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Abstract. To every group G we associate a linear monoidal category Par .G/ that we call a
group partition category. We give explicit bases for the morphism spaces and also an efficient
presentation of the category in terms of generators and relations. We then define an embedding
of Par .G/ into the group Heisenberg category associated to G. This embedding intertwines
the natural actions of both categories on modules for wreath products of G. Finally, we prove
that the additive Karoubi envelope of Par .G/ is equivalent to a wreath product interpolating
category introduced by Knop, thereby giving a simple concrete description of that category.
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1. Introduction

The partition category is a k-linear monoidal category, depending on a parameter d
in the commutative ground ring k, that encodes the homomorphism spaces between
tensor powers of the permutation representation of all the finite symmetric groups in
a uniform way. Its additive Karoubi envelope is the category Rep.Sd /, introduced
by Deligne in [4]. Deligne’s category Rep.Sd / interpolates between categories of
representations of symmetric groups in the sense that the category of representations
of Sn is equivalent to the quotient of Rep.Sn/ by the tensor ideal of negligible
morphisms.
When working with linear monoidal categories in practice, it is useful to have two

descriptions. First, one would like to have an explicit basis for each morphism space,
together with an explicit rule for the tensor product and composition of elements of
these bases. Second, one wants an efficient presentation of the category in terms of
generators and relations. Such a presentation is particularly useful when working
with categorical actions, since one can define the action of generators and check the
relations. Both descriptions exist for the partition category. Bases for morphisms
spaces are given in terms of partition diagrams with simple rules for composition
and tensor product. Additionally, there is an efficient presentation, which can be
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summarized as the statement that the partition category is the free k-linear symmetric
monoidal category generated by a d -dimensional special commutative Frobenius
object.
Deligne’s original paper [4] has inspired a great deal of further research. Of

particular importance for the current paper are the generalizations of Knop and
Mori. In [10], Knop generalized Deligne’s construction by embedding a regular
categoryA into a family of pseudo-abelian tensor categories T .A; ı/, which are the
additive Karoubi envelope of categories T 0.A; ı/ depending on a degree function ı.
Deligne’s original construction corresponds to the case where A is the category
of finite boolean algebras (equivalently, the opposite of the category of finite sets).
Knop’s construction, which is inspired by the calculus of relations on A, has the
advantage of being very general, but the disadvantage of being rather abstract. In
particular, Knop does not give a presentation of his categories in terms of generators
and relations.
In [12],Mori generalizedDeligne’s construction in a somewhat different direction.

For each d 2 k, Mori defines a 2-functor Sd sending a tensor category C to another
tensor category Sd .C/, which should be thought of as a sort of interpolating wreath
product functor. Morphisms are described in terms of recollements and one has a
presentation using the string diagram calculus for braided monoidal categories.
In the current paper, we are interested in a setting where the constructions of Knop

and Mori are closely related. This occurs when A is the category of finite boolean
algebras with a locally free action of a finite group G, and when C is the category of
representations of G. With these choices, the categories defined by Knop and Mori
can both be viewed as interpolating categories for the categories of representations of
the wreath productsGnÌSn. In fact, Mori’s interpolating category contains Knop’s
as a full subcategory; see [12, Remark 4.14] for a precise statement. These “wreath
Deligne categories” and other variations have been further studied in [5,6,8,15,16].
Wreath products of groups and algebras appear in a surprising number of areas

of mathematics, including vertex operators, the geometry of the Hilbert scheme,
and categorification. In particular, to every Frobenius algebra (or, more generally,
graded Frobenius superalgebra) A and choice of central charge k 2 Z, there is a
Frobenius Heisenberg category Heisk.A/, introduced in [14,17] and further studied
in [2]. When k D ˙1, this category encodes the representation theory of all the
wreath product algebras A˝n Ì Sn, n 2 N, simultaneously. (For other choices
of k it encodes the representation theory of more general cyclotomic quotients of the
affine wreath product algebras introduced in [18].) Generating objects of Heis˙1.A/
correspond to induction and restriction functors with respect to the natural embedding

A˝n Ì Sn ,! A˝.nC1/ Ì SnC1:

In the current paper, we are interested in the case where the Frobenius algebraA is
the group algebra of a finite group G. In this case, we call Heis.G/ WD Heis�1.kG/
the group Heisenberg category. WhenG is trivial, this category was first introduced
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by Khovanov in [9]. In [13], the authors described a natural embedding of the
partition category into Khovanov’s Heisenberg category. This, in turn, induces an
embedding of Deligne’s interpolating category Rep.Sd / into the additive Karoubi
envelope of the Heisenberg category.
The goal of the current paper is to give simple, explicit descriptions of wreath

product analogues of partition categories and to relate these to group Heisenberg
categories. First, to any group G we associate a G-partition category Par .G/
(Definition 3.6). The definition is given in terms of explicit G-partition diagrams,
which form bases for the morphism spaces of the category. We then give an efficient
presentation of Par .G/ in terms of generators and relations (Theorem 4.4). There
is a natural categorical action of the G-partition category on tensor products of
permutation representations of wreath products of G. This action can be described
in terms of the generators (Theorem 5.1) or the bases of G-partition diagrams
(Proposition 5.2). The action functor is full, and we give an explicit description
of its kernel (Theorem 5.4). This gives a categorical analogue of a double centralizer
property akin to Schur–Weyl duality, generalizing work of Bloss [1] who defined
G-colored partition algebras which are isomorphic to the endomorphism algebras
in Par .G/.
Next, we give an explicit embedding of Par .G/ into the group Heisenberg

category Heis.G/ (Theorem 7.1), generalizing the main result of [13]. This
embedding intertwines the natural categorical actions of Par .G/ and Heis.G/ on
modules for wreath products (Theorem 8.1).
Finally, we prove (Theorem 9.5) that the group partition category Par .G/ is

equivalent to Knop’s category T 0.A; ı/ when A is the category of finite boolean
algebras with a locally free G-action (equivalently, the opposite of the category of
finite sets with a free G-action). Thus, one can view Par .G/ as a concrete, and
very explicit, realization of the wreath product interpolating categories of Knop and
Mori. In particular, the calculus ofG-partition diagrams is significantly simpler than
the previous constructions. (Although the latter are, of course, more general.) In
addition, the presentation of Par .G/, in terms of generators and relations, given in
the current paper is considerably more efficient that the presentation given by Mori
in [12, Proposition 4.26]; see Remark 9.7 for further details.
The structure of the current paper is as follows. In Section 2 we recall some

basic facts about wreath products. We define our main object of interest, the
group partition category, in Section 3. We then give a presentation of Par .G/
in terms of generators and relations in Section 4. In Section 5 we define the natural
categorical action of Par .G/. We recall the definition of the group Heisenberg
category Heis.G/ in Section 6 and then, in Section 7, we define the embedding
of Par .G/ into Heis.G/. In Section 8 we prove that this embedding intertwines
the natural categorical actions of these categories on modules for wreath products.
Finally, in Section 9 we relate Par .G/ to the constructions of Knop and Mori.



372 S. Nyobe Likeng and A. Savage

Acknowledgements. This research of A. Savage was supported by Discovery Grant
RGPIN-2017-03854 from the Natural Sciences and Engineering Research Council of
Canada. S. Nyobe Likeng was also supported by this Discovery Grant. The authors
would like to thank S.Henry and P. Scott for helpful conversations concerning boolean
algebras.

2. Wreath products

Fix a commutative ground ring k and a group G with identity element 1G . We use
an unadorned tensor product ˝ to denote the tensor product over k. We will often
define linear maps on tensor products by specifying the images of simple tensors;
such maps are always extended by linearity.
For n � 1, the symmetric group Sn acts on Gn by permutation of the factors,

where we number factors from right to left:

� � .gn; : : : ; g1/ D .g��1.n/; : : : ; g��1.1//:

The wreath product group Gn WD Gn Ì Sn has underlying set Gn �Sn, and multi-
plication

.g; �/.h; �/ D .g.� � h/; ��/; g;h 2 Gn; �; � 2 Sn:

We identifyGn andSn with the subgroupsGn�f1Sn
g and f1Gg�Sn, respectively,

of Gn Ì Sn. Hence, we write g� for .g; �/.
Let A WD kG be the group algebra of G. Then the group algebra An WD kGn

is isomorphic to the wreath product algebra A˝n Ì Sn, which is isomorphic to
A˝n ˝ kSn as a k-module, with multiplication given by

.a˝ �/.b˝ �/ D a.� � b/˝ ��; a;b 2 A˝n; �; � 2 Sn:

We adopt the convention that G0 is the trivial group, so that A0 D k.
For 1 � i � n � 1, let si 2 Sn be the simple transposition of i and i C 1. The

elements
�i WD sisiC1 � � � sn�1; i D 1; : : : ; n;

form a complete set of left coset representatives of Sn�1 in Sn. Here we adopt the
convention that �n D 1Sn

.
There is an injective group homomorphism

Gn�1 ,! Gn; .gn�1; : : : ; g1/ 7! .1G ; gn�1; : : : ; g1/:

This induces an embedding of the wreath product algebra An�1 into An. For g 2 G
and 1 � i � n, define

g.i/ WD .1G ; : : : ; 1G™
n�i entries

; g; 1G ; : : : ; 1G™
i�1 entries

/ 2 Gn:
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Then the set
fg.i/�i D �ig

.n/
W 1 � i � n; g 2 Gg (2.1)

is a complete set of left coset representatives of Gn�1 in Gn. Hence, it is a basis
for An as a right An�1-module.
Throughout the paper, we adopt the convention that

g D .gn; : : : ; g1/ and h D .hn; : : : ; h1/:

That is, gi denotes the i th component of g (counting from right to left, as usual), and
similarly for hi . This convention applies to all boldface letters denoting elements
of Gn for some n 2 N.

