with v D vi if ei is a graph-loop), and the vertices of � corresponding
to s1; : : : ; sn form an n-clique.
If l does not intersect c n fe1; : : : ; eng then l is clearly the image of a loop in x�

with the same label. Otherwise let q be the closure of a maximal connected subpath
of l that is contained in c n fe1; : : : ; eng. In particular, q is a path between vk
and vk0 for some (not necessarily distinct) k; k0. Let h be the label of q. Since the
vertices s1; : : : ; sn form a clique in � , there is a reduced expression for h given by
h0 D s

�1

1 : : : s
�n
n where for each 1 � i � n, �i D 1 if there is an odd number of

occurrences of the generator si in h and �i D 0 otherwise.
First assume k ¤ k0. After renaming if necessary, we may assume k D 1 and

k0 D n. We claim that if 1 < j < n and �j D 1, then ej is a graph-loop. To prove
this, note that if 1 < j < n and ej is not a graph-loop, then v1 and vn are on the same
side of the midcube of c dual to ej . Thus q crosses this midcube an even number of
times, and therefore �j D 0.
Consider the union of edges q0 D e�1

1 [ e
�2

2 [ � � � [ e
�n
n , where e

�i

i is interpreted
as empty if �i D 0. The claim in the previous paragraph implies that this is in fact
a path q0 with the same endpoints as q (even if e1 and en are graph-loops). Observe
that the label of q0 is h0.
By a similar argument, if k D k0 D 1 and e1 is a graph-loop, then q0 D

e
�1

1 [ e
�2

2 [ � � � [ e
�n
n is a path with label h0 and the same endpoints as q. Finally,

suppose k D k0 D 1 and e1 is not a graph-loop. As before, if j ¤ 1 and �j D 1
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then ej is a graph-loop. Moreover, �1 D 0, because q crosses the mid-cube dual
to e1 an even number of times. Thus in this case we define q0 to be the concatenation
e1e

�2

2 [ � � � [ e
�n
n e1, and note that this is a continuous path with the same endpoints

as q, and with label s1h0s1, which is equal in W� to h0.
In each case we have produced a path q0 in F.x�/ with the same endpoints as q

and whose label is a word equal inW� to h. We replace q with q0 in l . By performing
all possible replacements of this sort, we obtain a loop in F.x�/whose label is a word
equal to w in W� . Thus the lemma follows for this case.

Lemma 3.11. Let G be a subgroup of a RACG W� given by a finite generating
set SG . Let � be any completion of X.SG/ where .X.SG/; B/ is the SG-complex.
Given a loop in � based at B , its label is a word representing an element of G.

Proof. Let X.SG/ D �0
f0
�! �1

f1
�! �2

f2
�! � � � ! � be a completion sequence

for X.SG/. Let B denote the basepoint of X.SG/ as well as all its images in this
sequence.
Consider a loop l based at B in �, with label w. Then there exists n such

that l D yf .l 0/ for some loop l 0 based at B in �n which also has label w, where
yf W�n ! � is the natural map. By iteratively applying Lemma 3.10 starting with yl ,
it follows there is a loop in �0 based at B whose label is a word equal to w in W� .
As the label of any loop based at B in �0 represents an element of G, the lemma
follows.

The existence of completions is an immediate consequence of Lemma 3.9 and
Lemma 3.11:
Theorem 3.12. Let G be a subgroup of a RACG W� given by a finite generating
set SG . Then any completion .�;B/ of the based SG-complex .X.SG/; B/ is a
completion of G.
Definition 3.13 (Standard completion of a subgroup). Let G be a subgroup of the
RACG W� generated by a finite generating set SG . We call a completion � of G
obtained by Theorem 3.12 a standard completion of G with respect to SG . In cases
where it is understood that there is a finite generating set for G, we simply say� is a
standard completion of G.
Example 3.14. The �1-labeled cube complex � in Example 3.1 is a standard
completion of the subgroup hadb; aeci of W�1

. Similarly, the �2-labeled cube
complex�0 in Example 3.2 is a standard completion of the subgroup habcd i ofW�2

.
Remark 3.15. Although every reduced word in W� representing an element of G
labels a loop in the completion �, it is not true that every word in W� representing
an element ofG labels a loop in�. For instance, let s 2 V.�/ and supposeG < W�
is generated by a set of words, none of which contains the letter s. It follows that
no edge in � is labeled s. Then the word ss, which is equal to the identity element,
cannot be the label of any path in �.
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4. Basic properties of completions

We prove a few facts regarding completions that will be used throughout the rest of
the paper. Recall from Section 2.2 that a deletion performed to a word w in a RACG
produces an expression for w with a pair of generators of the same type removed.
Lemma 4.1. Let � be a folded, cube-full, �-labeled complex. Let p be a path in �
with labelw. Letw0 be an expression forw obtained by performing k deletions tow.
Then there exists a path p0 in � such that the following properties hold.

(1) The path p0 has label w0.

(2) The paths p and p0 have the same endpoints.

(3) The Hausdorff distance between p and p0 is at most k.

(4) If p does not traverse any graph-loops, then p and p0 are homotopic relative to
their endpoints.

Proof. Let w1 be the word obtained by performing the first deletion to w. If w D
s1 : : : sn, with si 2 V.�/, then

w1 D s1 : : : si�1siC1 : : : si 0�1si 0C1 : : : sn;

where si D si 0 D s for some 1 � i < i 0 � n and m.s; sj / D 2 for all i < j < i 0.
Let ˛ be the subpath of p labeled by sisiC1 : : : si 0 .
Suppose first that i 0� i > 1. As� is cube-full, there exists a sequence of squares

in � such that Figure 4 holds (although there may be additional edge or vertex
identifications that are not shown). The subpath ˛ of p, which runs along the bottom
of Figure 4, can be replaced with the path which runs along the top of Figure 4, to
obtain a new path p1 with label w1. Then p1 is homotopic relative to endpoints to p
and is at Hausdorff distance at most 1 from p.

s D si siC1 siC2 siC3

: : :

si 0�2 si 0�1 si 0 D s

siC1

siC2 siC3 si 0�2

si 0�1s s s s s s s s

Figure 4.

On the other hand, if i 0 � i D 1, then as � is folded, ˛ either traverses an
edge labeled by s twice in opposite directions, or a graph-loop labeled by s twice
consecutively. In either case we can simply remove both occurrences of ˛ from p to
obtain a new path p1 with the same endpoints as p, such that p1 is labeled byw1 and
is at Hausdorff distance at most 1 from p. If p does not traverse any graph-loops,
then p1 is homotopic relative to endpoints to p.
Finally, if p does not traverse any graph-loops, then p1 does not either. This is

clear when i 0 � i D 1. Now suppose i 0 � i > 1, and suppose p has no graph-loops,
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but p1 has a graph-loop e. Then e is an edge of one of the squares in Figure 4,
and since � is folded, the two edges of the square incident to e are identified in �.
It follows that the edge opposite to e in the square, which is a part of p, is also a
graph-loop. This is a contradiction.
By repeating this process of obtaining p1 from p inductively, we obtain the

result.

Lemma 4.2. Let � be a folded, cube-full, �-labeled complex. Let p be a path in �
with endpoints the vertices u and v, and let w be its label.

(1) Any reduced word w0 equal to w in W� is the label of some path p0 in � from
u to v. Furthermore, if p does not traverse any graph-loops, then p and p0 are
homotopic relative to their endpoints.

(2) If p has minimal length then w is reduced.

(3) Let p and p0 be paths in � with the same endpoints. If p and p0 are homotopic
relative to their endpoints, then their labels are equal as elements of W� .

Proof. Let w00 be a reduced word equal to w inW� which is obtained by a sequence
of deletions. By Lemma 4.1, there is a path p00 with labelw00 and the same endpoints
as p. Furthermore, if p does not traverse any graph-loops, then p00 is homotopic
relative endpoints to p
By Tits’ solution to the word problem, there is a sequence of words w00 D

w0; w1; : : : ; wn D w0 so that wiC1 is obtained from wi by swapping a pair of
consecutive commuting generators.
Suppose that w0 D a1 : : : aistaiC1 : : : an and w1 D a1 : : : ai tsaiC1, where

s; t 2 V.�/, with m.s; t/ D 2, and aj 2 V.�/ for each j . It follows there are
consecutive edges of p00 with labels s and t . As � is cube-full, these edges are in
a square with label stst . By replacing these two edges of p00 with the other edges
in this square, we obtain a new path whose label corresponds to swapping s and t .
Furthermore, this new path is homotopic, relative to endpoints, to p00. By iteratively
repeating this process, we obtain the desired path p0. This proves (1).
Let p be a path with minimal length and label w. If w is not reduced, let w0 be a

reduced expression for w. By (1) there is a path p0 having the same endpoints as p,
with label w0. However, jp0j < jpj, a contradiction. This proves (2).
Let p and p0 be as in (3). As the concatenation pp0�1 is null-homotopic, there

exists a disk diagram D with boundary pp0�1. It readily follows that a homotopy
of p to p0 in D induces a sequence of Tits moves which show that p D p0. This
proves (3).

The next definition allows us to “go backwards” from a �-labeled complex to a
subgroup.
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Definition 4.3 (Associated subgroup). Let � be a connected, �-labeled complex
with base vertex B . Consider the set of all g 2 W� such that there exists a loop in�
based at B whose label is a word in W� that represents of g. This set is easily seen
to be a subgroup of W� , and is called the subgroup of W� associated to .�;B/.
Proposition 4.4. Let .�;B/ be a connected, folded, cube-full, �-labeled complex,
and let G be the subgroup ofW� associated to .�;B/. Then .�;B/ is a completion
of G.

Proof. Properties (1) and (2) in the definition of a completion of a subgroup
(Definition 3.6) are immediate. To check property (3), let w be a reduced word
representing an element g ofG. By the definition ofG, there exists a loop in� based
atB whose label, sayw0, is a representative of g. Sincew is a reduced representative
of w0, Lemma 4.2 (1) implies that there is a loop in � based at B with label w.

The following lemma describes the effect of changing the basepoint in a�-labeled
complex on the associated subgroup of W� .
Lemma 4.5. Let � be a connected, folded, cube-full, �-labeled complex. Let B1
and B2 be vertices of �, and for i D 1; 2, let Gi be the subgroup of W� associated
to .�;Bi /. Then G2 D w�1G1w, where w is the label of some path from B1 to B2.

Proof. Let ˛ be a path from B1 to B2 with label w. If ˇ is a loop in � based at B1
representing an element of G1, then the concatenation ˛�1ˇ˛ represents an element
of G2. It follows that w�1G1w � G2. Similarly wG2w�1 � G1.

It is easy to detect torsion in subgroups of RACGs using completions:
Proposition 4.6. LetG be a subgroup of a RACGW� and let .�;B/ be a completion
for G. Then G has torsion if and only if there exists a loop in � (not necessarily
passing through B) whose label is a reduced word representing an element in a finite
special subgroup of W� .

Proof. If g 2 G has finite order, then g is conjugate into a finite special subgroup
of W� (see [20, Theorem 12.3.4] for instance). Write g D wuw�1, where u and w
are reduced and w is the shortest word for which such an expression for g exists.
We claim wuw�1 is reduced. If not, then a deletion is possible. It follows from our
choices that some letter, say s, occurring in w or w�1 cancels with an occurrence
of s in u. Since u belongs to a finite special subgroup, s commutes with u. Thus we
can write g D w1uw�11 , where w D w1s, a contradiction.
Since wuw�1 is reduced, there is a loop ˛ in � based at B with label wuw�1.

Let v be the vertex along ˛ such that the label of ˛ between B and v is w. As � is
folded, the subpaths of ˛ with labels w and w�1 are identified, and there is a loop
based at v with label u. This proves one direction of the claim.
For the other direction, suppose that there is a loop based at some vertex x of �

with label a reduced word r representing an element in a finite special subgroup
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of W� . As finite special subgroups of W� correspond to clique subgraphs of � , it
follows that the support of r is contained in a clique of � . Let s 2 V.�/ be a letter
in r . As r is reduced, there is exactly one occurrence of s in r . Let h be the label of
a path from B to x in �. It follows that there is a loop in � based at B with label
k D hrh�1. Furthermore, as there are an odd number of occurrences of the letter s
in the word k, the deletion property implies that k cannot be an expression for the
identity element. As k has finite order, it follows that G has torsion.

