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Abstract. Classical symmetric pairs consist of a symmetrizable Kac—Moody algebra g, together
with its subalgebra of fixed points under an involutive automorphism of the second kind.
Quantum group analogs of this construction, known as quantum symmetric pairs, replace
the fixed point Lie subalgebras by one-sided coideal subalgebras of the quantized enveloping
algebra U, (g). We provide a complete presentation by generators and relations for these quantum
symmetric pair coideal subalgebras. These relations are of inhomogeneous g-Serre type and are
valid without restrictions on the generalized Cartan matrix. We draw special attention to the
split case, where the quantum symmetric pair coideal subalgebras are generalized g-Onsager
algebras.
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1. Introduction

A classical symmetric pair consists of a Lie algebra g together with its subalgebra € of
fixed points under a Lie algebra involution 8. Quantum analogs of this construction,
known as quantum symmetric pairs, have emerged in the beginning of the 1990s. They
replace g by its quantized universal enveloping algebra U, (g) and £ by a one-sided
coideal subalgebra B of U, (g), which is called a quantum symmetric pair (QSP)
coideal subalgebra. The algebras B, ¢ were first constructed by Noumi, Sugitani and
Dijkhuizen [35-37] using methods of quantum integrability. A different approach,
based on the Drinfeld—Jimbo presentation of U,(g), was pursued by Letzter. She
developed a comprehensive theory of quantum symmetric pairs for semisimple Lie
algebras g in an elaborate series of papers [29-31]. This has allowed to identify the
zonal spherical functions on quantum symmetric spaces as Macdonald—Koornwinder
polynomials [32]. This whole theory was later extended to symmetrizable Kac—
Moody algebras g by Kolb in [27], which treats the structure theory of the Kac—Moody
QSP coideal subalgebras B, s in great detail.

Over the years, it has become increasingly apparent that quantum symmetric pairs
play a crucial role in quantum integrability, notably of the reflection equation [12,41].
The latter replaces the quantum Yang—Baxter equation when reflecting boundary
conditions are imposed. Such boundaries break the quantum symmetry down to
a coideal subalgebra of the quantum algebra which encodes the symmetries in the
bulk of a quantum spin chain [18]. A universal solution for the reflection equation
arises from the QSP coideal subalgebras B, s by means of a universal K-matrix, the
analog of the universal R-matrix for U, (g). The concept of a universal K-matrix has
been introduced in [4] for g of type A»,+1 and was extended to general Kac—Moody
algebras g in [3]. Both references aim to develop the theory of universal K-matrices in
parallel to Lusztig’s theory of universal R-matrices. More precisely, it was observed
in [4] and [20] for specific types of QSP that B¢ ¢ allows an intrinsic bar involution.
The existence of such a bar involution in greater generality was established in [2].
Moreover, the universal K-matrix can be factorized in terms of a quasi K-matrix,
which intertwines between the intrinsic bar involution and Lusztig’s bar involution
on Uy(g) [3,4].

In this paper we will adopt the notational conventions of [27]. We will write
g = g(A) for the Kac—-Moody algebra associated to a symmetrizable generalized
Cartan matrix A of dimension n. We take [ to be the set {0, ...,n — 1}, such that we
can write A = (a;;)i,jer. We will use Kolb’s definition of admissible pairs (X, 7), as
will be repeated later in Definition 2.1, to parametrize the involutive automorphisms
of g of the second kind. To each such admissible pair one can associate a quantum
symmetric pair and hence a coideal subalgebra B s of U, (g), which also depends on
a multiparameter (c, s).

The QSP coideal subalgebras B¢ can be presented in terms of generators and
relations. The set of generators depends on the choice of admissible pair, but always
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contains certain elements B;, withi € . A set of defining relations which describe
these algebras abstractly in terms of their generators was given in [27, Theorem 7.1]
and will be repeated in the upcoming Theorem C. One of these relations states that

1—a;;

> " [1 _m""f} B, “/""B;B!" ¢))
m=0 qi

can be written as a lower-degree polynomial in B; and B; which depends on the
entry a;; of A. However, Kolb’s theorem does not provide a precise form for this
polynomial, which he denotes by C;j(c). In the quasi-split case, corresponding
to admissible pairs with X = @, expressions for C;j;(c) were obtained by Chen,
Lu and Wang in [11] using g-binomial identities. Apart from this special case,
expressions for C;j(c) were only known for a few possible values of a;;, namely
ajj €{0,—1,-2,-3}. These have been obtained in [27] and [2] by explicit
calculations, which follow similar results in [31] for finite-dimensional g. It was
suggested by Kolb that the same rationale could lead to expressions for C;; (c) valid
for all a;;, but this has not been made explicit before. This paper provides for the first
time closed expressions for the polynomials C;; (c) valid beyond the quasi-split case,
without restrictions on the Cartan matrix or the admissible pair. It thereby completes
the presentation of the quantum symmetric pair coideal subalgebras by generators
and relations.

Such a presentation is highly desirable in view of the representation theory of the
algebras B.s. This was already indicated in [2], where the definition of a new bar
involution for quantum symmetric pairs was validated by showing that it respects the
defining relations of B . By the absence of such relations beyond the case |a;;| < 3,
this could only be done for a limited class of Cartan matrices and admissible pairs.
Our results allow to remove part of these restrictions, as we show in Corollary 4.8.

Our approach will be as follows. We will rewrite (1) as a complicated expression
in U, (g)®2, where one of the tensor components is acted upon with a projection
operator. This leads to the upcoming expressions (39) and (42), which were
essentially already contained in [27]. The main novelty of our approach lies in
how we expand these expressions further. We will distinguish two cases, based
on the behavior of i and j with respect to the admissible pair, each leading to a
different expression for C;;(c). In Propositions 3.3 and 3.7 we will perform a binary
distributive expansion to rewrite (1) as a polynomial which, in the first of these two
cases, is of the form

> pmawZy T 2 g B @)
m,m’
whereas in the second case one finds
mom'.t ¢ (—1=a;;—m)/2)~t pm
—I—ZUm,tziwinjzi B,’ s (3)

m,t
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where the elements Z;, W;; and K; are well-defined in terms of the generators
and where all sums are finite. The major difficulty lies in the determination of the
coeflicients p, m’, Pm,m’,¢» and oy, ;, which we will refer to as the structure constants
of the algebra B . Initially, we will describe these in terms of monomials in Uy (g)
acted upon with a projection operator. Closed expressions for the actions of these
projection operators and hence for the structure constants are consequently derived
in Theorems 3.13 and 3.19. It may not surprise that the formulae we obtain there turn
out to be rather computationally extensive. Indeed, even the expressions obtained
in [27] and [2] for small values of a;;, as displayed in the upcoming Tables 1, 2 and 3,
were already quite intricate. Nevertheless, our formulae contain nothing but finite
sums and products, which can easily be carried out either by hand or by a computer.

In this paper, we will draw special attention to the QSP coideal subalgebras in
the split case, corresponding to the trivial admissible pair (4, id). These are known
as generalized g-Onsager algebras. Their name has been derived from the algebra
defined by Onsager in [38] as a tool towards his analytic solution of the planar
Ising model in zero magnetic field. This algebra was presented in [19] and [39]
as the infinite-dimensional Lie algebra with generators By and B; subject to the
Dolan—Grady relations

[Bo. [Bo. [Bo, B1]]] = —4[Bo, B1],
[B1.[B1.[B1. Bol]] = —4[B1. Bo].

It has received much attention in special function theory and integrable lattice
models [14,22,26]. It can be embedded in the affine Lie algebra 5/[; as its subalgebra
of fixed points under the Chevalley involution [40], and hence together with 5/[; it
forms a (split) classical symmetric pair. The theory of quantum symmetric pairs
thus offers a solid framework to deform the Onsager algebra to a quantum algebra.
The resulting g-Onsager algebra [5,7] is abstractly defined by the g-Dolan—Grady
relations

[Bo. [Bo. [Bo. Bilql4—1] = p[Bo. Bi],

4
(B1.[B1.[B1. Bolgly1] = plB1. Bol @
where [A4, B]; = qgAB — g~ 'BA is the g-commutator and p is a scalar depending
on q. The g-Onsager algebra has become an important object of study in quantum
integrability [5, 10, 28] and in connection with g-orthogonal polynomials [9] and
Leonard pairs [24]. Upon adding a defining relation in its equitable presentation, the
q-Onsager algebra is refined to the Askey—Wilson algebra [46], as was shown in [43].
A central extension of the latter, known as the universal Askey—Wilson algebra, was
also identified as a quotient of the g-Onsager algebra [44]. This Askey—Wilson
algebra provides an algebraic framework for the g-Askey scheme of orthogonal
polynomials [8], see also [15, 16,21] for some recent multivariate generalizations.
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The left-hand side of (4) can be rewritten as
Bi3Bj - [3]qBisz B; + [3]qBi Bj Bi2 - Bj Bi3

fori # j € {0,1}. This coincides with the expression (1) for n = 2 and ag; =
ap = —2,ie.forg = 5/[; . It is hence apparent that the g-Onsager algebra coincides
with the quantum symmetric pair coideal subalgebra B s of Uy, (s?[;) for the trivial
admissible pair and a special choice of the parameters c, s.

Kac-Moody generalizations of the g-Onsager algebra were constructed by
Baseilhac and Belliard in [6]. A presentation with generators and relations was
given for affine Lie algebras g, again for a limited set of Cartan matrices. The
relations we will derive in Theorem 3.13 extend this to symmetrizable Kac—Moody
algebras without restrictions on the Cartan matrix. Moreover, we will use a recent
result by Chen, Lu and Wang [11] to obtain alternative, transparent expressions of
quantum Serre type for the defining relations of B, s in the quasi-split case, including
the generalized g-Onsager algebras. More precisely, in Theorem 4.7 we will expand
the (-divided powers in [11] as polynomials in the generators B; in order to find easier
expressions for the structure constants p,, , from (2). The advantage of expanding
these (-divided powers is two-fold. On the one hand, it follows from comparison with
the earlier described projection technique that the relations arising from [11] hold
even beyond the quasi-split case, provided the indices i and j satisfy the conditions
of the aforementioned Case 1. On the other hand, the obtained expressions allow us
to drop a crucial assumption in the development of the bar involution for QSP and
the universal K-matrix in [2, 3], see Corollary 4.8. In addition, they make it possible
to prove symmetry properties of the coeflicients p,; .

For ¢ = 1, such inhomogeneous Serre relations for generalized Onsager algebras
had already been obtained by Stokman in [42]. His classical generalized Onsager
algebras extend those of [13,45] to arbitrary root systems. The defining relations
he provides, involve a set of coefficients which are defined in a recursive fashion.
Our approach now allows to derive closed expressions for these coefficients and thus
solve the recursion relations, by taking the limit ¢ — 1 of the analogous expressions
in the quantum case. This will be performed in Theorem 4.15.

The paper is organized as follows. In Section 2 we recall the necessary
prerequisites on quantum symmetric Kac—Moody pairs in the notation of [27]. We
treat the classical symmetric pairs (g, ) in Subsection 2.1 and their quantum analogs
(Ug(9). Bes) in Subsection 2.2. In Subsection 2.3 we state some of the results
obtained in [27] based on the projection technique of [31], which we will need in
what follows. The main body of work is contained in Section 3, where the missing
defining relations for B¢ will be derived. In Subsection 3.1 we will perform a
binary distributive expansion to reduce the computation of the polynomials C;; (c)
to an easier problem, namely determining the coefficients in (2) and (3) through the
action of the counit and a certain projection operator on monomials in U, (g). This
problem will be solved in Subsections 3.2 and 3.3 treating Cases 1 and 2, respectively.
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The principal results are presented in Theorems 3.13 and 3.19. To conclude, we will
derive alternative and more accessible expressions for the polynomials C;;(c) in
Case 1 based on the work [11] in Theorem 4.7. Finally, we turn our attention to
the generalized g-Onsager algebras and their classical counterparts. We repeat the
obtained relations applied to the split case and reconsider them in the limitg — 1 to
solve the recursion relations of [42] in Theorem 4.15.

2. Construction of the generators

Let us start by recalling some crucial concepts and notations introduced in [27].

Let K be an algebraically closed field of characteristic 0. Let A be an
indecomposable generalized Cartan matrix of dimension # and let us denote by I the
set {0, 1,...,n — 1}. This means that A = (a;;);,jes satisfies the properties:

(i) aj; =2,foralli € I;
(i) ai; € Z™,ifi # j € I;
(iii) a;j =0 <% a;; =0,foranyi,j € I;
(iv) For every non-empty proper subset I’ C I there existi € I’,j € I \ I’ such
that a;; # 0.

Moreover, we assume A to be symmetrizable, i.e. there exists a diagonal matrix
D = diag(e; : i € I), with mutually coprime and nonzero entries €; € N, such that
DA is symmetric.

In Subsection 2.1, we will construct the classical symmetric pair (g, b), where
g = g(A) is the Kac-Moody algebra associated to A. This construction will motivate
the definition of the quantum symmetric pair (U,(g), B,,s) inside the corresponding
quantum group Uy, (g), which will be given in Subsection 2.2.

2.1. The classical case. Let (h = h(A), 1T = {o; :i € [}, TIY ={h; 1 i € I})
be a minimal realization of A. This means that  is a K-vector space of dimension
2n — rank(A) and that ITY and IT are linearly independent subsets of b and its
dual h*, respectively, subject to «j (h;) = a;; forany i, j € I. Let Q = ZII be the
corresponding root lattice.

The Kac—Moody algebra g = g(A) associated to A is the Lie algebra over K
generated by h and 2n Chevalley generators e;, f; withi € I, with defining relations

[h.h']1 =0, [h.e]=ai(h)e;, [h, fil =—ai(h)fi. lei, fi]=08ijhi. (5)
(ade,-)l_aijej = (ad fi)l_a” fi=0, (6)

foralli, j € I and h, i’ € . Here we denoted by ad the adjoint mapping

ad:g — gly:x — ad x, adx:g—g:y > [x,]. @)
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The derived Lie subalgebra g’ = [g, g] of g is generated by b’ = > . .; Kh; and the
elements e;, f; withi € I.
As usual, we will write

g ={x €g:[h x] = B(h)x,Yh € b}

for any 8 € h* and
d={Beh”:gp #1{0}}
for the corresponding root system.
For any i € I we denote by r; € GL(h) the fundamental reflection which acts
onh € bhby
ri(h) = h —a;i(h)h;.

The subgroup W of GL(h) generated by all such r; stands as the Weyl group of g.
Via duality, W can also act on h* and hence in particular on Q, via

ri(a) = a —a(h;)o;, (8

for any o € h*.

Consider a subset X € I. Let gy be the corresponding Lie subalgebra of g,
generated by the elements e;, f; and h; with i € X. Write ®x C & for its root
system and py for half the sum of the positive coroots of ®x. We will write Wy for
the parabolic subgroup of the Weyl group W associated to X, and wy for its longest
element. Finally, let us denote by Aut(4, X) the set of permutations o of I subject
to

o(X)=X and ag()e) =aij, VYi,j €l

Any o € Aut(A4, X) extends to an automorphism of g by taking

o(e)) =esi)y, 0(fi) = fou). o(hi) = hg) 9

and defining the action of 0 on /i € h\ b’ as described in [25, Section 4.19]. Similarly,
o € Aut(A, X) extends to an automorphism of Q upon setting

o (i) = Uo(i)- (10)
This terminology allows to repeat the definition of an admissible pair, as given
in [27, Definition 2.3].
Definition 2.1. An admissible pair (X, t) consists of a subset X C [ and an
automorphism 7 € Aut(4, X) subject to the following conditions:
(1) 7 is an involution, i.e. T2 = id.
(2) The action of T on X coincides with the corresponding action of —wy, i.e. for
any j € X one has h.(;y = —wx(h;) and or(j) = —wx(c;), where we have
used the interpretations of ¢ and wy according to (8)—(10).

(3) Foranyi e I\ X satisfying t(i) = i, one has o; (py) € Z.
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An important motivation for introducing admissible pairs is that they arise
naturally as Kac—-Moody generalizations of Satake diagrams [1]. Moreover, they
parametrize the so-called involutive automorphisms of g of the second kind [25,33]
up to conjugation by elements of Aut(g), as was shown in [27, Theorem 2.7]. The
automorphism 6(X, t) corresponding to an admissible pair (X, t) can be constructed
using the following four key concepts.

The first is the element 7 € Aut(4, X), interpreted as an automorphism of g
according to (9).

Furthermore, we will need the Chevalley involution w € Aut(g) given by

w(e;) =—fi, o(fi)=—ei, w(h)=—h, (11)

foranyi € I and h € .

Moreover, the longest element wy of Wy can be lifted to an element m x of the
Kac-Moody group of g, with corresponding automorphism Ad(myx) € Aut(g). For
details we refer to [25, Section 1.3] and [27, Section 2].

