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Density of random subsets and applications to group theory

Tsung-Hsuan Tsai

Abstract. Developing an idea of M. Gromov (1993), we study the intersection formula for ran-
dom subsets with density. The density of a subset A in a finite set E is defined by densA WD
logjEj.jAj/. The aim of this article is to give a precise meaning of Gromov’s intersection for-
mula: “Random subsets” A and B of a finite setE satisfy dens.A\B/D densAC densB � 1.

As an application, we exhibit a phase transition phenomenon for random presentations of
groups at density �=2 for any 0 < � < 1, characterizing the C 0.�/-small cancellation condition.
We also improve an important result of random groups by G. Arzhantseva and A. Ol’shanskii
(1996) from density 0 to density 0 � d < 1=.120m2 ln.2m//.

Introduction

Density of subsets. Let A be a subset of a finite set E. Denote jEj, jAj their cardi-
nalities. In [9, Section 9.A], M. Gromov defined the density of A in E as

densE .A/ WD logjE j
�
jAj
�
:

Namely, densE .A/ is the number d 2 ¹�1º [ Œ0; 1� such that jAj D jEjd . Note
that d D �1 if and only if A D Ø. If the set E is fixed, we omit the subscript and
simply denote the density by densA.

In [9, p. 270], the intersection formula is stated as follows: Random subsets A
and B of a finite set E satisfy

dens.A \ B/ D densAC densB � 1

with the convention
densA < 0 ” A D Ø:

IfE is a finite-dimensional vector space over a finite field, every affine subspaceA
satisfies densA D dimA= dimE. The intersection formula is then a “random subset
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version” of the well-known result for affine subspaces: Transversal affine subspaces
A and B of a vector space E satisfy

dim.A \ B/ D dimAC dimB � dimE

with the convention
dimA < 0 ” A D Ø:

Purpose of the paper. In [9, p. 270], Gromov’s “explanation” did not give a precise
definition of a random subset with density, neither a proof of the intersection formula.
In [9, p. 272], he proposed that one can consider the class of random subsets defined
by measures invariant under the permutations of E.

In this article, we discuss two basic models of random subsets that are contained
in the permutation invariant model: The uniform density model and the Bernoulli den-
sity model. The first one is defined by the uniform distribution on all subsets of E
with cardinality bjEjdc. This model is used by Y. Ollivier in [14, 15, 17] to study the
density model of random groups, and by A. Żuk in [19] to construct random triangular
groups. For the Bernoulli density model, every element in E is taken independently
with the same probability jEjd�1. This model is considered by Antoniuk–Łuczak–
Świątkowski in [1] to study random triangular groups.

The aim of this article is to establish a general framework for the study of random
subsets with densities, and to prove the intersection formula for the class of random
subsets that are densable and permutation invariant.

Random subsets and the intersection formula. In the first section, we introduce
the notion of densable sequences of random subsets. Let E be a finite set. A random
subset ofE is a P .E/-valued random variable, where P .E/ is the set of subsets ofE.
Note that jAj is a usual real-valued random variable. The density of A in E, defined
by densE A WD logjE j.jAj/, is hence a random variable with values in ¹�1º [ Œ0; 1�.

As our approach is asymptotic when jEj ! 1, we consider a sequence of finite
sets E D .En/n2N where jEnj ! 1. A sequence of random subsets of E is a
sequence A D .An/ where An is a random subset of En for all n 2 N. Such a
sequence is densable with density d 2 ¹�1º [ Œ0; 1� if the sequence of random
variables densEn.An/ converges weakly (i.e. converges in distribution) to the con-
stant d (cf. [9, p. 272]). For a sequence of properties Q D .Qn/, we say that Qn is
asymptotically almost surely (a.a.s.) satisfied if the probability that Qn is satisfied
goes to 1 when n!1. For example, for a sequence of random subsets A D .An/,
densA D �1 if and only if a.a.s. An D Ø.

In Section 2, we work on the permutation invariant model in [9, p. 272]. Let E be
a finite set. A random subset A of E is permutation invariant if its law is invariant
under the permutations of E. Namely, for any subset a 2 P .E/ and any permutation
� 2 �.E/, we have Pr.A D a/ D Pr.A D �.a//.
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Consider a sequence of finite sets E D .En/ with jEnj ! 1. Denote by D.E/

the class of densable sequences of permutation invariant random subsets of E . We
prove the intersection formula stated as follows:

Theorem 1 (The intersection formula, Theorem 2.9). Let A D .An/;B D .Bn/ be
independent sequences of random subsets in D.E/ with densities ˛;ˇ. If ˛C ˇ ¤ 1,
then the sequence of random subsets A \B is also in D.E/. In addition:

dens.A \B/ D

´
˛ C ˇ � 1 if ˛ C ˇ > 1;

�1 if ˛ C ˇ < 1:

The density �1 means that a.a.s. the random subset is empty.
In Section 3, we study the intersection between a random subset and a fixed sub-

set. We develop a generalized form: the multi-dimensional intersection formula. Let
E D .En/ be a sequence of finite sets with jEnj!1. DenoteE.k/n the set of pairwise
distinct k-tuples of the setEn. LetA be a sequence of random subsets in D.E/ (dens-
able and permutation invariant). We are interested in the intersection between A.k/

and a densable sequence of subsets X of E .k/.
For k � 2, the intersection formula is in general not correct (see Example 3.3).

We show that by an additional self-intersection condition on X , we can achieve an
intersection formula.

Theorem 2 (The multi-dimensional intersection formula, Theorem 3.7). LetAD.An/
be a sequence of random subsets in D.E/ with density 0 < d < 1. Let X D .Xn/ be
a densable sequence of fixed subsets of E .k/ with density ˛.

(i) If d C ˛ < 1, then a.a.s.
A.k/n \Xn D Ø:

(ii) If d C ˛ > 1 and X satisfies the d -small self intersection condition (Defini-
tion 3.6), then the sequence of random subsets A.k/ \X is densable and

dens.A.k/ \X/ D ˛ C d � 1:

The intersection formula in E between a random subset and a fixed subset is a
special case of this theorem by taking k D 1.

Applications to group theory: Random groups. The last section is dedicated to
applications to group theory, more precisely to small cancellation theory.

The first mention of generic property for finitely presented groups appears in the
late ’80s, in the works of V. S. Guba [10, Remark 2] and M. Gromov [8, Section 0.2].
In [10], the author showed that for “almost every” group presented by m � 4 gen-
erators and one “long” relator, any 2-generated subgroup is free. In [8, Section 0.2],
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Gromov defined two models of random group presentations with fixed number of
generators and relators.

In 1993, Gromov introduced the density model of random groups in [9, Sec-
tion 9.B]. The number of generators is still fixed, but the number of relators grows
exponentially with the length of the relators, determined by a density parameter d .
A phase transition phenomenon is then stated as follows: if d < 1=2, then a.a.s. the
random group is infinite hyperbolic; whereas if d > 1=2, then a.a.s. the random group
is trivial.

In a 1996 paper [5], G. Arzhantseva and A. Ol’shanskii generalized Guba’s result.
They proved that for “almost every” group presented by m � 2 generators and k � 1
long relators , any .m � 1/-generated subgroup is free. In their model, the number of
generators k is fixed, as in Gromov’s 1987 model [8, Section 0.2]. This model is called
the Arzhantseva–Ol’shanskii model, or the few relator model of random groups.

For more detailed surveys on random groups, see (in chronological order) [7] by
E. Ghys, [16] by Y. Ollivier, [12] by I. Kapovich and P. Schupp and [6] by F. Bassino,
C. Nicaud and P. Weil.

Fix a set of alphabets X D ¹x1; : : : ; xmº as generators of groups. Denote by B`
the set of cyclically reduced words of X˙ of lengths at most `. If S` is the set of
cyclically reduced words of length exactly `, it is clear that

2m.2m � 1/`�2.2m � 2/ � jS`j � 2m.2m � 1/
`�1:

So,
2m

2m � 1

�
.2m � 1/` � 1

�
� jB`j �

2m

2m � 2

�
.2m � 1/` � 1

�
:

As we are interested in asymptotic behaviors when `!1, we can write jB`j D
.2m � 1/`CO.1/. Consider B D .B`/`�1 as our ambient sequence of sets. Let d 2
¹�1º [ Œ0; 1�. A sequence of random groups with density d , denoted by G .m; d/ D
.G`.m;d//, is defined by random presentationsG`.m;d/D hX jR`iwhereRD .R`/
is a densable sequence of permutation invariant random subsets of B with density d .

The first mention of the �=2 phase transition for the C 0.�/-small cancellation
condition is by Gromov in [9, p. 273], showing that if 2d < � then a random group
at density d satisfies C 0.�/. He remarked also that, in particular, if d < 1=12 then the
group is hyperbolic; and if d > 1=12 then the group is notC 0.1=6/. Ollivier-Wise gave
a detailed proof of d < �=2 implying C 0.�/ in [18, Proposition 1.8]. In [16, p. 31],
Ollivier stated the phase transition : if d >�=2 thenC 0.�/ does not hold. However, his
“dimension reasoning” is the 2-dimensional intersection formula between a random
subset (pairs of distinct relators in a random group) and a fixed subset (pairs of distinct
relators denying C 0.�/), which does not hold in general (as Example 3.3 shows).
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Bassino–Nicaud–Weil gave a proof of d > �=2 implying non-C 0.�/ in [6, Theo-
rem 2.1]. Their argument showed that the pairs of distinct relators in a random group
denying C 0.�/ is not empty, but did not give its density.

The d -small self-intersection condition (Definition 3.6) for a fixed subset is intro-
duced to rule out this difficulty. By the multi-dimensional intersection formula (Theo-
rem 2), we show that if d > �=2, then the pairs of distinct relators in a random group
denying C 0.�/ is with density d � �=2 and hence not empty.

Theorem 3 (Phase transition at density �=2, Theorem 4.3). LetG .m;d/D.G`.m;d//
be a random group with m generators and with density d . Let � 2 �0; 1Œ .

(1) If d < �=2, then a.a.s. G`.m; d/ satisfies C 0.�/.

(2) If d > �=2, then a.a.s. G`.m; d/ does not satisfy C 0.�/.

It was given as an “interesting problem” in [16, Section I.3.c] that some alge-
braic properties of random groups at density 0 (see [5] by Arzhantseva–Ol’shanskii,
[2–4] by Arzhantseva, and [11] by Kapovich–Schupp) may extend to some positive
density d . In [12, Theorem 7.5], Kapovich and Schupp extends Arzhantzeva’s “all
L-generated subgroups of infinite index are free” result [2] (for a fixed L > 0) to
some density d > 0 independent of m. A property is called “low-density random” by
Kapovich–Schupp in [12, p. 3] if the corresponding density d.m/ is positive but con-
verges to 0 whenm goes to infinity. They claimed that Arzhantseva–Ol’shanskii’s “all
.m � 1/-generated subgroups are free” result [5] is a low-density random property
([12, Theorems 1.1 (2) and 5.4 (2)]), but the density d.m/ is not given.