Definition 2.1. The permutation representation of An is the k-module V D An,
with action given by

g� � .an; : : : ; a1/ D .gna��1.n/; : : : ; g1a��1.1//; (2.2)

g 2 Gn, � 2 Sn, an; : : : ; a1 2 A, extended by linearity. In other words, Sn

acts by permuting the entries of elements of An, while Gn acts by componentwise
multiplication.

For i D 1; : : : ; n, define ei D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 V , where the 1 appears in
the i th position. Then (2.2) implies that

g� � .aei / D g�.i/ae�.i/; g 2 Gn; � 2 Sn; a 2 A; 1 � i � n: (2.3)

The set

Bk WD fgkeik ˝ � � � ˝ g1ei1 W g1; : : : ; gk 2 G; 1 � i1; : : : ; ik � ng (2.4)

is a basis for V ˝k .
For the remainder of the paper, we write˝n for˝An

.

Lemma 2.2. For any An-module W , we have an isomorphism of An-modules

An ˝n�1 W ! V ˝W; 
 ˝ w 7! 
en ˝ 
w; 
 2 Gn; w 2 W;

with inverse

V ˝W ! An ˝n�1 W; gei ˝ w 7! g.i/�i ˝ �
�1
i .g�1/.i/w;

1 � i � n; g 2 G; w 2 W:

Proof. The first map is well-defined since An�1 acts trivially on en, and it is clearly
a homomorphism of An-modules. It is straightforward to verify that the second map
is the inverse of the first.
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Denote by 1n the trivial one-dimensional An-module. Let B denote An, consid-
ered as an .An; An�1/-bimodule and, for k � 1, define

Bk WD B ˝n�1 B ˝n�1 � � � ˝n�1 B�
k factors

:

Corollary 2.3. For k � 1, we have an isomorphism of An-modules

ˇk WV
˝k Š
�! Bk ˝ 1n;

gkeik ˝ � � � ˝ g1ei1 7! g
.ik/

k
�ik ˝ �

�1
ik

�
g�1k

�.ik/g.ik�1/

k�1
�ik�1

˝ � � �

� � � ˝ ��1i2 .g
�1
2 /.i2/g

.i1/
1 �i1 ˝ 1;

with inverse map

ˇ�1k WB
k
˝ 1n

Š
�! V ˝k;


k ˝ � � � ˝ 
1 ˝ 1 7! .
ken/˝ .
k
k�1en/˝ � � � ˝ .
k � � � 
1en/; 
k; : : : ; 
12Gn:

3. Group partition categories

We continue to fix a group G and a commutative ring k. For k; l 2 N D Z�0, a
partition of type

�
l
k

�
is a partition of the set

X lk WD f1; : : : ; k; 1
0; : : : ; l 0g:

A G-partition of type
�
l
k

�
is a pair .P; g/, where P is a partition of type

�
l
k

�
and

g D .g1; : : : ; gk; g10 ; : : : ; gl 0/ 2 GX
l
k :

We define a part of .P; g/ to be a part of the partition P .
Let .P; g/ and .P;h/ be G-partitions of type

�
l
k

�
, with P D fP1; : : : ; Prg. We

say these G-partitions are equivalent, and we write .P; g/ � .P;h/, if there exist
t1; : : : ; tr 2 G such that, for each i D 1; : : : ; r , we have

ha D tiga for every a 2 Pi :

This clearly defines an equivalence relation on the set of G-partitions of type
�
l
k

�
.

We let ŒP; g� denote the equivalence class of .P; g/.
We depict the G-partition .P; g/ of type

�
l
k

�
as a graph with l vertices in the top

row, labeled g10 ; : : : ; gl 0 from right to left, and k vertices in the bottom row, labeled
g1; : : : ; gk from right to left. (We will always number vertices from right to left.)
We draw edges so that the parts of the partition are the connected components of the
graph.
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For example, the equivalence class of the G-partition .P; g/ of type
�
7
5

�
with

P D
˚
f1; 5g; f2g; f3; 10g; f4; 40; 70g; f20; 30g; f50g; f60g

	
can be depicted as follows:

g5 g4 g3 g2 g1

g70 g60 g50 g40 g30 g20 g10

:

We call this a G-partition diagram. Forgetting the labels, we obtain a partition
diagram for P . Note that different G-partition diagrams can correspond to the
same G-partition since only the connected components of the graph are relevant,
and similarly for partition diagrams. TwoG-partition diagrams are equivalent if their
graphs have the same connected components and the vertex labels of one are obtained
from those of the other by, for each connected component, multiplying the labels in
that component on the left by the same element of G.
Example 3.1. For g; h; s; t 2 G, the following G-partition diagrams of type

�
4
4

�
are

equivalent:

g4 g3 g2 g1

g40 g30 g20 g10

�

tg4 gg3 sg2 gg1

gg40 hg30 hg20 sg10

:

Suppose P is a partition of type
�
l
k

�
and Q is a partition of type

�
m
l

�
. We can

stack the partition diagram ofQ on top of the partition diagram of P and identify the
middle row of vertices to obtain a diagram stack.Q;P / with three rows of vertices.
We defineQ?P to be the partition of type

�
k
m

�
defined as follows: vertices are in the

same part of Q ? P if and only if the corresponding vertices in the top and bottom
row of stack.Q;P / are in the same connected component. We let ˛.Q;P / denote
the number of connected components containing only vertices in the middle row of
stack.Q;P /.
Example 3.2. If

P D and Q D

then ˛.P;Q/ D 2, and

stack.Q;P / D ; Q ? P D :
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Suppose .P; g/ and .Q;h/ are G-partitions of types
�
l
k

�
and

�
m
l

�
, respectively.

We define stack..Q;h/; .P; g// to be the graph stack.Q;P / with vertices labeled by
elements of G as follows: vertices in the top and bottom rows are labeled as in the
top and bottom rows of Q and P , respectively, while the i th vertex in the middle
row is labeled by the product gi 0h�1i . (As usual, we label vertices from right to
left.) We say that the pair ..Q;h/; .P; g// is compatible if any two vertices in the
middle row of stack..Q;h/; .P; g// that are in the same connected component ofQ
have the same label. If ..Q;h/; .P; g// is compatible, we define h ?Q;P g to be the
element t 2 GXm

k , where
� for 1 � i � m, ti 0 D ghi 0 , where g is the common label of vertices in the middle
row that are in the same connected component as the i th vertex of the top row
of Q (i.e., the vertex labeled by hi 0), where we adopt the convention g D 1G if
there are no such vertices;

� for 1 � i � k, ti D gi .
Lemma 3.3. Suppose that ..Q;h/; .P; g// and ..Q;h0/; .P; g0// are compatible, that
.Q;h/ � .Q;h0/, and that .P; g/ � .P; g0/. Then,

.Q ? P; h ?Q;P g/ � .Q ? P; h0 ?Q;P g0/:

Proof. By transitivity, it suffices to consider the casewhereh D h0 and the casewhere
g D g0. Suppose hD h0 and consider a connected component Y of stack.Q;P /.
Then Y is a union of some connected components of Q and some connected
components P1; : : : ; Pr of P . (The case where Y is a single connected component
ofQ or a single connected component of P are straightforward, so we assume Y is a
union of a positive number of connected components of P and a positive number of
connected components ofQ.) Since .P; g/ � .P; g0/, there exist v1; : : : ; vr 2 G such
that g0a D viga for all a 2 Pi , i 2 f1; 2; : : : ; rg. Now, the fact that ..Q;h/; .P; g//
and ..Q;h/; .P; g0// are compatible and that P1; : : : ; Pr are in the same connected
component of stack.Q;P / implies that

v1 D v2 D � � � D vr :

Thus, if
t D h ?Q;P g and t0 D h ?Q;P g0;

we have t 0a D v1ta for all vertices a 2 Y . Since this holds for each connected
component Y of stack.Q;P /, we have

.Q ? P; h ?Q;P g/ � .Q ? P; h ?Q;P g0/;

as desired. The case where g D g0 is analogous.
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We say that the pair
.ŒQ;h�; ŒP; g�/

is compatible if there exist representatives .Q;h0/ and .P; g0/ of the equivalence
classes ŒQ;h� and ŒP; g� such that

..Q;h0/; .P; g0//

is compatible. Whenever we refer to a compatible pair .ŒQ;h�; ŒP; g�/, we assume
that ..Q;h/; .P; g// is a compatible pair of representatives. By Lemma 3.3, we can
define

ŒQ;h� ? ŒP; g� WD ŒQ ? P; h ?Q;P g� (3.1)

for a compatible pair ..Q;h/; .P; g//, and this definition is independent of our choice
of a compatible pair of representatives.
Example 3.4. If P andQ are as in Example 3.2, then

stack..Q;h/; .P; g// D

g4 g3 g2 g1

h50 h40 h30 h20 h10

;

where the vertices in the middle row are labeled

g10h
�1
1 ; g20h

�1
2 ; g30h

�1
3 ; g40h

�1
4 ; g50h

�1
5 ; g60h

�1
6 ;

g70h
�1
7 ; g80h

�1
8 ; g90h

�1
9 ; g100h

�1
10 ; g110h

�1
11

from right to left. The pair ..Q;h/; .P; g// is compatible if and only if

g10h
�1
1 D g50h

�1
5 ; g60h

�1
6 D g90h

�1
9 ;

and g70h
�1
7 D g80h

�1
8 D g100h

�1
10 D g110h

�1
11 :

If the pair is compatible, then

.Q ? P; h ?Q;P g/ D

g4 g3 g2 g1

g70h
�1
7
h50

g70h
�1
7
h40 h30 h20

g10h
�1
1
h10

:

