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Conical SL(3) foams
Mikhail Khovanov and Louis-Hadrien Robert

Abstract. In the unoriented SL(3) foam theory, singular vertices are generic singularities of
two-dimensional complexes. Singular vertices have neighborhoods homeomorphic to cones
over the one-skeleton of the tetrahedron, viewed as a trivalent graph on the two-sphere. In this
paper we consider foams with singular vertices with neighborhoods homeomorphic to cones
over more general planar trivalent graphs. These graphs are subject to suitable conditions on
their Kempe equivalence Tait coloring classes and include the dodecahedron graph. In this mod-
ification of the original homology theory it is straightforward to show that modules associated
to the dodecahedron graph are free of rank 60, which is still an open problem for the original
unoriented SL(3) foam theory.

1. Introduction

P. Kronheimer and T. Mrowka [10] defined a functor J# from the category of knotted
trivalent graphs (KTG) in R3 and foams (with boundary) in R3 x [0, 1] to the category
of k-vector spaces, where k = [, is the two-element field. They proved that if T is
a bridge-less KTG embedded in the plane, then J#(T") is nontrivial. Kronheimer and
Mrowka proved that for such a KTG the inequality dim(J#(I")) > |Tait(I")| holds and
conjectured that it is an equality. Here Tait(I") is the set of Tait colorings of I', that
is, 3-colorings of edges of I'" such that at each vertex the three colors are distinct. The
number of Tait colorings of I is denoted |Tait(I")|.

This conjecture would imply the four color theorem (4CT) (see [1]). In the same
paper, for plane graphs I' C R?, Kronheimer and Mrowka predicted the existence of a
combinatorial analogue of J#(T"), denoted J(T") in [10] and (") here. The existence
of J*(T") = (T") was proved by the authors in [7].

State spaces (I"), over all plane trivalent graphs I', extend to a functor from the
category of foams with boundary to the category of Z-graded modules over a suitable
commutative ring. We denote this functor by (e).

In fact, several versions of the functor (e) are constructed in [7]. One of them takes
values in the category of Z-graded Kk-vector spaces, another one — in the category of
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Figure 1. The dodecahedral graph G¥ .

graded free K[E]-modules, where deg E = 6. Here k is a characteristic two field,
which most of the time can be set to [F,. The most general functor of this type defined
in [7] takes values in the category of graded modules over the ring R = K[E, E5, E3]
of symmetric polynomials in X1, X5, X3, where Eq, E5, E3 are the elementary sym-
metric functions in these three variables and deg(X;) = 2,i = 1,2, 3. In this paper
we use the following three theories.

o The functor (e) with state spaces — graded R-modules, with R = K[E}, E>, E3]
as above. This theory is based on the original foam evaluation in [7].

o The functor (), with state spaces — graded k-vector spaces. It is defined by eval-
uating closed foams F to elements (F')q of F, = {0, 1} C k via the composition
of the original evaluation (F) € R and the homomorphism

R —> k=~ R/(El,Ez,E3).

This evaluation just picks out the constant term in the evaluation (F') of a closed
foam, viewed as a symmetric polynomial in X1, X5, X3.

o The functor (e) g with state spaces — graded k[ E]-modules. This theory is defined
via the evaluation taking closed foams F' to elements (F) g of k[E] via the com-
position of the original evaluation (F) € R and the homomorphism R — K[FE]
taking Eq1, E» to0 and E3 to E.

For each I', there are natural homomorphisms (base change homomorphisms)
(') ®r K[E] > (T)E, (') ®rk — (T')o, (1

which induce natural transformations between the corresponding functors.

The smallest graph for which none of (e), (e)z, (), or J# is fully understood is
the dodecahedral graph depicted in Figure 1 and denoted G“.

From [7, Proposition 4.18] and the behavior of the theory under the graded local-
ization R — R[D '], where D = E3 — E; E, is the square root of the discriminant,
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we know that (G?) g is a free graded k[ E]-module of rank 60 (the number of Tait col-
orings of G%), but we do not know its graded rank, which is an element of Z 1 [¢,q™!].
The naive guess is that the graded rank of (G?) is

103][2] = 10(¢ > + 1 + ¢*) (g + 47 ").

Potentially, the rank or dimension of the state space of a graph I' can drop upon
changing the ground ring due to lack of commutativity between the base change oper-
ation on commutative rings and taking the quotient of the bilinear form on a free
module by its kernel. The simplest example is given by the bilinear form (£) on
a rank one free k[E]-module V. The kernel is zero and the quotient by the kernel
is V. Under the base change k[E] — k taking E to 0 bilinear form becomes (0), and
the quotient by the kernel is the trivial k-vector space. The latter is different from
V ®x(e] kK = K, showing a drop in dimension.

D. Boozer [4] wrote a program to compute approximations to the modules (Gd ).
His results show that dim(Gd)g > 58, which is, however, strictly smaller than 60,
the number of Tait colorings of G¢. Boozer’s program looks at several thousand
foams bounded by G¢ and computes the rank of the bilinear form used to define (o)
restricted to the subspace spanned by these foams. The rank is 58, not 60, indicat-
ing that the subspace spanned by these foams in (G¢), has dimension 58. An even
stronger guess based on this data would be that (G?)¢ has dimension 58. Boozer’s
work [4] also suggests that the graded rank of (G?) is

973 + 207" +20g" + 1143,
rather than the naive guess given by formula (2) below, and that the natural map
(G E ®xErk — (G)o

has a nontrivial kernel.
It follows from [7, 10] that (") is naturally a subquotient of J#(I") and

dim(J*(T)) > dim((T)o).

Kronheimer and Mrowka [8,9] proved that dim J#(I") > | Tait(I")| for any graph T",
in particular,
dim J#(G%) > 60 = |Tait(G?)|.

This may suggest that J#(G?) 2 (G?)y. At the same time, one can prove that
k(") g = |Tait(I")| for any I" and, consequently, (I') g is a free graded k[ E]-module
of rank |Tait(I")|. The graded rank of (I') g, an element of Z , [¢, g~!], seems compli-
cated to determine or understand, though, already for G¢.
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In this paper we enhance the domain category of (e) by extending the foams under
consideration to conical foams. The category of foams Foam gets enlarged to the cate-
gory Foam® of conical foams that comes with evaluation functors (e)¢, (e)5 and (e)%
into categories of graded modules over rings R, k and K[E], correspondingly. The
superscript ¢ stands for conical. One advantage of this construction is that for the
dodecahedral graph the resulting state spaces have the desired size:

Proposition 1.1. The graded dimension or rank of vector spaces or modules (Gd)g,
(G9)¢ and (G?)S, is

10[2][3] = 10(¢ + ¢~ ) (g*> + 1 +¢72). )

Foams of a new kind introduced in this paper have singularities which are cones
over planar trivalent graphs endowed with equivalence classes of Tait colorings of
these graphs satisfying a technical condition. Our construction does not answer the
original question about the difference in dimensions for J#(G?) and (G?). Rather,
it enlarges the state spaces (I")o to (I')§ to achieve the desired dimension 60 for the
dodecahedral graph.

