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A generalization of combinatorial identities for
stable discrete series constants

Richard Ehrenborg, Sophie Morel, and Margaret Readdy

Abstract. This article is concerned with the constants that appear in Harish-Chandra’s charac-
ter formula for stable discrete series of real reductive groups, although it does not require any
knowledge about real reductive groups or discrete series. In Harish-Chandra’s work the only
information we have about these constants is that they are uniquely determined by an inductive
property. Later, Goresky—Kottwitz—MacPherson (1997) and Herb (2000) gave different formu-
las for these constants. In this article, we generalize these formulas to the case of arbitrary finite
Coxeter groups (in this setting, discrete series no longer make sense), and give a direct proof that
the two formulas agree. We actually prove a slightly more general identity that also implies the
combinatorial identity underlying the discrete series character identities of Morel (2011). We
deduce this identity from a general abstract theorem giving a way to calculate the alternating
sum of the values of a valuation on the chambers of a Coxeter arrangement. We also introduce
a ring structure on the set of valuations on polyhedral cones in Euclidean space with values
in a fixed ring. This gives a theoretical framework for the valuation appearing in Goresky—
Kottwitz—MacPherson’s 1997 paper. In an appendix, we extend Herb’s notion of 2-structures to
pseudo-root systems.

1. Introduction

Although this paper deals exclusively with the combinatorics of real hyperplane arr-
angements and Coxeter complexes, it has its origin in the representation theory of
real reductive groups and its connections with the cohomology of locally symmetric
spaces, and in particular, of Shimura varieties. We start by explaining some of this
background. This explanation can be safely skipped by the reader not interested in
Shimura varieties.
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Let G be an algebraic group over Q. To simplify the exposition, we assume that G
is connected and semisimple. Let Ko, be a maximal compact subgroup of G(R)
and K be an open compact subgroup of G(A*°), where A® = 7 ®z Q is the ring of
finite adeles of Q. We consider the double quotient

Xk = G@Q\(GR) x G(A%))/ (Koo X K).

This is a real analytic variety for K small enough, and the projective system
(Xk)KkcG(ac) has an action of G(A®°) by Hecke correspondences that induces an
action of the Hecke algebra at level K on the cohomology of Xg for any reasonable
cohomology theory.

We restrict our attention further to the case where the real Lie group G(R) has a
discrete series. This is the so-called “equal rank case” because it occurs if and only if
the groups G(R) and K, have the same rank. Then the L2-cohomology H (’g) (Xk) is
finite-dimensional, and Matsushima’s formula, proved in this generality by Borel and
Casselman [4], gives a description of this cohomology and of its Hecke algebra action
in terms of discrete automorphic representations of G whose infinite component is a
cohomological representation of G(R), and in particular, either a discrete series or a
special type of non-tempered representation.

Another cohomology of interest in this case is the intersection cohomology
TH*(X) of the minimal Satake compactification Xx of Xg. In order to study this
cohomology, Goresky, Harder and MacPherson introduced in [12] a family of coho-
mology theories called “weighted cohomologies” and showed that the two middle
weighted cohomologies agree with 1 H*(X) if Xk has the structure of a complex
algebraic variety. This result was later generalized by Saper in [30].

All the cohomology theories that we discussed have actions of the Hecke alge-
bra, and the isomorphism of the previous paragraph is equivariant for this action.
Zucker conjectured that there should be a Hecke-equivariant isomorphism between
H ("‘2) (Xk) and TH(Xx). This conjecture was proved by Looijenga [24], Looijenga—
Rapoport [25] and Saper—Stern [31] if Xg has the structure of a complex algebraic
variety and by Saper [30] in general. In particular, by comparing the formulas for the
action of a Hecke operator on weighted cohomology (this was calculated by Goresky
and MacPherson using topological methods in [14]) and on L2?-cohomology (this was
calculated by Arthur using the Arthur—Selberg trace formula in [1]), one can obtain a
formula for averaged discrete series characters of the group G(R). One of the goals of
the paper [13] of Goresky—Kottwitz—MacPherson was to prove this identity directly.

If moreover the space X is the set of complex points of a Shimura variety, then
it descends to an algebraic variety over an explicit number field £ known as the reflex
field, as does the minimal Satake compactification, and so the intersection cohomol-
ogy has a natural action of the absolute Galois group Gal(E/E). We can further
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complicate the calculation by trying to calculate the trace on 1 H* (X ) of Hecke oper-
ators twisted by elements of the group Gal(E / E), for example, powers of Frobenius
maps. In the case where Xk is a Siegel modular variety, this was done by the second
author in [28]. It requires a slightly different character identity for averaged discrete
series characters of G(R), also involving discrete series characters of the endoscopic
groups of G, and whose relationship with the Goresky—Kottwitz—MacPherson identity
was not clear.

For the specialists, we give a more detailed explanation of the relevance of our
main results to cohomology calculations in Appendix C. Let us return here to a dis-
cussion of the current article.

In a previous article of the authors [7], we investigate the character identity of
Morel [28]. In particular, we relate it to the geometry of the Coxeter complex of
the symmetric group and give a simpler and more natural proof than the brute force
calculation in the appendix of [28]. The goal of the present article is to generalize the
approach of [7] and to prove a combinatorial identity (Theorem 4.2.2) that implies
the character formulas of Goresky—Kottwitz—MacPherson [13] and of Morel [28]; see
Sections 4.3 and 4.4. To obtain the character formula of [13] from our results, we need
to use Herb’s formula for averaged discrete series characters; see, for example, [17]
and [19]. We also generalize, in Corollary 5.2.3 and Lemma 5.3.1, the geometric result
of [7]; see Theorem 4.3 of that article. In fact, we prove an identity that holds not just
for root systems that are generated by strongly orthogonal roots, but for all Coxeter
systems with finite Coxeter group. The representation-theoretic interpretation of our
identity in the general case is still unclear.

We now describe in more detail the different sections of the article.

In Section 2 we review some background material about real hyperplane arrange-
ments and Coxeter arrangements.

In Section 3 we prove our first main theorem (Theorem 3.2.1) that concerns the
calculation over the chambers 7" of a Coxeter arrangement J of the alternating sum of
quantities f(7), where f is a valuation defined on closed convex polyhedral cones.
More precisely, Theorem 3.2.1 reduces this calculation to a similar calculation for
simpler subarrangements of ¢ and it is the main ingredient in the proof of our second
main theorem (Theorem 4.2.2). The original proof of Theorem 4.2.2 used an induction
argument similar to the ones used in the proofs of the character identities of [13,
Theorem 3.1] and [19, Theorem 4.2], but we later realized that Theorem 4.2.2 was a
particular case of the more general identity of Theorem 3.2.1.

In Section 4 we state and prove our second main theorem (Theorem 4.2.2). We
first introduce in Section 4.1 our main geometric construction, which we call the
weighted complex, that allows us to define the weighted sum; see Remark 4.1.6 for
an explanation of these names. The weighted complex is the set of all the faces of a
fixed hyperplane arrangement that are on the nonnegative side of an auxiliary hyper-
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plane Hj. It contains what is known as the bounded complex in the theory of affine
oriented matroids, and coincides with it if H is in general position. We state The-
orem 4.2.2 in Section 4.2 and prove it in Section 4.5. The proof is straightforward:
Using Corollary A.1.8, which generalizes [13, Proposition A.4], to reinterpret the
weighted sum as an alternating sum on the chambers of the arrangement of the value
of a particular valuation, we are able to show that Theorem 4.2.2 is a particular case
of Theorem 3.2.1. In Sections 4.3 and 4.4 we explain how Theorem 4.2.2 implies the
identities of [13, Theorem 3.1] and of [7, Theorem 6.4].

In Section 5 we study the geometric properties of the weighted complex. We prove
in particular that, under a hypothesis about the dihedral angles between the hyper-
planes of the arrangement (Condition (A) in Section 5.2, which always holds in the
Coxeter case), the weighted complex is shellable; see Corollary 5.2.3, which general-
izes Theorem 4.3 of [7]. We consider the case of Coxeter arrangements in Section 5.3.
These geometric results were originally needed in the proof of Theorem 4.2.2, but the
new proof via Theorem 3.2.1 allows us to circumvent them. We nevertheless decided
to keep them in the article because we thought that they could be of independent
interest.

In Section 6 we include concluding remarks.

We finish with three appendices. Each of the first two appendices can be read
independently from the rest of the article (except that a proof in Appendix A uses
Lemma 2.1.3). The goal of our Appendix A is to generalize [13, Proposition A.4],
which is a key part in the proof of our main theorem. In Appendix A of their arti-
cle [13], Goresky—Kottwitz—MacPherson show that a certain function, which they call
Ye(x, A), is a valuation (see Definition A.1.3) on closed convex polyhedral cones,
although they do not phrase it in these terms. We show that their function is a spe-
cial case of a general construction that takes two valuations and produces a third one,
and that this operation makes the set of valuations on closed convex polyhedral cones
into a ring; see Theorem A.1.6 and its corollaries for the precise definition of this
operation.

In Appendix B we review the theory of 2-structures, due to Herb; see for exam-
ple Herb’s review article [19]. We believe that this will be useful to the reader for a
number of reasons. The proofs of the fundamental results of this theory are somewhat
scattered in the literature and sometimes left as exercises. Furthermore, we needed to
slightly adapt a number of results so that they continue to hold for Coxeter systems
that do not necessarily arise from a (crystallographic) root system.

Finally, Appendix C is a continuation of the first part of the introduction, and
is intended to give specialists more information about the way the weighted sum of
Definition 4.1.5 and Theorem 4.2.2 appear in the calculation of the cohomology of
locally symmetric varieties.
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2. Hyperplane arrangements

2.1. Background material

We fix a finite-dimensional R-vector space V' with an inner product (-, ). If ¢ € V,
we write

Hy ={x €V :(a,x)=0}
Hf ={xeV:(a,x)>0}, H; ={xeV:(ax) <0}

We also denote by s, the (orthogonal) reflection across the hyperplane Hy,.

Let (®e)ecg be a finite family of nonzero vectors in V. The corresponding (cen-
tral) hyperplane arrangement is the family of hyperplanes # = (Hg,)ecE. Let Vo
be the intersection of all the hyperplanes, that is, Vo = (),cg He,. We say that the
arrangement J is essential if Vy = {0}, which means that the family (& ).cg spans V.

Consider the map

s:V = {+,—,0}F

sending x € V to the family (sign((cte, x)))ecE, Where sign: R — {4, —, 0} is the
map sending positive numbers to 4-, negative numbers to — and zero to 0.

Remark 2.1.1. The image of the map s: V — {4+, —, 0} is the set of covectors of an
oriented matroid; see, for example, [3, Definition 4.1.1]. This is the oriented matroid
corresponding to the hyperplane arrangement. In fact, some of our results extend to
general oriented matroids. In this article we have chosen to concentrate on hyperplane
arrangements to keep the exposition more concrete. In particular, we do not assume
that the reader knows what an oriented matroid is.

We denote by L(H) or just £ the set of nonempty subsets of V' of the form
C = s~ 1(X), for a sign vector X € {+, —, O}E. The elements of £ are called faces
of the arrangement. The set £ has a natural partial order given by C < D if and only
if C € D. The relation C < D is equivalent to the fact that for every e € E we have
§(C)e =0 or s(C)e = s(D). The set L with this partial order is called the face
poset of the arrangement. Note that V) is the minimal element of £. When we adjoin
a maximal element 1 to the poset £, we obtain a lattice £ U {T} known as the face
lattice. Note that under our convention faces other than Vj are not closed subsets of V':
for every C € £, the closure C is a closed convex polyhedral cone in V, and it is an
intersection of closed half-spaces H_oi The poset £ is graded with the rank of a face
C € £ given by

p(C) = dim(C) — dim(Vp),

where we write dim(C) for dim(Span(C)).
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We denote by T(H) or just T the set of maximal faces of £. These elements are
often called chambers, regions or topes, and are the connected components of

V- J He,.

ecE

If T € T then T is an open subset of V, and its closure is a closed convex polyhedral
cone of dimension dim(V").
If X,Y € {+,—, 0}, their composition X oY is the sign vector defined by

X, if X, #0,

Y. otherwise.

(XOY)eZ{

If C, D € £ then s(C) o s(D) is also the image of a face of £, and we denote this
face by C o D. This is the unique face of £ that contains all vectors of V' of the form
x +ey,withx € C,y € D and ¢ > 0 sufficiently small (relative to x and y). Define
the separation set of C and D to be the set

S(C,D) ={e€ E:s(C)e =—s(D). # 0}.

This is the set of e € E such that C and D are on different sides of the hyperplane Hy, .
Fix a chamber B € T. We can then define a partial order <p on J by declaring that
T <p T'ifand only if S(B,T) C S(B, T’). The resulting poset is called the chamber
poset with base chamber B. We will denote it by Jp. It is a poset with minimal
element B and maximal element —B. When all the hyperplanes are distinct, this poset
is also graded with the rank function p(7') = |S(B, T)|; see [3, Proposition 4.2.10].
If the choice of the base chamber B is understood, we write, for every face C of

the arrangement,
(_1)C — (_1)|S(B,C0B)|.

We also consider the graph with vertex set 7, where two chambers 7, T’ € T are
connected by an edge if and only if 7 N 7" spans a hyperplane (necessarily one of
the hyperplanes H,, ). In this situation, we say that this hyperplane is a wall of the
chambers T and T’. This graph is called the chamber graph. In the case when all the
hyperplanes of the arrangement J¢ are distinct, the distance between two chambers T
and T’ in this graph is |S(T, T")|; see [3, Proposition 4.2.3].

Consider the sphere S of center 0 and radius 1 in V/ V. The intersections C N S,
for C € £, form a regular cell decomposition X (£) of S, and we will identify £ with
the face poset of this regular cell decomposition.

Finally, we recall the definition of the star of a face in £.

Definition 2.1.2. Let C € £. The star of C in L is {D € £ : C < D}. Geometrically,
it is the set of faces of £ whose closure contains C. We will denote it by L>c.
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Lemma 2.1.3. Let C € L andlet E(C) ={e € E : C C Hy,}. Consider the hyper-
plane arrangement # (C) = (Hg, )ecE(c) and let Ly (c) be its face poset. Then the
following four statements hold:

(i) Each face D of L is contained in a unique face D" of L gc), and the map
D +— D’ induces an isomorphism of posets .c: L>c gy F(c)- In particular, it sends
the chambers of T N L>c to the chambers of L g c).

(ii) The isomorphism ic of (i) sends aface D > C of H to the relative interior of
the closed convex polyhedral cone D + Span(C). Let €c = Necr—E(c) He¢, where
€e = 5(C)e. The inverse of the isomorphism tc sends a face D’ of #H(C) to the
intersection D’ N €.

(iii) If D1, Dy € L then the inclusion S(D1, D2) C E(C) holds. In particular,
we have the equality S(D1, D) = S(tc(D1), tc(D2)), where the isomorphism (¢ is
as in (1).

(iv) The isomorphism ic: L>c Sy J(C) preserves composition and dimension,
that is, for all D, D’ € L>c, the following identities hold:

tc(DoD"y=1c(D)oic(D), dim(ic(D))= dim(D).

In particular, £ is also isomorphic to the face poset of a regular cell decompo-
sition of the unit sphere in V/ (), £(c) Ha, that we denote by X(L>¢).

Proof of Lemma 2.1.3. Statement (i) is clear.

We prove statement (ii). Let D € L>¢ and let D' = (¢ (D). As C < D, we have
s(D)e = s(C), forevery e € E — E(C),and so D C €c. As D C D', we deduce
that D' N €c D D. As D' is a face of #(C), it is an intersection

D'= () H.
ecE(C)

with s, € {0, +, —}, the intersection D’ N € is either empty or a face of #. We have
just proved that this intersection contains D, so it is not empty, and hence is equal to
the face D of J. It remains to prove that D’ is the relative interior of D + Span(C).

D= () Han (| HEN () He,

ecEy ecE ecE_

with £ = Eg U E4 U E_. We then have £y C E(C), and

D'=()Hopn () Hin () Hg.

ecEy ecELNE(C) ecE_NE(C)

We write
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So it suffices to show that D 4 Span(C) = K, where

K= ()Hen () HEn () CH.

ecEy ecE NE(C) ecE_NE(C)

We clearly have D C K and Span(C) C K, so D + Span(C) C K. Conversely, let
x € Kandlet y € C. Then («e, y) # 0 forevery e € E — E(C), so there exists A > 0
such that (ae, Ay) + (o, x) has the same sign as (c,, y) for every e € E — E(C).
We then have Ax + y € D, and so x € D + Span(C).

We prove (iii). Let Dy, D> € £>¢, and lete € S(D1, D). Suppose for example
that s(D1). = + and s(D3). = —. (The other case is similar.) Then D, C Hoj; and
D, C Ha_e, SO

C C Dy N Dy C Hyf, N Hy, = H,.

which implies that e € E(C).

The first statement of (iv) follows easily from the definitions: the composition
D o D’ is defined on the sign vectors of D and D’, and the isomorphism t¢¢ just
forgets the coordinates outside of E£(C) in these sign vectors.

We prove the second statement of (iv). Let D € £>¢, and let D’ be the unique face
of £ 3 (c) containing D. We clearly have dim(D) < dim(D’). If dim(D’) > dim(D)
then there exists e € E such that D C H,, and D’ ¢ H,,.But C C D, so this implies
thate € E(C). As D’ is not included in H,,, it must be contained in one of the open
half-spaces H, oi contradicting the fact that D’ contains D. ]

Remark 2.14. LetC € Landlet F' ={e € E:C ¢ Hy,}. Thentheset TN L>¢
isequalto {T € T: Ve € F' s(T). = s(C),}, so it is a T-convex subset of T in the
sense of [3, Definition 4.2.5]; see [3, Proposition 4.2.6]. In other words, it contains
every shortest path in the chamber graph between any two of its elements, so it is a
lower order ideal in T for every choice of base chamber B € TN Lxc.

2.2. Coxeter arrangements

Let (W, S) be a Coxeter system, that is, W is the group generated by the set S and
the relations between the generators are of the form (s¢)"”s* = 1, where ms s = 1 and
ms, > 2 fors # t; see [2, Section 1.1]. The corresponding Coxeter graph has vertex
set S, and two generators s and ¢ are connected with an edge if m;; > 3. If m;; > 4
it is customary to label the edge by the integer m; ;.

There are three natural partial orders on the elements of the Coxeter group W.
First the strong Bruhat order is defined by the following cover relation: z < w if there
exists s € S and u € W such that (usu™!)z = w and £(z) + 1 = £(w) where £ is the
length function on W; see, for example, [2, Definition 2.1.1]. Next, we have the right
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(respectively, left) weak Bruhat order, where the cover relation is z < w if there exists
s € S such that z - s = w (respectively, s - z = w) and £(z) + 1 = £(w). The strong
Bruhat order refines both the left and right weak Bruhat orders.

LetV = @ses Reg, with the symmetric bilinear form (-, -) defined by

(eSs et) = - Cos(ﬂ/ms,t)~

In particular, (es, es) = 1. The canonical representation of (W, S) is the representation
of W on V given by
S(v)zv_z'(eé‘av)'es’ (21)

for every s € S and every v € V. Note that this formula defines an orthogonal isomor-
phism of V' for the symmetric bilinear form (-, -). We refer the reader to [5, Chapitre V,
§4, Ne 8, Théoreme 2, p. 98] for the next result.

Theorem 2.2.1. Equation (2.1) defines a faithful representation of W on V, and the
form (-, -) is positive definite if and only if W is finite.

From now on, we assume that W is finite, and we write

®={w(e):weW seS} and " =dNY Ruges

seS

The set @ is a pseudo-root system, its subset @7 is a set of positive pseudo-roots,
and the set @~ = —®T = ® — &7 is the corresponding set of negative pseudo-roots;
see Definitions B.1.1 and B.1.4. Then # = (Hy),eep+ 1S an essential hyperplane
arrangement on V. The set of chambers 7T of this arrangement is in canonical bijection
with W: the unit element 1 € W corresponds to the chamber

B= () HS =()H.

acdt seS

and an arbitrary element w of W corresponds to the chamber w(B).