Convention 3.5. From now on we will consider equivalent G-partition diagrams
to be equal. In other words, G-partition diagrams represent equivalence classes
of G-partitions. We will also use the terms part (of a partition) and (connected)
component (of the corresponding partition diagram) interchangeably.
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Recall that k is a commutative ring, and fix d 2 k.
Definition 3.6. The G-partition category Par .G; d/ is the strict k-linear monoidal
category whose objects are nonnegative integers and, given two objects k; l in
Par .G; d/, the morphisms from k to l are k-linear combinations of equivalence
classes of G-partitions of type

�
l
k

�
. The vertical composition is given by defining

ŒQ;h� ı ŒP; g� D d˛.Q;P /ŒQ ? P; h ?Q;P g�

if .ŒQ;h�; ŒP; g�/ is compatible, defining ŒQ;h� ı ŒP; g� D 0 otherwise, and then
extending by linearity. The tensor product is given on objects by k ˝ l WD k C l ,
and on morphisms by horizontal juxtaposition of G-partition diagrams, extended by
linearity. When we do not wish to make the group G explicit, we call Par .G; d/ a
group partition category.
For example, if the pair ..Q;h/; .P; g// of Example 3.4 is compatible, then

ŒQ;h� ı ŒP; g� D d2

g4 g3 g2 g1

g70h
�1
7
h50

g70h
�1
7
h40 h30 h20

g10h
�1
1
h10

:

It is straightforward to verify thatPar .G; d/ is, in fact, a category, i.e., the composition
of morphisms is associative.
The category Par .f1g; d / is the partition category; see [3, §2]. In fact, we have

a faithful functor
Par .f1g; d /! Par .G; d/ (3.2)

sending any partition diagram P to the correspondingG-partition diagram where all
vertices are labeled by 1G . (More generally, we have a faithful functor Par .H; d/!
Par .G; d/ for any subgroup H of G.) In what follows, we will identify a partition
diagram P with its image under this functor. In other words, we write P and ŒP � for
.P; 1/ and ŒP; 1�, respectively, where 1 is the identity element of GX l

k . An arbitrary
equivalence class of G-partitions ŒP; g�W k ! l can be written in the form

ŒP; g� D
gl0 g20g10

� � � ı ŒP � ı
gk g2 g1

� � � ; (3.3)

where we adopt the convention that unlabeled vertices implicitly carry the label 1G .

4. Presentation

In this section we give a presentation of group partition categories by generators and
relations. We use the usual string diagram calculus for monoidal categories. We
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denote the unit object of a monoidal category by 1 and the identity morphism of an
object X by 1X .

Definition 4.1. Let Par .G/ be the strict k-linear monoidal category with one gener-
ating object V, where we denote

WD 1V;

and generating morphisms

WV˝ V! V; WV! V˝ V; WV˝ V! V˝ V;

W 1! V; WV! 1; g WV! V; g 2 G;

subject to the following relations:

D ; D D ; D D ; (4.1)

D ; D ; (4.2)

D ; D ; D ; D ; (4.3)

D ; g h D ıg;h g ; (4.4)

h

g
D gh ; 1 D ; g D

g ; g D
g g ; g D : (4.5)

Remark 4.2. The relations (4.1) are equivalent to the statement that
�
V; ; ; ;

�
is a Frobenius object (see, for example, [11, Proposition 2.3.24]). Relations (4.2) and
(4.3) and the third relation in (4.5) are precisely the statement that equips Par .G/
with the structure of a symmetric monoidal category (see, for example, [11, §1.3.27,
§1.4.35]). Then the first relation in (4.4) is the statement that the Frobenius object V
is commutative. When g D h D 1G , the second relation in (4.4) is the statement that
the Frobenius object V is special.

We refer to the morphisms g as tokens, and the open dots in and as pins. We
call a merge, a split, and a crossing. Define cups and caps by

WD and WD :
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Proposition 4.3. The following relations hold in Par .G/:

D ; D ; D ; D ; (4.6)

D D ; (4.7)

D D ; D D ; (4.8)

D D ; D D ; D D ; (4.9)

g D g�1 ; g D g�1 ; g D
g ; g D ; (4.10)

g
D

g
g�1

; g
D

g
g�1

; g D g g ;

g D
g

g�1 ; g D
g

g�1 :

(4.11)

Proof. The first two relations in (4.6) follow from the first two relations in (4.3) by
composing on the top and bottom, respectively, with the crossing and using (4.2).
Then the third relation in (4.6) follows from the first relation in (4.1) using the first
relation in (4.4) and the first relation in (4.6). (The fourth relation in (4.6) will be
proved below.)
The relations (4.7) follow from the fourth and fifth equalities in (4.1) after placing

pins on the merges and splits. The first equality in (4.8) follows from the fifth equality
in (4.1) after placing a pin on the bottom-left of both diagrams involved in the equality.
The remaining equalities in (4.8) are proved similarly.
Starting with the third relation in (4.3), adding a pin to the top-right strand, a

crossing to the two rightmost strands at the bottom, and using the second relation
in (4.3) and the first relation in (4.2), we obtain the relation

D :

Adding a strand on the left (i.e., tensoring on the left with 1V), then adding a cup to
the two leftmost bottom strands and using (4.7), yields the first equality in (4.9). The
second equality in (4.9) is proved similarly. The remaining relations in (4.9) follow
from placing pins at the top of the morphisms in first relation in (4.1) and the third
relation in (4.6) and from placing pins at the bottom of the morphisms in the second
two equalities in (4.1).
Now the fourth relation in (4.6) follows from rotating the first relation in (4.4)

using the cups and caps, together with (4.7)–(4.9).
To prove the first relation in (4.10), we compute

g D
g

D
g

g
g�1

D
g�1

g D
g�1

D g�1 :
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Then we prove the second relation in (4.10) as follows:

g
(4.7)
D

g
D

g�1
(4.7)
D g�1 :

The third relation in (4.10) is obtained from the third relation in (4.5) by composing
on the top and bottom with a crossing and then using (4.2). The fourth relation
in (4.10) is obtained by starting with the third equality in (4.9), attaching a token
labeled g to the bottom of the strands, then using the second relation in (4.10) and
the fifth relation in (4.5).
Finally, the relations in (4.11) are obtained from the fourth relation in (4.5) by

attaching the appropriate cups and caps, then using (4.8) and (4.10).

The relation (4.7) implies that the object V is self-dual. It follows from Proposi-
tion 4.3 that the cups and caps endow Par .G/ with the structure of a strict pivotal
category: we have an isomorphism of strict monoidal categories

�WPar .G/!
�
Par .G/op

�rev
;

where op denotes the opposite category and rev denotes the reversed category
(switching the order of the tensor product). This isomorphism is the identity on
objects and, for a general morphism f represented by a single string diagram, the
morphism f � is given by rotating the diagram through 180°.
Moreover, we have that morphisms are invariant under isotopy, except that we

must use (4.10) when we slide tokens over cups and caps. In addition, it follows from
the first two relations in (4.3) and (4.6) that

D : (4.12)

In other words, the morphism is strictly central.
Theorem 4.4. Let d 2 k. As a k-linear monoidal category, Par .G; d/ is isomorphic
to the quotient of Par .G/ by the relation

D d: (4.13)

Proof. LetPar 0.G; d/ denote the quotient ofPar .G/ by the additional relation (4.13).
We define a functor

F WPar 0.G; d/! Par .G; d/
as follows: On objects, define F.V˝k/ D k, k 2 N. We define F on the generating
morphisms by

7! ; 7! ; 7! ;

7! ; 7! ; g 7!

g

D

g�1

;
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where, by convention, unlabeled vertices in G-partition diagrams carry the label 1G .
Note that the image of is the uniqueG-partition diagram of type

�
1
0

�
(i.e., the vertex

there is in the top row), while the image of is the unique G-partition diagram of
type

�
0
1

�
. It is straightforward to verify that the relations (4.1)–(4.5) and (4.13) are

preserved by F , so that F is well defined.
Since F is clearly bijective on objects, it remains to show that it is full and

faithful. Since Theorem 4.4 is known to hold in the case whereG is the trivial group
(see [3, Theorem 2.1], or [13, Proposition 2.1] for a diagrammatic treatment), it
follows from the existence of the functor (3.2) that any partition diagram ŒP � D ŒP; 1�
is in the image of F . Thus, by (3.3) so is an arbitrary equivalence class ŒP; g� of
G-partitions. Hence, F is full.
It remains to prove that F is faithful. To do this, it suffices to show that

dimHomPar 0.G;d/.V˝k;V˝l/ � dimHomPar .G;d/.k; l/ for all k; l 2 N:

We do this by showing that every morphism of Par 0.G; d/ obtained from the
generators by composition and tensor product can be reduced to a scalar multiple of
a standard form, with the standard forms being in natural bijection with the number
of G-partition diagrams.
We first introduce star diagrams

Sba 2 HomPar 0.G;d/.V˝a;V˝b/

for .a; b/ 2 N2 n f.0; 0/g as follows. Define

S01 WD ; S10 WD ; S11 WD :

Then define general star diagrams recursively by

SbC1a WD
�
1V˝.b�1/ ˝

�
ı Sba for b � 1;

SbaC1 WD S
b
a ı

�
1V˝.a�1/ ˝

�
for a � 1:

For example, we have

S02 D D ; S30 D ; S43 D :

Every permutation � 2 Sk gives rise to a partition of type
�
k
k

�
with parts fi; �.i/0g,

1 � i � k. Fixing a reduced decomposition for � induces a decomposition of the
corresponding partition diagram as a composition of tensor products of the generator
and identity morphisms. We fix such a decomposition for each permutation,
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writingD� for the corresponding element of Par 0.G; d/. For example, if we choose
the reduced decomposition s1s2s1 for the permutation .1 3/ 2 S3, we have