We do not know whether (I")€ is larger than (I") for some graph I". We also don’t
know the answer to the same question for the (I")§ versus (I')o or (I')% versus (I') g.
The first potential example to further investigate is G¢.

In Section 2 the foam evaluation from [7] is extended to conical foams. We con-
struct functors (e)¢, (e)g and (e)% from the category of conical foams Foam¢ to
categories of graded R-modules, k-vector spaces and k[ E]-modules. In Section 3 we
compute the state spaces of the dodecahedron and prove Proposition 1.1. In Section 4
we discuss the technical condition which appear in the definition of conical foams.

2. Conical foams

2.1. Tait colorings and Kempe moves

A web is a finite trivalent graph PL-embedded in R?. It may have multiple edges
between a pair of vertices and loops. Furthermore, loops without vertices are allowed
as well. A Tait coloring of a web I' = (V(T"), E(I')) is a map c: E(I') — I3 from
the set of edges to the 3-element set /3 = {1, 2, 3} such that at each vertex the three
adjacent edges are mapped to distinct elements in /3. A vertex-less loop counts as an
edge, an element of £(I"), and under c is also mapped to an element of /5. The set of
Tait colorings of a given web I" is denoted by Tait(I"). There is a natural action of S
on Tait(I") by permutations of colors.
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If c is a coloring of I and i and j are two distinct elements of {1, 2, 3}, denote
by I';j (c) the graph (V(I"), E;; (", ¢)), where

Eij(T,c) ={e€ E(I') | c(e) € {i, j}}.

The graph I'j; (c) is a bivalent graph and therefore a disjoint union of cycles of even
lengths, possibly including length zero (when a circle of I' is colored i or j). The
number of such cycles is denoted d;; (', c).

Let C be a connected component of I';; (¢). Swapping the colors i, j of ¢ along C
provides a new coloring ¢’ of T'. One says that ¢ and ¢’ are related by a Kempe move
along C . Two elements ¢ and ¢’ of Tait(I") are Kempe equivalent if there exists a finite
sequence of Kempe moves transforming ¢ into ¢’, possibly for different pairs (i, j).
Kempe equivalence is an equivalence relation, with equivalence classes called Kempe
classes.

Proposition 2.1 ([5, Theorem 1]). If a web T is bipartite then all Tait colorings are
Kempe equivalent.

A Kempe class « is called homogeneous if the sum
d(F, C) = dlz(r, C) +d23(F, C) +d13(F,C) (3)

is independent of the coloring ¢ € «. This integer is called the degree of k, for a
homogeneous «, and denoted by d(x) or d(T, k).

e A webis called weakly homogeneous if it admits at least one homogeneous Kempe
class.

o A web I'is called homogeneous of degree d if it is homogeneous and each Kempe
class of I" has the same degree d. For such webs, d(I") := d is called the Kempe-
degree of T'.

Example 2.2. (1) The simplest homogeneous webs are the empty web, denoted
by @ and the circle web, of degrees 0 and 2, respectively. The empty web has a unique
Tait coloring and its Kempe class has degree 0. The circle web admits three Tait
colorings that are all Kempe equivalent. This unique Kempe class « is homogeneous
and d(k) = 2.

(2) The ®-web is the web with two vertices and three edges connecting them. It
admits six Tait colorings which are all Kempe equivalent. This unique Kempe class «
is homogeneous, with d(x) = 3, so the ®-web is homogeneous of Kempe-degree
three.

(3) The tetrahedral web K4 is the web obtained by embedding the complete graph
on four vertices into the plane. It admits six Tait colorings which are all Kempe equiv-
alent. The unique Kempe class « is homogeneous and d (k) = 3.
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Figure 2. Two Tait colorings ¢ and ¢’ of the cube C3. They are related by a Kempe move along
the inner square. One has d(C3,¢) =2+ 2 +2and d(C3,¢’) =2+ 1+ 1.

(4) The cubic web Cj is the embedding of the 1-skeleton of the 3-dimensional
cube in the plane. It admits 24 Tait colorings. Since it is bipartite, all its Tait colorings
are Kempe equivalent. However, C3 has Tait colorings ¢ and ¢’ with different degrees
d(Cs,c¢) = 6 and d(C3, ¢’) = 4, see formula (3) and Figure 2. This implies that the
cube graph Cs is not weakly homogeneous.

(5) Section 3 investigates the dodecahedral graph G?. The latter turns out to
admit 60 Tait colorings which are partitioned into 10 Kempe classes, each homo-
geneous of degree three. Consequently, G¢ is a homogeneous web of Kempe-degree
three.

Define a cone over a web I' in R? by considering R? as the boundary of R3 .
Choose a point p in the interior of Ri and form the cone Cone(I") over I" by con-
necting p by straight intervals to all points of I'. As a topological space,

Cone(T") = T" x [0, 1] /T x {0},

and comes with an embedding into R3. The space Cone(I") may have a singularity
at p which is more complicated than singular points of foams in [7]. The cone inherits
from T" the structure of a two-dimensional combinatorial CW-complex. The pointed
cone Cone, (I) is the pair (Cone(I"), p).

2.2. Foams

A conical foam is a finite 2-dimensional CW-complex F PL-embedded in R3 such
that for any point p in F there exists a small 3-ball B centered in p such that (F N B, p)
is PL-homeomorphic to a pointed cone over a connected web I'(p) in S2. Note that
the PL-isotopy type of I'(p) C S? is well-defined. The web I'(p) is the link of the
vertex p of F.

A point p in F is regular if T'(p) is a circle, it is a seam point if I'(p) is a ®-web,
otherwise it is a singular point.

If for any singular point p of F, I'(p) is a tetrahedral graph K4, then this definition
of a foam is the same as in [7]. Such foams are called regular foams. The union
of seams and singular points of F is denoted s(F). The set s(F) inherits from F
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Figure 3. From left to right: the circle, the ®-web, the tetrahedron and the cube.
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Figure 4. Examples of possible singular points appearing in conical foams.

a structure of finite 1-dimensional CW-complex except possibly for several circles
in s(F) that do not have singular points on them. We view s(F') as a graph (possibly
with multiple edges, loops, and circular edges without vertices). Vertices of s(F') are
the singular points of F. W call s(F) the seam graph of F.

The connected components of F \ s(F) are the facets of F. Denote by f(F) the
set of facets of F'. A foam may carry a finite number of dots on its facets, which can
freely float on a facet but are not allowed to move across seams into adjacent facets.

A conical foam F is adorned if for every singular point p of F there is a preferred
Kempe class k(p) of I'(p). An adorned conical foam F is homogeneous if for any
singular point p of F, k(p) is homogeneous.