For torsion-free subgroups, the following holds:
Theorem 4.7. Suppose G is a torsion-free subgroup of the RACG W� . Then the
fundamental group of any completion � of G is isomorphic to G.

Proof. Let B be a vertex of �. We define the isomorphism �W�1.�;B/ ! G as
follows. Let ˛ be a loop in � based at B representing an element of �1.�;B/.
We may assume that ˛ is contained in the 1-skeleton of �. By property (2) of
the definition of a completion, the label of ˛ represents an element of G, and we
define �.˛/ to be this element.
To see that � is well-defined, let ˛ and ˛0 be loops based at B 2 � that are

homotopic relative basepoint. Then by Lemma 4.2 (3), the labels of ˛ and ˛0 are
equal as elements of G.
It is clear that � is a surjective homomorphism. To check that � is injective,

suppose that �.˛/ is a word in W� equal in G to the identity element. Note that �
cannot contain a graph-loop by Proposition 4.6. Thus, by Lemma 4.2 (1) we conclude
that ˛ is null-homotopic.

The next result, which in particular implies that any standard completion of a
finite �-labeled complex has finitely many hyperplanes, is used in several proofs in
this article.
Proposition 4.8. Let X be a �-labeled complex. Let

X D �0 ! �1 ! � � � ! �

be a completion sequence for X . Then, for all i � 0, every hyperplane in �i
intersects the image of X in �i . Consequently, every hyperplane in � intersects the
image of X in �.

Proof. We prove the first claim by induction on n. The base case for �0 is trivially
true. Suppose every hyperplane in �n�1 intersects the image of X . It is clear that
cube identifications and folds do not produce new hyperplanes. Now suppose that�n
is obtained by attaching a k-cube c along edges e1; : : : ; ek , all incident to a common
vertex of�n�1. Since each midcube of c extends a hyperplane dual to one of the ei ’s,
it follows that no new hyperplanes are created in �n. Hence, the claim also holds
for�n. The claim follows for the completion� as any hyperplane in� contains the
image of some hyperplane in �n for some n.
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In a few arguments throughout this article, we will have a finite, cube-full, folded
�-labeled complex, and we will want to attach certain additional graph-loops to this
complex. We will then need the original complex to be isometrically embedded in
the completion of the new complex. The following lemma guarantees this property.

Lemma 4.9. Let � be a finite, cube-full, folded �-labeled complex. Let �0 be
a complex obtained by attaching a set L of labeled graph-loops to vertices of �.
Suppose that the label of an attached graph-loop is distinct from the labels of every
other edge incident to the vertex it is attached to, i.e., �0 is a folded complex. Then
there exists a completion �00 of �0 such that

(1) the natural inclusion i W� ,�! �00 is an isometry;

(2) every edge of�00 that is not in i.�/ is a graph-loop attached to a vertex v 2 i.�/.
Let l be such a graph-loop and let s be its label. Then there exists a graph-loop
in L with label s attached to a vertex u 2 � and a path in i.�/ from i.u/ to v
whose label is a word in link.s/ � V.�/;

(3) the number of operations performed to obtain �00 from �0 is finite and only
depends on the number of edges of �0.

Proof. We build the completion �00 by alternately performing a single cube
attachment operation followed by all possible fold and cube identification operations.
Since �0 is folded by assumption, each cube attachment operation is only done to
a folded complex. We show that each folded complex in this completion sequence
satisfies the conclusion of the lemma.
Let v be a vertex of �0 incident to edges e1; : : : ; en with distinct pairwise

commuting labels s1; : : : ; sn, such that v [ e1 [ � � � [ en are not contained in a
common n-cube and that n is maximal out of such possible choices. Consider the
operation which attaches a labeled cube to v [ e1 [ � � � [ en. Let c denote the image
of this cube in the resulting complex.
By possibly relabeling, we may assume that there exists 0 � k � n such that

if i � k, then ei is not a graph-loop (and is therefore necessarily in�), while if i > k,
then ei is a graph-loop (and may or may not be in �). Note that if k D 0, then ei is
a graph-loop for all i .
If k > 0, it follows (since � is cube-full) that e1; : : : ; ek are contained in a

common k-cube q of �. We perform fold and cube identification operations to
identify q to a face of c. Otherwise if k D 0, define q to be the 0-cube v.
Next, starting at v, we perform all possible fold operations to pairs of edges which

are both in c. It readily follows that the 1-skeleton of this resulting complex will
consist of q and a graph-loop with label si , for each k C 1 � i � n and each vertex
of q. By a slight abuse of notation, we call this resulting complex c as well.
We now check what other fold operations are possible. As �0 is folded, the

only type of possible additional fold operation would consist of an edge e in �0



262 P. Dani and I. Levcovitz

and a graph-loop f in c such that e and f have the same label, s, and share an
endpoint u 2 q.
We claim that emust be a graph-loop. This is clear if e is in�0n�. Suppose e 2 �.

There is a path p from u to v in q with label a word consisting only of generators that
are distinct from and commute with s. Let ei be the edge at v with label s. Then ei
must be a graph-loop since otherwise e would have already been folded onto c. As�
is cube-full and p [ e � �, we conclude that ei 2 �. Thus since ei is a graph-loop,
e is a graph-loop as well.
Thus, we simply fold e onto f . After performing all such folds to �0 [ c we

obtain the complex�01. After possibly applying some cube identification operations,
it follows that �01 is folded. Furthermore, the 1-skeleton of �01 is the same as the
1-skeleton �0 with the possible addition of some new graph-loops. Thus, � is
isometrically embedded in this new complex. The second conclusion of the lemma
also readily follows from the construction.
We then iteratively repeat such cube attachments followed by such a sequence of

fold and cube identification operations. After each iteration we have a folded complex
satisfying the first two claims of the lemma. As the number of such operations is
bounded by a function of the number of edges of �0, the third claim of the lemma
follows.

5. Core graphs

In general, a subgroup G of W� does not have a unique completion. However, we
now use completions to define a certain graph associated to G called a core, which
is unique. This is used in Theorem 5.3 to obtain a characterization for normality of
a subgroup.
Definition 5.1 (Core graph). Given a �-labeled complex .�;B/, define its core
graph at B , denoted C.�;B/, to be the 1-dimensional subcomplex consisting of the
union of all the loops in � based at B whose labels are reduced words in W� .
The core graph of a completion is not necessarily its entire 1-skeleton. For

instance, in Figure 1, the core graph is the part of �.1/ (the 1-skeleton of �)
that is shown in black. That is, C.�;B/ is �.1/ minus the open star of the
vertex v diametrically opposite to B . The paths based at B with (reduced) labels
adabec; aeacdb and adcbea show that C.�;B/ contains this subcomplex. On
the other hand, let va; vb and vc denote the vertices adjacent to B in �.1/. Any
loop at B which passes through v contains a subpath which passes through v, starts
and ends in fva; vb; vcg, and, apart from its endpoints, remains in the component of
�.1/ n fva; vb; vcg containing v. We leave it to the reader to check that any such
subpath 
 must cross some midcube twice. This, together with the fact that the label
of 
 only uses the letters a; b; and c, which pairwise commute, implies that 
 cannot
have reduced label.
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The following proposition states that core graphs are unique in a certain sense.
We omit the proof as it very closely follows the proof of [29, Theorem 5.2], which is
the corresponding result in the free group setting.

Proposition 5.2. Let G be a subgroup of W� , and let .�1; B1/ and .�2; B2/ be
completions of G. Then there is an isomorphism f WC1.�1; B1/ ! C2.�1; B2/,
such that f .B1/ D B2.

We now characterize normal subgroups of RACGs in terms of core graphs. In
Section 13, we give a different characterization of normality that is more useful for
algorithmic applications.

Theorem 5.3. Let G be a subgroup of W� , with completion .�;B/. Consider

� D fs 2 V.�/ j s commutes with every element of Gg:

Then G is normal if and only if the following conditions are satisfied.

(N1) Given any s 2 V.�/ n�, there is an edge in � incident to B with label s.

(N2) For every vertex v of �, there is an isomorphism from C.�;B/ to C.�; v/
which takes B to v.

Proof. First suppose (N1) and (N2) are satisfied. To show that G is normal, it is
enough to show that sGs � G for all s 2 V.�/. This is obvious when s 2 �, so
consider s 2 V.�/ n�. By (N1) there is an edge incident to B with label s. Let v
be its other endpoint. Then by Lemma 4.5, .�; v/ is a completion for sGs. Thus,
given any element g in sGs, there is a loop in � whose label is a reduced word
representing g. It follows that the group associated to .C.�; v/; v/ (in the sense of
Definition 4.3) is sGs. On the other hand, since C.�; v/ Š C.�;B/ by (N2), the
group associated to it is G. Thus sGs D G.
Now suppose G is normal. We first show (N1) is satisfied. Let s 2 V.�/ n �,

and let w be a reduced word representing an element of G which does not commute
with s. If w has a reduced expression w0 which either begins or ends with s, then
since � is a completion, there is a loop based at B with label w0. It follows that
there is an edge incident to B in � labeled s. If no expression for w begins or ends
with s, then sws is reduced by Lemma 2.3. Moreover, since G is normal, sws 2 G,
and consequently there is a loop in � based at B with label sws. Once again, B is
incident to an edge labeled by s. Thus (N1) holds in all cases.
To prove (N2), let v ¤ B be a vertex of C.�;B/, and let ˛ be a path in C.�;B/

from B to v with label w. By Lemma 4.5, we know that .�; v/ is a completion
for w�1Gw D G. Then by Proposition 5.2, there is an isomorphism from C.�;B/
to C.�; v/ which takes B to v.
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6. Index of a subgroup

The main result of this section is Theorem 6.6, which states that completions
characterize the index of a subgroup of a RACG. This is analogous to a result
for subgroups of free groups, first proved in [5].
Definition 6.1 (Full valence). We say a vertex v of a �-labeled complex has full
valence if for each s 2 V.�/ there is an edge with label s incident to v. We say a
�-labeled complex � is full valence if every vertex of � has full valence.
We would like to be able to state that a subgroup has finite index if and only if

all its completions are finite and have full valence, and moreover, that the number of
vertices of a completion determines the index of a subgroup. However, due to a slight
technical issue, this is not quite true in general. Namely, suppose that � contains a
vertex s that is adjacent to every other vertex. ThenW� D W� �Z2, where� is the
subgraph of � induced by V.�/ n s. We can then build a completion for W� � W�
by using the generating set V.�/. Such a completion has no edges labeled by s and
so does not have full valence. Furthermore, it contains only one vertex, and yet,
the index of W� is not one in W� . To remedy this, we define resolved completions
below, for which the desired statements do hold (see Theorem 6.6 and Lemma 6.5).
Any finitely generated subgroup admits a resolved completion (see Remark 6.7), so
resolved completions do indeed remedy this technical issue.
Definition 6.2 (ResolvedCompletion). Let� be a completion of a subgroupG ofW� .
We say that� is a resolved completion if given any s 2 � such that V.�/ D star.s/,
it follows that some edge of � is labeled by s.
Lemma 6.3. Let G be a subgroup of W� , and let � be a resolved completion of G.
Let s 2 � be such that V.�/ D star.s/. Then every vertex of� is incident to an edge
labeled by s.

Proof. As � is resolved, let e be an edge of � labeled by s. Let v be a vertex of �
incident to e. Let u be any vertex adjacent to v, and let t be the label of the edge e0
between u and v. Either t D s or t is adjacent to s in � . As � is cube-full, in the
latter case there must be a square with label stst in � that contains both the edge e
and e0. In either case u is incident to an edge labeled by s as well. Proceeding in this
manner, since � is connected, we conclude every vertex in � is incident to an edge
labeled by s.

Lemma 6.4. Let G be a subgroup of W� , and let .�;B/ be a resolved completion
of G. If � is not full valence, then G has infinite index in W� .

Proof. Suppose there exists a vertex v in � that is not incident to an edge labeled
by s, for some s 2 V.�/. Let ˛ be a minimal length path in� from the base vertexB
to v, and letw be the label of this path. We assume jwj is minimal among the possible
choices for w and v. By Lemma 4.2 (2), the word w is reduced.
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We begin by establishing a few facts, which will be used later in the proof:

(i) The word ws is reduced. If not, by the deletion property there exists a reduced
word w0, ending with s, which is an expression for w. By Lemma 4.2 (1) there is a
path in� fromB to v with labelw0. However, this is not possible as v is not incident
to an edge labeled by s.

