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Abstract. Classical symmetric pairs consist of a symmetrizable Kac–Moody algebra g, together
with its subalgebra of fixed points under an involutive automorphism of the second kind.
Quantum group analogs of this construction, known as quantum symmetric pairs, replace
the fixed point Lie subalgebras by one-sided coideal subalgebras of the quantized enveloping
algebraUq.g/.We provide a complete presentation by generators and relations for these quantum
symmetric pair coideal subalgebras. These relations are of inhomogeneous q-Serre type and are
valid without restrictions on the generalized Cartan matrix. We draw special attention to the
split case, where the quantum symmetric pair coideal subalgebras are generalized q-Onsager
algebras.
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1. Introduction

A classical symmetric pair consists of a Lie algebra g together with its subalgebra k of
fixed points under a Lie algebra involution � . Quantum analogs of this construction,
known as quantum symmetric pairs, have emerged in the beginning of the 1990s. They
replace g by its quantized universal enveloping algebra Uq.g/ and k by a one-sided
coideal subalgebra Bc;s of Uq.g/, which is called a quantum symmetric pair (QSP)
coideal subalgebra. The algebras Bc;s were first constructed by Noumi, Sugitani and
Dijkhuizen [35–37] using methods of quantum integrability. A different approach,
based on the Drinfeld–Jimbo presentation of Uq.g/, was pursued by Letzter. She
developed a comprehensive theory of quantum symmetric pairs for semisimple Lie
algebras g in an elaborate series of papers [29–31]. This has allowed to identify the
zonal spherical functions on quantum symmetric spaces as Macdonald–Koornwinder
polynomials [32]. This whole theory was later extended to symmetrizable Kac–
Moody algebras g byKolb in [27], which treats the structure theory of theKac–Moody
QSP coideal subalgebras Bc;s in great detail.
Over the years, it has become increasingly apparent that quantum symmetric pairs

play a crucial role in quantum integrability, notably of the reflection equation [12,41].
The latter replaces the quantum Yang–Baxter equation when reflecting boundary
conditions are imposed. Such boundaries break the quantum symmetry down to
a coideal subalgebra of the quantum algebra which encodes the symmetries in the
bulk of a quantum spin chain [18]. A universal solution for the reflection equation
arises from the QSP coideal subalgebras Bc;s by means of a universal K-matrix, the
analog of the universal R-matrix for Uq.g/. The concept of a universal K-matrix has
been introduced in [4] for g of type A2rC1 and was extended to general Kac–Moody
algebras g in [3]. Both references aim to develop the theory of universal K-matrices in
parallel to Lusztig’s theory of universal R-matrices. More precisely, it was observed
in [4] and [20] for specific types of QSP that Bc;s allows an intrinsic bar involution.
The existence of such a bar involution in greater generality was established in [2].
Moreover, the universal K-matrix can be factorized in terms of a quasi K-matrix,
which intertwines between the intrinsic bar involution and Lusztig’s bar involution
on Uq.g/ [3, 4].
In this paper we will adopt the notational conventions of [27]. We will write

g D g.A/ for the Kac–Moody algebra associated to a symmetrizable generalized
Cartan matrix A of dimension n. We take I to be the set f0; : : : ; n� 1g, such that we
can writeA D .aij /i;j2I . We will use Kolb’s definition of admissible pairs .X; �/, as
will be repeated later in Definition 2.1, to parametrize the involutive automorphisms
of g of the second kind. To each such admissible pair one can associate a quantum
symmetric pair and hence a coideal subalgebra Bc;s of Uq.g/, which also depends on
a multiparameter .c; s/.
The QSP coideal subalgebras Bc;s can be presented in terms of generators and

relations. The set of generators depends on the choice of admissible pair, but always
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contains certain elements Bi , with i 2 I . A set of defining relations which describe
these algebras abstractly in terms of their generators was given in [27, Theorem 7.1]
and will be repeated in the upcoming Theorem C. One of these relations states that

1�aijX
mD0

.�1/m
�
1 � aij
m

�
qi

B
1�aij�m

i BjB
m
i (1)

can be written as a lower-degree polynomial in Bi and Bj which depends on the
entry aij of A. However, Kolb’s theorem does not provide a precise form for this
polynomial, which he denotes by Cij .c/. In the quasi-split case, corresponding
to admissible pairs with X D ;, expressions for Cij .c/ were obtained by Chen,
Lu and Wang in [11] using q-binomial identities. Apart from this special case,
expressions for Cij .c/ were only known for a few possible values of aij , namely
aij 2 f0;�1;�2;�3g. These have been obtained in [27] and [2] by explicit
calculations, which follow similar results in [31] for finite-dimensional g. It was
suggested by Kolb that the same rationale could lead to expressions for Cij .c/ valid
for all aij , but this has not been made explicit before. This paper provides for the first
time closed expressions for the polynomials Cij .c/ valid beyond the quasi-split case,
without restrictions on the Cartan matrix or the admissible pair. It thereby completes
the presentation of the quantum symmetric pair coideal subalgebras by generators
and relations.
Such a presentation is highly desirable in view of the representation theory of the

algebras Bc;s. This was already indicated in [2], where the definition of a new bar
involution for quantum symmetric pairs was validated by showing that it respects the
defining relations ofBc;s. By the absence of such relations beyond the case jaij j � 3,
this could only be done for a limited class of Cartan matrices and admissible pairs.
Our results allow to remove part of these restrictions, as we show in Corollary 4.8.
Our approach will be as follows. We will rewrite (1) as a complicated expression

in Uq.g/˝2, where one of the tensor components is acted upon with a projection
operator. This leads to the upcoming expressions (39) and (42), which were
essentially already contained in [27]. The main novelty of our approach lies in
how we expand these expressions further. We will distinguish two cases, based
on the behavior of i and j with respect to the admissible pair, each leading to a
different expression for Cij .c/. In Propositions 3.3 and 3.7 we will perform a binary
distributive expansion to rewrite (1) as a polynomial which, in the first of these two
cases, is of the form X

m;m0

�m;m0Z
.1�aij�m�m

0/=2

i Bmi BjB
m0

i ; (2)

whereas in the second case one findsX
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where the elements Zi , Wij and Kj are well-defined in terms of the generators
and where all sums are finite. The major difficulty lies in the determination of the
coefficients �m;m0 , �m;m0;t , and �m;t , which we will refer to as the structure constants
of the algebra Bc;s. Initially, we will describe these in terms of monomials in Uq.g/
acted upon with a projection operator. Closed expressions for the actions of these
projection operators and hence for the structure constants are consequently derived
in Theorems 3.13 and 3.19. It may not surprise that the formulae we obtain there turn
out to be rather computationally extensive. Indeed, even the expressions obtained
in [27] and [2] for small values of aij , as displayed in the upcoming Tables 1, 2 and 3,
were already quite intricate. Nevertheless, our formulae contain nothing but finite
sums and products, which can easily be carried out either by hand or by a computer.
In this paper, we will draw special attention to the QSP coideal subalgebras in

the split case, corresponding to the trivial admissible pair .;; id/. These are known
as generalized q-Onsager algebras. Their name has been derived from the algebra
defined by Onsager in [38] as a tool towards his analytic solution of the planar
Ising model in zero magnetic field. This algebra was presented in [19] and [39]
as the infinite-dimensional Lie algebra with generators B0 and B1 subject to the
Dolan–Grady relations

ŒB0; ŒB0; ŒB0; B1��� D �4ŒB0; B1�;

ŒB1; ŒB1; ŒB1; B0��� D �4ŒB1; B0�:

It has received much attention in special function theory and integrable lattice
models [14,22,26]. It can be embedded in the affine Lie algebracsl2 as its subalgebra
of fixed points under the Chevalley involution [40], and hence together with csl2 it
forms a (split) classical symmetric pair. The theory of quantum symmetric pairs
thus offers a solid framework to deform the Onsager algebra to a quantum algebra.
The resulting q-Onsager algebra [5, 7] is abstractly defined by the q-Dolan–Grady
relations

ŒB0; ŒB0; ŒB0; B1�q�q�1 � D �ŒB0; B1�;

ŒB1; ŒB1; ŒB1; B0�q�q�1 � D �ŒB1; B0�;
(4)

where ŒA; B�q D qAB � q�1BA is the q-commutator and � is a scalar depending
on q. The q-Onsager algebra has become an important object of study in quantum
integrability [5, 10, 28] and in connection with q-orthogonal polynomials [9] and
Leonard pairs [24]. Upon adding a defining relation in its equitable presentation, the
q-Onsager algebra is refined to the Askey–Wilson algebra [46], as was shown in [43].
A central extension of the latter, known as the universal Askey–Wilson algebra, was
also identified as a quotient of the q-Onsager algebra [44]. This Askey–Wilson
algebra provides an algebraic framework for the q-Askey scheme of orthogonal
polynomials [8], see also [15, 16, 21] for some recent multivariate generalizations.
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The left-hand side of (4) can be rewritten as

B3i Bj � Œ3�qB
2
i BjBi C Œ3�qBiBjB

2
i � BjB

3
i

for i ¤ j 2 f0; 1g. This coincides with the expression (1) for n D 2 and a01 D
a10 D �2, i.e. for g D csl2. It is hence apparent that the q-Onsager algebra coincides
with the quantum symmetric pair coideal subalgebra Bc;s of Uq.csl2/ for the trivial
admissible pair and a special choice of the parameters c; s.
Kac–Moody generalizations of the q-Onsager algebra were constructed by

Baseilhac and Belliard in [6]. A presentation with generators and relations was
given for affine Lie algebras g, again for a limited set of Cartan matrices. The
relations we will derive in Theorem 3.13 extend this to symmetrizable Kac–Moody
algebras without restrictions on the Cartan matrix. Moreover, we will use a recent
result by Chen, Lu and Wang [11] to obtain alternative, transparent expressions of
quantum Serre type for the defining relations of Bc;s in the quasi-split case, including
the generalized q-Onsager algebras. More precisely, in Theorem 4.7 we will expand
the �-divided powers in [11] as polynomials in the generatorsBi in order to find easier
expressions for the structure constants �m;m0 from (2). The advantage of expanding
these �-divided powers is two-fold. On the one hand, it follows from comparison with
the earlier described projection technique that the relations arising from [11] hold
even beyond the quasi-split case, provided the indices i and j satisfy the conditions
of the aforementioned Case 1. On the other hand, the obtained expressions allow us
to drop a crucial assumption in the development of the bar involution for QSP and
the universal K-matrix in [2, 3], see Corollary 4.8. In addition, they make it possible
to prove symmetry properties of the coefficients �m;m0 .
For q D 1, such inhomogeneous Serre relations for generalized Onsager algebras

had already been obtained by Stokman in [42]. His classical generalized Onsager
algebras extend those of [13, 45] to arbitrary root systems. The defining relations
he provides, involve a set of coefficients which are defined in a recursive fashion.
Our approach now allows to derive closed expressions for these coefficients and thus
solve the recursion relations, by taking the limit q ! 1 of the analogous expressions
in the quantum case. This will be performed in Theorem 4.15.
The paper is organized as follows. In Section 2 we recall the necessary

prerequisites on quantum symmetric Kac–Moody pairs in the notation of [27]. We
treat the classical symmetric pairs .g;b/ in Subsection 2.1 and their quantum analogs
.Uq.g/; Bc;s/ in Subsection 2.2. In Subsection 2.3 we state some of the results
obtained in [27] based on the projection technique of [31], which we will need in
what follows. The main body of work is contained in Section 3, where the missing
defining relations for Bc;s will be derived. In Subsection 3.1 we will perform a
binary distributive expansion to reduce the computation of the polynomials Cij .c/
to an easier problem, namely determining the coefficients in (2) and (3) through the
action of the counit and a certain projection operator on monomials in Uq.g/. This
problemwill be solved in Subsections 3.2 and 3.3 treating Cases 1 and 2, respectively.
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The principal results are presented in Theorems 3.13 and 3.19. To conclude, we will
derive alternative and more accessible expressions for the polynomials Cij .c/ in
Case 1 based on the work [11] in Theorem 4.7. Finally, we turn our attention to
the generalized q-Onsager algebras and their classical counterparts. We repeat the
obtained relations applied to the split case and reconsider them in the limit q ! 1 to
solve the recursion relations of [42] in Theorem 4.15.

2. Construction of the generators

Let us start by recalling some crucial concepts and notations introduced in [27].
Let K be an algebraically closed field of characteristic 0. Let A be an

indecomposable generalized Cartan matrix of dimension n and let us denote by I the
set f0; 1; : : : ; n � 1g. This means that A D .aij /i;j2I satisfies the properties:
(i) ai i D 2, for all i 2 I ;
(ii) aij 2 Z�, if i ¤ j 2 I ;
(iii) aij D 0, aj i D 0, for any i; j 2 I ;
(iv) For every non-empty proper subset I 0 � I there exist i 2 I 0; j 2 I n I 0 such

that aij ¤ 0.
Moreover, we assume A to be symmetrizable, i.e. there exists a diagonal matrix
D D diag.�i W i 2 I /, with mutually coprime and nonzero entries �i 2 N, such that
DA is symmetric.
In Subsection 2.1, we will construct the classical symmetric pair .g;b/, where

g D g.A/ is the Kac–Moody algebra associated toA. This construction will motivate
the definition of the quantum symmetric pair .Uq.g/; Bc;s/ inside the corresponding
quantum group Uq.g/, which will be given in Subsection 2.2.

2.1. The classical case. Let
�
h D h.A/;… D f˛i W i 2 I g;…

_ D fhi W i 2 I g
�

be a minimal realization of A. This means that h is a K-vector space of dimension
2n � rank.A/ and that …_ and … are linearly independent subsets of h and its
dual h�, respectively, subject to ˛j .hi / D aij for any i; j 2 I . LetQ D Z… be the
corresponding root lattice.
The Kac–Moody algebra g D g.A/ associated to A is the Lie algebra over K

generated by h and 2n Chevalley generators ei ; fi with i 2 I , with defining relations

Œh; h0� D 0; Œh; ei � D ˛i .h/ei ; Œh; fi � D �˛i .h/fi ; Œei ; fj � D ıijhi ; (5)�
ad ei

�1�aij ej D �adfi�1�aij fj D 0; (6)

for all i; j 2 I and h; h0 2 h. Here we denoted by ad the adjoint mapping

adW g! glgW x 7! ad x; ad xW g! gWy 7! Œx; y�: (7)
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The derived Lie subalgebra g0 D Œg; g� of g is generated by h0 D
P
i2I Khi and the

elements ei ; fi with i 2 I .
As usual, we will write

gˇ D fx 2 g W Œh; x� D ˇ.h/x;8h 2 hg

for any ˇ 2 h� and
ˆ D fˇ 2 h� W gˇ ¤ f0gg

for the corresponding root system.
For any i 2 I we denote by ri 2 GL.h/ the fundamental reflection which acts

on h 2 h by
ri .h/ D h � ˛i .h/hi :

The subgroup W of GL.h/ generated by all such ri stands as the Weyl group of g.
Via duality, W can also act on h� and hence in particular onQ, via

ri .˛/ D ˛ � ˛.hi /˛i ; (8)

for any ˛ 2 h�.
Consider a subset X � I . Let gX be the corresponding Lie subalgebra of g,

generated by the elements ei , fi and hi with i 2 X . Write ˆX � ˆ for its root
system and �_X for half the sum of the positive coroots of ˆX . We will writeWX for
the parabolic subgroup of the Weyl groupW associated to X , and wX for its longest
element. Finally, let us denote by Aut.A;X/ the set of permutations � of I subject
to

�.X/ D X and a�.i/;�.j / D aij ; 8i; j 2 I:

Any � 2 Aut.A;X/ extends to an automorphism of g by taking

�.ei / D e�.i/; �.fi / D f�.i/; �.hi / D h�.i/ (9)

and defining the action of � on h 2 hnh0 as described in [25, Section 4.19]. Similarly,
� 2 Aut.A;X/ extends to an automorphism ofQ upon setting

�.˛i / D ˛�.i/: (10)

This terminology allows to repeat the definition of an admissible pair, as given
in [27, Definition 2.3].
Definition 2.1. An admissible pair .X; �/ consists of a subset X � I and an
automorphism � 2 Aut.A;X/ subject to the following conditions:
(1) � is an involution, i.e. �2 D id.
(2) The action of � on X coincides with the corresponding action of �wX , i.e. for
any j 2 X one has h�.j / D �wX .hj / and ˛�.j / D �wX .˛j /, where we have
used the interpretations of � and wX according to (8)–(10).

(3) For any i 2 I nX satisfying �.i/ D i , one has ˛i .�_X / 2 Z.
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An important motivation for introducing admissible pairs is that they arise
naturally as Kac–Moody generalizations of Satake diagrams [1]. Moreover, they
parametrize the so-called involutive automorphisms of g of the second kind [25, 33]
up to conjugation by elements of Aut.g/, as was shown in [27, Theorem 2.7]. The
automorphism �.X; �/ corresponding to an admissible pair .X; �/ can be constructed
using the following four key concepts.
The first is the element � 2 Aut.A;X/, interpreted as an automorphism of g

according to (9).
Furthermore, we will need the Chevalley involution ! 2 Aut.g/ given by

!.ei / D �fi ; !.fi / D �ei ; !.h/ D �h; (11)

for any i 2 I and h 2 h.
Moreover, the longest element wX of WX can be lifted to an element mX of the

Kac–Moody group of g0, with corresponding automorphism Ad.mX / 2 Aut.g/. For
details we refer to [25, Section 1.3] and [27, Section 2].
Finally, one can define a group morphism s.X; �/WQ ! K� from the root

latticeQ to the multiplicative group K�, by

s.X; �/.˛j / D

�
1 if j 2 X or �.j / D j;
i˛j .2�

_
X
/ if j 2 I nX and �.j / > j;

.�i/˛j .2�
_
X
/ if j 2 I nX and �.j / < j;

(12)

where i 2 K is a square root of�1. The corresponding automorphismAd.s.X; �// 2
Aut.g/ is defined by

Ad.s.X; �//.h/ D h; Ad.s.X; �//.v/ D s.X; �/.˛/v; (13)

for all h 2 h and v 2 g˛ , ˛ 2 ˆ.
These four ingredients can now be combined to yield the following involutive

automorphism �.X; �/.
Definition 2.2. To each admissible pair .X; �/weassociate the automorphism �.X; �/
of g given by

�.X; �/ D Ad.s.X; �// ı Ad.mX / ı � ı !: (14)
It is an involutive g-automorphism of the second kind by [27, Theorem 2.5].
Let us from now on fix an admissible pair .X; �/ and write � for the above defined

automorphism �.X; �/. Then � gives rise to an algebra which will be of special
interest in this paper.
Definition 2.3. We denote by b D b.X; �/ the subalgebra of U.g0/ generated by the
elements:

fi C �.fi / with i 2 I nX;
ei ; fi ; hi with i 2 X;
hi with �.hi / D hi ; i 2 I: (15)
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The couple .g;b/ stands as the (classical) symmetric pair associated to the admissible
pair .X; �/.

In [27], the algebra b was denoted by U.k0/. We have chosen to adopt this
alternative notation, to emphasize that b is a classical counterpart of the quantum
algebra Bc;s, which we will define in Subsection 2.2. The defining relations of b will
then follow as a limit q ! 1 of the quantum Serre relations for Bc;s, which we will
derive in Section 3.