More generally, a parabolic subgroup of W is a subgroup W; generated by a
subset / of S, and the left cosets of parabolic subgroups of W are called standard
cosets. The Coxeter complex X (W) of W is the set of standard cosets of W ordered
by reverse inclusion. It is a simplicial complex, and we have an isomorphism of posets
from X (W) to the face poset £ of # sending a standard coset w7y to the cone

{xeV:Vsel (x,w(e)) =0and Vs € S — I (x,w(es)) > 0}.

The fact that this is an isomorphism is proved in [5, Chapitre V, § 4, Ne 6, pp. 96-97],
since the representation of W on V'V is isomorphic to its canonical representation
on V by Theorem 2.2.1. The fact that 3 (W) is a simplicial complex then follows
from [5, Chapitre V, § 3, Ne 3, Proposition 7, p. 85].
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The definitions of B and of the isomorphism T >~ W imply that, if w, w’ € W and
Ty, Ty’ € T are the corresponding chambers, then

S(Tw,Tw) ={a € ® :w (@) e dT and w' (@) € ®7}
Ul edT:w (@) e d andw' (o) € ®*},

and in particular
S(B,Ty) ={a € ®" :w (@) e 7},

hence, by [2, Proposition 4.4.4],
(DT = (=1)FETw = det(w).

By [2, Propositions 3.1.3 and 4.4.6] this also implies that the isomorphism T ~ W
sends the partial order <p to the right weak Bruhat order on W.

Definition 2.2.2. Let # = (H,,).cg be a finite hyperplane arrangement on a finite-
dimensional real inner product space V, with inner product denoted by (-,-). We
say that J is a Coxeter arrangement if o, & Roy for distinct e, f € E and if for
every e € E the family of hyperplanes J is stable by the (orthogonal) reflection s,
across Hy, .

Theorem 2.2.3. The hyperplane arrangement associated to a Coxeter system with
finite Coxeter group is a Coxeter arrangement. Conversely, suppose that ¥ is a
Coxeter arrangement on an inner product space V, and that there exists a cham-
ber B of H that is on the positive side of each hyperplane in JH. Let W be the
subgroup of GL(V') generated by the set {sq, : e € E}, let F be the set of e € E
such that B N Hy, is a facet of B and let S = {Sa, 1 f € F}. Then (W, S) is a Cox-
eter system, the group W is finite, and the hyperplane arrangement induced by H
on V) (\,er Ha, is isomorphic to the arrangement associated to the Coxeter sys-
tem (W, S).

Proof. The first statement is an immediate consequence of the definition of the arrange-
ment associated to a Coxeter system. The second and fourth statements follow from [5,
Chapitre V, §3, Ne2, Théoreme 1, p.74]. The statement that W is finite follows
from [5, Chapitre V, § 3, Ne 7, Proposition 4, p. 80] and from the fact that the arrange-
ment J¢ is central. ]

3. The abstract pizza quantity

3.1. 2-structures and signs

Let ® C V be a pseudo-root system (see Definition B.1.1) with Coxeter group W
(see Proposition B.1.6) and ®* C ® be a system of positive pseudo-roots (see Def-
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inition B.1.4). Recall the definition of 2-structures from Section B.2: A 2-structure
for @ is a subset ¢ C @ such that:

(a) ¢ is a pseudo-root system whose irreducible components are all of type A,
B5 or I,(2%) with k > 3;

(b) forevery w € W such that w(p N ®T) = ¢ N ®*, we have det(w) = 1.

Recall that 7 (®) is the set of 2-structures for ®. By Proposition B.2.4, the group W
acts transitively on 7 (®). In Definition B.2.8 we define the sign €(¢) = €(¢, ®*) of
any 2-structure ¢ € 7 (®). If ¢ € T (P), we write o7 = ¢ N DT,

We have the following proposition that extends [20, Theorem 5.3] to the case of
Coxeter systems. Note that our proof is a simple adaptation of Herb’s proof.

Proposition 3.1.1. The sum of the signs of all 2-structures of a pseudo-root system is

Y ep)=1.

YET(P)

equal to 1, that is,

Proof. We prove the result by induction on |®|. It is clear if ® = &, because then
T (®) = {@} and the sign of @ is 1. Suppose that |®| > 1 and that we know the result
for all pseudo-root systems of smaller cardinality. Let @ € ®, and set &, = ot N ®;
this is a pseudo-root system with positive system ot N &+,

Let 7" = {¢ € T(®) : s4(¢) = ¢}. By statement (0) of Lemma B.2.11, we have

T"={peT(®):ac g}

If o ¢ T, then ¢ C & — {a}, s0 54(¢p1) C ®T by Lemma 4.4.3 of [2], hence
€(sq(¢)) = —€(¢) by Lemma B.2.10. This implies that

Y ep) =0.
PeT (®)—T"
We define subsets 7" and 7" of 7" by
TW'={peT(®):pN&y €T (Do)},
:7-'// . TN _ (J'//
) =

1 -

By (3) of Lemma B.2.11, there exists an involution ¢ of 73" such that, for every ¢ € 7,’,
we have that t (@) N &y = ¢ N Dy and €(t(p)) = —e(@). This implies that

Y elp) =0,

/7
peT;

Y )= ) €0

PeT (®) S

and so
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Finally, by (1) and (2) of Lemma B.2.11, the map ¢ + ¢ N &, induces a bijection
from 77" to T (®y), and we have €(¢) = (¢ N Py) for every ¢ € 7,”. Hence, we

obtain
Y= Y. elpo)
peT’ 90€T (D)
and this last sum is equal to 1 by the induction hypothesis. |

Remark 3.1.2. As we are using the definition of the sign of a 2-structure from [18],
our formula looks a bit different from the one of [20, Theorem 5.3]. This is explained
in [20, Remark 5.1], and we generalize the comparison between the two definitions of
the sign in Corollary 3.1.3 below.

Corollary 3.1.3. Let ¢ € T(®P), and
W(p,®T)={we W wet) cdT), Wi(p,d")={weW: :wp') cot}.

Then the sign €(¢, ®T) is given by

1
O 3 R — det(w).
Wilp, ®)] wew%w)

Proof. By Corollary B.2.5, we have a bijection
W(p, @)/ Wi(p, @F) = T(®), w > w(yp).

By Proposition 3.1.1 and Lemma B.2.10, we obtain

1
l=——— .t
Wi (@, ®1)| wew%;q)+)€(w(<ﬂ) )
1
= €(§0, CD+)W Z det(UJ) |

weW(p,dt)

We consider the hyperplane arrangement # = (Hy)yecqp+ corresponding to P,
with base chamber B = (",co+ H, - For every 2-structure ¢ € 7 (®), we denote
by #, the hyperplane arrangement (Hg) e, +» With base chamber By, = (), ¢+ HF.
If T is a chamber of J#, we denote by Z,(T') the unique chamber of J#, containing 7';
as ¢ C ®T, we have Z,(B) = B,.

Corollary 3.1.4. For every chamber T of #, we have
D" = > (D% De(y).

peT ()

Recall that (—1)T= (=1)ISB:D) for every Te T(H), and similarly for T€ T(H,).
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Proof of Corollary 3.1.4. For every ¢ € T (®), we denote the Coxeter group of ¢
by W(g). We also use the notation of Lemma B.2.10. Let w be the unique element
of W such that T = w™(B). Let ¢ € 7(®). Then ¢ N w(®™) is a system of positive
pseudo-roots in @, so there exists a unique v € W(g) such that v(¢™) = ¢ N w(PT);
we write v = v,(w). As T = {x € V : Vo € w(®™) (x, ) > 0}, we have

Z,(T)={x eV :Yaecw(@®)Ng (x,a) > 0}
={x eV :Vaev,(w)(p) (x,a) >0},

and so vy, (w) is the element of W(g) corresponding to Z,(7) by the bijection from
W(¢) to the set of chambers of ¥, sending v to v~1(Z,(B)).
For a 2-structure ¢ € 7 (®) we have that

wvy(w) (") = w (e Nw(@T)) C O,
so by Lemma B.2.10 (and the fact that v, (w)(¢) = @), we obtain that
e(w™(p)) = det(w™ vy (w))e ().

Hence, we have

>0 )% De(p) = Y det(vy(w))e(e)
0eT (D) 0eT ()
=detw)- Y e (p))
QeT (D)

= det(w)- ) €(p).

eT ()

where in the last step we used that the map ¢ — w™!(¢) on the set 7 (®) is bijective.
The result now follows by Proposition 3.1.1. |

3.2. Calculating the abstract pizza quantity with 2-structures

We use the notation of Appendix A. In particular, if K is a closed convex polyhedral
cone in V, we denote the set of its closed faces by ¥ (K) (we include K itself in the
set of its faces). The dimension dim K of K is by definition the dimension of its span
Span(K), and the relative interior K of K is the interior of K in Span(K). We say
that K is degenerate if Span(K) is strictly included in V, equivalently, if K has empty
interior.

Let # be a central hyperplane arrangement on V' with fixed base chamber B.
Let €4 (V) be the set of closed convex polyhedral cones in V' that are intersections of
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closed half-spaces bounded by hyperplanes H where H € J¢. Denote the free abelian
group on € (V) by P ket (v) LIK] and let Kg (V) be its quotient by the relations

[K]+[K'|=[KUK]+[KNK'|

forall K, K’ € €% (V) such that K U K’ € €5 (V). For K € €5 (V), we still denote
th;c image of K in K (V') by [K]. For the relative interior K we also define a class
Kl Ke(V)by

(K] = (=D& 37 (D FF].

Fe¥(K)

Kl= > [F]

Fef (K)

We then have

by [13, formula (A.4), p. 543].

Recall that £(H) and T(H) are the set of faces and chambers of the arrange-
ment J as in Section 2.1. Each C € L(J) is the relative interior of its closure and,
if T € T(#),then F(T) ={C : C € L(H). C <T}.Wehave V =[[cer C-
and the family ([C])cec () is a Z-basis of Kz (V). As in Section 2.1, the sign of a
face C € F (H) is defined by (—1)€ = (—1)IS(B-CoB)I

We consider the following quantity:

n@e) = Y (—DC[Cl e Kx(V).
CeLl(H)

Let A be an abelian group. We say that a function v: €% (V') — A is a valuation
on € (V) if, forall K, K’ € €3 (V) such that K U K’ € €% (V), we have

V(KUK +v(KNK')=v(K)+v(K).

Such a valuation v defines a morphism of abelian groups Kz (V) — A sending [K]
to v(K) forevery K € €5 (V), and we still denote this morphism by v: Kg (V) — A.
We set

I(#,v) = v(II(H)) € A.

If v vanishes on degenerate cones, then we have

o vy= Y "= > H'u(T)eA. (3.1)

TeT(H) TeT(H)

The first main theorem of this article is the following. For Coxeter arrangements
we can express the quantity I1(J¢) in terms of the quantities I1(H#,) for the arrange-
ments #, associated to the 2-structures of the arrangement.
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Theorem 3.2.1. Let ® C V be a pseudo-root system. Choose a system of positive
pseudo-roots ®T C ® and let ¥ be the hyperplane arrangement (Hy)yeqp+ on V.

(i) We have the identity

@) = Y e@)T(H,)

9eT(®)

in the quotient K e (V'), where H,, is as before the arrangement (Hy)yepno+
for every ¢ € T (®).

(i) Ifv:€gx% (V) — A is a valuation, we have

. v)= Y el@T(H,.v).

QeT (P)

If ¢ € T(®) then the faces of H, are relative interiors of elements of €z (}),
so I1(#,) makes sense as an element of Kz (V).

Remark 3.2.2. This theorem is useful in the following situation. Suppose that we
have a function f on closed convex polyhedral cones and that we wish to calcu-
late the alternating sum over the chambers 7" of a hyperplane arrangement J# of the
values f(T). If # is a Coxeter arrangement and the function f is a valuation that
vanishes on cones contained in hyperplanes of #, then the theorem says that we can
reduce the problem to a similar calculation for very simple subarrangements of
that are products of rank 1 and rank 2 Coxeter arrangements.

Here are two situations when we wish to calculate alternating sums of f(7') for
such a valuation f:

(a) The weighed sums of Section 4. These sums appear in the calculation of
weighted cohomology of locally symmetric spaces and Shimura varieties; see Ap-
pendix C for additional details and references. We want to relate them to stable
discrete series constants to get a spectral description of that cohomology.

(b) The pizza problem; see, for example, the paper [9]. In this setting, we fix a
measurable subset K of V' with finite volume, and the function f sends a cone C to
the volume of C N K. We are interested in “the pizza quantity”, that is, the alternat-
ing sum of the volumes f(K N T). In particular, we would like to know when this
alternating sum vanishes, which is to say that the “pizza” K has been evenly divided
among the two participants, 4+ and —. This problem is approached by analytic meth-
ods in [9]. Theorems 1.1 and 1.2 in [9] give general sufficient conditions to guarantee
that the pizza quantity vanishes. Using Theorem 3.2.1 we can give a dissection proof;
see [8].

When f is a valuation that does not vanish on cones contained in hyperplanes
of J¢, we have to decide how to count the contributions of lower-dimensional faces
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of #. One possibility is given in Theorem 3.2.1, and another in Corollary 3.2.4. In
both cases, if # is a Coxeter arrangement, then we can again reduce the calculation
to the case of simpler subarrangements of J. This is not needed in situation (a), but
in situation (b) it allows us to obtain versions of the pizza theorem that hold for all the
intrinsic volumes; see [8] for this.

We will provide a proof of Theorem 3.2.1 in Section 3.3. First we state and prove
a corollary. For J a central hyperplane arrangement on V' with a fixed base chamber,
we define

PI) = ) (=DT[T]e Kz (V).

TeT(H)

Po¥)= Y (=DT[T] € Kp(V).
TeT(H)

Analogous to the pizza quantity defined in Section 2 of [9], we call P (#) the abstract
pizza quantity of the arrangement .

Lemma 3.2.3. For # a central hyperplane arrangement on V, we have
Py(H) = P(H).
Proof. If T € T(H) then we have
7=+ Y [F]

FeL(H)
F<T

Summing over all chambers 7" of J# yields

Y CyE= Y (—I)T([T]+ ) [F])

TeT(¥) TeT(H) Fel(H)
F<T
= > oir+ >0 [F] Y ~nh
TeT(K) Fel(#)—T(¥)  TeT(H)
T>F
The last inner sum is equal to zero, yielding the result. |

Corollary 3.2.4. If ® and ¥ are as in Theorem 3.2.1, we have

PI) = Y e@)P(H,).

T (D)

Proof. By Lemma 3.2.3, it suffices to prove that

Po(Jt) = Y e(9)Po(H,),

eeT (P)
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where Py(H#)= ZTGT(W)(—l)T [T'] and Py(H,) is defined similarly. For every x € 1V
and every ¢ € T(®), let a,(x) equal (—1)Z if there exists a chamber Z of ¢ such
that x € Z, and 0 otherwise. We need to show that .7 g €(9)ay(x) is equal
to (—1)7 if there exists a chamber T of # such that x € T, and otherwise is zero.
Consider the valuation v: €% (V) — Kz (V) sending a cone C € € (V) to

> [TleKx).

TeT(#), TcC

This valuation corresponds to the endomorphism of Kz (V') sending the class of T to
itselfif T € T(H), and the class of F to 0 if F € F (H#) — T(H). The valuation v van-
ishes on degenerate cones, so by statement (ii) of Theorem 3.2.1 and equation (3.1),
we have that if 7" is a chamber of J¢ and x € T, then

D e@ag(x) = (DT,

0eT ()

Now letx € V —Ureqg) T and let F be the unique face of J¢ such that x € F.
For each ¢ € 7 (D), there is at most one chamber of ¢ that contains x. We denote by X
the set of pairs (¢, Z), where ¢ € 7 (®) and Z is a chamber of ¢ such that x € Z.
As F is not a chamber, there exists e € E such that FF C H,. We denote by s the
orthogonal reflection in the hyperplane H,. As s(x) = x, we can make s act on X by
sending (¢, Z) to (s(¢), s(Z)). This is a fixed-point free involution. Indeed, if ¢ is a
2-structure such that s(¢) = ¢, then e € ¢ by statement (0) of Lemma B.2.11, so H,
is a hyperplane of #,, which is impossible because x is both in H, and in a chamber
of ¢. To prove that

Y e@agn) = Y @)1

YT (D) (9,2)eX

is equal to 0, it suffices to show that for every (¢, Z) € X, we have
€@(=D7 = —e(s(@) (=P

After applying an element of W to the entire setup, we may assume without loss of
generality that x is in the base chamber of J¢. Then Z, respectively, s(Z), is the base
chamber of ¢, respectively, s(¢), so (—1)Z = (=1)*@) = 1. Also, as the reflection s
sends the base chamber of ¢ to that of s(¢), we have s(p) C ®T, and so e(s(¢)) =
—e(¢) by Lemma B.2.10. [

3.3. Proof of Theorem 3.2.1

In this subsection we prove Theorem 3.2.1. We begin by stating and proving a lemma.
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Lemma 3.3.1. Let # be a central hyperplane arrangement on V, let C be a face
of #H and let x € V. We denote by Cy the unique face of # containing x. Then for
D < C aface of ¥ the following three conditions are equivalent:

(@) x € C + Span(D) = C + Span(D);
(b) wx(EL’é) =1, where DL€ = DL N C* as in Section A.l;
(c) DoCy <C.

Moreover, if Cy is a chamber then these conditions can only hold if C is also a cham-
ber, and they are equivalent to the following condition:

(d DoCy=C.

Proof. We first note that Span(D) = Span(D) because Span(D) is a finite-dimen-
sional subspace of V/, hence it is closed and so contains D. This explains the equality
in condition (a).

To prove that conditions (a) and (b) are equivalent, we note that by the definition of
the valuation v/ in Lemma A.1.10 we have ¥ (D+€) =1 if and only if x € (D1-C)*.
As D¢ = DL N C* by definition, we have (D+C)* = Span(D) + C, so condi-
tion (b) is equivalent to the fact that x € Span(D) + C, which is condition (a).

We prove that (c) implies (a). Let y € D. If ¢ > 0 then y + ex € D o Cy, so
y 4+ ex € C by (c). Thus,

1 _
x=—-(y+ex—y)e C + Span(D),
e

which is condition (a).
We prove that (a) implies (c). By condition (a) we can write x = x; + X5, with
x1 € C and x, € Span(D). Let y € D.If ¢ > 0 is small enough, then y + ex; € D,
o)
y+ex =(y+exy) +ex;eC.

As y + ex € D o Cy for ¢ > 0 small enough, this shows that D o Cy C C, that is,
D o Cy < C, which is condition (a).

Finally, suppose that Cy is a chamber. Then D o Cj is a chamber, so condition (c)
can only hold if C is also a chamber, and it is equivalent to condition (d) because
chambers are maximal faces. |

Proof of Theorem 3.2.1. We first prove statement (ii) of Theorem 3.2.1 for a valuation
v: €y (V) — A that vanishes on degenerate cones. For every ¢ € 7 (®), we have by
equation (3.1):

OH,v)= > (=D%v(Z)= > (D% > uI).

ZeT(H,) ZeT(JH,) TeT(J), TCZ
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Hence,
Y @)= Y el) Y, (=DF Y (D)
QT (D) QeT (D) ZeT(Hyp) TeT(H), TCZ
= > w(l) Y e@)(=nFD,
TeT(¥#) 0eT (P)

AS Y LeT (@) e(@)(—=1) %™ = (=T for every T € T(H) by Corollary 3.1.4, the
statement follows.