2.3. Colorings

Let F' be an adorned conical foam. An admissible coloring of F (or simply a coloring)
isamap c: f(F) — {1, 2,3} such that:

e For each seam of F, the three facets fi, f> and f3 adjacent to the seam carry
different colors, that is, {c(f1),c(f2),c(f3)} = {1,2,3}.

 For each singular point p of F, the Tait-coloring cr(,) of I'(p) induced by ¢ is in
the Kempe class «(p).

The set of admissible coloring of F is denoted adm(F).

Let ¢ be an admissible coloring of F'. For two distinct elements i # j of {1, 2,3}
denote by F; j(c) the closure in F of the union of facets f such that f(c) € {i, j}.
This is a CW-complex embedded in R>. Near seam points and regular points con-
tained in ﬁ,, (c), the space F; j(c) is locally PL-homeomorphic to a disk. Near a
singular point p, ﬁij (c) is PL-homeomorphic to a cone over a disjoint union of
dij(T'(p).cr(p)) ciicles.

To smooth out F;j(c) at p means to replace this cone by a collection of embedded
disks d;; (I'(p), cr(p)) by separating the disks that meet at the vertex p. An example of
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Figure 5. Smoothing out F1»(c) at a singular point p. From left to right: a neighborhood U of

1K

singular point p; the coloring induced by ¢ on its link I'(p); the space F, 12(c) N U; the surface
F12(c) N U. Note, though, that graph I'(p) is not even weakly homogeneous.

this operation is given in Figure 5. Note that if d;; (I'(p), cr(p)) = 1, there is only one
disk near p and this procedure does not change the neighborhood of p. The bicolored
surface Fj;(c) is obtained by smoothing out F; 7 (c) at every singular point of F. Itis
a surface embedded in R and therefore has even Euler characteristic.

Lemma 2.3. For an homogeneous adorned conical foam F and its coloring c the
following relation holds:

x(F12(0)) + x(Fi3(c)) + x(Fa3(c))
=3xs(F)+2 Y x(H+ Y. @dk(p)-3). @
fef(F) pep(F)

In particular, this quantity is independent from the admissible coloring c.

Proof. Let us first prove that

X(Fi2(e) + 1(Fi3(0) + x(Fas() = 3x(s(F) +2 Y x(f).  (5)
fef(F)

Here Fi»(c) is a finite CW-complex which can be constructed starting with s(F)
and attaching to it 1- and 2-colored facets of F. Hence,

AFa@) = x6sF)+ > x(H+ D x().
Sefi(F.c) fefa(F.c)

where f; (F, c) denotes the set of i-colored facets of F' with the coloring c. The same
holds for F, 13(c) and Frs (c). Summing over these identities, one obtains (5).

Let p be a singular point of F'. Smoothing out F; j(c) at p amounts to removing
a point in I:;,-j and replacing it with d;; (I'(p), cr(p)) points: it increases the Euler
characteristic by d;; (I'(p), cr(p)) — 1. This proves (4). ]
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The degree d(F) of an homogeneous adorned foam F is given by the following
formula:

d(F) = 2#{dotson F} —3x(s(F)) =2 Y x(/)— Y. (d(k(p)—3). (6)
fef(F) pep(F)

2.4. Foam evaluation

Foam evaluation was introduced in [15] and adapted by the authors [7] to the unori-
ented SL(3) case. In this section we briefly review this construction in the generalized
framework of homogeneous adorned conical foams. Let

R =K[X1, X2, X3] (N

be the graded ring of polynomials in X;, X,, X3, with each X; in degree 2. Denote
by Ei, E; and E3 the elementary symmetric polynomials in X7, X», X3. They have
degrees 2, 4 and 6 respectively and generate the subring of S3-invariants

R := (R')S3 ~K[E,, E», E3]. (8)

Let
1
1 J 1<l<]<3

Finally, for i # j, denote by R, C R” the graded ring

R" := R’[ ©))

1
o |
(Xi + Xp)(Xj + Xi)
for {i, j,k} = {1,2,3}. One has R" = R, N RY; N RY;. There are inclusions of rings
RCR C Rg; C R". (10)

From now on a conical foam means a homogeneous adorned conical foam. Let F
be a conical foam and ¢ an admissible coloring of F.

Define
X(F12(c)) x(F23(c)) x(F13(¢c)
Q(F,c)=(X1+X2) 2 (Xa+X3) 2 (X1+X3) 2, (11)
D — 2]
P(F.c) = Xo(7y s (12)

fef(F)

where n( f) denotes the number of dots on the facet f. The evaluation of the colored
conical foam (F, ¢) is the rational function (F, c¢) given by

_ P(F.o) .,
(F,c):= O(F.0) e R".

13)
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The evaluation of the conical foam F is defined by

(Fy= ) (F.). (14)

ceadm(F)

Proposition 2.4 ([7, Theorem 2.17]). For any conical foam F the evaluation (F) € R
is a symmetric polynomial in X1, X» and X3. It is homogeneous of degree d(F).

The proof in [7] extends to conical foams in a straightforward way. The nontrivial
point is to show that { F') is a polynomial. For this purpose, one shows that { F') belongs
to RZ for all pairs {i, j } € {1,2, 3}. The above evaluation coincides with the one in [7]
for the usual foams.

2.5. Trying to extend foam evaluation to non-homogeneous foams

There are two problems with extending our conical foam evaluation to foams F with
non-homogeneous singular vertices. In principle we can use formulas (13) and (14) to
define (F'). However, with this definition (F') may not be homogeneous. Second, the
evaluation may have nontrivial denominators and be a rational function rather than a
polynomial. For instance, consider

This non-homogeneous conical foam F' consists of two cones over the square web
glued along their common boundary with two dots on one facet, one dot on an adjacent
facet, and no dots on the other facets. Since the square web has only one Kempe
class of colorings, F' can be considered an adorned conical foam. A straightforward
computation shows that foam evaluation (F') is given by the following formula:

. 1+X12+X23+X§+X1X2+X1X3+X2X3
(X1 + X2)(X1 + X3)(X2 + X3)

(F) ,
which is neither a polynomial, nor a homogeneous rational function.

Here is what goes wrong with evaluations for such more general conical foams.
Suppose one is doing, say, a (1, 2)-Kempe move on an S%-component of Fy,(c) for
some coloring ¢ of F (these are the components that contribute to the denominators
in (F, c)). To ensure cancellation with x; + x5 in the denominator, one needs the
balancing relation

X (F13(c)) + x(Fa3(c)) = x(Fi3(c") + x(Fas(c)) (15)
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on the Euler characteristics of the bicolored surfaces for ¢ and ¢’, see [7, Lemmas 2.12
and 2.18]. This relation, in general, fails to hold if we do not impose homogeneity
requirement (3) from Section 2 on the Kempe classes and restrict to such classes only.
The quantity d(T", ¢) in (3) describes the contribution of the vertex which is a cone
over I to the sum of Euler characteristics

X (F12(c)) + x(F13(c)) + x(F23(c)),

see also Lemma 2.3, and this quantity needs to be invariant under Kempe moves
to have a homogeneous and integral (polynomial) evaluation. For ¢, ¢’ related by a
(1,2)-Kempe move, Fi2(c) = Fi2(c’), so the invariance reduces to that in (15).