2.2. The quantum case. Let q be an indeterminate, assumed not to be a root of
unity in the field K. We denote by K.q/ the field of rational functions in q.
Recall thematrixDDdiag.�i W i 2I /wehave introduced above. For each i 2I we

set qi D q�i . For anym2N, we define the qi -number Œm�qi and the qi -factorial Œm�qiŠ
as

Œm�qi D
qmi � q

�m
i

qi � q
�1
i

; Œm�qi Š D

mY
`D1

Œ`�qi ;

with the convention that Œ0�qi Š D 1. For N;m 2 N with N � m, we define the
qi -binomial coefficient as �

N

m

�
qi

D
ŒN �qi Š

Œm�qi ŠŒN �m�qi Š
:

Similarly to the classical case, one has�
N

m

�
qi

D

�
N

N �m

�
qi

: (16)

We will often use the following polynomial in two non-commutative variables x
and y, which we will refer to as the quantum Serre polynomial: for i; j 2 I we write

Fij .x; y/ D

1�aijX
`D0

.�1/`
�
1 � aij
`

�
qi

x1�aij�`yx`: (17)

Throughout the paper, we will perform calculations in the quantized universal
enveloping algebra Uq.g/ of g. In fact, it will suffice to work with its Hopf sub-
algebra Uq.g0/, the associative K.q/-algebra generated by 4n elements Ei , Fi , Ki ,
and K�1i with i 2 I , subject to the relations

K˙1i K�1i D 1; ŒK˙1i ; K˙1j � D 0;

KiEj D q
aij
i EjKi ; KiFj D q

�aij
i FjKi ; (18)

K�1i Ej D q
�aij
i EjK

�1
i ; K�1i Fj D q

aij
i FjK

�1
i ;
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ŒEi ; Fj � D ıij
Ki �K

�1
i

qi � q
�1
i

; (19)

Fij .Ei ; Ej / D Fij .Fi ; Fj / D 0; (20)

for all i; j 2 I . The relations (20) are referred to as the quantum Serre relations.
Remark 1. The quantum group Uq.g0/ can be considered a q-deformation of g0,
upon viewing ei and fi as the limits of Ei and Fi respectively as q goes to 1, and
identifyingKi with qhii . To view the quantum Serre relations (20) as q-deformations
of the relations (6), it will be useful to introduce the q-commutators

adqm
i
WUq.g/! Aut.Uq.g//W x 7! adqm

i
.x/;

adqm
i
.x/WUq.g/! Uq.g/Wy 7! Œx; y�qm

i
D qmi xy � q

�m
i yx;

with m 2 Q. Notice that adqm
i
reduces to ad defined in (7) in the limit q ! 1, for

any m 2 Q. It can easily be shown by induction that one has
� ������!

.r�1/=2Y
mD.1�r/=2

adqm
i
.A/

�
.B/ D

rX
kD0

.�1/k
�
r

k

�
qi

Ar�kBAk (21)

for anyA;B 2 Uq.g/ and any r 2 N, which, upon substituting r D 1�aij , becomes
�
�����!
�aij =2Y
mDaij =2

adqm
i
.A/

�

.B/ D Fij .A;B/:

Hence, in the limit q ! 1, the expression Fij .A;B/ reduces to

.ad a/1�aij .b/;

where a and b are the specializations of A and B respectively, and so (20) indeed
translates to (6). A detailed account on this notion of specialization, which is a formal
way to implement this limiting process q ! 1, can be found in [17], [23, Sections 3.3
and 3.4] and [27, Section 10].
The quantum groupUq.g0/ has the structure of a Hopf algebra, with the following

expressions for the coproduct �, the counit � and the antipode S :

�.Ei / D Ei ˝ 1CKi ˝Ei ; �.Fi / D Fi ˝K
�1
i C 1˝ Fi ;

�.K˙1i / D K˙1i ˝K
˙1
i ;

�.Ei / D 0; �.Fi / D 0; �.K˙1i / D 1;

S.Ei / D �K
�1
i Ei ; S.Fi / D �FiKi ; S.K˙1i / D K�1i : (22)
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Now let us once more fix an admissible pair .X; �/. A quantum analog of the
automorphism �.X; �/ defined in (14) can be built fromfive fundamental constituents,
one of which is the mapping � 2 Aut.A;X/ viewed as an automorphism of Uq.g0/
by

�.Ei / D E�.i/; �.Fi / D F�.i/; �.K˙1i / D K˙1�.i/:

Secondly, one can extend Ad.s.X; �// 2 Aut.g/ to an automorphism of Uq.g/ by

Ad.s.X; �//.v/ D s.X; �/.˛/v;

for all v 2 Uq.g/˛ D fu 2 Uq.g/ W Kiu D q.˛i ;˛/uKi ;8i 2 I g, ˛ 2 Q. Here, we
denote by .� ; �/ the bilinear form on h� satisfying .˛i ; ˛j / D �iaij .
Next, we will need a q-deformation of the Chevalley involution (11), which we

will again denote by !. It is given by

!.Ei / D �Fi ; !.Fi / D �Ei ; !.Ki / D K
�1
i

and classifies as a coalgebra antiautomorphism of Uq.g0/.
To obtain a quantum analog of the element Ad.mX / in (14) one needs the Lusztig

automorphisms Ti , i 2 I , which appeared in [34, Section 37.1] under the name T 00i;1.
Let wX D ri1ri2 : : : rik be a reduced expression for the longest element wX of the
parabolic subgroupWX ofW , then denote by TwX the corresponding automorphism
TwX D Ti1Ti2 : : : Tik of Uq.g0/.
Finally, define another automorphism  WUq.g0/! Uq.g

0/ by

 .Ei / D EiKi ;  .Fi / D K
�1
i Fi ;  .Ki / D Ki :

These are all the tools needed to q-deform �.X; �/.
Definition 2.4. To each admissible pair .X; �/weassociate the automorphism �q.X; �/
of Uq.g0/ given by

�q.X; �/ D Ad.s.X; �// ı TwX ı  ı � ı !: (23)

Note that �q D �q.X; �/ is no longer involutive.
Finally, let us denote byQ‚ the set f˛ 2 Q W �wX�.˛/ D ˛g. Here, we interpret

both � 2 Aut.A;X/ andwX 2 WX as automorphisms ofQ according to (8) and (10).
Moreover, if ˇ D

P
i2I mi˛i 2 Q, we will write Kˇ for

Q
i2I K

mi
i . This brings us

to the definition of the quantum analog Bc;s of the algebra b defined in (15).
Definition 2.5. For any vector

c D .ci /i2InX 2
�
K.q/�

�InX and s D .si /i2InX 2 K.q/InX ;

we defineBc;s D Bc;s.X; �/ to be the subalgebra ofUq.g0/ generated by the elements:

Bi D Fi C ci�q.FiKi /K
�1
i C siK

�1
i with i 2 I nX;

Ei ; Fi ; K
˙1
i with i 2 X;

Kˇ with ˇ 2 Q‚: (24)
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When applying the coproduct� described in (22) on the generators (24), one can
make the following observation.

Proposition A ([27, Proposition 5.2]). For any .c; s/ 2 .K.q/�/InX �K.q/InX , the
algebra Bc;s is a right coideal subalgebra of Uq.g0/, i.e. �.Bc;s/ � Bc;s ˝ Uq.g

0/.

Upon comparing (24) with (15) in the light of Remark 1, it is immediately clear
thatBc;s is a q-deformation of the algebrab under certain conditions on the parameters
ci and si , and that it reduces to the latter under the specialization q ! 1. The precise
conditions are described in the following theorem.

Theorem B ([27, Theorems 10.8, 10.11]). Let c D .ci /i2InX be a vector of param-
eters taking values in

C D
˚
c 2 .K.q/�/InX W ci D c�.i/ if �.i/ ¤ i and .˛i ;�wX�.˛i // D 0

	
; (25)

where � and wX are again interpreted as automorphisms of Q. Let s D .si /i2InX
be a vector of parameters with values in

S D
˚
s 2 K.q/InX W si ¤ 0)

�
i 2 Ins and aj i 2 �2N n f0g;8j 2 Ins n fig

�	
;

(26)
where

Ins D
˚
i 2 I nX W �.i/ D i and aij D 0;8j 2 X

	
:

Moreover, let us assume that the vector .c; s/ is specializable, i.e. limq!1.ci / D 1 for
any i 2 I and all ci ; si lie in the localization KŒq�.q�1/ of the polynomial ring KŒq�
with respect to the ideal generated by q�1. ThenBc;s reduces to the algebra b under
the formal specialization q ! 1 and is maximal with this property.

Although the assumption of specializability is required to obtain b as an exact
limit of Bc;s for q ! 1, it is still commonly accepted to view Bc;s as a quantum
analog of b even if the latter condition is not fulfilled. Hence Proposition A suggests
the following terminology.

Definition 2.6. For .c; s/ 2 C � S, the algebra Bc;s is called a quantum symmetric
pair coideal subalgebra.

Throughout the rest of this paper, we will fix a vector of parameters .c; s/ 2 C�S
and work with the corresponding quantum symmetric pair coideal subalgebra Bc;s.

2.3. The Letzter–Kolb projection technique. In this section, we repeat some of
the results obtained by Kolb in [27], based on the techniques established by Letzter
in [31, Section 7]. Wewill use these results in Section 3 to derive the defining relations
of the quantum symmetric pair coideal subalgebras Bc;s. For ease of notation, we
will writeMC

X and U
0
‚

0 for the subalgebras of Uq.g0/ generated by the sets

fEi W i 2 Xg and fKˇ W ˇ 2 Q‚
g;
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respectively, and set Bj WD Fj for j 2 X . Let UC, U�, and U 0
0 be the subalgebras

of Uq.g0/ generated by

fEi W i 2 I g; fFi W i 2 I g; and fK˙1i W i 2 I g;

respectively. It was explained in [27, Section 5] that

Bc;s \ U
00
D U 0‚

0

for .c; s/ 2 C�S. Hence, one can describeBc;s as the subalgebra ofUq.g0/ generated
by

fBi W i 2 I g [MC

X [ U
0
‚

0
:

Furthermore, for any J 2 Im, m 2 N, we will write BJ for the product

Bj1Bj2 : : : Bjm D

��!
mY
kD1

Bjk :

Let us also denote by Ji;j the set of multi-indices given by

Ji;j D
˚
.i; i; : : : ; ĩ

s times

/ W s � 1 � aij
	
[
˚
. i; : : : ; i—
` times

; j; i; : : : ; i—
s�` times

/ W s � �aij ; ` � s
	
:

With this notation, one can write down the following theorem.
Theorem C ([27, Theorem 7.1]). For any distinct i; j 2 I there exist elements

Cij .c/ 2
X
J2Ji;j

MC

XU
0
‚

0
BJ

depending on the parameter vector c, such that Fij .Bi ; Bj / D Cij .c/, or
equivalently: Fij .Bi ; Bj / can be expressed as a polynomial in Bi and Bj of smaller
total degree with coefficients in MC

XU
0
‚

0, possibly depending on c but not on s.
Moreover, the algebra Bc;s is abstractly defined by the relations

Fij .Bi ; Bj / D Cij .c/ for i ¤ j 2 I; (27)

ŒEi ; Bj � D ıij
Ki �K

�1
i

qi � q
�1
i

for i 2 X; j 2 I; (28)

KˇBi D q
�.ˇ;˛i /BiKˇ for ˇ 2 Q‚; i 2 I; (29)

together with the relations

KˇKˇ 0 D Kˇ 0Kˇ for ˇ; ˇ0 2 Q‚;

Fij .Ei ; Ej / D 0 for i; j 2 X;

KˇEi D q
.ˇ;˛i /EiKˇ for i 2 X and ˇ 2 Q‚;

describing MC

X and U 0‚
0 that follow from (18) and (20).
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Our main goal in this paper will be to find explicit expressions for these lower
degree polynomials Cij .c/, which, up to present, had not been written down in
general. A few special cases had, however, already been treated by Kolb.
Theorem D ([27, Eq. (5.20), Theorem 7.3]). For any i; j 2 I such that either i 2 X
or �.i/ … fi; j g, one has Fij .Bi ; Bj / D Cij .c/ D 0.
Another case was treated by Balagović and Kolb in [2]. It requires us to introduce

some more notation. We will denote by ad the left adjoint action of Uq.g/ on itself:
for every x; u 2 Uq.g/ one has

ad.x/.u/ D
X

x.1/uS
�
x.2/

�
;

where we have used the Sweedler notation, i.e. �.x/ D
P
x.1/ ˝ x.2/. It is not

to be confused with the adjoint map of the Kac–Moody algebra g, which we have
introduced in (7) under the same notation. Recall also the notation TwX for the
product of Lusztig automorphisms corresponding to a reduced expression of wX .
Lemma E ([27, Eq. (4.4), Theorem 4.4]). For any i 2 I nX there exists a monomial

ZCi D Ej1Ej2 : : : Ejr 2MC

X ; (30)

with j1; : : : ; jr 2 X , such that

TwX .Ei / D aiad.Z
C

i /.Ei /;

for some ai 2 K.q/. Moreover, one has

�q.FiKi / D �viad
�
ZC
�.i/

��
E�.i/

�
;

for some vi 2 K.q/�.
For any i 2 I nX we may now define

Zi D �viad
�
ZC
�.i/

��
K2�.i/

�
K�1�.i/K

�1
i ; (31)

where ZC
�.i/
and vi are as defined in Lemma E. It follows immediately from (30)

and the expression (22) for �.Ej / that Zi is a K.q/-linear combination of elements
ofMC

X , multiplied by K�.i/K
�1
i . For any i 2 I nX we have

K�.i/K
�1
i 2 Bc;s \ U

00
D U 0‚

0

by the requirement (2) in Definition 2.1, and hence, Zi lies inMC

XU
0
‚

0.
Furthermore, we will use the notation

.xI x/m D

mY
kD1

.1 � xk/:

This enables us to state the following theorem by Balagović and Kolb.
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Theorem F ([2, Theorem 3.6]). For any i 2 I nX satisfying �.i/ D j ¤ i one has

Cij .c/ D �
1

.qi � q
�1
i /2�

q
aij�1

i .q2i I q
2
i /1�aij ciB

�aij
i Zi C qi .q

�2
i I q

�2
i /1�aij cjB

�aij
i Zj

�
:

By Theorems D and F, it only remains to compute Cij .c/ in 2 cases, namely:
Case 1. i 2 I nX , j 2 I nX and �.i/ D i ;

Case 2. i 2 I nX , j 2 X and �.i/ D i .

These cases turn out to be remarkably complicated. In [27] and [2], explicit
calculations have led to expressions for Cij .c/ for aij 2 f0;�1;�2;�3g in Case 1
and for aij 2 f0;�1;�2g in Case 2. However, except for the caseX D ;, no attempt
has been made to write down relations valid without restrictions on aij . In Section 3,
we will derive such relations for both cases. As could be expected from the above
mentioned calculations, these expressions will be rather intricate, but nevertheless
easily computable, as they involve only finite sums and products in K.q/.
The key tool to obtain such relations is the projection P��ij introduced in [31].

The classical triangular decomposition for quantum groups can be deformed to

Uq.g
0/ Š UC ˝ U 0

0
˝ S.U�/; (32)

where the isomorphism is given by multiplication, and consequently

Uq.g
0/ D

M
ˇ2Q

UCKˇS.U
�/: (33)

Let
P��ij WUq.g

0/! UCK��ijS.U
�/ (34)

denote the corresponding projection with respect to the decomposition (33), where

�ij D .1 � aij / ˛i C ˛j 2 Q: (35)

Then one can prove the following statements.

Lemma G ([27, Eq. (5.14)]). P��ij is a homomorphism of left Uq.g0/-comodules:

.� ı P��ij /.v/ D .id˝ P��ij /�.v/;

for any v 2 Uq.g0/.

Proposition H ([27, Proposition 5.16]). For any distinct i; j 2 I one has

P��ij
�
Fij .Bi ; Bj /

�
D 0:
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Combining Lemma G, Proposition H, and the fact that� is an algebra morphism,
we find that

.id˝ P��ij /
�
Fij .�.Bi /;�.Bj //

�
D .id˝ P��ij /�.Fij .Bi ; Bj //
D .� ı P��ij /.Fij .Bi ; Bj // D 0: (36)

SinceK��ij is invariant underP��ij and sent to 1 by the counit �, the expression (36)
asserts

Fij .Bi ; Bj / D Cij .c/ (37)
D .id˝ �/.id˝ P��ij /

�
Fij .Bi ; Bj /˝K��ij � Fij .�.Bi /;�.Bj //

�
;

where we identify Uq.g0/ with K.q/ ˝ Uq.g
0/. Our main purpose in Section 3

will be to expand the right-hand side of (37) as a polynomial in BJ , J 2 Ji;j ,
with coefficients in MC

XU
0
‚

0. To do so, we will need an expression for the �.Bi /
and �.Bj / in (37). These follow from the following lemma.
Lemma I ([27, Lemma 7.7]). Let i 2 I nX be such that �.i/ D i and j 2 X . Then,
there exists an element Wij 2MC

X , independent of c, such that

�.Bi / D Bi ˝K
�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

C ciWijKj ˝ .EjEi � q
aij
i EiEj /K

�1
i C ‡i ; (38)

for some
‡i 2MC

XU
0
‚

0
˝
bUCi K�1i ;

where bUCi D
˚
u 2MC

XEiM
C

X W 9 2 Q;  > ˛i ;  ¤ ˛i C ˛j W u 2 Uq.g
0/
	
.

Note that the formulation of this lemma is somewhat stronger than the original
one in [27], but one readily verifies the correctness of this extra restriction on ‡i
upon computing �.ad.ZCi /.Ei //.
Finally, let us note that the following relations follow immediately from (28)–(29).

Lemma J. Let i 2 I nX be such that �.i/ D i , then for any j 2 I nX one has

ŒBj ;Zi � D 0;

whereas for j 2 X one has

BiWijKj D q
aij
i WijKjBi :

3. Quantum Serre relations for the algebras Bc;s

We are now ready to derive closed expressions for the quantum Serre relations (27)
by expanding the right-hand side of (37). Crucial in this respect is the presence of the
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morphism id˝ �, which by (22) tells us that no term containing a nontrivial element
of UCU� in the second tensor component will survive in (37). This allows us to
eliminate some of the terms in (38).
We will first focus on Case 1.

Lemma 3.1. Let i; j 2 I nX be distinct such that �.i/ D i . Then, one has

Fij .Bi ; Bj / D
�
id˝ .� ı P��ij /

�
(39)�

Fij .Bi ; Bj /˝K��ij � Fij
�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i ; Bj ˝K

�1
j

��
:

Proof. First, let us note that the polynomial Fij is of degree 1 and hence, linear in its
second argument. Since j … X , the expression (38) for�.Bi / contains no factorsEj
or Fj in its second tensor component. Since �.Ej / D �.Fj / D 0, the expression
for �.Bj / obtained from Lemma I, together with the relation (37), asserts that

Fij .Bi ; Bj / D .id˝ .� ıP��ij //
�
Fij .Bi ; Bj /˝K��ij �Fij .�.Bi /; Bj ˝K

�1
j /

�
:

(40)
When expanding�.Bi / according to (38), there will be no contribution from the two
latter terms

ciWikKk ˝ .EkEi � q
aik
i EiEk/K

�1
i C ‡i ; (41)

with k 2 X , since each term in (41) contains at least one factor Ek0 , k0 2 X , in
its second tensor component, and again �.Ek0/ D 0. Hence, �.Bi / in (40) can be
replaced by Bi ˝K�1i C 1˝ Fi C ciZi ˝EiK

�1
i .