We now prove statement (i) of Theorem 3.2.1. Fix a point x in the base chamber B
of #. For every closed convex polyhedral cone K C V, let ¥, (K) be the set of closed
faces F of K such that x € K + Span(F'). Consider the function y: €z (V) — Kz (V)
defined by

YKy = ) (DI
FeFy(K)

This is the x-product in the sense of Corollary A.1.8 (see also Remark A.1.9) of
the valuations €g (V) — Kg(V), K — [K] and ¥: €(VY) — Z, where V'V is the
dual of V and vy is the valuation of Lemma A.1.10. More explicitly, for K C V" a
nonempty closed convex polyhedral cone, we have ¥, (K) = 1 if and only if x € K*.
Indeed, with the notation of that definition, we have (F1X)* = K + Span(F) for
every K € €z (V) and every closed face F of K. By Corollary A.1.8, the function ¥
is a valuation, so it induces a morphism : Kz (V) — Kg (V). Moreover, the valua-
tion Y vanishes on degenerate cones in € (V). Indeed, if K € € (V) is contained in
a hyperplane H of J¢, then K + Span(F) C H forevery F € ¥ (K),so Fx(K) =@
because x is not on any hyperplane of #. Hence, we can apply statement (i) that we
just proved to .

Let J¢' be a subarrangement of J, and let B’ be the unique chamber of #’ con-
taining B. If T € T(H'), we write

Fo(T)={C e L(H'):C<TandCoB =T}.
Asx € B C B, we have 7 (T) = {C : C € F,(T)} by Lemma 3.3.1. We deduce
that

nue, vy =Y ()7y(T)

TeT(H)

= D DT Y D)IFF]

TeT(H) FeFx(T)

= > nF > (—-1)*m€[C]

TeT(H) CeL(H"), CoB'=T

= > (DHéEpimerel.

Cel(H)
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Using statement (i) for the valuation ¥, we obtain that

Y EDEEDMCCl= Y el Y (DD CC] B2

CeL(¥) YeT (D) Cel(JHy)

By the top of page 544 of [13], there exists an endomorphism of Kz (V') sending [K]
to (—1)dimK [K ], for every K € € (V). Applying this endomorphism to the iden-
tity (3.2) yields statement (i).

Finally, the general case of statement (ii) immediately follows from applying the
morphism v: K g (V) — A to both sides of the identity of statement (i). |

4. The weighted sum

4.1. The weighted complex and the weighted sum

We return to the situation of Section 2.1. In particular, we fix a finite-dimensional real
inner product space V' and a central hyperplane arrangement # = (Hgy,)ecg 0on V,
and we denote by £ and T the sets of faces and chambers of J.

Definition 4.1.1. Let A € V. We consider the following subset of the face poset £:
L, ={CeL:CCH)

In other words, the set £ is the collection of faces on the nonnegative side of the
hyperplane H). More generally, if Cy is a fixed face of £, we also consider the inter-
section

L)L,ZC() =L NLxc.

Remark 4.1.2 (see [3, Section 4.5] for definitions.). If A # 0 then the hyperplane
arrangement {H,} U {H,, : e € E} defines an affine oriented matroid with distin-
guished hyperplane H, . If H} is in general position relative to the Hy,, thatis, if A is
not in the span of any family (e )ecr for |F| < dim(V') — 1, then £ coincides with
the bounded complex of this affine oriented matroid. In general, £ is larger.

The basic properties of the subsets £, and £, >c, are given in the following
proposition.
Proposition 4.1.3. The following two statements hold:

(i) For a fixed face Cy of £ the set L >c, is a lower order ideal in L>c,.

(i1) Let C € L. Then there exists T € TN L) suchthat C < T.
Proof. 1t suffices to prove (i) when Cy is the minimal face of £. Let C, D € £ such

that C < D and D € £;. The hypothesis implies that C C D and D C H+ As H+
is closed, this immediately gives C C H;", hence C € L.
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To show (ii) let D1, Ds, ..., D, be the chambers of T that are larger than C with
respect to the partial order <. If one of them is contained in H;", then we are done.
Otherwise, for every 1 <i < p, we can find a point x; € D; such that (4, x;) < 0.
Let ' be the subarrangement of # where we remove all the hyperplanes of J that
contain the cone C'. In the arrangement J¢' all the points x; are contained in the same
chamber C’. In particular, the convex hull P of the points x1, x5, ..., Xp is contained
in C’. The convex hull P intersects the linear span of the cone C in a point x. Since
all the points x; are in the open half-space H,, so is the point x, that is, (4, x) < 0. By
inserting the hyperplanes of J that contain the cone C back in the arrangement J’,
we subdivide the region C’ into regions Cy, Ca, ..., C,. But the point x belongs
to the closure of each region C;, thus the point x belongs to the cone C. This is a
contradiction since C is contained in the half-space H;', so (A, x) > 0. |

Definition 4.1.4. The subcomplex of the cell decomposition X (L), respectively,
¥ (L>c,), whose face poset is the lower order ideal £, respectively, £ > ¢, is called
the weighted complex and denoted by X (L), respectively, (L >c,). By Proposi-
tion 4.1.3 it is pure of the same dimension as X (£, ), respectively, X (L >c,)-

We are interested in the following quantity.

Definition 4.1.5. Let A be a vector in V' and B a chamber of J#, thatis, B € T. The
weighted sum is defined to be

Ya(B.2) = ) (=)@ (-1)SEDBL, (@.1)

Del

More generally, if C is a face of the arrangement J, that is, C € £, and if B is a
chamber whose closure contains the face C, that is, B € T N L>c, we define the
weighted sum to be

wa/C(B7 /\) — Z (_1)dim(D) . (_1)|S(B,DOB)‘_ (42)

Del) >c

Remark 4.1.6. This definition seems very arbitrary and mysterious. We try to give
some context for it in Appendix C. Without getting into too much detail here, the
weighted sum (in the situation of Example 4.2.1) plays a role in the calculation of the
trace of Hecke operators on the weighted cohomology of locally symmetric varieties
that is very similar to the role played by stable discrete constants (see, for exam-
ple, [13, pp.493, 498-500]) in the calculation of the trace of Hecke operators on L?
cohomology of these varieties. It is because of this that we chose the names “weighted
complex” and “weighted sum”. In fact, in that situation we only really need the “abso-
lute” version where C is the minimal face of #. The “relative” version, where C is
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not minimal anymore, appears when the locally symmetric variety is a Shimura vari-
ety defined over a number field £ and we are considering the trace of a Hecke operator
multiplied by an element of the absolute Galois group of E.

Remark 4.1.7. In our previous paper (see [7, equation (6.1)]), we used the nota-
tion S(1) to denote what turns out to be a particular case of the sum in equation (4.2)
in the type B Coxeter case; see equation (4.3) in Section 4.4 for the precise relation
between the two. In this paper, we decided to follow the notation of [13] in order to
avoid overuse of the letter S.

We state the following lemma. It reduces the calculation of ¥ 5,c (B, 1) to the
case of an essential arrangement.

Lemma 4.1.8. Let Vy be the intersection of all the hyperplanes of #, that is, Vo =
(Necr Ha.- Let 7 denote the projection V. — V/Vy. Let # |V, be the hyperplane
arrangement (Hy, /Vo)ece on V/Vy. Note that w induces an isomorphism between
the face poset of ¥ and H/Vy. Let C € L, let B be a chamber of J such that
B € Lsc and let A € V. Then the following identity holds:

(=140 . 5o yoy () ((B). T () if A € Vg,
B, 1) =
Vaesc(B,A) {0 gL

Proof. Note that A € V- if and only if Vo C H.If A & V;*, then the linear functional
(A, -) takes both positive and negative values on Vy. As Vy C D for every D € £, this
linear functional also takes both positive and negative values on D, so D ¢ L. This
shows that £; = @ if A & V;- and gives the second case. Now suppose that A € V;*.
Then Vp C H,, and it is easy to see that D € £, respectively, D € L, if and only

ifw(D) C H:( 1) respectively, w(D) > 7(C), and that

dim(r (D)) = dim(D) — dim(Vp).
This yields the first case. =

Suppose that V = 1} x --- x V, with the V; mutually orthogonal subspaces of V
and that J also decomposes as a product #; X --- x J. By this, we mean that there
is a decomposition £ = E; Ll --- Ll E, such that, for | <i <r andevery e € E;, we
have a, € V;. The arrangement #; = (V; N Hy,)eck, is a hyperplane arrangement
on the subspace V;, and each hyperplane of J# is of the form H x [] i Vj, where
1 <i <rand H is one of the hyperplanes of J;.

Let £; be the face poset of #¢; for 1 <i < r. Then the faces of £ are exactly the
products Cy X --- x C, where C; € L;, and the order on £ is the product order. In
particular, C is a chamber in £ if and only if all the C; are chambers in £;.
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Lemma 4.1.9. Assume that the arrangement J# factors as J1 x - - - X H, as described
in the two previous paragraphs. Let C = Cy X --- X C, be a face in L, and let B =
By x -+ x By, be a chamber in Lsc. Finally, let A € V. Then

Vaesc(B.A) =[] Vs sc (Bii M),

i=1
where, for 1 <i <r, A; is the orthogonal projection of A on V;.

Proof. The expression for Y5 ,c (B, A) follows from the fact that £ = £y x --- x L,
as posets once we prove the following statement: Let D = Dy x --- x D, € £, with
D; € L;. ThenD € £, ifandonlyif D; € £; 3, for1 <i <r.

We prove this last fact. Note that A = (Aq,...,A;) in V] x--- x V. = V because
the V; are pairwise orthogonal. If D; € £; ;. for every 1 <i < r then for every
x = (x1,...,xr) € V, we have

,
(A.x) = (A.x;) = 0.
i=1
Conversely, suppose that D € £,. Let x; € D; for 1 < j < r. As all the D; are
cones, for every ¢ > 0 the element ex; is in D;. Fix 1 <i < r and consider the
element x, = (exy1,...,&X;i—1, Xi, EXj+1,...,&Xy). Then x, is in D. Thus, we have
the inequality
0<(xo) =i x) +2) (A x)).
J#i

Letting ¢ tend to 0, we obtain (A;, x;) > 0, and hence D; € £; 3,. ]

4.2. Calculating the weighted sum for some arrangements with many
symmetries

We continue to use the notation of Sections 2.1 and 2.2. Suppose that E = EW LU E®),
with # D = (Hy,),cp a Coxeter arrangement whose Coxeter group W stabilizes
H? = (Ha,).cg® . and that

C:(ﬂ Hae)ﬂ( N H;;),

ecEM ecE®)

sothat E(C)={e€ E:C CHy}=E M To simplify some of the notation, without
loss of generality we may assume that the vectors a,, where e € E, are all unit vectors.
We assume that there exists a chamber B of #¢ that is on the positive side of every
hyperplane of # (not just #(); in particular, we have C < B. This also defines a



R. Ehrenborg, S. Morel, and M. Readdy 132

chamber of the arrangement #, and we denote by (W, S) the associated Coxeter
system, as in Theorem 2.2.3.

The set ® = {+a,:e € E (1)} is a normalized pseudo-root system (see Defini-
tion B.1.1), the subset T = {a, : e € E(l)} is a system of positive pseudo-roots in ®
(see Definition B.1.4), and (W, S) is the corresponding Coxeter system; see Proposi-
tion B.1.6.

Our main example of such arrangements is the following.

Example 4.2.1. Let (I, S) be a Coxeter system, let ' be the canonical representation
of W, and let # = (Hy),cp+ be the associated hyperplane arrangement on V' as in
Section 2.2. Let I be a subset of .S, set

oM = ot N (ZRa) and ®@ = ot — oW,

ael

Then #(V = (Hg)gep is a Coxeter arrangement with associated Coxeter system
(Wr, I), where Wy is the subgroup of W generated by I, and Wj preserves the
arrangement X @ = (Hy),co@ . If

c= (N m)n(

aed

N #)

acd?)
as before, then the chamber B correspondingto 1 € W isin Lxc.

We use again the notion of 2-structures for ®; see Section 3.1. If ¢ € T (D) we
write o=@ N®*, and we denote by H,, the hyperplane arrangement (Hy )y e+, @
and by By, respectively, Cy,, the unique chamber of #, containing B, respectively C.
By the choice of B, the chamber B, is also the unique chamber on the positive side
of every hyperplane in #,,.

Theorem 4.2.2. Let # = HD U H P be an arrangement in V with base chamber B.
Assume that the subarrangement ¥ is a Coxeter arrangement with pseudo root
system ® and its Coxeter group stabilizes #H. Let C be the intersection of the base
chamber of #® and the hyperplanes in V. Then for every A € V we have

V(B )= D €@ Vs,/c,(By. M)

peT (D)

This is the second main theorem of this article. It will be proved in Section 4.5;
see Definition 4.1.5 for the description of the terms and Remark 4.1.6 for an expla-
nation of their significance. Theorem 4.2.2 states that the weighted sum for a Coxeter
arrangement can be expressed as an alternating sum of weighted sums for much sim-
pler subarrangements (the 2-structures) that are direct products of rank one and rank
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two Coxeter arrangements. As weighted sums for these subarrangements can be cal-

culated directly (see Corollary 4.3.1 and Proposition 4.3.2 for the case where C is the

minimal face), this gives a way to calculate the weighted sum for the original Coxeter

arrangement, and thus, as explained in Appendix C, to relate weighted cohomology of

locally symmetric varieties to the spectral side of the Arthur—Selberg trace formula.
We first give some applications of Theorem 4.2.2.

4.3. First application: the case of Coxeter arrangements

We specialize Theorem 4.2.2 to the case where # = #) is a Coxeter arrangement.

In particular, C is the minimal face of £, so V3 /c (B,A) = Y% (B, ) forevery A€ V.
Let ¢ € T7(®), and let ¢ = @1 U ¢ U --- U ¢, be the decomposition of ¢ into

irreducible pseudo-root systems. Let V; , = Span(g;) for 1 <i < r. Then

Vi=Top xVig X X Vig,

where Vy, = 9. The dimension of V; 4, is equal to dim(V') — rank(g), so it is inde-
pendent of ¢ by Proposition B.2.4. Let #; , be the hyperplane arrangement given by
@i N ®1 on Vio where 1 <i <r.For a fixed index i let B; , be the chamber of the
arrangement J; , that is on the positive side of every hyperplane, and let A; , be the
orthogonal projection of A on V; .

Combining Theorem 4.2.2 with Lemmas 4.1.8 and 4.1.9, we obtain the following
corollary.

Corollary 4.3.1. For every A € V, we have

.
Yae(B.A) = (1) OR N (@) [ [ Yoty (Big: Aiv),
0eT () i=1
A€Span(p)

where R is the rank of any ¢ € T (D).

To finish the calculation of ¥ (B, A) in this case, we use the following proposi-
tion, whose proof is a straightforward calculation.

Proposition 4.3.2. In types A1, B, = I(4) and I,(2¥) for k > 3, the function y is
given by the following expressions:

(1) Type Ay: Suppose that V = Re; and that ®+ = {e1}. Then V is given by

0 ifc>0,
Va(B,cer) =11 ifc=0,
2 ifc <.
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Figure 1. The function ¥ g (B, A) in the dihedral pseudo-root system I»(8). The origin is
assigned the value 1 and the unmarked faces are assigned the value 0.

(2) Type I,(2%), where k > 2: Let V- = Req & Re, with the usual inner product.
For everyv € V — {0}, let 6(v) € [0, 27) be the angle from ey to v. Suppose
that ® is the set of unit vectors that have an angle of rm/ 2K with ey, where
r € 7, and that B is the set of nonzero vectors v € V such that

0 < 6(v) < /2.
Then  is given by
ifA=0,

ifA # 0and O(A) = rr/2F with 2k 141 < r < 3.2k,

Ve (B A) =14 ifa #0andrr/2% <O\ < (r + 1)r/2% with r odd
and 21 + 1 <r <3.2k1
0 otherwise.

Remark 4.3.3. If (W, S) arises from a root system ® and —1 is an element of W
(or, equivalently, the root system is generated by strongly orthogonal roots), then
Goresky—Kottwitz—MacPherson [13, Theorem 3.1] and Herb [19, Theorem 4.2] give
two different expressions for the coefficients appearing in the formula for the averaged
discrete series characters of a real reductive group with root system ®. Corollary 4.3.1
asserts the equality of these two formulas. In general, although there no longer exist
discrete series in this setting, the formulas of Goresky—Kottwitz—MacPherson and
Herb still make sense, and Corollary 4.3.1 says that they are still equal. Also, Cor-
ollary 4.3.1 implies that ¥ g (B, A) = 0 if A is not in the span of any 2-structure for ®,
so it implies [13, Theorem 5.3]. It is not clear whether this is an easier proof than the
one given in [13].



Generalized stable discrete series constant identities 135

4.4. Second application: the type A identity involving ordered set partitions

We now show how to deduce [7, Theorem 6.4]' from Theorem 4.2.2. We take V = R”
with the usual inner product, and we denote by (e, ..., e,) the standard basis of V.
We consider the hyperplane arrangement J of type B, on V', thatis, # = (Hq) o}
where

@; ={esEte:1<i<j=<njUler...,en}.

We write 7 = &M 1 @, where @) ={e; —¢; : 1 <i < j <n}, and we denote by
H = HD 1 HD the corresponding decomposition of #. The arrangement # 1) is
a Coxeter arrangement of type A,_1, and we denote by ® = &) U (—®D) the asso-
ciated root system. Let C be the intersection C = ((\yeom He) N (Nyeo@ Hy)-
Then C is the open ray R~q - (e1 + e + -+ + e5).

Recall that £ is the face poset of #. We will now give a description of £ in terms
of signed ordered partitions; see also [10, Section 5] for this description. A signed
block is a nonempty subset B of {£]1,..., £n} such that, for every i € {1,...,n},
at most one of =i is in B. We then denote by B the subset of {1, ...,n} defined by
B = {|i| : i € B}. A signed ordered partition of a subset I of {1,...,n} is a list
(Bi.....By) of signed blocks such that (Bj, ..., B,) is an ordered partition of /.

We consider the poset Hf,rd’B whose elements are pairs 7 = (77, Z), where Z C
{1,...,n}and 7 is a signed ordered partition of {1, ...,n} — Z, and the cover relation
is given by the following two rules:

((Bi.....B)).Z) < ((B.....B,_1). B, U 2),
((Ela ) Er)vz) < ((El’-- L] ~i—17 §l U Ei+1v §i+23'--5 Er),Z)
The set Z is usually called the zero block of .

Let m = (7, Z) be an element of nos8 | with 7 = (Bi1, ..., B,). We define
the cone C; to be the set of (xq,...,x,) € V such that (with the convention that
X_; =—x;forl <i <n):

(i) if Z ={iy,...,in) then the equalities x;, = --- = x;,, = 0 hold;

(i) for every block B = {i1,....in} in 7, the equalities and inequality Xi =

-+ = Xx;,, > 0hold;

(iii) for every two consecutive blocks Es and §S+1 in 7T withi € Es and j € §s+1,
the inequality |x;| > |x;| holds.

It is easy to see that the map ¢: [15%® — £ sending 7 to Cy is a bijection,
and that it induces an order-reversing isomorphism between the poset Hf,rd’B and the

IThis is a reformulation of [28, Proposition A.4].
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face poset £. The inverse image of the ray C = R~ - (e; + €2 + --- + e,) by this
bijection is the element mo = (({1,...,n}), @) of TTg®®, so the elements of Lx¢
correspond exactly to the (unsigned) ordered partitions of {1,...,n}. In other words,
the bijection ¢ induces an order-reversing isomorphism between the poset T19¢ of
ordered partitions of {1, ...,n} defined in [7, Section 2] and the poset L>c.

LetA = (A1,...,A,) € R”. For a signed block E, we set

Ag =Y A

i€B

with the convention that A_; = —A; for 1 < i < n. Define the subset T1o%Z )
of TII8 by

s
MyeBG) = {((Br B B, 2) e IyE 0 3 g = 0for 1 <s <7}

i=1

Then an element 7 of TTY%? is in TIY%Z (1) if and only if Cy is in £,. Moreover,
the subset £, >¢ corresponds to the set TI3(1) of ordered partitions (By, ..., By)
of {1,...,n} such that, for every 1 <s < r, we have Zle Ag; > 0. This is almost
the set P (A) of [7, Section 3]; the only difference is that the inequalities defin-
ing P (A) are strict. We can give the following identity relating these two sets: For
every e € R, let A, = (A1 — &, ..., A, —¢&). Then if ¢ > 0 is sufficiently small, we
have TI%(4,) = P(A).