D.1 3/ D :

Now, fix a representative .P; g/ of each equivalence class ŒP; g� of G-partitions.
Then, for each such representative, fix a standard decomposition

ŒP; g� D
gl0 g20g10

� � � ı F.D�/ ı F.S/ ı F.D� / ı
gk g2 g1

� � � ; (4.14)

where � 2 Sl , � 2 Sk , and S is a tensor product of star diagrams. The existence
of such a standard decomposition follows from (3.3), together with the existence
of a decomposition of the form ŒP � D F.D�/ ı F.S/ ı F.D� / for any partition
diagram P . (Precisely, S is a tensor product of star diagrams, one for each connected
component in P , and then � and � are permutations such that F.D�/ and F.D� /
connect the top and bottom vertices of P to the corresponding legs of S .) Then
define

yP;g WD
�
g�1

l0
� � � g�1

20
g�1

10

�
ıD� ı S ıD� ı

�
gk � � � g20 g10

�
: (4.15)

Hence, F.yP;g/ D ŒP; g�
To complete the proof that F is faithful, it remains to show that any morphism

in Par 0.G; d/ that is obtained from the generators by tensor product and composition
is equal to a scalar multiple of yP;g for some chosen representative .P; g/. As
noted above, Theorem 4.4 holds for the partition category, which is the case where
G D f1g is the trivial group. Now, if we ignore tokens, the relations (4.1)–(4.4)
and (4.13) correspond to the relations in the G D f1g case, except for the fact that
the second relation in (4.4) gives zero when g ¤ h. It follows that every morphism
inPar 0.G; d/ obtained from the generators by tensor product and composition is equal
to a (potentially zero) scalar multiple of a morphism obtained from someD� ıS ıD�
by adding tokens (since, ignoring tokens, this can be done in the partition category).
Then, since the string diagram for D� ı S ıD� is a tree (i.e., contains no cycles),
one can use relations (4.5), (4.10), and (4.11) to move all tokens to the ends of strings
and combine them into a single token at each endpoint. This yields a diagram of the
form (4.15), except that the tokens may not correspond to our chosen representative
of the equivalence class of G-partitions. However, we then use the relations (4.5),
(4.10), and (4.11) to adjust the tokens at the endpoints so that we obtain the chosen
representative.

In the context of Remark 4.2, (4.13) is the statement that the Frobenius objectV has
dimension d . From now on, we will identify Par .G; d/ with the quotient of Par .G/
by the relation (4.13) via the isomorphism of Theorem 4.4. In particular, we will
identify the object k of Par .G; d/ with the object V˝k of Par .G/, for k 2 N.
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Remark 4.5. SupposewedefinePar .G; d/ as inDefinition 3.6, but over the ringkŒd �,
so that d is an indeterminate. It then follows from Theorem 4.4 that Par .G; d/ is
isomorphic to Par .G/ as a k-linear monoidal category. Under this isomorphism,
d11 corresponds to .

For k 2 N, we define the G-partition algebra

Pk.G; d/ WD EndPar .G;d/.V˝k/: (4.16)

When we do not wish to make G explicit, we call these group partition algebras.
These algebras appeared in [1], where they are called G-colored partition algebras.
A diagrammatic description of these algebras, different from that of the current paper,
is given [1, §6.2].

5. Categorical action

In this section we assume that the group G is finite of order jGj. We define a
categorical action of the G-partition category on the category of modules for the
wreath product groups Gn D Gn Ì Sn. We first describe this action by giving
the action of the generators, and then describe the action of an arbitrary G-partition
diagram. Recall that An D kGn is the group algebra of Gn, and so we can naturally
identify An-modules and representations of Gn.

Theorem 5.1. For n 2 N, we have a strong monoidal k-linear functor

ˆnWPar .G; njGj/! An-mod

given as follows. On objects,ˆn is determined byˆn.V/ D V . On generating morph-
isms, ˆn is given by

ˆn. /WV ˝ V ! V; gei ˝ hej 7! ıg;hıi;jgei ;

ˆn. /WV ! V ˝ V; gei 7! gei ˝ gei ;

ˆn. /WV ˝ V ! V; v ˝ w 7! w ˝ v;

ˆn. /W 1n ! V; 1 7!
P
g2G

Pn
iD1 gei ;

ˆn. /WV ! 1n; gei 7! 1;

ˆn. g /WV ! V; hei 7! hg�1ei ;

for g; h 2 G, 1 � i; j � n, v;w 2 V .

Proof. We must show that the action preserves the relations (4.1)–(4.5).
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Relations (4.1): To prove the first three equalities in (4.1), we compute

ˆn
� �

ıˆn
�
˝

�
.gei / D

X
h2G

nX
jD1

ˆn
� �

.gei ˝ hej /

D

X
h2G

nX
jD1

ıg;hıi;jgei D gei ;

ˆn
�
˝

�
ıˆn

� �
.gei / D ˆn

�
˝

�
.gei ˝ gei /

D gei D ˆn
�
˝
�
ıˆn

� �
.gei /:

To prove the third relation, we compute

ˆn
� �

ıˆn
� �

.gei ˝ hej / D ıg;hıi;jˆn
� �

.gei /

D ıg;hıi;j .gei ˝ gei /;

ˆn
�
˝
�
ıˆn

�
˝

�
.gei ˝ hej / D ˆn

�
˝
�
.gei ˝ hej ˝ hej /

D ıg;hıi;j .gei ˝ gei /;

ˆn
�
˝

�
ıˆn

�
˝
�
.gei ˝ hej / D ˆn

�
˝

�
.gei ˝ gei ˝ hej /

D ıg;hıi;j .gei ˝ gei /;

concluding that the three maps are identical.

Relations (4.2): The relations (4.2) are straightforward.

Relations (4.3): To prove the first relation in (4.3), we compute

ˆn
� �

ıˆn
�
˝

�
.gei / D

X
h2G

nX
jD1

ˆn
� �

.gei ˝ hej / D
X
h2G

nX
jD1

.hej ˝ gei /;

and

ˆn
�
˝
�
.gei / D

X
h2G

nX
jD1

.hej ˝ gei /:

Similarly, to prove the second relation, we calculate

ˆn
�
˝

�
ıˆn

� �
.gei ˝ hej / D ˆn

�
˝

�
.hej ˝ gei /

D hej D ˆn
�
˝
�
.gei ˝ hej /:

The proof of the last two equalities in (4.3) are similar; we only check the last one.
We have

ˆn
�
˝

�
ıˆn

�
˝
�
ıˆn

�
˝

�
.gei ˝ hej /

D ˆn
�
˝

�
ıˆn

�
˝
�
.gei ˝ hej ˝ hej /

D ˆn
�
˝

�
.hej ˝ gei ˝ hej / D hej ˝ hej ˝ gei
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and

ˆn
�
˝
�
ıˆn

� �
.gei ˝hej / D ˆn

�
˝
�
.hej ˝gei / D hej ˝hej ˝gei :

Relations (4.4): To prove the first relation in (4.4), we compute

ˆn
� �

ıˆn
� �

.gei ˝ hej / D ˆn
� �

.hej ˝ gei /

D ıg;hıi;jgei D ˆn
� �

.gei ˝ hej /:

For the second relation, we have

ˆn
� �

ıˆn
�
g ˝ h

�
ıˆn

� �
.kei /

D ˆn
� �

ıˆn
�
g ˝ h

�
.kei ˝ kei /

D ˆn
� �

.kg�1ei ˝ kh
�1ei / D ıg;h.kg

�1ei / D ıg;hˆn. g /.kei /:

Relations (4.5): The relations (4.5) are straightforward to verify.

If .P; g/ is a G-partition of type
�
l
k

�
, then ˆn.ŒP; g�/ 2 HomGn

.V k; V l/ is
uniquely described by its matrix coefficients:

ˆn
�
ŒP; g�

�
.hkeik ˝ � � � ˝ h1ei1/

D

X
h10 ;:::;hl02G
1�i10 ;:::;il0�n

M.P; g/h10 ;:::;hl0 ;i10 ;:::;il0

h1;:::;hk ;i1;:::;ik
hl 0eil0 ˝ � � � ˝ h10ei10 : (5.1)

The matrixM.P; g/ depends only on the equivalence class ŒP; g� of .P; g/.
Proposition 5.2. Suppose .P; g/ is a G-partition of type

�
l
k

�
. Then,

M.P; g/h10 ;:::;hl0 ;i10 ;:::;il0

h1;:::;hk ;i1;:::;ik
D 1

if ia D ib and hag�1a D hbg�1b for all a; b 2 X l
k

in the same part of P . Otherwise,

M.P; g/h10 ;:::;hl0 ;i10 ;:::;il0

h1;:::;hk ;i1;:::;ik
D 0:

Proof. This follows from a straightforward computation using the definition ofˆn in
Theorem 5.1 and the isomorphism described in Theorem 4.4, writing each component
of P as a composition of tokens, merges, splits, and crossings as in (4.14).

Recall the basis Bk for V ˝k from (2.4). Given a G-partition .P; g/ of type
�
0
k

�
,

let OP;g denote the set of all hkeik ˝ � � � ˝ h1ei1 2 Bk such that
� ia D ib if and only if a; b are in the same part of the partition P , and
� hag

�1
a D hbg

�1
b
for all a; b in the same part of the partition P .



Group partition categories 387

Then we have OP;g D OP;h if and only if .P; g/ � .P;h/, and so we can define

OŒP;g� WD OP;g:

The Gn-orbits of Bk are the OŒP;g� with ŒP; g�WV˝k ! 1 having at most n parts
(i.e., P is a partition of f1; : : : ; kg having at most n parts).
For ŒP; g�WV˝k ! 1, let fŒP;g�WV ˝k ! k be the k-linear map determined on the

basis Bk by

fŒP;g�.hkeik ˝ � � � ˝ h1ei1/ D

(
1 if hkeik ˝ � � � ˝ h1ei1 2 OŒP;g�;
0 otherwise:

The following lemma is now immediate.