The same simplification can be performed for Case 2.
Lemma 3.2. Let i 2 I nX be such that �.i/ D i and let j 2 X . Then one has

Fij .Bi ; Bj / D .id˝ .� ı P��ij //
�
Fij .Bi ; Bj /˝K��ij

� Fij
�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i ; Bj ˝K

�1
j

�
� Fij

�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

C ciWijKj ˝ .EjEi � q
aij
i EiEj /K

�1
i ; 1˝ Fj

��
: (42)

Proof. Since j 2 X , we have Bj D Fj . Hence, it follows from (37), (22) and the
linearity of Fij in its second argument that

Fij .Bi ; Bj / D .id˝ .� ı P��ij //�
Fij .Bi ; Bj /˝K��ij � Fij .�.Bi /; Bj ˝K

�1
j / � Fij .�.Bi /; 1˝ Fj /

�
:

We will now expand �.Bi / using (38) with the given j . In the first occurrence
of �.Bi /, both ciWijKj ˝ .EjEi � q

aij
i EiEj /K

�1
i and ‡i will not contribute,

since each of their terms contains at least one factor Ek with k ¤ i in the second
tensor component, and �.Ek/ D 0. For the second occurrence of�.Bi /, the situation
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is different. The term ciWijKj˝.EjEi�q
aij
i EiEj /K

�1
i will effectively contribute,

since when expanding Fij .�.Bi /; 1˝ Fj /, we may use the rule

FjEj D EjFj �
Kj �K

�1
j

qj � q
�1
j

and the last term in this expansion will turn out to be significant, as will be explained
in what follows. The term ‡i in �.Bi /, however, will still not contribute. Indeed,
each term in‡i contains either a factorE2j or a factorEk with k 2 X n fj g, and both
FjE

2
j and FjEk cannot be expanded to yield a non-vanishing term under �. This

proves the claim.

One observes immediately that the right-hand side of (42) equals the right-hand
side of (39), added with a second term. In what follows, we will treat both terms
separately and thereby obtain explicit expressions for each of the two cases.

3.1. Binary expansions. In this section, we will expand the right-hand sides of (39)
and (42). We will first treat the right-hand side of (39), which occurs in (42) as well
and which can, to a large extent, be rewritten irrespective of whether or not j lies
in X . The second term, which appears only in (42), i.e. for j 2 X , will be addressed
afterwards.
Our main strategy will be to perform a “binary” distributive expansion, which

requires summation over binary tuples ` 2 f0; 1gN , N 2 N. For any such tuple `,
we will use the notation

j`j D `1 C `2 C � � � C `N ; j`jrIs D

(
`r C `rC1 C � � � C `s if r � s;
0 otherwise:

(43)

Throughout this paper, we will often meet finite sums and products over natural
numbers. We will use the convention that a sum vanishes if its lower bound exceeds
its upper bound or equivalently if it ranges over the empty set, whereas a product
reduces to one in this situation. Otherwise stated, for any function a of r and
anyM > N we take

NX
rDM

a.r/ D
X
r2;

a.r/ D 0 and
NY

rDM

a.r/ D
Y
r2;

a.r/ D 1:

Note also that in our convention 0 is a natural number, i.e. 0 2 N, and 00 D 1.
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Proposition 3.3. Let i 2I nX be such that �.i/D i and let j 2I be distinct from i .
Then one has

�
id˝ .� ı P��ij /

��
Fij .Bi ; Bj /˝K��ij

� Fij
�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i ; Bj ˝K

�1
j

��
D

1�aijX
kD0

X
`2f0;1g

1�aij

j`j¤1�aij

X
s2f0;1g

1�aij�j`j

.�1/kC1
�
1 � aij
k

�
qi

.� ı P��ij /
�
p
.i;j;aij /

`;s;k

�

.ciZi /
P1�aij�k
rD1

.1�`r /.1�sr�j`j1Ir /B
j`j1I1�aij�k

i BjB
j`j2�aij�kI1�aij
i

.ciZi /

P1�aij
rD2�aij�k

.1�`r /.1�sr�j`j1Ir /; (44)

where

p
.i;j;aij /

`;s;k
D

� �����!
1�aij�kY
rD1

T i
`;s;r

�
K�1j

�
�������!
1�aijY

rD2�aij�k

T i
`;s;r

�

; (45)

with

T i
`;s;r D K

�`r
i F

.1�`r /sr�j`j1Ir
i .EiK

�1
i /

.1�`r /.1�sr�j`j1Ir /: (46)

Proof. By the definition (17) of Fij , we have

� Fij
�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i ; Bj ˝K

�1
j

�
D

1�aijX
kD0

.�1/kC1
�
1 � aij
k

�
qi

�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

�1�aij�k
�
Bj ˝K

�1
j

��
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

�k
:

The term
�
Bi˝K

�1
i C1˝FiCciZi˝EiK

�1
i

�1�aij�k can be expanded distributively
as

X
`2f0;1g

1�aij�k

�����!
1�aij�kY
rD1

�
Bi ˝K

�1
i

�`r �
1˝ Fi C ciZi ˝EiK

�1
i

�1�`r
;
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and for each ` 2 f0; 1g1�aij�k one has

�����!
1�aij�kY
rD1

�
Bi ˝K

�1
i

�`r �
1˝ Fi C ciZi ˝EiK

�1
i

�1�`r
D

X
s2f0;1g

1�aij�k�j`j1I1�aij�k

�����!
1�aij�kY
rD1

�
Bi ˝K

�1
i

�`r �
1˝ Fi

�.1�`r /sr�j`j1Ir
�
ciZi ˝EiK

�1
i

�.1�`r /.1�sr�j`j1Ir /:
The rationale of this expansion is that for `rD1, we get the contribution ofBi ˝K�1i ,
for `r D 0 and sr�j`j1Ir D 1 we find 1˝ Fi , whereas for `r D 0 and sr�j`j1Ir D 0

we have ciZi ˝ EiK
�1
i . Note that the indexation of the s-variables was chosen

in such a way that there is only a summation over these variables in case the
corresponding `r D 0. Indeed, if we were to write sr instead of sr�j`j1Ir and
sum over all s1; : : : ; s1�aij�k 2 f0; 1g, then the terms corresponding to `r D 1

would contribute twice.
Since Bi commutes with Zi by Lemma J, we obtain�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

�1�aij�k
D

X
`2f0;1g

1�aij�k

X
s2f0;1g

1�aij�k�j`j1I1�aij�k

.ciZi /
P1�aij�k
rD1

.1�`r /.1�sr�j`j1Ir /B
j`j1I1�aij�k

i ˝

�����!
1�aij�kY
rD1

T i
`;s;r ;

with T i
`;s;r as in (46). Performing a similar expansion for the term�

Bi ˝K
�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

�k
;

we find that �Fij
�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i ; Bj ˝K

�1
j

�
is equal to

1�aijX
kD0

X
`2f0;1g

1�aij

X
s2f0;1g

1�aij�j`j

.�1/kC1
�
1 � aij
k

�
qi�

.ciZi /
P1�aij�k
rD1

.1�`r /.1�sr�j`j1Ir /B
j`j1I1�aij�k

i BjB
j`j2�aij�kI1�aij
i

.ciZi /

P1�aij
rD2�aij�k

.1�`r /.1�sr�j`j1Ir /
�
˝ p

.i;j;aij /

`;s;k
;

with p.i;j;aij /
`;s;k

as in (45).
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It remains only to observe that the term corresponding to j`j D 1 � aij , i.e. ` D
.1; 1; : : : ; 1/, yields

1�aijX
kD0

.�1/kC1
�
1 � aij
k

�
qi

B
1�aij�k

i BjB
k
i ˝K

�.1�aij /

i K�1j

D �Fij .Bi ; Bj /˝K��ij :

Many of the s in the sum in (44) will have a vanishing contribution. One can
make the following observation.
Lemma 3.4. Let i 2 I n X be such that �.i/ D i and let j 2 I be distinct from i .
Let ` 2 f0; 1g1�aij with j`j ¤ 1 � aij , s 2 f0; 1g1�aij�j`j and k 2 f0; : : : ; 1 � aij g.
Then one has

.� ı P��ij /
�
p
.i;j;aij /

`;s;k

�
D 0

if one of the following conditions is fulfilled:
(a) aij C j`j is even;

(b) jsj ¤ 1�aij�j`j

2
;

(c) There exists p 2 f1; : : : ; 1 � aij � j`jg such that jsj1Ip < p
2

.

Proof. To acquire the action of � ı P��ij on p
.i;j;aij /

`;s;k
, we will write p.i;j;aij /

`;s;k
in a

standard ordering, namely as a K.q/-linear combination of elements of the form

E
N1
i F

N2
i K

N3
i K�1j ;

withN1; N2 2 N andN3 2 Z. We may do so by applying the Uq.g0/-relations (18)–
(19). Each such element will be projected to either itself or 0 by P��ij . But when
applying �, such a term can only survive if

N1 D N2 D 0;

by (22). Suppose now s is such that p.i;j;aij /
`;s;k

contains an unequal number of factorsFi
and Ei . Then each term in its standard ordering will still contain an unequal number
of factors Fi and Ei , as follows from (19). Hence, the standard ordering will consist
of termsEN1i F

N2
i K

N3
i K�1j with eitherN1 orN2 non-zero, which will be killed by �.

Thus, we must have an equal number of factors Fi and Ei in p
.i;j;aij /

`;s;k
. This number

must then be half the total number of factors in p.i;j;aij /
`;s;k

with `r D 0, i.e.

jsj D
1 � aij � j`j

2
:

If aij C j`j is even, then the total number of factors in p
.i;j;aij /

`;s;k
with `r D 0 will

be odd. Hence, the number of factors Fi and Ei in p
.i;j;aij /

`;s;k
will always be unequal,

for any s.
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Finally, suppose p 2 f1; : : : ; 1�aij �j`jg is such that jsj1Ip < p=2. This means
that up to position p, the number of factors Ei will exceed the number of factors Fi .
As the difference between these numbers is not altered by the relation (19), this
means that the standard ordering of the corresponding term will consist only of terms
E
N1
i F

N2
i K

N3
i K�1j with N1 � 1, which are again killed by �.

This result will help us to simplify the notation used in Proposition 3.3. Indeed, by
Condition (b) in Lemma 3.4, we know that for any .`; s; k/ contributing non-trivially
to (44), we have

1�aijX
rD1

.1 � `r/.1 � sr�j`j1Ir / D 1 � aij � j`j � jsj D
1 � aij � j`j

2
; (47)

and hence also

1�aij�kX
rD1

.1 � `r/.1 � sr�j`j1Ir /

D 1 � aij � k � j`j1I1�aij�k � jsj1I1�aij�k�j`j1I1�aij�k
;

1�aijX
rD2�aij�k

.1 � `r/.1 � sr�j`j1Ir / D
1 � aij � j`j

2
�

1�aij�kX
rD1

.1 � `r/.1 � sr�j`j1Ir /:

(48)

Moreover, we will need the notion of the even and an odd part of an integer
number d 2 Z, denoted by de and dp respectively, and defined as

de D
jd
2

k
D

‚
d

2
for d even;

d � 1

2
for d odd;

dp D

(
0 for d even;
1 for d odd:

(49)

Note that for any d 2 Z one has d D 2de C dp .
This will now help us to rewrite Cij .c/ for Case 1.

Corollary 3.5 (Case 1). Let i 2 I n X be such that �.i/ D i and let j 2 I n X be
distinct from i . Then one has

Fij .Bi ; Bj / D Cij .c/ D
�1�aijX
mD0

�1�aij�mX
m0D0

�
.i;j;aij /

m;m0 Z
1�aij�m�m

0

2

i Bmi BjB
m0

i ; (50)
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where

�
.i;j;aij /

m;m0 D .aij CmCm
0/pc

1�aij�m�m
0

2

i

1�aij�mX
kDm0

X
`2Lm;m0;k

X
s2Sm;m0

.�1/kC1
�
1 � aij
k

�
qi

.� ı P��ij /
�
p
.i;j;aij /

`;s;k

�
; (51)

with p
.i;j;aij /

`;s;k
as in (45) and

Lm;m0;k D
˚
` 2 f0; 1g1�aij W j`j1I1�aij�k D m and j`j2�aij�kI1�aij D m

0
	
;

Sm;m0 D
n
s 2 f0; 1g1�aij�m�m

0

W jsj D
1�aij�m�m

0

2
and jsj1Ip � p

2
;

8p 2 f1; : : : ; 1 � aij �m �m
0
g

o
:

(52)

Proof. Upon combining Lemma 3.1, Proposition 3.3, the equation (47) and the fact
that ŒBi ;Zi � D ŒBj ;Zi � D 0 by Lemma J, one finds that Fij .Bi ; Bj / is equal to

1�aijX
kD0

X
`2f0;1g

1�aij

j`j¤1�aij

X
s2f0;1g

1�aij�j`j

.�1/kC1
�
1 � aij
k

�
qi

.� ı P��ij /
�
p
.i;j;aij /

`;s;k

�
.ciZi /

1�aij�j`j

2 B
j`j1I1�aij�k

i BjB
j`j2�aij�kI1�aij
i :

We can restrict the sum over ` to one over Lm;m0;k , by setting

m D j`j1I1�aij�k; m0 D j`j2�aij�kI1�aij : (53)

This requires an additional summation over m and m0. A priori, we have

mCm0 D j`j � �aij ;

but ifmCm0 D �aij , then .�ıP��ij /
�
p
.i;j;aij /

`;s;k

�
will vanish for any s, byCondition (a)

of Lemma 3.4. This explains the presence of .aij C mC m0/p in (51) and the fact
that in the sum in (50) we restrict to

mCm0 � �1 � aij :

Note also that the requirements (53) imply that

1 � aij � k � m and k � m0:

Similarly, the sum over s may be restricted to Sm;m0 by Conditions (b) and (c) of
Lemma 3.4.
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For Case 2, the first line of the right-hand side of (42) is identical to the right-
hand side of (39), and hence, the first part of Cij .c/ can be expanded as above.
Nevertheless, we have to take into account that in this case Zi and Bj no longer
commute, which affects our notation.

Corollary 3.6 (Case 2). Let i 2 I n X be such that �.i/ D i and let j 2 X . Then
one has

Fij .Bi ; Bj / D Cij .c/

D

�1�aijX
mD0

�1�aij�mX
m0D0

.1�aij�m�m
0/=2X

tD0

�
.i;j;aij /

m;m0;t Zt
iB

m
i BjB

m0

i Z
..1�aij�m�m

0/=2/�t

i

C
�
id˝ .� ı P��ij /

��
� Fij

�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

C ciWijKj ˝ .EjEi � q
aij
i EiEj /K

�1
i ; 1˝ Fj

��
; (54)

where

�
.i;j;aij /

m;m0;t D .aij CmCm
0/p c

.1�aij�m�m
0/=2

i

1�aij�mX
kDm0

X
`2Lm;m0;k

X
s2Sm;m0;k;t

.�1/kC1
�
1 � aij
k

�
qi

.� ı P��ij /
�
p
.i;j;aij /

`;s;k

�
; (55)

with p
.i;j;aij /

`;s;k
as in (45), Lm;m0;k as in (52) and

Sm;m0;k;t D
n
s 2 f0; 1g1�aij�m�m

0

W jsj D
1�aij�m�m

0

2
;

jsj1I1�aij�k�m D 1 � aij � k �m � t and jsj1Ip � p
2
;

8p 2 f1; : : : ; 1 � aij �m �m
0
g

o
: (56)

Proof. Upon combining Lemma 3.2, Proposition 3.3 and the equations (47) and (48),
we obtain

Fij .Bi ; Bj / D

1�aijX
kD0

X
`2f0;1g

1�aij

j`j¤1�aij

X
s2f0;1g

1�aij�j`j

�
.�1/kC1

�
1 � aij
k

�
qi

c
.1�aij�j`j/=2

i

.�ıP��ij /
�
p
.i;j;aij /

`;s;k

�
Z
t`;s;k
i B

j`j1I1�aij�k

i BjB
j`j2�aij�kI1�aij
i Z

..1�aij�j`j/=2/�t`;s;k
i

�
C
�
id˝ .� ı P��ij /

��
� Fij

�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

C ciWijKj ˝ .EjEi � q
aij
i EiEj /K

�1
i ; 1˝ Fj

��
;
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with, by (48),

t`;s;k D 1 � aij � k � j`j1I1�aij�k � jsj1I1�aij�k�j`j1I1�aij�k
: (57)

The sum over ` can be restricted to Lm;m0;k , with an additional summation
overm;m0, just like in the proof of Corollary 3.5. Setting t`;s;k equal to a parameter t ,
over which we sum as well, determines the condition

jsj1I1�aij�k�m D 1 � aij � k �m � t;

as follows from (57). This restriction, together with Conditions (b) and (c) of
Lemma 3.4, determines the definition of Sm;m0;k;t .

We will now perform a similar binary expansion for the last line of (54).
Proposition 3.7. Let i 2 I nX be such that �.i/ D i and let j 2 X . Then one has�
id˝ .� ı P��ij /

��
� Fij

�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

C ciWijKj ˝ .EjEi � q
aij
i EiEj /K

�1
i ; 1˝ Fj

��
D

1�aijX
kD1

k�1X
dD0

X
`2f0;1g

�aij

X
s2f0;1g

�aij�j`j

�
.�1/kC1

�
1 � aij
k

�
qi

q
aij j`j1I1�aij�kCd

i

.� ı P��ij /
�
r
.i;j;aij /

`;s;k;d

�
.ciZi /

P1�aij�kCd
rD1

.1�`r /.1�sr�j`j1Ir /

.ciWijKj /.ciZi /

P�aij
rD2�aij�kCd

.1�`r /.1�sr�j`j1Ir /B
j`j
i

�
; (58)

where

r
.i;j;aij /

`;s;k;d
D

� �����!
1�aij�kY
rD1

T i
`;s;r

�
Fj

�
�������!
1�aij�kCdY
rD2�aij�k

T i
`;s;r

�

.EjEi � q
aij
i EiEj /K

�1
i

� ���������!
�aijY

rD2�aij�kCd

T i
`;s;r

�
; (59)

with T i
`;s;r as in (46).

Proof. By the definition (17) of Fij , the left-hand side of (58) can be written as

�
id˝ .� ı P��ij /

�� 1�aijX
kD0

.�1/kC1
�
1 � aij
k

�
qi�

Bi ˝K
�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

�1�aij�k.1˝ Fj /�
Bi ˝K

�1
i C1˝Fi C ciZi ˝EiK

�1
i C ciWijKj ˝ .EjEi �q

aij
i EiEj /K

�1
i

�k�
:
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In the term �
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

�1�aij�k
preceding 1˝ Fj , the term ciWijKj ˝ .EjEi � q

aij
i EiEj /K

�1
i does not need to

be taken into account. Indeed, the standard ordering of the expansion with respect to
this term would consist of terms

E
N1
i EMj E

N2
i F

N3
i FjF

N4
i K

N5
i ; (60)

withM � 1. But of course each such term vanishes under �. In the term�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i C ciWijKj ˝ .EjEi � q

aij
i EiEj /K

�1
i

�k
succeeding 1 ˝ Fj , it does need to be taken into account. More precisely, in the
whole sumwe obtain when expanding the k-th power, each termmust contain exactly
one factor ciWijKj ˝ .EjEi � q

aij
i EiEj /K

�1
i , such that we may use the rule

FjEj D EjFj �
Kj �K

�1
j

qj � q
�1
j

to obtain a non-zero contribution. Indeed, if we were to take more than one such
factor, then we would end up with a normal ordering consisting of terms of the
form (60) withM � 1 and

E
N1
i EMj E

N2
i F

N3
i K

N4
i K

N5
j

with M � 1, which again disappear under �, whereas if we were to take 0 such
factors, then we would find

E
N1
i F

N2
i FjF

N3
i K

N4
i ;

in the normal ordering, which also yields 0 under � by the presence of Fj . This also
explains why we can replace�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i C ciWijKj ˝ .EjEi � q

aij
i EiEj /K

�1
i

�k
by

k�1X
dD0

�
Bi˝K

�1
i C1˝FiCciZi˝EiK

�1
i

�d �
ciWijKj˝.EjEi�q

aij
i EiEj /K

�1
i

�
�
Bi ˝K

�1
i C 1˝ Fi C ciZi ˝EiK

�1
i

�k�d�1
:

The claim now follows upon expanding binarily the powers of

Bi ˝K
�1
i C 1˝ Fi C ciZi ˝EiK

�1
i ;
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as in the proof of Proposition 3.3. Note that this time, we will need a total of

1 � aij � k C d C .k � d � 1/ D �aij

variables `r . Observe thatwe have usedLemma J to obtain the factorq
aij j`j1I1�aij�kCd

i .