(ii) No reduced expression for w ends in a generator that commutes with s. For
suppose w0 D s1 : : : sn, with si 2 � , is a reduced word such that sn commutes with s
and w is equal to w0 in W� . Let ˛0 be the path from B to v with label w0 and let y̨
be the subpath of ˛0 with label s1 : : : sn�1. Such paths exist by Lemma 4.2 (1). Let yv
be the endpoint of y̨. No edge incident to yv is labeled by s. For if there were such
an edge, the fact that � is cube-full would imply that there is a square with label
ssnssn containing both v and yv, contradicting the fact that v is not incident to an edge
labeled by s. However, it now follows that yv is a vertex that is not incident to an edge
labeled by s and j ywj < jwj, contradicting the minimality of our choice of w. Thus
no expression for w can end with a generator that commutes with s.

(iii) No reduced word representing an element ofG begins with the label ws. To see
this, note that every reduced word representing an element of G labels a loop in �
based at B . As � is folded, ˛ is the only path beginning at B with label w. The
claim follows, since the endpoint v of ˛ is not incident to an edge labeled by s.

We now proceed with the proof. As� is resolved and by Lemma 6.3, there exists
a vertex t of � that is not adjacent to s in � . By Tits’ solution to the word problem,
it follows that .st/n is reduced for all integers n � 1. Similarly, w.st/n is reduced
for all integers n � 1, since ws is reduced by (ii) above.
Suppose now, for a contradiction, that G is a finite-index subgroup of W� . In

particular, as a set we have W� D Gg1 t Gg2 : : : t Ggn for finitely many elements
g1; : : : ; gn 2 W� . Let w1; : : : ; wn be reduced words representing g1; : : : ; gn. Let
M D maxfjw1j; : : : ; jwnjg, and let k D .st/M . Consider the word h D wk which
we know to be reduced. It follows that h is equal to h0h00 in W� , where h00 D wi
for some i and h0 is a reduced word in G. Form a disk diagram D with boundary
label h.h0h00/�1 D wkh00�1h0�1. Let pw , pk , ph0 and ph00 be the paths along the
boundary of D with labels respectively w, k, h0 and h00. Thus, pwpkp�1h00 p

�1
h0
is a

path tracing the boundary ofD.
As h is reduced, every dual curve intersecting pwpk must necessarily intersect

either ph0 or ph00 . Furthermore, a pair of dual curves which each intersect pk cannot
intersect one another as s and t do not commute. Let C be the dual curve intersecting
the first edge of pk . Note that C is of type s. Now, C cannot intersect ph00 . For
if it did, every dual curve intersecting pk would intersect ph00 as well. However,
as jh00j �M and jkj D 2M , this is not possible. Thus, C intersects ph0 .
Additionally, no dual curve intersecting pw intersects C . For suppose there is

such a dual curve, and suppose that it is the furthest such dual curve along pw .
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It follows that the type of such a dual curve commutes with s and commutes with
every label of an edge appearing further along pw . However, this implies that w has
an expression ending with a generator that commutes with s, which contradicts (ii)
above. Thus, every dual curve intersecting pw intersects ph0 at an edge occurring
before (in the orientation of ph0) the edge of ph0 intersecting C .
By Lemma 2.4, there is a reduced word equal to h0 in W� with prefix ws. This

contradicts (iii) above. Note that the argument above also holds when w is empty,
i.e. when B D v.

Lemma 6.5. Let G be a subgroup of W� , and let � be a completion of G which
is full valence. Then the index of G in W� is equal to the number of vertices in �
(which could be infinite).

Proof. Let B D v1; v2; : : : be an enumeration of the vertices of� (where B denotes
the basepoint). For each i , choose a minimal length path ˛i from B to vi and let wi
be its label. We will show that the words w1; w2; : : : are expressions for right coset
representatives for G.
Let w be a reduced word in W� . As every vertex of � has full valence, there

is a path ˛ in � beginning at the vertex B with label w. Then, for some i , the
concatenation ˛˛�1i is a loop based at B , and its label ww�1i represents an element
of G. Thus, w can be represented by the coset .ww�1i /wi .
Let n be the number of vertices in� (where n could be infinite). We have shown

that the index of G is at most n. We now show it is exactly n. Suppose, to the
contrary, that there exist words h and h0 representing elements of G such that hwi is
an expression for h0wj , for some 1 � i < j � n. Thenwiw�1j is an expression for an
element of G. Now consider the path ˇ in � with initial vertex B and label wiw�1j .
This path exists as � is full valence.
We claim ˇ is a loop. For suppose not. Then ˇ ends in some vertex vk ¤ B

and it follows that wiw�1j w�1
k
is a loop. By the definition of a completion, the

word wiw�1j w�1
k
represents an element of G. Consequently, as wiw�1j is a word

representing an element of G, we conclude that wk represents an element of G as
well. However, this contradicts � being a completion, as wk is a reduced word and
is not the label of a loop in � based at B . Thus ˇ must be a loop. However, since ˇ
is labeled by wiw�1j , this implies that vi D vj , a contradiction.

Combining Lemma 6.4 and Lemma 6.5, we obtain:
Theorem 6.6. Let G be a subgroup ofW� , and let� be a resolved completion of G.
The subgroup G has finite index in W� if and only if � is finite and full valence.
Remark 6.7. For finitely generated subgroups, a resolved completion can always be
constructed. For let T D fw1; w2 : : : wng be a generating set of words for G < W� .
Note that G is still generated by T 0 D T [ fs2 j s 2 � and V.�/ D star.s/g, and
furthermore, every s 2 V.�/ occurs in someword in T 0. Thus, a standard completion
for G built using T 0 is necessarily resolved.
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Example 6.8. Let � be the graph in Figure 5, and letG D hca; cbi < W� . The right
of this figure shows a standard completion � for G. Since � does not have a vertex
adjacent to every other vertex, � is automatically resolved. Note that � is finite and
full-valence. Thus, G has finite index in W� by Theorem 6.6.

a b c

�

c c

a b

X �

c
b

a

c
b

a
RP 2

Figure 5. Figure illustrating Example 6.8.

7. Nonpositive curvature

This section establishes criteria which guarantee that a completion is non-positively
curved or a CAT(0) cube complex, which we rely on in Sections 9 and 10.
Recall that a graph-loop is an edge that connects a vertex to itself. A bigon in

a CW complex is a pair of edges e1 and e2, such that the set of vertices that are
endpoints of e1 is the same as the set of vertices that are endpoints of e2. Note that
a bigon could consist of two graph-loops based at the same vertex. A commuting
bigon in a �-labeled complex is a bigon whose edges are labeled by adjacent vertices
of � . Next, we show that the presence of a commuting bigon is the only obstruction
to a �-labeled complex being non-positively curved.
Proposition 7.1. Let � be a folded �-labeled cube complex which does not contain
a commuting bigon. If either � is cube-full or � is triangle-free, then � is non-
positively curved.

Proof. Let v be any vertex of �, and let � denote the link of v in �. We verify
that � is non-positively curved by checking that � is a flag simplicial complex. We
first check that � is a simplicial complex. This part of the proof does not require
that � is cube-full or that � is triangle-free.
Since � is the link of a vertex in a cube complex, to check that it is a simplicial

complex, it is enough to show that its 1-skeleton �.1/ does not contain any graph-
loops or bigons. Suppose � contains a graph-loop, and let c be the square of �
contributing this graph loop to �. It follows that a pair of adjacent sides of c
are identified in �. However, adjacent sides of squares in � are always labeled by
distinct elements of� , so such an identification cannot occur. Thus,� cannot contain
a graph-loop.
We next check that�.1/ does not contain a bigon. Suppose there is such a bigon,

whose edges come from (possibly non-distinct) squares c1 and c2 of �, and whose
vertices come from distinct edges e1 and e2 of�, each incident to v. Then e1 and e2
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are adjacent sides of ci , for i D 1; 2. Suppose c1 and c2 are distinct. Since opposite
sides of squares in � have the same label, it follows that c1 and c2 have the same
boundary label, read starting from v in the direction of e1. However, this is not
possible as � is folded.
On the other hand, suppose c1 D c2 D c. Then the bigon in � comes from two

corners of c. Since adjacent sides of a square in � are never identified, it follows
that these are necessarily opposite corners of c, and furthermore, that opposite sides
of c are identified with orientation reversing isometries. Consequently, the attaching
map of c maps the boundary of c to a bigon in �, consisting of the edges e1 and e2.
Since e1 and e2 are adjacent sides of a square in �, their labels commute. This
contradicts the assumption that � does not contain commuting bigons. Hence, �.1/
cannot contain a bigon. We have thus verified that � is a simplicial complex.
We now check that � is flag. Let u1; : : : ; un be the vertices of a complete graph

contained in the 1-skeleton of�. For 1 � i � n, let ei be the edge of� incident to v
upon which ui lies, and let si be the label of ei . For each 1 � i < j � n, we know
that si and sj are adjacent in � since ui is adjacent to uj in �. If � is cube-full, it
follows that there is some cube in � containing v [

Sn
iD1 ei . Thus, � is flag. On

the other hand suppose that � is triangle-free. As � is folded, the labels s1; : : : ; sn
are distinct. Furthermore, as � is triangle-free and s1; : : : ; sn as vertices of � form
a complete graph, we have that n � 2. Thus, the flag condition holds under the
triangle-free assumption as well.

IfG is a torsion-free subgroup ofW� , then by Proposition 4.6, a completion ofG
cannot have commuting bigons. Then Proposition 7.1 immediately implies:
Proposition 7.2. Any completion of a torsion-free subgroup of a RACG is non-
positively curved.

Next, we show that a completion of a finite �-labeled tree is a finite CAT(0) cube
complex.
Proposition 7.3. Let X be a �-labeled finite tree and let

X D �0 ! �1 ! � � � ! �

be a completion sequence for X . Then � is a finite CAT(0) cube complex.
Furthermore, there is a finite bound on the length of the completion sequence.

Proof. We begin by proving that each complex in the completion sequence is simply
connected.
As a first step, we show that�n does not contain any graph-loops for n � 0. Note

that the label of every loop in �0 based at B represents the trivial element in W� .
For a contradiction, suppose that for some n,�n contains a graph-loop l with label s.
Suppose l is incident to a vertex v 2 �n. Let p be a geodesic in �n from B to v,
and let w be the label of p. It follows that the loop plp�1 in �n has label wsw�1.
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Aswsw�1 has an odd number of occurrences of the letter s, it represents a non-trivial
element of W� . However, by iteratively applying Lemma 3.10 we conclude that the
label of some loop in �0 based at B represents a non-trivial element of W� . This is
a contradiction. Thus, �n does not contain a graph-loop for any n.
Next, we show by induction that �n is simply connected for all n � 0. The base

case is true by hypothesis. Now assume that �n is simply connected.
Suppose�nC1 is obtained from�n by attaching a k-cube c to the edges e1; : : : ; ek

of �n which are all incident to the same vertex v. Then �nC1 can be homotoped
onto �n by homotoping c onto v [

Sk
iD1 ei . If �nC1 is obtained from �n by

identifying a collection fcig of k-cubes .k � 2/ with identical boundary to a single
cube c, then any null homotopy using the ci ’s can be replaced with one that only
uses c. In both cases, �nC1 is simply connected.
Now suppose�nC1 is obtained from�n by a fold operation. Specifically, suppose

that the edges ei (with endpoints v and vi , for i D 1; 2) in �n are identified to get
the edge e in �nC1. By the first paragraph these edges are not graph-loops.
If v1 D v2, then e1 [ e2 is a loop, which is null homotopic because�n is simply

connected. Since identifying e1 and e2 is equivalent to attaching a disk to this loop,
it follows that �nC1 is simply connected. If v1 ¤ v2, then let �0n and �0nC1 be the
complexes obtained by collapsing the contractible subspaces e1 [ e2 and e in �n
and �nC1 respectively to points. Then �0n is homotopy equivalent to �n, �0nC1
is homotopy equivalent to �nC1, and �0n is homeomorphic to �0nC1. Again, we
conclude that �nC1 is simply connected. We have established that �n is simply
connected for all n � 0, and it readily follows that � is simply-connected as well.
Next, we show that � is non-positively curved. By Proposition 7.1 it is enough

to show that � does not contain a commuting bigon. Since � is simply-connected,
Lemma 4.2 (3) implies that the group associated to .�;B/ is trivial, and therefore
torsion-free. By Proposition 4.6 there are no commuting bigons.
It follows that � is CAT(0) as it is simply-connected and non-positively curved.
We claim that the diameter of � is at most E, where E is the number of edges

of X . For consider a geodesic ˛ in �. By Proposition 4.8, every hyperplane that
intersects ˛ must also intersect the image of X in �. Furthermore, as � is CAT(0)
(and not just non-positively curved), no hyperplane intersects ˛ twice. Thus, the
length of ˛ is at most E, and, as ˛ was an arbitrary geodesic, the diameter of � is
also at most E. It follows that� is finite, as it is locally finite (since it is folded) and
has finite diameter. Finally, Proposition 3.5 implies that there is a finite bound on the
length of the completion sequence.