2.6. State spaces

Using conical foam evaluation we construct three functors ()€, (e)% and (e)g from
the category Foam¢ described below to categories R-mod, k[ E]-mod and k-vect. The
ground field k can be taken to be I, but occasionally it is useful to take an arbitrary
characteristic two field as k.

A conical foam with boundary is a finite 2-dimensional CW-complex F properly
PL-embedded in ¥ x [0; 1] (for & = R? or S?), such that there exist ¢ > 0 and two
webs I'y and I'; such that

Yx[0;e)NF =Tgx[0;e) and T x(1—g1]NF =T x(1—¢;1]

and for any point p in F' N X x (0; 1) there exists a small 3-ball B centered in p such
that (F N B, p) is PL-homeomorphic to a pointed cone over a connected web I'(p)
in S2. Conical foams with boundary carry dots just like conical foams. The concepts
of homogeneous and adorned foams extend mutatis mutandis to conical foams with
boundary.

The category Foam® has webs (either in R? or S?) as objects. If 'y and I'; are
two webs, then Homgoame (Ig, I'1) consists of homogeneous adorned conical foams U
with boundary properly embedded in R? x [0; 1] (respectively, in S? x [0; 1]) such
that

dU =UN{0,1} =Ty x {0} U Ty x{1}.

Isotopic rel boundary conical foams define the same morphism in Foam¢. Composi-
tion is given by concatenation.

The category Foam is a subcategory of Foam® that consists of foams in the usual
sense, as in [7]. It has the same objects as Foam®, and a morphism F in Foam® is a
morphism in Foam if for every singular point p of F, I'(p) is the tetrahedral graph K4.
Note that since K4 has only one Kempe class of Tait colorings, there is only one way
to adorn singular point p. Such singular points are standard singular points on a foam
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as defined in [7], and the category Foam is the original category of unoriented SL(3)
foams in [7].

Functors ()¢, (e)% and (e)g are defined via universal construction, see [3, 6],
just as in [7]. Let S be a graded unital k-algebra and ¢: R — S a homomorphism of
graded unital commutative k-algebras. The homomorphisms considered here are:

. idR: R — R,
* ¢r:R — K[E] given by ¢g(E;) = §i3E,
e ¢o: R — kgiven by ¢o(E;) = 0.

For a web I', we define Ws(I") to be the free graded S-module generated by
Homgoame (@1, I'). Consider the symmetric bilinear form (, )¢ given on generators
of Wg(T") by:

(F.G)g :=¢((GoF)) €S,

where G € Hom(T", @;) is the mirror image of G with respect to the plane R? x {%}
(respectively, S? x {%}). Define

(T)g := Ws(I') /ker((,)g) (16)
as the quotient of Wg(I") by the kernel of (, )4. These quotients extend to a functor
(®)g: Foam® — S-mod a7

in a canonical way: if F € Homgoame (T, T), (F ); is the S-linear map which maps
the equivalence class of H € Homgoame (81, I') to the equivalence class of F o H €
Homgoame (@1, T). Since the homomorphism assigned to a conical foam F has deg-
ree d(F), one can use the category of graded modules and homogeneous module
homomorphisms, denoted S-mod here, as the target category. This category is not
pre-additive, since the sum of two homogeneous homomorphisms of different degrees
is not homogeneous.

Functors ()¢, ()% and (e)g correspond to the choices ¢ = idg, ¢ = ¢ and
¢ = ¢o, respectively, see above. Functors (e), (e) g and (e)¢ and, more generally,
(@) are defined in [7] in exactly the same manner but using the category Foam instead
of Foam®.

A closed conical foam F is an endomorphism of the empty web @;. (F ); is then
an endomorphism of (@, ); =~ S, hence an element of S, and

(F)g = o({F))-

Proposition 2.5. For every web I' and every graded ring homomorphism ¢: R — S,
the graded S-module (T') ¢ is a subquotient of (T')g.
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Proof. This follows from the general fact that if W is an S-module endowed with
a bilinear form and V' € W is a submodule, then V/ker(, )y is a subquotient of
W/ ker(, ). Indeed, there is the following diagram:

W/ker(,) <= V/(ker(,) N V) — V/ker(,)y. [

We can consider an intermediate theory (e) that mediates between (o) and ()€.
Given a web T, define (I')! as the subspace of (I')¢ spanned by the usual foams
in Foam with boundary I" and not by conical foams with more general singularities.
This collection of subspaces (I')?, over all I', extends to a functor from Foam to the
category of graded modules over R. The space (I') is naturally a quotient of (I'). The
inclusion and the quotient together constitute a diagram

(T) <> (T)" — (I (18)

that commutes with maps induced by foams. Given a foam F with do(F) = I'g and
d1(F) = I'1, there is a commutative diagram

(To)€ > (Tp)’ (T'o)
<F>°’J J<F>c J<F> (19)
(T4 > (Ty) — ().

Consequently, there are natural transformations of functors
()¢ < (o)" — (o). (20)

where these three flavors of (e) are viewed as functors on the category Foam. Note
that (e)¢ is a functor on the larger category Foam®.

We do not know a graph where even one of the maps in (18) can be shown not to
be an isomorphism. It is an open problem to compute the spaces and maps in (18) for
the dodecahedral graph G¢. Note however that Proposition 3.2 computes (G¢)¢.

Many properties of functors (e)s proved in [7] hold (with the same proofs) for
functors (o);, including [7, Propositions 3.10 to 3.16].

Unoriented SL(3) foams are remarkable in that we do not yet know a way to
determine the state space of an arbitrary unoriented SL(3) web. Oriented SL(3)
foams and webs are much better understood, and a basis in the state space of any ori-
ented SL(3) web can be constructed recursively, see [6,12—-14] and [11], where SL(3)
webs (Kuperberg webs) were introduced.
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3. State space of the dodecahedron

In this section S is a graded ring and ¢p: R — § is a graded ring homomorphism. If M
is a Z-graded S-module, M {¢’} denotes the graded S-module M with the grading
shifted up by i. In other words, (M {q'}); = M;_;. If P = Y ;.5 a;q" is a Laurent
polynomial in ¢ with nonnegative integer coefficients, M { P} denotes the S-module
P Mg
i€Z
The state space (@, );5 of the empty web @ is a graded free S-module with the gener-
ator in degree zero represented by the empty foam @,

(@1)3; = S(@z)qy ~ S. (21)

3.1. Theta-web

Before inspecting state spaces of the dodecahedron, let us inspect state spaces of the
®-web, which are well-understood without any need for conical foams.