Once more, many of the s in the sum in (58) will not contribute. In analogy to
Lemma 3.4, one can formulate the following result.
Lemma 3.8. Let i 2 I nX be such that �.i/ D i and let j 2 X . Let ` 2 f0; 1g�aij ,
s 2 f0; 1g�aij�j`j, k 2 f1; : : : ; 1 � aij g and d 2 f0; : : : ; k � 1g. Then one has

.� ı P��ij /
�
r
.i;j;aij /

`;s;k;d

�
D 0

if one of the Conditions (a), (b), (c) from Lemma 3.4 is fulfilled, or in case we have:
(d) There exists

p 2
˚
1 � aij � k C d � j`j1I1�aij�kCd ; : : : ;�aij � j`j

	
such that jsj1Ip D p

2
.

(e) jsj1I1�aij�kCd�j`j1I1�aij�kCd D 0.

Proof. As in the proof of Lemma 3.4, the requirement that r.i;j;aij /
`;s;k;d

must contain
an equal number of factors Fi and Ei determines the conditions (a) and (b). Note
that in this case, one comes to the number .1 � aij � j`j/=2 by considering the
�aij � j`j factors Fi or Ei arising from the T i

`;s;r in (59), together with the extra
factor Ei in (59). The requirement that for each p, the number of factors Fi must
exceed the number of factors Ei up to position p, determines in this case not only
the condition (c), but also the extra conditions (d) and (e), again by the presence
of .EjEi � q

aij
i EiEj /K

�1
i in (59).

As before, this means that we can determine
�aijX
rD1

.1 � `r/.1 � sr�j`j1Ir / D �aij � j`j � jsj D
�1 � aij � j`j

2
;

1�aij�kCdX
rD1

.1 � `r/.1 � sr�j`j1Ir / D 1 � aij � k C d � j`j1I1�aij�kCd

� jsj1I1�aij�kCd�j`j1I1�aij�kCd
;

�aijX
rD2�aij�kCd

.1 � `r/.1 � sr�j`j1Ir / D
�1 � aij � j`j

2

�

1�aij�kCdX
rD1

.1 � `r/.1 � sr�j`j1Ir /: (61)
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Just like in the previous situation, this now leads to a complete description
of Cij .c/ in Case 2.
Corollary 3.9 (Case 2). Let i 2 I n X be such that �.i/ D i and let j 2 X . Then
one has

Fij .Bi ; Bj / D Cij .c/

D

�1�aijX
mD0

�1�aij�mX
m0D0

.1�aij�m�m
0/=2X

tD0

�
.i;j;aij /

m;m0;t Zt
iB

m
i BjB

m0

i Z
..1�aij�m�m

0/=2/�t

i

C

�1�aijX
mD0

.�1�aij�m/=2X
tD0

�
.i;j;aij /
m;t Zt

iWijKjZ
..�1�aij�m/=2/�t

i Bmi ; (62)

with �.i;j;aij /m;m0;t as obtained in (55), and where

�
.i;j;aij /
m;t D .aij Cm/pc

.1�aij�m/=2

i

1�aijX
kD1

k�1X
dD0

mX
m0D0

X
`2L0

m;m0;k;d

X
s2S 0

m;m0;k;t;d

.�1/kC1
�
1 � aij
k

�
qi

q
m0aij
i .� ı P��ij /

�
r
.i;j;aij /

`;s;k;d

�
; (63)

with r
.i;j;aij /

`;s;k;d
as in (59) and

L0m;m0;k;d D
˚
` 2 f0; 1g�aij W j`j D m and j`j1I1�aij�kCd D m

0
	
;

S 0m;m0;k;t;d D
n
s 2 f0; 1g�aij�m W jsj D

1�aij�m

2
; jsj1Ip �

pCı.p;k;d;m
0/

2
; (64)

8p 2 f1; : : : ;�aij �mg and jsj1I1�aij�k�m0Cd D 1 � aij � k �m
0
� t C d ¤ 0

o
;

where

ı.p;k;d;m
0/
D

(
0 for p < 1 � aij � k C d �m0;
1 for p � 1 � aij � k C d �m0:

Proof. This follows from Corollary 3.6, Proposition 3.7 and the equations (61) in
exactly the same fashion as we have derived Corollaries 3.5 and 3.6, i.e. upon setting

m D j`j; m0 D j`j1I1�aij�kCd ; t D 1� aij � k�m
0
Cd � jsj1I1�aij�k�m0Cd :

Again, j`j D m cannot equal �aij , since then aij C m would be even, which is
excluded by Condition (a) in Lemma 3.4. So m runs from 0 to �1 � aij . It follows
immediately that m0 runs from 0 to m. The conditions in Lemma 3.8 determine the
definition of S 0

m;m0;k;t;d
.
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The relations we have obtained in Corollaries 3.5 and 3.9 comply with the
explicit calculations performed in [27] and [2] by Balagović and Kolb. They also
obtained explicit values for the structure constants for a limited set of possible
aij : they computed �

.i;j;aij /

m;m0 for aij 2f�1;�2;�3g and �
.i;j;aij /

m;m0;t and � .i;j;aij /m;t

for aij 2f�1;�2g. These values are displayed below.

m m0

0

0

ciqi

(a) aij D �1.

m m0

0

1

0 1

0

ciqi .qi C q
�1
i /2

��
.i;j;�2/
1;0

(b) aij D �2.

m m0

0

1

2

0 1 2

�c2i q
2
i Œ3�

2
qi

0

ciqi .1C Œ3�
2
qi
/

0

�ciqi .q
2
i C 3C q

�2
i /Œ4�qi

�
.i;j;�3/
2;0

(c) aij D �3.

Table 1. Structure constants �.i;j;aij /
m;m0

for aij 2 f�1;�2;�3g.

Themain purpose of this paper will be to find expressions inK.q/ for the structure
constants �.i;j;aij /m;m0 , �

.i;j;aij /

m;m0;t , and �
.i;j;aij /
m;t , valid without any restrictions on aij . By

Corollaries 3.5, 3.6, and 3.9, this amounts to deriving how � ıP��ij acts on p
.i;j;aij /

`;s;k

and r.i;j;aij /
`;s;k;d

. This computation will be performed in the next two subsections.

3.2. Case 1: �.i / D i 2 I nX and j 2 I nX . Let us now fix i 2 I nX such that
�.i/ D i and j 2 I distinct from i . A priori, we don’t specify whether or not j 2 X .
Let us also fix m;m0 2 N such that aij CmCm0 is odd and mCm0 � �1 � aij ,
k 2 N such that m0 � k � 1 � aij � m, t 2

˚
0; : : : ; .1 � aij � m � m

0/=2
	
,

` 2 Lm;m0;k and s 2 Sm;m0;k;t . Note that this automatically implies that s 2 Sm;m0 ,
by (52) and (56). Hence, by (51) and (55) it suffices to compute the action of �ıP��ij
on p.i;j;aij /

`;s;k
, defined in (45), in order to obtain the full polynomial Cij .c/ for Case 1,

as well as the first of the two parts of this polynomial for Case 2. This computation
will now be performed.
Let us introduce the notation yP iN , with N 2 Z, for the projection operator

yP iN WUq.g
0/! UCKNi S.U

�/ (65)

with respect to the decomposition (33). Let us also renormalize the element Ei as
zEi D .qi � q

�1
i /Ei : (66)



326 H. De Clercq

.m;m0/
t

.0; 0/

0 1

ciq
2
i

qi � q
�1
i

�ci

qi � q
�1
i

(a) aij D �1.

.m;m0/
t

.0; 1/

.1; 0/

0 1

�ciq
2
i

q2i C 2

qi � q
�1
i

ciq
2
i

Œ3�qi
qi � q

�1
i

ci
Œ3�qi

qi � q
�1
i

�ci
q�2i C 2

qi � q
�1
i

(b) aij D �2.

Table 2. Structure constants �.i;j;aij /
m;m0;t

for aij 2 f�1;�2g.

m
t

0

0

ci
qi C q

�1
i

qj � q
�1
j

(a) aij D �1.

m
t

1

0

�ciq
�2
i Œ3�qi

.qi � q
�1
i /.qi C q

�1
i /2

qj � q
�1
j

(b) aij D �2.

Table 3. Structure constants � .i;j;aij /m;t for aij 2 f�1;�2g.

Then we can state the following result.
Proposition 3.10. For i; j;m;m0; k; ` and s as fixed before, one has

.� ı P��ij /
�
p
.i;j;aij /

`;s;k

�
D

�
q2i

qi � q
�1
i

�.1�aij�m�m0/=2
q
ˇ`;s;k

i

�
� ı yP i

�.1�aij�m�m
0/=2

��
Y`;s

�
;

where

Y`;s D

���!
1�aijY
rD1

F
.1�`r /sr�j`j1Ir
i

zE
.1�`r /.1�sr�j`j1Ir /

i ; (67)

ˇ`;s;k D �aij �
.1�aij�k/

`;s � 2

1�aijX
rD1

�
.r�1/
`;s

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
; (68)

�
.r/
`;s D 2jsj1Ir�j`j1Ir C j`j1Ir � r: (69)
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Proof. As argued in the proof of Lemma 3.4, the total number of factors Fi and Ei
in p.i;j;aij /

`;s;k
must be equal and must yield

#.factors Ei / D #.factors Fi / D jsj D
1 � aij �m �m

0

2
: (70)

When shifting the factor K�1j through the second term between brackets in (45)
using (18), we will induce a factor q�aijxi , with

x D #.factors Ei succeeding K�1j / � #.factors Fi succeeding K�1j /

D
�
#.factors Ei / � #.factors Ei preceding K�1j /

�
�
�
#.factors Fi / � #.factors Fi preceding K�1j /

�
: (71)

By (70) this is reduced to

x D #.factors Fi preceding K�1j / � #.factors Ei preceding K�1j /

D #.factors Fi preceding K�1j / �
�
#.factors preceding K�1j /

� #.factors K�1i preceding K�1j / � #.factors Fi preceding K�1j /
�

D jsj1I1�aij�k�j`j1I1�aij�k

�
�
.1 � aij � k/ � j`j1I1�aij�k � jsj1I1�aij�k�j`j1I1�aij�k

�
D �

.1�aij�k/

`;s : (72)

So we have

p
.i;j;aij /

`;s;k
D q

�aij �
.1�aij�k/

`;s

i �
���!
1�aijY
rD1

K
�`r
i F

.1�`r /sr�j`j1Ir
i .EiK

�1
i /

.1�`r /.1�sr�j`j1Ir /

�
K�1j :

We will perform the same shifting process for the factorsK�`ri with `r D 1. For
each such r this will induce a factor q�2x0i with

x0 D #.factors Ei succeeding K�`ri / � #.factors Fi succeeding K�`ri /:

Applying the same reasoning as in (71)–(72), we obtain x0 D �
.r�1/
`;s , such that one

can write

p
.i;j;aij /

`;s;k
D q

�aij �
.1�aij�k/

`;s
�2

P1�aij
rD1

�
.r�1/

`;s
`r

i�
���!
1�aijY
rD1

F
.1�`r /sr�j`j1Ir
i .EiK

�1
i /

.1�`r /.1�sr�j`j1Ir /

�
K�m�m

0

i K�1j :
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Finally, wewill do the same for theK�1i occurring in a factor .EiK
�1
i /

.1�`r /.1�sr�j`j1Ir /

with `r D 0 and sr�j`j1Ir D 0. This will give rise to a factor q�2x
00

i with

x00 D #
�
factors Ei succeeding .EiK�1i /

.1�`r /.1�sr�j`j1Ir /
�

� #
�
factors Fi succeeding .EiK�1i /

.1�`r /.1�sr�j`j1Ir /
�
:

The same reasoning now shows that x00 yields

#
�
factors Fi preceding .EiK�1i /

.1�`r /.1�sr�j`j1Ir /
�

� #
�
factors Ei preceding .EiK�1i /

.1�`r /.1�sr�j`j1Ir /
�
� 1 D �

.r�1/
`;s � 1;

where the extra �1 comes from the Ei inside .EiK�1i /
.1�`r /.1�sr�j`j1Ir /. The total

power of qi we can put in front hence becomes

�aij �
.1�aij�k/

`;s � 2

1�aijX
rD1

�
.r�1/
`;s

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
C 2

1�aijX
rD1

.1 � `r/.1 � sr�j`j1Ir / D ˇ`;s;k C .1 � aij �m �m
0/;

where we have applied (47), and with ˇ`;s;k as in (68).
Finally, we will perform the renormalization zEi D .qi � q

�1
i /Ei , which, again

taking into account the formula (70), leads to

p
.i;j;aij /

`;s;k
D

�
q2i

qi � q
�1
i

�.1�aij�m�m0/=2
q
ˇ`;s;k

i

�
���!
1�aijY
rD1

F
.1�`r /sr�j`j1Ir
i

zE
.1�`r /.1�sr�j`j1Ir /

i

�
K
�.1�aijCmCm

0/=2

i K�1j : (73)

It now follows from (22), (34), (35), and (65) that

.� ı P��ij /
�
Y`;sK

�.1�aijCmCm
0/=2

i K�1j
�
D
�
� ı yP i

�.1�aij�m�m
0/=2

� �
Y`;s

�
:

Together with (73), this yields the anticipated result.

We have now reduced the computation of .� ı P��ij /
�
p
.i;j;aij /

`;s;k

�
to a simpler

problem, namely computing how � ı yP i
�.1�aij�m�m

0/=2
acts on a product of an equal

number of factors Fi and zEi , which is balanced in the sense that up to each position
in the product, the number of factors Fi exceeds or equals the number of factors zEi ,
as imposed by Condition (c) of Lemma 3.4. This action can be deduced from the
following lemma.
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We will need the notation .N /q2
i
for the modified q2i -number

.N /q2
i
D
1 � q2Ni
1 � q2i

: (74)

Note that it relates to the ordinary qi -number as

.N /q2
i
D qN�1i ŒN �qi :

Lemma 3.11. Let M 2 N be such that M � 1. Let Y 2 Uq.g0/ be a product of M
factors Fi and M factors zEi , appearing in any order, but with Fi as the first factor.
Let N 2 N be maximal such that the first N factors of Y are Fi , such that we can
write Y D FNi zEiX , for some X 2 Uq.g0/. Then we have�

� ı yP i�M
�
.Y / D .N /q2

i
q�2NC2i

�
� ı yP i

�.M�1/

�
.FN�1i X/: (75)

Proof. We will prove this by induction on N . Our strategy will be to rewrite Y
in its standard ordering, i.e. as a K.q/-linear combination of terms of the form
zE
m1
i F

m2
i K

m3
i , and then observe that for anyM

0 2 Z one has

yP i�M 0
�
zE
m1
i F

m2
i K

m3
i

�
D

(
zE
m1
i F

m2
i K

m3
i if m3 �m2 D �M 0;

0 otherwise;

by (65) and the definition (22) of the antipode. Hence, again by (22), we have

.� ı yP i�M 0/
�
zE
m1
i F

m2
i K

m3
i

�
D

(
1 if m1 D m2 D 0 and m3 D �M 0;
0 otherwise:

Otherwise stated, the action of � ı yP i
�M 0 on Y equals the coefficient of K

�M 0

i in its
standard ordering.
For N D 1, we may apply (19) and (66) to obtain

Y D Fi zEiX D zEiFiX �KiX CK
�1
i X:

The first term will have a standard ordering consisting of terms zEm1i F
m2
i K

m3
i

with m1 � 1, which will all be killed by �. For the second term, observe that X
contains M � 1 factors Fi and the same number of factors zEi , since N D 1. Each
factorFi , when taken together with a factor zEi , can contribute at most one factorK�1i
by (19). Hence, the lowest possible power of Ki occurring in the normal ordering
of KiX will be

1 � .M � 1/ D �M C 2 > �M:

Hence, the second term will not contribute either. For the third term, we have
K�1i XDXK�1i , sinceX contains an equal number of factors Fi and zEi . So we have�

� ı yP i�M
�
.Y / D

�
� ı yP i�M

�
.XK�1i / D

�
� ı yP i

�.M�1/

�
.X/;

in agreement with (75).
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Now suppose the claim has been proven for N � 1 � 1, then we have

Y D FNi
zEiX D F

N�1
i

zEiX
0
� FN�1i KiX C F

N�1
i K�1i X;

where X 0 D FiX . As before, the second term will not contribute: the coefficient
ofK�Mi in its standard ordering will vanish, as the lowest power ofKi that can occur
will again be �M C 2. Consider now the third term in this sum. When shiftingK�1i
through X , we will induce a factor q�2xi , where

x D #.factors zEi in X/ � #.factors Fi in X/

D
�
#.factors zEi in Y / � 1

�
�
�
#.factors Fi in Y / �N

�
D .M � 1/ � .M �N/ D N � 1;

such that
FN�1i K�1i X D q�2NC2i FN�1i XK�1i :

So, we have�
� ı yP i�M

�
.Y / D

�
� ı yP i�M

��
FN�1i

zEiX
0
�
C q�2NC2i

�
� ı yP i

�.M�1/

��
FN�1i X

�
:

Note that FN�1i
zEiX

0 still containsM factors Fi andM factors zEi , and has Fi as its
first factor, since N � 1 � 1. Hence, we may apply the induction hypothesis to write�

� ı yP i�M
��
FN�1i

zEiX
0
�
D .N � 1/q2

i
q�2NC4i

�
� ı yP i

�.M�1/

��
FN�2i X 0

�
:

The statement now follows from FN�2i X 0 D FN�1i X and upon observing that

.N � 1/q2
i
q�2NC4i C q�2NC2i D .N /q2

i
q�2NC2i :

Let once more Y;X 2 Uq.g
0/ and M;N 2 N be as in the statement of

Lemma 3.11. As already observed, the elementFN�1i X is again of the type described
in Lemma 3.11: it is a product ofM �1 factorsFi and the same number of factors zEi ,
and has Fi as its first factor, provided X has Fi as its first factor or N � 1 � 1.
If N 0 � N � 1 is the maximal number such that the first N 0 factors of FN�1i X

are Fi , then we may write

FN�1i X D FN
0

i
zEiX

0;

for some X 0 2 Uq.g0/. Consequently, Lemma 3.11 asserts�
� ı yP i

�.M�1/

��
FN�1i X

�
D .N 0/q2

i
q�2N

0C2
i

�
� ı yP i

�.M�2/

��
FN

0�1
i X 0

�
;

and thus,�
� ı yP i�M

�
.Y / D .N /q2

i
q�2NC2i .N 0/q2

i
q�2N

0C2
i

�
� ı yP i

�.M�2/

��
FN

0�1
i X 0

�
:
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This process will only terminate if at some position p in the product, the number
of factors zEi preceding p exceeds the number of factors Fi preceding p. In that case,
we would at some point be left withN 0 D 1 and a correspondingX 0 starting with zEi
instead of Fi .
Let us now assume that this is not the case, i.e. up to each position p in Y ,

the number of factors Fi preceding p exceeds or equals the number of factors zEi
preceding p. Then this process of applying Lemma 3.11 consecutively will continue
until we have applied it M times and we have reached N 0 D 1 and X 0 D 1, and of
course .� ı yP i0/.1/ D 1. Each factor zEi can now be assigned a level, which is the
exponentN of Fi that will occur in front of zEi at the moment this factor is cancelled
when applying the formula (75) in this consecutive process. Then our reasoning in
fact asserts �

� ı yP i�M
�
.Y / D

Y
factors zEi

�
level. zEi /

�
q2
i

q
�2 level. zEi /C2
i ;

where the product runs over all factors zEi in Y . Now note that each application of
the formula (75) cancels one factor Fi and one factor zEi . Hence, each Fi is in fact
coupled to exactly one factor zEi . Thus instead of running over all zEi in Y , we might
as well run over all factors Fi in Y and assign to each Fi a level, which equals the
level of the zEi to which it is coupled. We find�

� ı yP i�M
�
.Y / D

Y
factors Fi

�
level.Fi /

�
q2
i

q
�2 level.Fi /C2
i : (76)

Now say the element Y contains a factor zEi at position p in the product, which,
in the process above, is coupled to a factor Fi at position r , with of course r < p.
From the definition, it follows that the level of the zEi at position p is the total number
of factors Fi preceding it, minus the number of factors zEi preceding it, again since
each application of (75) kills one Fi and one zEi . So

level.Fi at position r/ D level. zEi at position p/ (77)

D #.factors Fi preceding p/ � #.factors zEi preceding p/
D #.factors Fi preceding r/C 1C #.factors Fi between r C 1 and p � 1/

�
�
#.factors zEi preceding r/C #.factors zEi between r C 1 and p � 1/

�
;

where theC1 comes from the Fi at position r itself. Moreover, we have that

#.factorsFi between rC1 andp�1/ D #.factors zEi between rC1 andp�1/: (78)

Indeed, suppose not, then after coupling all possible zEi between positions r C 1 and
p � 1 with an Fi , there would either still be Fi ’s left. Hence, position p would be
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coupled to some position r 0 > r , or else there would still be zEi left, so position r
would be coupled to p0 < p. Inserting (78) into (77), we obtain

level.Fi at position r/ D #.factors Fi preceding r/C 1� #.factors zEi preceding r/:
(79)

Let us now return to the statement of Proposition 3.10. The element

Y`;s D

���!
1�aijY
rD1

F
.1�`r /sr�j`j1Ir
i

zE
.1�`r /.1�sr�j`j1Ir /

i

is a product of an equal number of factors Fi and zEi , namely

#.factors Fi / D jsj D
1 � aij �m �m

0

2
;

#.factors zEi / D
1�aijX
rD1

.1 � `r/.1 � sr�j`j1Ir / D
1 � aij �m �m

0

2
;

where we have applied (47). Moreover, at each position p in Y`;s, the number
of factors Fi preceding p, i.e. jsj1Ip , exceeds or equals the number of factors zEi
preceding p, i.e. p�jsj1Ip , by Condition (c) of Lemma 3.4. Hence, the formula (76)
is applicable.
Running over the factors Fi in Y`;s amounts to running over r 2 f1; : : : ; 1� aij g

and checking for each r whether the element at position r is Fi , i.e. whether `r D 0
and sr�j`j1Ir D 1. Thus, we have�
� ı yP i

�.1�aij�m�m
0/=2

�
.Y`;s/

D

1�aijY
rD1

��
level.Fi at position r/

�
q2
i

q
�2 level.Fi at position r/C2
i

�.1�`r /sr�j`j1Ir
D q

�2
P1�aij
rD1

.level.Fi at position r/�1/.1�`r /sr�j`j1Ir
i 1�aijY

rD1

��
level.Fi at position r/

�
q2
i

�.1�`r /sr�j`j1Ir : (80)
Applying the formula (79), we find

level.Fi at position r/ D jsj1Ir�1�j`j1Ir�1C1�
�
r � 1 � j`j1Ir�1 � jsj1Ir�1�j`j1Ir�1

�
D �

.r�1/
`;s C 1:

Combining this with (80), we immediately obtain the following result.
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Corollary 3.12. For i; j;m;m0; k; ` and s as fixed before, one has

�
� ı yP i

�.1�aij�m�m
0/=2

�����!1�aijY
rD1

F
.1�`r /sr�j`j1Ir
i

zE
.1�`r /.1�sr�j`j1Ir /

i

�

D q
`;s;k

i

1�aijY
rD1

��
�
.r�1/
`;s C 1

�
q2
i

�.1�`r /sr�j`j1Ir ;
where

`;s;k D �2

1�aijX
rD1

�
.r�1/
`;s .1 � `r/sr�j`j1Ir ;

with �.r/
`;s as in (69).

Alternatively, one can also iterate over the factors zEi in Y`;s rather than the
factors Fi , as initially established. Since (77) implies

level. zEi at position p/ D �.p�1/`;s ;

we also have�
� ı yP i

�.1�aij�m�m
0/=2

�
.Y`;s/ D

1�aijY
pD1

h�
�
.p�1/
`;s

�
q2
i

q
�2�

.p�1/

`;s
C2

i

i.1�`p/.1�sp�j`j1Ip /
:

(81)
This formula will be of use in Subsection 3.3.
Corollaries 3.5 and 3.12 and Proposition 3.10 now lead to an explicit expression

for the structure constants �.i;j;aij /m;m0 for Case 1.
Theorem 3.13 (Case 1). For any i 2 I n X such that �.i/ D i and any j 2 I n X
distinct from i , one has

Fij .Bi ; Bj / D Cij .c/ D
�1�aijX
mD0

�1�aij�mX
m0D0

�
.i;j;aij /

m;m0 Z
.1�aij�m�m

0/=2

i Bmi BjB
m0

i ;

(82)
where the structure constants are given by

�
.i;j;aij /

m;m0 D .aij CmCm
0/p

�
ciq

2
i

qi � q
�1
i

�.1�aij�m�m0/=2
1�aij�mX
kDm0

X
`2Lm;m0;k

X
s2Sm;m0

.�1/kC1
�
1 � aij
k

�
qi

q
�`;s;k

i

1�aijY
rD1

��
�
.r�1/
`;s C 1

�
q2
i

�.1�`r /sr�j`j1Ir ; (83)
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where

�`;s;k D �aij �
.1�aij�k/

`;s � 2

1�aijX
rD1

�
.r�1/
`;s ;

with Lm;m0;k and Sm;m0 as in (52) and �.r/
`;s as in (69).

Proof. This follows upon combining Corollary 3.5, Proposition 3.10 and Corol-
lary 3.12. Note that for each k, ` and s, the exponent of qi becomes

ˇ`;s;k C `;s;k

D �aij �
.1�aij�k/

`;s � 2

1�aijX
rD1

�
.r�1/
`;s

�
`r C .1 � `r/.1 � sr�j`j1Ir /C .1 � `r/sr�j`j1Ir

�
D �`;s;k :

Similarly, this leads us to an explicit expression for the structure constants �.i;j;aij /m;m0;t

for the first part of Cij .c/ for Case 2.
Corollary 3.14. Let i 2 I nX be such that �.i/ D i , j 2 X andm; m0 and t as fixed
before. Then the structure constants �.i;j;aij /m;m0;t are obtained from the expression (83)
upon replacing Sm;m0 by Sm;m0;k;t defined in (56).

Proof. This follows upon comparing (51) with (55).

It can readily be checked that these expressions comply with the values computed
in [27] and [2], as displayed in Tables 1 and 2.

3.3. Case 2: �.i / D i 2 I n X and j 2 X . Consequently, we will obtain the
second part of the polynomial Cij .c/ for Case 2, as described by the last line of (62).
To this end, let us fix i 2 I nX such that:

�.i/ D i; j 2 X; m 2 f0; : : : ;�1 � aij g; t 2
n
0; : : : ;

�1 � aij �m

2

o
;

k 2 f1; : : : ; 1 � aij g; d 2 f0; : : : ; k � 1g; m0 2 f0; : : : ; mg;

` 2 L0m;m0;k;d and s 2 S 0m;m0;k;t;d :

By (63), the calculation of the structure constants � .i;j;aij /m;t comes down to computing
the action of � ı P��ij on r

.i;j;aij /

`;s;k;d
, defined in (59). This will be the subject of the

present subsection.
As a first step, we will again shift all factors K�1i in r.i;j;aij /

`;s;k;d
to the back, as we

have done for p.i;j;aij /
`;s;k

in Proposition 3.10. Recall the notation zEi D .qi � q
�1
i /Ei

and let us write, as an extension of (65),
yP
i;j
N;M WUq.g

0/! UCKNi K
M
j S.U

�/; (84)

for the projection operator with respect to the decomposition (33), whereM;N 2 Z.
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Proposition 3.15. For i; j;m; t; k; d;m0; ` and s as fixed before, we have

.� ı P��ij /
�
r
.i;j;aij /

`;s;k;d

�
D

q
�`;s;k;d;t;m0

i

.qi � q
�1
i /.1�aij�m/=2.qj � q

�1
j /�

� ı yP
i;j

�.1�aij�m/=2;�1

��
Y
.0/

`;s;k;d
� q

aij
i Y

.1/

`;s;k;d

�
;

where

Y
.0/

`;s;k;d
D

� �����!
1�aij�kY
rD1

Vi
`;s;r

�
Fj

�
�������!
1�aij�kCdY
rD2�aij�k

Vi
`;s;r

�
zEj zEi

� ���������!
�aijY

rD2�aij�kCd

Vi
`;s;r

�
;

(85)

Y
.1/

`;s;k;d
D

� �����!
1�aij�kY
rD1

Vi
`;s;r

�
Fj

�
�������!
1�aij�kCdY
rD2�aij�k

Vi
`;s;r

�
zEi zEj

� ���������!
�aijY

rD2�aij�kCd

Vi
`;s;r

�
;

(86)

Vi
`;s;r D F

.1�`r /sr�j`j1Ir
i

zE
.1�`r /.1�sr�j`j1Ir /

i ; (87)

�`;s;k;d;t;m0 D �2�
.1�aij�kCd/

`;s � 2

�aijX
rD1

�
.r�1/
`;s

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
� aij

�
1C aij C k Cm

0
C t C jsj1I1�aij�k�j`j1I1�aij�k

�
� 2.m0 C t /;

(88)

with �.r/
`;s as in (69).

Proof. Let us start by shifting the factorK�1i arising from .EjEi � q
aij
i EiEj /K

�1
i

in (59) to the back. Reasoning as in the proof of Proposition 3.10, this induces a
factor q�2xi , where

x D #.factors Fi preceding K�1i / � #.factors Ei preceding K�1i /

D jsj1I1�aij�kCd�j`j1I1�aij�kCd

�
�
1 � aij � k C d � j`j1I1�aij�kCd � jsj1I1�aij�kCd�j`j1I1�aij�kCd

�
� 1

D �
.1�aij�kCd/

`;s � 1;

where the �1 comes from the factor Ei in .EjEi � q
aij
i EiEj /K

�1
i .

Now let us perform the same shifting for the factors K�`ri with `r D 1, which
leads to a factor qx

0
r

i , where this time x
0
r depends on r . In general, we have

x0r D �2
�
#.factors Fi preceding K�`ri / � #.factors Ei preceding K�`ri /

�
� aij

�
#.factors Fj preceding K�`ri / � #.factors Ej preceding K�`ri /

�
;
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again since r.i;j;aij /
`;s;k;d

contains an equal number of factors Fi and Ei , and precisely 1
factor Fj and 1 factor Ej . For r 2 f1; : : : ; 1 � aij � kg we have

x0r D �2
�
jsjr�1�j`j1Ir�1 �

�
r � 1 � j`j1Ir�1 � jsj1Ir�1�j`j1Ir�1

��
D �2�

.r�1/
`;s :

For r 2 f2� aij � k; : : : ; 1� aij � kC dg on the other hand, by the same reasoning
this becomes

x0r D �2�
.r�1/
`;s � aij ;

whereas for r 2 f2 � aij � k C d; : : : ;�aij g one has

x0r D �2
�
�
.r�1/
`;s � 1

�
;

where the �1 arises from the factor Ei in EjEi � q
aij
i EiEj .

Finally, this shifting process for the factorK�1i in .EiK
�1
i /

.1�`r /.1�sr�j`j1Ir / with
`r D 0 and sr�j`j1Ir D 0 induces a factor q

x00r
i , with, reasoning as above,

x00r D

�
�2
�
�
.r�1/
`;s � 1

�
for r 2 f1; : : : ; 1 � aij � kg;

�2
�
�
.r�1/
`;s � 1

�
� aij for r 2 f2 � aij � k; : : : ; 1 � aij � k C dg;

�2
�
�
.r�1/
`;s � 2

�
for r 2 f2 � aij � k C d; : : : ;�aij g:

In total, this shifting gives rise to a factor q�i , with

� D �2�
.1�aij�kCd/

`;s C 2 � 2

�aijX
rD1

�
.r�1/
`;s

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
� aij

1�aij�kCdX
rD2�aij�k

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
C 2

�aijX
rD2�aij�kCd

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
C 2

�aijX
rD1

.1 � `r/.1 � sr�j`j1Ir /

D �2�
.1�aij�kCd/

`;s C 2 � 2

�aijX
rD1

�
.r�1/
`;s

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
� aij

�
m0 C t � .1 � aij � k/C jsj1I1�aij�k�j`j1I1�aij�k

�
C 2

�
1 � aij Cm

2
�m0 � t � 1

�
C .�1 � aij �m/;

in agreement with (88), wherewe have used (61) and the definition (64) ofS 0
m;m0;k;t;d

.
Finally, the renormalization (66) gives rise to a factor

.qi � q
�1
i /�.1�aij�m/=2.qj � q

�1
j /�1;
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since by (61) we have

#.factors Ei / D #.factors Fi / D jsj D
1 � aij �m

2

and, of course, #.factors Ej / D #.factors Fj / D 1. So we find

r
.i;j;aij /

`;s;k;d
D

q
�`;s;k;d;t;m0

i

.qi � q
�1
i /.1�aij�m/=2.qj � q

�1
j /

�
Y
.0/

`;s;k;d
�q

aij
i Y

.1/

`;s;k;d

�
K
�.1�aijCm/=2

i ;

which yields the claim by (22), (34), (35), and (84).

We have hence reduced our problem to computing how � ı yP i;j
�.1�aij�m/=2;�1

acts
on Y .0/

`;s;k;d
� q

aij
i Y

.1/

`;s;k;d
. Each of the latter terms is a product of an equal number of

factors Fi and zEi and precisely one factor Fj and zEj , which is balanced in the sense
that up to each position in the product, the number of factors Fi exceeds or equals the
number of factors zEi , and that the factor Fj precedes the factor zEj . The presence
of Fj and zEj now complicates matters substantially in comparison to the situation
in Case 1, because Fi does not commute with Fj and similarly for zEi and zEj . We
will need to derive an analog of Lemma 3.11 which takes into account the presence
of these factors.
Recall the notation .N /q2

i
for the modified q2i -number (74) and let us also define

˛N D .N /q2
i
q�2NC2i ; (89)

M;N D .N �M/q2
i
q
�aij�2NC2

i ; (90)

for M;N 2 N. Write also ˛N D 0 for N < 0. Then one can prove the following
result.

Lemma 3.16. Let M 2 N be such that M � 1. Let Y 2 Uq.g0/ be a product of M
factors Fi , M factors zEi , 1 factor Fj and 1 factor zEj , appearing in any order but
with Fi as its firstN0 factors, for someN0 2 N, followed by a factor Fj . LetN1 2 N
be maximal such that the first N1 factors of Y succeeding Fj are Fi , so that we can
write Y D FN0i FjF

N1
i
zEiX , for some X 2 Uq.g0/. Then we have�

� ı yP
i;j
�M;�1

�
.Y / D ˛N0

�
� ı yP

i;j

�.M�1/;�1

��
F
N0�1
i FjF

N1
i X

�
C N0;N0CN1

�
� ı yP

i;j

�.M�1/;�1

��
F
N0
i FjF

N1�1
i X

�
:

Proof. We prove this by induction on N1. As before, our strategy will be to write Y
in its standard ordering, i.e. as a K.q/-linear combination of

zE
m1
i
zEıj
zE
m2
i F

m3
i F ıj F

m4
i K

m5
i Kı

0

j ;
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with m1; : : : ; m4 2 N, m5 2 Z, ı 2 f0; 1g and ı0 2 f�1; 0; 1g, and then observe
that, for anyM 0 2 Z, one has�
� ı yP

i;j
�M 0;�1

��
zE
m1
i
zEıj
zE
m2
i F

m3
i F ıj F

m4
i K

m5
i Kı

0

j

�
D

(
1 if m1 D m2 D m3 D m4 D ı D 0, m5 D �M 0, and ı0 D �1;
0 otherwise;

(91)

by (84) and (22). Hence, �ı yP i;j
�M 0;�1 in fact projectsY onto the coefficient ofK

�M 0

i K�1j
in its standard ordering.
For N1 D 0, we may write

Y D F
N0
i
zEiFjX D F

N0
i
zEiX

0

since Fj and zEi commute. A straightforward generalization of Lemma 3.11 then
asserts �

� ı yP
i;j
�M;�1

�
.Y / D .N0/q2

i
q
�2N0C2
i

�
� ı yP

i;j

�.M�1/;�1

��
F
N0�1
i X 0

�
;

which yields the claim since X 0 D FjX and by the definition (89) of ˛N0 and the
fact that N0;N0 D 0.
Suppose now the claim has been proven forN1�1 � 0. Note that by (19) and (66)

we have

Y D F
N0
i FjF

N1�1
i

zEiX
0
� F

N0
i FjF

N1�1
i KiX C F

N0
i FjF

N1�1
i K�1i X;

with X 0 D FiX .
The second term will not contribute, since its standard ordering cannot contain

a multiple of K�Mi K�1j . Indeed, this term containsM � 1 factors Fi and the same
number of factors zEi , and each factor Fi can only contribute one factor K�1i to the
normal ordering upon combining it with a factor zEi , by (19). Hence, the lowest
possible power of Ki occurring in the standard ordering of this term will be

�.M � 1/C 1 > �M:

The third term contains again as many Fi as zEi and can whence be rewritten as

qxi F
N0
i FjF

N1�1
i XK�1i ;

with

x D �2
�
#.factors Fi preceding K�1i / � #.factors zEi preceding K�1i /

�
� aij

�
#.factors Fj preceding K�1i / � #.factors zEj preceding K�1i /

�
D �2.N0 CN1 � 1/ � aij :
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So we have�
� ı yP

i;j
�M;�1

�
.Y / D

�
� ı yP

i;j
�M;�1

��
F
N0
i FjF

N1�1
i

zEiX
0
�

C q
�2.N0CN1�1/�aij
i

�
� ı yP

i;j

�.M�1/;�1

��
F
N0
i FjF

N1�1
i X

�
:

AsFN0i FjF
N1�1
i

zEiX
0 still containsM factorsFi and the same number of factors zEi ,

and meets all other requirements of the statement as well, we may apply the induction
hypothesis to write�
�ı yP

i;j
�M;�1

��
F
N0
i FjF

N1�1
i

zEiX
0
�
D ˛N0

�
�ı yP

i;j

�.M�1/;�1

��
F
N0�1
i FjF

N1�1
i X 0

�
C N0;N0CN1�1

�
� ı yP

i;j

�.M�1/;�1

��
F
N0
i FjF

N1�2
i X 0

�
:

The statement now follows from X 0 D FiX and the fact that

N0;N0CN1�1 C q
�2.N0CN1�1/�aij
i D N0;N0CN1 :

The formula obtained in Lemma 3.11 can easily be iterated, since its right-hand
side consists of only one term, leading to a product iteration of the form (76). The
formula obtained in Lemma 3.16, however, is much more complicated, since its
right-hand side consists of two different terms, each containing a projection operator
and the counit �. One iteration of Lemma 3.16 hence leads to a right-hand side
containing three terms. Indeed, if Y D F