In our study, the number of generators m is fixed, and we look for a density d.m/
such that the “all .m � 1/-generated subgroups are free” property holds for a random
group with m generators of density d < d.m/. Using Theorems 2 and 3, we give
an explicit bound d.m/D 1=.120m2 ln.2m// that extends Arzhantseva–Ol’shanskii’s
result in [5] from density 0 to density 0 � d < d.m/.

Theorem 4 (Every .m� 1/-generated subgroup is free, Theorem 4.5). Let .G`.m;d//
be a sequence of random groups with m generators and with density

0 � d <
1

120m2 ln.2m/
:

Then a.a.s. every .m � 1/-generated subgroup of G`.m; d/ is free.

Ollivier remarked in [16, p. 71] that at density d > 1 � log2m�1.2m � 3/, the
rank of a random group with m generators with density d is at most m � 1, so the
“all .m � 1/-generated subgroups are free” property fails. There is still a large gap
between log2m�1.2m � 3/ � 1=.m ln.2m// and 1=.120m2 ln.2m//.
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1. Definitions and basic models

1.1. Densable sequences of random subsets

Let E be a finite set, denote jEj its cardinality. The following definition is due to M.
Gromov in [9, p. 269].

Definition 1.1. Let E be a finite non-empty set and A � E. The density of A in E is
defined by

densE A WD logjE j jAj D
log jAj
log jEj

:

So that d 2 Œ0; 1� [ ¹�1º is a real number such that jEjd D jAj.

We will omit the subscript E if the set is fixed and simply denote the density by
densA. Note that densA D �1 if and only if A D Ø.

Definition 1.2. Let E be a finite set. Denote P .E/ the set of subsets of E. A random
subset A of E is a P .E/-valued random variable.

In this article, we use upper-case letters A;B;C; : : : to denote random subsets and
lower-case letters a; b; c; : : : to denote fixed subsets. The law of a random subset A
is determined by instances Pr.A D a/ through all subsets a 2 P .E/ (or a � E). Its
cardinality jAj is a usual real-valued random variable.

Example 1.3. We give three examples of random subsets.

(i) (Dirac model) A fixed subset c � E can be regarded as a constant random
subset. Its law is

Pr.A D a/ D

´
1 if a D c;

0 if a ¤ c:

(ii) (Uniform random subset) Fix an integer k � jEj. Let A be the uniform distri-
bution on all subsets of E of cardinality k. Its law is

Pr.A D a/ D

´ �
jE j
k

��1
if jaj D k;

0 if jaj ¤ k:

(iii) (Bernoulli random subset) Let A be the Bernoulli sampling of parameter p 2
Œ0; 1� on the set E: The events ¹x 2 Aº through all x 2 E are independent of the same
probability p. The law of A is

Pr.A D a/ D pjaj.1 � p/jE j�jaj:

In this case jAj follows the binomial law B.jEj; p/.
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As usual random variables, a random subset can be constructed by other random
subsets.

Example 1.4 (Set theoretic operations). The intersection of two random subsets A;B
of a finite set E is another random subset. The law of A \ B is

Pr.A \ B D c/ D
X

a;b2P .E/Ia\bDc

Pr.A D a;B D b/:

In particular, if A;B are independent random subsets, then

Pr.A \ B D c/ D
X

a;b2P .E/Ia\bDc

Pr.A D a/Pr.B D b/:

The union of two subsets and the complement of a subset are similarly defined.

We are interested in the asymptotic behavior of random subsets when jEj ! 1.
Consider a sequence of finite sets E D .En/n2N with jEnj ����!

n!1
1. Recall that the

density of a subset a � E is defined by densE .a/ WD logjE j jaj.

Definition 1.5. We define densable sequences of random subsets.

(i) A sequence of (fixed) subsets of E D .En/ is a sequence a D .an/ such that
an � En for all n.

A sequence of subsets a is densable with density d 2 Œ0; 1� [ ¹�1º if

densEn.an/ D logjEnj janj ����!n!1
d:

(ii) Similarly, a sequence of random subsets of E is a sequence A D .An/ such
that An is a random subset of En for all n.

A sequence of random subsets A is densable with density d 2 Œ0; 1� [ ¹�1º if
the sequence of real-valued random valuables densEn.An/ D logjEnj jAnj converges
in distribution to the constant d .

(iii) Two sequences of random subsetsAD .An/,BD .Bn/ ofE are independent
if An, Bn are independent random subsets of En for all n.

Example 1.6. Here are four examples of densable sequences of random subsets.

(i) For a fixed sequence of subsets aD .an/, dens.a/D�1 if and only if anDØ
for large enough n.

(ii) A densable sequence of subsets a D .an/ can be regarded as a densable
sequence of random subsets (Dirac model on each term). If we take janj D bjEnjdc
with some 0 � d � 1, then a is densable with density d .

(iii) (Uniform density model) LetAD.An/ be a sequence of random subsets ofE .
We call A a sequence of uniform random subsets with density d if An is the uniform
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distribution on all subsets of En of cardinality bjEnjdc. Its law is

Pr.An D a/ D

8<:
�
jEnj

bjEnjd c

��1
if jaj D bjEnjdc;

0 if jaj ¤ bjEnjdc:

(iv) (Bernoulli density model) Let d > 0. If An is a Bernoulli sampling of En
with parameter jEnjd�1, then A D .An/ is a sequence of densable random subsets
of E . It is rather not obvious that such sequences are densable (see Proposition 1.12).

Definition 1.7. Let Q D .Qn/ be a sequence of events. The event Qn is asymptoti-
cally almost surely true if Pr.Qn/ ����!

n!1
1.

Equivalently, for any p < 1 arbitrary close to 1 we have Pr.Qn/ > p for n large
enough. We denote briefly a.a.s. Qn.

For example, if A is a sequence of random subsets with densA D �1, then
Pr.jAnj D 0/ ����!

n!1
1, which is equivalent to a.a.s. jAnj D 0, or a.a.s. An D Ø.

Proposition 1.8 (Characterization of densability). Let A be a sequence of random
subsets of E . Let d � 0. A is densable with density d if and only if

8" > 0 a.a.s. jEnjd�" � jAnj � jEnjdC":

Proof. The convergence in distribution to a constant is equivalent to the convergence
in probability. So logjEnj jAnj converges in distribution to d if and only if

8" > 0 Pr
�
j logjEnj jAnj � d j � "

�
����!
n!1

1;

which gives the estimation

8" > 0 a.a.s. jEnjd�" � jAnj � jEnjdC":

In general, the intersection of two densable sequences is not necessarily densable.
The intersection formula is then not satisfied by the class of densable sequences of
random subsets. Here is a simple example.

Example 1.9. Let E D .En/ be a sequence of sets with jEnj D 2n. Let a D .an/,
b D .bn/ be sequences of subsets of E such that bn D Ennan and janj D jbnj D n.
They are both densable subsets with density 1 because log.n/= log.2n/! 1. Whereas
dens.a \ b/ D �1. They do not verify the intersection formula.

Define another sequence of subset c D .cn/ by cn WD an if n is odd and cn WD bn
if n is even. By its definition, c is densable with density 1. But the intersection b \ c
is empty when n is odd and non-empty when n is even, so b \ c is not densable.



Density of random subsets and applications to group theory 231

1.2. The Bernoulli density model

Let E D .En/ with jEnj ! 1 be the ambient sequence of sets.

Definition 1.10 (Bernoulli density model). Let d � 1. Let A D .An/ be a sequence
of random subsets of E . It is a sequence of Bernoulli random subsets with density d
if An is a Bernoulli sampling of En with parameter jEnjd�1.

This model is particularly easy to manipulate. We will see that it is densable,
closed under intersection and verifies the intersection formula.

Recall that the real-valued random variable jAnj follows the binomial law

B
�
jEnj; jEnj

d�1
�
:

Thus, E.jAnj/ D jEnjd .

Lemma 1.11 (Concentration lemma). LetA be a sequence of Bernoulli random sub-
sets with density d > 0. Then a.a.s.ˇ̌

Anj � jEnj
d
ˇ̌
�
1

2
jEnj

d :

Proof. By Chebyshev’s inequality,

Pr
�ˇ̌
jAnj � jEnj

d
ˇ̌
>
1

2
jEnj

d
�
�

Var.jAnj/
1
4
jEnj2d

�
4jEnj

d .1 � jEnj
d�1/

jEnj2d
����!
n!1

0:

Proposition 1.12. Let A be a sequence of Bernoulli random subsets with density d .
If d ¤ 0, then A is densable and

densA D

´
d if 0 < d � 1;

�1 if d < 0:

Proof. We separate the two cases d < 0 and 0 < d � 1.

(i) If d < 0, by Markov’s inequality

Pr
�
jAnj � 1

�
� jEnj

d
! 0;

so Pr.An D Ø/! 1 and Pr.logjEnj jAnj D �1/! 1.

(ii) If 0 < d � 1, by Lemma 1.11, a.a.s.

1

2
jEnj

d
� jAnj �

3

2
jEnj

d :

For every " > 0, the inequality jEnjd�" < 1
2
jEnj

d < 3
2
jEnj

d < jEnj
dC" holds for n

large enough. Thus, a.a.s.

jEnj
d�"
� jAnj � jEnj

dC":

Hence, A D .An/ is densable with density d by Proposition 1.8.
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Theorem 1.13 (The intersection formula for Bernoulli density model). Let A;B be
independent sequences of Bernoulli random subsets of E D .En/ with densities ˛; ˇ.
ThenA \B is a sequence of Bernoulli random subsets of E with density ˛ C ˇ � 1,
and

dens.A \B/ D

´
˛ C ˇ � 1 if ˛ C ˇ > 1;

�1 if ˛ C ˇ < 1:

Proof. For every element x 2 En, we have

Pr.x 2 An \ Bn/ D Pr.x 2 An/Pr.x 2 Bn/ D jEnj.˛Cˇ�1/�1:

In addition, for every pair of distinct elements x; y in En, we have

Pr.x; y 2 An \ Bn/ D Pr.x; y 2 An/Pr.x; y 2 Bn/
D Pr.x 2 An/Pr.y 2 An/Pr.x 2 Bn/Pr.y 2 Bn/
D Pr.x 2 An \ Bn/Pr.y 2 An \ Bn/:

SoA \B is a sequence of Bernoulli random subsets with density ˛ C ˇ � 1. Propo-
sition 1.12 gives its density.

As the theorem shows, the class of Bernoulli random subsets is closed under inter-
sections. Thereby the intersection formula works for multiple independent sequences
of random subsets. The formula is more concise in terms of codensities.