Proposition 3.1. Let I" be the ©-web. Then the following isomorphism holds:
(D) ~ (B1)g{(a~" + ) (g7 + 1 +¢*)} =~ S{2IB3]).

The above notations use quantum [n] = ¢" ! + ¢" 3 + .- + g™,
This proposition follows directly from [7, Propositions 3.12 and 3.13], but it is
instructive to give a “one-step” proof.

Proof of Proposition 3.1. Let us first show that foam evaluation satisfies the following
local identity:

N7 7N 7N 7N 7N 7,
4y gy gy 4y 4y 48
(0,0,0) (0,0,1) (0,1,0)+(0,0,1) (0,1,1)4+(0,0,2)  (0,1,1) (0,1,2)

where the triples of integers on the top and bottom encode the number of dots on each
of the three facets. Note that on the right-hand side of the identity, two middle terms
are each a sum of two foams.

It is convenient to introduce some notations at this point: let us fix a web I', v a
vertex of I and denote ey, e and ej the three edges of I adjacenttov. Fori =1,...,6
define x; and y; as the foams I" x [0, 1] with dots on the facets e; x [0, 1], e2 x [0, 1]
and ez x [0, 1] given by Table 1.



Conical SL(3) foams 93

Number of dotson:  e; x [0,1] ez x[0,1] e3x[0,1]

X1 2 1 0
X2 2 0 0
X3 1 1 0
X4 1 0 0
X5 0 1 0
X6 0 0 0
1 0 0 0
V5 0 0 1
V5 0 1 0
Vi 0 0 2
Vs 0 1 1
Ve 0 1 2

Table 1. Definition of x; and y/.

Finally, fori = 1, ..., 6 define

yi =Y ifi #3,4,
V3= Y5+ V3, (23)
ya =i+ v

The foams x; and y; are endomorphisms of I' in Foam and Foam®. In particular,
Xe = y1 = idr.

Choosing v to be the top vertex of the ®-foam and the edges e;, e, and e3 going
from left to right, we can rewrite (22):

Xi

= 2; X (24)

Yi

Local identity (22) (or (24)) says that no matter how the foams in the equation are
completed to closed foams by an outside conical foam H, the corresponding linear
relation on the evaluations holds.

Denote by F' the closed conical foam given by gluing H onto the foam on the
left-hand side of (24). Denote by G* fori € {1,..., 6} the six closed conical foams
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given by gluing H to the six foams on the right-hand side of (24), going from left to
right. Two of these six foams are actually sums of conical foams. Denote by G the
conical foam which is identical to G;’s but without the dots that the latter carry in the
region shown in (24):

(0,0,0)

N7
o

(0,0,0)

G :=

The foam G can be viewed as the composition of two ®-half-foams. These are two
foams with ®-web as the boundary and a single singular seam. They are reflections
of each other about a horizontal plane. Their composition in the opposite order is the
usual ®-foam.

Conical foams G!,..., G% and G are identical, except for the distribution of dots.
In particular, their sets of colorings are canonically isomorphic. The set adm(G) can
be partitioned into two subsets: colorings which restrict to the same colorings of the
two ®-webs on the top and bottom of the identity and the ones which restrict to
different colorings on the ®-webs on the top and bottom of the identity. The former
is canonically isomorphic to adm(F'), the latter is denoted adm(G)’, so that one may
write

adm(G) =~ adm(F) U adm(G)'.

If ¢ is an element of adm (F) U adm(G)’ we view it as a coloring of G and G; as well.
Let us prove that

6
(F.c) =Y (G'.c) forallceadm(F) (25)
i=1
and
6 .
0=Y (G'.c) forallc e adm(G)'. (26)
i=1

To show (25), fix ¢ € adm(F). The top and bottom ®-webs are colored by ¢ as
follows, where (i1, i2, i3) is a permutation of (1, 2, 3):

One has x(Fj;j(c)) = x(Gij(c)) — 2 for all pairs (7, j). Hence,

(F.c) = (G, c)(Xiy + Xip)(Xiy + Xi)(Xi, + Xiy).
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Furthermore,
6
Z(Gi, ¢) = (G, ) (X7 Xiy + X2 Xiy + Xiy Xi, (Xi, + Xiy)
i=1 + Xiy (Xi Xiy + X2) + X2 Xiy + Xi, X7
= <G’C>(X1%Xi2 + Xi22Xi3 + Xi1Xi22 + Xi1Xi23 + XéXis + Xizxt%)
= (G’C>(Xi1 + XXiz)(Xil + Xi3)(Xi2 + Xi3)
= (F,c),
which proves (25).

To show (26), fix ¢ € adm(G)’. Denote the induced Tait colorings of the top and
bottom ®-web boundaries of G as follows:

i i3 and J1 J3 .
Then,
6
Z(Giad = (G,C)(Xl% Xi, + Xz% Xjs + Xiy Xi, (X, + Xj3)
i=1 + Xi, (X X3 + X2) + X5 Xjp Xiy + X, X2,

= <G, C)(Xi1 + ij)(Xil + Xj3)(Xi2 + Xj3)
=0.

For the last equality, observe that (i1, i2, i3) # (j1, j2, j3) and, consequently, one of
the three linear in X terms on the right-hand side is zero.

We next show that the terms on the right-hand side of (22) are pairwise orthogonal
idempotents, as follows. Denote by P; fori = 1, ..., 6 the foams with boundary on
the right-hand side of (22). Any two of them, say P; and P;, compose by stacking
one onto the other and gluing along the ®-web, resulting in the foam P; P;. The foam
evaluation satisfies the following local relation:

P;Pj = §;; P;. 27
Note that P; P; is always a sum of foams of the form

(0@1 L (k,t,m)
@ UOKk,L,m) withO(k,L,m):= (.) ,

(as,a5,a6)

where k, £ and m denote the number of dots on the left, right and middle facets of the
®-foam O(k, £,m). Hence, (27) is a direct consequence of the multiplicativity of foam
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evaluation with respect to disjoint union and formulas for the evaluation of closed
®-foams. One can easily check each of the 36 cases using the following evaluation
rules

1 if{k,€,m} ={0,1,2},

(O £,m)) = {o it #k, 0m) < 2,

R-linearity of closed foam evaluation, and various symmetries, to shorten the compu-
tation.