When � is triangle-free, we get the following more precise bound on the length
of a standard completion sequence, which is used in Theorem 10.8.
Proposition 7.4. With the set-up of Proposition 7.3, if � is additionally triangle-free,
then there is a finite bound on the length of the completion sequence depending only
on the number of edges of X and on jV.�/j.
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Proof. By Proposition 7.3, � D �N for some N and � is a finite CAT(0) cube
complex. Let E be the number of edges of X . We are left to prove that N only
depends on E and on jV.�/j. Consider the subsequence of all folded complexes of
the given standard completion:

‚1 D �i1 ; ‚2 D �i2 ; : : : ; ‚n D �in :

By Proposition 7.1, we know that ‚i is a CAT(0) cube complex. Furthermore,
‚i has diameter at most E, by the proof of Proposition 7.3.
We claim that the complex ‚j is not isometric to ‚k for all k > i . Suppose

otherwise for a contradiction. Consider the sequence of operations performed to ‚j
in order to obtain ‚k . We can repeat this same sequence of operations to ‚k in
order to obtain another folded complex isometric to‚j . By iteratively repeating this
process, we obtain a standard completion sequence which is infinite. Furthermore,
the direct limit�0 of this new standard completion sequence must be a finite complex.
To see this, note that given m distinct cells in �0, there is some complex isometric
to ‚j in the completion sequence, which contains m distinct preimages of the cells
(since there are infinitely many such complexes in the sequence). Thus the size of�0
is bounded by the size of ‚j . However, this contradicts Proposition 3.5.
LetF be the number of all possible CAT(0) cube complexes of diameter at mostE

and with at most jV.�/j edges incident to each vertex. As ‚j is not isometric to‚k
for all j ¤ k, it follows that n � F . For each 1 � j � n, the number of cube
attachments that can be applied to‚j , and the number of fold and cube identification
operations that can be applied to the resulting complex is bounded by a number K
which depends only on E. Thus, N � KF where K and F depend only on E and
on jV.�/j.

8. Quasiconvexity

Let H be a group with fixed generating set. Recall that a subgroup G of H is
M -quasiconvex, for M � 0, if any geodesic path in the Cayley graph of H with
endpoints in G lies in the M -neighborhood of G. We say G is quasiconvex if it
is M -quasiconvex for some M . In general, G may be quasiconvex with respect to
one generating set for G but not another. However, if G is quasiconvex with respect
to some generating set, then it is quasi-isometrically embedded with respect to any
generating set [11, Chapter III.� , Lemma 3.5].
When we say a subgroup is quasiconvex in a RACG, we will always mean with

respect to the standard generating set. The main result of this section is that a
subgroup of a RACG is quasiconvex if and only if any standard completion of the
subgroup is finite.
We first prove a lemma relating distances in a completion of a subgroup to

distances in the Cayley graph (associated to the standard generating set) of the RACG.
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Lemma 8.1. Let G be a subgroup of the RACG W� and let .�;B/ be a completion
of G. Let w be the label of a path in � from the basepoint B to some vertex v 2 �.
Let C be the Cayley graph of W� , and let vw be the vertex in C which represents
the element of W� corresponding to w. Then d�.B; v/ D dC .G; vw/. (Here G is
naturally identified with the vertices in C which represent elements of G.)

Proof. ByLemma4.2, there is a path in� fromB to vwith label a reduced expression
for w. Thus, without loss of generality, we may assume that w is reduced. Let ˛ be
a geodesic in C from vid to vw with label w, where vid is the vertex in C labeled
by the identity element. Let ˇ be a geodesic in C from vw to G which realizes the
distance from vw to G. Let h be the label of ˇ. It follows that h is a reduced word.
As ˛ˇ is a path from vid to a vertex of G, the word k D wh represents an element
of G. By Lemma 2.3, there is a reduced expression yk D ywyh for k in W� such that
w0 D yws1 : : : sm is a reduced expression for w and h0 D sm : : : s1yh is a reduced
expression for h, where si 2 V.�/ for 1 � i � m.
By Lemma 4.2 (1), there is a path ˛0 with label w0 D yws1 : : : sm from B to v

in�. Furthermore, by the definition of the completion of a subgroup, there is a loop l
with label yk D ywyh in � based at B . Since � is folded, ˛0 and l overlap on the part
labeled yw. It follows that there is a path from B to v labeled by h0�1 D yh�1s1 : : : sm.
Let 
 be a geodesic in� from v to B with label z. Note that z must be a reduced

word, and that jzj � jh0j D jhj. As wz is the label of a loop in �, it follows by the
definition of a completion that wz represents an element of G. Thus there is a path
in C from vw to G with label z. By the minimality of ˇ, we have that jhj � jzj.
Hence, jzj D jhj. It now follows that

d�.vw ; G/ D jˇj D jhj D jzj D j
 j D d�.B; vw/:

Lemma 8.2. Let G be a subgroup of the RACG W� . If some completion .�;B/
of G is finite, then G is M -quasiconvex in W� , where M is the maximal distance of
a vertex in � from B .

Proof. Let ˛ be a geodesic in the Cayley graph of W� between two elements of G.
Without loss of generality, wemay assume that ˛ goes between the identity vertex vid
and some vertex labeled by an element g of G. Then the label w of ˛ is a minimal
length word representing g. Let v be any vertex along ˛. Let w0 be the label of the
subpath of ˛ from vid to v.
By the definition of a completion, there is a loop l in � based at B with label w.

Consequently, there is an initial subpath, l 0, of l with label w0. Let u be the vertex
of � that is the endpoint of l 0. By Lemma 8.1,

d�.u; B/ D dC .v;G/ �M:

Lemma 8.3. If G is a quasiconvex subgroup of the RACG W� , then G is finitely
generated and every standard completion of G is finite.
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Proof. Suppose G is M -quasiconvex in W� . Then G must be finitely generated
as it is a quasiconvex subgroup of a finitely generated group [11, Chapter III.� ,
Lemma 3.5]. Let .�;B/ be a standard completion of G. Lemma 8.1 implies that
d�.v; B/ �M for every vertex v in the core graph C.�;B/ from Definition 5.1.
Suppose � is not finite. Since it is folded and locally finite, a standard argument

can be used to show that � has an infinite geodesic ray � based at B . By
Proposition 4.8, there are only finitely many hyperplanes in �. It follows that
we may choose a geodesic subsegment 
 of � starting at B , a hyperplane H , and an
integer C � 0 such that H is dual to at least M C C C 2 edges of 
 and such that
the distance from B toH \ 
 is less than C .
Starting from B , let e1 and e2 respectively be the first and last edge along 
 dual

toH . Let u be the endpoint of e1 closer to B , and let ˛1 be the subpath of 
 from B
to u. Note that j˛1j � C . Now at least one endpoint of e2 is in the same component
of N.H/ nH as u; call it v. Let ˛2 be the subpath of 
 from u to v and let ˛3 be a
geodesic inN.H/nH from v to u. Let ai be the label of ˛i , for 1 � i � 3. Then the
concatenation ˛ D ˛1˛2˛3˛�11 is a loop in� based atB , with label a D a1a2a3a�1.
We will complete the proof by using ˛ to produce a loop inC.�;B/which leaves

theM -neighborhood of B , a contradiction. We first claim that a reduced expression
ya2ya3 for a2a3 is obtained by a sequence of at most ja2j�M �C �1 deletions. As a2
and a3 are reduced, every pair of generators deleted consists of a generator in a2 and
one in a3. Let s be the type of H . The claim now follows from the fact that a3
has no occurrences of s (being a word in link.s/) while a2 has at leastM C C C 1
occurrences of s.
By Lemma 4.1, there is a closed path y̨ in � with label ya2ya3 based at u, and

of Hausdorff distance at most ja2j �M � C � 1 from ˛2˛3. Then ˇ D ˛1 y̨˛
�1
1

is a path based at B in � with label a1ya2ya3a�11 , and ˇ is Hausdorff distance at
most ja2j�M �C �1 from ˛. As the vertex v of ˛1 has distance ja1jCja2j fromB ,
it follows that ˇ contains a vertex v0 whose distance from B is at least

ja1j CM C C C 1:

Let ya be a reduced expression for a1ya2ya3a�11 obtained by a sequence of deletion
operations. As a1 and ya2ya3 are each reduced, it follows that each pair of generators
deleted in such a sequence contains a generator in a1 or in a�11 (possibly in both).
Thus, there can be at most 2ja1j such deletions. By Lemma 4.1, there is a path y̨
in� based at B with label ya and with Hausdorff distance at most 2ja1j from ˇ. As ˇ
contains v0, it follows that y̨ contains a vertex of distance at least�

ja1j CM C C C 1
�
� 2ja1j �M C 1

from B . This is a contradiction, as y̨ is contained in C.�;B/, which is itself
contained in theM neighborhood of B .
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We immediately obtain the following theorem from Lemmas 8.2 and 8.3.
Theorem 8.4. Let G be a subgroup of a RACG. The following are equivalent:
(1) G is quasiconvex.
(2) Some completion for G is finite.
(3) G is finitely generated and every standard completion for G is finite.
Example 8.5. Let � be the graph in Figure 6, and letG D habcdei < W� . The right
of this figure shows a standard completion � for G. The complex � is a bi-infinite
cylinder tiled by squares, as the process of attaching squares never stops. As � is
infinite, G is not quasiconvex by Theorem 8.4.
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�
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Figure 6. Figure illustrating Example 8.5.

9. Residual finiteness and separability

In this section we give a proof using completions of the well known result that
RACGs are residually finite. We additionally give a new proof of a result of Haglund
which states that quasiconvex subgroups of RACGs are separable. We begin by
giving a construction which associates a new complex and associated subgroup
to each subgroup of an RACG that has a finite completion. This is similar to the
complex used in Stallings’ proof of Marshall Hall’s theorem [37] and to the canonical
completions of [26].
Definition 9.1 (Full valence extension and associated subgroup). Let G be a finitely
generated subgroup of a RACG W� , and suppose that G has a finite completion
.�;B/. For each s 2 V.�/ and each vertex v of � that is not incident to an edge
labeled by s, we add a graph-loop labeled by s to v. We call this first resulting
complex E0. Let .E; B/ be a completion of E0 obtained by applying Lemma 4.9. We
call .E; B/ the full valence extension of �. The complex E is folded and cube-full
as it is a completion. Furthermore, by construction and by Lemma 4.9, E is finite
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and full-valence, and the natural inclusion of � into E is an isometry. Let H be the
subgroup associated to .E; B/ (as in Definition 4.3).
The following lemma is an immediate consequence of Proposition 4.4 and

Lemma 6.5.
Lemma 9.2. With the notation of Definition 9.1, the subgroup H has finite index
in W� .
We now use full valence extensions to give a direct proof of the residual finiteness

of RACGs. The fact that RACGs are residually finite is well known: RACGs are
linear (see for instance [10]), and by a theorem of Malcev, every finitely generated
linear group is residually finite (see [39, 4.2] for a proof).
Theorem 9.3. Every RACG is residually finite.

Proof. Let W� be a RACG. Let g be a non-trivial element in W� , and let w be a
reduced word representing g. Let G be the trivial subgroup of W� given by the
generating set SG D fww�1g. The SG-complex �0 D X.SG/ consists of a circle,
subdivided into labeled edges, whose label, read from a base vertex B , is ww�1. We
can iteratively perform fold operations to�0 and obtain a complex�N that is a path
labeled by w.
By Proposition 7.3, there is a completion .�;B/ of �N that is a finite CAT(0)

cube complex. The image of �N in � is a path, p0, based at B and labeled by w.
Furthermore, the path p0 is not a loop in �. This follows since � is a completion of
the trivial subgroup, and consequently every loop in� based at B must have as label
a word that is trivial in W� .
Let .E; B/ be the full valence extension of .�;B/. As � is isometrically

embedded in E by Lemma 4.9, w is still not the label of a loop in E based at B .
By Lemma 9.2, the subgroup H of W� associated to .E; B/ has finite index in W� .
Furthermore, g … H as w is a reduced word representing g which is not the label of
a loop in E .