Let B be the unique chamber of £ that is on the positive side of every hyperplane,
that is, B = {x; > xp > --- > x, > 0}. As we already observed, £>c is isomor-
phic to the face poset of the arrangement J (1), which is a Coxeter arrangement of
type A,—1. The unique chamber of this arrangement containing B corresponds to the
identity element in the symmetric group &,. It then follows from Proposition 5.1.4
that the function fp: L>¢c — T N L sending C’ € L>¢ to C o B corresponds
via ¢: 194 = L to the function f: 19 — &, of [7, Section 4]. We obtain the
equality:

Vac(B.A)= > (=) (-1)/™,

rel¥d(A)
where || denotes the number of blocks of the ordered partition 7 = (By,..., B;), in
other words, || = r. Let A denote the reverse of A, thatis, A = (A,,...,A1). For e

real we let L be (A, —&,...,A1 —¢). By [7, Lemma 7.1], we have

YascB.2) = (DG . 3 (il (1@,

TellF4()
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where g: T19" — @, is the function defined at the beginning of [7, Section 6].” Finally,
using the fact that TIS(X,;) = £ () for sufficiently small & > 0, then the sum S(A)
of [7, Section 6] is given by the expression:

SA) = (=) -y /e (B, 1) (4.3)

for any sufficiently small ¢ > 0.

We now find an expression for the sum 7'(4) of [7, Section 6] in terms of 2-
structures. As in [7], we denote by M, the set of maximal matchings on {1,2,...,n}.
Then we have a bijection M, 5 T (®) sending a matching p = {p1,..., pm}, where

p1=1{i1 < ji}s- s Pm = {im < jm}
are the edges of p, to the 2-structure
(pp = {:I:(el'1 — ej]), e :t(eim — ejm)}.

Moreover, we have (—1)? = €(gp). We can calculate Y, /c,, (Bg,.A) using Lem-
ma 4.1.9 for the decomposition V' = Vy x Vi x --+ X V;,, where Vi = Re;, + Rej,
for 1 <k <m, Vy = {0} if n is even, and Vy = Re; if n is odd and i is the unique
unmatched element of {1,...,n}. By Lemma 4.1.9, we have

m
Yty 1 Cop (Bop-2) = [ | d2i- Aj) -

k=1

1 if n is even,
di(A;) if nis odd,

where:
(a) The function di: R — R is defined by dy(a) = ¥ 5,,c, (B1,a), where #; is
the hyperplane arrangement (H,) on Re and B; = C; = R-ge.
(b) The function d>: R? — R is defined by d>(a,b) = V3, ,c, (B2, (a, b)), where
J> is the hyperplane arrangement (H., Hy, Ho—y, Ho1 r) on Re @ R f,
Co=lae+Bf:a=8>0}and B, = {ae + Bf :a > B > 0}.
In other words, the functions d; and d, are precisely the function ¥ ,c (B, A) that
we are trying to determine in the cases n = 1 and n = 2. A direct calculation yields:

. —1 ifa,b >0,
—1 ifa >0,

di(a) = ' and dy(a,b) =43 =2 ifb>—-a>0,
0 ifa <0, 0 therwi
otherwise.

2The map f: 119 — &, takes an ordered partition, orders the elements in each block in
increasing order and then maps them to the permutation formed by reading the elements from
left to right. The map g is similarly defined, except the elements in each block are reordered in
decreasing order.
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Comparing this with the formula defining c(p, A) in [7, Section 6], we see that, for all
a,b € R, if ¢ > 0 is sufficiently small relative to a and b, we have dy(a — &) = —c1(a)
and dr(a — &,b — €) = —c,(b, a), and hence

(—1)"/2 if n is even,

Yy, /Cop (Boy. Ae) = c(p.A) - { (—1)@+D/2 if y is odd

= (1" - (=1)® . e(p, 1),

if & > 0 is sufficiently small relative to the A;. Combining all these calculations, we
see that if ¢ > 0 is sufficiently small, then

3" €@ Ve, Boke) = (1) (=B 37 (=1 e(p.2)
PET (®) PEM),

= (D) (=DB . TW).

The identity S(A)=(—1)"-T(X) in [7, Theorem 6.4] now follows from Theorem 4.2.2,
applied to A, for ¢ > 0 sufficiently small.

4.5. Proof of Theorem 4.2.2

We assume for now that # = (Hy, )eck is an arbitrary central hyperplane arrange-
ment on V. The following definition will be useful.

Definition 4.5.1. Let C € Land A € V. If D, D’ € L ¢, we define ¥p,c (D', A) by
the sum

WD/C (D/,A) — Z (_l)dim(C’)’
CIEL}L’ZC
C’oD’<D

where £L>1.c =Ly NLsc.

Remark 4.5.2. Suppose that D’ is a chamber. Then C’ o D’ is a chamber for every
C’ € L,s0Yp;c(D’,A) = Ounless D is also a chamber. If D is a chamber, we have

Ypje(D )= Y (=)
CIELA,EC
C’oD’=D

The functions ¥'p,c (D', A) are related to Y 5 ,c (B, A) by the following lemma.

Lemma 4.5.3. Let C € L and B € TN Lxc. Then for every A € V the following
identity holds:

Yaesc(B.A) = Y (=DSEDLyr,c(B.2).

TeTNLsc
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Proof. Indeed, if D € £>¢ then the chamber D o B is also in £¢. Hence, using
equation (4.2) in Definition 4.1.5 and Remark 4.5.2, we obtain:

Vac(B,A) = Z (_I)IS(B,T)I, Z (—l)dim(D)

TeTNL>c Dely >c
DoB=T
= Y (D)SEDLyr(B.A). "
TeTNL>c

Before Corollary A.1.11 of Appendix A, we define, for K a closed convex polyhe-
dral cone in V, a function Yg: V x V¥ — R. For fixed (x,£) € V x V'V, the function
K — ¥k (x,£) is a valuation on the set of closed convex polyhedral cones in V'; see
Definition A.1.3. This function is related to the functions ¥p,c (D’, A) in the follow-
ing way.

Lemma4.54. Let C € L, let D € Lsc andlet A € V. Denote by £ € V' the linear
functional (-, ). Then for every D" € Lsc the following identity holds:

¥psc(D', ) = ¥5(x,0),
where x is any point in D} = (—=C) o D".

Proof. As before we write E(C) = {e € E : C C Hy,}. Note that s(D}). = s(D’).
for e € E(C), and s(D}) = —s(C), # 0 for e € E — E(C). Also, by definition
of L>¢,if e is any index of E — E(C) and C’ € L>¢ then 5(C), = s(C'), # 0.

We claim that for every C’ € £, we have C' o D] < D if and only if C' € L>¢
and C’' o D’ < D. Suppose first that C' € L>¢ and C' o D’ < D. Then for every
e € E(C), we have

$(C" o DY)e = s(C" o D) < s(D)e.

Moreover, if e € E — E(C) then s(C’), = $(C)e = (D) # 0,50 s(C" 0 D) =
$(C")e = s(D),. This shows that C’ o D| < D. Conversely, suppose that C’ is a face
of £ suchthat C'o D} < D.Ife € E — E(C) then

0 ?é 5(C)e =5(D)e = _S(D/l)e’

thus s(C”), # 0, and so0 s(C")e = s(C’ 0 D), = 5(D),. This implies that C’ € L>¢.
Moreover, if e € E(C), we have s(D}), = s(D’),, thus

s(C"oD")e = s(C" 0 D)e < s(D)e.

Hence, we conclude that C' o D' < D.
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By the claim, we obtain

Upie(D, )= Y (=)™ =yp(D], ).
C'ely
C’oD} <D

We wish to show that this is equal to ¥ 5(x, £), if x € D]. As in Appendix A, we
denote by F (D) the set of closed faces of the closed convex polyhedral cone D. We
have (D) ={C’:C' € £, C' < D},and the set {C’ € L : C' o D) < D} isincluded
inthe set {C’ € £ : C’ < D}. To prove the equality above, it suffices to show that the
two following statements hold for C’ € £ such that C’ < D (see Lemma A.1.10 for
the definition of ¥, and ¥, and the beginning of Section A.1 for the notation C’ J"D):

(a) The face C’ belongs to £ if and only if vy (Ch =1. ~
(b) The inequality C’ o D, < D holds if and only if ¥ (C""") = 1.

Statement (a) is just a direct translation of the definition of £, and statement (b)
is proved in Lemma 3.3.1. |

We are now ready to prove Theorem 4.2.2, so we assume that we are in the situa-
tion of that theorem.

Let £ be the linear functional (-, A) on V, let x € (—C) o B, and consider the
valuation v on the set of closed convex polyhedral cones in V' sending such a cone K
to Y ne(x. £), where

e=¢= () H.
ecE®@

The function K +— g (x, £) is a priori defined only on the set of closed convex
polyhedral cones. However, as it is a valuation, we can extend it to the set of all
finite intersections of closed and open half-spaces in V'; see Remark A.1.13. As x is
not on any hyperplane of #, the valuation v, vanishes on any cone contained in a
hyperplane of # . It follows from the definition of the function K + ¥k (x, £) in the
discussion before Corollary A.1.11 that we have ¥ (x,£) = 0 if K is contained in a
hyperplane of . In particular, for D a face of #, we have v(D) = 0 unless D is a
chamber, and if D is a chamber then v(D) = v (D).

Let ¢ C ® be a pseudo-root system (we do not assume that ¢ is a 2-structure),
let 9T = ¢ N ®F and H, = (Ha,)eep+uE@ - and denote by By, and C,, the unique
faces of H#, containing B and C. We have

Co= () Heen () H.

ecpt ecE(2)

We also set K" = (Huy)ecpt> Lo = L(H,) and T, = T(H,).
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As in statement (i) of Lemma 2.1.3, we denote by ¢: £y, >¢, — L(f}’(’él)) the map
sending a face D > C, of #, to the unique face of Jfél) that contains it. By the
lemma we just cited, we know that this is an order-preserving bijection, and that its
inverse sends a face DM of #S" to DM M€, where € = ,cp@ Hy, as before.

We claim that, if DM is a face of J&,(,l), then

DO Nne=DpbnNeE.

Indeed, let s € {+, —, 0}¢+ be the sign vector of D). Then the sign vector ¢ €
{+.—,0}E of DD N€isgivenby t, = s, ife € o, and t, = + ife € E@. We set
R; =Rso, R_ =Ry, Ro={0
Let y € V. Then y € DO if and only if (ae, y) € Ry, for every e € ¢, while
y € DA N € if and only if (e, y) € R,, for every e € E and y € € if and only if

(e, y) = 0 for every e € E@. This immediately implies the claim.
Let D be a face of Jfg(,l). By Lemma 4.5.4, we have

wt—l(D(l))/CW (B(O’A') = wm(xvz) = wmﬂg('x5£) = U(D(l))7
because x € (—C) o B C (—C,) o B,. Moreover, by Lemma 4.5.3, we have
Vi, C,(Bp, A) = Z (—1)I5Be DIy o (By, A).
TeTpNLe.>Cyp
So, using statements (i) and (iii) of Lemma 2.1.3, we obtain that

1)
Vae,c,(Bo. My = Y (=D)ISCBDT Oy ) e (By. A)
TWeTIsD)

— Z (_1)|S(L(B¢),T(1))\V(T(l))
TWeT(Ies)

= Z (_1)|S(L(Bw)=C(”°t(B<p))|v(c(l))_
CcWeT ()

In other words, using the notation of Section 3.2, we obtain
WJ(’W/CW(B@A) = H(‘}g 7‘))' (44)

Applying this identity to ¢ = ®, we have V3 ,c (B,A) = II(J#,v). By Theorem 3.2.1,
we deduce that
Yaesc(B.A) = ) e(@)T(Hy.v).
PeT (P)
The conclusion of Theorem 4.2.2 follows from this equality and from equation (4.4)
forall p € 7(P).
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5. Properties of the weighted complex

This section is independent of Sections 3 and 4, except for Definition 4.1.1 and
Remark 4.1.2. We prove that the weighted complex is shellable for Coxeter arrange-
ments, and more generally, for arrangements satisfying a condition on the dihedral
angles between their hyperplanes (Condition (A)). This implies that the weighted
complex is a PL ball for arrangements satisfying Condition (A).

5.1. Shellable polytopal complexes
We introduce the following definition. For instance, see [3, Definition 4.7.14].

Definition 5.1.1. A pure n-dimensional polytopal complex A is shellable if it is O-
dimensional (and hence a collection of a finite number of points), or if there is a linear
order of the facets Fy, F», ..., Fx of A, called a shelling order, such that:

(i) The boundary complex of Fj is shellable.
(ii) For 1 < j < k the intersection of IT’] with the union of the closures of the

previous facets is nonempty and is the beginning of a shelling of the (n — 1)-
dimensional boundary complex of F}, that is,

FFN(FURU---UF_) =G6G1UG,U-- UGy,
where G, G2, ..., G, is a shelling order of 0F; and r > 1.

We then have the following result.

Theorem 5.1.2 ([3, Theorem 4.3.3]). Let K be a central hyperplane arrangement on
the vector space V, let L = L(H) and T = T(H), and let B be a chamber in T. Then
any linear extension of the chamber poset with base chamber B is a shelling order on
the facets of X (L).

Let # be a central hyperplane arrangement on V. We write £ = L(H) and T =
T(H).Let Be T,andlet B =T1,T5,...,T, = —B be alinear ordering of T refining
the partial order <p. By Theorem 5.1.2 the linear order 77, T3, ..., T, is a shelling
order of the chambers of X (£). In particular, the shelling order defines a partition of
the faces of X (£):

.
L=][{Cet:C<TyandC £Tjfor1 < j <i}.

i=1

We will give a formula for the blocks of this partition (see Proposition 5.1.5), which
implies in particular that the partition is independent of the linear refinement of <p.
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Definition 5.1.3. Given a chamber B € T, we define a function fp from the face
poset £ to the set of chambers T by fg(C) = C o B.

The next proposition gives some basic properties of the function fp.

Proposition 5.1.4. The following two statements hold:

(1) Fix aface C € L and consider the poset isomorphism i.c: L>c = L) of
Lemma 2.1.3. If B € TN Lsc then for every D € Lsc, we have

te(fB(D)) = fic(c(D)).

(ii) Suppose that H is a Coxeter arrangement with a chamber B that is on the
positive side of every hyperplane, and let (W, S) be the associated Coxeter
system. Identify £ with the Coxeter complex ¥ (W) as in Section 2.2. If the
face C € L corresponds to a standard coset c C W, then the element w € W
corresponding to the chamber fg(C) is the shortest element of ¢ and also the
minimal element of the coset c in the right weak Bruhat order.

In particular, part (ii) implies that, for the type A Coxeter complex, the function fp
defined here (for B the chamber corresponding to 1 € W) is equal to the function f
defined at the beginning of [7, Section 4]. Note that the existence of a minimal element
in every standard coset is proved in [2, Proposition 2.4.4].

Proof of Proposition 5.1.4. Statement (i) follows immediately from Lemma 2.1.3.
We now prove (ii). By definition of the composition o, the chamber fp(C) =
C o B is the element of T N L closest to B in the chamber graph; in other words,
it is the minimal element of T N L ¢ for the order <p; see Section 2.1. As we know
that <p corresponds to the right weak Bruhat order on W (see the discussion after
Theorem 2.2.1), and as the elements of W corresponding to the chambers of TN L5 ¢
are the elements of the coset ¢, the result follows. [

The link between the function fp and the shellings of Theorem 5.1.2 is established
in the following proposition. For the type A Coxeter complex, this result appeared
implicitly in the proof of [7, Proposition 4.1].

Proposition 5.1.5. Let B € T, and let B =T1,T,,...,T, = —B be a linear ordering
of T refining the partial order <p. Then for every index 1 < i < r the fiber of fp
over T; is given by

fF' T ={CeL:CcTi—(HUTU---UT;_1)} (5.1)
={Cel:C<TiandC £ T for1 <j <i}. (5.2)
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Proof. The equivalence between equalities (5.1) and (5.2) is an immediate conse-
quence of the definition of the order < on £. Let us prove equality (5.2).

Let C € f3'(T}), thatis, C o B = T;. In particular, we have C < C o B = T;.
Suppose that T € T is another chamber such that C < T'. Then forevery e € S(B, T;),
we have 5(T;)e # 5(B)e, but s(C o B)e = 5(T;)e, 500 # 5(C)e = 5(T;)e. AsC <T,
this implies that

5(T)e = s(C)e = s(Ty)e # s(B)e,

hence that e € S(B, T). So we have proved that S(B, T;) € S(B, T'), which means
that 7; <p T. In particular,if ] < j <i —1,thenC £ 7T;.

Conversely, let C € L besuchthat C <T; and C £ 7, for 1 < j < i, and let
T=CoB.Ifee S(B,T),then0 # s(C)e = s(T).. As C < T;, this implies that
$(C)e = 5(Ti)e 0

$(Ti)e = $(C)e = s(T)e # s(B)e,
that is, e € S(B, T;). So we have proved that S(B, T) C S(B, T;), which means that

T <p T;. Hence, there exists anindex 1 <i’ <i suchthat7 = T;;. AsC < T and
C £T;forl <j <i,wemusthavei’ =1i,thatis, fp(C)=CoB=T=T;,. m

5.2. A condition on hyperplane arrangements

We now introduce a geometric condition on the hyperplane arrangement 4 that will
imply the shellability of the weighted complex.

Condition (A). Denote by (A) the following condition on the family (q¢)ecE (0r
the corresponding arrangement): For every T € T and for every e € E such that
S=Tn H,, is of dimension dim(V') — 1, that is, S is a facet of the convex cone T,
the following inclusions hold:

T < 8§ +Roote ifT C Hy,
T8 +Roowe ifT S Hg,

o
where S is the relative interior of the cone S, that is, the interior of S in Span(S).

Geometrically, Condition (A) means that if 7 € 7T then the dihedral angle between
any two adjacent facets (facets whose intersection is a face of dimension dim(}') — 2)
of the convex polyhedral cone T is acute, that is, less than or equal to /2.

Proposition 5.2.1. Suppose that the arrangement H satisfies Condition (A). Let
T.T" € T and e € E such that S(T, T') = {e}, the inner product (&, A) is non-
negative and the inclusion T" C H, holds. Then T" € L, implies that T € L.
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Proof. The hypothesis implies that T N7’ = T N H,, = T' N H,,. We denote this
intersection by S. It is a facet of both T and T'. By Condition (A), we have

TcS+ R-oa, and T’ C S+ R <g0te.
In particular, if x € T then there exists ¢ > 0 such that x — ¢ - &, € T’. Then we have
(x,A)=(x—c-te,A) +¢-(ag,A) = 0.
This implies that 7  H", thatis, T € £;. n

Corollary 5.2.2. Suppose the arrangement H satisfies Condition (A). If (A, ) > 0
for every e € E and if there exists B € T such that B C Hoj; for every e € E, then
T N L, is alower order ideal in Tg. More generally, if C € L and

E(C)={ec E:C C Hy,}.

if (A,ar)>0forevery f € E(C) and ifthere exists B € TN L>c suchthat B C HO;;
forevery f € E(C), then T N Ly >c is a lower order ideal in Tp.

Proof. Tt suffices to prove the second statement. Let 7, T’ be such that S(B, T) C
S(B,T')and T’ € £ >c. We want to show that T € £ >c. As Tp is a graded poset
and the intersection T N L is a lower order ideal in Tp (see Remark 2.1.4), we
know that T € T N L5, and it suffices to treat the case where S(7’, B) — S(T, B) is
a singleton. Let f be the single index of S(B,T’) — S(B,T). As B,T' € TN Lx>c,
we have f € E(C) by Lemma 2.1.3 (iii), so B C H;f. As f € S(B,T")— S(B,T),
we have T’ C Hy and T C H‘;;. Also, as f € E(C), we have (A,ay) > 0. So we
may apply Proposition 5.2.1, and we obtain that T € L. u

Corollary 5.2.3. Suppose that the arrangement H satisfies Condition (A). Then the
complex (L)) is shellable. Moreover, there exists a shelling order on its chambers
which is an initial shelling of X(£). In particular, if A # 0 then (L)) is a shellable
PL ball of dimension dim(V/ Vy) — 1.