From the orthogonality relations (27) and taking degrees into account, one deduces
that the matrices

(% & © ¢ & Dl
(22 o & & &)

(0,0,0) (0,0,1) (0,1,0)4(0,0,1) (0,1,1)4(0,0,2) 0,1,1) (0,1,2)

give mutually inverse isomorphisms between the state space (I')3 and
(@03~ + (g2 + 1+ ¢} = S{[2103]),

see also (21). In the definition of the matrices, the functor (F)j is meant to be applied
to each entry. Using x;’s and y;’s these matrices can be rewritten:

(el),, = (0. =

seen as line and column matrices, respectively. |

From identity (22), one obtains that the state space of the ®-web I is a free S-
module with a basis of foams

(2,1,0) (2,0,0) (1,1,0) (1,0,0) (0,1,0) (0,0,0)
NiZBANT7ANAN 7N/ 7N ZRAN 7
Due to the ®-web I' admitting a symmetry axis which does not contain vertices
of T, the state space (I') is a Frobenius algebra over S rather than just an S-module.
(The Frobenius algebra structures comes from the symmetry axis and from the fact
that the functor (-) is constructed by the universal construction, as explained in
[15, Section 4.2].) The multiplicative structure can be seen as coming from the foam
depicted in Figure 6.
The state space is a quotient of S[Y7, Y2, Y3], where

(1,0,0) (0,1,0) (0,0,1)

le@, Y2=@, &:@.
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Figure 6. This pair of seamed pants gives the multiplicative structure on the state space of the
®-web.

In the case S = R = K[E, E», E3] and ¢ = idg, one can show that

Yinw+Y,+Ys—Ey,
<F)c ~ R[Yl,Yz, Y3]/ Y1Y2 + Y2Y3 + Y1Y3 — Ez, ~ k[Yl, Y2,Y3] ~ R/.
1Y,V — E3

The state space (I')¢ is a free R-module of rank six and can be identified with the
GL(3)-equivariant cohomology of the full flag variety of C3 with coefficients in k.
The ground ring R is isomorphic to the GL(3)-equivariant cohomology of a point
with the same coefficient field.

3.2. Tait colorings of the dodecahedron

The dodecahedron graph G¢ has 60 Tait colorings. A quick analysis indicates that
for any Tait coloring ¢ of G¢, the graphs G{IZ (o), G{"3 (c) and Gg3 (c) are connected
and therefore constitute three Hamiltonian cycles of G?. Conversely, any Hamilto-
nian cycle can be used to construct six colorings by coloring alternatively the edges
belonging to this cycle and using the third color for the remaining edges. Hence we
have a 6:3 correspondence between Tait colorings and Hamiltonian cycles of G4, so
that G? has 30 Hamiltonian cycles.

Let us investigate quickly the various symmetry at play. Since sz(c), G;’l3 (c)
and Gg3 (¢) are connected for any coloring ¢ of G?, Kempe equivalence classes coin-
cide with the equivalence classes for the permutation action of S3 on Tait colorings.
For more details about such webs, see Section 4.

The group A5 of rotations of the regular dodecahedron has order 60 [2, Chapter 8]
and acts with two orbits on the set of Hamiltonian cycles. The two orbits consist of
15 “clockwise” and 15 “counterclockwise” Hamiltonian cycles, respectively. Figure 7
shows one such cycle. It’s determined by a pair of opposite edges in the dodecahedron
graph (there are 15 such pairs, since there are 30 edges), and the direction of the "twist’
around the edge in a pair, either clockwise or counterclockwise, as the Hamiltonian
cycle exits that edge. In Figure 7 the cycle goes clockwise.
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Figure 7. A clockwise Hamiltonian cycle in G¢.

The stabilizer subgroup of a cycle determined by a pair of opposite edges and a
direction is Z, x Z, C As, generated by 180° rotation around the line through the
center of the two edges and by the 180° rotation around the line parallel to the two
opposite edges and through the center of the dodecahedron. Indeed the four elements
of this subgroups are precisely the rotations that preserve the pair of edges and they
happen to preserve the direction.

The group As x Z, of all isometries of the dodecahedron (and not just rotations)
acts transitively on the set of Hamiltonian cycles. Stabilizer subgroups for this action
are the same as those for As.

3.3. State space

Proposition 3.2. The following isomorphism of graded R-modules holds:
(GT)e =10(g + 47 )(g* + 1 +¢72)(01)° = R{1012][3]}.
In particular, (G?)¢ is a free R-module of graded rank 10[2][3].

This decomposition holds for any homomorphism ¢: R — S of graded commuta-
tive rings as well, and
(G = S{10[2][3]}.

Proof. The proof uses a decomposition of the identity foam on G¢ into a sum of 60
pairwise orthogonal idempotents.

Recall that in the unoriented SL(3) theory the state space of the ®-web is a free
rank six module over R, the state space of the empty graph. This decomposition can
be written via a relation similar to the neck-cutting relation for the identity foam on
the circle graph. The latter has three terms on the right-hand side [7] and mimics the
formula

a= in ® ea(yia), (29)

i=1
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where A is a commutative Frobenius algebra over a ground ring R with dual bases
{xi}?—, and {y;}}'_, relative to the trace map g4: A — R.

Note that this is not specific to the ®-web. Indeed, such a decomposition in the
unoriented SL(3) theory [7] for the state space (I') of a web I" always exists if (I')
is a free graded module over R (necessarily of finite rank), with the number of terms
equal to the rank of the module.

Recall that G¢ is homogeneous of Kempe-degree 3 and has 10 different Kempe
equivalence classes. We denote these classes by «;j, where 1 < j < 10, in some order.

Denote by C4 C ]Ri the conical foam which is the cone over G¢. This is a conical
foam with a single singular point p . The bottom boundary of C is G¢ and the top
boundary is empty. Denote by C_ the mirror image of C4+ with respect to reflection
about the horizontal plane and p_ the singular point of C_.

Both C and C_ are unadorned conical foams with boundary with a single singu-
lar point each. We think of C as a singular cap and C_ as a singular cup. Composing
these unadorned conical foams along the common boundary G¢ results in a closed
unadorned conical foam C4 C_ with two singular points (see Figure 8).

R

Figure 8. From left to right, conical foams C, C— and C4C_.

For each Kempe class k of G¢, denote by C.4 (k) (respectively C_(k)) the homo-
geneous adorned conical foam with boundary C (respectively, C_), where p (resp-
ectively, p_) is mapped to «.

The closed homogeneous adorned foam C4(k)C—(k’) is given by composition
of these two conical foams along the common boundary G. It admits a Tait color-
ing if and only if ¥ = k’. When this is the case, there are exactly six Tait colorings
of C4 (k)C_ (k). Furthermore, together they constitute a single Sz orbit on the set of
Tait colorings of this homogeneous adorned conical foam.

The unadorned conical foam with boundary C_C is the disjoint union of C_
and C, and it induces an endomorphism of G¥. It has two singular points p_ and p..
For j =1,...,10, denote by P; adorned conical foam with boundary C_(k;)C (k;).
This is obtained by mapping both p_ and p4 to «;. Conical foam P; yields an endo-
morphism of the state space (G?).