An additional useful property of full valence extensions is that the subgroup H
associated to a full valence extension of a finite completion of G < W� has a
retraction to G:
Proposition 9.4. With the notation of Definition 9.1, there is a retraction from H

to G.

Proof. We define a map �WH ! G as follows. Let L be the set of graph-loops
in E that are not in �, i.e. the graph-loops added in the construction of E0 or in
the completion process. Given an element h 2 H , since E is a completion of H
by Proposition 4.4, there is a loop l in E based at B whose label w is a word
representing h. We remove from l all graph-loops it traverses which are in L. Let l 0
be the resulting loop in � based at B , and let w0 be its label. It follows that w0
represents an element g 2 G. We set �.h/ D g.
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We first check that � is well-defined. Let l1 and l2 be loops in E based at B with
labelsw1 andw2, such thatw1 andw2 are distinct words, each representing the same
element h 2 H . Let w be a reduced word representing h in W� . Let l 01; l 02 and l 0
be the loops obtained by removing graph-loops in L from l1; l2 and l respectively.
Let w01; w02 and w0 be the labels of l 01; l 02 and l 0 respectively. We must show that w01
and w02 represent the same element ofW� . To do so, we will show that w0 represents
the same element in W� as both w01 and w02.
By Tits’ solution to the word problem, there is a sequence of Tits moves that can

be performed to w1 to obtain w. This sequence naturally produces a sequence of
corresponding loops l1 D q1; q2; : : : ; qn D l inE whose labels are the corresponding
words obtained by the Tits moves. Furthermore, if a cancellation move is performed
to qi in order to obtain qiC1, then as E is folded, it readily follows that the edges
involved in this cancellation move are either both in L or both not in L. Thus, by
forgetting the Tits moves performed to generators which are labels of graph-loops
inL, this sequence of Tits moves induces a sequence of Tits moves performed to w01
to produce w0. Hence, w01 and w0 represent the same element of W� . Similarly, w02
and w0 represent the same element of W� . Consequently, � is well-defined.
It is clear that � is a homomorphism. Furthermore, given an element g 2 G and

a loop l in E based at B with label a reduced word representing g, we have that l
is contained in the subcomplex � � E . Thus, l does not traverse any graph-loops
in L. It follows that � restricted to elements of G is the identity. Hence, � provides
the desired retraction.

The above proposition can now be used to recover a theorem of Haglund. Recall
that a subgroup G of a group K is a virtual retract if G is a retract of a finite index
subgroup of K.

Theorem 9.5 (Haglund [25]). Let G be a quasiconvex subgroup of a RACG W� .
Then G is separable and is a virtual retract of W� .

Proof. By Theorem 8.4, there is a finite completion .�;B/ of G. Let .E; B/ be
the full valence extension of .�;B/, with associated subgroup H . Then H has
finite-index in W� by Lemma 9.2 and G is a retract of H by Proposition 9.4. Thus,
G is a virtual retract.
It is well known that a virtual retract of a residually finite group is separable

(see [25, Proposition 3.8]). So, G is separable.

10. Reflection subgroups

A reflection in W� is an element represented by a word of the form wsw�1 where s
is a generator in V.�/ and w is a word inW� . In this section, we give a constructive
argument to build a finite completion for any subgroup ofW� generated by a finite set
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of reflections. In particular, such subgroups are always quasiconvex and their index
can be computed.

10.1. Trimmed sets of reflections. In this subsection, we define the notion of a
trimmed set of reflections (Definition 10.1). We show in Lemma 10.2 that any
subgroup generated by a non-trimmed set of reflections can also be generated by a
trimmed set of reflections. Moreover, the lengths of words in the trimmed set sum
to a strictly smaller sum than those of the original set. This minimality property
will facilitate our later arguments. Another advantage of trimmed reflections is that
they form a standard generating set for a RACG subgroup by a theorem of Dyer (see
Proposition 12.7). On the other hand, a non-trimmed set of reflections usually gives
a non-standard generating set for the RACG subgroup.
Definition 10.1 (Trimmed reflection set). Let W� be a RACG. We say that a set

R D fwisiw
�1
i j wi 2 W� and si 2 V.�/; 1 � i � mg

of reduced reflections is trimmed if for all i ¤ j , no reduced expression for wj
begins with wisi .
Lemma 10.2. LetW� be a RACG, and letG be a subgroup generated by a finite set of
reflections R0. Then G is generated by a trimmed set of reflections R. Furthermore,
there is a constructive algorithm to obtain R from R0, whose time-complexity only
depends on the number

P
r2R0 jr j.

Proof. Without loss of generality, we may assume elements in R0 are reduced. Let
g D wsw�1 be a reflection in R0 so that w has an expression w D w0s0q, where
h D w0s0w0�1 is another reflection inR0 and q is a word in W� .
InR0, we replace g with a reduced representative of the shorter length reflection

g0 D hgh�1 D .w0q/s.w0q/�1;

to obtain a new setR00. The setR00 still generates G, as g D h�1g0h. By iteratively
performing such replacements, we obtain the desired generating setR. This process
must end since at each step we obtain a set of generators whose lengths sum to a
strictly smaller number than those in the previous step.

10.2. A completion for reflection subgroups. Throughout this subsection, we fix
the notation in the discussion below. This notation is also used in Section 12.
Let G be a subgroup of the RACG W� , generated by a finite set of reflections:

R D fwisiw
�1
i j wi 2 W� and si 2 V.�/; 1 � i � mg:

By Lemma 10.2 we may assume without loss of generality thatR is trimmed.
Our goal is to give a finite completion .�G ; B/ ofG. We begin by describing the

first complex �0 in this completion. For each 1 � i � m, we attach a subdivided
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circle to the base vertex B , with label wisiw�1i . Next, for each i , we fold the
two copies of wi onto one another, and we call this resulting graph �0. Thus, the
graph�0 has, for each 1 � i � m, a path emanating from B and labeled by wi , with
a graph-loop labeled by si attached at its endpoint. By Theorem 3.12, any completion
of �0 is a standard completion of G.
Let T denote the tree obtained by removing the graph-loops from �0. Let F T

be the folded tree obtained by iteratively performing fold operations to T . Let �F T

be a standard completion of F T . By Proposition 7.3, we know that �F T is a finite
CAT(0) cube complex. Furthermore,�F T is also a completion of T by construction.
Let yf W T ! F T ! �F T be the natural map. By a slight abuse of notation, we
also denote by yf the natural map yf WF T ! �F T . Let yT WD yf .T / D yf .F T /.
Given a vertex yv in �F T , define

Lyv D fs 2 V.�/ j 9 v 2 V.�0/ incident to a graph-loop labeled s;

such that yv D yf .v/g:

Wewould like to build the completion�G by “adding back” the graph-loops to�F T

and applying Lemma 4.9. However, there is a technical issue: when adding back a
graph-loop labeled s to a vertex of yv of�F T , a priori yv might already be incident to
an edge labeled by s. If this were true, then the hypothesis of Lemma 4.9 would not
be satisfied. The next two technical lemmas show this situation does not arise.
Lemma 10.3. Let ks be a reduced word in W� such that s 2 V.�/ and k is a
(possibly empty) word consisting only of generators that are adjacent to s in � . Then
given any v 2 �0 incident to a graph-loop labeled by s, no path in T � �0 starting
at v is labeled by an expression for ks.

Proof. For a contradiction, suppose such a path ˛ exists. We may assume that ˛ is a
geodesic in T . For if not, then as T is a tree, some generator would be consecutively
repeated in the label of ˛, and we would be able to pass to a homotopic path. Let u
be the endpoint of ˛.
Let ˇ1 be the geodesic from the base vertexB to v, with label h1. Then there is an

element r1 D h1sh�11 inR. We first show that u does not lie on ˇ1. Suppose it does.
Then h1 has a suffixwhich is a reduced word equal inW� to sk�1. Since k commutes
with s, it follows that the expression h1sh�11 is not reduced, a contradiction.
Now let ˇ2 be the geodesic from B to u, with label h2. Since u does not lie

on ˇ1, it follows that h2 is non-empty. Moreover, there is a reflection r2 2 R,
given by .h2h02/s0.h0�12 h�12 /, where h02 could be empty. Next, we claim that h1 is
non-empty. For if not, then r1 D s, and h2 is an expression for ks. It follows that r2
has a reduced expression that begins with s, which is not possible asR is trimmed.
Thus, h1 and h2 are non-empty and ks is a reduced expression for h�11 h2.

By Lemma 2.3 there exist (possibly empty) words x, k0 and k00 such that either
k0x and x�1k00s are reduced expressions in W� for respectively h�11 and h2,
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or alternatively sk0x and x�1k00 are reduced expressions in W� for, respectively,
h�11 and h2. Moreover, k0k00 is equal to k in W� . The latter case implies that
the reflection r1 has another reduced expression .sk0x/�1s.sk0x/. However, this
is a contradiction as this word is clearly not reduced. In the former case, we
have that r1 has reduced expression .k0x/�1s.k0x/ and r2 has reduced expression
.x�1k00sh02/s

0.x�1k00sh02/
�1. Set w1 D .k0x/�1 and w2 D x�1k00sh02. As the given

expression for r1 is reduced and as s commutes with k0, it must be that k0 is the
empty word. In particular, w1 D x�1. Furthermore, since s commutes with k00, w2
has reduced expression x�1sk00h02. However, this contradicts our choice of R since
some expression for w2 begins with w1s. The claim follows.

Lemma 10.4. For every vertex yv of�F T and every s 2 Lyv , there is no edge labeled
by s incident to yv in �F T

Proof. For a contradiction, suppose that there exists some yv of�F T , s 2 Lyv and an
edge d incident to yv in �F T which is labeled by s. Note that yv 2 yT .
LetH be the hyperplane (recall that �F T is a CAT(0) cube complex) dual to d .

In particular, H is of type s. By Proposition 4.8, H intersects yT at some edge ye.
Let e be an edge of T , such that yf .e/ D ye. Note that the label of e must be s.
Let v 2 T be such that yf .v/ D yv. Let ˇ be a geodesic in T from v to e. Let
y̌ D yf .ˇ/. It follows that y̌ is a path in �F T from yv to ye. By Lemma 4.2, there
exists a geodesic y̌0 with the same endpoints as y̌ and with label a reduced expression
for the label of y̌. Finally, let 
 be a path in the carrier of H from yv to the endpoint
of ye. Note that the label of 
 only consists of vertices in link.s/.
As y̌0 is geodesic, any hyperplane intersects it at most once. Thus, as hyperplanes

separate �F T into two components, it follows that any hyperplane that intersects y̌0
must also intersect 
 . It follows that the label of y̌0 consists only of vertices in
link.s/. However, the label of y̌0 and the label of ˇ are expressions for the same
element of W� . This implies that ˇ [ e is a path in T based at v whose label is an
expression for the word ks, where every generator in k is adjacent to s in � . This
contradicts Lemma 10.3.

We are now ready to prove the main results of this section.

Theorem 10.5. Let G be a finitely generated reflection subgroup of a RACG. Then
there exists a finite completion of G.

Proof. As previously discussed, we first obtain the completion �F T of T using
Proposition 7.3. For each vertex yv of �F T and s 2 Lyv , we attach a graph-loop to
yv 2 �F T labeled by s. Let�0F T

be the resulting complex. Note that by Lemma 10.4,
such a graph-loop is never attached to a vertex that is incident to an edge with the
same label as the graph-loop. Furthermore, note that�0

F T
can be obtained from�0

by applying the same completion sequence that was applied to T to obtain �F T ,
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while “ignoring” the graph-loops. We now get a finite completion �G of �0F T
by

applying Lemma 4.9. It follows that �G is a finite completion for G.

Example 10.6. Let � be the graph in Figure 7. The right of this figure shows a
completion for the reflection subgroup h.dac/b.dac/�1; .dc/d.dc/�1i.

a b c d

�4

c a d d c

b d

c a
d d

c

c a
d

c

d

b bb b

Figure 7. A completion for a reflection subgroup.