Definition 1.14 (cf. [9, p. 269]). Let A be a densable sequence of random subsets
such that densA 2 Œ0; 1�. Then the codensity of A is defined by

codensA D 1 � densA:

Theorem 1.13 can be rephrase as (compare [9, p. 270]):

Theorem 1.130 (The intersection formula by codensities). Let A;B be independent
sequences of Bernoulli random subsets of E with positive densities. If codensA C
codensB < 1, then

codens.A \B/ D codensA C codensB:

If codensA C codensB > 1, then dens.A \B/ D �1.

Corollary 1.15 (Generalized intersection formula by codensities). Let A1; : : : ;Ak
be independent sequences of Bernoulli random subsets with positive densities. IfPk
iD1 codensAi < 1, then

codens
� k\
iD1

Ai

�
D

kX
iD1

codensAi :
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If
Pk
iD1 codensAi > 1, then

dens
� k\
iD1

Ai

�
D �1:

As an exception, a Bernoulli sequence of random subsets with density d D 0 is
not densable.

Proposition 1.16. Let A be a Bernoulli sequence with density d D 0. Then A is not
densable. In fact,

Pr.densAn D �1/ ����!
n!1

1=e:

Proof. Pr.jAnj D 0/ D .1 � jEnj�1/jEnj ����!
n!1

1=e, which gives

Pr.densAn D �1/ ����!
n!1

1=e:

This justifies that the sequence of random variables .densEn An/ does not converge to
any constant distribution.

1.3. The uniform density model

The uniform density model is the first example of densable sequences of random
subsets. It was introduced by M.Gromov [9, p. 270] to construct random groups with
fixed generators, and later developed by Y. Ollivier [15, p. 1]. It was also used by A.
Żuk [19] to study random triangular groups.

Let E D .En/ be a sequence of sets. To simplify, we assume that jEnj D n in
this subsection. For an arbitrary sequence E with jEnj ! 1 we can proceed similar
proofs by replacing n by jEnj. Note that jEnjd D nd � bndc, while n ! 1 for
d 2 Œ0; 1�.

Recall that a sequence of uniform random subsets (Example 1.6 (iv)) of .En/ with
density d is a sequence of random subsets .An/ with the following laws:

Pr.An D a/ D

´ �
n
bnd c

��1 if jaj D bndc;

0 if jaj ¤ bndc:

We give here a concentration lemma for uniform density model, similar to Lem-
ma 1.11. For the proof, we will need Lemmas 2.2 and 2.3 given in the next section.

Lemma 1.17 (Concentration lemma for uniform density model). Let A;B be inde-
pendent sequences of uniform random subsets of E with densities ˛;ˇ 2 Œ0; 1�. Then:

(i) n˛Cˇ�1 � 2 � E
�
jAn \ Bnj

�
� n˛Cˇ�1.
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(ii) If ˛ < 1 and ˇ < 1, then

Var
�
jAn \ Bnj

�
� n˛Cˇ�1:

Moreover, if n � 3, then

Var
�
jAn \ Bnj

�
� 3n˛Cˇ�1:

(iii) Let 0 < c < 1. If ˛ C ˇ � 1 > 0 and n � .4
c
/1=.˛Cˇ�1/, then

Pr
�ˇ̌
jAn \ Bnj � n

˛Cˇ�1
ˇ̌
> cn˛Cˇ�1

�
�

12

c2n˛Cˇ�1
����!
n!1

0:

In particular, a.a.s. ˇ̌
jAn \ Bnj � n

˛Cˇ�1
ˇ̌
� cn˛Cˇ�1:

Proof. We consider each item.

(i) By Lemma 2.2, An \ Bn is a permutation invariant random set of En. Apply
Lemma 2.3:

E
�
jAn \ Bnj

�
D nPr.x 2 An \ Bn/ D nPr.x 2 An/Pr.x 2 Bn/

D n
E.jAnj/

n

E.jBnj/

n
D bn˛cbnˇcn�1 � n˛Cˇ�1:

For the inequality, as ˛; ˇ � 1:

n˛Cˇ�1 � 2 � n˛Cˇ�1 � n˛�1 � nˇ�1 C n�1 � bn˛cbnˇcn�1 � n˛Cˇ�1:

(ii) Let x; y be distinct elements in E. The number of subsets of E containing
x; y of cardinality bn˛c is

�
n�2
bn˛c�2

�
, so

Pr.x; y 2 An/ D

�
n�2
bn˛c�2

��
n
bn˛c

� D bn˛c.bn˛c � 1/
n.n � 1/

:

Similarly,

Pr.x; y 2 Bn/ D
bnˇc.bnˇc � 1/

n.n � 1/
:

Denote k D bn˛c and l D bnˇc to simplify the notation. Note that k D o.n/ and
l D o.n/ as ˛ < 1 and ˇ < 1. Recall that E.jAn \Bnj/D kln�1. Apply Lemma 2.3,
the variance of jAn \ Bnj is

Var
�
jAn \ Bnj

�
D kln�1 C n.n � 1/Pr.x; y 2 An/Pr.x; y 2 Bn/ � .kln�1/2

D kln�1 C
k.k � 1/l.l � 1/

n.n � 1/
� .kln�1/2
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D
kl

n2.n � 1/
.n2 � nC nkl � nl � nk C n � nkl C kl/

�
kl

n2.n � 1/
� n2 � n˛Cˇ�1:

Moreover, if n � 3, then

Var
�
jAn \ Bnj

�
D

kl

n2.n � 1/
.n2 � nl � nk C kl/ �

2kl

n � 1
�
2n˛Cˇ

n � 1
� 3n˛Cˇ�1:

(iii) By (i) if n � .4
c
/1=.˛Cˇ�1/ � 4, thenˇ̌

E
�
jAn \ Bnj

�
� n˛Cˇ�1

ˇ̌
�
c

2
n˛Cˇ�1:

If ˛ D 1 or ˇ D 1 then the result is true as theAn DEn or Bn DEn. Otherwise by (ii)
and Chebyshev’s inequality, if n � .4

c
/1=.˛Cˇ�1/ then

Pr
�ˇ̌
jAn \ Bnj � n

˛Cˇ�1
ˇ̌
> cn˛Cˇ�1

�
� Pr

�ˇ̌
jAn \ Bnj � E

�
jAn \ Bnj

�ˇ̌
>
c

2
n˛Cˇ�1

�
�
4Var.jAn \ Bnj/
c2n2˛C2ˇ�2

�
12

c2n˛Cˇ�1
:

Proposition 1.18 (The intersection formula for uniform density model). Let A;B
be independent sequences of uniform random subsets of E with densities ˛; ˇ. If
˛ C ˇ ¤ 1, then the sequence A \B is densable and

dens.A \B/ D

´
˛ C ˇ � 1 if ˛ C ˇ > 1;

�1 if ˛ C ˇ < 1:

Proof. We separate the two cases ˛ C ˇ < 1 and ˛ C ˇ > 1.

(i) If ˛ C ˇ < 1, then by Markov’s inequality and Lemma 1.17 (i):

Pr
�
jAn \ Bnj � 1

�
� E

�
jAn \ Bnj

�
����!
n!1

0;

which implies a.a.s. An \ Bn D Ø and dens.A \ B/ D �1.

(ii) If ˛ C ˇ > 1, by Lemma 1.17 (iii) (with c D 1=2) a.a.s.ˇ̌
jAn \ Bnj � n

˛Cˇ�1
ˇ̌
�
1

2
n˛Cˇ�1;

so for all " > 0 a.a.s.

n˛Cˇ�1�" � jAn \ Bnj � n
˛Cˇ�1C":

Hence, by Proposition 1.8, A \B is densable with density ˛ C ˇ � 1.
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The cardinality of An \ Bn is close to n˛Cˇ�1 with high probability, but not
always. If ˛ ¤ 1 and ˇ ¤ 1, then for n large enough bn˛c C bnˇc < n, so

Pr.An \ Bn D Ø/ ¤ 0:

Which means that A \ B is not a sequence of uniform random subsets, so the
class of sequences of uniform random subsets is not closed under intersection.

2. The general model: Densable and permutation invariant

2.1. Densable sequences of permutation invariant random subsets

Let E be a finite set with cardinality jEj D n. Denote �.E/ as the group of per-
mutations of E. The action of �.E/ on E can be extended on P .E/, defined by
�.¹x1; : : : ; xkº/ WD ¹�.x1/; : : : ; �.xk/º.

Note that this action has .nC 1/ orbits of the form ¹a 2 �.E/ j jaj D kº for k 2
¹0; : : : ; nº. Moreover, the action commutes with set theoretic operations: �.Ena/ D
En�.a/, �.a \ b/ D �.a/ \ �.b/ and �.a [ b/ D �.a/ [ �.b/.

Definition 2.1 (Permutation invariant random subsets). Let A be a random subset
of E. It is permutation invariant if its law is invariant by the permutations of E. i.e.

8a 2 P .E/ 8� 2 �.E/ Pr.A D a/ D Pr.A D �.a//:

Equivalently, subsets of E of the same cardinality are equiprobable. There exists
real numbers p0; : : : ; pn 2 Œ0; 1� satisfying

nX
kD0

 
n

k

!
pk D 1

such that
8a 2 P .E/ jaj D k) Pr.A D a/ D pk :

By definition, uniform random subsets and Bernoulli random subsets are permuta-
tion invariant. The advantage of such class of random subsets is that it is closed under
set theoretic operations, especially under intersections.

Lemma 2.2 (Closed under set operations). Let E be a finite set. The class of permu-
tation invariant random subsets of E is closed under set theoretic operations (union,
complement and intersection).
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Proof. We treat the three set theoretic operations (complement, intersection and union)
separately.

(i) (Complement) Let A be a permutation invariant random subset. Let a 2 P .E/

and � 2 �.E/. Then

Pr.EnA D a/ D Pr.A D Ena/ D Pr.A D �.Ena//
D Pr.A D En�.a// D Pr.EnA D �.a//:

(ii) (Intersection) Let A;B be independent permutation invariant random subsets.
Then for � 2 �.E/,

Pr.A \ B D c/ D
X

a;b2P .E/Ia\bDc

Pr.A D a/Pr.B D b/

D

X
a;b2P .E/I�.a/\�.b/D�.c/

Pr.A D �.a//Pr.B D �.b//

D

X
a0;b02P .E/Ia0\b0D�.c/

Pr.A D a0/Pr.B D b0/ .by substitution/

D Pr.A \ B D �.c//:

(iii) (Union) LetA;B be independent permutation invariant random subsets. Then
A [ B D En..EnA/ \ .EnB//. So A [ B is permutation invariant.

We shall express the expectation and the variance of the random variable jAj in
terms of Pr.x 2 A/ and Pr.x 2 A; y 2 A/, where x; y are distinct elements in E.