Finally, one can define a group morphism s(X,7): 0 — K* from the root
lattice Q to the multiplicative group K*, by

| if j € Xort(j) =/
s(X,7)(aj) = {i%@x) ifjel\Xandz(j) > j, (12)
(—i)%2PxX) if j e I\ X and (j) < J,

where i € K is a square root of —1. The corresponding automorphism Ad(s(X, 7)) €
Aut(g) is defined by

Ad(s(X,1))(h) =h, Ad(s(X,7))() =s(X, 17)(0)v, (13)

forallh e hand v € gy, @ € .
These four ingredients can now be combined to yield the following involutive
automorphism 6(X, 7).
Definition 2.2. To each admissible pair (X, ) we associate the automorphism 6 (X, )
of g given by
0(X,7) = Ad(s(X,7)) o Ad(mx) o T o w. (14)
It is an involutive g-automorphism of the second kind by [27, Theorem 2.5].

Let us from now on fix an admissible pair (X, 7) and write 8 for the above defined
automorphism 6(X, ). Then 6 gives rise to an algebra which will be of special
interest in this paper.

Definition 2.3. We denote by b = b(X, 7) the subalgebra of U(g’) generated by the
elements:

fi +0(f;) withiel\X,

ei, fi, hi withi € X,

hi with 0(h;) = h;,i € 1. (15)
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The couple (g, b) stands as the (classical) symmetric pair associated to the admissible
pair (X, 7).

In [27], the algebra b was denoted by U(¥'). We have chosen to adopt this
alternative notation, to emphasize that b is a classical counterpart of the quantum
algebra B, s, which we will define in Subsection 2.2. The defining relations of b will
then follow as a limit ¢ — 1 of the quantum Serre relations for B, s, which we will
derive in Section 3.

2.2. The quantum case. Let ¢ be an indeterminate, assumed not to be a root of
unity in the field K. We denote by K(g) the field of rational functions in q.

Recall the matrix D =diag(e; : i € I') we have introduced above. Foreachi € I we
setg; = q°/. Forany m € N, we define the ¢;-number [m],, and the g; -factorial [m],,!
as

a" —q; " -
[m]qi = l—l_l’ [m]qi! = H[K]ql—,
qi — 4, =1
with the convention that [0],,! = 1. For N,m € N with N > m, we define the

g;-binomial coefficient as

o —
m], [mlg, '[N —mlg, !

i*

Similarly to the classical case, one has

N N
o] =15, @
qi qi

We will often use the following polynomial in two non-commutative variables x
and y, which we will refer to as the quantum Serre polynomial: fori, j € I we write

1—a;;

1 —a;; i
Fij(x.y) = Z(—l)f[ g‘”] R (17)
£=0 4i

1

Throughout the paper, we will perform calculations in the quantized universal
enveloping algebra U, (g) of g. In fact, it will suffice to work with its Hopf sub-
algebra Uy (g’), the associative K(g)-algebra generated by 4n elements E;, F;, K;,
and K;” U with i € I, subject to the relations

KK =1, K7 K7 =0,
KiE; =q"E;K;, KiFj =q; "V F;K;, (18)
Ki'Ej=q; "V E;K KUy =g FiK;,
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K — K1
[Ei. Fj] = 6 W (19)
Fij(Ei, Ej) = Fi;(Fi, Fj) =0, (20)

forall i, j € I. The relations (20) are referred to as the quantum Serre relations.

Remark 1. The quantum group U, (g’) can be considered a g-deformation of g,
upon viewing e; and fl as the limits of E; and F; respectively as g goes to 1, and

identifying K; with q . To view the quantum Serre relations (20) as g-deformations
of the relations (6), it will be useful to introduce the g-commutators

adgm: Uy(g) — Aut(Uy(g)): x = adgm (x),
adq;"(x)ZUq(g) = Uy(g):y > [X,Y]q;" =q;"xy —q; " yx,

with m € Q. Notice that ad, m reduces to ad defined in (7) in the limit ¢ — 1, for
any m € Q. It can easily be shown by induction that one has

SN
r D/ - k| —k p 4k

[T wipin)® =0k ] apas e
m=(1-r)/2 k=0 i

forany A, B € U,(g) and any r € N, which, upon substituting r = 1 —a;;, becomes
 —
—aj;j/2
[] adgm(4) |(B) = Fij(4, B).

m=a;; /2
Hence, in the limit ¢ — 1, the expression F;; (A, B) reduces to
(ada)' =% (b),

where a and b are the specializations of A and B respectively, and so (20) indeed
translates to (6). A detailed account on this notion of specialization, which is a formal
way to implement this limiting process ¢ — 1, can be found in [17], [23, Sections 3.3
and 3.4] and [27, Section 10].

The quantum group U, (g') has the structure of a Hopf algebra, with the following
expressions for the coproduct A, the counit € and the antipode S':
AMNE)=E®1+K®E, AF)=FQK '+1®F,
AKF) = K @ K,
e(Ei) =0, e(F;) =0. (K =1,
S(Ei) = —K;'Ei, S(F)=—-FKi, S(KF")=KT". (22)
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Now let us once more fix an admissible pair (X, t). A quantum analog of the
automorphism 6 (X, 7) defined in (14) can be built from five fundamental constituents,
one of which is the mapping 7 € Aut(4, X) viewed as an automorphism of U, (g’)
by

T(Ei) = Exgy.  T(F) = Fgy. T(KH) = K3\,
Secondly, one can extend Ad(s(X, t)) € Aut(g) to an automorphism of Uy (g) by
Ad(s(X,1))(v) = s(X, 1) (),
forallv € Uy(g)e = {u € Uy(g) : Kiu = q@iMyK; Vi e I}, a € Q. Here, we
denote by (-, -) the bilinear form on h* satisfying («;, ;) = €;a;;.

Next, we will need a g-deformation of the Chevalley involution (11), which we

will again denote by w. It is given by
w(E) =—F. o(F)=-E, oK)=K"

and classifies as a coalgebra antiautomorphism of U, (g').

To obtain a quantum analog of the element Ad(m x ) in (14) one needs the Lusztig
automorphisms 7;,i € I, which appeared in [34, Section 37.1] under the name Tl’ .
Let wy = r ri,...ri be areduced expression for the longest element wy of the
parabolic subgroup Wy of W, then denote by T3, the corresponding automorphism
Twy =T;, Ty ... Ty, of Uy(g).

Finally, define another automorphism y: U, (g') — U, (g’) by

V(E) = EiKi. y(F)=K"F. y(K)=K:
These are all the tools needed to g-deform 6(X, 7).
Definition 2.4. To each admissible pair (X, 7) we associate the automorphism 6, (X, t)
of Uy (¢') given by
0y(X,7) = Ad(s(X, 7))o Tyyy oY 0T O W. (23)

Note that 6; = 0,(X, 7) is no longer involutive.

Finally, let us denote by Q© the set {& € Q : —wx () = «}. Here, we interpret
both 7 € Aut(A4, X)and wy € Wy as automorphisms of Q according to (8) and (10).
Moreover, if B = ) ;c; mia; € Q, we will write Kg for [ [;¢; Kl."”. This brings us
to the definition of the quantum analog B s of the algebra b defined in (15).
Definition 2.5. For any vector

¢ = (ci)ienx € (K(Q)X)I\X and s = (s;)ienx € K(g)"\X,
we define By = Bes(X, 7) to be the subalgebra of U, (g’) generated by the elements:
Bi = Fi +ci0,(FiK) K7 +5;K;' withi e 1\ X,
E;, Fi, Ki*! withi € X,
Kg with B € 0°. (24)
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When applying the coproduct A described in (22) on the generators (24), one can
make the following observation.

Proposition A ([27, Proposition 5.2]). Forany (c,s) € (K(g)*)!\X xK(q)'\X, the
algebra By is a right coideal subalgebra of Uy(g'), i.e. A(Bes) C Bes ® Uy(g).

Upon comparing (24) with (15) in the light of Remark 1, it is immediately clear
that B ¢ is a g-deformation of the algebra b under certain conditions on the parameters
¢; and s;, and that it reduces to the latter under the specialization ¢ — 1. The precise
conditions are described in the following theorem.

Theorem B ([27, Theorems 10.8, 10.11]). Let ¢ = (c¢;)ier\x be a vector of param-
eters taking values in

€ = {ce (K@) )Y ¢ = crqy if Ti) # i and (i, —wxt(ey)) = 0}, (25)

where T and wx are again interpreted as automorphisms of Q. Lets = (Si)ier\x
be a vector of parameters with values in

S={seK(@ :5i 0= (i € Insanda;; € —2N \ {0}, ¥ € Ins \ {i})},
(26)
where
L={iel\X:t(i))=ianda;j =0,Yj € X}.

Moreover, let us assume that the vector (c, s) is specializable, i.e. limy_1(c;) = 1 for
any i € I and all ¢;, s; lie in the localization K[q]4—1) of the polynomial ring K|q]
with respect to the ideal generated by q — 1. Then B, s reduces to the algebra b under
the formal specialization q — 1 and is maximal with this property.

Although the assumption of specializability is required to obtain b as an exact
limit of B.s for ¢ — 1, it is still commonly accepted to view B¢ as a quantum
analog of & even if the latter condition is not fulfilled. Hence Proposition A suggests
the following terminology.

Definition 2.6. For (c,s) € C x §, the algebra B is called a quantum symmetric
pair coideal subalgebra.

Throughout the rest of this paper, we will fix a vector of parameters (¢,s) € € x §
and work with the corresponding quantum symmetric pair coideal subalgebra B, s.

2.3. The Letzter—Kolb projection technique. In this section, we repeat some of
the results obtained by Kolb in [27], based on the techniques established by Letzter
in [31, Section 7]. We will use these results in Section 3 to derive the defining relations
of the quantum symmetric pair coideal subalgebras B.s. For ease of notation, we
will write m; and Ug)/ for the subalgebras of U, (g’) generated by the sets

{E;:ieX} and {Kg:pBe Q°}
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respectively, and set Bj := F; for j € X. Let Ut, U, and U " be the subalgebras
of U, (¢') generated by

(Ej:iel}, {F:iel}, and {KF':iell,
respectively. It was explained in [27, Section 5] that
BesNUY =UY

for (¢c,s) € Cx 8. Hence, one can describe B, s as the subalgebra of U, (g') generated
by
(B;:ielyumiuuy.

Furthermore, for any J € I™, m € N, we will write B for the product

T
Bj\Bj, ... Bj, = [ [ Bi.
k=1
Let us also denote by J; ; the set of multi-indices given by

$i; ={G.i,....i):s < l—ajy U{(i,....i,j.i,...i) s < —ajj. £ <s}.
N— — N — N— —
s times £ times s—{ times
With this notation, one can write down the following theorem.
Theorem C ([27, Theorem 7.1]). For any distincti, j € I there exist elements
Cj©e > MUS'B,
Jesl-,j

depending on the parameter vector ¢, such that F;j(B;,Bj) = Cij(c), or
equivalently: F;; (B;, B;) can be expressed as a polynomial in B; and B; of smaller

total degree with coefficients in mjgug’, possibly depending on ¢ but not on s.
Moreover, the algebra B, s is abstractly defined by the relations

Fij(Bi, Bj) = Cij(c) Jori # j €l (27)

K —K;! . .
[Ei,Bj]:Sij—_ll fOl’lEX,jG], (28)

qi — 4;
KgBi =q BB, Kg forpe Q®iel, (29)
together with the relations
KgKp = Kp Ky for BB € 0°,
Fij(E,‘,Ej)=0 fOri,jEX,

KgE; = q(ﬂ’ai)EiKﬁ fori e X and B € Q°,

describing m} and Ug, that follow from (18) and (20).
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Our main goal in this paper will be to find explicit expressions for these lower
degree polynomials C;;(c), which, up to present, had not been written down in
general. A few special cases had, however, already been treated by Kolb.

Theorem D ([27, Eq. (5.20), Theorem 7.3]). Foranyi, j € I such that eitheri € X
ort(i) ¢ {i, j}, one has F;j(B;, B;) = C;j(¢c) = 0.
Another case was treated by Balagovi¢ and Kolb in [2]. It requires us to introduce

some more notation. We will denote by ad the left adjoint action of U, (g) on itself:
for every x,u € U, (g) one has

ad(x)(u) = > xnuS(x@).

where we have used the Sweedler notation, i.e. A(x) = Y x(1) ® x(z). It is not
to be confused with the adjoint map of the Kac—Moody algebra g, which we have
introduced in (7) under the same notation. Recall also the notation Ty,, for the
product of Lusztig automorphisms corresponding to a reduced expression of wy.

LemmaE ([27, Eq. (4.4), Theorem 4.4)). Foranyi € I \ X there exists a monomial
Zt =E;Ej,...Ej € M}, (30)

i
with ji,..., jr € X, such that
Twy (Ei) = a;jad(Z;")(E;),
for some a; € K(q). Moreover, one has
0,(F; K;) = —viad(zj(i))(E,(i)),

for some v; € K(g)*.

Forany i € I \ X we may now define

Zi = —viad(Z ;) (K7) Koo Ki7' D

(i

where Z :(i) and v; are as defined in Lemma E. It follows immediately from (30)
and the expression (22) for A(E ;) that Z; is a K(g)-linear combination of elements
of M}, multiplied by K,;)K;!. Forany i € I \ X we have

—_ / !
K. K;' € BesnUY =UQ

by the requirement (2) in Definition 2.1, and hence, Z; lies in m; U(g/.
Furthermore, we will use the notation

(i 0m = [J(1=x5).

k=1

This enables us to state the following theorem by Balagovi¢ and Kolb.
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Theorem F ([2, Theorem 3.6]). Foranyi € I \ X satisfying t(i) = j # i one has

1
(¢i — _1)2
( al] (qt: )1 aljcl UZ +ql(ql ’ql )1 aljc.] auZ )

Cij(c) = —

By Theorems D and F, it only remains to compute C;; (c) in 2 cases, namely:
Casel. i eI\ X,jel\Xandt(i) =1,
Case2. i e I\X,jeXandt(i)=1i.

These cases turn out to be remarkably complicated. In [27] and [2], explicit
calculations have led to expressions for C;;(c) for a;; € {0, —1,—2,—3} in Case 1
and for a;; € {0, —1, -2} in Case 2. However, except for the case X = @, no attempt
has been made to write down relations valid without restrictions on ¢;;. In Section 3,
we will derive such relations for both cases. As could be expected from the above
mentioned calculations, these expressions will be rather intricate, but nevertheless
easily computable, as they involve only finite sums and products in K(g).

The key tool to obtain such relations is the projection P_,;; introduced in [31].
The classical triangular decomposition for quantum groups can be deformed to

U, @) =UT @U@ S(U), (32)

where the isomorphism is given by multiplication, and consequently

Uy(g) = P UTKgSWU). (33)
peQ
Let
2 Ug(@) > UTK_, S(UT) (34)

denote the corresponding projection with respect to the decomposition (33), where
/\ij = (1 —a,'j)oz,' +aj € 0. 35)

Then one can prove the following statements.

Lemma G ([27, Eq. (5.14)]). P_,,, is a homomorphism of left Uy (g')-comodules:

ij
(Ao Py, )(v) = (id® P_y, ) Av),

forany v € Uy(g').

Proposition H ([27, Proposition 5.16]). For any distincti, j € I one has

Py (Fij (Bi, Bj)) = 0.
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Combining Lemma G, Proposition H, and the fact that A is an algebra morphism,
we find that

= (Ao Py, )(Fij(Bi,Bj)) =0.  (36)

Since K_,,;; is invariantunder P_; . and sent to 1 by the counit €, the expression (36)
asserts

Fij(Bi, Bj) = Cij(c) (37)

= ([d®e)(id® P_y,;)(Fij(Bi. Bj) ® K_y,, — F;j(A(B;). A(B)))).

where we identify U, (g") with K(¢) ® U,(g’). Our main purpose in Section 3

will be to expand the right-hand side of (37) as a polynomial in By, J € §; ;,

with coefficients in m;Ug)’. To do so, we will need an expression for the A(B;)
and A(B;) in (37). These follow from the following lemma.

LemmalI ([27, Lemma 7.7]). Leti € I \ X be suchthat t(i) =i and j € X. Then,
there exists an element W;; € m;, independent of ¢, such that
AB)=B QK '"+1®F +c¢:Z; ® E;K; !
+aWiK; ® (EEi —q;" EEEHKT + i, (38)
for some
T, e MFUS @ UTK,

where U = {u e MFEMY 13y € Oy > iy #ai +aj i u € Uy(g), )

Note that the formulation of this lemma is somewhat stronger than the original
one in [27], but one readily verifies the correctness of this extra restriction on Y;

upon computing A(ad(Z;r)(Ei)).
Finally, let us note that the following relations follow immediately from (28)—(29).

Lemma J. Leti € I \ X be such that t(i) = i, then forany j € I \ X one has
[Bj,Zi] =0,
whereas for j € X one has

B,-w,-j Kj = q?ij ’UD,-‘,- Kj Bi .

3. Quantum Serre relations for the algebras B, s

We are now ready to derive closed expressions for the quantum Serre relations (27)
by expanding the right-hand side of (37). Crucial in this respect is the presence of the
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morphism id ® €, which by (22) tells us that no term containing a nontrivial element
of UTU™ in the second tensor component will survive in (37). This allows us to
eliminate some of the terms in (38).

We will first focus on Case 1.

