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Regular left-orders on groups

Yago Antolín, Cristóbal Rivas, and Hang Lu Su

Abstract. A regular left-order on a finitely generated group G is a total, left-multiplication
invariant order on G whose corresponding positive cone is the image of a regular language over
the generating set of the group under the evaluation map. We show that admitting regular left-
orders is stable under extensions and wreath products and we give a classification of the groups
whose left-orders are all regular left-orders. In addition, we prove that a solvable Baumslag–
Solitar group B.1; n/ admits a regular left-order if and only if n � �1. Finally, Hermiller and
S̆unić showed that no free product admits a regular left-order. We show that if A and B are
groups with regular left-orders, then .A � B/ � Z admits a regular left-order.

1. Introduction

A group G is left-orderable if there exists a total order � on the elements of G which
is invariant under left-multiplication, that is

g � h ” fg � f h; 8g; h; f 2 G:

In this case, the relation � is called a left-order. It is sometimes easier to understand
left-orders in terms of sets of elements which are greater than the identity. Such sets
are called positive cones (of the order). A positive cone completely encodes its associ-
ated left-order and vice-versa. Equivalently, a positive cone is a subset P � G which
is closed under multiplication PP � P , and partitions G as G D P t P�1 t ¹1Gº
where the union is disjoint.

This paper discusses the computational complexity of left-orders (or equivalently
positive cones). This is a topic that has gained interest in recent years: Darbinyan [10]
and Harrison–Trainor [15] have constructed groups with solvable word problems but
no computable left-orders. Rourke and Weist have studied the complexity of left-
orders on certain mapping class groups [28]. S̆unić [32, 33] proved the existence of
one-counter left-orders and later, with Hermiller [17], proved that S̆unić’s left-orders
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on free groups are the computationally the simplest possible by showing that no pos-
itive cone on a free product admits a regular left-order.

We are interested in finding groups that admit a computationally simple left-order
and in describing such orders. Specifically, we investigate which finitely generated
groups admit a regular left-order or, equivalently, a regular positive cone. A positive
cone P � G is called regular if there is a finite generating set X of G and a regular
language L � X� such that L evaluates onto P . By a formal language we mean a
subset of a finitely generated free monoid X�. A formal language L � X� is regu-
lar if it is accepted by a finite state automaton. A finite state automaton for L is a
directed X -edge-labeled finite graph such that L consists of the set of labels of paths
from a fixed initial vertex to a vertex in a fixed subset of vertices called accepted
states. Positive cones which are represented by a regular language are the simplest
ones computationally from the point of view of the Chomsky hierarchy of formal lan-
guages [9]. Section 2 will be devoted to reviewing the necessary material about formal
languages and left-orders.

In previous works, the authors have given examples of groups not admitting reg-
ular left-orders [1, 31]. In this paper we focus instead on constructing regular left-
orders. We show that regularity of positive cones is preserved under the constructions
of the following theorem.

Theorem 1.1 (Propositions 2.18, 3.3 and 3.20). The class of finitely generated groups
admitting regular positive cones is closed under passing to finite index subgroups,
extensions and wreath products.

The inheritance under passing to finite index subgroups is due to H. L. Su [31].
The other two closure properties are proved in Section 3 where we study left-orders
associated to group extensions. A basic fact is that the group of additive integers Z

admits regular left-orders. Starting from this, and the known fact that amenable left-
orderable groups are locally indicable [24], the closure under group extensions prop-
erty provides the following family of examples of groups which admit regular positive
cones.

Corollary 1.2 (Proposition 3.7). Left-orderable virtually polycyclic groups admit reg-
ular positive cones.

For the case of wreath products G D N oQ, we have an exact sequence

1!˚q2QN ! G ! Q! ¹1º;

but here˚q2QN does not admit a regular positive cone as, in general, it is not finitely
generated. Therefore, the construction of regular left-orders on wreath products differs
from the construction for the extensions.
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It is already known that one cannot expect to generalize Corollary 1.2 for solvable
non-polycyclic groups. Indeed, Darbinyan [10, Theorem 2] showed that there is a two-
generated recursively presented left-orderable solvable group of derived length 3 with
undecidable word problem (in fact, their order turns out to be two-sided invariant). As
we will see in the appendix, this implies that no left-order on this group is computable
(i.e. described by a language that can be recognized by a Turing machine).