Lemma 2.3. Let A be a permutation invariant random subset of E. Let x; y be dis-
tinct elements in E. Then:

(i) E
�
jAj
�
D nPr.x 2 A/,

(ii) Var
�
jAj
�
D E

�
jAj
�
C n.n � 1/Pr.x 2 A; y 2 A/ � E

�
jAj
�2.

Proof. We consider each item.

(i) By definition the probability Pr.z 2 A/ does not depend on the choice of ele-
ment z 2 E. So,

E
�
jAj
�
D E

�X
z2E

1z2A

�
D

X
z2E

Pr.z 2 A/ D nPr.x 2 A/:

(ii) By the same argument, the probability Pr.z 2 A;w 2 A/ does not depend on
the choice of pair of distinct elements .z; w/ in E. So,

E
�
jAj2

�
D E

��X
z2E

1z2A

�2�
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D

X
z2E

Pr.z 2 A/C
X

.z;w/2E2Iz¤w

Pr.z 2 A;w 2 A/

D E
�
jAj
�
C n.n � 1/Pr.x 2 A; y 2 A/:

A permutation invariant random subset can be decomposed into uniform random
subsets.

Proposition 2.4 (Decomposition into uniform random subsets). Let A be a permuta-
tion invariant random subset of E.

(i) If Pr.jAj D k/¤ 0, then the random subset A under the condition ¹jAj D kº
is a uniform random subset on all subsets of E of cardinality k.

(ii) LetQ be an event described by A (for example,Q D ¹x 2 Aº). Denote NA D

¹k 2 N jPr.jAj D k/ ¤ 0º, then

Pr.Q/ D
X
k2NA

Pr
�
Q j jAj D k

�
Pr
�
jAj D k

�
:

Proof. Suppose that Pr.jAj D k/ ¤ 0. Let a � E of cardinal k. As A is permutation
invariant,

Pr
�
jAj D k

�
D

 
n

k

!
Pr.A D a/:

Hence,

Pr
�
A D a j jAj D k

�
D

Pr.A D a/
Pr.jAj D k/

D

 
n

k

!�1
:

If jaj ¤ k then Pr.A D a j jAj D k/ D 0.
The second assertion is the formula of total probability.

Definition 2.5. Let A D .An/ be a sequence of random subsets of E D .En/. It is
a sequence of permutation invariant random subset if An is a permutation invariant
random subset of En for all n.

Notation. Let E D .En/ be a sequence of finite sets. Denote D.E/ the class of
densable sequences of permutation invariant random subsets of E .

Example 2.6. We give three examples of sequences of random subsets that are dens-
able and permutation invariant.

1. Sequences of Bernoulli random subsets of E with density d ¤ 0 are in the
class D.E/.

2. Sequences of uniform random subsets of E are in the class D.E/.
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3. LetA;B be independent sequences of uniform random subsets. By Lemma 2.2,
the sequenceA\B is permutation invariant. By Proposition 1.18, if densAC densB
¤ 1, then A \B is densable. In this case the sequence A \B is in the class D.E/.

Except for some special cases, the class D.E/ is closed under set theoretic oper-
ations:

Proposition 2.7. Let A;B 2 D.E/ with densities ˛; ˇ. Then the union A [B is in
D.E/ and dens.A [B/ D max.˛; ˇ/.

Proof. By Lemma 2.2, the sequence of random subset A [B is permutation invari-
ant. The cases ˛ D �1 or ˇ D �1 can be easily shown. Without loss of generality,
assume that ˛ � ˇ � 0.

Let " > 0. By densabilities of A and B, a.a.s.

n˛�"=2 � jAnj � n
˛C"=2;

nˇ�"=2 � jBnj � n
ˇC"=2:

Thus, a.a.s.

n˛�" � jAnj � jAn [ Bnj � n
˛C"=2

C nˇC"=2 � 2n˛C"=2 � n˛C":

Proposition 2.8. Let A 2 D.E/ with density ˛ < 1. Then the complement EnA is
in D.E/ and dens.EnA/ D 1.

Proof. Again by Lemma 2.2 the sequence of random subset EnA is permutation
invariant.

Let 0 < " < .1 � ˛/=2. By densablility of A, a.a.s.

jAnj � n
˛C":

As n˛C" C n1�" � n for n large enough, a.a.s.

jEnnAnj � n � n
˛C"
� n1�":

2.2. The intersection formula

In this subsection we shall prove the intersection formula for the class of densable
sequences of permutation invariant random subsets.

Theorem 2.9 (The intersection formula). Let A;B be independent sequences in
D.E/ with densities ˛; ˇ. If ˛ C ˇ ¤ 1, then the sequence A \B is in D.E/ and

dens.A \B/ D

´
˛ C ˇ � 1 if ˛ C ˇ > 1;

�1 if ˛ C ˇ < 1:
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Lemma 2.10. Let ˛;ˇ 2 Œ0; 1� such that ˛C ˇ > 1. Let 0 < " < ˛C ˇ � 1. LetA;B
independent sequences of uniform random subsets of E with densities ˛0; ˇ0 with
˛0 2 Œ˛ � "=3;˛C "=3� and ˇ0 2 Œˇ � "=3;ˇC "=3�. If n�max¹23="; 81=.˛Cˇ�1�"/º,
then

Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
�
� 1 �

48

n˛Cˇ�1�"
����!
n!1

1:

Proof. By hypothesis ˛0 C ˇ0 � 1 � ˛ C ˇ � 2"=3 � 1 > 0. Apply Lemma 1.17 (iii)
with c D 1

2
, for n � 81=.˛Cˇ�1�"/ � 81=.˛

0Cˇ 0�1/, we have

Pr
�ˇ̌
jAn \ Bnj � n

˛0Cˇ 0�1
ˇ̌
�
1

2
n˛

0Cˇ 0�1
�
�

48

n˛
0Cˇ 0�1

:

Considering the complement event, this inequality is equivalent to

Pr
�1
2
n˛

0Cˇ 0�1 < jAn \ Bnj <
3

2
n˛

0Cˇ 0�1
�
> 1 �

48

n˛
0Cˇ 0�1

:

Again by hypothesis,

˛ C ˇ � 1 � 2"=3 � ˛0 C ˇ0 � 1 � ˛ C ˇ � 1C 2"=3:

If n � 23=", then

n˛Cˇ�1�" �
1

2
n˛Cˇ�1�2"=3 �

3

2
n˛Cˇ�1C2"=3 � n˛Cˇ�1C";

so,

Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
�

� Pr
�1
2
n˛Cˇ�1�2"=3 � jAn \ Bnj �

3

2
n˛Cˇ�1C2"=3

�
� Pr

�1
2
n˛

0Cˇ 0�1 < jAn \ Bnj <
3

2
n˛

0Cˇ 0�1
�
:

Combine two estimations on n. If n � max¹23="; 81=.˛Cˇ�1�"/º, then:

Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
�
� 1 �

48

n˛
0Cˇ 0�1

� 1 �
48

n˛Cˇ�1�"
:

As ˛ C ˇ � 1 � " > 0, when n goes to infinity

48

n˛Cˇ�1�"
����!
n!1

0:

Proof of Theorem 2.9. By Lemma 2.2, the intersection A \ B is a sequence of per-
mutation invariant random subsets. In either case, denote .Qn/ the sequence of events
defined by

Qn D
®
n˛�"=3 � jAnj � n

˛C"=3 and nˇ�"=3 � jBnj � nˇC"=3
¯
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for some small " > 0. By the densabilities ofA andB, a.a.s.Qn is true. Note thatQn
is a union of events of type ¹jAnj D k; jBnj D lº. Denote

N2
A;B;n;" WD

®
.k; l/ 2 N2

j n˛�"=3 � k � n˛C"=3; nˇ�"=3 � l � nˇC"=3

and Pr.jAnj D k; jBnj D l/ ¤ 0
¯
:

For .k; l/ 2 N2
A;B;n;", we may do a change of variables k D n˛

0

, l D nˇ
0

so that

˛ � "=3 � ˛0 � ˛ C "=3 and ˇ � "=3 � ˇ0 � ˇ C "=3:

(i) Suppose that ˛ C ˇ < 1. Let 0 < " < 1 � ˛ � ˇ. We shall prove that a.a.s.
An \ Bn D Ø. By the formula of total probability and Markov’s inequality,

Pr
�
An \ Bn ¤ Ø

�
� Pr

�
jAn \ Bnj � 1 j Qn

�
Pr.Qn/C Pr.Qn/

�

X
.k;l/2N2

A;B;n;"

h
Pr
�
jAn \ Bnj � 1 j jAnj D k; jBnj D l

�
Pr
�
jAnj D k; jBnj D l j

�i
C Pr.Qn/

�

X
.k;l/2N2

A;B;n;"

h
E
�
jAn \ Bnj j jAnj D k; jBnj D l

�
Pr
�
jAnj D k; jBnj D l j

�i
C Pr.Qn/:

For any .k; l/ 2 N2
A;B;n;", by Lemma 1.17 (i), we have

E
�
jAn \ Bnj j jAnj D k; jBnj D l

�
D E

�
jAn \ Bnj j jAnj D n

˛0

; jBnj D n
ˇ 0�

� n˛
0Cˇ 0�1

� n˛CˇC2=3"�1 � n�1=3":

Hence,
Pr.An \ Bn ¤ Ø/ � n�1=3"Pr.Qn/C Pr.Qn/ ����!

n!1
0:

(ii) Suppose that ˛ C ˇ > 1. Let 0 < " < ˛ C ˇ � 1. We shall prove that a.a.s.

n˛Cˇ�1�" � jAn \ Bnj � n
˛Cˇ�1C":

By the formula of total probability,

Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
�

� Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
j Qn

�
Pr.Qn/

D

X
.k;l/2N2

A;B;n;"

h
Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
j jAnj D k; jBnj D l

�
Pr
�
jAnj D k; jBnj D l j

�i
:



T.-H. Tsai 242

By Lemma 2.10 and Proposition 2.4. If n � max¹23="; 81=.˛Cˇ�1�"/º, then for
any .k; l/ 2 N2

A;B;n;", we have

Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
j jAnj D k; jBnj D l

�
D Pr

�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
j jAnj D n

˛0

; jBnj D n
ˇ 0�

� 1 �
48

n˛Cˇ�1C"
����!
n!1

1:

Hence, for n � max¹23="; 81=.˛Cˇ�1�"/º, we obtain

Pr
�
n˛Cˇ�1�" � jAn \ Bnj � n

˛Cˇ�1C"
�

�

X
.k;l/2N2

A;B;n;"

�
1 �

48

n˛Cˇ�1C"

�
Pr
�
jAnj D k; jBnj D l

�
�

�
1 �

48

n˛Cˇ�1C"

�
Pr.Qn/ ����!

n!1
1:

Remark that when ˛ C ˇ D 1, the density is not determined, as Proposition 1.16
showed for Bernoulli random subsets. As the class is closed under intersection, we
can conclude on multiple intersections.