Lemma 3.1. Leti, j € I \ X be distinct such that ©(i) = i. Then, one has

Fij(Bi,Bj) = (ld® (e 0 P_;,))) (39)
[Fij(Bi.B))® K_;,, — Fij(Bi® K; '+ 1® F; + ;Z; ® E;K;'. B; ® K;')].
Proof. First, let us note that the polynomial F;; is of degree 1 and hence, linear in its
second argument. Since j ¢ X, the expression (38) for A(B;) contains no factors E

or F; in its second tensor component. Since €(E;) = €(F;) = 0, the expression
for A(Bj) obtained from Lemma I, together with the relation (37), asserts that

Fij(Bi, Bj) = (id® (€ 0 P_y,,))(Fij (Bi. Bj) ® K_5,, — F;j(A(B;), B; ® K7 1)).

(40)

When expanding A(B;) according to (38), there will be no contribution from the two
latter terms

i Wik Kk ® (ExEi —q{"* E;Ex)K; ' + i, (41)

with k € X, since each term in (41) contains at least one factor Ey/, k' € X, in

its second tensor component, and again €(Ey/) = 0. Hence, A(B;) in (40) can be

replacedbyB,-®Kl._1+1®F,~+c,-Z,-®E,-Ki_1. O]
The same simplification can be performed for Case 2.

Lemma 3.2. Leti € I \ X be such that t(i) =i and let j € X. Then one has

Fij(Bi. Bj) = (id ® (€ o P_y,)))[ Fij(Bi. Bj) ® K_,
~Fj(B®K '+ 1@ F +¢Zi ® EiK ' B ® K} ")
~Fi(Bi® K" +1® F +¢Z; ® E; K
+Ciwinj®(EjEi_Q?ijEiEj)Ki_l’l®Fj)]' “42)

Proof. Since j € X, we have Bj = F;. Hence, it follows from (37), (22) and the
linearity of F;; in its second argument that

Fij(Bi, B;) = (id® (e o P_;,,))
(Fij(Bi. Bj) ® K_,, — Fi;(A(Bi). B; ® K;') — Fij (A(B). 1 ® F))).
We will now expand A(B;) using (38) with the given j. In the first occurrence
of A(B;), both ¢;W;;K; ® (E;E; — q?’j E,-E]-)Ki_1 and Y; will not contribute,

since each of their terms contains at least one factor E; with k # i in the second
tensor component, and € (Ex) = 0. For the second occurrence of A(B;), the situation
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aij

is different. The term ¢; W;; K ; ® (Ej E;—q; " E; E ;) K; ! will effectively contribute,

since when expanding F;; (A(B;),1 ® F;), we may use the rule

and the last term in this expansion will turn out to be significant, as will be explained
in what follows. The term Y; in A(B;), however, will still not contribute. Indeed,
each term in Y; contains either a factor E]2 or a factor Ex withk € X \ {j}, and both
F;E ]2 and F; E; cannot be expanded to yield a non-vanishing term under €. This
proves the claim. 0

One observes immediately that the right-hand side of (42) equals the right-hand
side of (39), added with a second term. In what follows, we will treat both terms
separately and thereby obtain explicit expressions for each of the two cases.

3.1. Binary expansions. In this section, we will expand the right-hand sides of (39)
and (42). We will first treat the right-hand side of (39), which occurs in (42) as well
and which can, to a large extent, be rewritten irrespective of whether or not j lies
in X. The second term, which appears only in (42), i.e. for j € X, will be addressed
afterwards.

Our main strategy will be to perform a “binary” distributive expansion, which
requires summation over binary tuples £ € {0,1}¥, N € N. For any such tuple £,
we will use the notation

Vet b+ s ifr <o,

rs —

€| =41+ +--+ Ly, £

. (43)
0 otherwise.

Throughout this paper, we will often meet finite sums and products over natural
numbers. We will use the convention that a sum vanishes if its lower bound exceeds
its upper bound or equivalently if it ranges over the empty set, whereas a product
reduces to one in this situation. Otherwise stated, for any function a of r and
any M > N we take

N N
Z a(r) = Za(r) =0 and l_[ a(r) = na(r) =1.
r=M red r=M red

Note also that in our convention 0 is a natural number, i.e. 0 € N, and 0° = 1.
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Proposition 3.3. Leti €1 \ X be such that t(i) =i and let j €I be distinct from i.
Then one has

(id ® (0 Py;;))[Fij (B, Bj) ® K,
—Fi(Bi®K '+1®F +¢Zi @ E K ' B ® K;')]
l—aij

= Z Z Z (—1)k+! [1 —kaij] (€ o P_Aij)(pg’;{,]?ij))
qi

k=0 geto,13' 7%/ sefo,1}! i !

[€|#1—a;;
"R - Chica—k - eba: ki1,
(CiZi)Zr:l a-¢Ha sr—llll;r)Bi Lil—aj; kBjBi 2—a;j—k;l—a;;
l—aij _ _
(Q’Zi)zr:Z_“ij_k(l Q=srieln) gy
where
—_—— SN
(lja) l—d,j_/‘—k . l—al-j
215@ij) . - .
p!,s,k B l_[ T;-ll,s,r Kj 1_[ Tll,s,r ’ (45)
r=1 r=2—a,-_,-—k
with
- o S (et
%l’s’r — Ki erF-i Sr—lely., (EiKi 1)(1 731¢! sr*M\l;r)‘ (46)

Proof. By the definition (17) of F;;, we have

— Fij(B; QK '+1®F +¢Z; ® E;K;',B; ® Kjl)
l—a,’j

1 —a:: _ —
= Z (D! [ kau} Bi®Ki'+1®F; +¢iZ;i ® E;K; ')
k=0 ai

l—aij—k

(B; @ K;')(B; ® K" +1® F; + i Z; ® EiK; ")~

Theterm (B; ® K; ' +1Q Fi+¢; Z; Q E; K; ') 17477k canbe expanded distributively
as
SN
l—ai_/—k
> [T Biok) " (1®F +aZi® LK) ™,

eefo, 1}k r=1
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and for each £ € {0, 1}'7%/~% one has

_—
l—a,-j—k
[T Bok") (1&F+aZ ®EK") ™
r=1
l—aij—k

= > [T B ek (& F)

l—a;;i—k—1€l1:-1—q:: —
SG{O,I} ij 1:1 aj; k

- _er TOr— .
(Ciz’i ® EiKi l)(l )(1=s |¢|]'r).

The rationale of this expansion is that for £, = 1, we get the contribution of B; ® K P L
for £, = 0 and s,_¢|,.,, = 1 we find 1 ® F;, whereas for £, = 0 and s,_jg|,., = 0
we have ¢;Z; ® E;K;” 1. Note that the indexation of the s-variables was chosen
in such a way that there is only a summation over these variables in case the
corresponding £, = 0. Indeed, if we were to write s, instead of s,_j¢,., and
sum over all sq,... s S1—a;;,—k € {0, 1}, then the terms corresponding to £, = 1
would contribute twice.
Since B; commutes with Z; by Lemma J, we obtain

_ i l—a; i —k
(Bi®K;' +1® F; +¢;Z; ® EiK; 1)1 i

= X 2

le{o,l}lfaij*k sef0, 1}1_aij_k_|u13]—a[j—k
l—a;;—

(1_gr)(1_sr_ml'r)B|U1:1—a,jj—k l—[ T
; i Ls,r

1— a,/

(¢iZyi)=r=1

with Tei s, as1in (46). Performing a similar expansion for the term

~ N
(B K" +1® F +¢Z; ® E;K['),
we find that —Fj; (B; ® K; ' +1® Fi + ¢;Z; ® E; K[, B; ® KJ'_I) is equal to

1—a;;

Y X > ]
k
k=0 gef0,1}' 7% sefo,1}' %1l gi

—dj

((C,Z )Z l] (l—er)(l—sr—llll;r)B!ell:lfaijfk BjBilelzfaij*k:l*“ij
1—a;
v -k A=) (A=sy— .4
S P )

with py"/57 as in (45).
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It remains only to observe that the term corresponding to [£| = 1 —a;;,i.e. £ =
(1,1,...,1), yields

1—a;;

Z( 1)k+1|: - l”:| Bil_ai./ B Bk®K (a al/)K;1
qi

Z_Flj(BlﬁBj)®K—AU O

Many of the s in the sum in (44) will have a vanishing contribution. One can
make the following observation.

Lemma 3.4. Leti € I \ X be such that t(i) = i and let j € I be distinct from i.
Let £ € {0, 1}17% with [€] # 1 —a;;, s € {0, 13179 "l and k € {0,..., 1 —a;j}.
Then one has p y
i,],a;
(eop—lfj)(pe s]kj ) 0
if one of the following conditions is fulfilled:

(@) aij + |€| is even;

1—a;;j—|€
(b) |s] # 4=
(c) There exists p € {1,...,1 —a;; — |£|} such that |s|y;, < £.
Proof. To acquire the action of € o P_,, on pi sj k” ). we will write p; s] k” ) ina
standard ordering, namely as a K(g)-linear combination of elements of the form

ENMFM KK

with N1, N> € N and N3 € Z. We may do so by applying the U, (g')-relations (18)—
(19). Each such element will be projected to either itself or 0 by P_,;;. But when
applying €, such a term can only survive if

N1 =N, =0,
by (22). Suppose now s is such that p s (.10 ” ) contains an unequal number of factors F;
and E;. Then each term in its standard ordering will still contain an unequal number
of factors F; and Ej;, as follows from (19). Hence, the standard ordering will consist
of terms E; Ny F; N2 K; N3 K7 ! with either N; or N, non-zero, which will be killed by .

@, /au)

Thus, we must have an equal number of factors F and E; inp, . This number

must then be half the total number of factors in p, ’]’k” ) with Zr = 0, ie.
1— a,-j — |€|

js| = —=2

If a;; + |£] is even, then the total number of factors inp, ’]’k”) with £, = 0 will

be odd. Hence, the number of factors F; and E; inp, ¢ G- ” )

for any s.

will always be unequal,
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Finally, suppose p € {1,...,1—a;; —|€|} is such that |s|1;, < p/2. This means
that up to position p, the number of factors E; will exceed the number of factors F;.
As the difference between these numbers is not altered by the relation (19), this
means that the standard ordering of the corresponding term will consist only of terms
EiN1 FiNz KiN3 Kj_1 with Ny > 1, which are again killed by e. O

This result will help us to simplify the notation used in Proposition 3.3. Indeed, by
Condition (b) in Lemma 3.4, we know that for any (£, s, k) contributing non-trivially
to (44), we have

1—a;;

' 1 —a;; —|€]

D (=) =sppeyy,) =1 —ay — ] = |s| = ————.

r=1

(47)

and hence also

1-a;i—k

> A=) =5y,

r=1

=1 — aij —k— |e 1;1—a;;—k — |S l;l_aij_k_lulil—ai_/—k’
1—a;; 1 |£| 1—a;;j—k
—aii —

> A=) —spy,) = + — Y =) = sy,

r=2—ai_/—k r=1

(48)

Moreover, we will need the notion of the even and an odd part of an integer
number d € Z, denoted by d, and d,, respectively, and defined as

d
5 for d even, _ )0 ford even,

d
de:LEJ: d—1 D=0 ford odd.
T for d odd,

(49)

Note that for any d € Z one has d = 2d, + d .
This will now help us to rewrite C;; (c) for Case 1.

Corollary 3.5 (Case 1). Leti € I \ X be suchthat t(i) =i andlet j € I \ X be
distinct from i. Then one has
—l-a;; —l-aj;-m 1—a;; —m—m’
Fy(Bi.B)=Cy©= Y. > pyrt) g =2 B"BB". (50)
m=0

m’=0
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where

PRra— pa— /
]—aU m—m

G.j.aij) _ (aij +m +m/)p(7,~ 2

m,m’

l—a;;—m

l_a“ (':.sl“)
Y X e [50] eorapli). o
k=m’ L8, vk SE8m mt i
with pg’sj’zij ) as in (45) and
CQm,m’,k = {‘e € {07 1}1_aij : |£|1;1—u,-j—k = m and |£|2—al—j—k;1—a,—j = m/}a
St = {s € {0, 1}1—a,-j—m_m/ Cs| = M and |s|y:p > g, (52)
Vpell,...,1—aj —m—m/}}.

Proof. Upon combining Lemma 3.1, Proposition 3.3, the equation (47) and the fact
that [B;, Z;] = [Bj, Z;] = 0 by Lemma J, one finds that F;; (B;, B;) is equal to

1—a;;

2D DD DI )

k=0 gef0,1}' 7% sefo,1}' "% I¢l
[€|#1—a;;

i

1=a;j—1el |e‘l:l—al~_/~—k |€|2—ai_/—k:l—al~j

G.j.aij) —y =
(GOP—Aij)(p,e,s’k” )(clz’l) 2 Bl B]Bl
We can restrict the sum over £ to one over £, » k, by setting

m=|{

1;1—a;j—k> m' = |£|2—a,-j—k;1—a,'j- (53)
This requires an additional summation over m and m’. A priori, we have

m+m' = ¢| < —aij,
butifm+m’ = —a;j, then (coP_y,; )(pg’s]f"" )) will vanish for any s, by Condition (a)

of Lemma 3.4. This explains the presence of (a;; + m + m’), in (51) and the fact
that in the sum in (50) we restrict to

m+m' <—1-aj.
Note also that the requirements (53) imply that
l—aijj—k>m and k=>m'

Similarly, the sum over s may be restricted to &, , by Conditions (b) and (c) of
Lemma 3.4. O
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For Case 2, the first line of the right-hand side of (42) is identical to the right-
hand side of (39), and hence, the first part of C;;(c) can be expanded as above.
Nevertheless, we have to take into account that in this case Z; and B; no longer
commute, which affects our notation.

Corollary 3.6 (Case 2). Leti € I \ X be such that t(i) =i and let j € X. Then
one has

Fij(Bi. Bj) = Cij(c)
—1—aij —l—a,-j—m (l—a,-j—m—m/)/2
@.J.aij) e ((1=ajj—m—m")[2)—t
> S ekt zar e nyz
m=0

m,m’ t
m’'=0 t=0
+(id®(€op—lij))(_Fij(Bi®Ki_1+1®Fi+ciz’i®EiKi_l
+ciwinj &® (EjEi —q?[jEiEj)Ki_lv 1® FJ'))’ 4

where

(1—a;jj—m—m")/2

= (ajj +m —i—m’)pci

@,j.ai;)
m,m’ t

l—a;;—m

Z Z Z (_1)k+1 |:1 _kai]'i| (E o P—/lij)(pii:sj:]?ij)), (55)
qi

k=m' L€L, .k S€8 ! k.t
. (.)hai) . .
withp, 3" " as in (45), £ k as in (52) and

—a::—m—m’
Spmgea = {5 € 40, 117 T | = It

|s

— )4
L;1—a;;—k—-m = 1 — ajj —k —m—tand |S|1;p = bR

m’}}. (56)

Vpe{l,...,l—a,-j—m

Proof. Upon combining Lemma 3.2, Proposition 3.3 and the equations (47) and (48),
we obtain

1—a;;

1—ai;] (-ay—
CICRTED SEED SRS DR (ol Rt P
qi

k=0 pef0,1}' 7%/ sefo,1}! 7% 1¢l
[€|#1—a;;

ojaif)\ etk gltlin—aij—k g pltl—aij—ki—aij o (1=ai;=1tD/D~te s,
(EOP_Aij)(pl,s,k J )zl k Bi J B] Bi J J Zi j .5k

14
+(d® (€0 P_y,))(~ Fiy(Bi® K ' + 1@ F + ¢;Z; ® EK; !
+Ciw,’jKj &® (EjEi _Q?UEiEj)Ki_l’ 1® Fj))’
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with, by (48),
tesk =1 —aij =k = [€lin—a;—k = |8l1-ap—k—1el1 -0y, - (57)

The sum over £ can be restricted to &£,/ k., With an additional summation
over m, m’, just like in the proof of Corollary 3.5. Setting ¢ s x equal to a parameter ¢,
over which we sum as well, determines the condition

- .._k_m=1—aij—k—m—t,

as follows from (57). This restriction, together with Conditions (b) and (c) of
Lemma 3.4, determines the definition of &, s/ k ;- O

We will now perform a similar binary expansion for the last line of (54).
Proposition 3.7. Leti € I \ X be such that t(i) =i and let j € X. Then one has

([d® (o Py ) (- Fij(Bi® K ' +1®F +¢;Z; ® E; K[!
+¢iWy K; ® (EjEi —q;" EiENKT' 18 F))

2 2 (<—1)"+1 [1 ! ai]} ey ke
k i
q

k=1 d=0 £e{0,1}7V gefo,1y~ %/~ g

1—a;;

b

-1

i 1= a,, +d
(€0 P—iz’j)(ty,sjfl;!))( [ Z) =1 A=t a=sr—ieiy,)
—a;j —0) (=5
(CiwijKj)(cizi)zr=2_”ij_k+d(l )(—s Iel]:r)Bilel)’ (58)
where
—_— —_—
(l]a) l—(ll‘j—k l—a,’j—k—‘,-d
i) _ ' .
tl,s,k,d - Tll,s,r Fj l_[ Tll,s,r
r=1 r=2—a;;—k
—
“ay
(EjEi —q;" E;Ej)K;! M %) 69

r=2—ai; —k+d
with 3 ; . as in (46).
Proof. By the definition (17) of F;;, the left-hand side of (58) can be written as