The following corollary immediately follows from Theorem 10.5 and Theo-
rem 8.4.
Corollary 10.7. Every finitely generated reflection subgroup of a RACG is
quasiconvex.
For 2-dimensional RACGs, we obtain the following stronger result which shows

that the time-complexity of the algorithm which builds the completion of a reflection
subgroup is bounded by the size of words in the generating set of reflections. This is
used in Section 12.
Theorem 10.8. Let W� be a 2-dimensional RACG. Let G be a subgroup of W�
generated by a finite set of reflection words R. Then there is a finite completion
sequence for G whose length only depends on the numbers

P
r2R jr j and jV.�/j.

Proof. By Lemma 10.2, wemay assumewithout loss of generality thatR is trimmed.
As before, we first obtain the completion �F T of T . However, this time we use
the more refined Proposition 7.4 which guarantees that the number of steps in this
completion sequence only depends on j�0j and jV.�/j. The rest of the proof follows
by repeating the proof of Theorem 10.5 and noting that Lemma 4.9 (3) guarantees
the bound.

Remark 10.9. By Lemma 4.9, the completion�G of the reflection groupG given by
Theorems 10.5 and 10.8 contains the complex �F T as an isometrically embedded
subcomplex. Moreover, the inclusion of �F T into �G satisfies the additional
properties given by Lemma 4.9.

11. Coxeter subgroups of 2-dimensional RACGs

In this sectionwe studyCoxeter subgroups of 2-dimensional RACGs. Recall that such
subgroups, by our definition, are always finitely generated. It is clear that a Coxeter
subgroup of a RACG W� must be generated by involutions (order two elements)
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in W� . We show in Theorem 11.4 that under mild hypotheses these subgroups are
generated by reflections. Consequently, they are quasiconvex by Theorem 10.5 and
Theorem 8.4.
We first prove three lemmas involving the structure of particular types of words

in a RACG. The first is well known and addresses involutions:
Lemma 11.1. Let g be an involution in the RACG W� . Then there is an expression
wkw�1 for g, such that every generator in the word k is in a common clique of � .

Proof. It is well known that every finite subgroup of a RACG is contained in a
conjugate of a special finite subgroup (see [20, Theorem 12.3.4] for instance). The
lemma follows, as a special subgroup of a RACG is finite if and only if its defining
graph is a clique.

The next lemma concerns the structure of particular types of commuting words.
Lemma 11.2. Let w D s1 : : : sm and k D k1 : : : kn be reduced commuting words in
the RACG W� and suppose that the vertices k1; : : : ; kn 2 V.�/ are all contained in
a common clique of � . Then for each 1 � i � m, either:
(1) si D kr for some 1 � r � n and m.si ; sj / D 2 for all j ¤ i , or
(2) m.si ; kj / D 2 for all 1 � j � n.

Proof. Note that as k is reduced and k1; : : : ; kn pairwise commute, it follows that
ki ¤ kj for all i ¤ j . As w and k commute, there exists a disk diagram R with
boundary label wkw�1k�1. We think of R as a rectangle. The vertical sides are
labeled, read from bottom to top, by w, and the horizontal sides of R are labeled,
read from left to right, by k. As w and k are reduced, no dual curve intersects the
same side of R twice.
Fix s 2 � such that s D si for some 1 � i � m. Let e1; : : : ; el be the set of edges

labeled by s on the left side of R, ordered from bottom to top. Let e01; : : : ; e0l be the
edges labeled by s on the right side of R, ordered from bottom to top. We think of
the edge ei as lying “directly across” from e0i in R. Consider the set H of all dual
curves in R of type s.
Suppose first that s ¤ kr for all 1 � r � n. As dual curves of the same type do

not intersect, it follows that for each 1 � j � l , there is a curve in H intersecting
both ej and e0j . Let H be the dual curve in H that is bottom-most in R, i.e., that
intersects e1 and e01. Let ˛ be the path along the boundary ofR from the bottom of e1
to the bottom of e01. Let t D kr for any 1 � r � n. Observe that the label of ˛ has
an odd number of occurrences of the letter t . Hence some curve intersecting an edge
in ˛ labeled by t must intersect H . Thus, m.s; t/ D 2 and item (2) in the statement
of the lemma holds in this case.
On the other hand, suppose that s D kr for some 1 � r � n. Let d and d 0

respectively be the edges on the bottom and top of R labeled by kr . The dual curves
in H must take one of two possible forms. The first possibility is that there are
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curves in H intersecting the following pairs of edges: d and e1, e0j and ejC1 for
1 � j � l � 1, and e0

l
and d 0. Otherwise, there are curves in H intersecting the

pairs d and e01, ej and e0jC1 for 1 � j � l � 1, and el and d
0.

Let t be a letter in w such that t ¤ s. If t also appears in k, then m.s; t/ D 2.
Otherwise, the dual curves labeled by t all go across R, such that for all j , the j th
edge labeled t on the left side is paired with the j th edge labeled t on the right
side. Now the structure of dual curves in H (in either case) forces each dual curve
labeled t to intersect a curve in H . It follows that m.s; t/ D 2. Thus, s commutes
with every generator of w that is not equal to s. All that is left to show is that there
is only one occurrence of the generator s in w, i.e., that l D 1. However, if there
were two occurrences of s, these occurrences can be deleted (as s commutes with
every generator in w). This is not possible, as w is reduced. Thus, m.si ; sj / D 2 for
all 1 � j � m such that j ¤ i , and item (1) in the statement of the lemma holds.

The following lemma about commuting words will be used in the proof of
Theorem 11.4.

Lemma 11.3. Let b and x D zs1s2z�1 be reduced commuting words in a RACGW� ,
where s1; s2 2 V.�/ and z is a word in W� . Suppose also that s1 commutes with
both s2 and z. Then b commutes with yx D zs2z�1

Proof. As in the previous lemma, we form a “rectangular” disk diagram R with
boundary label bxb�1x�1. The vertical sides of R are labeled, read from bottom to
top, by b, and the horizontal sides of R are labeled, read from left to right, by x. As
b and x are reduced, no dual curve intersects the same side of R twice. LetH be all
dual curves in R of type s1.
As x is reduced and s1 commutes with both s2 and z, it readily follows that there

is only one occurrence of s1 in x. Let et be the unique edge on the top of R labeled
by s1, and let eb be the unique edge on the bottom of R labeled by s1.
First suppose that b does not contain any occurrences of the generator s1. ThenH

consists of a single dual curve H which intersects both et and eb . Let N.H/
be the set of cells in R that contain an edge intersecting H . It follows that the
boundary @N.H/ of N.H/ has label s1ys1y�1 for some word y. We can then
excise .N.H/ n @N.H//[ et [ eb from R and then glue back together the resulting
components along their boundary paths labeled by y. What results is a new disk
diagram with boundary label byxb�1yx�1. Thus, b commutes with yx.
On the other hand, suppose that b has one or more occurrence of s1. We consider

two cases. The first case is that s1 commutes with every generator of b. As b is
reduced, it readily follows that there is a unique occurrence of s1 in b. Furthermore,
s1yb and ybs1 are both expressions for b, where yb is the word obtained from b by
removing the generator s1. Now we have the following equalities in W� :

ybyx D ybs1s1yx D bx D xb D yxs1s1yb D yxyb:
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Thus, yb and s1 both commute with yx, so b does as well, and the lemma follows for
this case.
For the second case, suppose there are generators in b that do not commutewith s1.

We will show that this case is actually not possible as we obtain a contradiction.
Let e1; : : : ; el be the set of edges labeled by s1 on the left side of R ordered from

bottom to top, and let e01; : : : ; e0l be the set of edges labeled by s1 on the right side
of R ordered from bottom to top. As in the previous lemma, the dual curves in H

either intersect the pairs eb and e1, e0j and ejC1 for 1 � j � l � 1, and e
0
l
and et ,

or intersect the pairs eb and e01, ej and e0jC1 for 1 � j � l � 1, and el and et . We
assume that the dual curves inH have the first configuration described (the proof in
the other possible configuration same).
Consider the first occurrence in b of a generator t that does not commute with s1,

and let d be the corresponding edge on the left side of R labeled by t . Note that d is
the “bottom-most” edge on the left side of R with label t . Let T be the curve in R
that intersects d . Note that T cannot intersect any dual curve inH as s1 and t do not
commute. Furthermore, T cannot intersect an edge on the top or bottom of R as the
label of every such edge commutes with s1. Thus, it readily follows by the structure
of dual curves inH that d cannot lie before e1. Similarly, d cannot occur after el , as
then the edge on the right side of R labeled by t occurs after e0

l
, which is again not

possible by the structure ofH .
Thus, d must lie between er and erC1 for some 1 � r < l . However, as T cannot

intersect a dual curve in H and cannot intersect the bottom of R, it follows that T
intersects an edge on the right side of R that lies before e0r . Correspondingly, there
is an edge on the left side of R lying below er with label t . This contradicts the fact
that d is the bottom-most such edge on the left side of R. The lemma follows.

An isolated vertex of a graph is a vertex that is not adjacent to any other vertex.
If W� is a 2-dimensional RACG, we show:

Theorem 11.4. Let G be a subgroup of a RACG W� , where � is triangle-free.
Suppose that G is isomorphic to the Coxeter group W�0 (which is right-angled by
Proposition 2.1), where � 0 does not have an isolated vertex. Then G is generated by
a finite set of reflections in W� .

Proof. As G is a RACG, it is generated by the standard Coxeter generating set
corresponding to � 0. In particular, there exists a finite generating set IG for G
consisting of reduced words representing involutions in W� , such that

(1) there is a bijective map from V.� 0/ to the elements of IG , and

(2) if there is an edge between two vertices of � 0 then the corresponding elements
of IG commute.

We inductively construct a sequence of generating sets forG, each consisting of jIG j
reduced words representing involutions in W� and satisfies properties (1) and (2).
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Furthermore, each generating set in the sequence will contain one more reflection
than the previous one.
Let r be the number of reflections in IG . If r D jIG j, then we are done.

Otherwise, let h 2 IG be such that h is not a reflection. By properties (1) and (2)
above, and since � 0 does not have isolated vertices, there exists an h0 2 IG which
is distinct from and commutes with h. By Lemma 11.1 and since � is triangle-free,
we conclude that h D ws1s2w

�1 and h0 D w0k0w0�1, where s1 and s2 are adjacent
vertices in � , k0 is a word of length at most two whose generators are in a common
clique, and w;w0 are words in W� .
Consider the subgroup H D w0�1Gw0 of W� . Note that H is generated by

IH D w
0�1IGw

0. Let x be a reduced expression for w0�1hw0 obtained by applying
a sequence of deletions. Then x must be of the form x D zs1s2z�1 for some word z
in W� . Note that k0 D w0�1h0w0 2 IH and that k0 and x commute.
We claim that either k0 D s1 or k0 D s2. First suppose for a contradiction that k0

is of length two, say k0 D k1k2, for some distinct k1; k2 2 V.�/. If k1 ¤ s1
and k1 ¤ s2, then by Lemma 11.2, we have that m.k1; s1/ D m.k1; s2/ D 2.
However, this is not possible as � is triangle-free. Thus k1 is equal to either s1
or s2, and similarly, k2 is equal to either s1 or s2. It follows that, up to relabeling,
k0 D s1s2. Lemma 11.2 further implies that s1 and s2 commutewith z. Consequently,
x D s1s2 D k

0, which is a contradiction since h and h0 are distinct.
Suppose now that k0 has length one. Again by Lemma 11.2 and the fact that � is

triangle-free, k0 cannot consist of a generator distinct from s1 and s2. Thus k0 D s1
or k0 D s2. By possibly relabeling, we may assume that k0 D s1. Now Lemma 11.2
implies that s1 commutes with z and s2. Let y D k0x D zs2z

�1. We replace x
with y in IH to form the new set I 0H . Note that I

0
H is still a generating set for H

as x D k0y.
Let b ¤ s1 be any element of I 0H which commutes with x. Then since x D

zs1s2z
�1 and s1 commutes with z and s2, Lemma 11.3 implies that b commutes

with y. It follows that w0I 0Hw
0�1 is a generating set for G which satisfies properties

(1) and (2) above. Finally, note that the number of reflections in I 0H , and hence
in w0I 0Hw

0�1 is exactly r C 1.
By repeating this process enough times, we are guaranteed a finite generating set

for G consisting only of reflections.