N0
i FjF

N1
i
zEiF

N2
i
zEiX is of the type

described in Lemma 3.16, then�
� ı yP

i;j
�M;�1

�
.Y / D ˛N0˛N0�1

�
� ı yP

i;j

�.M�2/;�1

��
F
N0�2
i FjF

N1CN2
i X

�
C ˛N0

�
N0�1;N0CN1CN2�1 C N0;N0CN1

��
� ı yP

i;j

�.M�2/;�1

��
F
N0�1
i FjF

N1CN2�1
i X

�
C N0;N0CN1N0;N0CN1CN2�1

�
� ı yP

i;j

�.M�2/;�1

��
F
N0
i FjF

N1CN2�2
i X

�
:

A second iteration will then lead to four terms in the right-hand side and so on.
Meanwhile, the occurring coefficients become increasingly intricate at each further
iteration. To describe the full outcome after T iterations, for any T 2 N, let us
introduce the notation

c
.b/
a;N D

aX
p1�p2�����pb�aD0

b�aY
rD1

N0�aCpr ;jN j0Ib�pr�rC1�.b�pr�r/; (92)

where a < b 2 N,

N D .N0; N1; : : : ; NbC1/ 2 NbC2 and jN j0Ip D N0 CN1 C � � � CNp:

We also set c.a/a;N D 1.
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Proposition 3.17. Let M 2 N be such that M � 1. Let Y 2 Uq.g0/ be a product
of M factors Fi , M factors zEi , 1 factor Fj and 1 factor zEj , of the form

Y D F
N0
i FjF

N1
i
zEiF

N2
i
zEi : : : F

NT
i
zEi zEjX; (93)

for some X 2 Uq.g0/, where N D .N0; N1; : : : ; NT / 2 NTC1 and T � 1. Then we
have �

� ı yP
i;j
�M;�1

�
.Y / D �N

�
� ı yP i

�.M�T /

��
F
jN j0IT�T

i X
�
;

with

�N D

T�1X
uDmax.0;T�jN j1IT�1/

q
�aij .N0�u/

i c
.T�1/
u;N

�
q
aij
i ˛N0�uCN0�u;jN j0IT�.T�1/

�� u�1Y
rD0

˛N0�r

�
:

Proof. We will prove this by induction on T . For T D 1, we have

Y D F
N0
i FjF

N1
i
zEi zEjX;

and so its follows from Lemma 3.16 that�
� ı yP

i;j
�M;�1

�
.Y / D ˛N0

�
� ı yP

i;j

�.M�1/;�1

��
F
N0�1
i Fj zEjF

N1
i X

�
C N0;N0CN1

�
� ı yP

i;j

�.M�1/;�1

��
F
N0
i Fj zEjF

N1�1
i X

�
;

where we have used the fact that Fi and zEj commute. When rewriting Fj zEj in its
standard ordering via

Fj zEj D zEjFj �Kj CK
�1
j ;

only the last term will contribute by (91), so we may replace Fj zEj by K�1j in the
equation above. Since both FN0�1i K�1j F

N1
i X and FN0i K�1j F

N1�1
i X contain as

many Fi as zEi , it is evident that

F
N0�1
i K�1j F

N1
i X D q

�aij .N0�1/

i F
N0CN1�1
i XK�1j ;

F
N0
i K�1j F

N1�1
i X D q

�aijN0
i F

N0CN1�1
i XK�1j :

Hence, it follows from (65) and (84) that�
� ı yP

i;j
�M;�1

�
.Y / D q

�aijN0
i

�
q
aij
i ˛N0 C N0;N0CN1

��
� ı yP i

�.M�1/

��
F
N0CN1�1
i X

�
;

which agrees with the claim since c.0/
0;.N0;N1/

D 1 and T �jN j1IT �1 � 0 for T D 1.
Suppose now the claim has been proven for T � 1 and set

Y D F
N0
i FjF

N1
i
zEiF

N2
i
zEi : : : F

NT
i
zEiF

NTC1
i

zEi zEjX:

Then Lemma 3.16 asserts�
� ı yP

i;j
�M;�1

�
.Y / D ˛N0

�
� ı yP

i;j

�.M�1/;�1

�
.Y 0/C N0;N0CN1

�
� ı yP

i;j

�.M�1/;�1

�
.Y 00/;
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with

Y 0 D F
N0�1
i FjF

N1CN2
i

zEiF
N3
i
zEi : : : F

NTC1
i

zEi zEjX;

Y 00 D F
N0
i FjF

N1CN2�1
i

zEiF
N3
i
zEi : : : F

NTC1
i

zEi zEjX:

Both Y 0 and Y 00 satisfy the requirements of the statement: they each containM � 1
factors Fi , the same number of factors zEi , 1 factor Fj and 1 factor zEj , and they are
of the form (93) with

N 0 D .N0 � 1;N1 CN2; N3; : : : ; NTC1/

and N 00 D .N0; N1 CN2 � 1;N3; : : : ; NTC1/;

respectively. Both N0 � 1 and N1 C N2 � 1 might become negative, but in this
case the corresponding coefficients ˛N0 and N0;N0CN1 will vanish. We may hence
assume that N 0;N 00 2 NTC1 and apply the induction hypothesis to obtain�

� ı yP
i;j
�M;�1

�
.Y / D ‚N 0;N 00

�
� ı yP i

�.M�T�1/

��
F
jN j0ITC1�.TC1/

i X
�
;

where ‚N 0;N 00 is given by

˛N0

� T�1X
uDmax.0;T�jN j1ITC1�1/

q
�aij .N0�1�u/

i c
.T�1/

u;N 0�
q
aij
i ˛N0�1�u C N0�1�u;jN j0ITC1�T

�� u�1Y
rD0

˛N0�1�r

��
C N0;N0CN1

� T�1X
uDmax.0;T�jN j1ITC1/

q
�aij .N0�u/

i c
.T�1/

u;N 00�
q
aij
i ˛N0�u C N0�u;jN j0ITC1�T

�� u�1Y
rD0

˛N0�r

��
; (94)

where we have used the fact that jN 0j0IT �T D jN 00j0IT �T D jN j0ITC1� .T C1/.
It now suffices to show that

‚N 0;N 00 D

� TX
uDmax.0;T�jN j1ITC1/

q
�aij .N0�u/

i c
.T /
u;N�

q
aij
i ˛N0�u C N0�u;jN j0ITC1�T

�� u�1Y
rD0

˛N0�r

��
: (95)
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Upon replacing the summation index u in the first line in (94) by u0 D u C 1,
which we thereafter rename to u again, this term becomes

˛N0

� TX
uDmax.1;T�jN j1ITC1/

q
�aij .N0�u/

i c
.T�1/

u�1;N 0�
q
aij
i ˛N0�u C N0�u;jN j0ITC1�T

�� u�2Y
rD0

˛N0�1�r

��
(96)

and it is immediate that ˛N0
�Qu�2

rD0 ˛N0�1�r
�
D
Qu�1
rD0 ˛N0�r . Replacing the first

line of (94) by (96) and separating the term corresponding to u D 0 in the second
line and the one with u D T in the first line, we find that ‚N 0;N 00 is equal to

q
�aijN0
i c

.T�1/

0;N 00
N0;N0CN1

�
q
aij
i ˛N0 C N0;jN j0ITC1�T

�
�N ;T

C

T�1X
uDmax.1;T�jN j1ITC1/

�
q
�aij .N0�u/

i

�
c
.T�1/

u�1;N 0
C N0;N0CN1c

.T�1/

u;N 00

�
�
q
aij
i ˛N0�u C N0�u;jN j0ITC1�T

�� u�1Y
rD0

˛N0�r

��
C q

�aij .N0�T /

i c
.T�1/

T�1;N 0

�
q
aij
i ˛N0�T C N0�T;jN j0ITC1�T

�� T�1Y
rD0

˛N0�r

�
; (97)

with

�N ;T D

(
1 if T � jN j1ITC1 � 0;
0 otherwise:

By definition of c.b/a;N we have that c
.T�1/

T�1;N 0
D c

.T /
T;N D 1, such that the last line in (97)

agrees with the term in the right-hand side of (95) corresponding to u D T . Hence,
it suffices to prove the following two claims:

c
.T /
0;N D c

.T�1/

0;N 00
N0;N0CN1 ; (98)

c
.T /
u;N D c

.T�1/

u�1;N 0
C N0;N0CN1c

.T�1/

u;N 00
; (99)

for all u 2 fmax.1; T � jN j1ITC1/; : : : ; T � 1g.
It follows immediately from (92) that one has

c
.T�1/

0;N 00
N0;N0CN1 D

� T�1Y
rD1

N0;jN 00j0IT�r�.T�r�1/

�
N0;N0CN1 :
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The definition of N 00 asserts that

jN 00j0IT�rDjN j0IT�rC1 � 1

for any r 2f1; : : : ; T � 1g, and hence

c
.T�1/

0;N 00
N0;N0CN1 D

TY
rD1

N0;jN j0IT�rC1�.T�r/ D c
.T /
0;N ;

which proves (98).
Now let u 2 fmax.1; T � jN j1ITC1/; : : : ; T � 1g be fixed. By (92) we have

c
.T�1/

u�1;N 0
D

u�1X
p1�p2�����pT�uD0

T�uY
rD1

N0�uCpr ;jN 0j0IT�pr�r�.T�pr�r�1/;

where we have used the fact that N 00 D N0 � 1. Now since for every occurring r one
has r � T � u and pr � u � 1, we have that T � pr � r � 1. Hence,

jN 0j0IT�pr�r D jN j0IT�pr�rC1 � 1;

such that

c
.T�1/

u�1;N 0
D

u�1X
p1�p2�����pT�uD0

T�uY
rD1

N0�uCpr ;jN j0ITC1�pr�r�.T�pr�r/: (100)

It is evident that one has

f.p1; : : : ; pT�u�1; pT�u/ 2 NT�u
W 0 � p1 � � � � � pT�u�1 � pT�u � ug

D f.p1; : : : ; pT�u�1; pT�u/ 2 NT�u
W 0 � p1 � � � � � pT�u�1 � pT�u � u�1g

[ f.p1; : : : ; pT�u�1; u/ 2 NT�u
W 0 � p1 � � � � � pT�u�1 � ug:

Hence, (100) implies

c
.T�1/

u�1;N 0
D

uX
p1�p2�����pT�uD0

T�uY
rD1

N0�uCpr ;jN j0ITC1�pr�r�.T�pr�r/ (101)

� N0;jN j0I1

uX
p1�p2�����pT�u�1D0

T�u�1Y
rD1

N0�uCpr ;jN j0ITC1�pr�r�.T�pr�r/;

where in the last line we have separated the factor in the product corresponding to
r D T � u, since here we have set pT�u D u. One immediately recognizes the first
line as c.T /u;N and, moreover, one has

c
.T�1/

u;N 00
D

uX
p1�p2�����pT�u�1D0

T�u�1Y
rD1

N0�uCpr ;jN 00j0IT�pr�r�.T�pr�r�1/: (102)
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Again every T � pr � r � 1, and hence

jN 00j0IT�pr�r D jN j0ITC1�pr�r � 1;

such that (102) coincides with the sum in the last line in (101). We conclude that

c
.T�1/

u�1;N 0
D c

.T /
u;N � N0;N0CN1c

.T�1/

u;N 00
;

and so we have shown (99). This concludes the proof.

The question now remains how one can apply Proposition 3.17 to compute the
action of � ı yP i;j

�.1�aij�m/=2;�1
on Y .0/

`;s;k;d
� q

aij
i Y

.1/

`;s;k;d
, as defined in (85)–(86).

This will be addressed in the following proposition.
Proposition 3.18. Let i; j;m; t; k; d;m0; ` and s be as fixed before and let � 2 f0; 1g,
then one has�
�ı yP

i;j

�.1�aij�m/=2;�1

��
Y
.�/

`;s;k;d

�
D q

�aijN0
i

� Y
r2Rk;d

�
˛
�
.r�1/

`;s
��r;k

�.1�`r /.1�sr�j`j1Ir /�
�
˛
�
.1�aij�kCd/

`;s

�1��� T`;s;k;tC��1X
uDmax.0;��/

�
q
aiju

i c
.T`;s;k;tC��1/

u;N .�/

�
q
aij
i ˛N0�u C N0�u;jN j0IT`;s;k;tC�

�.T`;s;k;tC��1/

�� u�1Y
rD0

˛N0�r

���1�ıT`;s;k;tC�;0

;

where N .�/
D .N0; N1; : : : ; NT`;s;k;tC�/, with

T`;s;k;t D �
.1�aij�k/

`;s C t � jsj1I1�aij�k�j`j1I1�aij�k
; (103)

N0 D �
.1�aij�k/

`;s ; (104)

jN j1Ib D rb C aij C k � b � 1 � j`j2�aij�kIrb ; (105)

rb D

1�aij�kCdX
rD2�aij�k

r.1 � `r/.1 � sr�j`j1Ir /

ırCaijCk�b�1�j`j2�aij�kIr ;jsj2�aij�k�j`j1I2�aij�k Ir�j`j1Ir
(106)

for any b 2 f1; : : : ; T`;s;k;tg, and

jN j0IT`;s;k;tC1 D �
.1�aij�kCd/

`;s C T`;s;k;t ; (107)

Moreover,

�� D T`;s;k;t � jN j1IT`;s;k;tC� C � � 1;
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Rk;d D f1; : : : ;�aij g n f2 � aij � k; : : : ; 1 � aij � k C dg;

�r;k D

(
0 if r � 1 � aij � k;
1 if r > 1 � aij � k:

(108)

Proof. Following the same reasoning that led us to the formula (81), we find that�
� ı yP

i;j

�.1�aij�m/=2;�1

��
Y
.�/

`;s;k;d

�
is equal to

� 1�aij�kY
rD1

˛
.1�`r /.1�sr�j`j1Ir /

�
.r�1/

`;s

��
� ı yP

i;j
�x;�1

�
"
F
�
.1�aij�k/

`;s

i Fj

�
�������!
1�aij�kCdY
rD2�aij�k

Vi
`;s;r

�
zE�i
zEj zE

1��
i

� ���������!
�aijY

rD2�aij�kCd

Vi
`;s;r

�#
;

where

x D
1 � aij �m

2
� #.factors zEi preceding Fj /

D �
.1�aij�k/

`;s � jsj2�aij�k�j`j1I2�aij�k I�aij�m
:

To proceed, we will need to write the term between square brackets in the form

F
N0
i FjF

N1
i
zEiF

N2
i
zEi : : : F

NT
i
zEi zEjX;

for some N0; : : : ; NT 2 N, T 2 N, X 2 Uq.g
0/. It is immediately clear

that N0 agrees with (104). Furthermore, let T be the total number of factors zEi

in
���������!Q1�aij�kCd

rD2�aij�k
Vi

`;s;r and let us define

r1 < r2 < � � � < rT 2 f2 � aij � k; : : : ; 1 � aij � k C dg

such that
Vi

`;s;rb
D zEi

for all b 2 f1; : : : ; T g. This amounts to saying that r1; : : : ; rT are the positions of
the factors zEi in this product. Then for any b one has

jN j1Ib D #.elements r 2 f2 � aij � k; : : : ; rbg such that Vi
`;s;r D Fi /

D #.elements r 2 f2 � aij � k; : : : ; rbg such that `r D 0 and sr�j`j1Ir D 1/
D #.elements r 2 f2 � aij � k; : : : ; rbg/
� #.elements r 2 f2 � aij � k; : : : ; rbg such that `r D 1/

� #.elements r 2 f2 � aij � k; : : : ; rbg such that Vi
`;s;r D

zEi /

D .rb � .1 � aij � k// � j`j2�aij�kIrb � b:
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Note also that this number is equal to

jN j1Ib D jsj2�aij�k�j`j1I2�aij�k Irb�j`j1Irb
:

Hence, for any b 2 f1; : : : ; T g, the element rb can be found as the unique

r 2 f2 � aij � k; : : : ; 1 � aij � k C dg

such that `r D 0, sr�j`j1Ir D 0 and

jsj2�aij�k�j`j1I2�aij�k Ir�j`j1Ir
D .r � .1 � aij � k// � j`j2�aij�kIr � b:

This agreeswith (105)–(106). The total numberT of factors zEi in
���������!Q1�aij�kCd

rD2�aij�k
Vi

`;s;r

can be found as

T D #.r 2 f2 � aij � k; : : : ; 1 � aij � k C dg/
� #.r 2 f2 � aij � k; : : : ; 1 � aij � k C dg such that `r D 1/
� #.r 2 f2 � aij � k; : : : ; 1 � aij � k C dg such that `r D 0 and sr�j`j1Ir D1/

D d � j`j2�aij�kI1�aij�kCd �

1�aij�kCdX
rD2�aij�k

.1 � `r/sr�j`j1Ir

D j`j1I1�aij�k C jsj1I1�aij�k�j`j1I1�aij�k
C aij C k C t � 1;

in agreement with (103).
With these notations one may now write

F
�
.1�aij�k/

`;s

i Fj

�
�������!
1�aij�kCdY
rD2�aij�k

Vi
`;s;r

�
zEj zEi

D F
N0
i FjF

N1
i
zEiF

N2
i
zEi : : : F

NT`;s;k;t

i
zEi zEjF

NT`;s;k;tC1

i
zEi ;

for some NT`;s;k;tC1 2 N, where we have used the fact that ŒFi ; zEj � D 0. The
analogous term with � D 1 becomes

F
�
.1�aij�k/

`;s

i Fj

�
�������!
1�aij�kCdY
rD2�aij�k

Vi
`;s;r

�
zEi zEj

D F
N0
i FjF

N1
i
zEiF

N2
i
zEi : : : F

NT`;s;k;t

i
zEiF

NT`;s;k;tC1

i
zEi zEj ;

for the same unknownNT`;s;k;tC1 2 N. By Proposition 3.17 we thus have, for � D 0
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�
� ı yP

i;j
�x;�1

�"
F
�
.1�aij�k/

`;s

i Fj

�
�������!
1�aij�kCdY
rD2�aij�k

Vi
`;s;r

�
zEj zEi

����������!
�aijY

rD2�aij�kCd

Vi
`;s;r

�#

D

" T`;s;k;t�1X
uDmax.0;�0/

q
�aij .N0�u/

i c
.T`;s;k;t�1/

u;N .0/

�
q
aij
i ˛N0�uCN0�u;jN j0IT`;s;k;t

�.T`;s;k;t�1/

�
 
u�1Y
rD0

˛N0�r

!#1�ıT`;s;k;t ;0�
q
�aijN0
i

�ıT`;s;k;t ;0

�
� ı yP i

�.x�T`;s;k;t /

��
F
jN j0IT`;s;k;tC1

�T`;s;k;t

i
zEi

����������!
�aijY

rD2�aij�kCd

Vi
`;s;r

��
:

Here, we have observed that Proposition 3.17 is only applicable for T � 1, which
explains the power ıT`;s;k;t ;0. The analogous term with zEj zEi replaced by zEi zEj
becomes" T`;s;k;tX

uDmax.0;�1/

q
�aij .N0�u/

i c
.T`;s;k;t /

u;N .1/

�
q
aij
i ˛N0�u C N0�u;jN j0IT`;s;k;tC1

�T`;s;k;t

�
� u�1Y
rD0

˛N0�r

�#
�
� ı yP i

�.x�T`;s;k;t�1/

��
F
jN j0IT`;s;k;tC1

�T`;s;k;t�1

i

����������!
�aijY

rD2�aij�kCd

Vi
`;s;r

��
:

Note also that we have

jN j0IT`;s;k;tC1 � T`;s;k;t D #.factors Fi in Y
.0/

`;s;k;d
preceding zEj zEi /

� #.factors zEi in Y .0/`;s;k;d
preceding zEj zEi /

D �
.1�aij�kCd/

`;s ;

which determines the unknownNT`;s;k;tC1, in agreementwith (107). ByLemma 3.11
this also implies