1—a;;

(id@(eoP_m(Z( ]
qdi

_ _1\1—a;—k
(Bi @K' +1® F +aZ; @ EK") (1 F))

_ _ . 1k
(Bi®Ki 1+1®F,~+c,~Z,~®E,~Ki 1—f—Ciw,’jKj®(EjEi—q?jEiEj)Ki 1) )
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In the term ) .
(B ® K'+1Q®F +aZi ® EiKi_l) i

preceding 1 ® F;, the term ¢; W;; K; ® (E; E; —q;” E;E;)K;"" does not need to
be taken into account. Indeed, the standard ordering of the expansion with respect to
this term would consist of terms
N\ M N> >N Ny N
E;VEVE;?F/CFF K>, (60)

with M > 1. But of course each such term vanishes under €. In the term

_ _ i 1k
Bi®K ' +1®F +6Zi ® Ei Kt + ¢ Wy K; ® (E;Ei —q;” E;E;)K;")

succeeding 1 ® Fj, it does need to be taken into account. More precisely, in the
whole sum we obtain when expanding the k-th power, each term must contain exactly
one factor ¢; W;; K; ® (E; E; — q;l” E; Ej)Ki_l, such that we may use the rule

to obtain a non-zero contribution. Indeed, if we were to take more than one such
factor, then we would end up with a normal ordering consisting of terms of the
form (60) with M > 1 and

EiNl EJIWEINZF;N3KIN4K?/5

with M > 1, which again disappear under €, whereas if we were to take O such
factors, then we would find

N1 N N3 o-N.
Ei lFi ZFjFi 3Ki4’

in the normal ordering, which also yields 0 under € by the presence of F;. This also
explains why we can replace

_ _ i 1Kk
(B,‘ ® Ki 1 +1QF +¢Z; ® EiKi 1 + C,'winj ® (EjEi —q?jEiEj)Ki 1)
by

k—1 4

Y (Bi®K ' +1®Fi+¢Z; ®E; K ') (c; Wy K, ®(E; Ei—q; " E;Ej)K; ")

d=0 -1 —1\k—d—1

(Bi®K ' +1®Fi +¢Z;i @ EiK;) :

The claim now follows upon expanding binarily the powers of

BiK '+1®F +¢Z; ® E; K",
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as in the proof of Proposition 3.3. Note that this time, we will need a total of
l—a,-j—k—i-d-l-(k—d—l)z—a,-j
aijl€lii—a;; —k+a

variables £,. Observe that we have used Lemma J to obtain the factor ¢;
O

Once more, many of the s in the sum in (58) will not contribute. In analogy to
Lemma 3.4, one can formulate the following result.

Lemma 3.8. Leti € I \ X besuchthatt(i) =i andlet j € X. Let £ € {0, 1}7%/,
s €10, 1}_“'1/_|£|, ke{l,....1—a;j}andd €{0,... .,k —1}. Then one has

(€0 P—/lij)(tg,’sj,f,ié)) =0
if one of the Conditions (a), (b), (c) from Lemma 3.4 is fulfilled, or in case we have:
(d) There exists

pE {l —ajj —k+d— |€|1;1_dij—k+d"“7_aij — |€|}

such that |s|y,p = Z.

2
(e) Is

Ll-ajj—k+d—|8l:1—a;;—k+a = 0.

Proof. As in the proof of Lemma 3.4, the requirement that tilsj,?’{;) must contain
an equal number of factors F; and E; determines the conditions (a) and (b). Note
that in this case, one comes to the number (1 — a;; — |€|)/2 by considering the
—a;;j — || factors F; or E; arising from the Tli,s,r in (59), together with the extra
factor E; in (59). The requirement that for each p, the number of factors F; must
exceed the number of factors E; up to position p, determines in this case not only

the condition (c), but also the extra conditions (d) and (e), again by the presence

of (E;Ei —q;” E;E;)K; " in (59). O
As before, this means that we can determine
—aij
—1—a;; — €|
DU =)= spjeyy,) = —aij — €] = |s| = ————.
r=1
1—a;j—k+d
Yo (=) =sryepy,) =1 —aij —k +d = €110, —k+d
=t — s Gl—ajj—k+d=|th:1—a;; —k+a>
—ai;
—1—a;; —|€]
Y. U=t =spey,) =—F——
r=2-aij —k+d l—al’j—k-‘rd

— Z (I =€) (1 —sr—jey,,). (61)

r=1
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Just like in the previous situation, this now leads to a complete description
of C;j(c) in Case 2.

Corollary 3.9 (Case 2). Leti € I \ X be such that t(i) =i and let j € X. Then
one has

Fij(B;, Bj) = Cjj(c)

—1—a;; —1—a;;—m (1—a;j—m—m’)/2

D SR S T e
m’'=0 t=0
—1—a;; (—l—al‘_,‘—m)/Z o
LT e, ke, )
= =0
with pm’f’; ’t’ ) as obtained in (55), and where

1-a;j k-1
U’S:tj,aij) (al] +m)p (1—a;;—m)/2 ZJ Z i Z Z
k=1 d=0 m'=0 (&’ ses8’

m.m’ k.d m.,m’ k.t.d

1—a; ‘a;; iy j.aij
(_1)k+1 |: k U:| Q;naj(eo P—Mj)(tg,s],:,ji))’ (63)

qi
with t(i’j’aU) as in (59) and
€,s.k,d
o ka = 18 €10,1379 |2 = —aij—k+d =m'},
.. 1—a;; — g(p,k.d.m’)
/Sr/n,m’,k,t,d - {s (S {O, 1} a"/ m N |s| = %, |S 1;p Z PJ’_T, (64)
Vpell,...,—aj —m} and |s|1;1—aij—k—m’+d =1—-a;j—k— m —t+d # O},

where
sedany _ 0 Jorp <1—aij—k+d—m',
1 forp>1l—a;—k+d—m.

Proof. This follows from Corollary 3.6, Proposition 3.7 and the equations (61) in
exactly the same fashion as we have derived Corollaries 3.5 and 3.6, i.e. upon setting
m=\|, m =

—a;i—k+d, = l—a,-j—k—m'—{—d—|s —a;i—k—m'+d -

Again, |£| = m cannot equal —a;;, since then a;; + m would be even, which is
excluded by Condition (a) in Lemma 3.4. So m runs from 0 to —1 — a;;. It follows
immediately that m’ runs from 0 to m. The conditions in Lemma 3.8 determine the
definition of §’ O

m,m’ k,t,d"
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The relations we have obtained in Corollaries 3.5 and 3.9 comply with the
explicit calculations performed in [27] and [2] by Balagovi¢ and Kolb. They also
obtained explicit values for the structure constants for a limited set of possible

ajj: they computed p,;’ffij for a;; €{—1,-2,-3} and pn;f,;‘t’ d ,,;:,]’a’j)
for a;; €{—1, —2}. These values are displayed below.
/ /
m 0 m 0 1
0 |¢iqi 0 0 —pi’;’oj’_z)
1 |ciqilgi +471)?
@a;; =-1. (b)a;; =-2.
!/
m 0 1 2
0 | —c74?B3l, 0 Pri
0 —ciqi(q7 +3 + 47 )Ml
2 |eiqi(1+[317)
(©)aj; =-3.

@.j.aij)

Table 1. Structure constants p,,.", ",

fora;; € {—1,-2,-3}.

The main purpose of this paper will be to find expressions in K (g) for the structure

i,],a;; i,j,a;; i,j,a;; . . L.
constants p,, in,” ), ' fn,’t’ , and 0y, ,] 7, valid without any restrictions on a;;. By
. ’ T . ’ .. i,],aij
Corollaries 3.5, 3.6, and 3.9, this amounts to deriving how € o P_j . acts on pi s] i )

t;’sj’]?i'dj . This computation will be performed in the next two subsections.

and
32. Casel:t(i)=i el\Xandj el\X. Letusnow fixi € I\ X such that
(i) =i and j € [ distinct from i. A priori, we don’t specify whether ornot j € X.
Let us also fix m,m’ € N such that a;; + m +m’isodd and m + m’ < —1 —a;;,
k € Nsuchthat m" <k <1 —aj;j—m,t € {0,...,(1 —ajj —m —m’)/2},
L&y mwiands €8, 4 k. Note that this automatically implies that s € 8, v,
by (52) and (56). Hence, by (51) and (55) it suffices to compute the action of € o P_ Aij
on pil”sj,’,?"j ), defined in (45), in order to obtain the full polynomial C;; (c) for Case 1,
as well as the first of the two parts of this polynomial for Case 2. This computation
will now be performed.

Let us introduce the notation P }V with N € Z, for the projection operator
PL:U,(g) — UTKNSWU™) (65)
with respect to the decomposition (33). Let us also renormalize the element E; as

Ei = (qi —q; DE;. (66)
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(m.,m' )™ 0 1
(0,0) id; —
, — —1
qi —q;" qi —9;
@a;; =-1
(m,m’) ! 0 1
242 3],
(0,1) —Ciq,?ql—+_1 Ciil_l
qi — (q; qi — 4q;
Bl 713
(1,0) ciqiz—q—1 _Ciql—_l
qdi — 4; qdi — 4;
(b) aj; = 2.

Table 2. Structure constants p;;;’ir’lfli{) fora;; € {—1,-2}.

m~d 0 m~d 0
qi +q;* (gi —q;7 )i +q;7")?
0 |l 1 eigrp), L4 it 4
(@a;; =—1. (b)a;; =-2.

Table 3. Structure constants O'(l ] o ajj € {—1,-2}.

Then we can state the following result.

Proposition 3.10. Fori, j,m,m’,k,L and s as fixed before, one has

(i,7,a;7) q'2 (1=ai; —m=m')/2
(6 (9] P—/ll/)(p,e ’;ku ) - (—l_l)
qlﬂe * k(6 ° Pl(l —ajj—m— m/)/Z)(Yeas)’

where
—

1—a;;
A=r)sr—je1y., =A=€)A=sr—jg,.,)
Yos = [] F " E, v (67)

r=1

1—a;;

Besi = —aizbes V™ 2 Z T+ (1= ) (1= s5,2jg,,)). (68)

552 = S T e — (69)
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Proof. As argued in the proof of Lemma 3.4, the total number of factors F; and E;

in pg’sj’]?” ) must be equal and must yield

l—ajj —m—m
2

When shifting the factor KJTI through the second term between brackets in (45)

using (18), we will induce a factor qi_ i x, with

#(factors E;) = #(factors F;) = |s| =

(70)

x = #(factors E; succeeding Kj_l) — #(factors F; succeeding Kj_l)
= (#(factors E;) — #(factors E; preceding Kj_l))
— (#(factors F;) — #(factors F; preceding K7)). (71)
By (70) this is reduced to
x = #(factors F; preceding Kj_l) — #(factors E; preceding Kj_l)
= #(factors F; preceding K;l) — [#(factors preceding K ]_—1)
— #(factors K; ! preceding Kj_l) — #(factors F; preceding Kj_l)]

:|s

I;I_aij_k_ll‘]:l—al‘j—k

- [(1 —dajj — k) - |Z|1;1—a,’j—k - |S|1;1—a,'j—k—|€|1;]_aij_k]
_ o(=a;;-k)

=g, (72)
So we have
(1—a;;—k)
(i7j3aij) _ —aij ZE,S /
p(E,s,k - "
—
1-aij (—£,)s -1
l_[ Ki—froi r ”_|¢|1:r(EiKi—l)(l_er)(l_sr—ll\l;r) K] .
r=1

We will perform the same shifting process for the factors K b with ¢ r = 1. For
each such r this will induce a factor ¢, 2" with
x" = #(factors E; succeeding K, e’) — #(factors F; succeeding K; e’).
Applying the same reasoning as in (71)—(72), we obtain x’ = ¢ érs_ b
can write

, such that one

o (1=aj;—k) 1=aij vr—1)
G.j.aij) _ —ij& 23,17 G b
Pesk =4
—_—
1—a;j

(A~L)srjey, o o
[1F T (g kO Amsen ) R K

r=1
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Finally, we will do the same for the K ! occurring in a factor (E; K‘l)(l_z")(l_sr—“f 1)
with £, = 0 and s,_g|,., = 0. This will give rise to a factor q_zx with
= #(factors E; succeeding (E; Ki_l)(l_er)(l—sr—wu;r))
— #(factors F; succeeding (E; Ki_l)(l_er)(l_sr—lfll;r)).

The same reasoning now shows that x” yields

#(factors F; preceding (E; K; )17t 0=sr—1e1,))
— #(factors E; preceding (E; Ki_l)(1 —IA=sr—jeny, ) 1 = g(’ n_

where the extra —1 comes from the E; inside (E; Ki_l)(l_Z’)(l_S’—Wl:r). The total
power of g; we can put in front hence becomes

1—a;;
aljé‘(l au—k) ) Z é-(r 1) g + (1 —Kr)(l _Sr—ltll;r))
1—a;;
+2 ) (=)= spmpey,,) = Bk + (1 —aij —m—m'),
r=1

where we have applied (47), and with B¢ ¢ x as in (68).
Finally, we will perform the renormalization E,' = (q9i —q; I)E,-, which, again
taking into account the formula (70), leads to

1—a;;—m—m')/2
G.j.ai;) _( qi2 )( aij—m=—m/ Be.s.k
P - —t
qi

£,s.k _ qi_l q;
1
—4aij (11— ’
[T FU oo gty | g O g3
r=1

It now follows from (22), (34), (35), and (65) that

Kj ] (EOP (1—a;;—m— m’)/2) [Yl,s]-

Together with (73), this yields the anticipated result. O

(€ o P—)L,-j)[Yt,sKi_(l_au +m+m')/2

We have now reduced the computation of (o P_ Aij)(pilg,f & )) to a simpler

problem, namely computing how € o P =y —m-m"))2 acts on a product of an equal
number of factors F; and E,, which is balanced in the sense that up to each position
in the product, the number of factors F; exceeds or equals the number of factors E; i
as imposed by Condition (c) of Lemma 3.4. This action can be deduced from the
following lemma.



Defining relations for quantum symmetric pair coideals of Kac—-Moody type 329
We will need the notation (N) > for the modified g7-number
1

l—inN

(N)g2 = — (74)

Note that it relates to the ordinary g;-number as

(N)g2 = ¢~ [N]g,.-

Lemma 3.11. Let M € N be such that M > 1. Let Y € Uy(¢') be a product of M
factors F; and M factors E;, appearing in any order, but with F; as the first factor.
Let N € N be maximal such that the first N factors of Y are F;, such that we can
write Y = FiN E; X, for some X € Uy (g'). Then we have

(€0 PLy)(Y) = (N)y2qi > (e 0 PLyy_ ) (FV1X). (75)

Proof. We will prove this by induction on N. Our strategy will be to rewrite Y
iE its standard ordering, i.e. as a K(g)-linear combination of terms of the form
E" F"2K"*, and then observe that for any M’ € Z one has

omy pm p-ms3 _ ’
E;FCK; ifms —my, =—-M’,

pi mmy pmo p-m3
(B FCKT) =
w (B F KT 0 otherwise,

by (65) and the definition (22) of the antipode. Hence, again by (22), we have

1 ifmy =my=0andmz =—-M’,

co Pl WE™MF™K™) =
( ) (B ETK) 0 otherwise.
Otherwise stated, the action of € o P i - on Y equals the coefficient of K;~ M i its
standard ordering.
For N = 1, we may apply (19) and (66) to obtain

Y =FEX=EFX-KX+K'X.

The first term will have a standard ordering consisting of terms E."' F/"> K"
with m; > 1, which will all be killed by €. For the second term, observe that X
contains M — 1 factors F; and the same number of factors Ei, since N = 1. Each
factor F;, when taken together with a factor E i» can contribute at most one factor K 1
by (19). Hence, the lowest possible power of K; occurring in the normal ordering
of K; X will be

1-M-1)=-M+2>-—-M.

Hence, the second term will not contribute either. For the third term, we have
K 1Y =XK . 1 since X contains an equal number of factors F; and E;. So we have

(€0 PLy)(Y) = (e0 PLy ) (XK; ") = (eo i)\i(M—l))(X)’

in agreement with (75).
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Now suppose the claim has been proven for N — 1 > 1, then we have
Y =FNEX =FN7'E; X' — FN7'K; X + FN7IK71X,

where X’ = F;X. As before, the second term will not contribute: the coefficient
of K~ M in its standard ordering will vanish, as the lowest power of K; that can occur
will again be —M + 2. Consider now the third term in this sum. When shifting K;!
through X, we will induce a factor g; 2% where
x = #(factors E; in X) — #(factors F; in X)
= (#(factors E;in Y)— 1) — (#(factors FiinY)— N)
=M-1)—(M—-N)=N —1,

such that
N— — —2N N— —
F'i lKi 1X=q,-2 +2Fi lXKi 1'

So, we have
(0 PLy)(¥) = (c0 PLyy) (FY ') + 728 2 (co Py ) (Y1),

Note that FiN -1 EiX " still contains M factors F; and M factors Ei, and has F; as its
first factor, since N — 1 > 1. Hence, we may apply the induction hypothesis to write

(€0 PLy)(FNTTEX') = (N = D 2g; 2V (e 0 PLyy_ ) (FV2X)).
The statement now follows from FiN 22X = FiN ~1X and upon observing that
(N _ 1)q12ql—2N+4 + ql—2N+2 — (N)qlqu—2N+2 D

Let once more Y, X € U,(¢') and M,N € N be as in the statement of
Lemma3.11. Asalready observed, the element FiN ~1 X is again of the type described

in Lemma 3.11: itis a product of M —1 factors F; and the same number of factors E i
and has F; as its first factor, provided X has F; as its first factoror N — 1 > 1.
If N/ > N — 1 is the maximal number such that the first N’ factors of Fl.N D¢
are F;, then we may write

F'iN—1X — F;-N/E’iX,,
for some X’ € U;(g). Consequently, Lemma 3.11 asserts
(6 ° ﬁi(M—l))(FiN_IX) = (N/)ql?‘li_wurz(e ° ﬁi(M—z))(FiN/_IX/)’
and thus,

(€0 PLy)(Y) = (N)g2g; 2V 2 (N") 22N 2 (e 0 Py o)) (FN1X).
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This process will only terminate if at some position p in the product, the number
of factors E; preceding p exceeds the number of factors F; preceding p. In that case,
we would at some point be left with N/ = 1 and a corresponding X starting with £;
instead of F;.