Lemma 5.3. The set of all fŒP;g� with ŒP; g�WV˝k ! 1 having at most n parts is a
basis for HomGn

.V ˝k; 1n/.
For partitions P;Q of X l

k
, we write Q � P when Q is coarser than P . Thus,

Q � P if and only if every part of P is a subset of some part ofQ. It follows from
Proposition 5.2 that

ˆn
�
ŒP; g�

�
D

X
Q�P

fŒQ;g� for all ŒP; g�WV˝k ! 1: (5.2)

Thus, if we define a new basis˚
xŒP;g� W ŒP; g�WV˝k ! V˝l

	
of HomPar .G;njGj/.V˝k;V˝l/ recursively by

xŒP;g� D ŒP; g� �
X
Q>P

xŒQ;g�; (5.3)

then a straightforward argument by induction shows that

ˆn.xŒP;g�/ D fŒP;g� for any G-partition .P; g/ of type
�
0
k

�
: (5.4)

In particular, ˆn.xŒP;g�/ D 0 if ŒP; g�WV˝k ! 1 has more than n parts.

Theorem 5.4. (1) The functor ˆn is full.

(2) The kernel of the induced map

HomPar .G;njGj/.V˝k;V˝l/! HomGn
.V ˝k; V ˝l/

is the span of all xŒP;g� with ŒP; g�WV˝k ! V˝l having more than n parts. In
particular, this map is an isomorphism if and only if k C l � n.
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Proof. We have a commutative diagram

HomPar .G;njGj/.V˝k;V˝l/ HomPar .G;njGj/.V˝.kCl/; 1/

HomGn
.V ˝k; V ˝l/ HomGn

.V ˝.kCl/; 1n/;

ˆn ˆn

where the horizontal maps are adjunction isomorphisms arising from the fact that V
is a self-dual object in Par .G; njGj/ and that V is a self-dual object in the category of
An-modules. (We refer the reader to the proof of [3, Theorem 2.3] for more details of
these adjunctions in the special case G D f1g. The argument is the same in the case
of general G.) It follows from Lemma 5.3 and (5.4) that the right-hand vertical map
is surjective and its kernel is the span of all xŒP;g� with ŒP; g�WV˝.kCl/ ! 1 having
more than n parts. Since the adjunction isomorphisms preserve the number of parts
of G-partitions, as well as the partial order on G-partitions, the result follows.

When G D f1g is the trivial group, Theorem 5.4 reduces to [3, Theorem 2.3]. In
general, Theorem 5.4 is a categorical generalization of the double centralizer prop-
erty [1, Theorem 6.6]. More precisely, recall the G-partition algebras from (4.16).
The functor ˆn induces an algebra homomorphism

Pk
�
G; njGj

�
! EndGn

.V ˝k/:

Theorem 5.4 implies that this homomorphism is surjective, and is an isomorphism
when n � 2k. When the characteristic of k does not divide nŠjGj D jGnj, so thatAn
is semisimple, the Double Centralizer theorem implies that An generates

EndPk.G;njGj/.V
˝k/:

Hence, Gn and Pk.G; njGj/ generate the centralizers of each other in Endk.V
˝k/.

6. The group Heisenberg category

In this section we recall a special case of the Frobenius Heisenberg category. We
are interested in the special case of central charge �1, where this category was first
defined in [14]. Furthermore, we will specialize to the case where the Frobenius
algebra is the group algebra of a finite group G. We follow the presentation in [17],
referring the reader to that paper for proofs of the statements made here.
Definition 6.1. The group Heisenberg category Heis.G/ associated to the finite
group G is the strict k-linear monoidal category generated by two objects ", #, and
morphisms

W "" ! ""; g W " ! " ; g 2 G;

W 1! #"; W "# ! 1; W 1! "#; W #" ! 1;
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subject to the relations

D ; D ;

g

h
D gh ; 1 D ; g D g ;

(6.1)

D ; D ; (6.2)

D ; D �

X
g2G

g

g�1

; D 0; g D ıg;111:

(6.3)
Here the left and right crossings are defined by

WD ; WD :

The objects " and # are both left and right dual to each other. Furthermore, the
cups and caps endowHeis.G/ with the structure of a strict pivotal category, meaning
that morphisms are invariant under isotopy. We define downwards crossings and
downward tokens by

WD D ; g WD g D g : (6.4)

It follows that,

D for all possible orientations of the strands, (6.5)

and we that tokens slide over cups and caps:

g D g ; g D g ;

g D g ; g D g :
(6.6)

(One should compare this to the first two relations in (4.10).) Because of this, we
will sometimes place tokens at the critical point of cups and caps, since there is no
ambiguity. In addition it follows from (6.1), (6.2), and (6.6) that

g D
g ; g D

g for all possible orientations of the strands.
(6.7)

We will use (6.6) and (6.7) frequently without mention. Note how tokens multiply
on downward strands (using (6.1), (6.4), and (6.6)):

g

h
D hg : (6.8)
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7. The embedding functor

In this section we define an explicit embedding of the group partition category into
the group Heisenberg category. We assume throughout this section that G is a finite
group.
Theorem 7.1. There is a faithful strict k-linear monoidal functor

‰WPar .G/! Heis.G/

defined on objects by V 7! " ˝ # and on generating morphisms by

7! ; 7! ; 7! C

X
g2G

g

g

g�1 g�1 ;

7! ; 7! ; g 7! g g�1 ; g 2 G:

The proof of Theorem 7.1 will occupy the remainder of this section. We break the
proof into two parts, first showing that ‰ is well defined, and then that it is faithful.
Proposition 7.2. The functor ‰ is well defined.

Proof. It suffices to show that the images of the generatingmorphisms of the partition
category Par .G/ satisfy relations (4.1)–(4.5).
Relations (4.1): These relations are easy to check using isotopy invariance inHeis.G/.

Relations (4.2): Using the third relation in (6.3), which says that left curls are equal
to zero, we have

‰
� �

ı‰
� �

D C

X
g;h2G

h�1g�1 g�1h�1

h

g

hg

(6.3)
D C

X
g2G

g

g�1

(6.3)
D D ‰

� �
;

proving the first relation in (4.2). To prove the second relation in (4.2), we compute

‰
�
˝

�
ı‰

�
˝
�
D C

X
g2G

g�1

g

g g�1

C

X
g2G

g�1 g

g

g�1 C

X
g;h2G

g�1

h�1g

g

g�1h

h

h�1 : (7.1)
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Therefore, using the fact that left curls are zero, we compute

‰
�
˝

�
ı‰

�
˝
�
ı‰

�
˝

�
(6.3)
D
(6.7)

C

X
g2G

g�1

g

g
g�1

C

X
g2G

g�1

g

g
g�1

C

X
g2G

g�1

g

g

g�1

C

X
g;h;t2G

g�1

h�1g

gt�1

g�1ht

t

h

.ht/�1

(6.1)
D
(6.3)

C

X
g2G

g�1

g

g

g�1 C

X
g2G g�1

g

g
g�1

C

X
g2G

g�1

g

g

g�1
C

X
g;h2G

g�1 h�1g

h

h�1g

h

g�1 :

Similarly,

‰
�

˝
�
ı‰n

�
˝

�
ı‰

�
˝
�

D C

X
g2G

g�1

g

g

g�1 C

X
g2G g�1

g

g
g�1

C

X
g2G

g�1

g

g

g�1
C

X
g;h2G

g�1 h�1g

h

h�1g

h

g�1 :

We then use (6.5) to see that the expressions are equal.

Relations (4.3): We will check the first and the fourth relations, since the proofs of
the second and third are analogous. For the first relation we compute:

‰
� �

ı‰
�
˝

� (6.1)
D C

X
g2G

g�1

g (6.1)
D
(6.3)

D ‰
�
˝
�
:
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For the fourth relation, we use (7.1) and the fact that left curls are zero to compute

‰
�
˝

�
ı‰

�
˝
�
ı‰n

�
˝

�
D C

X
g;h2G

g�1 h�1
h�1g

h

g
g�1h

(6.1)
D
(6.3)

C

X
g2G

g�1

g

g

g�1 D ‰
� �

ı‰
� �

:

Relations (4.4): To check the first relation in (4.4), we use the fact that left curls are
zero to see that

ˆn
� �

ıˆn
� �

D

X
g2G

g�1 g�1

g

g (6.3)
D D ˆn

� �
:

For the second relation in (4.4), we compute

ˆn
� �

ıˆn
�
g h

�
ıˆn

� � (6.1)
D g h�1

g�1h

(6.3)
D ıg;h g g�1 D ıg;hˆn

�
g
�
:

Relations (4.5): For the third relation in (4.5), we compute

‰
� �

ı‰
�
g

�
D

g

g�1

C

X
h2G

h�1g h�1
g�1h

h

D
g

g�1

C

X
t2G

t�1 t�1g�1

t

gt
D ‰

�
g
�
ı‰

� �
;

where we let t D g�1h. The other relations in (4.5) are straightforward to verify.