Corollary 2.11. LetA1; : : : ;Ak be independent sequences in D.E/ of positive den-
sities. If

Pk
iD1 codensAi < 1, then

codens
� k\
iD1

Ai

�
D

kX
iD1

codensAi :

If
Pk
iD1 codensAi > 1, then

dens
� k\
iD1

Ai

�
D �1:

2.3. Another model: Random functions

We give here another natural model of random subsets: image of a random function,
which can be found in [9, p. 270] “Self-intersection formula” by Gromov. This is
also a variance of random groups considered by Ollivier in [16, Lemma 59]. In this
subsection, we prove that such a model is densable and permutation invariant.

Definition 2.12. Let E; F be finite subsets of cardinalities n;m. Denote EF the set
of functions from F to E. A random functionˆ from F to E is a EF -valued random
variable.
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Let ˆ be a random function from F to E. Its law is determined by

Pr.ˆ D '/

through all ' 2 EF .
The random functionˆ can be regarded as a vector of E-valued random variables

(or random elements of E) .ˆ.y//y2F indexed by F . Note that these random ele-
ments are not necessarily independent. The image Im.ˆ/ D ˆ.F / WD ¹ˆ.y/jy 2 F º
is then a random subset of E.

Example 2.13 (Uniform random function). Let ˆ be the uniform distribution on all
functions from F to E. Its law is

Pr.ˆ D '/ D
1

jEF j
D

1

nm

through all ' 2 EF .

Proposition 2.14. Letˆ be a uniform random function fromF toE. Then the random
elements .ˆ.y//y2F are independent (identical) uniform distributions on E.

Proof. Let x 2E, y 2 F . The number of functions ' from F toE such that '.y/D x
is nm�1. So the law of ˆ.y/ is

Pr.ˆ.y/ D x/ D
nm�1

nm
D
1

n
:

Which is a uniform distribution on E.
Denote F D ¹y1; : : : ; ymº. Let .x1; : : : ; xm/ be a vector of m elements in E. Let

' 2 EF such that '.yi / D xi for all 1 � i � m. Then

Pr
� m̂

iD1

ˆ.yi / D xi

�
D Pr.ˆ D '/ D

1

nm
D

mY
iD1

Pr.ˆ.yi / D xi /:

Proposition 2.15. The image of a uniform random function is a permutation invariant
random subset.

Proof. Let ˆ be a uniform random function from F to E. Let � 2 �.E/, then for all
' 2 EF , we have

Pr.ˆ D '/ D Pr.ˆ D � ı '/ D Pr.��1 ıˆ D '/:

The random function ��1 ıˆ has the same law of ˆ. Now let a � E, then

Pr.Im.ˆ/ D a/ D Pr.Im.��1 ıˆ/ D a/ D Pr.Im.ˆ/ D �.a//:
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3. The multi-dimensional intersection formula

LetE D .En/ be a sequence of finite sets with jEnj D n and k � 2 be an integer. The
set of pairwise different k-tuples of En is

E.k/n WD
®
.x1; : : : ; xk/ 2 E

k
n j xi ¤ xj 8i ¤ j

¯
:

Denote E .k/ D .E.k/n /n2N .
Similarly, for a sequence of random subsets A D .An/ of E , we can define

A.k/n WD
®
.x1; : : : ; xk/ 2 A

k
n j xi ¤ xj 8i ¤ j

¯
;

which is a random subset of E.k/n . Denote also A.k/ D .A
.k/
n /. We will establish

an intersection formula between a sequence of random subsets of type A.k/ and a
sequence of fixed subsets X D .Xn/ of E .k/.

Proposition 3.1. Let A be a densable sequence of random subsets of E with density
d > 0. Then A.k/ is a densable sequence of random subsets of E .k/ with density d .
Namely,

dens
E .k/.A

.k// D densE .A/:

Proof. Note that nk � k2.n � 1/k � jE.k/n j � nk , so jE.k/n j D nkCo.1/.
Let " > 0. By densability a.a.s. nd�"=2 � jAnj � ndC"=2. By the same argument

above, a.a.s. jA.k/n j D jAnjkCo.1/ as random variables. Hence, a.a.s.

.nk/d�"=2Co.1/ � jA.k/n j � .n
k/dC"=2Co.1/;

so a.a.s.
jE.k/n j

d�"
� jA.k/n j � jE

.k/
n j

dC":

Although the densability is preserved, it is not the case for being permutation
invariant. Given a permutation invariant random subset An of En, the random sub-
set A.k/n is not permutation invariant in E.k/n for k � 2. See the following example.

Example 3.2. Let .An/ be a sequence of Bernoulli random subsets of .En/ with den-
sity 0 < d < 1. Recall that subsets of the same cardinality have the same probability
to be included in a permutation invariant random subset. Let x1; : : : ; x4 be distinct
elements in En.

Pr
�
¹.x1; x2/; .x3; x4/º � A

.2/
n

�
D Pr

�
¹x1; x2; x3; x4º � An

�
D n4.d�1/;

while

Pr
�
¹.x1; x2/; .x2; x3/º � A

.2/
n

�
D Pr

�
¹x1; x2; x3º � An

�
D n3.d�1/:
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As a result the classical intersection formula (Theorem 2.9) can not be applied
in this context. Actually, for k � 2 the intersection formula does not work for some
choices of X . We give here a counter example.

Example 3.3. LetA be a sequence of random subsets in D.E/ with density 3=4. Let
X D .Xn/ be a sequence of subsets defined by

Xn D ¹xnº �
�
Enn¹xnº

�
� E.2/n

with some xn 2 En. By its construction dens
E .2/.X/ D 1=2, so we expected that

dens.A.2/ \X/ D 3=4C 1=2 � 1 D 1=4. However, we have

dens.A.2/ \X/ D 0

because a.a.s. An \ ¹xnº D Ø.

For the intersection formula betweenA.k/ andX , we need an additional condition
on X . More precisely, X can not have too much “self-intersection”. We will discuss
this condition in Section 3.1.

Following the path for proving the intersection formula (Theorem 2.9), we shall
study the case that A is a sequence of Bernoulli random subsets with density d (Sec-
tion 3.2). We then adapt the proof for the uniform density model by estimating the
probabilities Pr.¹x1; : : : ; xrº � An/ (Section 3.3).

For the general case (Section 3.4), according to Proposition 2.4, we can decom-
pose a permutation invariant random subset into uniform random subsets. We then
need to bound jA.k/n \ Xnj for sequences of uniform random subsets, uniformly in a
small neighborhood of densities d 0 2 Œd � "; d C "�.

3.1. Statement of the theorem

Definition 3.4 (Self-intersection partition). Let X D .Xn/ be a sequence of fixed
subsets of E .k/ with density ˛. For 0 � i � k, the i th self-intersection of Xn is

Yi;n WD
®
.x; y/ 2 X2n j jx \ yj D i

¯
;

where jx \ yj is the number of common elements in x D .x1; : : : ; xk/ and y D
.y1; : : : ; yk/.

In particular, Y0;n is the set of pairs .x; y/ in X2n having no intersection; Yk;n is
the set of pairs .x; x/ in X2n . Note that .Yi;n/0�i�k is a partition of X2n , called the
self-intersection partition of Xn. Namely,

X2n D

kG
iD0

Yi;n:
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The sequence Y i D .Yi;n/n2N is called the i th self intersection of X . The family
of sequences .Y i /0�i�k is called the self-intersection partition of X . Namely,

X2
D

kG
iD0

Y i :

Remark that the sequencesX2 and Y i are sequences of fixed subsets of .E .k//2D
..E

.k/
n /2/n2N . Note that dens

.E .k//2
.X2/ D dens

E .k/.X/ D ˛. To give a condition
on Y i , we need the notion of upper density, defined by an upper limit:

Definition 3.5. Let Y D .Yn/ be a sequence of subsets of E D .En/. The upper
density of Y in E is

densEY WD lim
n!1

logjEnj
�
jYnj

�
:

We introduce here, for a sequence of densable fixed subsets X of E .k/ with den-
sity ˛, the small self-intersection condition.

Definition 3.6. LetX be a sequence of subsets ofE .k/ with density ˛ and let .Y i /0�i�k
be its self-intersection partition. Let d > 1 � ˛. We say that X satisfies the d -small
self-intersection condition if, for every 1 � i � k � 1,

dens
.E .k//2

.Y i / < ˛ � .1 � d/ �
i

2k
:

Remark that the right-hand side of the inequality is between 0 and ˛ because
˛ > 1 � d > 0. Note that jYk;nj D j¹.x; y/ 2 X2n j x D yºj D jXnj, so

dens
.E .k//2

Y k D
˛

2
< ˛ � .1 � d/

k

2k
;

which satisfies automatically the inequality. On the other hand, as the upper densi-
ties of Y i for 1 � i � k are all smaller than ˛ and jY0;nj D jX2n j �

Pk
iD1 jYi;nj, by

Proposition 2.8, the sequence Y 0 is densable and

densY 0 D densX2
D ˛:

The purpose of this section is to demonstrate the following theorem.

Theorem 3.7 (Multi-dimensional intersection formula). Let A be a densable se-
quence of permutation invariant random subsets of E with density 0 < d < 1. Let
X D .Xn/ be a sequence of (fixed) subsets of E .k/ with density ˛.

(i) If d C ˛ < 1, then A.k/ \X is densable and

dens.A.k/ \X/ D �1:
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(ii) If d C ˛ > 1 and X satisfies the d -small self intersection condition (Defini-
tion 3.6), then A.k/ \X is densable and

dens.A.k/ \X/ D ˛ C d � 1:

Note that when k D 1, we have the intersection formula between a random subset
and a fixed subset. In this case, the self intersection partition of X contains only Y0
and Y1, and we do not need to check the self intersection condition.

Corollary 3.8 (Random-fixed intersection formula). Let A be a densable sequence
of permutation invariant random subsets of E with density d . LetX be a sequence of
(fixed) subsets ofE with density ˛. If d C ˛ ¤ 1, then the sequence of random subsets
A \X is densable and

dens.A \X/ D

´
d C ˛ � 1 if d C ˛ > 1;

�1 if d C ˛ < 1:

We shall first represent the expected value and the variance of the random variable
jA
.k/
n \Xnj by probabilities of the type Pr.¹x1; : : : ; xrº � An/. The following result

generalizes Lemma 2.3.

Lemma 3.9. Let E , A and X be given as in Theorem 3.7 and let .Y i /0�i�k be the
self-intersection partition of X . Let x1; : : : ; x2k be distinct 2k elements of En.

(i) E
�
jA
.k/
n \Xnj

�
D jXnjPr

�
¹x1; : : : ; xkº � An

�
.