Let us now assume that this is not the case, i.e. up to each position p in Y,
the number of factors F; preceding p exceeds or equals the number of factors E;
preceding p. Then this process of applying Lemma 3.11 consecutively will continue
until we have applied it M times and we have reached N’ = 1 and X’ = 1, and of
course (€ o ﬁé)(l) = 1. Each factor E,- can now be assigned a level, which is the
exponent N of F; that will occur in front of E ; at the moment this factor is cancelled
when applying the formula (75) in this consecutive process. Then our reasoning in
fact asserts

('E ° ﬁiM)(Y) = 1_[ (level(Ei))quqi_z16V61(Ei)+2’

factors E, i

where the product runs over all factors E; in Y. Now note that each application of
the formula (75) cancels one factor F; and one factor E,-. Hence, each F; is in fact
coupled to exactly one factor E;. Thus instead of running over all E;inY, we might
as well run over all factors F; in Y and assign to each F; a level, which equals the
level of the E,- to which it is coupled. We find

(€0 PLy) )= [] (evel(F)), a7 2level(Fi)+2, (76)

factors F;

Now say the element Y contains a factor E; at position p in the product, which,
in the process above, is coupled to a factor F; at position r, with of course r < p.
From the definition, it follows that the level of the E; at position p is the total number
of factors Fj preceding it, minus the number of factors E; preceding it, again since
each application of (75) kills one F; and one E;. So

level(F; at position r) = level(E; at position p) an

= #(factors F; preceding p) — #(factors E; preceding p)

= #(factors F; preceding r) 4+ 1 + #(factors F; betweenr + 1 and p — 1)

— (#(factors E; preceding r) + #(factors E; between r + 1 and p— 1)),
where the +1 comes from the F; at position r itself. Moreover, we have that
#(factors F; between r + 1 and p—1) = #(factors E; betweenr 41 and p—1). (78)

Indeed, suppose not, then after coupling all possible E, ; between positions r + 1 and
p — 1 with an Fj, there would either still be F;’s left. Hence, position p would be
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coupled to some position 7’ > r, or else there would still be E,- left, so position r
would be coupled to p’ < p. Inserting (78) into (77), we obtain

level(F; at position r) = #(factors F; preceding r) + 1 — #(factors E; preceding r).

(719)
Let us now return to the statement of Proposition 3.10. The element
—
200 (g (—£,)(1—s )
—Lr)sr—iely., mA—=tr)(A=sr_jg|;.,
Yes= [] F " E; )
r=1

is a product of an equal number of factors F; and E i, namely

l—ajj—m—m'
#(factors F;) = |s| = < 3 ,

1—aij

#(factors E;) = Z (A =L)(1 = sp—pe,.,) =

r=1

l—ajj —m—m'
2

)

where we have applied (47). Moreover, at each position p in Yy ¢, the number
of factors F; preceding p, i.e. |s]1;p, exceeds or equals the number of factors E;
preceding p,i.e. p —|s|1;p, by Condition (c) of Lemma 3.4. Hence, the formula (76)
is applicable.

Running over the factors F; in Yy ¢ amounts to running over r € {1,...,1 —a;;}
and checking for each r whether the element at position r is Fj, i.e. whether £, = 0
and s,—¢|,., = 1. Thus, we have

(6 °© Pi(l—a,:_/—m—m’)/z)(ye’S)
1—a;;

— 1_[ [(level(F,- at position r))qZQi_z level (F; at position r)+2](1—€r)sr,|e‘1;r
r=1 '
-2 Zi;cll” (level(F; at position r)—l)(l—fr)sr_ml;r
i 1—a;;

.- A=Lr)sr—jeyy.,

l_[ ((level(F; at position r))ql_z) . (80)

r=1

Applying the formula (79), we find

level(F; at position r) = |s|1;—1—je|;.,_, —|—1—(r —1—1€|1—1— |8 1;,_1_|4|1;r_1)

=ty 1

Combining this with (80), we immediately obtain the following result.
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Corollary 3.12. Fori, j,m,m’,k,€ and s as fixed before, one has

1
—aj;
(A—Lr)sr—j)q.,. ~A=Er)(A=5r_1g);.,.)
(EOP_(l —aj;—m-— m/)/Z) 1_[ F; ’ llll’rEi : Wlizr
r=1
1—a;;
. Vesk (r— 1) A=€r)sr—je)y.,
=q; 1_[ ((C ) ,2) i
r=1
where
1—a;;

Vesk = —2 Z SR CE A DA

with {'(r) as in (69).

Alternatively, one can also iterate over the factors E,- in Yy ¢ rather than the
factors Fj, as initially established. Since (77) implies

level(E; at position p) = (1’ D,
we also have
1=aij (17—1) 1—€,)(1—
pi _ (p—1) —2§ +270=€p)A=sp—je)y. )
(6 o Pi(l—a,-j—m—m’)/Z)(Ye,S) = 1—[ [(g p— ) ,. ] »
p=1

81
This formula will be of use in Subsection 3.3. o
Corollaries 3.5 and 3.12 and Proposition 3.10 now lead to an explicit expression
for the structure constants pm fn i") for Case 1.
Theorem 3.13 (Case 1). Foranyi € I \ X suchthat t(i) =i andany j € I \ X
distinct from i, one has

—1—a;; —1—a;;—m
Fij(Bi, Bj) = Cij(¢0) = Z I ek A "2 B, By,
m’=0

(82)

where the structure constants are given by

o 2 (1—a;j—m—m")/2
@i,j.aij) Ciq;
P = (@ij +m+m/)1’(q~ l l‘l)

1—a;j—m

YooY X e

k=m' €L, vk SEE

1—a;;

qfl.s,k l_[ ((é-(r 1) )?)(l_er)sr—\lllzr’ (83)

r=1
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where
1—a;;

1 13
el,s,k = aué’( ) Z E(r 1),

with £ m k and Em me as in (52) and é‘(r) as in (69).

Proof. This follows upon combining Corollary 3.5, Proposition 3.10 and Corol-
lary 3.12. Note that for each k, € and s, the exponent of ¢; becomes

ﬂl,s,k + Ve ,s .k

1—a;;

= —ayg T 2 Z Ces V(4 (=) = 5r01,,) + (1= £ jeyy., )

= Qg,s,k. O
@,J, 1/)

Similarly, this leads us to an explicit expression for the structure constants ,om m'

for the first part of C;; (c) for Case 2.
Corollary 3.14. Leti € I\ X besuchthatt(i) =i, j € X andm, m’ and t as fixed

before. Then the structure constants p,(n’]’ i) are obtained from the expression (83)

upon replacing 8m m' by Sm m k.t deﬁned in (56).
Proof. This follows upon comparing (51) with (55). ]

It can readily be checked that these expressions comply with the values computed
in [27] and [2], as displayed in Tables 1 and 2.

33. Case2: 7(i) =i € I \ X and j € X. Consequently, we will obtain the
second part of the polynomial C;; (c) for Case 2, as described by the last line of (62).
To this end, let us fix i € I \ X such that:

S
t@)y =i, jeX, mei0,. ... —l—ay} ’6{07--.,#}’
kefl.....1—ay}, defo...k—1}, m e{0,. .. .m},

e € £m,m’,k,d and s € 8m m’ k,t.d

By (63), the calculation of the structure constants Gm’J’ i) comes down to computing

the action of € o P_ A;; on ti ;J}cltji)’ defined in (59). This will be the subject of the
present subsection.

As a first step, we will again shift all factors K;” Lin tg’J ’k’é) to the back, as we
]’ i /)

have done for p s in Proposition 3.10. Recall the notation E; = (g; — q; ") E;
and let us write, as an extension of (65),

Pyl Ugle) - UTKN KM S(U), (84)

for the projection operator with respect to the decomposition (33), where M, N € Z.
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Proposition 3.15. Fori, j,m,t,k,d,m’,{ and s as fixed before, we have
Ne,s.k.d.t.m’

(i.jiaiy) q;
(€0 Py g i) = = — -
Deesia) (qi — g7 )= =m12(q; — g7

(6 ) P_’(Jl —a;;—m)/2, —1) (Yl(,os),k,d 4; i Ye(ls)k d)

where
N S -
© 1—a;;—k 1—a;j—k+d o —aij
— ; , 1 K. i
Yl,s,k,d - l_[ {Ué,s,r FJ l_[ (Uz,s,r EJE’ l_[ rU(,S,r ’
r=1 r=2—al~j—k r=2—dl‘j—k+d
(85)
— - -
" l—ai_,-—k—l—d o —ajj
— . i i 2 i
Veska = ]_[ v, | E [T Ve, |EEs [T Ve
r=1 r=2—al~j—k r=2—(l,'j_k+d
(86)
: A5, —je1y., ==L, je1;.,)
Vi, = Fp T (87)

(1—a;j—k+d)

-2 Z C(r Y, + (1-¢)0 — Sr—lel.))

Ne,skdem = =28

— a,'j(l + a,’j

— "—k—w\l;l—aij—k) —2(m’ + 1),
(88)

with ¢{) as in (69).
Proof. Let us start by shifting the factor K; ! arising from (E; E; —q; " E;E;)K;™!

in (59) to the back. Reasoning as in the proof of Proposition 3.10, this induces a
factor ¢ >*, where

x = #(factors F; preceding K; ') — #(factors E; preceding K; ')
= |S|I;I—a,'j—k+d—|€||;]_aij_k+d

- (1 —djj — k+d— |e|1;1—aij—k+d - |s|l;l_aij_k"’_d_‘l|];1—al~j—k+d) -1

_ «(—a;;—k+d) 1
— S¢s -5

where the —1 comes from the factor E; in (E; E; — ;" E;E;)K;".
Now let us perform the same shifting for the factors K b with £, = 1, which

7
leads to a factor q;c ", where this time x| depends on r. In general, we have

x; = —2(#(factors F; preceding K; try — #(factors E; preceding K; e,))
—ajj (#(factors F; preceding K; er) — #(factors E; preceding K e’)),
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again since t; ) k’é) contains an equal number of factors F; and E;, and precisely 1
factor F; and 1 factor Ej. Forr €{l,...,1—a;; —k} we have

xp = =2(I8lr—1—je)y_r — (r = 1= [€]1;r—1 = IS|15r—1—1e)1, 1)) = —2§(r b,

Forr € {2—a;; —k,...,1 —ai; —k + d} on the other hand, by the same reasoning
this becomes
=207V — ay,

whereas for r € {2 —a;; —k + d,...,—a,-j} one has

=2(¢ " - 1),

where the —1 arises from the factor E; in E; E; — ;lij E;E;.
Finally, this shifting process for the factor K Vin (E; Ki_l)(l_a)(l_sf*\fll;r) with

{, =0ands,_ e, =0 induces a factor ‘11 , with, reasoning as above,

(e~ ) forr € {1,...,1—ay —k},
x! = 2( r— 1)_1)—a,~j forre{2—aj; —k,....1—a;; —k +d},
(é‘(r 1 ) forr e {2—aj; —k+d,...,—a;}.

In total, this shifting gives rise to a factor q? , with

—aj;

_ gkt QZQ(' Dt + (1= )1 =s5rj01,,,)

1—a;j—k+d
—ay Y (G A=) = se,,)
r=2—a;;j—k
+2 ) (G =)0 =seey,,) +2 ) (=)0 = srme,)
r=2—a;j—k+d r=t
—a;;
(1—a;j—k+d)

= 2" +2-2 Z Gy (b + (=) (1 =5rp01,,,)

—ajj (m 1= (I —aij — k) + Islt1-ay;~k—1el1-a;, 1)

1_ ..
+2(a++m—m’—t—l)+(—l—aij—m),

in agreement with (88), where we have used (61) and the definition (64) of §’
Finally, the renormalization (66) gives rise to a factor

(qi —q; )~ (g — g7 H T

m,m’ k,t,d"
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since by (61) we have

l—a,-j—m

#(factors E;) = #(factors F;) = |s| = >

and, of course, #(factors £ ;) = #(factors F';) = 1. So we find

Ne.s, m’
t(i,j,tlij) _ q; s dedit. ( (o) a,,Y(l) )K (1—a;;+m)/2
L,s,k,d (C]i _ qi—l)(l ai_/—m)/Z(qj —1) £,5,k,d 4 L,s,k,d
which yields the claim by (22), (34), (35), and (84). O]

We have hence reduced our problem to computing how € o P (1 a;;—m)/2,—1 ACtS

on Y’ @iy (1 Each of the latter terms is a product of an e”ual number of
tskd 9 Tes, k d p q

factors F; and E and precisely one factor F; and E; 7, which is balanced in the sense
that up to each position in the product, the number of factors F; exceeds or equals the
number of factors E;, and that the factor F'; precedes the factor £;. The presence
of F; and E; now complicates matters substantially in comparison to the situation
in Case 1, because F; does not commute with F'; and similarly for E; and E;. We
will need to derive an analog of Lemma 3.11 which takes into account the presence
of these factors.

Recall the notation (N) 42 for the modified qiz—number (74) and let us also define

ay = (N),2q; M2, (89)
ymN = (N —M),2q ;Y N2 (90)

for M, N € N. Write also ¢y = 0 for N < 0. Then one can prove the following
result.

Lemma 3.16. Let M € N be such that M > 1. Let Y € Uy(g') be a product of M
factors F;, M factors E,, 1 factor Fj and I factor E; j, appearing in any order but
with F; as its first Ny factors, for some No € N, followed by a factor Fj. Let Ny € N
be maximal such that the first N1 factors of Y succeeding F; are Fj, so that we can

write Y = FiNO F; 1‘71‘]\,1 E; X, for some X € Uy (g'). Then we have
(€0 ﬁi’ljl;l,—l)(y) = AN (6 °© ﬁi’gh—l),—l)(ﬂNo_le FiN1 X)
5i,j N Ni—1
+ VNo.No+Ny (E °© Pi(jM—l),—l)(Fi OFiF X)'

Proof. We prove this by induction on N;. As before, our strategy will be to write Y
in its standard ordering, i.e. as a K(g)-linear combination of

EMESEM FMFSFM KK
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with mq,...,mqy € N, ms € Z,5 € {0,1} and §' € {—1,0, 1}, and then observe
that, for any M’ € Z, one has
(€0 ﬁi’z{?',—l)(gﬁl E}?EiszimSFfFim‘tK?SK}g‘/)
1 fmi=my=m3s=my=86=0,ms=—-M',and §' = —1,

— 91
0 otherwise, ©b

by (84) and (22). Hence, eoﬁi’j , _, infactprojects ¥ onto the coefficient of K;~ M’ Kj_1
in its standard ordering.
For N; = 0, we may write

Y = FNE FjX = FNOE; X'

since F; and E; commute. A straightforward generalization of Lemma 3.11 then
asserts

(€0 PLy ) (¥) = No) 2" (e 0 Py ) (F7'X)).

which yields the claim since X’ = F; X and by the definition (89) of o, and the
fact that yn,,n, = 0.

Suppose now the claim has been proven for Ny —1 > 0. Note that by (19) and (66)
we have

Y = FN R ENM T E X — FN R EN T R X + FN R MR X,

with X' = F; X.

The second term will not contribute, since its standard ordering cannot contain
a multiple of K M K ~1. Indeed, this term contains M — 1 factors F; and the same
number of factors E;, and each factor F; can only contribute one factor K 1 to the

normal ordering upon combining it with a factor E,-, by (19). Hence, the lowest
possible power of K; occurring in the standard ordering of this term will be

—-M-1)+1>-M.
The third term contains again as many Fj as Ei and can whence be rewritten as
qF FOF VXK
with

X = —2(#(fact0rs F; preceding K;” 1y — #(factors E; preceding K; 1))
—aij (#(factors F; preceding K;” 1) — #(factors £ j preceding K 1))
= —2(No+ N1 —1) —ayj.
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So we have

(0 PLyy ) (V) = (e 0 PLyy ) (FF,FM T E X)

—2(No+N1—1)—a;; 5i,j
; (o P

+q —(M—l),—l)(FiNOFj FY7X).