Proof. If A = 0then £; = £ and X(£,) = (L), and the corollary is just Theo-
rem 5.1.2.

We now assume that A # 0. By Theorem 5.1.2 and Corollary 5.2.2, it suffices to
find a family of signs (g.) € {£1}¥ such that:

o forevery e € E, we have (4, g.0.) > 0;

o there exists a chamber B € £ with B C H.t, foreverye € E.
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Indeed, Corollary 5.2.2 will then imply that T N £ is a lower order ideal in Tp, so it
will be an initial segment for at least one linear extension of <p.

Let F ={e € E:(A,a) # 0}. Forevery e € F, we choose ¢, € {£1} such that
(A, gette) > 0. Let xq be a point in V' not on any hyperplane of J#, that is,

xo€V — | ) Ha,.
ecE

Then for every e € F, the inner product (xg + ¢ - A, 80e) = (X0, 8e0e) + €+ (A, 800e)
tends to +o00 as ¢ tends to +00, so it is positive for ¢ large enough. Similarly, the inner
product (xo + ¢ - A, A1) = (x0,A) + ¢ - (A, A) is positive for ¢ large enough. On the
other hand, if e € E — F, then (x¢ 4+ ¢ - A, ate) = (X0, ®te) # 0 for every ¢ € R. So,
if ¢ € R is large enough, then

x=x0+c-AeV—UHae,
ecE

and x is in H;g o, forevery e € F and in H ;’ . In particular, there exists a chamber
B € T such that x € B, and B is included in H;: e foreverye € F andin H f . Now,
ife e E— F, we choose ¢, € {1} such that B C Hstae. As (A,a,) = 0, we clearly
have (4, g.a.) > 0. [

5.3. The case of Coxeter arrangements
Lemma 5.3.1. Every Coxeter arrangement H satisfies Condition (A).

Proof. In a Coxeter arrangement, the dihedral angle between any two adjacent facets
is w/n, withn > 2. ]

In particular, Corollaries 5.2.2 and 5.2.3 apply to Coxeter arrangements. But we
can actually prove a stronger result in this case.

We fix a Coxeter arrangement J¢ on an inner product space V, and we use the
notation introduced above. We say that a vector A € V' is dominant if (A, «) > 0 for
every a € .

Lemma 5.3.2. Suppose that A € V is dominant. Denote by B the chamber of
corresponding to 1 € W. Let z,w € W such that z < w in the strong Bruhat order
of W. Then for every x € B the following inequality holds:

'), %) = (W' (R), x).

Proof. We may assume that w covers z, so that there exists s € S and u € W such that

w = (usu~')z. Let a be the unique pseudo-root of ®* such that u(ey) is a multiple

1

(positive or negative) of . If s, is the reflection across Hy, we have usu™" = sy, and
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S0 W = sz and s, w = z. Since the elements of ®* are unit vectors, s, is given by
the following formula: s, (1) = u — 2 - (4, @) - « for u € V. Hence,

(saw) ™' D) = W ls)D) =wT W) —2- (Xa) - wT (@),
and so, if x € B,
((sow) "2, %) = (W' (A).x) =2+ (X @) - (W™ (@), x).

As A is dominant, we have (A, «) > 0. By [2, Equation (4.25)], we have the equiva-
lence
wHa) € d & L(wlsy) > L(w™h,

and [2, Proposition 1.4.2(iv)] states that £(v™!) = £(v) for every v € W. Using these
two facts and the condition £(sqw) < £(w), we see that w™!(a) € ®~. Thus, we
have (w™!(a), x) < 0 by definition of B. Hence, the term —2 - (A, a) - (w™! (@), x) is
nonnegative, that is,

(A, %) = ((saw) T (A), x) = (W (A), x). L

Proposition 5.3.3. Let (W, S) be a Coxeter system, and let H = (Hy)yep+ be the
associated hyperplane arrangement on the space V of the canonical representation
of (W, S). Let A € V be a dominant vector. Then the set W) of w € W such that the
corresponding chamber of H is in T N L is a lower order ideal with respect to the
strong Bruhat order on W.

Proof. We denote by B the chamber of # corresponding to 1 € W. By definition
of W), an element w of W is in W, if and only if for every x € B, we have (A, w(x)) =
(w™'(1),x) > 0. By Lemma 5.3.2, if z, w € W and w is greater than z in the strong
Bruhat order then for every x € B, we have (z71(1), x) > (w~!(1), x). If moreover
w € W,, this immediately implies that z € W |

6. Concluding remarks

As mentioned in the introduction, we are not aware whether there is a representation-
theoretic interpretation of the identity in Theorem 4.2.2 in general. More precisely,
what is the meaning of the constants ¥ g ,c (B, A) for different values of 1?

The main results in this paper are in the setting of Coxeter arrangements. However,
the sum ¥z makes sense for general hyperplane arrangements, our original proof of
Theorem 4.2.2 used an induction formula that linked the sum v g to similar sums
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for subarrangements of the restricted arrangements on the hyperplanes of H, and
this induction formula is valid for general hyperplane arrangements, and with some
adaptions, for oriented matroids. In the paper [9], we use a similar type of induc-
tion argument, this time to calculate the alternating sum of another valuation on the
chambers of a hyperplane arrangement, that is, the volume of the intersection of the
chamber with some set of finite volume. Is there is some analogue of 2-structures for
more general hyperplane arrangements?

It is natural to ask whether there is some analogue of Theorem 3.2.1 for Coxeter
systems with possible infinite Coxeter groups.

In Section 5, we proved that the weighted complexes of a hyperplane arrangement
are shellable under a geometric condition on the arrangement that we call Condi-
tion (A). This implies that the weighted complexes are PL balls for arrangements satis-
fying Condition (A). Are the weighted complexes always PL balls? By Remark 4.1.2,
this extends a conjecture of Zaslavsky (see [33, Chapter I, Section 3C, p.33]) that
the bounded complex of a simple hyperplane arrangement is always a PL ball. As a
consequence to Corollary 5.2.3, we have the following result.

Corollary 6.1. Zaslavsky’s conjecture holds for affine arrangements obtained by inter-
secting an affine hyperplane with an arrangement satisfying Condition (A).

In a paper of Dong (see [6]), the author claims to have proven Zaslavsky’s conjec-
ture. However, we do not understand the proof of the crucial Lemma 4.7 in that paper:
In the second paragraph of case 2, Dong chooses a linear extension < of 7(£/g, d;)
such that [d;, d;] is an initial segment. This linear extension is a shelling order, and
Dong deduces that there exists di € [d;,d;) such that dy A dj < d;.But the only thing
that we can deduce from the fact that we have a shelling order is that d; < dy < dj,
which does not imply that di € [d;, d;) for the order on T (£/g, d;). If we do not
know that dj € [d;, d}), the rest of the argument fails.

In Appendix A, we construct a ring structure on the set of valuations on convex
closed polyhedral cones with values in a fixed ring. Are there other products of valua-
tions that also yield valuations? For instance, can the ring structure of Corollary A.1.7
be extended to valuations on (not necessarily polyhedral) cones in Euclidean space?

In Appendix B, the proof of Proposition B.2.4 that the group W acts transitively
on the set of 2-structures 7~ consists of verifying the result for all irreducible pseudo-
root systems. Is there a general proof that does not use the classification of irreducible
pseudo-root systems?
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A. Extending the construction of a valuation by Goresky, Kottwitz and
MacPherson

We introduce a ring structure on the set of valuations defined on closed convex poly-
hedral cones in a finite-dimensional real vector space with values in a fixed ring. As a
special case we obtain in Corollary A.1.11 a valuation due to Goresky, Kottwitz and
MacPherson; see [13, Proposition A.4].

Section A.1 of this appendix contains definitions and statements of results. The
proofs are relegated to Section A.2.

A.1. The ring of valuations

Let V be a finite-dimensional real vector space and V'V its dual. A closed convex
polyhedral cone in V is a nonempty subset of the form

Rsov1 + Rxova + -+ + Rk,

where v{, vp,..., v € V and k > 0.
For a subset X of the space V, define

Xt={eeVV:VxeX (a,x)=0} and X*={aecVV:VxeX (ax) >0}

Note that X is a subspace of V" and depends only on the linear span of X, and
that X* is a convex cone in V¥ and depends only on the closed convex polyhedral
cone generated by X.

For F a face’® of a closed convex polyhedral cone K, define F-K = FL n K*.
The map F — FX is an order-reversing bijection from the set ¥ (K) of faces of K
to the set of faces of K*. This statement and other basic properties of closed convex

polyhedral cones are proved in [11, Section 1.2].

Remark A.1.1. For two closed convex cones X; and X, such that X; U X5 is convex
then the set X U X is also convex and we have the two identities

(X1UX2)*=X;(0X; and (leXz)*=XikUX;

Definition A.1.2. We denote by € (1) the set of closed convex polyhedral cones in V.
Denote the free abelian group on € (V) by B kee) L[K] and let K(V') be its quo-
tient by the relations [K U K'] 4+ [K N K] = [K] + [K'] for all K, K’ € €(V) such
that K U K’. For K € €(V), we still denote its image in K(V) by [K].

3In this appendix, we take all faces to be closed faces, unlike in the rest of the article.
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For A € V'V, we define the hyperplane H, and the two open half-spaces H f
and H, by

H)y={xeV:{(A,x)=0}
Hfz{er:(/\,x)>0}, H, ={x eV :(A,x) <0}

The closed half-spaces are given by

Hf:{er:()L,x)ZO} and H_;:{er:()L,x)§O}.

Definition A.1.3. A valuation on € (V') with values in an abelian group 4 is a func-
tion f:€(V) — A such that f(&) = 0 and that for any K, K’ € €(V) such that
K UK’ € €(V), we have

f(KUK)Y+ f(KNK')= f(K)+ f(K). (A.1)

By the definition of K(V'), saying that a function f:€(V) — A is a valuation
is equivalent to saying that there exists a morphism (necessarily unique) K(V) — A
sending [K] to f(K) for every K € €(V'). We also denote this morphism K(V) — A

by f.

Example A.1.4. By Remark A.1.1, the function §: €(V)— K(V") sending K € € (V)
to [K™] is a valuation. Thus, it induces a morphism é: K(V) — K(V*).

We have the following criterion for recognizing valuations on closed convex poly-
hedral cones. This is known as Groemer’s first extension theorem and is proved in [15,
Theorem 2].

Theorem A.1.5 (Groemer). Let A be an abelian group and f:€(V) — A be a func-
tion such that f(&) = 0. Suppose that for every K € €(V) and every u € VV the
following holds:

fK) + f(KNHy) = f(KNH) + f(KNH). (A2)
Then the function f is a valuation.

The main result of this appendix is the following theorem whose proof is in Sec-
tion A.2. To make the notation more compact in this appendix, we denote the linear
span of a subset S of vector space by (S).

Theorem A.1.6. (i) Consider the function A:€(V) — K(V) @z K(V) defined
by
AK)= > (-DF[F]®[(F)+ K],
Fe¥ (K)
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for every K € €(V). Then A is a valuation and it induces a morphism
A:K(WV)— K(V)®z K(V).
Moreover, this morphism A is coassociative, that is, we have
(A ®idg(vy) o A = (idg) ®A) o A.

(ii) Consider the function e:€(V) — Z defined by ¢(K) = (—1)3™K jf K is a
vector subspace of V and €(K) = 0 otherwise. Then ¢ is a valuation and it
induces a morphism g: K(V) — Z. This morphism is a counit of A, in other
words, we have

(e® idK(V)) oA = idK(V) = (idK(V) ®e) o A.

In short, Theorem A.1.6 says that the morphisms A: K(V) — K(V) ®z K(V)
and e: K(V) — Z are well-defined and make K (V) into a Z-coalgebra.

Corollary A.1.7. Let A be aring. Let f1, f2:€(V) — A be two valuations. Then the
Sunction f1 * f2:€(V) — A defined by

(fix UK = > (=D"™F fi(F) f2((F) + K)

Fe¥ (K)

is also a valuation. This operation * makes the group of valuations €(V) — A into
a ring. The unit element of this ring is the composition of . €(V) — Z and the
canonical ring morphism 7. — A.

Proof. The valuations f1 and f, induce two morphisms f1, f>: K(V) — A, hence a
morphism f1 ® f2: K(V)®z K(V) > A, x ® y > f1(x) ® f2(y). As we have

(f1 % )(K) = (f1 ® f2)(A([K]))

for every K € €(V), this shows that f; * f> descends to a morphism K(V) — A4,
hence is a valuation.

The operation * is clearly linear in each variable, and it is associative by the coas-
sociativity of A. The last statement follows immediately from the fact that ¢ is a counit
of A. |

Corollary A.1.8. Let A be a ring, and let f1:€(V) — A and g2: €(VY) — A be
valuations. Then the function f1 = g2: €(V) — A defined by

(fixg)(K)= > (=D)IF fi(F)gx(F-F)

Fe¥(K)

is also a valuation.
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Proof. Consider the valuation §: €(V) — K(VV) of Example A.1.4. Then the map
fo=g208:€(V)— Aisalso a valuation. As F-K =((F) + K)* forevery Ke €(V)
and every face F of K, we have fi x go = f1 * f2, so the statement follows from
Corollary A.1.7. |

Remark A.1.9. Let # be a central hyperplane arrangement on V, let €z (V) be
the set of closed convex polyhedral cones that are intersections of closed half-spaces
bounded by hyperplanes of J#, and let Kz (V') be the quotient of the free abelian
group @KG&AV) Z[K] on €4 (V') by the relations

[2] =0 and [K]+[K']=[KUK']+[KNK]

for all K, K’ € €5 (V) such that K U K’ € €% (V). Then the formulas of Theo-
rem A.1.6 also define a coalgebra structure on K (V). Indeed, if K € €5 (K) and
F € ¥ (K), then F and (F) + K are also in €z (V).

In particular, the products in Corollaries A.1.7 and A.1.8 also make sense if the
first valuation is only defined on €y (V).

We now explain how to use Corollary A.1.8 to recover [13, Proposition A.4].

Lemma A.1.10. Let X be a subset of V such that the complement V — X is convex.
Then the function ¢x:€(V) — Z defined by

1 faCKCX,

0 otherwise,

¢x (K) = {

is a valuation. In particular, if A € V'V then the function V), = ¢?r is a valuation.
A

Proof. Let K € €(V) be nonempty and let u € VV. Let

Ko=KNH, Ky=KnH K =KnH,.

We must check criterion (A.2) in Theorem A.1.5, that is,
¢x (K) + ¢x (Ko) = ¢ox (K+) + ¢x(K-).

If K € X then Ky, K+ and K_ are also included in X, and the equality above
is clear. If K1 € X but K_ € X, then Ko C X and K € X, so again the desired
equality holds. The case where K_ C X and K4 Z X is symmetric. Finally, suppose
that K+, K_ € X.Then K € X, and so we must show that Ko € X. Takex € Ky — X
and y € K_ — X. Then the segment [x, y] is contained in the convex set V — X. As
this segment intersects Ky, this shows that Ko £ X. ]
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Given x € V and A € V'V, we have two valuations
Y €(V)—>7Z and Y €VY)—Z
defined in Lemma A.1.10. Let K — ¥k (x, A) be the function defined by

Vi (x,A) = (Y5 * ¥x)(K)
for every K € €(V'). This function is defined in [13, Appendix A, top of p. 540].

Corollary A.1.11. For every x € V and every A € V'V, the function K — Yg(x, )
Sfrom €(V) to R is a valuation.

Since any valuation satisfies the additivity property, we obtain the next corol-
lary [13, Proposition A.4].

Corollary A.1.12 (Goresky—Kottwitz—MacPherson). Let K be a closed convex poly-
hedral cone. Suppose that its relative interior K° is the disjoint union of the relative
interiors Kf, K;, ..., K} of r closed convex polyhedral cones K1, K>, ..., K,. Then
foreveryx € V and every A € VV

Yr(x,2) = Y (DI EamED Ly ().

i=1

Remark A.1.13. Valuations on € (V') can be extended to relatively open cones as
well. Let G be a collection of sets that is closed under finite intersections. Define B(G)
to be the Boolean algebra generated by G, that is, the smallest collection of sets that
contains G and is closed under finite unions, finite intersections and complements.
Groemer’s Integral Theorem states that a valuation on G can be extended to a valua-
tion on the Boolean algebra B(G); see [15] and also [23, Chapter 2]. In the case where
G = €(V), that is, the collection of closed convex polyhedral cones in V, the asso-
ciated Boolean algebra B(€ (1)) contains all cones that are obtained by intersecting
closed and open half-spaces.

Remark A.1.14. The results of this appendix extend to oriented matroids without
much change. Let E be a finite set and consider an oriented matroid M on E with
set of covectors £ C {+, —, 0}F . This set of covectors forms a graded poset with the
partial order given by componentwise comparing the entries by 0 < 4+ and 0 < —. We
denote its rank function by p. For every F C E and every s € {4+, —, 0}, we write

Leg={xelL:x|F <s}.

Let X be the set of lower order ideals of £ of the form £ ;. We order X by inclusion.
If £ is the oriented matroid corresponding to a central hyperplane arrangement #
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on V, then X is the set cones obtained by intersecting closed half-spaces bounded
by hyperplanes of J¢. In general, every element of X is of the form £/, for some
xeland F CE.

We say that an element a of X is a vector subspace if a # @ and a is of the
form £y, for some x € £ and some F C E such that x, = O forevery e € F.

A valuation on X with values in an abelian group A4 is a function f:X — A such
that (&) = 0 and, for all @, b € X such thata U b € K, we have

flaub) + flanb) = f(a)+ f(b).

Giving such a valuation is equivalent to giving a function w: £ — A; the correspond-
ing valuation then sends a € KX to )., w(x).
The analogue of K (V) is the quotient of the free abelian group €D, Z[a] by the
relations
@] =0 and [aUb]+[aNb]=la]+[b]

if a Ub € K. We denote this group by K(£). We have an isomorphism

K(£) > P zlx]
xX€L
sending [a] to ) ., [x].

Let F € E. We denote the set of covectors of the deletion M — (E — F) by LF
and the rank function of LF by pp.Let y € L. If F(y) = {e € F : y, = 0}, then
we have an order-preserving bijection L >, Y F(y) sending any z > y in LF
to z| F(y). This is the analogue of Lemma 2.1.3.

We define the comultiplication A: K(£) — K(£) ®z K(L) by sending [L<y|, ]
to

A([LSX|F]) = Z (_l)pF(y)[Lsy] ® [LSX\F(y)]'

yeL F.<x|fg
Let a € £. The counit & sends [a] to 0 if a is not a vector subspace. If a = L., with
x € L and F C E such that x, = 0 for every e € F, then we set £([a]) = (—1)°F *IF),

Remark A.L.15. Let X = ,,5,
direct sum of the morphisms A and € of Theorem A.1.6. There is a product on K
defined by

K(R"). We make X into a coalgebra using the

[K]-[L] = [K x L]

if K € €(R") and L € €(R™), where we identity R” x R and R”*™ in the usual
way. This product is associative, and the class of the cone {0} € €(R?) is a unit.
It is then straightforward to see that X is actually a bialgebra. However, it is not a
Hopf algebra because if V' is a vector subspace of R” with n > 1, then the element
(=1)ImV[V] of K is group-like but not invertible.
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If K € €(R") and F is a face of K, then the poset of faces of (F) 4+ K is iso-
morphic to the interval [F, K] in the poset of faces of K. So the bialgebra X is related
to the incidence Hopf algebras defined by Joni and Rota in [22] and further studied
by Schmitt in [32], although, unlike those Hopf algebras, it has signs in the definition
of its coproduct. Let us make this relation more precise. For every n > 0, we denote
by K¢ (IR") the free abelian group on the set of closed convex polyhedral cones in R";
if K € €(R"), we denote its class in Ky (R") by [K]z. The formulas for A and € also
define a coalgebra structure on Ky (R") and, if we set

Xy =P KR,

n>0

then the product on K¢ defined by [K]s - [L]r = [K x L]r makes X into a coalgebra.
Let P be the set of isomorphism classes of finite posets, and let Z[P] be the free
abelian group on P equipped with the Hopf algebra structure defined in Sections 3
and 4 of [32]. Then we have bialgebra morphisms 71: KXy — K and m5: Ky — Z[P]
defined as follows: if K € €(R") then m; sends [K]r to [K] and m» sends [K]s
to (—1)¢ times the class of the poset of faces of K, where d is the dimension of the
largest vector subspace contained in K.