(ii) Var
�
jA.k/n \Xnj

�
D jXnj

2
�
Pr
�
¹x1; : : : ; x2kº � An

�
� Pr

�
¹x1; : : : ; xkº � An

�2�
C

kX
iD1

jYi;nj
�
Pr
�
¹x1; : : : ; x2k�iº � An

�
� Pr

�
¹x1; : : : ; x2kº � An

��
:

Proof. We consider each item.

(i) As An is permutation invariant, the probability Pr.¹x1; : : : ; xkº � An/ does
not depend on the choice of ¹x1; : : : ; xkº. So,

E
�
jA.k/n \Xnj

�
D E

�X
x2Xn

1
x2A

.k/
n

�
D

X
x2Xn

Pr
�
x 2 A.k/n

�
D jXnjPr

�
¹x1; : : : ; xkº � An

�
:

(ii) By the same reason Pr.¹x1; : : : ; xrº � An/ does not depend on the choice of
¹x1; : : : ; xrº for all r 2 N. Note that

Var
�
jA.k/n \Xnj

�
D E

�
jA.k/n \Xnj

2
�
� E

�
jA.k/n \Xnj

�2
:
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If .x; y/ 2 Yi;n, then there are 2k � i different elements of En in x and y, so

Pr
�
x; y 2 A.k/n

�
D Pr

�
¹x1; : : : ; x2k�iº � An

�
:

Hence,

E
�
jA.k/n \Xnj

2
�
D E

��X
x2Xn

1
x2A

.k/
n

�2�
D

X
x;y2Xn

Pr
�
x; y 2 A.k/n

�
D

kX
iD0

X
.x;y/2Yi;n

Pr
�
x; y 2 A.k/n

�
D

kX
iD0

jYi;njPr
�
¹x1; : : : ; x2k�iº � An

�
:

Recall that jY0;nj D jX2n j �
Pk
iD1 jYi;nj. The above can be rewritten as

E
�
jA.k/n \Xnj

2
�
D

�
jX2n j �

kX
iD1

jYi;nj

�
Pr
�
¹x1; : : : ; x2kº � An

�
C

kX
iD1

jYi;njPr
�
¹x1; : : : ; x2k�iº � An

�
D jX2n jPr

�
¹x1; : : : ; x2kº � An

�
C

kX
iD1

�
Pr
�
¹x1; : : : ; x2k�iº � An

�
� Pr

�
¹x1; : : : ; x2kº � An

��
:

Combined with E.jA.k/n \Xnj/2 D jXnj2Pr.¹x1; : : : ; xkº � An/2, we have

Var
�
jA.k/n \Xnj

�
D jXnj

2
�

Pr
�
¹x1; : : : ; x2kº � An

�
� Pr

�
¹x1; : : : ; xkº � An

�2�
C

kX
iD1

jYi;nj
�

Pr
�
¹x1; : : : ; x2k�iº � An

�
� Pr

�
¹x1; : : : ; x2kº � An

��
:

Remark that Lemma 2.3 is a special case of Lemma 3.9, by taking kD1 and
XnDEn. Note that if k D 1, then X2

D Y 0 t Y 1 and there is no need to introduce
condition (3.6).

3.2. The Bernoulli density model

Let X be a fixed sequence of subsets of E .k/ with density ˛. In this subsection, we
study the intersection A.k/ \X in the case that A is a sequence of Bernoulli random
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subsets ofE with density 0 < d < 1. Note that for any integer r 2 N and any distinct
elements x1; : : : ; xr in En, we have

Pr
�
¹x1; : : : ; xrº � An

�
D Pr

�
¹x1 2 Anº; : : : ; ¹xr 2 Anº

�
D

rY
iD1

Pr.xi 2 An/ D nr.d�1/

by independence of the events Pr.xi 2 An/. Because of this equality, the proof of
Theorem 3.7 for the Bernoulli density model is much simpler.

Proof of Theorem 3.7 for Bernoulli density model. We consider each item.

(i) Suppose that ˛ C d < 1. To prove that dens.A.k/ \X/ D �1, it is enough
to prove that

Pr
�
A.k/n \Xn ¤ Ø

�
����!
n!1

0:

By Markov’s inequality and Lemma 3.9,

Pr
�
A.k/n \Xn ¤ Ø

�
D Pr

�
jA.k/n \Xnj � 1

�
� E

�
jA.k/n \Xnj

�
D jXnjPr

�
¹x1; : : : ; xkº � An

�
� nk˛Co.1/nk.d�1/

� nk.˛Cd�1/Co.1/ ����!
n!1

0

as ˛ C d � 1 < 0.

(ii) Suppose that ˛ C d > 1. To simplify the notation, denote Bn D A
.k/
n \ Xn

and B D X \A.k/.
We shall prove that densB D ˛ C d � 1. Let " > 0 be an arbitrary small real

number. We need prove that a.a.s.

nk.˛Cd�1�"/ � jBnj � n
k.˛Cd�1C"/:

By Lemma 3.9,

E
�
jBnj

�
D jXnjPr

�
¹x1; : : : ; xkº � An

�
D jXnjn

k.d�1/

D nk.˛Cd�1/Co.1/:

For n large enough,

nk.˛Cd�1�"/ <
1

2
nk.˛Cd�1/Co.1/ <

3

2
nk.˛Cd�1/Co.1/ < nk.˛Cd�1C"/:

So it is enough to prove that a.a.s.

1

2
E
�
jBnj

�
< jBnj <

3

2
E
�
jBnj

�
;
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which means that a.a.s. ˇ̌
jBnj � E

�
jBnj

�ˇ̌
<
1

2
E
�
jBnj

�
:

By Chebyshev’s inequality,

Pr
�ˇ̌
jBnj � E

�
jBnj

�ˇ̌
�
1

2
E
�
jBnj

��
�
4Var.jBnj/
E.jBnj/2

:

We shall prove that this quantity goes to zero when n goes to infinity. By Lemma 3.9,

Var
�
jBnj

�
D jXnj

2
�
Pr
�
¹x1; : : : ; x2kº � An

�
� Pr

�
¹x1; : : : ; xkº � An

�2�
C

kX
iD1

jYi;nj
�
Pr
�
¹x1; : : : ; x2k�iº � An

�
� Pr

�
¹x1; : : : ; x2kº � An

��
D

kX
iD1

jYi;nj
�
n.2k�i/.d�1/ � n2k.d�1/

�
�

kX
iD1

jYi;njn
.2k�i/.d�1/:

Note that n.2k�i/.d�1/ > n2k.d�1/ because d < 1. By the d -small self-intersection
condition (3.6), there exists " > 0 such that for all 1 � i � k,

jYi;nj � n
2k.˛C.d�1/i=2k/�"

for n large enough. Hence, for n large enough

Var
�
jBnj

�
� kn2k.˛Cd�1/�":

Recall that E.jBnj/2 D n2k.˛Cd�1/Co.1/, so

4Var.jBnj/
E.jBnj/2

����!
n!1

0:

3.3. The uniform density model

Note that whenA is a sequence of Bernoulli random subsets with density d , we have

Pr
�
¹x1; : : : ; xrº � An

�
D nr.d�1/;

and consequently,

Pr
�
¹x1; : : : ; xkº � An

�2
� Pr

�
¹x1; : : : ; x2kº � An

�
D 0:

In order to proceed the same proof, we shall estimate these two quantities for the
uniform density model.
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Lemma 3.10. Let A be a sequence of uniform random subsets of E with density d .
Let 0 < " < d be a small real number and let k � 1 be an integer. If n � .1C 2k/1=",
then

(i) for all integers 1 � r � 2k,

nr.d�1�"/ � Pr
�
¹x1; : : : ; xrº � An

�
� nr.d�1C"/I

(ii) 0 � Pr
�
¹x1; : : : ; xkº � An

�2
� Pr

�
¹x1; : : : ; x2kº � An

�
� n2k.d�1C"/�d .

Proof. Recall that jEnj D n and that An is uniform on all subsets of En of cardinal-
ity bndc.

(i) Note that bndc � n" � 1 � 2k � r . Among all subsets of En of cardinal-
ity bndc, there are

�
n�r
bnd c�r

�
subsets that include ¹x1; : : : ; xrº. So,

Pr
�
¹x1; : : : ; xrº � An

�
D

�
n�r
bnd c�r

��
n
bnd c

� D bndc : : : .bndc � r C 1/
n : : : .n � r � 1/

:

We estimate that�
nd � r

n

�r
�
bndc : : : .bndc � r C 1/

n : : : .n � r � 1/
�

�
nd

n � r

�r
:

The condition n � .1C 2k/1=" � .1C r/1=" implies´
n � n1�".1C r/;

nd � nd�".1C r/;

so ´
n1�" � n � r;

nd�" � nd � r:

Hence, �
nd�1�"

�r
�
bndc : : : .bndc � r C 1/

n : : : .n � r � 1/
�
�
nd�1C"

�r
:

(ii) By the same argument,

Pr
�
¹x1; : : : ; xkº � An

�2
� Pr

�
¹x1; : : : ; x2kº � An

�
D

�
bndc : : : .bndc � k C 1/

n : : : .n � k � 1/

�2
�
bndc : : : .bndc � 2k C 1/

n : : : .n � 2k � 1/

D

�
bndc : : : .bndc � k C 1/

n : : : .n � k � 1/

�
�

�
bndc : : : .bndc � k C 1/

n : : : .n � k � 1/
�
.bndc � k/ : : : .bndc � 2k C 1/

.n � k/ : : : .n � 2k � 1/

�
:
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This quantity is positive because bn
d c�i
n�i

�
bnd c�i�k
n�i�k

for every 0 � i � k � 1.
Now we estimate that

Pr
�
¹x1; : : : ; xkº � An

�2
� Pr

�
¹x1; : : : ; x2kº � An

�
�

�
nd

n � k

�k�
ndk

.n � k/k
�
.nd � 2k/k

.n � k/k

�
�

ndk

.n � k/2k

�
ndk �

kX
iD0

�
k

i

�
nd.k�i/.�2k/i

�
�

ndk

.n � k/2k
.1C 2k/knd.k�1/ D

�
nd
p
1C 2k

n � k

�2k
n�d :

As n" � 1C 2k, we have

n � k � n1�".1C 2k/ � k

� n1�".1C k/

� n1�"
p
1C 2k:

Hence,

Pr
�
¹x1; : : : ; xkº � An

�2
� Pr

�
¹x1; : : : ; x2kº � An

�
� n2k.d�1C"/�d :

Notation. Let X be a sequence of subsets of E .k/ with density ˛ and let .Y i /0�i�k
be its self-intersection partition. Denote the density difference

"0.d/ D min
1�i�k

°
˛ C .d � 1/

i

2k
� densY i

±
:

Remark thatX has d -small self-intersection if and only if "0.d/ > 0. In addition,
for every small real number 0 < " < "0.d/=10 there exists n" 2 N such that for all
n � n" we have, simultaneously for all 1 � i � k,

jYn;i j � n
2k.˛C.d�1/i=2k�10"/

D n2k˛C.d�1/i�2k�10":

By densability of X , we can choose n" such that at the same time

nk.˛�"/ � jXnj � n
k.˛C"/:

Combined with Lemma 3.10, we can now estimate the expected value and the
variance of jA.k/n \Xnj for the uniform density model.