In the present paper, we are able to decide when a solvable Baumslag–Solitar
group BS.1; q/ admits a regular positive cone or not. Recall that BS.1; q/ D ha; b j
aba�1 D bqi and it is isomorphic to ZŒ1=q� Ì Z. Note that q 2 Z and for q D 0 we
adopt the convention that BS.1; 0/ D Z.

Theorem 1.3 (Theorem 3.14). For all q 2 Z, the solvable Baumslag–Solitar group
BS.1; q/ admits a one-counter left-order. Moreover, BS.1; q/ admits a regular left-
order if and only if q � �1.

The class of one-counter languages generalizes the class of regular languages.
These are languages that can be recognized by finite state automaton (the same mach-
ine as for regular languages) equipped with a very simple memory which consists on
a stack that contains copies of the same letter (the counter). The machine, depending
on the input and whether the stack is empty or not, can modify the stack by adding or
removing a counter from the stack. See Section 2 for a formal definition.

From this theorem, we observe that while the existence of regular of left-orders
passes to finite index subgroups (Theorem 1.1), it is not true that it passes to finite-
index overgroups (even if the overgroup is left-orderable). Indeed, BS.1;�2/ is a
left-orderable group that does not admit any regular left-order but contains BS.1; 4/
as an index 2 subgroup that does admit regular left-orders. Therefore, admitting a
regular order is not a property preserved by commensurability among left-orderable
groups.

The reason why BS.1; q/ for q < �1 does not admit regular positive cones is a
combination of an algebraic argument and a geometric argument. The algebraic argu-
ment goes back to Tararin [34] (see also [27]) and describes all possible left-orders
in these groups. The geometric argument uses Bieri–Neumann–Strebel theory [5]
and implies that positive cones associated to the orders described by Tararin are not
coarsely connected (see Definition 3.9) which is a necessary condition for regularity
(see Lemma 3.10).

We will use Tararin’s classification [34] of groups admitting finitely many left-
orders to describe the groups admitting only regular left-orders. More precisely, in
Section 4 we prove the following theorem.
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Theorem 1.4 (Theorem 4.9). A finitely generated group G admits only regular left-
orders if and only if it is Tararin poly-Z, that is, it admits a unique subnormal series

G D G0 D G1 D � � � D Gn D ¹1º;

where Gi=GiC1 Š Z and Gi=GiC2 Š K D ha; b j aba�1 D b�1i.

Finally, the last construction that preserves left-orderability that we will discuss
are free products [26]. We know from the work of Hermiller and S̆unić that no non-
trivial free product (in particular, free groups) admits a regular positive cone. One
might think that then it is helpless to pursue this route, however we have the following.

Theorem 1.5 (Corollary 5.15). Suppose that A and B are groups admitting regular
left-orders. Then .A � B/ � Z admits a regular left-order.

This sort of phenomenon was already observed in [31], where H. L. Su found a
finitely generated positive cone for F2 � Z (and hence a regular positive cone). In
Section 5 we prove Theorem 1.5 and give an explanation of the role of the factor Z.
To do so, we will define the concept of an ordering quasimorphism. A quasimorphism
on G is a map �WG ! R that is close to a homomorphism in the sense that there is
a constant R such that j�.g/C �.h/ � �.gh/j � R. An ordering quasimorphism �

(Definition 5.5) has the property that elements whose image under � is positive form
a (relative) positive cone (see Definition 2.19. This will allow to construct a left-order
on the group, as we will see.

While we coin the name of ordering quasimorphism in this paper, the original
idea comes from the work of S̆unić [32, 33] about orders on free groups, Dicks and
S̆unić [12] about orders on free products and Antolín, Dicks and S̆unić [3] about
orders on certain fundamental groups of graph of groups. We show that when the
ordering-quasimorphism can be computed with a transducer (another type of machine
similar to a finite state automaton, see Definition 2.8) the corresponding left-order is
one-counter. More precisely, our chosen function � has image Z, and when embed-
ding G in G � Z, we use the Z factor to compensate the increments/decrements in �
so that we no longer need a stack to keep track of the value of � on the elements ofG,
hence constructing the desired regular left-order on G � Z.

One of the motivations for studying left-orders on free products is to get a better
understanding of the influence of negative curvature on the complexity of positive
cones. In particular, we are interested in the following.

Question 1.6. Is there a non-elementary hyperbolic group admitting a regular posi-
tive cone?