�
� ı yP i

�.x�T`;s;k;t /

��
F
jN j0IT`;s;k;tC1

�T`;s;k;t

i
zEi

����������!
�aijY

rD2�aij�kCd

Vi
`;s;r

��

D ˛
�
.1�aij�kCd/

`;s

�
�ı yP i

�.x�T`;s;k;t�1/

��
F
�
.1�aij�kCd/

`;s
�1

i

����������!
�aijY

rD2�aij�kCd

Vi
`;s;r

��
:
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It now remains only to apply the formula (81) to find

�
� ı yP i

�.x�T`;s;k;t�1/

��
F
�
.1�aij�kCd/

`;s
�1

i

����������!
�aijY

rD2�aij�kCd

Vi
`;s;r

��

D

�aijY
rD2�aij�kCd

�
˛
�
.r�1/

`;s
�1

�.1�`r /.1�sr�j`j1Ir /:
With this result, we now have all necessary tools in hand to write down the

polynomial Cij .c/ for Case 2.
Theorem 3.19 (Case 2). For any i 2 I nX such that �.i/ D i and any j 2 X , one
has

Fij .Bi ; Bj / D Cij .c/

D

�1�aijX
mD0

�1�aij�mX
m0D0

.1�aij�m�m
0/=2X

tD0

�
.i;j;aij /

m;m0;t Zt
iB

m
i BjB

m0

i Z
..1�aij�m�m

0/=2/� t

i

C

�1�aijX
mD0

.�1�aij�m/=2X
tD0

�
.i;j;aij /
m;t Zt

iWijKjZ
..�1�aij�m/=2/� t

i Bmi ; (109)

with �.i;j;aij /m;m0;t as obtained in Corollary 3.14 and

�
.i;j;aij /
m;t D .aij Cm/p c

.1�aij�m/=2

i

1�aijX
kD1

k�1X
dD0

mX
m0D0

X
`2L0

m;m0;k;d

X
s2S 0

m;m0;k;t;d

.�1/kC1
�
1 � aij
k

�
qi

q
�`;s;k;t;d;m0

i

.qi � q
�1
i /.1�aij�m/=2.qj � q

�1
j /

� Y
r2Rk;d

�
˛
�
.r�1/

`;s
��r;k

�.1�`r /.1�sr�j`j1Ir /�
� T`;s;k;t�1X
uDmax.0;�0/

q
aiju

i !N .0/;u C

T`;s;k;tX
uDmax.0;�1/

q
aiju

i !N .1/;u

�1�ıT`;s;k;t ;0

�
˛
�
.1�aij�kCd/

`;s

� q
aij
i

�
q
aij
i ˛N0 C N0;N0CN1

��ıT`;s;k;t ;0

;

where

!N .0/;u D ˛
�
.1�aij�kCd/

`;s

c
.T`;s;k;t�1/

u;N .0/

�
q
aij
i ˛N0�u C N0�u;jN j0IT`;s;k;t

�.T`;s;k;t�1/

�� u�1Y
rD0

˛N0�r

�
;
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!N .1/;u D � q
aij
i c

.T`;s;k;t /

u;N .1/�
q
aij
i ˛N0�u C N0�u;jN j0IT`;s;k;tC1

�T`;s;k;t

�� u�1Y
rD0

˛N0�r

�
;

�`;s;k;t;d;m0 D � 2

�aijX
rD1

�
.r�1/
`;s

�
`r C .1 � `r/.1 � sr�j`j1Ir /

�
� aij .N0 � jN j1IT`;s;k;tC1 �m

0
C d/C 2.k C t � d � 1/:

Here we have used the notations (64), (69), (89), (90), (92), (103)–(105), (107),
and (108).

Proof. This follows upon combining Corollary 3.9 and Propositions 3.15 and 3.18,
after expanding �`;s;k;d;t;m0 using (64) and observing that

jsj2�aij�k�j`j1I2�aij�k I1�aij�k�m
0Cd D jN j1IT`;s;k;tC1:

These expressions for the structure constants � .i;j;aij /m;t comply with the values
computed in [27], as displayed in Table 3. Moreover, Theorems 3.13 and 3.19 and
Corollary 3.14 make it possible to compute the structure constants for higher values
of jaij j. For example, it follows from Theorem 3.13 that for aij D �4 one has

Fij .Bi ; Bj / D �
.i;j;�4/
0;1 Z2

i BjBi C �
.i;j;�4/
1;0 Z2

i BiBj C �
.i;j;�4/
0;3 ZiBjB

3
i

C �
.i;j;�4/
3;0 ZiB

3
i Bj C �

.i;j;�4/
1;2 ZiBiBjB

2
i C �

.i;j;�4/
2;1 ZiB

2
i BjBi ;

if i; j 2 I nX are distinct such that �.i/ D i , where the structure constants �.i;j;�4/m;m0

are given in Table 4. Similarly, for aij D �3, i 2 I n X with �.i/ D i and j 2 X
one has

Fij .Bi ; Bj / D �
.i;j;�3/
0;0;0 BjZ2

i C �
.i;j;�3/
0;0;1 ZiBjZi C �

.i;j;�3/
0;0;2 Z2

i Bj

C �
.i;j;�3/
0;2;0 BjB

2
i Zi C �

.i;j;�3/
0;2;1 ZiBjB

2
i C �

.i;j;�3/
1;1;0 BiBjBiZi

C �
.i;j;�3/
1;1;1 ZiBiBjBi C �

.i;j;�3/
2;0;0 B2i BjZi C �

.i;j;�3/
2;0;1 ZiB

2
i Bj

C �
.i;j;�3/
0;0 WijKjZi C �

.i;j;�3/
0;1 ZiWijKj C �

.i;j;�3/
2;0 WijKjB

2
i ;

with �.i;j;�3/m;m0;t and �
.i;j;�3/
m;t as in Tables 5 and 6.

Theorems 3.13 and 3.19, together with the previously obtained Theorems C, D,
and F now yield a complete set of defining relations for the quantum symmetric pair
coideal subalgebras Bc;s.
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m m0

0

1

2

3

0 1 2 3

0

��
.i;j;�4/
0;1

0

��
.i;j;�4/
0;3

c2i q
2
i Œ2�

2
qi
Œ4�2
q2
i

0

��
.i;j;�4/
1;2

0

ciqi Œ2�
2
qi
Œ3�qi Œ5�qi

ciqi
�
Œ2�2qi C Œ4�

2
qi

�

Table 4. Structure constants �.i;j;aij /
m;m0

for aij D �4.

.m;m0/
t

.0; 0/

.0; 2/

.1; 1/

.2; 0/

0 1 2

�c2i q
6
i

Œ3�qi
.qi � q

�1
i /2

c2i q
2
i

Œ3�qi .q
2
i C q

�2
i /

.qi � q
�1
i /2

�c2i q
�2
i

Œ3�qi
.qi � q

�1
i /2

ciq
2
i

2C q2i Œ2�
2
qi

qi � q
�1
i

�ci
Œ3�qi .q

2
i C q

�2
i /

qi � q
�1
i

�ciq
2
i

Œ4�qi .q
2
i C 2/

qi � q
�1
i

ci
Œ4�qi .q

�2
i C 2/

qi � q
�1
i

ciq
2
i

Œ3�qi .q
2
i C q

�2
i /

qi � q
�1
i

�ci
2C q�2i Œ2�2qi
qi � q

�1
i

Table 5. Structure constants �.i;j;aij /
m;m0;t

for aij D �3.

m
t

0

0 1

2

�c2i q
2
i

Œ3�qi Œ4�qi
.qi � q

�1
i /.qj � q

�1
j /

ciq
�5
i Œ2�qi Œ3�

2
qi
Œ4�qi

.qi � q
�1
i /2

qj � q
�1
j

c2i q
�4
i

Œ3�qi Œ4�qi
.qi � q

�1
i /.qj � q

�1
j /

Table 6. Structure constants � .i;j;aij /m;t for aij D �3.
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4. Alternative expressions for Case 1

In this section, we will derive alternative expressions for the polynomial Cij .c/ in
Case 1. We will start from a result by Chen, Lu and Wang. In [11] these authors
provide defining relations of q-Serre type for what they call �-quantum groups, which
are in fact quasi-split quantum symmetric pair coideal subalgebras, coinciding with
the algebras Bc;s in the special case X D ;. These correspond to Satake diagrams
without black nodes. Since Zi D �1 in this situation, the polynomial Cij .c/ will be
given by

Fij .Bi ; Bj / D Cij .c/

D

�1�aijX
mD0

�1�aij�mX
m0D0

.�1/.1�aij�m�m
0/=2�

.i;j;aij /

m;m0 Bmi BjB
m0

i ; (110)

if �.i/ D i , as follows from Corollary 3.5, and where the structure constants �.i;j;aij /m;m0

were obtained in Theorem 3.13. In this section we will derive equivalent expressions
for �.i;j;aij /m;m0 , based on the results of [11]. These expressions will also be valid beyond
the quasi-split case. Indeed, our result (51) shows that �.i;j;aij /m;m0 is independent
of X and can be obtained solely from the Uq.g0/-relations (18)–(20). Hence, the
expressions for �.i;j;aij /m;m0 wewill derive in this sectionwill be valid not only forX D ;,
but for any admissible pair .X; �/ provided we restrict to Case 1, i.e. �.i/ D i 2 I nX
and j 2 I nX distinct from i .
Before we can state the result from [11], we need to introduce the following

notation.

Definition 4.1 ([11, Formulae (3.2)–(3.3)]). For any i 2 I and m 2 N one defines
the �-divided powers of Bi as the elements

B
.m/
i;0 D

B
mp
i

Œm�qi Š

meY
kD1

�
B2i C qici Œ2.k � 1Cmp/�

2
qi

�
; (111)

B
.m/
i;1 D

B
mp
i

Œm�qi Š

meY
kD1

�
B2i C qici Œ2k � 1�

2
qi

�
; (112)

where we have again used the notation (49).

Using Lusztig’s theory of modified quantum groups [34, Section 23.1] and a class
of intricate q-binomial identities, Chen, Lu, and Wang were able to prove a result,
which, translated to our notations, can be formulated as follows.

Theorem K ([11, Theorem 3.1]). Consider the quantum symmetric pair coideal
algebra Bc;s corresponding to an admissible pair .X D ;; �/. For any i 2 I
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satisfying �.i/ D i and any j 2 I distinct from i , the �-divided powers satisfy the
relations

1�aijX
mD0

.�1/mB
.m/

i;.aij /p
BjB

.1�aij�m/

i;0 D 0 (113)

and
1�aijX
mD0

.�1/mB
.m/

i;1�.aij /p
BjB

.1�aij�m/

i;1 D 0: (114)

Remark 2. It was suggested in [11, Remark 3.4] that these relations should remain
valid for X ¤ ; under the restriction that �.i/ D wX .i/ D i .
The relations (113) and (114) can be rewritten in the form Fij .Bi ; Bj / D Cij .c/,

where Cij .c/ is an explicit polynomial in
P
J2Ji;j

K.q/BJ . The computation of this
polynomial will be the subject of the following subsection.

4.1. Quantum Serre relations from �-divided powers. In the present section, we
will rewrite the relations (113) and (114) as inhomogeneous quantum Serre relations,
so as to derive two new expressions for the structure constants �.i;j;aij /m;m0 for Case 1.
Let us start by introducing the following notation.
Definition 4.2. Let k 2 N, N 2 N [ f�1g, s 2 f0; 1g and i 2 I . We will denote
by ˛.s;i/

k;N
the following elements of K.q/:

˛
.s;i/

k;N
D

˚
NP

`1;`2;:::;`kD1�s
`1<`2<���<`k

Œ2`1 C s�
2
qi
Œ2`2 C s�

2
qi
: : : Œ2`k C s�

2
qi
for 1 � k � N C s

1 for k D 0;
0 otherwise:

These ˛.s;i/
k;N

arise as coefficients when expanding the �-divided powers from
Definition 4.1 as polynomials in Bi .
Lemma 4.3. For any i 2 I , s 2 f0; 1g and r 2 N, one can write

B
.r/
i;s D

1

Œr�qi Š

reX
kD0

.qici /
k˛

.s;i/

k;reCrp.1�s/�1
Br�2ki :

Proof. Expanding (112) distributively, it is clear that

B
.r/
i;1 D

„
1

Œr�qi Š

r=2P
kD0

.qici /
k˛

.1;i/

k;.r=2/�1
Br�2ki for r even;

1

Œr�qi Š

.r�1/=2P
kD0

.qici /
k˛

.1;i/

k;..r�1/=2/�1
Br�2ki for r odd;
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in agreement with the proposed formula. Similarly, for r odd one has

B
.r/
i;0 D

1

Œr�qi Š

.r�1/=2X
kD0

.qici /
k˛

.0;i/

k;.r�1/=2
Br�2ki ;

whereas for r even, we have

B
.r/
i;0 D

1

Œr�qi Š

r
2X

kD0

.qici /
k
.i/

k;r
Br�2ki ;

where


.i/

k;r
D

.r=2/�1X
`1;`2;:::;`kD0
`1<���<`k

Œ2`1�
2
qi
Œ2`2�

2
qi
: : : Œ2`k�

2
qi
:

But of course, since Œ0�qi D 0, we have that


.i/

k;r
D

.r=2/�1X
`1;`2;:::;`kD1
`1<���<`k

Œ2`1�
2
qi
Œ2`2�

2
qi
: : : Œ2`k�

2
qi
D ˛

.0;i/

k;.r=2/�1
;

which again agrees with the statement of the lemma.

In the upcoming proofs, wewill often be required to switch the order of summation
in a particular kind of nested sums. Below, we propose a general strategy for this
resummation.
Lemma 4.4. Let f be any function of three discrete variables k; ` andm, and let N
be any natural number, then one has

NX
mD0

mX
kD0

N�mX
`D0

f .k; `;m/ D

NX
kD0

N�kX
`D0

X̀
mD0

f .m; ` �m;mC k/:

Proof. We will derive this identity in several steps, which are explained below:

NX
mD0

mX
kD0

N�mX
`D0

f .k; `;m/
.1/
D

NX
mD0

mX
kD0

N�mX
`D0

f .m � k;N �m � `;m/

.2/
D

NX
kD0

NX
mDk

N�mX
`D0

f .m � k;N �m � `;m/

.3/
D

NX
kD0

N�kX
mD0

mX
`D0

f .N �m � k;m � `;N �m/
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.4/
D

NX
kD0

N�kX
`D0

N�kX
mD`

f .N �m � k;m � `;N �m/

.5/
D

NX
kD0

N�kX
`D0

X̀
mD0

f .m; ` �m;mC k/:

(1) Replace k by the new summation index k0 D m�k, replace ` by `0 D N �m�`
and rename k0 ! k, `0 ! `.

(2) Switch the summation order of the sums over m and k.

(3) Replacem by the new summation indexm0 D N �m and then renamem0 ! m.

(4) Switch the summation order of the sums over m and `.

(5) Replace ` by the new summation index `0 D N � k � `, replace m by m0 D
N �m � k and rename `0 ! `, m0 ! m.

We will now rewrite the results of Theorem K using Lemma 4.3.
Proposition 4.5. Let � 2 Aut.A;;/ be such that .X D ;; �/ is a quasi-split
admissible pair, let Bc;s be the corresponding quantum symmetric pair coideal
subalgebra and let i; j 2 I be such that �.i/ D i and j ¤ i . Then the
relations (113)–(114) can equivalently be expressed as

Fij .Bi ; Bj / D

�1�aijX
mD0

�1�aij�mX
m0D0

.aij CmCm
0/p.�1/

aijCm

.qici /
.1�aij�m�m

0/=2‚
.0;i;aij /

m;m0 Bmi BjB
m0

i ; (115)

where

‚
.0;i;aij /

m;m0 D

.1�aij�m�m
0/=2X

rD0

�
1 � aij
mC 2r

�
qi

˛
.0;i/
r;rCmeCmp�1

˛
..aij /p ;i/

..1�aij�m�m
0/=2/�r;�.aij /e�.aij /p�r�me�mp

; (116)

with ˛.s;i/
k;N

as in Definition 4.2.

Proof. Let us consider the case where aij is even. We will start by splitting the sum
over m in (113) into a sum over m even and one over m odd:

�.aij =2/X
mD0

B
.2m/
i;0 BjB

.1�aij�2m/

i;0 �

�.aij =2/X
mD0

B
.2mC1/
i;0 BjB

.�aij�2m/

i;0 D 0:
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Substituting the expressions for B.r/i;0 obtained in Lemma 4.3, we find

�.aij =2/X
mD0

mX
kD0

�.aij =2/�mX
`D0

.qici /
kC`

Œ2m�qi ŠŒ1 � aij � 2m�qi Š

˛
.0;i/

k;m�1
˛
.0;i/

`;�.aij =2/�m
B2m�2ki BjB

1�aij�2m�2`

i

�

�.aij =2/X
mD0

mX
kD0

�.aij =2/�mX
`D0

.qici /
kC`

Œ2mC 1�qi ŠŒ�aij � 2m�qi Š

˛
.0;i/

k;m
˛
.0;i/

`;�.aij =2/�m�1
B2m�2kC1i BjB

�aij�2m�2`

i D 0:

Multiplying both sides with Œ1 � aij �qi Š and applying Lemma 4.4, this becomes

�.aij =2/X
kD0

�.aij =2/�kX
`D0

.qici /
`

� X̀
mD0

�
1 � aij
2mC 2k

�
qi

˛
.0;i/

m;mCk�1
˛
.0;i/

`�m;�.aij =2/�m�k

�
B2ki BjB

1�aij�2k�2`

i

�

�.aij =2/X
kD0

�.aij =2/�kX
`D0

.qici /
`

� X̀
mD0

�
1 � aij

2mC 2k C 1

�
qi

˛
.0;i/

m;mCk
˛
.0;i/

`�m;�.aij =2/�m�k�1

�
B2kC1i BjB

�aij�2k�2`

i D 0:

Referring to the notation (116), we may write the terms between brackets above as

‚
.0;i;aij /

2k;1�aij�2k�2`
and ‚

.0;i;aij /

2kC1;�aij�2k�2`
;

respectively. Replacing then 2k bym in the first sum and 2kC 1 bym in the second,
this becomes

1�aijX
mD0
m even

.1�aij�m/eX
`D0

.qici /
`‚

.0;i;aij /

m;1�aij�m�2`
Bmi BjB

1�aij�m�2`

i

�

1�aijX
mD0
m odd

.1�aij�m/eX
`D0

.qici /
`‚

.0;i;aij /

m;1�aij�m�2`
Bmi BjB

1�aij�m�2`

i

D

1�aijX
mD0

.1�aij�m/eX
`D0

.�1/m.qici /
`‚

.0;i;aij /

m;1�aij�m�2`
Bmi BjB

1�aij�m�2`

i D 0: (117)
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Now observe that the term corresponding to ` D 0 can be written as

1�aijX
mD0

.�1/m‚
.0;i;aij /

m;1�aij�m
Bmi BjB

1�aij�m

i

D .�1/1Caij
1�aijX
mD0

.�1/m
�
1 � aij
m

�
qi

B
1�aij�m

i BjB
m
i

D .�1/1CaijFij .Bi ; Bj /;

where we have replaced m by the new summation index m0 D 1 � aij � m for the
first equality, which we have thereafter renamed tom again, and where we have used
the fact that

‚
.0;i;aij /

1�aij�m;m
D

�
1 � aij
m

�
qi

by (16). Consequently, when separating the term corresponding to ` D 0 in (117),
we obtain

Fij .Bi ; Bj / D .�1/
aij

1�aijX
mD0

.1�aij�m/eX
`D1

.�1/m.qici /
`

‚
.0;i;aij /

m;1�aij�m�2`
Bmi BjB

1�aij�m�2`

i :

Now observe that whenm equals �aij or 1�aij , the range of the second summation
index ` is empty. Hence, the sum over m runs in fact from 0 to �1 � aij . Moreover,
we may replace ` by the new summation index m0 D 1 � aij �m � 2`, which runs
over f0; 2; : : : ;�1�aij �mg if 1�aij �m is even and over f1; 3; : : : ;�1�aij �mg
if 1 � aij � m is odd, hence over f0; 1; : : : ;�1 � aij � mg after multiplying the
summand with .aij CmCm0/p . This leads us to

Fij .Bi ; Bj / D

�1�aijX
mD0

�1�aij�mX
m0D0

.aij CmCm
0/p.�1/

aijCm.qici /
.1�aij�m�m

0/=2

‚
.0;i;aij /

m;m0 Bmi BjB
m0

i ;

as was to be proven. The statement for aij odd follows analogously, starting from the
relation (114).