We now wish to show that ‰ is faithful. Our approach is inspired by that
of [13, Appendix A], which deals with the case where G is the trivial group.
Inwhat follows, wewill identify a permutation�2Sk with the partition of type

�
k
k

�
with parts fi; �.i/0g, 1 � i � k. Recall that, for 1 � i < j � k, the pair .i; j / is an



Group partition categories 393

inversion in � 2 Sk if �.i/ > �.j /. Suppose Q is a partition of type
�
l
k

�
. We say

that a permutation P 2 Sl is a left shuffle for Q if there is no inversion .i; j / in P
such that vertices i 0 and j 0 lie in the same connected component of Q. Intuitively,
P is a left shuffle for Q if it does not change the relative order of vertices in each
component. Similarly, we say that a permutation P 2 Sk is a right shuffle for Q if
there is no inversion .i; j / inP�1 such that vertices i and j lie in the same component
ofQ. For example, if

P D and Q D ;

then P is a left shuffle forQ but not a right shuffle forQ.
We say a partition diagram is tensor-planar if it is a tensor product (horizontal

juxtaposition) of partition diagrams consisting of a single connected component.
Note that every tensor-planar partition diagram is planar (i.e., can be represented as
a graph without edge crossings inside of the rectangle formed by its vertices) but the
converse is false.
Every equivalence class ŒP; g� of G-partitions can be factored as a product

ŒP; g� D
gl0 g20g10

� � � ı ŒP1� ı ŒP2� ı ŒP3� ı
gk g2 g1

� � � ; (7.2)

where P2 is tensor-planar, P1 is a left shuffle for P2, and P3 is a right shuffle for P2.
(See (4.14).) The number of connected components in P is equal to the number of
connected components in P2. For example, the G-partition diagram

g4 g3 g2 g1

g50 g40 g30 g20 g10

has four connected components and decomposition

g4 g3 g2 g1

g50 g40 g30 g20 g10

D

g50 g40 g30 g20 g10

ı ŒP1� ı ŒP2� ı ŒP3� ı
g4 g3 g2 g1

;

where

P1 D ; P2 D D ˝ ˝ ˝ ;

P3 D :

For n; k; l 2 N, let
Hom�nPar .G/

�
V˝k;V˝l

�
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denote the subspace of HomPar .G/
�
V˝k;V˝l

�
spanned by G-partition diagrams

with at most n connected components. Composition respects the corresponding
filtration on morphism spaces since the composite of a partition with n connected
components and a partition with m connected components has at most n C m

connected components.
Recall the bases of the morphism spaces of Heis.G/ given in [2, Theorem 7.2].

(The category Heis.G/ is Heis�1.kG/ in the notation of [2].) For any such basis
element f in

HomHeis.G/
�
."#/˝k; ."#/˝l

�
;

define the block number of f to be number of distinct closed (possibly intersecting)
loops in the diagram

˝l
ı f ı ˝k :

For n 2 N, let
Hom�nHeis.G/

�
."#/˝k; ."#/˝l

�
denote the subspace of HomHeis.G/

�
."#/˝k; ."#/˝l

�
spanned by basis elements with

block number at most n. Composition respects the resulting filtration on morphism
spaces.
The image under ‰ of tensor-planar partition diagrams (writing the image in

terms of the aforementioned bases of the morphism spaces ofHeis.G/) is particularly
simple to describe. Since each tensor-planar partition diagram is a tensor product of
single connected components, consider the case of a single connected component.
Then, for example, we have

‰
� �

D and ‰
� �

D :

The general case is analogous. (In fact, the images of all planar partition diagrams
are similarly easy to describe.) In particular, if P is a tensor-planar partition diagram
with n connected components, then ‰.P / is a planar diagram with block number n.
For i D 1; : : : ; k � 1, consider the morphism

�i WD ‰
�
1
˝.k�i�1/
V ˝

�
�

�
˝ 1
˝.i�1/
V

�
D � � � � � � 2 EndHeis.G/

�
."#/˝k

�
:

(7.3)

For a permutation partition diagramP W k ! k, let T .P / be themorphism inHeis.G/
defined as follows: Write D D si1 ı si2 ı � � � ı sir as a reduced word in simple
transpositions and let

T .P / D �i1 ı �i2 ı � � � ı �ir :
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It follows from the braid relations (6.5) that T .P / is independent of the choice of
reduced word for P .
Lemma 7.3. Suppose .P; g/ is a G-partition diagram with decomposition (7.2).
Then

‰.ŒP; g�/ �
gl0 g20g10

� � � ı ŒT .P1/� ı ŒP2� ı ŒT .P3/� ı
gk g2 g1

� � �

2 Hom�n�1Heis.G/

�
."#/˝k; ."#/˝l

�
:

Proof. The case where g D 1 is [13, Proposition A.1]. Since composition with
G-partition diagrams of the form

gl0 g20g10

� � � and
gk g2 g1

� � �

does not change the block number, the general case follows.

Proof of Theorem 7.1. Since‰ is well defined by Proposition 7.2, it remains to show
it is faithful. As in Remark 4.5, we view Par .G/ as Par .G; d/ over the ring kŒd �.
Note that the image of ‰ is contained in the full monoidal subcategory Heis"#.G/
of Heis.G/ generated by the object " ˝ #. It follows from the defining relations
of Heis.G/ that

D :

In otherwords, the clockwise bubble is strictly central inHeis"#.G/. LetHeis"#.G; d/
be the quotient of Heis"#.G/, defined over kŒd �, by the additional relation

D d11:

Then, as in Remark 4.5, Heis"#.G/, defined over k, is isomorphic as a k-linear
category to Heis"#.G; d/. In other words, we can view the clockwise bubble of
Heis"#.G/ and the morphism of Par .G/, both of which are strictly central, as
elements of the ground ring.
Now, it is clear that, in the setting of Lemma 7.3,

gl0 g20g10

� � � ı ŒT .P1/� ı ŒP2� ı ŒT .P3/� ı
gk g2 g1

� � � (7.4)

is uniquely determined by ŒP; g�. Indeed, P is the partition diagram obtained from

T .P1/ ı‰.P2/ ı T .P3/
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by replacing each pair "# by a vertex and each strand by an edge. Furthermore, the
diagrams of the form (7.4) are linearly independent by [2, Theorem 7.2]. The result
then follows by a standard triangularity argument.

8. Compatibility of categorical actions

We continue to assume that G is a finite group. The group Heisenberg category acts
naturally on the direct sum of the categories An-mod, n 2 N. In this section, we
recall this action and show that it is compatible with the embedding of the group
partition category into the group Heisenberg category and the action of the group
partition category described in Theorem 5.1.
For 0 � m; k � n, let k.n/m denote An, considered as an .Ak; Am/-bimodule.

We will omit the subscript k or m when k D n or m D n, respectively. We denote
tensor product of such bimodules by juxtaposition. For instance .n/n�1.n/ denotes
An˝n�1An, considered as an .An; An/-bimodule, where we write˝m for the tensor
product over Am. As explained in [14, §7], we have a strong k-linear monoidal
functor

‚WHeis.G/!
Y
m2N

�M
n2N

.An; Am/-bimod
�

given by

‚
� �

D
�
.n/n�2 ! .n/n�2; x 7! xsn�1

�
n�2

;

‚
� �

D
�
.n � 1/! n�1.n/n�1; x 7! x

�
n�1

;

‚
� �

D
�
.n/n�1.n/! .n/; x ˝ y 7! xy

�
n�1

;

‚
� �

D
�
.n/! .n/n�1.n/; x 7! x

P
1�i�n; h2G h

.i/�i ˝ �
�1
i

�
h�1

�.i/�
n�1

;

‚
� �

D

�
n�1.n/n�1 ! .n � 1/;

g� 7!
(
.gn�1; gn�2; : : : ; g1/� if � 2 Sn�1; gn D 1G

0 otherwise

�
n�1

;

‚
�
g
�
D
�
.n/n�1 ! .n/n�1; x 7! x

�
g�1

�.n/�
n�1

;

‚
� �

D

�
n�1.n/n�1 ! .n � 1/n�2.n � 1/;

g� 7!
(
.gn�1; : : : ; g1/�1 ˝ g

.n�1/
n �2 if � D �1sn�1�2 for �1; �2 2 Sn�1;

0 if � 2 Sn�1

�
n�2

;

‚
� �

D
�
.n � 1/n�2.n � 1/! n�1.n/n�1; x ˝ y 7! xsn�1y

�
n�2

;
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‚
� �

D
�
n�2.n/! n�2.n/; x 7! sn�1x

�
n�2

;

‚
�
g
�
D
�
n�1.n/! n�1.n/; x 7!

�
g�1

�.n/
x
�
n�1

:

As noted in the proof of Theorem 7.1, the image of ‰ lies in the full monoidal
subcategory Heis"#.G/ of Heis.G/ generated by " ˝ #. For n 2 N, consider the
composition

�nWHeis"#.G/
‚
�!

M
m2N

.Am; Am/-bimod
�˝An 1n

������!

M
m2N

Am-mod;

where we declare M ˝An
1n D 0 for M 2 .Am; Am/-bimod with m ¤ n. The

functor �n is k-linear, but no longer monoidal.
Theorem 8.1. Consider the functors:

Par .G/ Heis"#.G/

An-mod :

‰

ˆn
�n

(8.1)

The isomorphisms ˇk , k 2 N, defined in Corollary 2.3, give a natural isomorphism
of functors �n ı‰ Š ˆn.