Lemma 3.11. Let A be a sequence of uniform random subsets of E with density d .
LetX be a sequence of subsets ofE .k/ with density ˛. Let 0 < " < min¹"0.d/=10; dº
be a small real number. If n � max¹n"; .1C 2k/1="º, then
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(i) nk.˛Cd�1�2"/ � E
�
jA
.k/
n \Xnj

�
� nk.˛Cd�1C2"/.

(ii) If in addition ˛ C d � 1 > 2" > 0 and X has d -small self-intersection, then

Var
�
jA.k/n \Xnj

�
� kn2k.˛Cd�1�9"/:

Proof. We consider each item.

(i) By Lemma 3.9,

E
�
jA.k/n \Xnj

�
D jXnjPr

�
¹x1; : : : ; xkº � An

�
:

So by Lemma 3.10 and nk.˛�"/ � jXnj � nk.˛C"/, we have

nk.˛�"/nk.d�1�"/ � E
�
jA.k/n \Xnj

�
� nk.˛C"/nk.d�1C"/:

(ii) By Lemma 3.10 (ii)

Pr
�
¹x1; : : : ; x2kº � An

�
� Pr

�
¹x1; : : : ; xkº � An

�2
� 0:

Apply Lemma 3.9, eliminate negative parts:

Var
�
jA.k/n \Xnj

�
D jXnj

2
�
Pr
�
¹x1; : : : ; x2kº � An

�
� Pr

�
¹x1; : : : ; xkº � An

�2�
C

kX
iD1

jYi;nj
�
Pr
�
¹x1; : : : ; x2k�iº � An

�
� Pr

�
¹x1; : : : ; x2kº � An

��
�

kX
iD1

jYi;njPr
�
¹x1; : : : ; x2k�iº � An

�
:

By Lemma 3.10 (i) and jYi;nj � n2k˛Ci.d�1/C2k�10"

Var
�
jA.k/n \Xnj

�
�

kX
iD1

n2k˛Ci.d�1/�2k�10"n.2k�i/.d�1C"/

� kn2k.˛Cd�1�9"/:

Proof of Theorem 3.7 for uniform density model. We consider each item.

(i) Suppose that ˛ C d < 1. We shall prove that

Pr
�
A.k/n \Xn ¤ Ø

�
����!
n!1

0:

Let " > 0 such that

" < min
°1 � d � ˛

2
;
"0.d/

10
; d
±
:
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By Markov’s inequality and Lemma 3.11: If n � max¹n"; .1C 2k/1="º, then

Pr
�
A.k/n \Xn ¤ Ø

�
D Pr

�
jA.k/n \Xnj � 1

�
� E

�
jA.k/n \Xnj

�
� nk.˛Cd�1C2"/ ����!

n!1
0:

(ii) Suppose that ˛ C d > 1. Denote Bn D A
.k/
n \ Xn. Let " > 0 be an arbitrary

small number, with

" < min
°˛ C d � 1

3
;
"0.d/

10
; d
±
:

We shall prove that a.a.s.

nk.˛Cd�1�3"/ � jBnj � n
k.˛Cd�1C3"/:

By Lemma 3.11, if n � max¹n"; .1C 2k/1="º, then

nk.˛Cd�1�2"/ � E
�
jBnj

�
� nk.˛Cd�1C2"/:

In addition, if n � 21=k", we have

nk.˛Cd�1�3"/ �
1

2
nk.˛Cd�1�2"/ �

1

2
E
�
jBnj

�
and

3

2
E
�
jBnj

�
�
3

2
nk.˛Cd�1C2"/ � nk.˛Cd�1C3"/:

So, it is enough to prove that a.a.s.ˇ̌
jBnj � E

�
jBnj

�ˇ̌
�
1

2
E
�
jBnj

�
:

By Chebyshev’s inequality,

Pr
�ˇ̌
jBnj � E

�
jBnj

�ˇ̌
>
1

2
E
�
jBnj

��
�
4Var.jBnj/
E.jBnj/2

:

Combined with Lemma 3.11, if n � max¹n"; .1C 2k/1="; 21=k"º, then

4Var.jBnj/
E.jBnj/2

�
4kn2k.˛Cd�1�9"/

n2k.˛Cd�1�2"/
�

4k

n14k"
����!
n!1

0:
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3.4. The general model (densable and permutation invariant)

Let X be a sequence of subsets of E .k/ having the d -small intersection condition.
Recall that

"0.d/ D min
1�i�k

°
˛ C .d � 1/

i

2k
� densY i

±
> 0:

Note that if d 0 < d then ".d 0/ < ".d/.
In order to apply Lemma 3.11 in a small interval Œd � "; d C "�, we choose

0 < " < min
°"0.d/
20

;
d

2

±
;

so that

" < min
°"0.d � "/

10
; d � "

±
� min

°"0.d 0/
10

; d 0
±

for every d 0 2 Œd � "; d C "�.
By the definition of "0 and the densability of X , we choose again n" 2 N such

that for all n � n",

jYn;i j � n
2k˛C.d�1/i�2k�20"

� n2k˛C.d
0�1/i�2k�10"

81 � i � k

and
nk.˛�"/ � jXnj � n

k.˛C"/:

Lemma 3.12. Let 0 < " < min¹"0.d/=20; d=2º be a small real number. Let A be a
sequence of uniform random subsets of E with density d 0 2 Œd � "; d C "�. Let X be
a sequence of subsets of E .k/ with density ˛. If n � max¹n"; .1C 2k/1="º, then

(i) nk.˛Cd�1�3"/ � E
�
jA
.k/
n \Xnj

�
� nk.˛Cd�1C3"/.

(ii) If in addition ˛ C d � 1 > 3" > 0 and X has d -small self-intersection, then

Var
�
jA.k/n \Xnj

�
� kn2k.˛Cd�1�8"/:

Proof. We consider each item.

(i) Recall from the above discussion that "<min¹"0.d 0/=10;d 0º. By Lemma 3.11,

nk.˛Cd
0�1�2"/

� E
�
jA.k/n \Xnj

�
� nk.˛Cd

0�1C2"/:

We then have the inequality by d � " � d 0 � d C ".

(ii) Because "0.d 0/ > 0, X has d 0-small self-intersection. By Lemma 3.11 and
the fact that d 0 � d C ",

Var
�
jA.k/n \Xnj

�
� kn2k.˛Cd

0�1�9"/
� kn2k.˛Cd�1�8"/:
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Lemma 3.13 (Concentration lemma). Let " > 0 be an arbitrary small real number.
Let A and X given as the previous lemma, with ˛ C d � 1 > 4" > 0 and X having
d -small self-intersection. If " <min¹"0=10;d=2º and n�max¹n"; .1C 2k/1="º, then

Pr
�
nk.˛Cd�1�4"/ � jA.k/n \Xnj � n

k.˛Cd�1C4"/
�
> 1 � kn�10k":

Proof. Denote Bn D A
.k/
n \Xn. By Lemma 3.12 (i) and nk" � 2, we have

nk.˛Cd�1�4"/ �
1

2
nk.˛Cd�1�3"/ �

1

2
E
�
jBnj

�
and

3

2
E
�
jBnj

�
�
3

2
nk.˛Cd�1C3"/ � nk.˛Cd�1C4"/:

By Chebyshev’s inequality,

Pr
�
nk.˛Cd�1�4"/ � jBnj � n

k.˛Cd�1C4"/
�
� Pr

�ˇ̌
jBnj � E

�
jBnj

�ˇ̌
�
1

2
E
�
jBnj

��
� 1 �

4Var.jBnj/
E.jBnj/2

:

Again by Lemma 3.12,

4Var.jBnj/
E.jBnj/2

�
kn2k.˛Cd�1�8"/

n2k.˛Cd�1�3"/
� kn�10k":

Proof of the Theorem 3.7. Let " > 0 be an arbitrary small number with " < min¹d=2;
"0.d/=20º as given in Lemma 3.12. Denote Qn D ¹nd�" � jAnj � ndC"º and

NA;";n WD
®
` 2 N j nd�" � ` � ndC" and Pr

�
jAnj D `

�
> 0

¯
:

By densability of A, we have Pr.Qn/ ����!
n!1

1. Denote by PrQn WD Pr.� j Qn/ the
probability measure under the condition Qn. Define similarly EQn and VarQn .

In order to prove that some sequence of properties .Rn/ is a.a.s. true, by the
inequality

Pr.Rn/ � Pr.Qn/PrQn.Rn/C Pr.Qn/;

it is enough to prove that PrQn.Rn/ ����!
n!1

0.

(i) Suppose that ˛C d < 1. Assume in addition that " < .1� d � ˛/=3. We shall
prove that

PrQn
�
A.k/n \Xn ¤ Ø

�
D PrQn

�
jA.k/n \Xnj � 1

�
����!
n!1

0:
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By the formula of total probability and Markov’s inequality,

PrQn
�
jA.k/n \Xnj � 1

�
�

X
l2NA;";n

PrQn.An D l/Pr
�
jA.k/n \Xnj � 1 j jAnj D l

�
�

X
l2NA;";n

PrQn.An D l/E
�
jA.k/n \Xnj j jAnj D l

�
:

By a change of variable l D nd
0

with d � " � d 0 � d C ", apply Lemma 3.12:

PrQn
�
jA.k/n \Xnj � 1

�
�

X
l2NA;";n

PrQn.An D l D n
d 0

/n˛Cd�1C3"

� n˛Cd�1C3" ����!
n!1

0:

(ii) Suppose that ˛ C d > 1. Assume in addition that " < .˛ C d � 1/=4, so that
we can apply Lemma 3.13. We shall prove that

PrQn
�
nk.˛Cd�1�4"/ � jA.k/n \Xnj � n

k.˛Cd�1C4"/
�
����!
n!1

1:

By the formula of total probability, Lemma 3.13 and a change of variables l D nd
0

:

PrQn
�
nk.˛Cd�1�4"/ � jA.k/n \Xnj � n

k.˛Cd�1C4"/
�

D

X
l2NA;";n

PrQn.An D l/

� Pr
�
nk.˛Cd�1�4"/ � jA.k/n \Xnj � n

k.˛Cd�1C4"/
j jAnj D l

�
�

X
l2NA;";n

PrQn.An D l D n
d 0

/
�
1 � kn�10k"

�
� 1 � kn�10k" ����!

n!1
1:

4. Applications to group theory

Fix an alphabet X D ¹x1; : : : ; xmº as generators of groups. Let B` be the set of cycli-
cally reduced words of length at most ` on X˙. Recall that jB`j D .2m � 1/`CO.1/.