Choose a vertex v of G¢ and denote its adjacent edges by e;, e and e3. We use
foams x;’s and y;’s (1 < i < 6) introduced in the proof of Proposition 3.1. In our
context they are endomorphisms of web G? which differ from G¢ x [0, 1] only by
their dot distributions which are given by (23) and Table 1.
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We claim that foam evaluation satisfies the following local relation:

10

6
G4 x[0.1] =" xiPyi. (30)

j=li=1

and furthermore, the 6 x 10 = 60 terms on the right-hand side of the equation, when
seen as endomorphisms of (G¢), are pairwise orthogonal idempotents.
Diagrammatically, this reads as

il

(0,1,1)+(0,0,2) (0,1,1) (0,1,2)

or as

€29

il

Proof of this claim is identical to that of (22) except taking into account that G¢
has ten distinct Kempe classes while the ®-foam has only one. We sum over these ten

Kempe classes.
Proving identity (30) is equivalent to proving that for any conical foam F' bound-

ing G? U (—G?), the foam evaluation satisfies

10 6

(G x[0, 1)U F) =" "(x;Pjy; UF). (32)

j=1i=1

Fix a Kempe class «j, with 1 < jo < 10. The sets of admissible colorings of the
conical foams (x; Pj,y; U F')1<i<e appearing in the sum are in natural bijections with
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adm(Pj, U F). Let ¢ be an element of adm(P;, U F). It induces colorings of C (k)
and of C_(«;,) and therefore two colorings ¢4 and c_ of G4 . Note that ¢4 and c_ are
both in the Kempe class &, but might not be equal.

If ¢, = c_, the coloring ¢ induces an admissible coloring of (G¢ x [0,1]) U F,
still denoted c. The same computation as the one proving (25) gives

6
(G x[0,1]) U F,c) = Z(x,-Pjoy,- U F,c).

i=1

Note, furthermore, that any coloring of (G¢ x [0, 1]) U F is obtained in this man-
ner (for arbitrary jp).
If, on the contrary, c4 # c_, the same computation as the one proving (26) gives:

6
Z(X,‘ Pj,yi UF,c)=0.

i=1

Summing over all Kempe classes and all colorings of Pj, U F', we obtain iden-
tity (30).

It remains to show that the 60 terms on the right-hand side of are pairwise orthog-
onal idempotents.

Orthogonality of elements involving different Kempe classes follows from the
absence of admissible colorings of the conical foam obtained by concatenating these
elements. Idempotent property and orthogonality for elements involving the same
Kempe class follow from the computation proving identity (27). ]

Remark 3.3. From Proposition 2.5, it follows that (G¢) g is a subquotient of (G¢ )%
The latter module is free of graded rank

10g73 4+ 20~ 4+ 20q + 104

by Proposition 3.2. Boozer’s computations [4] suggest that the former is free of graded
rank
973 4+ 20q7"! 4+ 20q + 114°.

This is not contradictory. For instance, it may happen that an element x of degree 3
in (G4) g is equal to E - y for an element y of degree —3 which is in (Gd)fE but not
in (G4 .

The reader may have noticed that proofs of Propositions 3.1 and 3.2 are virtually
the same. What matters is that both the ©-web and the dodecahedral graph G¢ are
homogeneous of Kempe-degree 3. On can adapt the argument to obtain the following
proposition.



M. Khovanov and L.-H. Robert 102

Figure 9. Bijection between colorings of I" and T'” in Proposition 4.2.

Proposition 3.4. Let I" be an homogeneous web of Kempe-degree 3. The following
isomorphism of graded R-modules holds:

| Tait()|
6

| Tait(I")|

() :

I

@+aDG@+ 1+ = R{ [21[31}.

In particular, (T')€ is a free R-module of graded rank WD] [3].

4. Homogeneous webs

Kempe equivalence is at the heart of the definition of weakly homogeneous, homo-
geneous webs and conical foams. Proposition 3.4 suggests that homogeneous webs
of degree 3 are particularly interesting. However, to the best of our knowledge, very
little is known about them.

In this section we consider homogeneous webs and raise some questions related
to them. It is natural here to work with webs in S? rather than in R2. We introduce the
notion of a Kempe-small web which is closely related to that of homogeneous web of
degree 3, but tailored to include the circle and the empty web.

Definition 4.1. For webs " and I” a map ¢: Tait(I") — Tait(T") intertwines Kempe
equivalence if two colorings ¢ and ¢, of I' are Kempe equivalent if and only if ¢(c1)
and ¢(c,) are Kempe equivalent.

In particular, for such a map, all the pre-images of a given coloring of I/ are
Kempe equivalent.

The operation of converting a small neighborhood of a vertex of a web I" into a
triangular region with three vertices and three outgoing regions is called blowing up
avertex of T'.

Proposition 4.2. If T is obtained from T by blowing up a vertex, then there exists a
canonical bijection between the colorings of T and T'. This bijection preserves the
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Figure 10. 2-to-1 map between colorings of I' and of T in Proposition 4.3.

degree and intertwines Kempe equivalence. In particular, I" is weakly homogeneous
(respectively, homogeneous) if and only if T is.

Proof. The bijection between colorings is given in Figure 9. Let ¢ be a coloring of '
and denote by ¢ the corresponding coloring of T, For 1 </ < j < 3 there is a canon-
ical bijection between connected components of I';;(c¢) and Flf]. (c) (see Section 2.1
for this notation). Kempe moves along components of I';;(c) correspond to Kempe
moves along components of I/ ;i (©). ]

Proposition 4.3. Let I" and I'’ be two webs which are identical except in a small disk
where they are related as follows:

{}

r I’

Then there exists a canonical 2-to-1 map from the set of colorings of T to that of T".
This map decreases the degree of a coloring by 1 and intertwines Kempe equivalence.
In particular, T is weakly homogeneous (respectively, homogeneous) if and only if T’
is.

Proof. The 2-to-1 map is given in Figure 10. Denote i, j and k the three elements
of {1,2,3}. Let ¢ be a coloring of I and denote by c¢; and ¢, the corresponding
colorings of T'. Let ¢ associate i to the distinguished edge of I'’. Colorings ¢ and ¢;
are related by a Kempe move. Besides this Kempe move, all Kempe moves that one
can do on c¢; correspond canonically to Kempe moves on ¢ (and vice versa). Moreover,
one has

dij(T,c) = dij (T, c1) = dij (T, ¢2),
dig(T,c) = dix (X', c1) = dixg (T, ¢2),
dixg(T,c)+1=dj(I'", c1) = djx (I, c2). "

Among homogeneous webs, one class seems of peculiar interest: the webs for
which Kempe classes coincide with orbits of the action of S5 on the set of colorings.
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I I
Figure 11. The disjoint union of I'y and I'> and one of their vertex-connected sums along v{
and vy.

Definition 4.4. A web I is called Kempe-small if Tait(I") # @ and any Tait coloring ¢
of I" has the property that its (i, j)-subcoloring I';j(c) is connected for all 1 <i <
J =< 3 (the empty graph is considered connected).