A.2. Proofs
Before proving Theorem A.1.6, we state and prove the following lemma.

Lemma A.2.1. Let K C V be a closed convex polyhedral cone, let F be a closed
face of the cone K and let 1 € V. We write

Ko=KNH, Ky=KnHf, K =Kn0H,.

(a) Assume that F C H_;[ but F € H,, that is, F is a face of K4 but not of K.
Then the equality (F) + K = (F) + K4 holds.

(b) Assume that F N H lf # @ and F 0 H # @, in other words, the hyper-
plane H,, cuts the face F in two. Then the equality (F) + K = (F) + Ko
holds.

(c) In the situation of (b), let Fo = F N Hy,. Then the equality (Fo) + K =
(F) + K holds.

(d) Let X be a subset of V. Then X + K = (X + K4) U (X + K_). If moreover
X € Hy, wealsohave X + Ko = (X + K1) N (X + K2).

Proof. We first prove (a). The inclusion (F) + K+ C (F) + K clearly holds, so we
just need to show the reverse inclusion. Let x € (F) + K, and write x = y + z, with
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ye(F)andz € K. As F € H,, there exists y’ € F such that (i, y’) > 0. Then for
a € R-q large enough we have (i,ay’ + z) > 0, hence ay’ + z € K. As

x=(y—ay)+ (ay' +2),

this shows that x € (F) + K.

We now prove (b). The inclusion (F) + Ko C (F) + K clearly holds, so we just
need to verify the reverse inclusion. Let x € (F) + K, and write x = y + z with
y € (F) and z € K. By the assumption on F, the image of F by u is not contained
in R>¢ or in R<y; as this image is a cone in R, we conclude that it is equal to R. In
particular, we can find y’ € F such that (i, y’) = —(u, z). Then

x=0p-y)+0"+2

withy —y € (F),y +z € Kand (u,y + z) =0, hence x € (F) + Kp.

We prove (c). The inclusion (Fy) + K C (F) 4+ K is clear, so we need to show
the reverse inclusion. By the proof of (b), the image of F by u is equal to R, so we
can find y’ € F such that (i, ') = (u, y). Then

x=0p-y)+0 +2)

withy —y € (F),y ' +z € Kand (u,y —y') =0, hence x € (Fp) + K.

Finally, we prove (d). The inclusion (X + K4+) U (X + K_) € X + K is clear.
Conversely, let x € X + K, and write x = y + z with y € X and z € K. Then either
z € K4, in which case x € X 4+ K4, or z € K_, in which case x € X 4+ K_. The
inclusion X + Ko € (X 4+ K4+) N (X 4+ K_) is also clear and holds without any
condition on X. Assume that X € H,,,andletx € (X + K4) N (X + K_). Write

X=y1+z1 =Y+ 22,
with y;,y, € X, z; € Ky and z, € K_. Then (i, y1) = (i, y2) =0, so
(e, z1) = (i, x) = (o y1) = (s x) = (i, y2) = (@, 22).

As (i, z1) > 0 and (u, zp) < 0, this implies that (i, z;) = {(u, z2) = 0, hence that
z1,22 € Kg,and so x € X + Kj. [

Proof of Theorem A.1.6. We first show that A: €(V) — K(V) ®z K(V) and ¢ are
valuations. We check the criterion of Theorem A.1.5. Let K € €(V) and let u € V.
We define as before three closed convex polyhedral cones

Ki=KnH, K- =KnH, Ko=KnH,
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(a) (b)

Ky

Ist term of S(iy)
Ko H, 3rd term of S¢y) S(iii)
K_

Figure 2. A two-dimensional representation of a five-sided three-dimensional cone K. In (b)
the four different contributions to g(K 4 ) are marked.

‘We show that
e(K) + e(Ko) = e(K+) + e(K-). (A.3)

If K+ = Ky, then K = K_, so equation (A.3) is clear. The case where K_ = Kj is
similar. Suppose that K # Ko and K_ # K. Then the image of K4 by u is Rxy,
so K cannot be a vector subspace of V, and similarly K_ cannot be a vector sub-
space of V. This implies that

e(Ky) = e(K-) =0,

so equation (A.3) holds if and only if ¢(K) = —&(Kjp). As K is strictly included in K,
we have dim(Ky) = dim(K) — 1, so we need to prove that K is a vector subspace if
and only if Ky is. If K is a vector subspace of V' then so is Ky. Suppose that Ky
is a vector subspace of V. We want to prove that K also is a vector subspace of V.
Without loss of generality we may assume that (K) = V. As K4 # Ko and K_ # K,
the hyperplane H,, meets the relative interior of K, and so (Ko) = H,,, hence

H, =Ko C K.

As K contains points in both open half-spaces cut out by H,,, this implies that K = V.
We now treat the case of A. The faces F of the cone K come in four disjoint
categories. For each category, we consider the contribution to the sum defining A(K).

(i) F isafaceof K, butnot of Ko, thatis, F° C H;j‘ Then by Lemma A.2.1 (a),
we have (F) + K = (F) 4+ K. Hence, the contribution is

Sp = Yoo (=D)IP L [F]® [(F) + K]
FeF (K)NF (K4)
F¢¥% (Ko)
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= ) (—D)™F)[F] @ [(F) + K4].
Fe(F(K4)NF (K)—F (Ko)

(ii) F is a face of K_, but not of Ky, that is, F° C Hl;. As in case (i), we have
(F)+ K = (F) + K_, and the contribution is

So= . (D" [FIQ[(F)+ K]
Fe¥F(K)NF(K-)
F¢¥% (Ko)
= > (—D)iE) [ F @ [(F) + K-].

Fe(¥F(K-)NF (K))—F (Ko)

(iii) F is a face of all three cones K1, K_ and Ky, that is, we have I C H,.
Here the contribution is

Say =y (D" P[FIQ[(F)+ K]

Fe¥ (K)
FCH,

= Y D"OLFI® ((F) + K41+ [(F) + K-] = [(F) + Ko)),
FeF (K4)NF (K-)NF (Ko)

since
(F)+K=(F)+K+)U((F)+K-), (F)+Ko=((F)+Ky4)N((F)+K-)

by Lemma A.2.1 (d).

(iv) The face F gets cut into three faces: F = FN Ky in K4, F-. = FNK_
in K_and Fp = F N Ky in K. Then we have

(F) = (Fy) = (F_).
By Lemma A.2.1 (b), we have (F) + K = (F) + Ky, and so
(F)+ K =(Fy)+ K+ = (F_)+ K- = (F) + Kp.

By Lemma A.2.1 (c), we also have (F) + K = (Fp) + K, and by Lemma A.2.1 (d)
we have

[{(Fo) + K] = [(Fo) + K+] + [(Fo) + K-] — [{Fo) + Ko].
So the contribution is

Sw= Y (DO [Flg[(F)+ K]

Fe¥ (K)
F being cut
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= Y DO (R 4 [Fo] = [Fo]) ® [(F) + K]

Fe¥ (K)
F being cut

= Y DO (F @ [(Fe) + Kol + [FL] ® [(F-) + K-]

Fe¥ (K)
F being cut

— [Fo] ® [(Fo) + K])

= > (DI (F @ [(Fy) + K]+ [F ® [(F-) + K]

Fe¥ (K)
F being cut

— [Fo] ® [(Fo) + K+] — [Fol ® [(Fo) + K_] + [Fol ® [{Fo) + Ko).

Now expand A(K) as S¢) + Sqiy + Saii) + Scv). We use the fact that
(_1)dim(F) — _(_1)dim(F0)

in the third, fourth and fifth terms of S). The contributions to A(K ), respectively,
A(K-), are given by the sum S, respectively, S, the first term in the sum S,
respectively, the second term, and the first and third terms in the sum Sy), respec-
tively, the second and fourth terms; see Figure 2 (b). Finally, the third term of the
sum Sy and the fifth term of the sum Sy) yield the sum for —A(Kjp), which proves
that

A(K) = A(K4) + A(K-) — A(Kop).

We now prove that A is coassociative. Let K € € (V). Then we have

(A ®idg))(A(K)) = (A ® idK(V))( > (=DImFIFI® [(F) + K])
Fe¥ (K)
= > ) (-GG [(G) + F1® [(F) + K].
Fe¥(K)GeF (F)

We want to compare this expression with (idg(y) ® A)(A([K])). To calculate this last
expression, we need a description of the faces of the cone (G) + K, where G is a face
of K. Let J be the collection of hyperplanes containing a facet of K. Then J is a
finite central hyperplane arrangement in V' and, as in Section 2.1, we write £ = L(#)
and T = TJ(H). Let C and T be the relative interiors of G and K respectively. We
have C € L and T € TN L5, and there is a bijection

(Delsc:D<T})>{FeF(K):GCF}

sending D to D. Let #(C) be the subarrangement of # whose hyperplanes are the
ones containing C (or equivalently, G). By Lemma 2.1.3, the cone (G) + K is the
closure of the unique chamber of # (C) containing 7', and there is a bijection from
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the set {D € L>c : D < T} to the set of faces of (G) + K sending D to (G) + D.
We deduce that there is a bijection from the set { F € ¥ (K) : G C F}to ¥ ((G) + K)
sending F to (G) + F. Moreover, Lemma 2.1.3 (iv) states that this bijection preserves
dimensions. Thus, we obtain

<idK(V>®A>(A(K>>=<idK<V>®A>( > )*l6] 8 ((6) + K1)

GeF (K)

— Z Z (_1)dimF’+dimG[G] ® [F/] ® [(F/> + K]

Ge¥F (K) F'eF ((G)+K)

= Y Yo () FHmGIG) @ [(G) + F1® [(F) + K]
Ge¥(K) Fe¥ (K):GCF

= (A ® idg 1)) (A(K)).

This completes the proof of the coassociativity of A.

We finally prove that ¢ is a counit of A. Let K € €(V). Suppose first that K is
not a vector subspace of V. Then the only face of K that is a vector subspace is {0},
and the only face F such that (F) + K is a vector subspace is K. Hence,

(idx) ®)(AK) = Y (=D F[F] & e([(F) + K1)
Fe¥(K)
= (=D K] ® ([(K)])
(_1)dimK(_1)dim(K)[K] ®1= [K],
(e ®idg)(AK) = Y (=D Fe([F]) ® [(F) + K]
Fe¥ (K)

(—1)%([{0}]) ® [K] = [K].

If K is a vector subspace of V' then the only face of K is K itself, so
A(K) = (-1)*¥[K] ® [K].
and we clearly have

(idg vy ®€)(A(K)) = (idg vy ®e)(A(K)) = [K]. u

B. Review of 2-structures

The concept of 2-structure for a root system was introduced by Herb to calculate
discrete series characters on real reductive groups; see, for example, Section 5 of [20]
or Section 4 of the review article [19]. In this section we review Herb’s constructions
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and adapt them so that they work for an arbitrary Coxeter system having finite Coxeter
group. We also adapt some of her results to this setting and give detailed elementary
proofs of these results. Although this is not strictly necessary, we think that it might
be valuable, as the proofs of these results in the literature can be very hard to follow
for people not already immersed in the representation theory of real groups.

We fix a finite-dimensional R-vector space V' and an inner product (-,-) on V.
For every v € V — {0}, we denote by s, the (orthogonal) reflection across the hyper-

plane vt.
Whenever we need to describe the irreducible root systems, we use the description
given in the tables at the end of [5], except that we write (eq, . .., e,) for the canonical

basis of R”. When we need a system of positive roots in these root systems, we also
use the ones given in these tables.

This appendix is organized as follows. Sections B.1 and B.2 contain the defini-
tions and results respectively. Sections B.3 and B.4 contain the technical proofs. The
verification that the Coxeter group W acts transitively on the set of 2-structures takes
place in the fourth subsection.

B.1. Pseudo-root systems

Definition B.1.1. A finite subset ® of V — {0} is called a pseudo-root system if it
satisfies the following conditions:

(a) forevery o € @, we have ® N Ro = {£a};

(b) for every a, B € D, the reflection s, sends 8 to a vector of the form cy, with
ceRspandy € .

If all the elements of ® are unit vectors, we call ® a normalized pseudo-root system.
In that case, condition (b) becomes “s4 (8) € ®”.

Remark B.1.2. We use this definition because it is convenient in the context of Cox-
eter systems. A root system (in the usual sense) is a pseudo-root system, which
is not normalized in general. The converse is not true, even if we allow ourselves
to replace the elements of ® by scalar multiples, because of the existence of non-
crystallographic Coxeter systems; see Proposition B.1.6.

Pseudo-root systems are called “root systems” in [21, Section 1.2] and [2, Sec-
tion 4.4]. We avoid this terminology because it is not compatible with the established
definition of root systems in representation theory.

Remark B.1.3. If ® is normalized or an actual root system then the group W pre-
serves @, so the action of W on V restricts to an action of W on ®. In general, we can
still make W act on ® by declaring thatif w € W and @ € ® then w - ¢ is the unique
element B of ® such that w(«) € R-of. This reduces to the previous action if ® is
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normalized or an actual root system. Whenever we write an element of W acting on
an element of ®, this is the action that we mean.

Definition B.1.4. Let ® C V be a pseudo-root system. A subset A of ® is called a
system of simple pseudo-roots if

(a) The set A is a vector space basis for the linear span of ®.

(b) Forevery o € , we can write @ = ) 5. 118, Where the coefficients ng are
in R and they are either all nonnegative or all nonpositive.

The corresponding system of positive pseudo-roots is then

ot =<I>ﬂ{2n5ﬂ:n5 ERZ()V,BEA}.
BeA

We also write &~ = —d T,

Definition B.1.5. Let ® C V be a pseudo-root system. We say that ® is irreducible
if there is no partition ® = ®; U &,, with ®; and ®, nonempty pseudo-root systems
such that («1, @) = 0 for every a; € @ and every ap € Ds.

Proposition B.1.6. The following two statements hold:

(i) See[21, Section 1.9] and [21, Section 1.4]. Let ® C V be a pseudo-root system
and A C ® be a system of simple pseudo-roots. Let W = W(®) be the subgroup
of GL(V') generated by the reflections sy, for a € ®, and let S = {sq : ¢ € A}. Then
(W, S) is a Coxeter system where W is finite, and the Coxeter graph of (W, S) is
connected if and only if ® is irreducible.

Moreover, W acts transitively on the set of systems of positive pseudo-roots if we
use the action of Remark B.1.3.

(ii) See [21, Section 5.4]. Conversely, let (W, S) be a Coxeter system with W
finite, and let p: W — GL(V') be its canonical representation on V = P g Rey; see
the beginning of Section 2.2. Then ® = {p(w)(es) : w € W, s € S} is a normalized
pseudo-root system and A = {es : s € S} is a system of simple pseudo-roots in P.

Definition B.1.7. Let ® C V be an irreducible pseudo-root system. We say that @ is
of type Ay, respectively, By, Dy, E¢, E7, Eg, F4, H3, Hy, I(m) with m > 3, if the
corresponding Coxeter system is of that type. Here we use the classification of simple
finite Coxeter systems proved in [16, Chapter 5]; see Table 1 in [2, Appendix A].

Remark B.1.8. The Coxeter group of type I, (m) is the dihedral group of order 2m.
Note that types /5(3) and A, are isomorphic, types /5(4) and B, are isomorphic, and
types I2(6) and G, are isomorphic. We did not include /5 (2) in the list of irreducible
types, because the corresponding Coxeter system is not irreducible, as it is isomorphic
to A; x Ay.
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We will use the following lemma when introducing the sign associated to a 2-
structure in Proposition B.2.7. Recall that, if r > 1, then the lexicographic order on R”
is defined by (x1,...,x,) < (¥1,...,yr) if there exists 1 <i < r such that x; < y;
and that x; = y; for 1 < j <i — 1. It is a total order. Furthermore, we say that a
vector x is positive if x > (0,0,...,0).

Lemma B.1.9. Let ® C V be a pseudo-root system. Let vy, va, ..., v, be linearly
independent elements of V such that no element of ® is orthogonal to every v;.
Define ® to be the set of a € ® such that the element (o, vy), (o, v32), ..., (a0, v;,))
of R” is positive with respect to the lexicographic order on R”. Then ®% is a system
of positive pseudo-roots.

Proof. We complete (v, ..., v,) to abasis (vy, ..., v,) of V, where n is the dimen-
sion of V. For v,w € V, we say that v < w if

(v, v1),.... (,v0)) < ((W,v1),.... (W, vn))

in the lexicographic order on R”. This defines a total order on V in the sense of [21,
Section 1.3], and @ is the corresponding positive system in ®. By the theorem in [21,
Section 1.3], ®* is a system of positive pseudo-roots in the sense of Definition B.1.4.

]

Definition B.1.10. If 6 = (v, ..., v,) is a sequence of linearly independent ele-
ments of V such that 0+ N & = &, we denote the system of positive pseudo-roots of
Lemma B.1.9 by d>;.

B.2. 2-structures

We define 2-structures, generalizing a notion introduced by Herb for root systems;
see, for example, the beginning of [19, Section 4]. We also generalize some of the
results of [20, Section 5] to Coxeter systems with finite Coxeter groups.

We fix a pseudo-root system @ in V and a system of positive pseudo-roots ®+C .
We denote by (W, S) the corresponding Coxeter system; see Proposition B.1.6.

Definition B.2.1. A 2-structure for ® is a subset ¢ of ®, that is, a pseudo-root system
in V satisfying the following properties:
(a) The subset ¢ is a disjoint union ¢ = ¢; L ¢, U --- U ¢, where the ¢; are
pairwise orthogonal subsets of ¢ and each of them is an irreducible pseudo-
root system in V of type A, B, or I,(2") forn > 3.

(b) Letp™ = o N ®T. If w € W is such that w(¢p™) = ¢, then det(w) = 1.
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Remark B.2.2. Although condition (b) involves the set of positive pseudo-roots ¢+
in ¢, it does not actually depend on the choice of ¢, because the Coxeter group of ¢
acts transitively on sets of positive pseudo-roots in ¢.

Remark B.2.3. If ¢ € ® is a 2-structure then there is no o € & that is orthogonal to
every element of ¢. Indeed, if such an « existed then the associated reflection s, would
fix every element of ¢, and in particular send ¢ to itself, which would contradict
condition (b) of Definition B.2.1.

Let 7(®) < 22 be the set of all 2-structures for the pseudo-root system ®. The
following proposition is proved in Section B.4, where we also show that each irre-
ducible pseudo-root system contains a 2-structure and give the type of this 2-structure.
This introduces no circularity in the arguments: the only results in this appendix that
depend on Proposition B.2.4 are Lemmas B.2.11 and B.2.12, and these lemmas are
not used in Sections B.3 and B 4.

Proposition B.2.4. The group W acts transitively on the collection of 2-structures
T (D).

Let g € T(®). We write 7 = ¢ N ®T and ¢~ = ¢ N ®~, and we define

W(p, ") ={we W :w(p") c ),
Wi(p. @H) ={weW weh) cotl={weW we") =¢"}.

Note that W (¢, ®T) is a subgroup of W, and that the subset W(¢p, ®T) of W is stable
by right translations by elements of W; (¢, ®T).

Corollary B.2.5. Let ¢ € T (D). Then the map W — T (®), w — w(y) induces a
bijection
W(p, @)/ Wi, @F) — T ().

Proof. We denote by f: W — T (®) the map defined by f(w) = w(p).

If u € Wi(p, ®1), then u(p) = ¢, so f(wu) = f(w) for every w € W. So the
map f does induce a map from W(gp, ®)/ Wy (¢, ®T) to T (P), that we denote by f.