As FiNO F; 1’?‘1‘1\’1 1E ; X' still contains M factors F; and the same number of factors E iy
and meets all other requirements of the statement as well, we may apply the induction
hypothesis to write

(EOﬁi,]]\.l,—l)(FiNOFj FiNl_IEiX/) = QaN, (Eoﬁi’(]}\l_l),_l)(F'iNo—le FiNl—lX/)
+ YNoNo+ M1 (€ 0 P N (FNOF VT2 XY,

The statement now follows from X’ = F; X and the fact that

YNo.No+Ni1—1 + qi_z(N0+Nl_l)_aij = VNo,No+Ni - O
The formula obtained in Lemma 3.11 can easily be iterated, since its right-hand
side consists of only one term, leading to a product iteration of the form (76). The
formula obtained in Lemma 3.16, however, is much more complicated, since its
right-hand side consists of two different terms, each containing a projection operator
and the counit €. One iteration of Lemma 3.16 hence leads to a right-hand side
containing three terms. Indeed, if ¥ = Fl.NOF ) FI-Nl E; FL.N2 E; X is of the type
described in Lemma 3.16, then

(e 0 PLiy ) (V) = anpano—i (e 0 P2y oy ) (2 FyFHRX)
+ &g (VNo—1,No+ N1 +Na—1 + VNo,No+71)
(€0 Py zy ) (Y F YY1 )
+ ¥No,No+N1 YNo,No+N +N>—1(€ © ﬁi’&l_z),_l)(ﬂNo FyFM*"2x),
A second iteration will then lead to four terms in the right-hand side and so on.
Meanwhile, the occurring coefficients become increasingly intricate at each further

iteration. To describe the full outcome after T iterations, for any 7 € N, let us
introduce the notation

a b—a

® _
CaN = Z l_[ YNo—a+prINlo:p—pr—rs1—b=pr—r)> (92

P1=p2=+=pp—q=0 r=1

wherea < b € N,

N = (No.Ni.....,Npy1) € N?*2 and |N

0,p = No+ Ny +---+ Np.

(a)
a

N =1

We also set ¢
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Proposition 3.17. Let M € N be such that M > 1. Let Y € Uy(g') be a product
of M factors F;, M factors El, 1 factor F; and 1 factor E; i, of the form
Y = FYF, FNVE FNE .. FNTEE; X, (93)

for some X € Uy(g'), where N = (No, N1,...,N7) € NTH and T > 1. Then we
have N
(€0 P, _)(¥) = vn(eo Py p)(FNOT T X),

with
T-1

—a;j(No—u) (T-1 s
UN = Z q; e ;,N )(CI ®No—u+YNo—u,|N lo;r—(T—1) (HaNO_r)’
u=max(0,7—|N|;.7—1)

Proof. We will prove this by induction on 7. For T = 1, we have
Y = FF, FMEE; X,
and so its follows from Lemma 3.16 that
(0 Py )0 = anyleo Py )(FY B FY x)
+ YNo.No+; (€ 0 ﬁi’(jM—l),—l)(FiNO FiE; FiNl_lx)’
where we have used the fact that F; and E,- commute. When rewriting F; E,- in its

standard ordering via B B
FiE; =E;jF;j —K; + K,

only the last term will contribute by (91), so we may replace F; E by K Uin the
equation above. Since both F; No~= 1K 'F; N X and F; NOK 'F; PN 'Y contain as
many F; as E,, it is evident that

FNO IK FNIX—(] azj(N() 1)FN0+N1 IXK—

F-iN()KleviNl 1X=q aszOFviN()-f-Nl lXKj— )

4

Hence, it follows from (65) and (84) that
(6 ° ﬁi] D) = a” O(flzau aN, t+ VNo,No+N1)(E o P’ —(M— 1))(FNO+N1 IX)’

which agrees with the claim since c(()o()NO Ny =1 and7 —|N|;;r—1<0forT = 1.

Suppose now the claim has been proven for 7 > 1 and set
Y = Fl.NOFjFiN1 Ei F}Nzgi - F}NTE’iFiNT-i_I EiEjX.
Then Lemma 3.16 asserts

(6 ° ﬁi] )(Y) = 0N, (€ o P/ —(M—1),— )(Y/) + VNo.No+N, (6 °© ﬁi’(jM—l),—l)(Yu)v
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with

No—1 Ni+N> & N3 77 Nryl 3
Y = F T FiF ' T E FCE; L F TTEE X,
N Ni+No—1 5 N3 5 Nry1 5 5
Y'=FF;F, VT E FE; . F, TV EE;X.
Both Y’ and Y satisfy the requirements of the statement: they each contain M — 1

factors Fj, the same number of factors E,, 1 factor F; and 1 factor E; j»> and they are
of the form (93) with

N' = (No—1,Ni + N2, N3,....Nry1)
and N" = (No, N1 + N, — 1, N3,...,N741),

respectively. Both Ny — 1 and N; + N, — 1 might become negative, but in this
case the corresponding coeflicients oy, and yn,, n,+n, Will vanish. We may hence
assume that N', N” € N7+ and apply the induction hypothesis to obtain

(60131’] )(Y)_®N N//(eoP M—T— 1))(F\N\0T+1 (T+1)X)

where ® /7 is given by

T-1

~ajj (No=1-w) (T~1)
05N0|: Z q; Cu,N’
u=max(0,7—|N|;.7+1—1)

u—1
a;i:
(qi Y ONy—1—u + yNo—l—u,lN\O;T_A,_]—T) ( 1_[ aNo—l—r):|
r=0

T-1

—a;i(No—u) (T—1
+ VN(),N()—FN] |: Z qi s l(l N//)
u=max(0,7—|N|1.741)

u—1
(C], ONy—u + YNo—u JANo:r+1—-T (1_[ aN()—r)i|v (94)
r=0

= IN"lor =T = (T +1).
It now suffices to show that
d (No—u)
—a;; u T
On N7 = [ Z q; " . 15121

u=max(0,7—|N|1.7+1)

(ql aN() u + J/NO —u |N|0 T+1— -T (1_[ aN()—r):|' (95)
r=0
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Upon replacing the summation index u in the first line in (94) by u’ = u + 1,
which we thereafter rename to u again, this term becomes

T

—u,,(N() u) (T 1)
O‘N0|: Z i Cu—1,N’
u=max(L,T—|N|1;7+1)

u—2
(ql aNO —u + VN() —u |N|0 T+1— -T ( l_[ aN()—l—r):| (96)
r=0

and it is immediate that o, ([14Zs @ng—1-r) = [14Zo @no—r- Replacing the first

line of (94) by (96) and separating the term corresponding to ¥ = 0 in the second
line and the one with u = T in the first line, we find that © 5 - is equal to

—a;; N T—1
q; 70 ( NN)VN(),N()-I-N] (6] aN, + VN(),\N\() T4+1— T)VN T
T-1
+ Z _aij(NO—u)( (T-1) + T 1))
q; cu—l,N’ YNo,No+N, € u,N"

u=max(1,T=|N|1:7+1)

u—1
(q?ij aNo—u + VNO—u,\N\O:T_H—T) ( 1_[ OlNo—r):|
r=0

ij(No=T) (T
+ ql S o C;* III)V/(q aN() T + )/N() T‘N|() T+1— -T ( l_[ aNo—r)v (97)
with
S 1 if T —|N|yr+1 20,
NT = 0 otherwise.
®) (T-1) (T)
By definition of ¢, 5, we have that CroN =CrN = = 1, such that the last line in (97)

agrees with the term in the right-hand side of (95) corresponding to u = T. Hence,
it suffices to prove the following two claims:

T T

c(()I\)f C( N’})yNo,No-l—Nl s (98)
T T-1 T—-1

15 12[ - C; 1 11/" + yN(),NQ-l—Nl C;’N//)v (99)

forallu € {max(1,7 — |N|1.7+1),-..,. T — 1}.
It follows immediately from (92) that one has
T—1

(T-1) —
Co,N” VYNo,No+N; = H YNo,IN"|o:7—r—(T—r—1) |YNo,No+Ny -
r=1
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The definition of N” asserts that

|N//

0;7—r =|Nlo;7—r+1 — 1

forany re{l,...,T — 1}, and hence

T
=D _ _
o,N” VNo.No+N1 = YNo.INlo:r—r+1—(T—1) = Co N>

r=1

which proves (98).
Now letu € {max(1,7 — [N|i;7+1),..., T — 1} be fixed. By (92) we have
u—1 T—u
(T-1) _
cu—l,N’ - Z l_[ yNO_”+Pr>|N/|O;T—pr—r_(T_Pr_r—1)’

P1=<p2=<+=<pr—y=0 r=1

where we have used the fact that Nj = Ny — 1. Now since for every occurring  one
hasr <T —wuand p, <u — 1, we have that T — p, —r > 1. Hence,

IN"lo:7—p,—r = INlo:7—p,—r+1— 1,
such that
u—1 T—u
C,Ei;lziw = Z 1_[ YNo—u+priINlo;r+1-pp—r—T—pr—r)- (100

P1=p2==<pr—=0 r=l1

It is evident that one has

{(P1s s PTou—1, PT—u) ENT¥ 10 < py <+ < proyy < pr—y < u}
={(p1,+- s PT—u—1,PT—u) ENT 0 < p; <o+ < pr_y_y < pr—y <u—1}

U{(p1s. o pr—u—1,u) e NTT 10 < py <o < pry—y <ul.
Hence, (100) implies

u T—u
T-1) _
Cu—1, N’ = Z 1_[ YNo—u-+pr.|Nlo:7+1-py—r—(T—pr—r) (101)
P1<p2=-=<pr—u=0 r=1
u T—u—1
~ VNo,INlo:1 Z 1_[ YNo—u+pr.INlo:7+1-pp—r—(T—pr—r)>

P1=p2==pr—u—1=0 r=1

where in the last line we have separated the factor in the product corresponding to
r = T — u, since here we have set pr_, = u. One immediately recognizes the first

line as c(T) and, moreover, one has
u,N
u T—u—1
(T-1) _
CuN” = > [T 7No-utprdN"l0t—py—r—T—pp—r—1y- (102)

P1Ep2=+<pr—y—1=0 r=1
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Again every T — p, —r > 1, and hence

- —1,

—r =
such that (102) coincides with the sum in the last line in (101). We conclude that

(T 1) _ (T) C(T—l)
Couz 1,N Cu,N — VNo.No+N u,N” >’

and so we have shown (99). This concludes the proof. ]

The question now remains how one can apply Proposition 3.17 to compute the
action of € 0 PL_, ., on Yo a—ai” YY), . as defined in (85)(86).
This will be addressed in the followmg proposition.

Proposition 3.18. Leti, j,m,t, k,d,m’, £ and s be as fixed before and let A € {0, 1},
then one has

; A —a;;j N A=4)A=sp—e),.,.)
(EOP—(]I aj—m)/2—1)(Y€(s)kd)_q " O( l_[ (af(r_l)—vr,k) M )

4.8
re®y.qa
Tl,s.k,t""l_l
1-A ajju (Tlskt‘*'/l 1)
(O(é_(lfal-jfk+d)) Z i cu N
b u=max(0,£3)

1=87¢ ¢ k1420

u—1
aij 8.k,
(qi O[N()—u + J/NO_ualNlO:Te.s’k’t+/\_(T¢.s,k.t+A_1)) ( 1_[ O[No—r)i|) s
r=0

where N® = (No, N1..... N1, . ,+2), with

1 1
Ty sk = é'( JT +t_ |s|1;1—ai,/—k—|€\1:17a,-j7k’ (103)
é.(l aijj _k) (104)
|N|1;b =rpt+aj;+k—b—1—Lruq—kir, (105)
1-a;j—k+d
rp= Y, r(l—&)1—sy,)
r=2—a,-j—k
8r+aij+k_b_1_|€|2—a,jj—k;ra‘s|27aij7k7|Z|1;2_al.j_k:r7M|1;r (106)
foranyb € {1,... . Ty 5k}, and
ii—k+d
= Lo T Ty, (107)
Moreover,
Er=To sk — -1,
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(Rk,d :{1,...,—a,~j}\{2—a,~j—k,...,l—aij—k+d},

0 ifr<1-—a; —k,
vp = J0 Ir=toai (108)
1 lfr>1—a,~j—k.

Proof. Following the same reasoning that led us to the formula (81), we find that
BisJ &) :
(€0 P—(l—aij—m)/z,—l)(Yl,s,k,d) is equal to

l—a,-j—k

A=4)A=sp—e)y.,.) ~ii
( 1—[ o (r_lr) r—I€ly;; (60 Pi,;’_l)
r=1 Ze.s
_—
g(lfa,'jfk) 1—-a;j—k+d ; A —4aij
t.s . j oAL pl— i
F; Fj l_[ Vys.r EVEE; l_[ Vesr ||
r=2—aij—k r=2—a,~j—k+d
where
1-— ajj —m ~ .
x=— - #(factors E; preceding F)
_ o(=a;;—k)
= Ses - |s|2_ai./_k_|e|1:2faij7k§_“ij_m‘

To proceed, we will need to write the term between square brackets in the form
No N1 N> 5 Nr -
F°F;F,E;F;?E; ... F, " E;E; X,

for some No,...,.Nr € N, T € N, X € U,(¢g'). It is immediately clear
that Ny agrees with (104). Furthermore, let T be the total number of factors E;

_
. l—aj—k+d o
in [T,_5" V; , , and let us define

r=2—a,~j—k
r<rp<--<rre{2—a;j—k,....1—a;j—k+d}
such that . B
(Uz,s,rb = Ei
forall b € i 1,...,T}. This amounts to saying that r, ..., rr are the positions of

the factors E; in this product. Then for any b one has
IN|1,, = #(elements r € {2 —a;; —k,...,rp} such that 'l)é’s’r = F)
= #(elements r € {2 —a;j —k,...,rp} such that £, = 0 and s,_¢|,., = 1)
= #(elements r € {2 —a;; —k,....rp})
—#(elements r € {2 —a;; —k,...,rp}suchthat £, = 1)
—#(elements r € {2 —a;; —k,...,rp} such that 'Uz’” = E,-)
= (rp — (1 —ay; —k)) — [€|2—a;;—k;r, — D-
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Note also that this number is equal to

N

b = |S|2—aij—k—|l|];2_aij_k;rb—|l|1;rb‘
Hence, for any b € {1,..., T}, the element r; can be found as the unique
re{2—a;jj—k,....1—a;; —k+d}
such that £, = 0, s5,_¢|,., = 0 and
18121 ~k—11y:2ay;,—sir—lel = (7 = (1= @ij = k) = [€l2—a;;—k:r —b.

~ 1—a; A_k +d .
This agrees with (105)—(106). The total number 7" of factors E; in Hr:Zlia,-j 2 Vg

can be found as

T =#re{2—ajj—k,....1—a;j —k +d})
—#re{2—aiy—k,....,1—a;j —k +d}suchthat{, = 1)
—#(r €{2—a;j —k,...,1—a;; —k +d} such that £, = 0 and s,_¢|,., = 1)
1—a;;—k+d
=d =gy —kir-ay—k+d — p, (1=L)srep,

r=2—a;; —k

= |e 1§1_aij_k_|€|l:l—a,~/~—k + aij + k + = 1’

1;1—a,~j—k + |S

in agreement with (103).
With these notations one may now write

_

§(lfa,'j*k) 1—a;j—k+d o

L.s , ] F

Fi Fj H Visr |EiEi
r=2—aij—k

~ ~ N — N
= FiNOFj FiNl E; Fl-Nin - Fz Tes ket EiEjFi Te's'k’t-HE,‘,

for some N7, . ,+1 € N, where we have used the fact that [F;, E]] = 0. The
analogous term with A = 1 becomes

SN

éélfaijfk) 1—a;j—k+d o

.8 . i .

F; F; 1_[ 'I)E,S’r EE;
r=2—tlij—k

~ ~ N ~ N
— FiNOFj FiNl Ei FviNin L F'l Te s.k.t Ei Fi Tl.s.k.l+1Ei E],

for the same unknown N, . ,+1 € N. By Proposition 3.17 we thus have, for A = 0
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;_(l—alj—k) 1—a;j—k+d - —aij

i, ] L.s X i L. i

(o P_x )| F F l_[ Ve | EiEi 1_[ Ve.s.r
r=2—aij—k r=2—al~j—k+d

Ty s.k.—1 (No—tt) (T )
_ —a;; (No—u C.s.kt—1 aij
= Z 4; CUN© (" otNo—u+YNo—u,INIo; Tog ks~ Tls k. ~1)

u=max(0,£p)
u—1 1=87¢ g 110 Nod
—a;jj No\dT, .0
l_[ ANy—r (ql ) .5kt
r=0

_
“ay;
INlo:7g ¢ x +1-Tes kot = ;
1.5 k. (AN . i
(60 P —(x— T[sk[)) Fz i 1_[ Ls,r

r=2—a;; —k+d

Here, we have observed that Proposition 3.17 is only applicable for T > 1, which
explains the power 67, ;0. The analogous term with E; E; replaced by E; E;
becomes

To.s.k.t Noss) (T )
—ai;j (No—u £.s.k.t aijj
Z q; ¢ (6] ANo—u + YNo— —UINl0:Ty ¢ g s 1~ Teskz)

u,ND
u=max(0,£1)
u—1
( 1_[ OlNO—r)j|
r=0

——9
—ar;
INlo:7g ¢ 4 +1~ Tes k1

8.k, i
(6 © P —(x—Tg 5.k 1‘_1)) Fi 1_[ vl,s,r
r=2—a,-j—k+d

Note also that we have

Ty s ks = #(factors F; in Y k 4 preceding E E )

— #(factors E; in Y( )k 4 preceding E E))

(1—a;; k+d)
T Ses

which determines the unknown N7, , , .+1, inagreement with (107). By Lemma 3.11
this also implies

_—
—a;;
~; INlo;T, +1-Te skt = :
i le.s k.t L . i
(6 ° P—(X—Tg.s,k’t)) Fi El 1_[ l,s,r
r=2—al-j—k+d
(—aj;—k+d) —aj;
(—a —k+d)(€0P ) Fes N V;
Zl ij (x—T¢ s x.1—1) i L,s,r
A

r=2—aj; —k+d
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It now remains only to apply the formula (81) to find

;_ —alj—k+d) - —ajj
£.s i
(EOP—(X Teskz—l)) F; 1_[ Dt,s,r
r=2—aij—k+d
e (1-,)( )
_ 1-4, l—sr,\ul;
- 1_[ (o Geir=b ) .o
r=2—a,-_,-—k+d

With this result, we now have all necessary tools in hand to write down the
polynomial Cj; (c) for Case 2.