We are interested in asymptotic behaviors, when ` goes to infinity, of group pre-
sentations hX jR`i where R` is a random subset of B`.

Definition 4.1 (Random groups with density). Let d 2 �0; 1�. Let R D .R`/ be a
densable sequence of permutation invariant random subsets with density d of the
sequence B D .B`/.

DenoteG`DG`.m;d/ the random presentation defined by hX jR`i. The sequence
G D G .m; d/ D .G`.m; d//`2N is called a sequence of random groups with den-
sity d .
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For example, if d D 1, then G`.m; 1/ is isomorphic to the trivial group.
A sequence of events Q D .Q`/ described by G .m; d/ is asymptotically almost

surely satisfied if Pr.Q`/ ����!
m!1

1. We denote briefly a.a.s. Q`.

4.1. Phase transition at density 1=2

Theorem 4.2 (Gromov, phase transition at density 1/2). Let .G`.m;d// be a sequence
of random groups with density d .

(i) If d > 1=2, then a.a.s G`.m; d/ is isomorphic to the trivial group.

(ii) If d < 1=2, then a.a.s G`.m; d/ is a hyperbolic group.

In [15, Section 2.1] (or [16, Section I.2.b]), Ollivier proved the first assertion by
probabilistic pigeon-hole principle. We give a proof here by the intersection formula
(Theorem 2.9 and Corollary 3.8).

Proof of Theorem 4.2 (i). Let x 2 X . Let A` be the set of cyclically reduced words
that does not start or end by x, of lengths at most ` � 1 (so that xA` � B`). It is
easy to check that the sequences .A`/ and .xA`/ are sequences of fixed subsets of
B D .B`/ of density 1. By the random-fixed intersection formula (Corollary 3.8),
the sequences .x.R` \ A`// and .R` \ xA`/ are sequences of permutation invariant
random subsets of .xA`/ of density d .

By the intersection formula (Theorem 2.9), their intersection .xR` \R` \ xA`/ is
a sequence of permutation invariant random subsets of .xA`/ of density .2d � 1/ > 0,
which is a.a.s. not empty. Thus, a.a.s. there exists a word w 2 A` such that w 2 R`
and xw 2 R`, so a.a.s. x D 1 in G` by canceling w.

The argument above works for any generator x 2 X . By intersecting a finite num-
ber of a.a.s. satisfied events, a.a.s. all generators x 2 X are trivial in G`. Hence,
a.a.s. G` is isomorphic to the trivial group.

The proof of Theorem 4.2 (ii) needs van Kampen diagrams and will not be treated
here. See [9, Section 9.B] for the original idea by Gromov, and [15, Section 2.2]
or [16, Section V] for a detailed proof by Ollivier.

4.2. Phase transition at density �=2

Theorem 4.3. LetG .m;d/D .G`.m;d// be a sequence of random groups with den-
sity d . Let � 2 �0; 1Œ .

(i) If d < �=2, then a.a.s. G`.m; d/ satisfies C 0.�/.

(ii) If d > �=2, then a.a.s. G`.m; d/ does not satisfy C 0.�/.
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r

Figure 1. A cyclically reduced word having a piece that appears twice.

Proof. We consider each item.

(i) Recall that (Lyndon–Schupp [13, p. 240]) a piece with respect to a set of rela-
tors is a cyclic sub-word that appears at least twice. There are two cases to verify.

(a) Let A` be the set of cyclically reduced words of length at most ` having a
piece appearing twice on itself (Figure 1) that is longer than � times itself. We shall
prove that a.a.s. the intersection A` \ R` is empty. We estimate first the number of
relators of length t � ` with a piece of length s � �t . There are 2t ways (including
orientations) to choose the first position of the piece, and 2t � s ways the choose
the second position (note that because r is reduced, it can not overlay the first one if
they are with opposite orientations). For each way of positioning we can determine
freely t � s letters, each with .2m � 1/ choices, except for the first letter and the
last letter having respectively 2m and 2m � 2 or 2m � 1 choices. So this number is
2t.2t � s/C.m/.2m � 1/t�s , where C.m/ is a real number that depends only on m.
Hence,

jA`j D
X̀
tD1

tX
sDb�tc

2t.2t � s/C.m/.2m � 1/t�s D .2m � 1/.1��/`Co.`/;

which means that .A`/ is a sequence of fixed subsets of .B`/ with density 1 � �. By
the intersection formula (Corollary 3.8), because 1 � �C d < 1, we have a.a.s.

A` \R` D Ø:

(b) Let X` be the set of distinct pairs of relators r1; r2 in B` having a piece (Fig-
ure 2) longer than �min¹jr1j; jr2jº. It is a fixed subset of B.2/

`
. We shall prove that

a.a.s the intersection X` \R
.2/

`
is empty. There are 4`2 possible positions for pieces,

.2m � 1/`Co.`/ choices for r1 and .2m � 1/`��`Co.`/ choices for r2. So,

jX`j D .2m � 1/
.2��/`Co.`/;

which means that .X`/ is a sequence of fixed subsets of .B.2/
`
/ with density 1� �

2
. By

the multi-dimension intersection formula (Theorem 3.7 (i)), because 1 � �
2
C d < 1,

we have a.a.s.
X` \R

.2/

`
D Ø:
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r1 r2

Figure 2. A pair of relators sharing a common subword (a piece).

(ii) Take the sequence of sets X D .X`/ constructed in part 1 (b). We shall prove
that a.a.s. the intersection X` \R

.2/

`
is not empty. We have already

densX C densR.2/ > 1:

To apply Theorem 3.7 (ii), we need to calculate the size of the self-intersection

Y1;` D
®
.x1; x2/ 2 X

2
` j jx1 \ x2j D 1

¯
:

Take x1 D .r1; r2/ and x2 D .r1; r3/, where r1, r2, r3 are three different relators
in B`. There are .2m � 1/`Co.`/ choices for r1, .2m � 1/`��`Co.`/ choices for r2
and .2m � 1/`��`Co.`/ choices for r3. The other three cases (x2 D .r2; r3/, .r3; r1/,
or .r3; r2/) are symmetric. Multiply these numbers, we have

jY1;`j D .2m � 1/
3`�2�`Co.`/:

The density of Y 1 D .Y1;`/ is .3� 2�/=4 in .B.2/
`
/2. As d > 0, we have .3� 2�/=4 <

1 � �
2
C

1
4
.d � 1/, which implies

densY 1 < densX C .d � 1/
1

2 � 2
:

Thus, we have the d -small self intersection condition (Definition 3.6). By the multi-
dimensional intersection formula, a.a.s.

X` \R
.2/

`
¤ Ø:

4.3. Every .m � 1/-generated subgroup is free

Fix the set ofm generatorsXD¹x1; : : : ;xmº. Recall thatB` is the set of .2m�1/`Co.`/

cyclically reduced words on X˙ D ¹x˙1 ; : : : ; x
˙
mº of length at most `. The few relator

model of random groups is constructed as follows: fix a number k 2 N and let

G` D hx1; : : : ; xm j r1; : : : ; rki;
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where R` D ¹r1; : : : ; rkº is a random subset of B` given by the uniform probability
on all subsets of B` with cardinality k.

The sequence .G`/`2N is called a sequence of random groups with k relators.
As k is independent of `, the sequence .G`/ is a sequence of random groups with
density d D 0. By Proposition 4.3, a.a.s. G` satisfies C 0.�/ for arbitrary small � > 0.

In [5], Arzhantseva and Ol’shanskii proved the following result:

Theorem 4.4 (Arzhantseva–Ol’shanskii [5, Theorem 1]). Let .G`/ be a sequence of
random groups with k relators. Then a.a.s. every .m � 1/-generated subgroup of G`
is free.

Combining the intersection formula and their arguments, we prove the following
theorem.

Theorem 4.5. Let .G`.m; d// be a sequence of random groups with density 0 � d <
1=.120m2 ln.2m//. Then a.a.s. every .m� 1/-generated subgroup ofG`.m;d/ is free.

Let us recall the definition of “�-readable words” in [5, Section 2].

Definition 4.6 ([5, Section 2]). Let 0<��1. A cyclically reduced wordw of length `
on X˙ is �-readable if there exists a graph � marked by X˙ with the following
properties:

(a) the number of edges of � is less than �`;

(b) the rank of � is at most m � 1;

(c) the word w can be read along some path of � .

Note that the condition (b) is essential, because every word on X˙ can be read
along the wedge of m circles of length 1 marked by x1; : : : ; xm, respectively.

Let M�

`
be the set of words r 2 B` having a cyclic sub-word w < r such that

jwj � 1
2
jr j and w is �-readable. We admit the following two lemmas in [5].

Lemma 4.7 ([5, Lemma 4]). If � < log2m.1C 1=.4m� 4//, then there exists a con-
stant C.�;m/ such that

jM
�

`
j � C.�;m/`2

�
2m �

5

4

�`
:

Recall that jB`j D .2m � 1/`CO.1/, so .M�

`
/ is a densable sequence of subsets

of .B`/ with density log2m�1.2m � 5=4/.

Lemma 4.8 ([5, Section 4]). Let G D hX jRi be a group presentation where X D
¹x1; : : : ; xmº and R is a subset of B`. Suppose that

� < log2m
�
1C

1

4m � 4

�
and � �

�

15mC 3�
:
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If R does not intersect M�

`
, has no true powers, and satisfies C 0.�/, then every

.m � 1/-generated subgroup of G is free.

Proof of Theorem 4.5. We look for a density d.m/ � 1=2 such that for any d < d.m/
a.a.s. the random group G`.m; d/ D hX jR`i satisfies the conditions of Lemma 4.8
with

� D log2m
�
1C

1

4m � 4

�
� " and � D

�

15mC 3�

with an arbitrary small " > 0.
The set of true powers in B` is with density 1=2. By the intersection formula

(Corollary 3.8), because d < 1=2, a.a.s. R` has no true powers. By Lemma 4.7 and
the intersection formula, we need

d.m/ < 1 � dens.M�

`
/ < 1 � log2m�1

�
2m �

5

4

�
;

so that a.a.s. R` does not intersect M�

`
by the intersection formula.

At the end we need a.a.s. R` satisfies C 0.�/ with

� D
log2m.1C

1
4m�4

/ � "

15mC 3 log2m.1C
1

4m�4
/ � 3"

:

By Theorem 4.3, we need d.m/ < �=2. Note that this inequality implies the previous
one. For " small enough, we have � > 1=.60m2 ln.2m//. It is enough to take

d.m/ D
1

120m2 ln.2m/
:
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