We show that f is surjective. Let ¢’ € T (®). By Proposition B.2.4, there exists
w € W such that w(g) = ¢’. By the theorem in [21, Section 1.3], the set w1 (®+) N ¢
is a system of positive pseudo-roots in ¢, and so, by Proposition B.1.6, there exists
v € W(gp), where W(p) is the Coxeter group of ¢, such that v(¢p+) = w=1(®T) N ¢.
Then

wo(p™) = T Nw(p) C dF,

sowv € W(p, ®T), and wv(p) = w(p) = ¢/, thatis, f(wv) = ¢'.
We show that f is injective. Let w, w’ € W(p, ®1) such that w(p) = w'(p).
Then we have w™'w’(¢) = ¢, and again by the theorem in [21, Section 1.3], the set
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w~lw/(pT) is a system of positive pseudo-roots in ¢, so there exists v € W(g) such
that v 'w™'w’(¢T) = ¢*. This means that we have w’ = wvu with u € Wy (¢, ®1).
So we will be done if we show that v = 1. Note that

wu(p®) = wou(e®) = w'e") c o*.

Suppose that v # 1; then there exists o € ¢ such that v(«) € ¢, and then wv () =
—w(—v(er)) € ®~ (because we W(p, 1)), contradicting the fact that wv(¢™) C d*.
Sov =1. ]

The following proposition, which follows immediately from Lemma 5.6 of [20]
for root systems, can be proved via a direct calculation for the remaining irreducible
types. We will not need this result, so we do not go into details.

Proposition B.2.6. Let 7(,)(®) be the set of ¢ C @ that satisfy condition (a) of Def-
inition B.2.1. Then T (®) is exactly the set of elements of T(4)(®P) that are maximal
with respect to inclusion.

Proposition B.2.7. Let ¢ C ® be a 2-structure. Define an ordered subset 0 of ¢ as
follows. Select a linear order of the irreducible components @1, @2, . .., ¢ of @. If @;
is a pseudo-root system of type Ay, let 0; be the singleton ¢; N ™. If ¢; is a pseudo-
root system of type By or I,(2K) for k > 3, pick two orthogonal elements o and o'
from @; N @™ such that ¢; N ¢ = (pi'f'(a,a,), that is, such that an element B of ¢; is
in o1 if and only if either (B,a) > 0, or (B,a) = 0 and (B,a’) > 0. Let 0; be the
sequence (a, a’). Finally, let 0 be the concatenation of the sequences 61,05, ..., 0.

Let @; be the system of positive pseudo-roots defined by the sequence 0 as in
Lemma B.1.9, and let wg be the unique element of W such that wg - ®T = CD;. Then
the sign det(wg) depends only on ¢ and not on the choices made to form 6.

Note that there are several choices when producing the ordered set 6. First we
have to select an order ¢q, @2, ..., ¢,. There are r! ways to do this. Second, if ¢; is
of type B, or of type I»(2F), there are two possible choices for the pseudo-roots o
and o'; see Figure 3. These selections do not influence the sign of wy, although they
do of course affect the set CIDE;.

Proof of Proposition B.2.7. Let 6 and 6’ be the results of two possible sequences of
choices. For an element w in W, recall that its length £(w) * is also given by the
cardinality of the intersection w - dT N d;see [2, Proposition 4.4.4]. Note that

Df Ndy =wg- DT Nwy - D™ = wy - (wp' wg - DT N D7),

4By definition, this is the minimal number of factors in an expression of w as a product of
reflections corresponding to simple pseudo-roots.
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Figure 3. The dihedral pseudo-root system I, (8) with the two choices of 6 = (a, o )

which has cardinality E(wg,lwg). Hence, to prove that the signs agree, that is, that
det(wg) = det(wg), it suffices to show that the set CIJé|r N @, has an even number of
elements.

We can reduce to the following two cases:

(a) there exists 1 <i < r such that 6 and 8’ differ only by the choice of the two
pseudo-roots in the factor ¢;;

(b) there exists 1 <i <r — 1 such that 6; = 6/,,, ;11 = 6] and 0; = 6]
if j #i,i+1.
We begin by treating case (a). We write
0; = (a,&') and 6] = (B,p).

Let y € @; N ®g,. Then y is orthogonal to ¢1, ..., ¢;—1, and it is not orthogonal
to ¢;. Also, as the sets of positive pseudo-roots in ¢; defined by ¢; and 6] are equal by
assumption, we cannot have y € ¢;. Write y = ca + c’a’ + A, withA € - N --- N (piJ-.
By the previous sentence, we have A # 0. The vector

t(y) = —(saSa)(y) = ca + o’ = A

is also in ®. It is not equal to y because A # 0, and it is in <I>é|r N ®,, because y
and ¢(y) have the same inner product with any element of the set {«, o', B, B’}. Note
that we clearly have ¢(¢(y)) = y. We have constructed a fixed-point free involution ¢
on the set <I>é1r N @,,, which proves that this set has even cardinality.
We treat case (b). Suppose first that ¢; and @; 4+ are both of type A1, so we can
write
0 = () and 641 = (@i+1).

Let @ be the pseudo-root system ® N (Ro; + Raj41). If @' is of type I»(m) with
m > 3, then m must be even because ®’ contains two orthogonal pseudo-roots. But
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then @’ contains a multiple B of o; — «; 41, and the reflection sg sends et to @t
because it fixes every element of ¢; for j = i,i + 1 and exchanges o; and ;41,
contradicting the definition of a 2-structure. Hence, @’ is of type 4; x Aj, and then
the fact that |d>; N @, | is even follows from Lemma B.3.2.
Suppose that ¢; is of type A; and ¢; is of type [5(2™) with m > 2. Then we
can write
i = (0;) and i1 = (41,0 4).

Let @', respectively, ®”, be the pseudo-root system ® N (Re; + R +1), respectively,
® N (Ro; + Rerj ), and let 8" be the sequence that we obtain from 6 by switching o;
and oj+1. As @i+ is of type I5(2™), it (and hence @) contains a pseudo-root
proportional to a;+1 — a;_;, and then sg(®') = ®”, so ® and ®” are of the same
type. By Lemma B.3.2, the cardinalities of the sets <I>'0" N <I>07,, and CI>;,, N <I>0_, have
the same parity, and so |CI>g N &y, | is even. The case where ¢; is of rank 2 and ¢; 41
of rank 1 follows from the previous case by switching the roles of ¢; and @; 1.
Finally, suppose that both ¢; and ¢; 41 are of rank 2. Then we can write

6; = (aj, ) and ;11 = (Cig1.05 ).

We move from 6 to 6" by the following sequence of operations:

(1) We switch &} and ;1. By Lemma B.3.2 and Remark B.3.3, this changes the
sign of wg by (—1)™1/271 where the pseudo-root system ®; = ® N (Ra, + Rat;41)
is of type I»(m1).

(2) We switch «; and «;_ ;. By the same lemma and remark, this changes the

sign by (—1)2/271 where the pseudo-root system ®, = & N (Roj + Rerj ) is of
type I2(m2).

(3) We switch «; and o;j41. By the same lemma and remark, this changes the
sign by (—1)3/271 where the pseudo-root system ®3 = ® N (Ra; + Reyj 1) is of
type I2(ms3).

(4) We switch «; and alf +1- By the same lemma and remark, this changes the
sign by (—1)™4/2=1 where the pseudo-root system &4 = ® N (Rey; + Ra; ;) is of
type I2(m4).

The reflections s; = s, —a] and sj 41 = Sg, o), are both in W because ¢; contains
a multiple of o; — &} and ¢; | contains a multiple of ot 41 — o] 41- Observe now that

5i(®1) = D3, 5i(P2) = Dy,
Si+1(P1) = P2, s5i41(P3) = Dy

Thus, the four pseudo-root systems ®;, &5, ®3, and P4 are isomorphic, and hence

mip = mpy = ms3 = Nly.
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Hence, performing operations (1) to (4) changes the sign by ((—1)"1/271)* = 1, that
is, det(wg) = det(wy). [

Definition B.2.8. Let ¢ € & be a 2-structure, and let wg be as in Proposition B.2.7.
Then the sign (—1)"1"" det(wg), where r is the number of irreducible factors of ® of
type A, with n odd and r’ is the number of irreducible factors of ® of type I, (2n'+1)
with n’ > 3 odd, is called the sign of ¢ and denoted by €(¢, ®T), or by €(p) if the
system of positive pseudo-roots ®7 is understood.

Remark B.2.9. For a root system, this coincides with the definition of the sign of ¢
from Herb’s paper [18], and it differs from the definition in Section 5 of Herb’s
paper [20]; see of [20, Remark 5.1] and Corollary 3.1.3.

Lemma B.2.10. Let ¢ C © be a 2-structure, that is, ¢ € T (D).
(i) Forevery w € W, the identity e(w (@), w(®T)) = e(p, ®T) holds.

(ii) Let w € W be such that w(e™) € ®T. Then the identity e(w(g), ®T) =
det(w) - e(p, ®*) holds.

Proof. Both identities follow easily from the definition of €(¢, ®T). Indeed, let §
be a subset of ¢ chosen as in Proposition B.2.7. For every w € W, w(p) is a 2-
structure for ® and its subset w(#) satisfies the same conditions for the system of
positive pseudo-roots w(®™), and also for the system of positive pseudo-roots &+
if w(p™)C®T. Also, we have @ , = w - . This immediately yields (i) and (ii).

]

Lemma B.2.11. Let og € ® be a simple pseudo-root, let sog be the simple reflection
defined by ag, let Do = g N ® and ®F = o N O, Let T” be the set of ¢ € T (D)
such that so(¢) = @, we also consider the subsets 7" ={p € T" : ¢ N @y € T (Po)}
and 7, = T" — T/'. Then the following statements hold:

(0) Let ¢ be a 2-structure for ®. Then so(¢) = @, that is, the 2-structure ¢ is
inT", if and only if ag € @.

(1) The map 7" — T (Po), ¢ = ¢ N Dy is bijective.

(2) Forevery ¢ € T/, we have €(p, 1) = €(p N g, D).

(3) There exists an involution v of T, such that, for every ¢ € T,', we have
@ N Dy = 1(p) N g and e(1(p), PT) = —e(p, ™).

Proof. We prove (0). If o9 € @, then s¢ is in the Coxeter group of ¢, so so(¢) = .
Conversely, we have sq,(®+ — {ap}) C T by [2, Lemma 4.4.3], so, if ¢ € 7" and
oo € @, then so(¢T) € @ N = @™, contradicting condition (b) in the definition of
a 2-structure. Note also that the subset ¢ N @ of ®( always satisfies condition (a) in
the definition of a 2-structure, but it does not always satisfy condition (b).
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We prove (1). We may assume that @ is irreducible, and we will freely use the
explicit description of 2-structures given in Section B.4. If 2-structures for @ are all
of type Aj for some s, which happens in types A,, Dy, E¢, E7, Eg, H3, H4 and I5(m)
for m odd, then ¢ N &g € T (Py) for every ¢ € T (P), thatis, 7" = T”, and we see
in the explicit description of 2-structures that the map of statement (1) is a bijection.
It is easy to check that the same statement holds in type I, (m) for m even.

We now suppose that ® is of type B, or Fy. (Recall that from the point of view
of Coxeter systems types B, and C, are isomorphic.) For convenience, in this case,
we take @ to be the actual root system, with possibly non-normalized roots; this does
not affect any of the definitions that we made before. To study the map of (1), we
may assume that g = e, or g = e1 — €. Suppose first that g = e; — e;. Then P
is reducible. Furthermore, it is of type Ay x B,—, if ® is of type B,, and of type
A1 x By if @ is of type F4, where the A; factor is {Z(e; + e2)}. In both cases, it
is easy to see that 7" = 7" and that (1) holds. Suppose that g = e,. Then Py is
irreducible. Furthermore, it is of type B,_; if ® is of type B, and of type B3 if ®
is of type Fy. If ® is of type F,4 or B, with n even then again it is easy to see that
7/ = 7" and that (1) holds.

Finally, suppose that ® is of type B, with n odd and that ¢g = e,. If ¢ € T”
then we have ¢ € 7;” if and only if {+e,} is an irreducible component of ¢. The
map sending @9 € T (Pg) to po U {£e,} is thus an inverse to the map of (1), so
statement (1) holds.

We now prove (3). We have seen in the proof of (1) that 7, = @ unless ® is of
type B, with n odd and « is the short simple root. Assume that we are in this case,
which means that g = e,. Let ¢ € 7,". Then there exists 2 < i < n such that

01 = {xey,, Le;, te, e}

is an irreducible component of ¢. Write ¢ = ¢ U ¢, U --- U @,, where the ¢ are
irreducible and ¢, = {+£e;} is the unique rank 1 component of ¢. Set

L(gﬁ) = {:I:en9 :I:ej, :i:en :tej} L {:i:el} L ¢3 .- |_|(pr

This map switches the roles of e¢; and e;. Then ¢(¢) is also in 7,’, it is not equal to ¢,
we have ((¢) N @9 = ¢ N Py and ¢ (t(p)) = ¢. To finish the proof of (3), it suffices to
show that €(t(¢), @) = —e(p, @) for every ¢ € 7,”. But this follows immediately
from the definition of ¢(¢) and from Lemma B.3.2.

We finally prove (2). Let ¢ € 77”. Choose a family 6 = («1, ..., ;) of elements
of ¢ as in Proposition B.2.7.We may assume that og € 6. If g is in an irreducible
component of ¢ of type A, we may assume that g = «;. If g is in an irreducible
component of ¢ of rank 2, then, as it is a simple pseudo-root, it cannot be the first
element of 6 coming from this rank 2 factor of ¢ (see Figure 3 for an illustration in
the case of 1,(8), the general case is similar), so we may assume that g = «;-.
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Suppose first that «¢ is in an irreducible component of ¢ of rank 2 and that
oo = a,. By the description of 2-structures in Section B.4, this can only happen if ®

is of type By, F4 or I,(m) with m even. The family («y, ..., ar,—1) is a family of
elements of @ satisfying the conditions of Proposition B.2.7, and CID(J)r 8o = @g N .

So the statement of (2) will follow if we can show that
X = (®f — Pgq) NP

has even cardinality. Let s = s4,. We claim that s(X) = X and that s has no fixed
points in X, which implies that X has even cardinality because s? = 1. The fact that s
has no fixed point in X follows from the facts that the fixed points of s are the elements
of aﬂ-, that ® N aﬂ- =dpandthat X N Py = . As o, ¢ &~ and —a, & CD;, we
have

X = (07 —{=a}) N (5 — (Pg 4 Udar}).

As o is a simple pseudo-root, we have
$(®7 —{—ar}) C ®” —{—ar}

by [2, Lemma 4.4.3]. So it suffices to prove that s preserves CIDé|r — (CID(J)FQ0 U {ar}).
If g e (IDé,|r — CD(’)LOO is such that 8 # «,, then we cannot have (8, ;) = 0 for every

i e{l,...,r—1}; indeed, as ® is of type By, F4 or I,(m) with m even, the family
(a1,...,ar) is an orthonormal basis of V, so the only element of CID(;F that is orthogonal
to oy, ..., 0p—1 1S 0. SO @; - (<D(J)FGO U {a}) is the set pseudo-roots f € @ such that

((ﬂval)’ cees (,Bv ar—l)) >0

(for the lexicographic order on R”~!) and that (B, ;) # 0. This set is stable by s,
because, for every 8 € V, we have

(s(B). i) = (B, s(cti)) = (B i)
ifl <i<r—1land(s(f),ar) = (B,s(a;)) =—(B, ).

Now we suppose that o is in an irreducible component of ¢ of rank 1 and that

oo =ay.Then By = (az,. .., ) is a family of elements of ¢ satisfying the conditions
of Proposition B.2.7, and CD(T@O =dy N <I>g', SO @; — @:Oo ={fed:(B,a1)>0}.

Statement (2) will follow if we can show that
X = (of —obgﬂo) NOd~ ={Bed :(B.a) >0}

has even cardinality if @ is not of type A, or Io(2n’ + 1) with n’ odd, and odd
cardinality otherwise. As ¢ has an irreducible component of rank 1, we cannot be in
type F4. We can check that X has even cardinality by a computer calculation in the
exceptional types E, G and H.
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We now go through the remaining types one by one (in cases A, B and D, we use
the description of the roots from the tables at the end of [5], and not the normalized
pseudo-root systems):

Type I2(m). If m is even, then ¢ is a rank 2 pseudo-root system; so /. must be odd,
and then @q is empty and €(¢g) = 1. There are exactly m pseudo-roots § such that
(B,a1) > 0, and (m — 1)/2 of these are in ®~. So

€(p) = (=)D = g,
which is what we wanted.
Type A,. We write g = ¢; — €;4+1, with 1 <i < n. Then
X={ej—e:1<k<j=iori+l=k<j<n+1}
has cardinality n — 1, that is, even if and only if # is odd.

Type B,. As ¢ has an irreducible component of rank 1, the integer » must be odd
and oy is the short simple root, that is, g = e,. Then

has cardinality n — 1, which is even.
Type D,,. If g = ¢; —ej+1 with1 <i <n — 1, then
X={ej—ex:1<k<j=iori+l=k<j=<n}
U{—(ej +ex):i+1=j<k=<nori#j<k=i+1}
has cardinality 2n — 4. If ¢y = e,—1 + ey, then
X={ej—ex:n=j>k#n—-lorj=n—-1>k}
also has cardinality 2n — 4. [

Lemma B.2.12. Let ¢ C ® be a 2-structure. Then |®+ — ¢ | is an even integer. More
precisely, if ® is irreducible, we have

2n mod 4 if ®is of type Azy,
|CI>Jr —<p+| = 4 0 mod 4 if ®isof type Apn+1, B, D, E, Fy, Gy, or H,
2"(m — 1) if ©is of type I,(2"m) with m odd.

Proof. This follows from the explicit description of 2-structures for the irreducible
types in Section B.4. |
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B.3. Orthogonal sets of pseudo-roots and 2-structures

For @ a root system (not just a pseudo-root system), let O(P) be the set of all finite
sequences (o1, d2, ..., o) of elements of ® which are pairwise orthogonal and such
that their entries all have the same length, that is, the following two conditions hold:

(a) (ai’a‘j) =O0foralll <i <j <r;

®) flarll = flezll = -+ = ller|.

Lemma B.3.1. Suppose that ® is a root system. Let 0 = (ayq, ..., q,) and 6’ =
(B1, ..., Bs) be elements of O(®), and suppose that 6+ N ® = (") N & = & and
that the elements of 6 and 0’ have the same length. Then there exists w € W such that
{aq,...,0r} ={w(B1),...,w(Bs)}. In particular, r = s holds.

Proof. Let CD;’, respectively, CIDZ)F,, be the system of positive roots defined by 6, respec-
tively, 0’, as in Definition B.1.10. As W acts transitively on the set of systems of posi-
tive roots, there exists w € W such that w(CD;F,) = CD;. As w(CID(;r,) =0

we may assume that q>;

+
. WAL, w ()’
= @;/. We then wish to prove that # and 6’ are equal up

to reordering their entries. We proceed by induction on the length of 8. If 6 is empty
then @ is also empty because of the condition ® N 6+ = @, so #’ is empty and we
are done. Suppose that r > 1. Let jo be the smallest index j such that (., 8;) # 0.
Since ® N (#’)1 = @, this minimum exists. As B, € CI>;F, = CD;', we cannot have
(a1, Bj,) <0, so (g, Bj,) > 0. As ® is a root system and not just a pseudo-root
system, the corollary after [5, Chapitre VI, § 1, Ne 3, Théoreme 1] implies that the dif-
ference y = a1 — Bj, is an element of ® U {0}. Suppose that y € CDZ;,. As(y,B;)=0
for 1 < j < jo, we must then have

0 =< (y, ﬂjo) = (a1, ﬂjo) - (ﬂjov ﬂjo)~
The hypothesis states that ||| = ||B}, |, and hence we deduce that

(@1, Bjo) = 1Bjoll* = lleall - 1Bl
This inequality implies that oy = B, contradicting the fact that y is nonzero. Suppose
that y € @, . Then

0 < (a1, —y) = (a1, Bj,) — (a1, 1),

s0 (a1, Bjy) > |l ||, and again this implies that oy = f;, and contradicts the assump-
tion. Hence, we conclude that y = 0, that is, &} = ﬂjo- Let &g = ozf- Nd= ]t N o,

Op = (a2,...,0,) and 60y = (B1,....Bjys---+PBs)-
Then @ is a root system, o and 6 are in O(Dy), 9&- N &g = (9(’))J— N ®g = &, and

q)+

— ot — ot — T
o0 = P3N Do =, NPy =D

.
0.6,
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k Eg E; Eg F4short Fy IOIlg Hj Hy
1 72 126 240 24 24 30 120
2 1080 3780 15120 72 72 60 1800
3 4320 32760 302400 96 96 40 2400
4 2160 75600 1965600 48 48 1200
5 90720 3628800
6 60480 3628800
7 17280 2073600
8 518400

Table 1. The number of orthogonal sets of roots or pseudo-roots of size k where the elements
all have the same length in the exceptional/sporadic reflection arrangements. Note the double
occurrence of 10! in the Eg column. The equality of the columns in type F4 comes from the
fact that there is an automorphism of the underlying vector space that preserves angles, sends
short roots to long roots, and sends long roots to doubles of short roots (for instance, the auto-
morphism given by e; > e1 + €2, e2 > e] —e2,e3 > e3 + e4 and eq > e3 — ey).