Examples of Kempe-small webs include the empty web, the circle, the ®-web,
the tetrahedral web (both shown in Figure 3) and the dodecahedral web, see Figure 1.
Note that a Kempe-small web is necessarily connected. A Kempe-small web which is
neither the empty web nor the circle is homogeneous of Kempe-degree 3. Conversely,
homogeneous webs of Kempe-degree 3 are Kempe-small.

Remark 4.5. There is no obstruction to define Kempe-smallness, weak homogeneity
or homogeneity for abstract trivalent graphs.

The next statement follows from Proposition 4.2.

Proposition 4.6. If I is obtained from T" by blowing up a vertex, then one of I, T/
is Kempe-small if and only if the other one is.

Fori =1, 2, consider a web I'; on the 2-sphere S? and a vertex v; of T';. A vertex-
connected sum of T'y and T'5 along (v1,v2) is a web I' in S? obtained by removing
small disk neighborhoods of vy, v, and gluing the complements of this neighborhoods
together to get a trivalent graph embedded in S2. There are six ways to form a vertex-
connected sum along vy, v, due to the six ways to match the three legs of I'; at vy with
the three legs of I'; at v,. Three out of these six ways require reversing the orientation
of one of S?’s.

The ®-web is a neutral element for the vertex-connected sum: vertex-connected
sum of I'; and ® is isomorphic to I';. Performing a vertex-connected sum with the
tetrahedral web amounts to blowing up a vertex.

Proposition 4.7. A vertex-connected sum of two webs T'" and T is Kempe-small if
and only if both T and T'"" are Kempe-small.

Proof. Denote by I the vertex-connected sum of I'” and I'”. Suppose that I" is Kempe-
small. Any coloring of I" assigns three different colors to the three distinguished edges
{e1, e, e3} of I'. Indeed, for any such coloring, the number of edges in {ey, ez, e3}
that are in I'15(c), (respectively, I'13(c), ['23(c)) is even since these graphs are collec-



Conical SL(3) foams 105

r ~ 1
=2
s

e 3

Figure 12. Possible colorings of the square.

tions of cycles. This is only possible if {eq, >, 3} are assigned different colors. This
implies that TV and T'” both have admissible colorings: any coloring of I" induces
colorings of I and I'”. Let ¢’ and ¢” be colorings of I'" and I'” respectively. Apply-
ing an S3-symmetry to ¢”, if necessary, one can associate a coloring ¢ of " to ¢, ¢”.
Since I' is Kempe-small, I';;(c) is connected for any {i, j} C {1, 2, 3}. This implies
that I'}; (¢’) and I/ (c”) are connected for any {i, j} C {1, 2,3} and finally that I"'
and I'"" are Kempe-small.

Conversely, suppose that I and T are Kempe-small. Let ¢ be a coloring of T’
(this always exists since one can construct such a coloring using ¢’ and ¢” as stated
in the previous paragraph). Since ¢ assigns three different colors to the three dis-
tinguished edges, ¢ induces colorings ¢’ and ¢” of T and T'”. Finally, for all pairs
{i,j} € {1,2,3}, Tij(c) is the connected sum of I';; (¢’) and I'/;(c") and is therefore
connected. ]

The proof of the following proposition uses planarity of webs. We don’t know if
an analogous statement holds without planarity.

Proposition 4.8. Let I', Ty, and 'y, be three webs which are identical except in a
disk B where they are related as follows:

~_ “

r re r

Then I is Kempe-small if and only if one of the following holds:
e both T and T" are Kempe-small,
o TV is Kempe-small and T" admits no coloring,

o« TIhis Kempe-small and TV admits no coloring.

Proof. Suppose first that I is Kempe-small and let us prove that I'” and r'* fall
into one of these three cases. Let ¢ be a coloring of I'. Up to an S3-symmetry, we
can suppose that ¢ has one of the three types shown in Figure 12. This implies that
either 'Y, Fh, or both admit a Tait coloring. Hence it remains to show that if I’
(respectively, I'”) admits a coloring then it is Kempe-small.
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~ 1

e =2

w3

C1 Cy C2

Figure 13. Coloring ¢, of I'V induces two colorings ¢1 and ¢ of T.

Figure 14. Colorings ¢ and ¢, of I': planarity of " implies that one of I'12(c1) or I'12(c2) is
not connected.

Without loss of generality, one can assume that I'V admits a coloring ¢,. Suppose
that ¢, assigns the same color to the two edges of 'V intersecting the disk B. Up to
an S3-symmetry, we can suppose that these edges are colored by 1. There are two
Kempe-equivalent colorings ¢; and ¢, of I' which are induced by ¢, but differ in B,
see Figure 13. Since I' is Kempe-small, I'12(cy) is connected. This in turns implies
that I'12(c3) is not connected, see Figure 14), and contradicts I" being Kempe-small.
Hence, ¢, assigns different colors to the two edges in B. There is a unique coloring
of ¢ of I which coincides with ¢, except in B. Since I' is Kempe-small, I"j5(c),
I'13(c) and T'23(c), are Hamiltonian cycles in I', and I'}, (¢y), T'{5(cv), I'35(cy) are
connected.

Conversely, suppose that I'V and rh satisfy one of the three conditions listed in
the proposition. In particular one of I'?, T"# admits a coloring and so does I'. Let ¢ be a
coloring of T". Suppose that it assigns the same color to the four edges pointing out of
the square. Up to an S3-symmetry, one may suppose that this color is 1. The coloring ¢
induces colorings ¢, and ¢j, of T'” and ' respectively, see Figure 15. Hence, we are in
the case where I'V and I'* are Kempe-small. Graphs F{’z (c) and I'?, (c) are embedded
in R? and related by a saddle move. Hence one of them is not connected. This is not
possible with webs 'V and rh being Kempe-small, thus not all the edges of the square
have the same color in ¢. Up to an S3-symmetry, there are only two possibilities for ¢

in B:
A>
M AAAA

FARN PN gy,

Cy C c Ch
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o

Praatiianatt

Cy c Ch

Figure 15. Coloring ¢ of I" induces coloring ¢, of 'y, and coloring ¢, of T'y,.

In the first case, ¢ induces a coloring ¢, of I'?, hence I'? is Kempe-small. Connected-
ness of I'12(c), I'13(c) and I'23(c) follows from that of I'}Y, (¢y ), I'{5(cy) and I'Y5(cy).

In the second case, ¢ induces a coloring ¢, of I'?, hence I'" is Kempe-small.
Connectedness of I'15(c), I'13(c) and I'x3(c) follows from that of F{’z(ch), F{‘3(ch)
and Fég (cp). ]

Beyond the smallest examples of a circle and the theta-web, Kempe-small webs
can be built inductively from the tetrahedral and dodecahedral webs by blowing up ver-
tices and forming vertex-connected sums. We don’t know other examples of Kempe-
small webs.
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