It follows easily from Corollary 10.7 that subgroups as in Theorem 11.4 are
quasiconvex:
Corollary 11.5. Given a 2-dimensional RACG, every Coxeter subgroup whose
defining graph does not have an isolated vertex is quasiconvex.
Remark 11.6. Note that the defining graph of a RACG has an isolated vertex if
and only if the group splits as a free product with a Z2 factor. Some version of
the non-splitting hypothesis is required in Theorem 11.4 and Corollary 11.5. For
consider the graph �2 from Figure 2. The subgroup ofW�2

generated by ab and cd
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is isomorphic to the infinite dihedral group. In particular, it is a right-angled Coxeter
subgroup of W�2

. However, it is straightforward to check that this subgroup cannot
be generated by reflections and has an infinite completion (so is not quasiconvex by
Theorem 8.4).

12. Deciding when a RACG is a finite-index subgroup of a 2-dimensional RACG

In this section we give an algorithm which, given a 2-dimensional, one-ended RACG
W� and any RACG W�0 , determines whether or not W� contains a finite-index
subgroup isomorphic to W�0 (Theorem 12.8). In fact, the one-endedness hypothesis
can beweakened. When such a subgroup does exist, the output of the algorithm is a set
of words inW� which is a standard RACG generating set for a subgroup isomorphic
to W�0 . Furthermore, the time-complexity of this algorithm only depends on the
number of vertices of � and � 0.
Given a set of reflectionsR which generate a finite-index subgroup ofW� , under

the right hypotheses, Proposition 12.1 below bounds the sizes of elements inR as a
function of jV.�/j and jRj. This is a key step in the proof of the main theorem of
this section, as it allows us to bound the number of sets of reflections that need to be
investigated by our algorithm.
To state the proposition, we require the following definition: we say a graph � is

almost star if there exist vertices s; t 2 � (possibly not distinct) such that V.�/ D
star.s/ [ ftg.

Proposition 12.1. Let W� be a RACG such that � is triangle-free and not almost
star. Let

R D fwisiw
�1
i j wi 2 W� and si 2 V.�/; 1 � i � N g

be a trimmed set of reflections which generates a finite-index subgroupG < W� . Then
there exists a constant M , depending only on jV.�/j and jRj such that jwi j � M
for all wisiw�1i 2 R.

In order to prove this proposition, we establish some notation and prove some
preliminary lemmas. The notation below will be fixed until the proof of Proposi-
tion 12.1 is complete.
LetM be the smallest integer such that if a reducedwordw inW� is longer thanM ,

then w contains 2N C 2 occurrences of some letter of V.�/ (where N D jRj). In
particular, M only depends on jV.�/j and on jRj. This M will be the same as the
constant in the proposition.
In order to establish a contradiction, we assume that jw1j > M . By possibly

relabeling, we assume that jw1j � jwi j for all 1 < i � N . By the previous
paragraph, we may fix some vertex xs of � which occurs at least 2N C 2 times in the
word w1.
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We now choose convenient expressions for the elements of R. Firstly, we
assume w1 is written in an expression where occurrences of xs appear as far left
as possible. More formally, if w1 D s1 : : : sm and si D xs, then for all j < i there is
no expression for w1 in W� equal to the word s1 : : : sj�1sjC1 : : : sisj siC1 : : : sm.
Given two words w and w0 in W� , let �.w;w0/ denote the length of their largest

common prefix. For each 2 � i � N , we choose an expression for wi so that
�.w1; wi / is maximal out of all such possible choices forwi . Clearly, there is no loss
of generality in making these assumptions on w1; : : : wN .
We will now use the notation established in Section 10.2 associated to a

reflection subgroup of a RACG. As in that section, we have the based �-labeled
complex .�0; B/, the labeled tree T � �0 and the associated folded based labeled
tree .F T ; B/. Furthermore, .�F T ; B/ is a based finite CAT(0) cube complex
which is a completion of .F T ; B/. By Theorem 10.8, there is a completion .�G ; B/
of .�0; B/ (which is also a completion forG) whose associated completion sequence
has length bounded by a function which depends only on

P
r2R jr j and jV.�/j. We

again denote by yf the natural map

yf WF T ! �F T � �G

and recall that �F T is isometrically embedded in �G .
Let V be the set of vertices in F T that are the image of a vertex of T � �0

which has a graph-loop attached to it. Observe that jV j � N . Also note that at
most N vertices in F T have valence larger than 2.
Let ˛ be the path in F T based at B with label w1. As there are at least 2N C 2

occurrences of xs in the word w1, there must exist two edges of ˛, say e1 and e2, each
with label xs such that every vertex between e1 and e2 has valence 2 and is not in V .
Let 
 be the geodesic in F T between e1 and e2. By possibly passing to a subpath,
we may assume that no edge in 
 has label xs. We also assume that e1 is closer to B
than e2.
We now sketch how a contradiction will be established. As G is a finite-index

subgroup of W� , it will follow that �G must be full-valence. We then focus on a
specific vertex of �G which is contained in yf .
/. We show that the structure of
edges and graph-loops incident to this vertex, together with the assumption that�G is
full valence, must imply that � is an almost star graph, contradicting the hypotheses
of Proposition 12.1. In order to carry out this argument, we must first gain a solid
understanding of the structure of the subcomplex yf .
/. This is the purpose of the
next four lemmas.

Lemma 12.2. Let v be a vertex of 
 , and let v0 be any vertex in F T . If yf .v/ D yf .v0/,
then v D v0.

Proof. Let ˇ be a path in F T from the base vertex B to v, and let ˇ0 be a path
in F T from B to v0. The label l of ˇ is a prefix of w1. Similarly, the label l 0 of ˇ0 is
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a prefix of wi , for some 1 � i � N . Let y̌ D yf .ˇ/ and y̌0 D yf .ˇ0/ be the images
of these geodesics in �F T .
As �F T is a CAT(0) cube complex, the loop y̌0 [ y̌�1 is homotopic, relative

to basepoint, to B . Thus, by Lemma 4.2 (3), the label of y̌0 [ y̌�1 is equal to the
identity element in W� . It follows that l 0 and l represent the same element of W� .
However, our choice ofwi guarantees thatwi andw1 share the largest possible prefix.
It follows that l and l 0 are the same word. As F T is folded, it follows that ˇ D ˇ0

and that v D v0.

Lemma 12.3. Let ˇ be a path in �F T with label a reduced word in W� . Then ˇ is
a geodesic.

Proof. Suppose ˇ is not geodesic. As �F T is a CAT(0) cube complex, it follows
some hyperplaneK is dual to two distinct edges k and k0 of ˇ. Furthermore, we can
choose K, k and k0 so that every hyperplane dual to an edge of ˇ between k and k0
intersects K. However, from this it readily follows that the label of k (and of k0)
commutes with the label of any edge of ˇ between k and k0. This implies that the
label of ˇ is not reduced, a contradiction.

For the next two lemmas, let ye1 D yf .e1/ and ye2 D yf .e2/. Furthermore, let H1
andH2 be the hyperplanes in �F T that are dual respectively to ye1 and ye2.
Lemma 12.4. The edge ye1 is the only edge of yf .F T / that is dual to H1. Similarly,
the edge ye2 is the only edge of yf .F T / that is dual to H2.

Proof. We prove the claim forH1. The proof is analogous forH2. Let ye be an edge
in yf .F T / � �G dual toH1. We will show that ye D ye1.
As F T is a tree, if the edge e1 is removed (but its endpoints are not removed),

there are exactly two resulting components. We let CB denote the component that
includes the vertex B , and let xCB be the component which does not.
Let e be an edge ofF T such that yf .e/ D ye. We first claim that e cannot be in xCB .

For suppose otherwise. It follows that e and e1 are contained in a common path �
with reduced label wj for some 1 � j � N . By Lemma 12.3 yf .�/ is a geodesic
in �F T . However, it now follows that the hyperplane H1 is dual to two edges of a
geodesic, contradicting the fact that a hyperplane in a CAT(0) cube complex is dual
to at most one edge of a geodesic.
Thus, we may assume that either e 2 CB or e D e1. Let ˇ be a geodesic in F T

from e1 to e, which includes these two edges. Due to the tree structure of F T , it
follows that the label of ˇ is k�11 k2, where wk1 is a prefix of w1 and wk2 is a prefix
of wj for some 1 � j � N and some reduced word w. Note that w; k1 and k2 could
each be the empty word. Let y̌ D yf .ˇ/ be the corresponding path in �F T .
Let y� be a geodesic along the carrier of H1 from the endpoint to start point

of y̌. Let z be the label of y�. Let D be a disk diagram in �F T with boundary
y̌ [ y��1. The label of @D is k�11 k2z. Let b1 and b2 be the paths along @D with
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labels respectively k1 and k2. Let c the path along @D labeled by z. Write the label
of b1 as k1 D s1s2 : : : sm, where sl 2 V.�/ for 1 � l � m. Note that sm D xs. For
1 � l � m, let dl be the edge of b1 with label sl .
We claim that no dual curve intersects both b1 and c. For suppose there is such a

dual curve P . Further suppose that P intersects the edge dr such that r is maximal
out of such possible choices. Note that r ¤ m as z only contains letters in link.xs/,
being the label of a geodesic in the carrier of a hyperplane of type xs. It follows that
every dual curve intersecting dl , for l > r , intersects P . Let p 2 � be the type of P .
As P intersects c, and the label of c is in link.xs/, it follows that p 2 link.xs/ � V.�/.
Additionally, p commutes with sl for every r < l � m. However, this implies
that s1 : : : sr�1srC1 : : : smsr is an expression for k1. As k1 is a subword of w1, this
contradicts our choice ofw1 having occurences of xs appear as “left-most” as possible.
Thus, every dual curve intersecting b1 must intersect b2.
By Lemma 2.4, k2 is an expression in W� for k1k, where k is possibly empty.

However, it follows from our choice of expression for wj (we chose expressions for
words in R to have maximal common prefix with w1) that k2 and k1k are actually
equal as words. Consequentlywk1 is a prefix of bothw1 andwj . Hence, we conclude
that e D e1 and so ye D ye1.

Lemma 12.5. Let Y be the subcomplex of �F T bounded by H1 and H2. Let yv be
a vertex in Y . Then the label of any graph-loop in �G incident to yv (where we think
of yv 2 �F T � �G) is in link.xs/ � V.�/.

Proof. Let u be any vertex of �0 that is incident to a graph-loop. By construction,
the image of u in F T is not contained in 
 . By Lemma 12.4 and the fact that every
vertex of 
 has valence 2 by construction, yf .F T / \ Y D 
 . Thus eitherH1 orH2
separates yv from yf .u/.
Suppose the label of the graph-loop attached to yv is t . By Lemma 4.9 and

Remark 10.9, there is a path � in �F T from yv to a vertex yu0 such that yu0 D yf .u0/,
where u0 2 �0 is a vertex that is incident to a graph-loop labeled by t . Furthermore,
the label of � is a word in link.t/. It follows that � must intersect either H1 or H2.
Hence, the label of � contains the generator xs. Thus, xs2 link.t/ and so t 2 link.xs/.

We are now ready to prove the proposition.

Proof of Proposition 12.1. Let e be the edge of 
 adjacent to e2. Let v be the vertex
e \ e2. Let t be the label of e. By our choice of w1 (having xs occurrences appear
“left-most”), t and xs are not adjacent vertices of � . Set ye D yf .e/, ye2 D yf .e2/,
yv D yf .v/ and y
 D yf .
/.
As � is not almost star, it readily follows that star.s/ ¨ V.�/ for any s 2 V.�/.

In particular,�G is resolved. As G is a finite-index subgroup,�G is full valence by
Theorem 6.6.
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Again, as � is not almost star, there exists a vertex a 2 � such that a ¤ t and
a … star.xs/. As �G is full valence, there must exist an edge yd adjacent to yv labeled
by a. By Lemma 12.5, yd is not a graph-loop. Let yu0 be the vertex of yd which is not
equal to yv. As �G is full valence, there must exist an edge yd 0 adjacent to yu0 with
label xs which is not a graph-loop by Lemma 12.5. Let H be the hyperplane dual
to yd 0.
First note that yd 0 cannot be dual to H2, for otherwise it would follow from the

convexity of N.H2/ that yd � N.H2/, contradicting the fact that a is not in star.xs/.
Furthermore, yd 0 cannot be dual to H1 either. For otherwise, as y
 is geodesic (by
Lemma 12.3), it follows that the hyperplane dual to yemust intersectH1, contradicting
the fact that t is not in link.xs/. Thus,H ¤ H1 andH ¤ H2.
By Proposition 4.8, H must intersect yf .F T / � �G . As y
 does not have any

edges labeled by xs, it follows that H cannot intersect y
 . Thus, by Lemma 12.4, H
must intersect either H1 or H2. However, this is a contradiction as H , H1 and H2
are all of type xs.