We can apply the induction hypothesis to conclude that

(@} = {B1se s Bios s Bshs

and this immediately implies that {aq,...,a,} = {B1,...,Bs}. =

Lemma B.3.2. Let ® be a normalized pseudo-root system, let 0 = (aq,...,a,) be
a sequence of pairwise orthogonal elements of ® such that 6+ N ® = @, and let 6’
be the sequence obtained from 0 by exchanging «; and ;1. Consider the subroot
system

@' = &N R + Rajy1).

Then @ is of type A1 x A1 or I,(m) withm > 4 even, and the parity of the cardinality
of CD; N @y, is given by

& Nd,| =0mod?2 if® = Ay x Ay,
[ 0
|®F NPy =m/2—1mod2 if® = Ir(m).

Proof. As @ is a pseudo-root system of rank 2 (because it is contained in a 2-
dimensional vector space and contains the two linearly independent pseudo-roots ;
and o;41), it is of type Ay x Ay or I>(m) with m > 3. Moreover, ® contains two
orthogonal pseudo-roots, so it cannot be of type I, (m) with m odd.



R. Ehrenborg, S. Morel, and M. Readdy 174

We now set C = CIJE,F N @, and calculate the parity of |C|. Lety € C. Then y is
orthogonal to «, ..., ®;—1, SO wWe can write

y =ca; +daj;1 + A
with A € Span(ay, ..., i+1)" and coy + daj 4 # 0. Set

l()/) = _S(Xl'sai+1(y)'

Then ((y) € ® and ((y) = ca; + daj+1 — A, so ((y) € C. Also, we clearly have
t(t(y)) =y, and 1(y) is equal to y if and only if A = 0, that is, if and only if y € @',
‘We have defined an involution ¢ of C, and we conclude that

|C| = |Co| mod 2,

where Cy = ®' N C is the set of fixed points of ¢ in C. If @' is of type A1 x A; then
we easily see that Cy is empty, so we are done. Suppose that @’ is of type I, (m) with
meven. Lety = ca; + dajy1 € @', withc,d € R. Then y € C if and only if ¢ > 0 and
d < 0. The set Cy contains exactly one quarter of the elements of ®" — {+q;, *a;+1},

that is,

|co|=2’"4_4=%—1. »
Remark B.3.3. If we view the root system A; X A as the dihedral pseudo-root sys-
tem /,(2) then the conclusion of Lemma B.3.2 is that |d>éF Ny | =m/2—1mod 2

if ® = I,(m) with m even and m > 2.

Lemma B.3.4. Suppose that ® is an irreducible root system (not just a pseudo-root
system) and not of type G,. Let ® be a system of positive roots of ® and let ¢ € ®
be a 2-structure. Define a subset 6 of ¢ as in Proposition B.2.7. Then there is a choice
of the sequences 0; for which 0 is an element of O(®). Moreover, if ® is of type By
or F4q we can choose 6 to consist of short roots. Similarly, if ® is of type C,, or Fq we
can choose 0 to consist of long roots.

Proof. By Remark B.2.3 we have 6+ N ® = @. We use the notation of Proposi-
tion B.2.7. If all the roots of ® have the same length (which is the case for A,, D,
E¢, E7 and Eg), then there is nothing to prove. Note also that if ¢; is an actual root
system of type B, (that is, with the correct root lengths), then the two possible choices
for 6; are the set of short positive roots and the set of long positive roots.

Suppose that ® is of type B,. If ¢ has no irreducible component of type A, then
we choose the two short positive roots in each ¢;. Suppose that ¢ has a factor of
type A1. We show that this factor cannot contain long roots. Suppose on the contrary
that this occurs. Without loss of generality, we may assume that ¢1 = {£(e; + e2)}.
The rank 2 factors of ¢ cannot contain e; — e,, so they are all in ei- N e5. All the
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Type of Type of
root system ©  2-structures are isomorphic to ... 2-structure
An {£(e1 —e2), £(es—es), ..., E(eam—1—e€2m)} AT

Dn {:|:€1 + én, :E€3 + €4, ..., :|:€2m_1 + €2m} A%m

E6 {:|:€1 + én, :E€3 + €4} A‘l1

E~ {xe; L ey, des ey, destes, Lt(e7—eg)} AZ

Eg {:|:€1 + €n, :b€3 + €y, :i:€5 + €q, :|:€7 + 68} Ailg

Table 2. The 2-structures in types A, D and E, where m = [(n + 1)/2] in type A and m =
|n/2] in type D.

rank 1 factors that do not contain e; — e, must also be in ef- N ei‘. If e; — e5 were not
in @ then the reflection s, —., would act as the identity on all the elements on ¢, which
contradicts the definition of a 2-structure. Hence, {3(e; — e3)} is another rank 1 factor
of ¢. But then the reflection s,, preserves ¢, which is impossible. Hence, all the 4,
factors of ¢ contain only short roots, and we choose the 6; in the B, factors to contain
the two short positive roots.

The case for C, is similar, with the roles of short and long roots uniformly ex-
changed.

Finally, suppose that ® = F4. In this case we can similarly show that the 2-struc-
ture ¢ has type B2, allowing us to pick either short or long roots in each factor. |

B.4. 2-structures in the irreducible types

In this subsection we prove Proposition B.2.4, that is, the fact that the group W acts
transitively on the collection of 2-structures 7 (®). It is enough to prove this result for
irreducible pseudo-root systems. We proceed by a case by case analysis.

Types A, Dy, Eg¢, E7 and Eg. Suppose that ® is a root system of type A,, D,
or E,, with m € {6,7, 8}. As all the roots of ® have the same length and as ®
contains no B root system, the 2-structures for ® are exactly the maximal sets
¢ = {£ay, ..., xa,} such that (ay,...,a,) € O(P). By Lemma B.3.1, for any
(a1,...,0ar)and (B1,..., Bs) on O(D), there exists w € W such that

ar, ..o} = {w(p1), ..., w(ps)).

Hence, the group W acts transitively on 7 (®). In particular, all the 2-structures for ®
are isomorphic, so we can determine their type; see Table 2.

Types B, and C,. Suppose that ® is a root system of type B,. This will also give
the type C, case, since B, and C, correspond to the same Coxeter system. We claim
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that W acts transitively on 7 (®). In particular, all the 2-structures for ® are isomor-
phic to

{*ei, Ley, ey £exf -
- U{Eeam—1, team, team—1 £ e2m} ifn =2m,

{xe1, tes, ey L exfU---
U {xeam—1, Eeam, Teom—1 £ eomf U{Fxeom1} ifn=2m+1,

Po =

so they are of type B}" if n = 2m is even, and of type B' x Ay if n = 2m + 1 is odd.

We prove the claim by induction on n. The case n = 1 is clear. Suppose thatn > 2.
Let ¢, ¢’ € ®. By Lemma B.3.4, we can choose sequences 6 of ¢ and 8’ of ¢’ as in
Proposition B.2.7 such that 6, 8’ € O(®) and that these subsets contain only short
roots. By Lemma B.3.1, we may assume that 6 and 6’ coincide up to the order of their
elements. Denote by

=@ U U and §0/:§0;|—|U§0;

the decomposition into irreducible systems that gave rise to 6 and 6’. We can always
change the order on the ¢; and the goj’..

Suppose that ¢; is of rank 1, so that ¢; = {£a;}. We may assume that oy € ¢].
If @] is of rank 1 then ¢] = @1. As @ N (pf- is an irreducible root system of type B, —1,
the conclusion follows by the induction hypothesis.

If ¢ is of rank 2 then ¢] is a B, root system whose short positive roots are oy and
some o2, and we may assume that o, € @,. In particular, the vector f = oy — 3 is
in @. If ¢ = {£a>} then the reflection sg preserves @™, which is not possible. So ¢,
is of rank 2 (in particular, n > 3), which means that it is a B; root system whose short
roots are o, and some 3. We may assume that o3 € ¢5. In particular, oy — a3 € &,
so y = sg(az —a3) = oy — a3 is also a root. The irreducible components of s, (¢)
are o1, {£as},¢3,...,0;. AsdN ((pi)J- is a root system of type B,_,, the induction
hypothesis implies that there is a w € W such that w(¢’) = s, (¢), which finishes the
proof in this case.

Suppose that ¢; is of rank 2, and call its other short positive root o;. We may
assume that oy € ¢]. If ¢] is of rank 1 then ¢| = {Za;}, and we can repeat the
reasoning of the previous paragraph with the roles of ¢ and ¢’ exchanged. If ¢} = ¢,
then the conclusion follows from the induction hypothesis applied to the B;,_, root
system (pf- N @. Finally, suppose that ¢} is of rank 2 and ¢] # ¢;. Let a3 be the
other short positive root of ¢;. As a, and a3 are both short roots, # = o, — a3 € .
Note that the irreducible components of sg(¢) are ¢}, sg(¢2), ..., sg(¢s), so again
the induction hypothesis implies that there exists w € W such that sg(¢) = w(¢’),
and we are done.
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Type F4. Suppose that ® is a root system of type F4. Then we can show that W acts
transitively on 7 (®) exactly as in type Bj,. In particular, any 2-structure is isomorphic
to oo = {te1, Ler, teg L ex} U {tes, ey, ez £ eq}, soitis of type Bzz.

Dihedral types. Suppose that ® is a pseudo-root system of type I, (m) with m>5
(this includes the type G, root system). It is straightforward to see that W acts tran-
sitively on 7 (®). If m is odd then all the 2-structures for ® are isomorphic to ¢y =
{#e1}, and in particular of type A;. If m is even then all the 2-structures for ® are of
type 1,(2"), where 27 is the largest power of 2 dividing m.

Types H3 and Hy4. Suppose that ® is of type H3 or Hs. We use the description of
the pseudo-root systems H3 and Hy4 given in [16, Table 5.2] where they are called I3
and /4. In particular, we choose @ to be normalized. We claim that W acts transitively
on T (®), and so every 2-structure for & is isomorphic to

+eq, ey, e if ® = Hs,
(poZ{{ 1, ke, kes} 3 B.1)

{:i:el, :I:ez, :|:€3, :|:€4} if ® = H4,

and in particular it is of type A% if ® = H3 and of type A‘l‘ if ® = Hy.

It is clear by the chosen description of ® that all of the inner products of elements
of ® are in Q[+/5], and in particular 1/+/2 never appears. So there are no pseudo-
roots in @ with an angle of 77/4 between them, which implies that ® does not contain
any pseudo-root system of type I(m) with m a multiple of 4, and so 2-structures
for @ (if they exist) can only have irreducible components of type A;.

We check easily that the set ¢o given in equation (B.l) is a 2-structure, so it
remains to show that all the maximal sets of pairwise orthogonal pseudo-roots are
conjugate under W to &y, where {o = {e1,e2,e3}if ® = H3 and {y = {e1,e2, €3, €4}
if ® = H,. Any element of the stabilizer Wy of o in W must act on Span(®) by a
permutation of the coordinates, and it must be an even permutation to be in W. This
implies that the cardinality of Wy is 3 for ® = H3 and 12 for & = H,4. Using a com-
puter, it is not hard to count all the maximal sets of pairwise orthogonal pseudo-roots
in H3 and Hy; see Table 1. We find that there are 40 such sets for H3 and 1200 such
sets for Hy. In both cases, this number is equal to |W|/|Wy|, so W does act transi-
tively on the set of maximal sets of pairwise orthogonal pseudo-roots, and hence also
on 7 (D).

C. Relationship with locally symmetric spaces

In this appendix, aimed at specialists of Shimura varieties, we give more details about
the connection between some of the objects introduced in this article and the calcula-
tion of the weighted cohomology of locally symmetric spaces.
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This is a continuation of the discussion in the first part of the introduction, and we
return to the notation of this discussion. We do not suppose yet that the group G(R)
has a discrete series. In the introduction, we only considered cohomology of Xx with
constant coefficients, but now we need to introduce a coefficient system. Let F be an
irreducible algebraic representation of G. Then, via the G(Q)-covering

(GR) x G(A%)) /(Koo x K) — Xk

and the action of G(Q) on F, we get a locally constant sheaf Lr on Xk, and we
will write H*(Xg, F') instead of H*(X, L r) for every reasonable cohomology the-
ory H*> If T C B are a maximal torus and a Borel subgroup of G¢, respectively,
then the representation F has a highest weight A g in the Lie algebra of T that is dom-
inant with respect to B.° The space V of the article will typically be this Lie algebra
with the inner product coming from the Killing form of the Lie algebra of G in the
usual way. The pseudo-root system @ that defines the hyperplane arrangement will
be the root system of 7" in the Lie algebra of G, with the positive system determined
by B; sometimes T will be defined over R, and ® will be the real root system of 7.

The first cohomology theory that we consider is weighted cohomology, from which
the weighted complex and the weighted sum get their names. Weighted cohomology
was introduced by Goresky—Harder—-MacPherson in the paper [12]. It depends on an
auxiliary parameter called a “weight profile” and is the cohomology of a sheaf of
truncated differential forms on the reductive Borel-Serre compactification of Xg,
where the truncation depends on the weight profile. The Hecke algebra acts on the
weighted cohomology groups, and they are explicit enough to make the calculation of
the traces of Hecke operators possible; see the paper [ 14] of Goresky and MacPherson.
Also, there are two “middle” weight profiles for any group G and, if Xk is a Shimura
variety, then the two middle weighted cohomology groups are both isomorphic to the
intersection cohomology of the Baily—Borel compactification of Xx. What we call
the “weighted sum” in this article appears in the calculation of the trace of a Hecke
operator on the weighted cohomology groups, hence the name. This calculation is
carried out in [14] and summarized in Section 7 of [13]. Very roughly, the trace of a
Hecke operator on a weighted cohomology group is a sum over conjugacy classes of
rational Levi subgroups M of G and certain conjugacy classes of y € M(Q) of the
product of:

e anormalizing factor;

>We need a different construction of L  if Xg is the set of complex points of a Shimura
variety and H * is étale (intersection) cohomology, but this is not the point of this appendix.

The representation F might not stay irreducible when seen as a representation of G¢, but
we ignore this technical complication.
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» an orbital integral on the conjugacy class of y in M(A°°) that depends on the
Hecke operator but not on the weight profile or on the coefficient system;

e a “term at infinity” Lz (y) that depends on the weight profile and the coefficient
system but not on the Hecke operator.

See [13, formula (7.14.7)]. Goresky, Kottwitz and MacPherson then introduce a stable
virtual character ® on G(R) (this notion is defined in [13, p.495]) that depends on
the coefficient system via the highest weight of F' and on the weight profile. We can
recover the function Ly as the restriction of ® to M up to chasing some denominators
depending on M ; this last statement is Theorem 5.1 of [13], and it works for any
weight profile. While the expression for the function L s involves “relative” weighted
sums V¥ 5,;c where we are in the situation of Example 4.2.1 (see [13, pp. 504-505]),
the virtual character ® only involves the simpler weighted sums ¥ 5, where we are
in the situation of Section 4.3. In both cases, the space V is the real Lie algebra of
a maximal torus 7' of G, the pseudo-root system is the set of real roots of 7" in G,
and the element A of V is, up to a shift depending on the weight profile, of the form
w(Ap + pB) — pp, where B D T is a Borel subgroup (defined over C), Ap is the
highest weight of F corresponding to B, pp is half the sum of the positive roots
and w is an element of the Weyl group.

We now assume that the weight profile is one of the middle profiles and that Xg
is a Shimura variety. Then, as explained in the introduction, we know that weighted
cohomology is isomorphic to L? cohomology, for which we have a spectral descrip-
tion known as Matsushima’s formula (even though it was proved by Borel and Cas-
selman in this generality). This implies in particular that the virtual character ® is
equal to the stable discrete series character corresponding to the dual of the repre-
sentation F, hence that the weighted sum % is equal to what are known as stable
discrete series constants; see, for example, [13, pp. 493, 498-500] for a quick review
of these constants. The first statement of the previous sentence is proved directly in
Theorem 5.2 of [13], and the second statement is proved directly in Theorem 3.1 of
the same paper. The stable discrete series constants can be expressed in terms of 2-
structures by the work of Herb (see, for example, [19, Theorem 4.2]), and this is the
expression on the right-hand side of the identity of Corollary 4.3.1.

We can go further and relate the traces of Hecke operators on L? cohomology
to the Arthur—Selberg trace formula for a particular test function. This is done in
Arthur’s paper [1]. The resulting trace formula can then be stabilized. Although this
is a very complicated process in the general case, it is slightly less involved for our
test function, by the work of Kottwitz (unpublished) and Zhifeng Peng [29]. Thus, we
get character formulas relating the virtual character ® and stable discrete series char-
acters on endoscopic groups of G. However, when we express everything in terms of
2-structures, the distinction between G and its endoscopic groups disappears. Indeed,



R. Ehrenborg, S. Morel, and M. Readdy 180

endoscopic groups of G have root systems that are subsystems of the root system
of G, and 2-structures, being very small root systems, can be shared between G and
its endoscopic groups. (We are summarily ignoring many complications, due in par-
ticular to the appearance of transfer factors in the character identities.)

We finally come to the case where Xk is a Shimura variety defined over some
number field £ and we are interested, not just in the action of the Hecke algebra on
the intersection cohomology I H*(Xk, F) of its Baily—Borel compactification Xk,
but also in the action of the absolute Galois group of E. There is a calculation of the
trace of a Hecke operator times a power of the Frobenius morphism (at an unramified
place p) that parallels the calculation of [14]: see [26] for the algebraic version of
weighted cohomology, the papers [27] and [28] for the trace calculation in the cases
of unitary and symplectic groups (over QQ), and [34] for the trace calculation in the
case of orthogonal groups. We obtain an expression for this trace that is reminiscent
of formula (7.14.7) of [13], that we quickly described above, except that the orbital
integral at p is twisted and that the terms Lz () are slightly different. Nevertheless,
by using techniques similar to those of the proof of Theorem 5.1 of [13], in particular
the Weyl character formula and Kostant’s theorem, we can still relate Ly (y) to the
relative weighted sum v/ 5, ¢ in the situation of Example 4.2.1. For symplectic groups
over Q, this calculation is done in the proof of Proposition 3.3.1 of [28]. The difter-
ence with the situation of [13] is that L2 cohomology does not have an action of the
absolute Galois of E, so we do not have a nice spectral expression for our trace, and
in particular we do not know if there is a stable virtual character “interpolating” the
function Ljs as in Theorem 5.1 of [ 13]. Fortunately, we are still able to relate our trace
expression directly to a sum of stable trace formulas for well-chosen test functions on
endoscopic groups of G, and this is where Theorem 4.2.2 comes into play: We must
express the function L, in terms of stable discrete series constants for endoscopic
groups of G. Via Herb’s formula, this reduces to giving a formula for Ljs involving
2-structures for the root systems of these endoscopic groups, but, as we explained
above, these 2-structures can also be seen as 2-structures for the root system of G.
Again, we are sweeping many technical complications under the rug, and the story is
by no means finished once we have Theorem 4.2.2.
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