Proof. Since the ˇk are isomorphisms of An-modules it suffices to show that they
determine a natural transformation between the given functors. Therefore, following
the argument used in the proof of [13, Theorem 5.1] we need to check elements of
the form

1V˝k ˝ x ˝ 1V˝j ; k; j 2 N; x 2
˚
h ; ; ; ; ; W h 2 G

	
:

Tokens: For h 2 G,

ˇ�1k ı
�
�n ı‰

�
1V˝.k�j�1/ ˝ h ˝ 1V˝.j�1/

��
ı ˇk WV

˝k
! V ˝k

is the An-module map given by

gkeik ˝ � � � ˝ g1ei1

7! g
.ik/

k
�ik ˝ �

�1
ik

�
g�1k

�.ik/g.ik�1/

k�1
�ik�1

˝ � � � ˝ ��1i2

�
g�12

�.i2/g.i1/1 �i1 ˝ 1

7! g
.ik/

k
�ik ˝ �

�1
ik

�
g�1k

�.ik/g.ik�1/

k�1
�ik�1

˝ � � � ˝ ��1ijC1

�
g�1jC1

�.ijC1/g
.ij /

1 �ij
�
h�1

�.n/
˝ h.n/��1ij

�
g�1j

�.ij /gij�1

1 �ij�1
˝ � � � ˝ ��1i2

�
g�12

�.i2/g.i1/1 �i1 ˝ 1

7! g
.ik/

k
�ik ˝ �

�1
ik

�
g�1k

�.ik/g.ik�1/

k�1
�ik�1

˝ � � � ˝ ��1ijC1

�
g�1jC1

�.ijC1/
�
gjh

�1
�.ij /�ij

˝ ��1ij

�
hg�1j

�.ij /gij�1

1 �ij�1
˝ � � � ˝ ��1i2

�
g�12

�.i2/g.i1/1 �i1 ˝ 1
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7! gkeik ˝ � � � ˝ gjC1eijC1
˝ gjh

�1eij ˝ gj�1eij�1
˝ � � � ˝ g1ei1 :

This is precisely the map ˆn
�
1V˝.k�j�1/ ˝ h ˝ 1V˝.j�1/

�
.

Merge: For g; h 2 G and 1 � i; j � n,

��1i
�
g�1

�.i/
h.j /�j D

�
g�1

�.n/
h.�
�1
i
.j //��1i �j : (8.2)

Wehave��1i �j 2 Sn�1 if and only if i D j , inwhich case (8.2) is equal to
�
g�1h

�.n/.
Thus, the composition

ˇ�1k�1 ı
�
�n ı‰

�
1V˝.k�j�1/ ˝ ˝ 1V˝.j�1/

��
ı ˇk WV

˝k
! V ˝.k�1/

is the An-module map given by

gkeik ˝ � � � ˝ g1ei1

7! g
.ik/

k
�ik ˝ �

�1
ik

�
g�1k

�.ik/g.ik�1/

k�1
�ik�1

˝ � � � ˝ ��1ijC1

�
g�1jC1

�.ijC1/g
.ij /

j �ij

˝ � � � ˝ ��1i2

�
g�12

�.i2/g.i1/1 �i1 ˝ 1

7! ıij ;ijC1
ıgj ;gjC1

gkeik ˝ � � � ˝ gjC2eijC2
˝ gj eij ˝ � � � ˝ g1ei1 :

This is precisely the map ˆn
�
1V˝.k�j�1/ ˝ ˝ 1V˝.j�1/

�
.

Split: The composition

ˇ�1kC1 ı
�
�n ı‰

�
1V˝.k�j / ˝ ˝ 1V˝.j�1/

��
ı ˇk WV

˝k
! V ˝.kC1/

is the An-module map given by

gkeik ˝ � � � ˝ g1ei1

7! g
.ik/

k
�ik ˝ �

�1
ik

�
g�1k

�.ik/g.ik�1/

k�1
�ik�1

˝ � � � ˝ ��1ijC1

�
g�1jC1

�.ijC1/g
.ij /

j �ij ˝ 1

˝ ��1ij

�
g�1j

�.ij /g.ij�1/

j�1 ˝ � � � ˝ ��1i2

�
g�12

�.i2/g.i1/1 �i1 ˝ 1

7! gkeik ˝ � � � ˝ gjC1eijC1
˝ gj eij ˝ gj eij ˝ gj�1eij�1

˝ � � � ˝ g1ei1 :

This is precisely the map ˆn
�
1V˝.k�j / ˝ ˝ 1V˝.j�1/

�
.

Unit pin: The composition

ˇ�1kC1 ı
�
�n ı‰

�
1V˝.k�j / ˝ ˝ 1V˝j

��
ı ˇk WV

˝k
! V ˝.kC1/

is the map

gkeik˝� � �˝g1ei1 7!
X
h2G

nX
iD1

gkeik˝� � �˝gjC1eijC1
˝hei˝gj eij ˝� � �˝g1ei1 ;

which is equal to the map ˆn
�
1V˝.k�j / ˝ ˝ 1V˝j

�
.



Group partition categories 399

Counit pin: The composition

ˇ�1k�1 ı
�
�n ı‰

�
1V˝.k�j / ˝ ˝ 1V˝.j�1/

��
ı ˇk WV

˝k
! V ˝.k�1/

is the map

gkeik ˝ � � � ˝ g1ei1 7! gkeik ˝ � � � ˝ gjC1eijC1
˝ gj�1eij�1

˝ � � � ˝ g1ei1 ;

which is equal to the map ˆn
�
1V˝.k�j / ˝ ˝ 1V˝.j�1/

�
.

Crossing: Define the elements f; f 0 2 EndHeis."#"#/ by

f D ; f 0 D
X
g2G

g

g

g�1 g�1 : (8.3)

Note that
f D f3 ı f2 ı f1;

where

f1 D ; f2 D ; f3 D :

Suppose i; j 2 f1; : : : ; ng and x; y 2 An. We first compute the action of ‚.f /
and ‚.f 0/ on

˛ D xg1
.i/�i ˝ �

�1
i

�
g�11

�.i/
g2
.j /�j ˝ �

�1
j

�
g�12

�.j /
y

D xg1
.i/�i ˝

�
g�11

�.n/
g2
.��1

i
.j //��1i �j ˝ �

�1
j

�
g�12

�.j /
y 2 .n/n�1.n/n�1.n/;

where x; y 2 An. If i D j , then ��1i �j D 1Sn
, and so �n.f1/.˛/ D 0. Now

suppose i < j so that

��1i �j D sn�1 � � � sisj � � � sn�1 D sj�1 � � � sn�2sn�1sn�2 � � � si :

Thus,

‚.f1/.˛/ D xg
.i/
1 �ig

.��1
i
.j //

2 sj�1 � � � sn�2 ˝
�
g�11

�.n�1/
sn�2

� � � si�
�1
j

�
g�12

�.j /
y 2 .n/n�2.n/:

Hence,

‚.f2 ıf1/.˛/ D xg
.i/
1 �ig

.��1
i
.j //

2 �j�1˝
�
g�11

�.n/
��1i ��1j

�
g�12

�.j /
y 2 .n/n�2.n/;

and so

‚.f /.˛/ D xg
.i/
1 �ig

.��1
i
.j //

2 �j�1 ˝ sn�1 ˝
�
g�11

�.n/
��1i ��1j

�
g�12

�.j /
y
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D xg
.j /
2 �jg

.i/
1 si � � � sn�2 ˝ sn�1 ˝ sn�2 � � � sj�1�

�1
i

�
g�12

�.j /�
g�11

�.i/
y

D xg
.j /
2 �j ˝ g

.i/
1 �isn�2 � � � sj�1

�
g�12

�.j�1/
˝ ��1i

�
g�11

�.i/
y

D xg
.j /
2 �j ˝ �

�1
j g

.i/
1 �i

�
g�12

�.j�1/
˝ ��1i

�
g�11

�.i/
y

D xg
.j /
2 �j ˝ �

�1
j

�
g�12

�.j /
g
.i/
1 �i ˝ �

�1
i

�
g�11

�.i/
y:

The case i > j is similar, giving

‚.f /.˛/ D

(
0 if i D j;
xg

.j /
2 �j ˝ �

�1
j

�
g�12

�.j /
g
.i/
1 �i ˝ �

�1
i

�
g�11

�.i/
y if i ¤ j:

We also compute that

‚.f 0/.˛/ D

(
xg

.j /
2 �j ˝ �

�1
j

�
g�12

�.j /
g
.i/
1 �i ˝ �

�1
i

�
g�11

�.i/
y if i D j;

0 if i ¤ j:

Thus, for all i; j 2 f1; : : : ; ng, we have

‚.f C f 0/.˛/ D xg
.j /
2 �j ˝ �

�1
j

�
g�12

�.j /
g
.i/
1 �i ˝ �

�1
i

�
g�11

�.i/
y:

Therefore, we have that

ˇ�1k ı
�
�n ı‰

�
1V˝.k�j�1/ ˝ ˝ 1V˝.j�1/

��
ı ˇk

D ˇ�1k ı
�
�n
�
1
˝.k�j�1/

"#
˝ .f C f 0/˝ 1

˝.j�1/

"#

��
ı ˇk

is the map

gkeik ˝ � � � ˝ g1ei1 7! gkeik ˝ � � � ˝ gjC2eijC2

˝ gj eij ˝ gjC1eijC1
˝ gj�1eij�1

˝ � � �g1ei1 ;

which is precisely the map ˆn
�
1V˝.k�j�1/ ˝ ˝ 1V˝.j�1/

�
.