In a similar fashion, one can combine the relation (113) for aij odd with the
relation (114) for aij even. This gives rise to the following expressions.

Proposition 4.6. Let � 2 Aut.A;;/ be such that .X D ;; �/ is a quasi-split
admissible pair, let Bc;s be the corresponding quantum symmetric pair coideal
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subalgebra and let i; j 2 I be such that �.i/ D i and j ¤ i . The relations (113)–
(114) can equivalently be expressed as

Fij .Bi ; Bj / D

�1�aijX
mD0

�1�aij�mX
m0D0

.aij CmCm
0/p.�1/

aijCm.qici /
.1�aij�m�m

0/=2

‚
.1;i;aij /

m;m0 Bmi BjB
m0

i ; (118)

where

‚
.1;i;aij /

m;m0 D

.1�aij�m�m
0/=2X

rD0

�
1 � aij
mC 2r

�
qi

˛
.1;i/
r;rCme�1

˛
.1�.aij /p ;i/

..1�aij�m�m
0/=2/�r;�.aij /e�r�me�1

:

(119)

Comparing the relations (115) and (118) with (110), we obtain alternative
expressions for the structure constants �.i;j;aij /m;m0 . As explained in the introduction of
Section 4, these will not only be valid for the quasi-split case, but for any admissible
pair, provided we restrict to Case 1. Hence, from now on we may assume .X; �/ to
be an arbitrary admissible pair and consider the corresponding quantum symmetric
pair coideal subalgebra Bc;s. The relations (115) and (118) then allow us to prove the
following.

Theorem 4.7. For any distinct i; j 2 I nX such that �.i/ D i , one has

Fij .Bi ; Bj / D Cij .c/ D
�1�aijX
mD0

�1�aij�mX
m0D0

�
.i;j;aij /

m;m0 Z
.1�aij�m�m

0/=2

i Bmi BjB
m0

i ;

(120)
where the structure constants are given by

�
.i;j;aij /

m;m0 D .aij CmCm
0/p.�1/

aijCm.�qici /
.1�aij�m�m

0/=2‚
.s;i;aij /

m;m0 (121)

with s 2 f0; 1g and where we have used the notations (116) and (119).

Proof. Wewill use the same strategy as in the proof of [27, Proposition 6.1]. Assume
first that X D ;. If we write

!
.i;j;aij /

m;m0 D .aij CmCm
0/p.�1/

aijCm.qici /
.1�aij�m�m

0/=2‚
.s;i;aij /

m;m0 ;

with s 2 f0; 1g, then comparison of (115) and (118) with (110) yields

�1�aijX
mD0

�1�aij�mX
m0D0

�
.�1/.1�aij�m�m

0/=2�
.i;j;aij /

m;m0 �!
.i;j;aij /

m;m0

�
Bmi BjB

m0

i D 0: (122)
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Separating the term Fi in each

Bi D Fi C ci�q.FiKi /K
�1
i C siK

�1
i D Fi � ciE�.i/K

�1
i C siK

�1
i

and the Fj in Bj , the relation (122) asserts Fi;j CDi;j D 0, where

Fi;j D

�1�aijX
mD0

�1�aij�mX
m0D0

�
.�1/.1�aij�m�m

0/=2�
.i;j;aij /

m;m0 � !
.i;j;aij /

m;m0

�
Fmi FjF

m0

i

and Di;j lies in the set Ei;j of K.q/-linear combinations of monomials in Uq.g0/
containing at most�1�aij factorsFi , and either one factorK�1j , or one factorFj and
at least one factorK�1i . Since theUq.g

0/-relations (18)–(20) imply Ei;j \U
� D f0g,

both Di;j and Fi;j must vanish. The assertion Fi;j D 0 is a polynomial equation
of degree 1 in Fj and at most of degree �1 � aij in Fi . But such a polynomial
must have trivial coefficients, since the lowest degreeK.q/-linear combination of Fj
and powers of Fi with non-trivial coefficients that vanishes, is precisely the quantum
Serre polynomial Fij .Fi ; Fj /, which is of degree 1 � aij in Fi . Hence, we find

.�1/.1�aij�m�m
0/=2�

.i;j;aij /

m;m0 D !
.i;j;aij /

m;m0 ;

for any m;m0 with mCm0 � �1 � aij . This holds for the special case X D ;, and
since �.i;j;aij /m;m0 is independent of X as follows from Theorem 3.13, this establishes
the same relation for admissible pairs with X ¤ ;.

Remark 3. It follows from Propositions 4.5 and 4.6 that ‚.0;i;aij /m;m0 D ‚
.1;i;aij /

m;m0 for
anym;m0 2 N withmCm0 � �1�aij and any distinct i; j 2 I nX with �.i/ D i .
Hence, the expressions (116) and (119) must be equal, which determines a non-trivial
identity of q-binomial type.
Recall from [2, Section 3.3] that the algebrasBc;s allow an intrinsic bar involution

under certain conditions on the generalized Cartan matrix and the admissible pair.
More precisely, this was expressed as follows.
Theorem L ([2, Theorem 3.11]). LetA D .aij /i;j2I be a generalized Cartan matrix
and .X; �/ be an admissible pair satisfying the following conditions:
(i) If i 2 I nX , �.i/ D i and j 2 X , then aij 2 f0;�1;�2g.
(ii) If i 2 I nX , �.i/ D i and i ¤ j 2 I nX , then aij 2 f0;�1;�2;�3g.
The following statements are equivalent:
(1) There exists a K-algebra automorphism x of Bc;s, which restricts to the bar

involution of Uq.g/ on MXU
0
‚

0 and satisfies xBi D Bi for all i 2 I nX .
(2) Let i 2 I nX be such that �.i/ ¤ i or aij ¤ 0 for at least one j 2 I n fig, and

let us denote by x the bar involution on Uq.g/. Then c 2 .K.q/�/InX is such
that

ciZi D q
ai;�.i/
i c�.i/Z�.i/:
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The main advantage of the expressions (121) for the structure constants �.i;j;aij /m;m0

is that they allow to drop condition (ii) in Theorem L.
Corollary 4.8. Theorem L still holds if the condition (ii) is not satisfied.

Proof. Let i 2 I n X be such that �.i/ D i , let j 2 I n X be different from i , and
let aij 2 Z� be arbitrary. By the proof of [2, Theorem 3.11], it suffices to show that
the right-hand side of the relation (120) is preserved under the bar involution if and
only if (2) holds. Since xq D q�1, hence

‚
.s;i;aij /

m;m0 D ‚
.s;i;aij /

m;m0

for s 2 f0; 1g. It follows immediately from (121) that

�
.i;j;aij /

m;m0 Z
.1�aij�m�m

0/=2

i D q
�.1�aij�m�m

0/

i �
.i;j;aij /

m;m0

�ciZi

ci

�.1�aij�m�m0/=2
;

which is equal to �.i;j;aij /m;m0 Z
.1�aij�m�m

0/=2

i if and only if ciZi D q
2
i ciZi .

Consequently, the condition (ii) can also be removed from the list of assumptions
needed to develop the theory of universal K-matrices in [3, Section 5.4].
To conclude, we will show that the structure constants �.i;j;aij /m;m0 exhibit certain

symmetry properties, as suggested by the values in Table 1. In practical calculations,
this significantly reduces the number of couples .m;m0/ for which the structure
constants must be computed.

Proposition 4.9. The structure constants �.i;j;aij /m;m0 are symmetric in m and m0 if aij
is odd and antisymmetric if aij is even. In other words:

�
.i;j;aij /

m;m0 D .�1/1�aij �
.i;j;aij /

m0;m :

Proof. We will treat the case aij odd, which is the most subtle case in some sense.
The statement is trivial formCm0 odd, since in this case �.i;j;aij /m;m0 will vanish, because
of the factor .aij CmCm0/p in (121). So we may assume mCm0 to be even. Let
us start by observing that �.i;j;aij /m0;m yields

.�1/aijCm
0

.�qici /
.1�aij�m�m

0/=2

.1�aij�m�m
0/=2X

rD0

�
1 � aij
m0 C 2r

�
qi

˛
.0;i/

r;rCm0eCm
0
p�1

˛
.1;i/

..1�aij�m�m
0/=2/�r;..�aij�1/=2/�r�m

0
e�m

0
p

by (121) with s D 0. Since mC m0 is even, we have .�1/m0 D .�1/m. Moreover,
we can rewrite the sum above using a new summation index

r 0 D
1 � aij �m �m

0

2
� r;
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which we thereafter rename to r again. This way, �.i;j;aij /m0;m becomes

.�1/aijCm.�qici /
.1�aij�m�m

0/=2

.1�aij�m�m
0/=2X

rD0

�
1 � aij
mC 2r

�
qi

˛
.0;i/

..1�aij�m�m
0/=2/�r;..1�aij�m�m

0/=2/�rCm0eCm
0
p�1

˛
.1;i/

r;rC..mCm0/=2/�1�m0e�m
0
p
;

where we have used the property (16) of the qi -binomial symbol. Next, since m0
and m have the same parity, we find

m0e Cm
0
p D

‚
m0

2
if m is even;

m0 C 1

2
if m is odd

ƒ

D
m0 Cmp

2
;

and so
1 � aij �m �m

0

2
� r Cm0e Cm

0
p D

1 � aij

2
� r �

�
m �mp

2

�
D
1 � aij

2
� r �me D �.aij /e � r �me:

Thus, we obtain

�
.i;j;aij /

m0;m D .�1/aijCm.�qici /
.1�aij�m�m

0/=2

.1�aij�m�m
0/=2X

rD0

�
1 � aij
mC 2r

�
qi

˛
.0;i/

..1�aij�m�m
0/=2/�r;�.aij /e�r�me�1

˛
.1;i/
r;rCme�1

;

which precisely equals �.i;j;aij /m;m0 according to (121) with s D 1. This proves the
symmetry.
For aij even, the proof goes along the same lines, starting from (121) with either

s D 0 or s D 1.

4.2. Generalized q-Onsager algebras and their classical counterparts. A special
class of quantum symmetric pair coideal subalgebras is known under the name
generalized q-Onsager algebras. They coincide with the algebras Bc;s in the split
case, i.e. for the trivial admissible pair .X D ;; � D id/, corresponding to Satake
diagrams without black nodes and with the trivial diagram involution. In this case
we have �q.FiKi / D �Ei by Lemma E and, moreover, Q‚ D f0g since wX D id.
Hence, we may formulate the following definition.
Definition 4.10. The generalized q-Onsager algebra Oq.g/ associated to the Kac–
Moody algebra g is the subalgebra of Uq.g0/ generated by the elements

Bi D Fi � ciEiK
�1
i C siK

�1
i ; (123)
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with i 2 I , and where .c; s/ takes values in the set C � S defined in (25) and (26).
By Theorem C, Corollary 3.5 and the fact that in this case Zi D �1, it is abstractly
defined by the relations

Fij .Bi ; Bj / D

�1�aijX
mD0

�1�aij�mX
m0D0

.�1/.1�aij�m�m
0/=2�

.i;j;aij /

m;m0 Bmi BjB
m0

i ; (124)

for i ¤ j 2 I , with �.i;j;aij /m;m0 as obtained in (83) or equivalently in (121).

In the special case g D csl2, this algebra coincides with the q-Onsager algebra [5],
which is typically described as generated by two elements B0 and B1 subject to the
q-Dolan–Grady relations

ŒB0; ŒB0; ŒB0; B1�q�q�1 � D �c0q.q C q
�1/2ŒB0; B1�;

ŒB1; ŒB1; ŒB1; B0�q�q�1 � D �c1q.q C q
�1/2ŒB1; B0�;

(125)

for certain c0; c1 2 K.q/, where Œ�; ��q denotes the q-commutator, defined by

ŒA; B�q D qAB � q
�1BA:

Its generalization Oq.g/ to other Kac–Moody algebras g was introduced in [6],
where defining relations were presented for the cases aij 2 f0;�1;�2;�3;�4g
under some additional restrictions on aj i . The expressions (124) we have derived in
this paper extend those relations to arbitrary Cartan matrices. By Remark 1, we may
equivalently write them as
�
������!
�.aij =2/Y
mD.aij =2/

adqm
i
.Bi /

�

.Bj /

D

�1�aijX
mD0

�1�aij�mX
m0D0

.�1/.1�aij�m�m
0/=2�

.i;j;aij /

m;m0 Bmi BjB
m0

i ; (126)

which, by the presence of nested q-commutators, can be considered relations of
q-Dolan–Grady type.
To conclude, wewill consider the limit of the generalizedq-Onsager algebraOq.g/

under the specialization q ! 1 described in Remark 1, which is precisely the algebra
b D b.X; �/ from Definition 2.3 in the special case X D ; and � D id. It
follows immediately that in this case Ad.s.X; �// D Ad.mX / D id, and hence the
automorphism �.X; �/ coincides with the classical Chevalley involution ! defined
in (11). Moreover, Definition 2.3 asserts that we may state the following.
Definition 4.11. The (classical) generalized Onsager algebra is the Lie subalge-
bra O.g/ of the Kac–Moody algebra g generated by the elements

bi D fi C !.fi / D fi � ei ;
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with i 2 I . By [42, Lemma 2.2], O.g/ is the fixed point Lie subalgebra of g under
the Chevalley involution !.

The algebras O.g/ were studied by Stokman in [42], where a complete set of
defining relations of inhomogeneous Serre type or Dolan–Grady type was given. To
describe these relations, we will need the following recursively defined coefficients.

Definition 4.12. Let i; j be distinct elements of I and r 2 N arbitrary. For any s 2 N
satisfying s � r we define cijs Œr� through the recursion relation

cijs Œr� D c
ij
s�1Œr � 1�C .r � 1/c

ij
s Œr � 2�; (127)

for r � 2, with the convention that cij�1Œr� D 0 for any r , andwith boundary conditions
c
ij
r Œr� D 1 for r � 0 and cijr�1Œr� D 0 for r � 1.

The relation (127) coincides with [42, Formula (2.4)] upon setting r D 1 � aij ,
as we will do in the following theorem.

Theorem M ([42, Proposition 2.4, Theorem 2.7]). The algebra O.g/ is abstractly
defined by the inhomogeneous Serre relations

1�aijX
sD0

.�1/sC1cijs Œ1 � aij �.ad bi /
sbj D 0; (128)

for any distinct i; j 2 I .

Note that the relations (128) differ from those given in [42] by a factor .�1/sC1.
This is caused by the fact that the generators used in [42] differ from ours by a sign
as well, but of course this does not alter the algebra under consideration.
It follows from Theorem B that the generators Bi of the generalized q-Onsager

algebra Oq.g/ reduce to the generators bi of O.g/ under the specialization q ! 1,
provided the parameters c 2 C are specializable and s D 0. Consequently, the
same holds true for the defining relations of the q-deformed and classical Onsager
algebras. It will hence be possible to derive closed expressions for the recursively
defined coefficients cijs Œ1�aij � in (128) from the previously obtained equation (126).
We begin with a straightforward identity.

Lemma 4.13. For any A;B 2 U.g/ and r 2 N, one has

.adA/r.B/ D
rX
kD0

.�1/k

 
r

k

!
Ar�kBAk :

Proof. This follows immediately from the equation (21) in the limit q ! 1.

This identity allows us to expand the nested commutators in the relation (128).
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Lemma 4.14. The inhomogeneous Serre relations (128) defining the algebra O.g/
can be rewritten as

.ad bi /1�aij bj D
�1�aijX
mD0

�1�aij�mX
m0D0

.�1/aijCm

 
mCm0

m0

!
c
ij
mCm0 Œ1 � aij � b

m
i bj b

m0

i :

(129)

Proof. It follows immediately from Lemma 4.13 and the fact that cij1�aij Œ1�aij � D 1
and cij�aij Œ1 � aij � D 0 that the relations (128) can be rewritten as

.ad bi /1�aij bj D .�1/aij
�1�aijX
sD0

.�1/scijs Œ1 � aij �.ad bi /
sbj

D

�1�aijX
sD0

sX
m0D0

.�1/aijCsCm
0

 
s

m0

!
cijs Œ1 � aij � b

s�m0

i bj b
m0

i :

The claim now follows upon changing the order of summation, replacing s by the
new summation index m D s �m0 and observing that˚
.m;m0/ W m 2 f0; : : : ;�1 � aij g; m

0
2 f0; : : : ;�1 � aij �mg

	
D
˚
.m;m0/ W m 2 f0; : : : ;�1 � aij �m

0
g; m0 2 f0; : : : ;�1 � aij g

	
:

An alternative set of defining relations for the generalized Onsager algebrasO.g/
can be found by taking the limit q ! 1 of the Oq.g/-relations (124). Comparison
of both types of relations leads to closed expressions for the recursively defined
coefficients cijs Œr�.
Theorem 4.15. For any distinct i; j 2 I and any r; s 2 N with s � r we have

cijs Œr� D .r�sC1/p

reCrp�1X
`1;:::;`.r�s/=2Drp
`1<���<`.r�s/=2

.2`1C1�rp/
2.2`2C1�rp/

2 : : : .2`.r�s/=2C1�rp/
2;

(130)

or, equivalently,

cijs Œr� D .r � s C 1/p

.r�s/=2X
mD0

� 
r

2m

!� mY
kD0

.2k � 1/2
�

re�m�1X
`1;:::;`..r�s/=2/�mD1�rp
`1<���<`..r�s/=2/�m

.2`1 C rp/
2 : : : .2`..r�s/=2/�m C rp/

2

�
; (131)
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where the sum in (130) and (131) should be read as 1 if s D r , respectively,
if m D .r � s/=2, and where we have used the notation (49).

Proof. By the above observations, in the limit q ! 1 the relation (126) becomes

.ad bi /1�aij bj D
�1�aijX
mD0

�1�aij�mX
m0D0

h
lim
q!1

�
.�1/.1�aij�m�m

0/=2�
.i;j;aij /

m;m0

�i
bmi bj b

m0

i :

Upon comparison with (129), and following the same reasoning as in the proof
of [27, Proposition 6.1], it follows that

.�1/aijCm

 
mCm0

m0

!
c
ij
mCm0 Œ1 � aij � D limq!1

�
.�1/.1�aij�m�m

0/=2�
.i;j;aij /

m;m0

�
;

for any m;m0 2 N with m C m0 � �1 � aij . For m D 0, upon using the
expression (121) with s D 0, this becomes

.�1/aij c
ij
m0 Œ1 � aij �

D .aij Cm
0/p lim

q!1

�
.�1/aij .qici /

.1�aij�m
0/=2˛

..aij /p ;i/

.1�aij�m
0/=2;�.aij /e�.aij /p

�
;

by (116), where we have used the fact that ˛.0;i/r;r�1 D ır;0. The expression (130) now
follows upon setting r D 1 � aij , renaming m0 to s and using Definition 4.2 and
the assumption of specializability of c. Equation (131) follows similarly from (121)
with s D 1.
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