Before proving Theorem 12.8, we address a special case. The next lemma
describes finite-index subgroups of W� for the case where � is a triangle-free join
graph.
Lemma 12.6. Suppose � is a triangle-free graph which splits as a join � D A ? B .
Let R be a finite set of reduced reflection words inW� which generates the subgroup
G < W� . Then G is a finite-index subgroup of W� if and only if R D RA [RB

such that

(1) RA (resp. RB ) consists only of words in WA (resp. WB );

(2) RA (resp. RB ) generates a finite-index subgroup of WA (resp. WB ).

Proof. The “if” direction is immediate. For the other direction, suppose that G has
finite index in W� . Let

RA D fwsw
�1
2 R j s 2 V.A/g

and let RB D R nRA. Note that if wsw�1 2 RA, then w does not have a letter
in V.B/. For if it did, wsw�1 would not be reduced. Similarly, every reflection
inRB does not contain a letter of V.A/. This shows (1).
Thus, the subgroup GA generated by RA is a subgroup of WA, and the sub-

group GB generated by RB is a subgroup of WB . As G has finite index in W� , it
must be that GA and GB are finite-index subgroups respectively ofWA andWB .

We also need the proposition below, which follows from known results:
Proposition 12.7. Let W be a RACG and let G < W be a subgroup generated by a
set R of reflections. Then G is a RACG. Furthermore, if R is trimmed, then it is a
standard Coxeter generating set.
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Proof. Deodhar and Dyer independently proved that reflection subgroups of Coxeter
groups are Coxeter groups [22, 23]. This, combined with Proposition 2.1 implies
that G is a RACG. The second claim follows from the main theorem of [23] and [23,
Proposition 3.5]. We also refer the reader to [23, p. 69] for an algorithm to determine
a standard generating set for a reflection subgroup of a Coxeter group.

We are now ready to prove the main theorem of the section.

Theorem 12.8. There is an algorithm which, given a 2-dimensional RACG W� and
a RACG W�0 such that � 0 does not have an isolated vertex, determines whether or
notW�0 is isomorphic to a finite-index subgroup ofW� . The algorithm takes as input
the graphs � and � 0, and the time-complexity of this algorithm only depends on the
number of vertices of � and of � 0. Furthermore, ifW�0 is isomorphic to a finite-index
subgroup of W� , then the algorithm outputs an explicit set of words in W� which
generate this subgroup.

Proof. First observe that if there exists some G < W� isomorphic to W�0 , then by
Theorem 11.4 and Lemma 10.2, G is generated by a trimmed set of reflections R

and jRj D jV.� 0/j.
We prove the theoremby analyzing a fewdifferent cases depending on the structure

of � .

(i) � is not almost star. Let I be a trimmed set of reduced reflections inW� . We say I
is M -admissible if jI j D jV.� 0/j and jwj � M for every reflection wsw�1 2 I .
Let IM be the collection of allM -admissible trimmed sets of reflections. Note that
there is a bound on jIM j depending only onM and jV.� 0/j.
Suppose G is a finite-index subgroup of W� which is isomorphic to W�0 , and

let R be a trimmed generating set for G as described above. As � is not almost
star, Proposition 12.1 guarantees that R 2 IM , where M is as in Proposition 12.1,
and depends only on jV.�/j and jV.� 0/j D jRj. It follows that there exists a finite-
index subgroup of W� isomorphic to W�0 if and only if some I 2 IM generates a
finite-index subgroup that is isomorphic to W�0 .
Thus, to prove the theorem we only need to show that there is an algorithm to

decide whether a given I 2 IM generates a finite-index subgroup G isomorphic
to W�0 . By Theorem 10.8 and Theorem 6.6 there is an algorithm to decide whether
or not such a G is a finite-index subgroup, and the time-complexity of this algorithm
only depends on jV.� 0/j and jV.�/j. By Proposition 12.7, G is a RACG and I is a
standard Coxeter generating set. As any RACG is defined by a unique graph [34],
it is straightforward to check whether I generates a RACG isomorphic to W�0 . The
theorem then follows in this case.

(ii) jV.�/j � 2. In this case W� is isomorphic to Z2, Z2 � Z2 or Z2 � Z2. Each
of these groups contains finitely many finite-index RACGs, up to isomorphism, and
one can easily list them.
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(iii) � D A ? B where jV.A/j; jV.B/j � 2. Suppose G is a subgroup of W� which
is isomorphic to W�0 . Let R be a trimmed generating set of reflections for G as
above.
If G is a finite-index subgroup, then Lemma 12.6 tells us that R D RA [RB

where every reflection inRA only contains generators inA and every reflection inRB

only contains generators in B . Furthermore, RA generates a finite-index subgroup
of WA and RB generates a finite-index subgroup of WB . As jV.A/j; jV.B/j � 2,
bothRA andRB are non-empty.
Let � D �A ? �B be the triangle-free join graph such that vertices of �A

(resp. �B ) correspond to elements of RA (resp. RB ). It readily follows that W�0 is
isomorphic to W�.
Thus, we can assume that � 0 D A0 ? B 0, a join graph. To prove the claim, again

by Lemma 12.6, it is enough to check whether WA0 is isomorphic to a finite-index
subgroup ofWA andWB0 is isomorphic to a finite-index subgroup ofWB . However,
as � is triangle-free, A does not contain any edges. It follows that either A is not
almost star or A consists of at most two isolated vertices. The same holds for B .
Thus, we are done by cases (i) and (ii).

(iv) � is not as in (i), (ii) or (iii). As � is not as in (i), we may assume that � is
almost star. Suppose first that V.�/ ¨ star.v/ for all v 2 V.�/. Let s and t be
vertices of � such that V.�/ D star.s/ [ ftg. Note that s and t must be distinct.
As � is triangle-free, is not a join as in (iii), is not the star of a vertex, and contains
more than two vertices, there must be a vertex u of � that is adjacent to s and is not
adjacent to any other vertex of � .
Let G be a subgroup of W� generated by reflections. Let � D D.�; u/ and

� D �uWW� ! Z2 be as in Definition 2.2, and let K D ker.�/. Note that � is not
almost star and that K is generated by reflections.
Let iG WG ! W� be the inclusion map. Let K 0 be the kernel of the map

�0 D � ı iG . We get the diagram below where all maps labeled by i are the obvious
inclusion homomorphisms.

K 0 D ker.�0/ G

K D ker.�/ Š W� W� Z2

i

i

i

iG

�

�0 D � ı iG

Recall that given a triple of groups G3 < G2 < G1, their indices satisfy the
formula

ŒG1 W G3� D ŒG1 W G2�ŒG2 W G3�;

where infinite values are interpreted appropriately. If we apply this formula to the
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groups in the diagram and note that

ŒG W K 0� D ŒW� W K� D 2;

we get

2ŒW� W G� D ŒW� W G�ŒG W K
0� D ŒW� W K

0� D ŒW� W K�ŒK W K
0� D 2ŒK W K 0�:

Thus, G is a finite-index subgroup ofW� if and only if K 0 is a finite-index subgroup
of K. As � is not almost star, it follows by (i) that there is an algorithm to check
whether K 0 is a finite-index subgroup of K. The theorem now follows.
On the other hand, if V.�/ D star.s/ for some s 2 V.�/, then we apply the

same argument as before but instead take the homomorphism � D �s . In this case,
� D D.�; s/ must be a non-empty graph with no edges. Thus, by either (i) or (ii),
there is an algorithm to check whether K 0 is a finite-index subgroup of K, where K 0
and K are as before.

13. Other algorithmic properties of quasiconvex subgroups

This section is dedicated to the proof of Theorem E of the introduction. Throughout
this section, we let G be a quasiconvex subgroup of W� given by a finite generating
set, and we let � be the corresponding completion. By Theorem 8.4, � is finite and
by Proposition 3.5 it can be computed in finite time.
Note that (1) and (2) of Theorem E immediately follow by Proposition 4.6, and

Theorem 6.6 respectively. Before proving (3), we show that powers of an element of
a RACG can be represented by words of a special form.
Lemma 13.1. Let w be a reduced word in the RACG W� . Then there exist
reduced words x; h and k, such that xhkx�1 is a reduced expression for w and
xhnk.n mod 2/x�1 is a reduced expression for wn for all integers n > 0.

Proof. Write w D xyx�1 where x and y are reduced words and jxj is maximal out
of all such possible expressions. Let K D fk1; : : : ; kng be the set of vertices in �
that appear as letters in the word y and which commute with every other letter of y.
As w is reduced, each element ofK appears as a letter of w exactly once. Define the
word k D k1 : : : kn. By our choice of k, it follows that there exists a reduced word h,
such that hk is a reduced expression for y. Note that h has the property that any
generator which appears as the last letter of some reduced expression for h, cannot
also appear as the first letter in some reduced expression for h. This follows since
otherwise either x is not maximal or such a generator should have been in K. The
word xhkx�1 will be the desired expression for w.
Thewordxhnk.n mod 2/x�1 is clearly an expression for thewordwn. Furthermore,

the word xhnk.n mod 2/x�1 must be reduced. For otherwise, it follows by the deletion
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property that either h is not reduced or some generator appears as the first letter in
some reduced expression for h and as the last letter in some reduced expression for h,
which is not possible.

Proof of Theorem E (3). Without loss of generality, wemay assume thatw is reduced.
Let N be the number of vertices of �. We claim that gm 2 G for some positive
integerm if and only ifw2l represents an element ofG for some l � N . The theorem
clearly follows from this claim and the fact that the membership problem is solvable
for G.
One direction of the claim is clear. On the other hand, suppose gm 2 G for some

positive integer m. By possibly taking a power, we may assume that m is even. By
Lemma 13.1, there is a reduced expression for wm of the form z D xhmx�1. Let ˇ
be a loop in � based at B with label z. For 1 � i � m, let ˛i be the first subpath
of ˇ with label hi , and let vi be the endpoint of ˛i . As� is folded, the two subpaths
of ˇ labeled x are identified. It follows that ˛m is a loop based at vm. As there
are at most N vertices of �, it follows that the set fv1; : : : ; vmg contains at most N
distinct vertices. There must then exist some loop ˛ based at vm with label hl for
some l � N . Thus, if we replace ˛m with ˛˛ in ˇ, we conclude that there is a
loop in � based at B with label xh2lx�1. By the definition of a completion, the
word xh2lx�1, which is an expression for w2l , represents an element of G.

Although Theorem 5.3 characterizes normality, the core of a completion may
be difficult to algorithmically compute in general. Thus, we now give a different
characterization of normality, for finitely generated subgroups, which is better suited
to the algorithmic approach.

Proposition 13.2. LetG < W� be generated by a finite set of reduced words SG , and
let .�;B/ be a standard completion for G with respect to SG . Consider � � V.�/
defined by:

� D fs 2 V.�/ j s commutes with every element of Gg:

Then G is normal if and only if the following hold:

(N1) Given any s 2 V.�/ n�, there is an edge in � incident to B with label s.

(N20) For every generator w 2 SG of G, and for every vertex v of �, there exists a
loop based at v with label w.

Proof. If G is normal, then Theorem 5.3 implies (N1) and (N20). On the other hand,
suppose (N1) and (N20) hold. As in the proof of Theorem 5.3, to show that G is
normal it is enough to show sGs � G for s 2 V.�/n�. Let v be the vertex which is
adjacent to B via an edge labeled s, which exists due to (N1). Then by Lemma 4.5,
the subgroup ofW� associated to .�; v/ is sGs, and by (N20), G is contained in this
subgroup. Conjugating by s, it follows that sGs � G.
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Proof of Theorem E (4). Let SG be a finite set of reduced words in W� which
generate G. In this case, the set � from Proposition 13.2 is equal to the following
set:

fs 2 V.�/ j 8w 2 SG ; s commutes with every letter in the support of wg:

Thus, � can be computed in finite time. It follows that conditions (N1) and (N20)
from Proposition 13.2 can be checked in finite time as well.
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