Theorem 3.19 (Case 2). Foranyi € I \ X such that (i) =i and any j € X, one
has

Fij(Bi, Bj) = Cij(c)

—1-a;; —1—a;j—m (1—a;j—m—-m')/2

D S S L e e
m’=0 t=0
—1-a;; (—1-a;;j—m)/2 o
D S S et
with pm’]’ i7) 45 obtained in Corollary 3.14 and
i, ij 1— i 2
A1 a4y
1—ai; k-1

YYY ¥ % e[

=1 d=0 m'=0 g’ se8’

m.m’ k.d m.m’ k.t.d
qzcl.s.k.t.d.m/ ( 1_[ ( - )(1—Zr)(1—sr_e|1;r))
(ql — qi_l)(l_aij —m)/2 (q] — qj_l) Z —Vr.k

=

rE(de
Tysk—1 To.s. k.t 1=87, ¢ 1 ;.0
al-ju a,-ju e
|: q; " ON©O,y T E q; Q)N(l)’u]
u=max(0,&p) u=max(0,£1)

st o
aij( u,’ja + ) £.s k.t
é_(l ajj—k+d) —{q; " \g4; " CNy T YNo,No+N ’

where

(Tes.k—1)

C()N(O),u = N(O)

A u,]—k+d)c
gl s

(qi UNo—u t ‘J/NO_ua‘N|0:TLS!kJ_(Tt,s.k.t_l)) ( 1_[ O‘No—r)7
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aij (Tiskt)
ONDu = —4; €,y

(/" @ + ) a
4; " ®No—u T VNo—u,INlo:7y ¢ o ;+1~Te.s.kt No—r |
a”

Kesdm = —22&" Dl + (1 =)0 = $p-pe),,))

—a,-j(No— —m' +d)+2k +t—d—1).

Here we have used the notations (64), (69), (89), (90), (92), (103)—(105), (107),
and (108).

Proof. This follows upon combining Corollary 3.9 and Propositions 3.15 and 3.18,
after expanding 71¢ s k.4.:,m’ Using (64) and observing that

O

|8 |2-a;; ~k—1el1:2ay;,—1—ai;—k-m'+d =

These expressions for the structure constants 0,(,;:{ i) comply with the values

computed in [27], as displayed in Table 3. Moreover, Theorems 3.13 and 3.19 and
Corollary 3.14 make it possible to compute the structure constants for higher values
of |a;;|. For example, it follows from Theorem 3.13 that for a;; = —4 one has

Fyj(Bi.Bj) = p§: " 22B; B; + {22 B B; + p§ Y2, B, B}
n p(z,], 4)Zi Bi B + pgt’,zj, 4)ZiBi B, Bi2 + péi’,lj,—4)z,~Bisz B;,

ifi, j € I \ X are distinct such that (i) = i, where the structure constants p,(; i 4)

are given in Table 4. Similarly, fora;; = —3,i € I \ X witht(i) =i and j € X
one has

Fyj(Bi.B)) = poia " BiZi + oo ZiBiZi + pois L1 B,
+ 0070 BB Zi +pody ZiBiBY + oy 3’B~B-B-Z-
+ 51’1]’1 Y2, B BjB; + Pg’({’o 3)323 Zi + Pg’({’l Yz, B?B;
+ oy WG K Zi + 08TV 2 WG K+ og 3)w,-,-1<,-3,.2,

with ,o(' fn 3 and 0(’ /=3 a5 in Tables 5 and 6.

Theorems 3.13 and 3.19, together with the previously obtained Theorems C, D,
and F now yield a complete set of defining relations for the quantum symmetric pair
coideal subalgebras B.



350

H. De Clercq
m’ 0 1 2 3
0 0 | cq? 215, 1412 0 ciqi (212, + [412,)
i, j,—4
T 0 |aqil2? Bl 15l
@,j,—4)
2 0 _Pll,zj
3 | =pod ™
Table 4. Structure constants pgl"{,’f"j ) for aij = —4.
(m,m’) ! 0 1 2
(0 0) _02 6 [3]‘11' 6‘2 2[3]q,~ (qlz + ql_z) _Cz -2 [S]qi
’ i T2 |Cidi — 12 Iy
(qi —q; ) (qi —q;") (qi —a;")
2+ q7[2]7. 31,. (g% + g2
(0’ 2) Ci qlz ql [_]1ql —¢; [ ]q, (q, _?1 )
qdi — 4; qi — 4;
> [4lg; (sz +2) [4lg; (Qi_2 +2)
(1’ 1) _Ci i —1 i —1
qi —4; qi — 4,
3],. (g% + g2 2+ g2 [2]2.
(2,0) | in []q,(q,—_‘lll_ —¢; q’—[_l]ql
qi — 4; q4i — 4;
Table 5. Structure constants pi;fnfl’t’ ) for ajj = —3.
m~] 0 1
| e Blaldly 2 o DBly,
G e (TR B G S (U
_ (gi —q; ')
2 | g 2o B, 4y —— =
J J
Table 6. Structure constants o,(,lltj i) for ajj = 3.
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4. Alternative expressions for Case 1

In this section, we will derive alternative expressions for the polynomial C;;(c) in
Case 1. We will start from a result by Chen, Lu and Wang. In [11] these authors
provide defining relations of ¢-Serre type for what they call (-quantum groups, which
are in fact quasi-split quantum symmetric pair coideal subalgebras, coinciding with
the algebras B, in the special case X = @. These correspond to Satake diagrams
without black nodes. Since Z; = —1 in this situation, the polynomial C;; (¢) will be
given by

Fij(Bi, Bj) = Cij(c)
—1—a;; —l—a;j—m

D S S AL Lt

m’'=0

if (i) = i, as follows from Corollary 3.5, and where the structure constants p,, G a” )
were obtamed in Theorem 3.13. In this section we will derive equivalent expressmns
for p,, fn i) , based on the results of [11]. These expressions w1ll also be valid beyond
the quasi-split case. Indeed, our result (51) shows that p,, ] 7/’ is independent
of X and can be obtained solely from the U,(g’)-relations (18) (20). Hence, the
expressions for p( 7 , i7) \we will derive in this section will be valid not only for X = 0,

but for any adm1331ble pair (X, 7) provided we restrictto Case 1,i.e. (i) =i € I\ X

and j € I \ X distinct from i.

Before we can state the result from [11], we need to introduce the following
notation.

Definition 4.1 ([11, Formulae (3.2)—(3.3)]). For any i € I and m € N one defines
the (-divided powers of B; as the elements

mp me

B.
By = T (B? + qici2(k — 1+ mp)12), (111)
[m]q[- k=1
m Me
B™ = B 1_[ (B? + gici2k —1]2)) (112)
i,1 = [m]q' i qiCi a; )
L k=1

where we have again used the notation (49).

Using Lusztig’s theory of modified quantum groups [34, Section 23.1] and a class
of intricate g-binomial identities, Chen, Lu, and Wang were able to prove a result,
which, translated to our notations, can be formulated as follows.

Theorem K ([11, Theorem 3.1]). Consider the quantum symmetric pair coideal
algebra Bes corresponding to an admissible pair (X = @,7v). For any i € [
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satisfying t©(i) = i and any j € I distinct from i, the -divided powers satisfy the
relations

1—al-j
> 0B ) BB T =0 (113)
l—aij
and > DB, BB =0, (114)
m=0

Remark 2. It was suggested in [11, Remark 3.4] that these relations should remain
valid for X # @ under the restriction that 7(i) = wx (i) = i.

The relations (113) and (114) can be rewritten in the form F;; (B;, B;) = C;;(¢),
where C;; () is an explicit polynomial in ) _ ; €3 - K(gq)By. The computation of this
polynomial will be the subject of the following subsection.

4.1. Quantum Serre relations from (-divided powers. In the present section, we
will rewrite the relations (113) and (114) as inhomogeneous quantum Serre relations,
so as to derive two new expressions for the structure constants p,, j Y ) for Case 1.
Let us start by introducing the following notation.

Definition 4.2. Letk € N, N e NU{—1},s € {0,1} and i € I. We will denote
(SI)

by a; ) the following elements of K(g):
N
> 26+ s]gl_ 245 + s]éi R4+ s]éi forl <k <N +s
L1y, lpy=1—s
O{l(csli/) = Ly <dy <<l
fork =0,
0 otherwise.
These oz(s ) arise as coefficients when expanding the (-divided powers from

Definition 4. 1 as polynomials in B;.

Lemma 4.3. Foranyi € I, s € {0,1} and r € N, one can write

(r) k_ (s.0) —2k
- ]q'Z(q,c,) kre-f—rp(l—S)—lBir )

Proof. Expanding (112) distributively, it is clear that

2 Cl)k (1,i) B(—Zk

Qg (r/2)—1 for r even,

@ _ ) Irle
Bi,l - 1 (r 1)/2 »
[rlg;! Z (gici) “k ((r 1)/2)—1Bi for r odd,
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in agreement with the proposed formula. Similarly, for r odd one has

(r=1)/2

(r) k., (0,) —2k
Bi,ro = Z (gici) o (lr 1)/zBir 2k,

qi .

whereas for r even, we have

B =

Z(chz)kV(Z)Br 2k
qz k=0

where
(r/2)-1

= Y ROERGE .26,

ly,0,..., L;r=0
f] <--~<Zk

But of course, since [0],, = 0, we have that

(r/2)-1
0,
v = Y RO RGE 2GR, = o), .
L1 4o, Lr=1
41<"'<5k

which again agrees with the statement of the lemma.

353

O

In the upcoming proofs, we will often be required to switch the order of summation
in a particular kind of nested sums. Below, we propose a general strategy for this

resummation.

Lemma 4.4. Let f be any function of three discrete variables k,{ and m, and let N

be any natural number, then one has

N—m N N—-k ¢

N m
ZZ Zf(kﬁm ZZ Zf(m,ﬁ—m,m+k).
m=0 k=0 (=0 k=0 (=0 m=0

Proof. We will derive this identity in several steps, which are explained below:

X_: fm—k,N—m—{L,m)

P>

||Ms

X_: flk,t,m) L

~
Il
(=]

~
N
~

M= ﬁMZ
M= T Ms

fm—k,N—m—{L,m)

=~
Il
(=]

0

Il
L

o~

Il

NE

|2§

s
M=

w
Il
=
3
II
o
&~
I

0

f(N—m—k.m—4£,N—m)
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=
&
=
L

=
M=

f(N—m—k.m—4£4,N—m)

w
Il
=
T
Lo
3
Il
o~

M~

~

M=

5

fm, L —m,m+ k).

»
Il
=
&~
Il
o
3
II
=

(1) Replace k by the new summation index k" = m —k, replace by ' = N —m—{
and rename k' — k, ' — (.

(2) Switch the summation order of the sums over m and k.
(3) Replace m by the new summation index m’ = N —m and then rename m’ — m.
(4) Switch the summation order of the sums over m and £.

(5) Replace £ by the new summation index £’ = N — k — £, replace m by m’ =
N —m — k and rename £’ — £, m’ — m.

O

We will now rewrite the results of Theorem K using Lemma 4.3.

Proposition 4.5. Let © € Aut(A, @) be such that (X = @,t) is a quasi-split
admissible pair, let Bes be the corresponding quantum symmetric pair coideal
subalgebra and let i,j € I be such that t(i) = i and j # i. Then the
relations (113)—(114) can equivalently be expressed as

—1—a;; —l—a;;—m

Fij(Bi,Bj)= Y Y (aj+m+m),(=)%m
m=0 m’=0

(gicy) 1m0 —m =2 L) g g (115)

where
) (1—a;jj—m—-m")/2
004 _ Z I—aij | 00
m,m’ - m+ 2r r.r+me+mp—1
r=0 qi

a((aij)pJ) (116)

((A—ajj—m-—m")[2)—r,—(a;j)e—(a;j;) p—r—me—mp’

, (s,7) . ..
with oy asin Definition 4.2.

Proof. Let us consider the case where a;; is even. We will start by splitting the sum
over m in (113) into a sum over m even and one over m odd:

—(aij/2) a 2 —(aij/2) ( -
2 —ajj—2m (2m+1) —ajj—2m
Z Bi,Om)BjBi,O ! - Z Bi,om BjBi,O ! = 0.
m=0 m=0
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Substituting the expressions for Bl.(,ro) obtained in Lemma 4.3, we find

—@ij/2) m —(ajj/2)—m )k_,_g

(gici
Z Z Z(:) [2m]g; '[1 — aij —2m]g,!

m=0 k=0

0,i) _(0,i) 2m—2k p pl—aij—2m—2¢
e m—1%,"(a;; /2)-m Bi B B,

3 i 3 B (qici)***
— 2m + 1]y, [—a;j —2m]g,!

0,i) (0,) 2m—2k+1p p—@ij—2m—2L _
k,m “4,—(a,j/z)—m—13i B;B; = 0.

Multiplying both sides with [1 — a;;],, ! and applying Lemma 4.4, this becomes

—(aij/2) —(ajj/2)—k L 1—a
e —Uij (0,i) (0,i)
2 : E : (gici) ( § : [2m + 2k] am,m+k—la€—m,—(a,~j/2)—m—k)
k=0 =0 m=0 qi

Bizk BJ Bil—a,'j —2k—24
—(aij/2) —(ajj/2)—k

4
o\ 1 —ay ©.0) (0.0
- Z Z (gici) ( Z |:2m + 2k + 1i| O‘m,m—{-kai—m,—(ai_//2)—m—k—1)
k=0 £=0 qi

m=0
—a;;—2k—24 _
f =

B**'B;B 0.

Referring to the notation (116), we may write the terms between brackets above as

®(0,i,af_/)

(0.i.a;;)
2k,1—a;;j—2k—24 ®

and 2k+1,—a;j —2k—20°
respectively. Replacing then 2k by m in the first sum and 2k + 1 by m in the second,

this becomes

1—a;; (l—a[j—m)g

R4 0,i,a;;) mp . 1—a;;—m—24
Z Z (gic:) Omi—a;,—m—20Bi BjB;
m=0 £=0

m even

1-a;; (1—ajj—m).

£ ~(0,i.a;;) m 1—a;;—m—2L
- Z Z (Qici) ®m,1—a,~_/—m—2£Bi B]Bl
m=0 £=0
m odd
a;j (l—aij—m)g

oY g el B"B; B U — 0. (117)
=0

1
= m,1—a;; —m—24 i
m=0
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Now observe that the term corresponding to £ = 0 can be written as

1—a;;

Z (_1)m®(0,i,a,~_/) Bim BjBl—aij—m
m=0

m,l—a;;—m i
1—a;; 1
— (_1)1+ﬂjj Z (—l)m |: —matji| Bil—a[j_mBjBim
m=0 qi

— (_1)1+aij E](Bl’ B])7

where we have replaced m by the new summation index m’ = 1 — a;; — m for the
first equality, which we have thereafter renamed to m again, and where we have used

the fact that
(0.i,a;;) 1 —ajj
®1—a,~_,—J—m,m = |: m ]
qi

by (16). Consequently, when separating the term corresponding to £ = 0 in (117),
we obtain

1—a;; (1—a,'j—m)g
Fyj(Bi,Bj) = (=1 > > (=1)™(gic;)"
m=0 =1

(0,i,a;;)

l—al’j—m—2z
m,1—a;; —m—24 .

BB, B,
Now observe that when m equals —a;; or 1 —a;;, the range of the second summation
index £ is empty. Hence, the sum over m runs in fact from 0 to —1 — a;;. Moreover,
we may replace £ by the new summation index m’ = 1 — a;; —m — 2{, which runs
over{0,2,...,—1—a;; —m}ifl —a;; —misevenandover {1,3,...,—1—a;; —m}
if 1 —a;; —m is odd, hence over {0, 1,...,—1 — a;; — m} after multiplying the
summand with (a;; + m + m’) ,. This leads us to

—1=a;j; —1—a;;j—m
Fij(Bi,Bj)= Y Y (aiy+m+m),(=1)* " (gc;)teu—m=m)I
m=0 /=0 P ;s ’
m ®(0,z,a”)BimBj B,'m ’

m,m’

as was to be proven. The statement for a;; odd follows analogously, starting from the
relation (114). ]

In a similar fashion, one can combine the relation (113) for a;; odd with the
relation (114) for a;; even. This gives rise to the following expressions.