9. Interpolating categories

We assume throughout this section thatG is a finite group. In [10], Knop generalized
the work [4] of Deligne by embedding a regular category A into a family of
pseudo-abelian tensor categories T .A; ı/, which are the additive Karoubi envelope
of categories T 0.A; ı/ depending on a degree function ı. Deligne’s original
construction corresponds to the case where A is the category of finite boolean
algebras.
As we now explain, the group partition category Par .G; d/ is equivalent

to T 0.A; ı/, where A is the category of finite boolean algebras with a locally free
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G-action and ı is a degree function depending on d . In this way, Par .G; d/ can be
viewed as a concrete realization (including explicit bases of morphisms spaces) of
the category T 0.A; ı/, whose definition is rather abstract. Moreover, Theorem 4.4
can be viewed as giving an efficient presentation of Knop’s category. On the other
hand, the equivalence of Par .G; d/ and T 0.A; ı/ allows us to deduce from Knop’s
work several important properties of Par .G; d/.
For an arbitrary finite set X , let Pow.X/ denote the power set of X . For Y � X ,

let :Y D X �Y denote its complement. The 5-tuple .Pow.X/;\;[;:;¿; X/ is an
example of a finite boolean algebra. In what follows, we simply denote this boolean
algebra by Pow.X/. In turns out that every finite boolean algebra is isomorphic to one
of this form. In fact, the category FinBoolAlg of finite boolean algebras is equivalent
to the opposite of the category FinSet of finite sets. To a map f WX ! Y of finite
sets, the corresponding homomorphism of boolean algebras is the map

Pow.Y /! Pow.X/; Z 7! f �1.Z/:

We refer the reader to [7, Chapter 15] for details.
By definition, an action of a group G on the boolean algebra Pow.X/ is a group

homomorphism from G to the automorphism group of Pow.X/ in FinBoolAlg . It
follows from the axioms of a boolean algebra that this action is uniquely determined
by the action of G on singletons or, equivalently, by a G-action on the set X . In
this way, the categoryFinBoolAlg .G/ of finite boolean algebras withG-actions (with
morphisms being homomorphisms of boolean algebras that intertwine theG-actions)
is equivalent to the opposite of the category of finite G-sets.
We say that aG-action on a boolean algebra is locally free if every element of the

boolean algebra is a union of elements on whichG acts freely. In the case of the finite
boolean algebra Pow.X/, this is equivalent to the condition that G acts freely on the
singletons. (Note that, since X is finite, this forces the group G to be finite.) Hence
the category FinBoolAlg .G/lf of finite boolean algebras with locally free G-actions
is equivalent to the opposite of the category of finite sets with free G-action:

FinBoolAlg .G/lf ' FinSet .G/opfree: (9.1)

The category FinBoolAlg .G/lf is regular, exact, and Malcev, using the definitions of
these concepts given in [10].
Knop’s definition of the category T 0.A; ı/ involves the diagram [10, (3.2)]:

r �y s

r s ı r s

x y z;

(9.2)
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where x; y; z 2 A, r is a subobject of x � y, s is a subobject of y � z, and s ı r
is the image of the natural surjective map r �y s ! x � z. To relate Knop’s
construction to the G-partition category, we consider the diagram (9.2) in the case
whereA D FinBoolAlg .G/lf.
First note that the product Pow.X/�Pow.Y / is isomorphic to Pow.X tY /. Our

next goal is to interpret the subobjects r; s in (9.2) as G-partition diagrams.
Every finite free G-set is isomorphic to one of the form X � G, where X is a

finite set (indexing the G-orbits), with G action given by

g � .x; h/ D .x; hg�1/; x 2 X; g; h 2 G:

Thus, by (9.1), every element of FinBoolAlg .G/lf is isomorphic to one of the form
Pow.X �G/. Moreover, every element is, in fact, isomorphic to

Pow
�
f1; 2; : : : ; rg �G

�
for some r 2 N. (We adopt the convention that f1; 2; : : : ; rg D ¿ when r D 0.)
Define the natural projection map pX WX �G ! X . For a morphism

'WPow
�
f1; 2; : : : ; rg �G

�
! Pow.X �G/;

define

P
'
i WD pX ı '

�
f.i; 1G/g

�
� X; 1 � i � r;

�' WD

r[
iD1

'
�
f.i; 1G/g

�
2 GX ;

and set EP ' D .P '1 ; : : : ; P
'
r /. Here we use the formal definition of an element ofGX ,

the set of functions X ! G, as a subset of X �G. Let

Parr.X/ WD
˚
.P1; : : : ; Pr/ 2 Pow.X/r W

Sr
iD1 Pi D X; Pi ¤ ¿;

Pi \ Pj D ¿ for all 1 � i; j � r
	
:

In otherwords, Parr.X/ is the set of all r-tuples of nonempty disjoint setswhose union
is X . For x; y 2 FinBoolAlg .G/lf, let Mon.x; y/ denote the set of monomorphisms
x ! y in FinBoolAlg .G/lf.
Lemma 9.1. The map

Mon
�
Pow

�
f1; 2; : : : ; rg �G

�
;Pow.X �G/

�
! Parr.X/�GX ; ' 7! . EP ' ; �'/;

(9.3)
is a bijection.

Proof. For . EP ; �/ 2 Parr.X/ �GX , define

'0
EP;�
W f1; 2; : : : ; rg �G ! Pow.X �G/
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by
'0
EP;�
.i; g/ D f.x; �.x/g/ W x 2 Pig � X �G:

This induces a map

' EP;�WPow
�
f1; 2; : : : ; rg �G

�
! Pow.X �G/:

It is straightforward to verify that the map . EP ; �/ 7! ' EP;� is inverse to (9.3).

The proof of the following lemma is straightforward.
Lemma 9.2. The automorphism group of Pow.f1; 2; : : : ; rg�G/ in FinBoolAlg .G/lf
is the wreath product Gr D Gr Ì Sr , where the action is determined by its action
on elements of f1; 2; : : : ; rg �G as follows:

.g; �/ � .i; h/ WD .�.i/; g�.i/h/; � 2 Sr ; i D f1; 2; : : : ; rg; h 2 G; g 2 Gr :
(9.4)

We also have an action of Gr on Powr.X/ �GX given by

.g; �/ �
�
.P1; : : : ; Pr/; .hx/x2X

�
WD
�
.P��1.1/; : : : ; P��1.r//; .g�.ix/hx/x2X

�
;

(9.5)
where ix 2 f1; 2; : : : ; rg is determined by x 2 Pix . The following lemma is also a
straightforward verification.
Lemma 9.3. The bijection (9.3) intertwines the actions (9.4) and (9.5).
Let Par.X/ denote the set of partitions of X . For EP D .P1; : : : ; Pr/ 2 Parr.X/,

let P D fP1; : : : ; Prg 2 Par.X/ denote the corresponding partition of X . For
P D fP1; : : : ; Prg 2 Par.X/, define an equivalence relation �P on GX as follows:
.gx/x2X �P .hx/x2X if and only if there exist t1; : : : ; tr 2 G such that gx D tihx
for all x 2 Pi .
Corollary 9.4. The subobjects of Pow.X �G/ in the category FinBoolAlg .G/lf are
naturally enumerated by the set G

P2Par.X/

GX= �P : (9.6)

Now consider the diagram (9.2) with

x D Pow
�
f1; 2; : : : ; kg �G

�
; y D Pow

�
f1; 2; : : : ; lg �G

�
;

and z D Pow
�
f1; 2; : : : ; mg �G

�
:

WhenX D X l
k
Š f1; 2; : : : ; kgtf1; 2; : : : ; lg, the set (9.6) can be naturally identified

with the equivalence classes of G-partitions of type
�
l
k

�
. Thus we can view r and s

as equivalence classes of G-partitions ŒP; g� and ŒQ;h�, respectively. We then leave
it to the reader to verify that r �y s exists if and only if the pair .ŒQ; g�; ŒP;h�/
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is compatible. If this pair is compatible, then r �y s is the equivalence class of
stack..Q;h/; .P; g// and s ı r D ŒQ ? P;h ?Q;P g�. Thus, we have the following
result.
Theorem 9.5. The G-partition category Par .G; d/ is equivalent to the category
T 0.A; ı/ defined in [10, Definition 3.2], where A D FinBoolAlg .G/lf and ı is the
degree function of [10, (8.15)] with the t there equal to d .

Proof. This follows from the above discussion and [10, Example 2, p. 596].

Let Kar.Par .G; d// be the additive Karoubi envelope (also known as the pseudo-
abelian completion) of Par .G; d/. LetN .G; d/ be the tensor radical (also known as
the tensor ideal of negligible morphisms) of Kar.Par .G; d//.
Corollary 9.6. Suppose k is a field of characteristic zero.
(1) The category Kar.Par .G; d//=N .G; d/ is a semisimple (hence, abelian) cate-

gory.

(2) We have N .G; d/ D 0 if and only if d … NjGj.

(3) If N .G; d/ D 0, then the simple objects ofKar.Par .G; d// are naturally param-
eterized by the set of N -tuples of Young diagrams, where N is the number of
isomorphism classes of simple G-modules.

(4) If d D njGj, then Kar.Par .G; d//=N .G; d/ is equivalent to the category of
kGn-modules.

Proof. (1) This follows from [10, Theorem 6.1 (i)].

(2) This follows from [10, Example 2, p. 596].

(3) By parts (iii) and (iv) of [10, Theorem 6.1], the simple objects of Kar.Par .G; d//
are in bijection with the simple modules of the automorphism groups of objects of
FinBoolAlg .G/lf which, by Lemma 9.2, are precisely the wreath productsGn, n 2 N.
The statement then follows from the classification of irreducible modules of wreath
product groups. (See, for example, [14, Proposition 4.3].)

(4) This is explained in [10, Example 2, p. 606].

Remark 9.7. Deligne’s construction has also been generalized by Mori [12], who
defined, for each d 2 k, a 2-functor Sd sending a tensor category C to another
tensor category Sd .C/, which should be thought of as a sort of interpolating wreath
product functor. When C is the category G-mod of G-modules, St .G-mod/ can
also be thought of as a family of interpolating categories for modules of the wreath
products Gn, n 2 N. Mori’s interpolating category contains Knop’s as a full
subcategory; see [12, Remark 4.14]. Mori gives a presentation of his categories,
the relations of which can be found in [12, Proposition 4.26]. The presentation
of Definition 4.1 is considerably more efficient. For example, Par .G/ has just
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one generating object, whereas Mori’s category (before taking the additive Karoubi
envelope) has a generator for each representation of G. In addition, the presentation
of [12] includes as generating morphisms all morphisms in the category G-mod,
whereas the presentation of Definition 4.1 only includes a morphism for each element
of the group (the tokens).
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