Proposition 4.6. Let © € Aut(A,@) be such that (X = @,t) is a quasi-split
admissible pair, let Bes be the corresponding quantum symmetric pair coideal
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subalgebra and let i, j € I be such that t(i) = i and j # i. The relations (113)—
(114) can equivalently be expressed as

—1—a;; —1—a;j—m

Fy(BiBj)= 3 3. (aymtm)y(=)% " (giey) om0l

mee s mee O\ bai) pmp B (118)
where
_ (1-ajj—m-m’)/2 _
®;(;::1;(’lij) - Z |:I}rlj|—a2ijr":|q ag’l;f:me_1a(((ll__(zll:;)_1;:3’"/)/2)—’,—(“:'1‘)e—r—me—l'
r=0 i

(119)

Comparing the relations (115) and (1 18? with (110), we obtain alternative
. i,7,a;; . . . .

expressions for the structure constants p, "","'". As explained in the introduction of
Section 4, these will not only be valid for the quasi-split case, but for any admissible
pair, provided we restrict to Case 1. Hence, from now on we may assume (X, 7) to
be an arbitrary admissible pair and consider the corresponding quantum symmetric
pair coideal subalgebra B s. The relations (115) and (118) then allow us to prove the
following.

Theorem 4.7. For any distinct i, j € I \ X such that ©(i) = i, one has

—1—a;; —l—a;;—m
(i,j:aij) o (1—a;j—m—m')/2 !
Fij(Bi.Bj) = Cij(©) = P T B"B;B["
m=0 m’=0
(120)
where the structure constants are given by
P = (@i m 4 ') (=) (—gie) (w2 ) (121

m,m’

with s € {0, 1} and where we have used the notations (116) and (119).

Proof. We will use the same strategy as in the proof of [27, Proposition 6.1]. Assume
first that X = @. If we write

w,(,i:f,’,',l”) = (@ij +m+m) (=) *" (qz'Ci)(l_a""'_m_m/)ﬂ@fj:iffij)’

with s € {0, 1}, then comparison of (115) and (118) with (110) yields

—1—a;; —l1—a;j—m o o
Z Z ((_1)(1—ai_/ —m—m/)/zpz,’iju) _wr(;:i’;fij))BimBj Bim/ — 0. (122)
m=0 m’=0
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Separating the term F; in each
Bi = F; +ci0y(FK)K ' +5iK;' = F; — i E. ) K7 + 5K
and the F; in B}, the relation (122) asserts ¥; ; + ®;,; = 0, where

—1—a;; —1—a;j—m

Z Z ((_1)(1_aij —m—m’)/zpf'ili;l‘/lij) _ wr(:fn‘/lu))FmF Fm

m/_

and 9; ; lies in the set &; ; of K(g)-linear combinations of monomials in Uy (g’)
containing at most —1—a;; factors F;, and either one factor K;l , or one factor F; and
at least one factor K;!. Since the U, (g)-relations (18)—(20) imply &; ; N"U~ = {0},
both ®; ; and F; ; must vanish. The assertion ¥; ; = 0 is a polynomial equation
of degree 1 in F; and at most of degree —1 — a;; in F;. But such a polynomial
must have trivial coefficients, since the lowest degree K (q)-linear combination of F;
and powers of F; with non-trivial coefficients that vanishes, is precisely the quantum
Serre polynomial F;;(F;, F;), which is of degree 1 — a;; in F;. Hence, we find

(_1)(1—a,-_,~—m m’)/zp;’l in‘/llj) wr(,ii::li/lij),

for any m, m’ withm +m’ < —1— aij. This holds for the special case X = @, and
since ,o( i) is independent of X as follows from Theorem 3.13, this establishes
the same relation for admissible pairs with X # @. O
Remark 3. It follows from Propositions 4.5 and 4.6 that ®$:;’;,1U ) @2 ;n‘,l” ) for
any m,m’ € N withm +m’ < —1 —a;; and any distinct i, j € I \ X with r(z) =1i.
Hence, the expressions (116) and (119) must be equal, which determines a non-trivial
identity of g-binomial type.

Recall from [2, Section 3.3] that the algebras B, ¢ allow an intrinsic bar involution
under certain conditions on the generalized Cartan matrix and the admissible pair.
More precisely, this was expressed as follows.

Theorem L ([2, Theorem 3.11]). Let A = (aij)i,je1 be a generalized Cartan matrix
and (X, t) be an admissible pair satisfying the following conditions:

() Ifiel\X, t(i)=1iandj € X, thena;; € {0,—1,-2}.
(i) Ifi eI\ X, t(i)=iandi # j € I \ X, then a;; € {0,—1,-2,—-3}.
The following statements are equivalent:

(1) There exists a K-algebra automorphism B of Be,s, which restricts to the bar
involution of Uy (g) on M x UO/ and satisfies B = B; foralli € I \ X.
(2) Leti € I \ X be such that ©(i) # i or aij # 0 for at least one j € I \ {i}, and

let us denote by~ the bar involution on U,(g). Then ¢ € (K(g)*)! \X is such
that

L = ‘]?i’rmcr(i)zr(i)-
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@,j.aij)

The main advantage of the expressions (121) for the structure constants p, ",/

is that they allow to drop condition (ii) in Theorem L.

Corollary 4.8. Theorem L still holds if the condition (ii) is not satisfied.

Proof. Leti € I \ X be such that (i) =i, let j € I \ X be different from 7, and
let a;; € Z~ be arbitrary. By the proof of [2, Theorem 3.11], it suffices to show that
the right-hand side of the relation (120) is preserved under the bar involution if and
only if (2) holds. Since § = ¢~ !, hence
(s,i,a;ij) (s,i,a;j)
O =0 !

m,m’

for s € {0, 1}. It follows immediately from (121) that

G, Iau)z,(l ai—m=m[2 _ =(=ai;—m=m (zm»(czzl)“ aij—m=m’)/2

4 / El
m,m i m,m
Ci

which is equal to p,, fna”)Z(l —aij=m=m’)/2 if and only if ¢; Z; = qizc,-Z,-. ]

Consequently, the condition (ii) can also be removed from the list of assumptions

needed to develop the theory of universal K-matrices in [3, Section 5.4].

To conclude, we will show that the structure constants p,, ’]’ ;Y ) exhibit certain

symmetry properties, as suggested by the values in Table 1. In practlcal calculations,
this significantly reduces the number of couples (m,m’) for which the structure
constants must be computed.

Proposition 4.9. The structure constants pm’;; is) are symmetric in m and m’ if a;;

is odd and antisymmetric if aj; is even. In other words:

@.j.aij) 1— @.j.aij)

m,m’ V= ( 1) aupm mlj
Proof. We will treat the case a;; i odd, which is the most(subtle case in some sense.
The statement is trivial for m +m’ odd, since in this case pm’]’ /7 will vanish, because
of the factor (a;; +m + m’), in (121). So we may assume m + m’ to be even. Let
us start by observing that pm’]’ 77 yields

(1—a;j—m—-m")/2 |
_neijtm' . . \(—a;j—m—m")/2 —dij PACR)
(=D (—gici) ! Z |:m’ + 27‘] rr+me+mp—1
r=0 qi
oD
((—ajj—m—m")[2)—r,((—a;;—1)/2)—r—mp—m)p
by (121) with s = 0. Since m + m’ is even, we have (=)™ = (=1)™. Moreover,
we can rewrite the sum above using a new summation index
, l—aj—m—m

r = -,
2
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. . . G.j.aij)
which we thereafter rename to r again. This way, p, ;> /" becomes

(1—ajj—m—m")/2 —a

_1\4ijtmi_,. . \(1—aij—m-m')/2 —ajj
(=1 (—qici) Z |:m+2rj| .
r=0 qi

(0,7) (1,7)

o

a((l—aij —m—m’)/2)—r,((1—a;j—m—m')/2)—r+mp+m’p—1"r;r+((m+m’)/2)—1—mp—m’y’

where we have used the property (16) of the g;-binomial symbol. Next, since m’
and m have the same parity, we find

m . .
. . )7 if m is even, _m +m,
et = 41 =73
if m is odd
2
and so
l—a;jj —m—m' P 1 —ajj m—mp
—r+m,+m, = —r—
2 ¢ P 2 2
1 —ay;
= zlj_r_mez_(aij)e_r_me~

Thus, we obtain

@@,j.a;ij) — (_l)aij+m(_qici)(l—uij—m_m/)/2

m’,m
(1—a;;—m—m’)/2
L—ay | (L)
Z m+2r *((1=a;;—m—m")[2)—r,~(a;;)e—r—me—1%rr+me—1>
r=0 qi
which precisely equals ,of,llin(,l” ) according to (121) with s = 1. This proves the
symmetry.
For a;; even, the proof goes along the same lines, starting from (121) with either
s=0ors=1. O

4.2. Generalized g-Onsager algebras and their classical counterparts. A special
class of quantum symmetric pair coideal subalgebras is known under the name
generalized g-Onsager algebras. They coincide with the algebras B in the split
case, i.e. for the trivial admissible pair (X = @, t = id), corresponding to Satake
diagrams without black nodes and with the trivial diagram involution. In this case
we have 0,(F; K;) = —FE; by Lemma E and, moreover, Q® = {0} since wy = id.
Hence, we may formulate the following definition.

Definition 4.10. The generalized g-Onsager algebra O, (g) associated to the Kac—
Moody algebra g is the subalgebra of U, (g’) generated by the elements

Bi = F —cEK ' +5K ", (123)
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with i € I, and where (c, s) takes values in the set C x 8 defined in (25) and (26).
By Theorem C, Corollary 3.5 and the fact that in this case Z; = —1, it is abstractly
defined by the relations

—1—a;; —1—a;;j—m o
Fi(BiB)= Y. > (~)Uewmmm2e00ai) g g (124)
m=0 m’=0

G.j.aij)
m,m’

fori # j € I, withp as obtained in (83) or equivalently in (121).

In the special case g = EE , this algebra coincides with the g-Onsager algebra [5],
which is typically described as generated by two elements By and B; subject to the
q-Dolan—Grady relations

[Bo. [Bo. [Bo. Bilgl,~1] = —coq(q + ¢~ ")*[Bo. B1l.
[B1.[B1.[Bi1. Bolgl,—1] = —c19(q + ¢7")*[B1. Bol.
for certain ¢, ¢ € K(g), where [+, ], denotes the g-commutator, defined by

[A, B, = ¢gAB — ¢ ' BA.

(125)

Its generalization @,4(g) to other Kac-Moody algebras g was introduced in [6],
where defining relations were presented for the cases a;; € {0,—1,—2,—3,—4}
under some additional restrictions on a j;. The expressions (124) we have derived in
this paper extend those relations to arbitrary Cartan matrices. By Remark 1, we may
equivalently write them as

_
—(aij/2)
[T adgm(Bi) [(B))
m=(a;j;/2)
—1—a;; —l—a;j—m o
= Y Y (el g g (126)
m=0 m’=0
which, by the presence of nested g-commutators, can be considered relations of
g-Dolan—Grady type.

To conclude, we will consider the limit of the generalized ¢g-Onsager algebra O, (g)
under the specialization ¢ — 1 described in Remark 1, which is precisely the algebra
b = b(X, 1) from Definition 2.3 in the special case X = @ and 7 = id. It
follows immediately that in this case Ad(s(X, 7)) = Ad(mx) = id, and hence the
automorphism 6(X, ) coincides with the classical Chevalley involution w defined
in (11). Moreover, Definition 2.3 asserts that we may state the following.

Definition 4.11. The (classical) generalized Onsager algebra is the Lie subalge-
bra @(g) of the Kac—-Moody algebra g generated by the elements

bi = fi + o(fi) = fi —ei,
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with i € 1. By [42, Lemma 2.2], O(g) is the fixed point Lie subalgebra of g under
the Chevalley involution .

The algebras O (g) were studied by Stokman in [42], where a complete set of
defining relations of inhomogeneous Serre type or Dolan—Grady type was given. To
describe these relations, we will need the following recursively defined coefficients.

Definition 4.12. Leti, j be distinct elements of / and r € N arbitrary. Forany s € N
satisfying s < r we define ¢y’ [r] through the recursion relation

eylr) =yl =11+ ¢ = el Ir -2, (127

forr > 2, with the convention that cijl [r] = Oforany r, and with boundary conditions
¢/ [r]=1forr >0andc,  [r] =0forr > 1.

The relation (127) coincides with [42, Formula (2.4)] upon setting r = 1 — a;;,
as we will do in the following theorem.

Theorem M ([42, Proposition 2.4, Theorem 2.7]). The algebra O(g) is abstractly
defined by the inhomogeneous Serre relations

1—aij

D (=D —aijl(ad by) by =0, (128)

s=0
for any distinct i, j € I.

Note that the relations (128) differ from those given in [42] by a factor (—1)**+!.
This is caused by the fact that the generators used in [42] differ from ours by a sign
as well, but of course this does not alter the algebra under consideration.

It follows from Theorem B that the generators B; of the generalized g-Onsager
algebra ,(g) reduce to the generators b; of @(g) under the specialization g — 1,
provided the parameters ¢ € C are specializable and s = 0. Consequently, the
same holds true for the defining relations of the g-deformed and classical Onsager
algebras. It will hence be possible to derive closed expressions for the recursively
defined coefficients ¢/ [1 —a; 7] in (128) from the previously obtained equation (126).
We begin with a straightforward identity.

Lemma 4.13. Forany A, B € U(g) and r € N, one has

r
r
dA)Y(B) =) (=¥ |A"*BA*.
(ad A)"(B) = Y (1) (k)
k=0
Proof. This follows immediately from the equation (21) in the limit g — 1. O

This identity allows us to expand the nested commutators in the relation (128).
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Lemma 4.14. The inhomogeneous Serre relations (128) defining the algebra O (g)
can be rewritten as

—1—a;; —1—a;;—m m+m 3 ,
(adbi)l_afjbj Z Z ( 1)“’1+m< )C;']H_m,[l —a,‘j]blmbl‘bim .
m’=0

(129)

Proof. It follows immediately from Lemma 4.13 and the fact that cij_ o [1—aijf] =1
1

and cijal.j [1 —ai;] = 0 that the relations (128) can be rewritten as

—l-ajj
(adb))' by = (=)%Y (=1)°c/[1 - ai;](ad b;)*b,
s=0
—1— a,j Ky
= Z > (- 1)‘“/*”'"( ) L —ai1bs™ bibM .
m’=0

The claim now follows upon changing the order of summation, replacing s by the
new summation index m = s — m’ and observing that

{(m,m’):me{O,...,—l—aij}, m’e{O,...,—l—aij—m}}
:{(m,m/):me{O,...,—l—aij—m/}, m/e{O,...,—l—aij}}.

O

An alternative set of defining relations for the generalized Onsager algebras O (g)
can be found by taking the limit ¢ — 1 of the O, (g)-relations (124). Comparison
of both types of relations leads to closed expressions for the recursively defined
coefficients ¢y’ [r].

Theorem 4.15. For any distincti, j € I and any r,s € N with s < r we have
retrp—1

) =(r=s+)p > QU+1-rp)>Qlb+1-rp)* ... 2Le—gp+1-rp)".

Liekr—s)2=Tp
by <<l(r—s)/2

(130)
or, equivalently,
N (r—s)/2 ’ m
Alrl=0r—-s+1, > [(2 )(ﬂ(zk— 1)2)
m=0 mn k=0
re—m—1
> Q2 +1p)% . Lr—s)/2)-m + rp)2:|, (131)

L1sesl(r—s)/2)—=m=1-Tp
Ly <<l((r—s)/2)—m
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where the sum in (130) and (131) should be read as 1 if s = r, respectively,
ifm = (r —s)/2, and where we have used the notation (49).

Proof. By the above observations, in the limit ¢ — 1 the relation (126) becomes

—1—a;; —l—a;j—m

(adb)'™ by = Y Y [ lim ()02 )
m=0 m’=0 1

Upon comparison with (129), and following the same reasoning as in the proof

of [27, Proposition 6.1], it follows that

am[m M\ . —ari—m—m’y/2 Gl
(—1)“”+’”( )c” [1 —ay] = Jim (=) 2 p ),

m’ m-+m’ m,m’

for any m,m’ € N with m + m’ < —1 —a;;. For m = 0, upon using the
expression (121) with s = 0, this becomes

(=% ey 11 — ayj]

= (aij +m')p lim ((=1)* (qic;) =i =m0 (@i D) ),
q

(—ajj—m’)/2,—(aij)e—(aij) p
by (116), where we have used the fact that 0‘;?31 = 0r,0. The expression (130) now
follows upon setting r = 1 — a;;, renaming m’ to s and using Definition 4.2 and
the assumption of specializability of ¢. Equation (131) follows similarly from (121)
with s = 1. O
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