This question has some history. Hermiller and S̆unić [17] proved that non-abelian
free groups do not admit regular positive cones. Su [31] proved that acylindrically
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hyperbolic groups do not have positive cones that are quasigeodesic and regular. This
formalized and strengthened an argument sketched by Calegari [8]. Finally, Alonso,
Antolín, Brum and Rivas [1] proved that non-abelian limit groups (in particular, free
groups and surface groups) do not admit coarsely connected positive cones, and there-
fore do not admit regular positive cones.

Nevertheless, if G is hyperbolic (finitely generated free)-by-Z, then the Bieri–
Neumann–Strebel theory guarantees thatG admits coarsely connected left-orders (see
discussion before Lemma 3.11). Thus, one might initially think that those left-orders
on hyperbolic (f.g. free)-by-Z groups might be regular. As a consequence of the meth-
ods developed to prove Theorem 1.5 we get that this is almost the case.

Theorem 1.7 (Theorem 5.17). Let G be (finitely generated free)-by-Z group. Then
G � Z admits a regular positive cone, whose restriction to G is coarsely connected,
one-counter, but not regular.

We conclude Section 5 showing that certain Artin groups admit regular positive
cones.

Finally, we close the paper with an appendix. Let X be finitely generating set of a
group G and � WX�! G be a monoid surjection. If P is a positive cone, one can ask
about the complexity of ��1.P / as a formal language, which is in more direct analogy
with studying formal languages with the Word Problem. We explore this question for
regular and context-free languages (the lowest ones in the Chomsky hierarchy), and
show that there are extremely few examples of such left-orders (for instance, it is
never the case that the language of preimages of a positive cone is regular). This gives
partial justification as to why we have focus on our definition of regular positive cones.

2. Preliminaries about languages and left-orderability

In this section we review some formal language theory needed in the paper, focusing
on the classes of regular and context-free languages. We also review the definition of
left-orderability and we explain what we mean by a regular or context-free left-order
on a group. Most of the content of this section is standard or well known and the main
purpose is to set the notation and the definitions for the rest of the paper.

2.1. Review of abstract families of languages

By a formal language we refer to a subset of L of X�, where X is a finite set and X�

denotes the set of all finite sequences over X , also called words. We denote the empty
word by �. Note thatX� is a monoid with respect to concatenation. We denote byXC

the set X� n ¹�º, which is a semigroup with concatenation.
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A non-deterministic finite state automaton is a 5-tuple M D .� ; X; ı; s0;A/,
where � is a finite set whose elements are called states, A is a subset of � of whose
states are called accepting states, s0 is a distinguished element of � called initial
state, X is a finite set called the input alphabet, and ıW � � .X t ¹�º/! Subsets.�/
is a function called the transition function.

We extend ı to a function ıW� � .X t ¹�º/�! Subsets.�/ recursively, by setting
ı.s;wx/D[�2ı.s;w/ı.�;x/wherew 2X�, x 2X and s 2 � . A language L is regular
if there is a non-deterministic finite state automaton M such that

L D jMj WD ¹w 2 X� j ı.s0; w/ \A ¤ ;º:

We denote by Reg the class of all regular languages.
The outputs of ı under input � should be thought as the machine acting sponta-

neously. Images with input � are usually called �-moves or �-transitions. Informally,
the machine M at a certain step is at a state s 2 � and can change to another state s0 2 �

either because it reads some x 2 X , and s0 2 ı.s; x/ or is at state s0 spontaneously,
meaning that s0 2 ı.s; �/.

Remark 2.1. The class Reg coincides with the class of languages accepted by non-
deterministic finite state automata without �-moves, and even with the class of lan-
guages accepted by deterministic finite state automata (see [19, Chapter 2]). Deter-
ministic automata do not have �-moves and in that setting ı.s;x/ is always a singleton.
Depending on our needs, we will choose to allow �-moves or not (therefore choosing
whether we impose determinism).

Remark 2.2. A finite state automaton M can be regarded as a labeled directed graph.
The vertices are the states of the automaton, and edges are given by the transition
function ı. There is an edge from s 2 � to s0 2 L labeled by x 2 X t ¹�º if and only
if s0 2 ı.s; x/. A word w is accepted by M if it is a label of a path from s0 to some
accepting state A.

Notation 2.3. Given a word w 2 X�, and x 2 X , we use ]x.w/ to denote the number
of times the letter x appears in the word w.

Example 2.4. Let M be the finite state automaton given in Figure 1. The automaton
is described as a graph following Remark 2.2.

The language accepted by M in Figure 1, consists on all the w in

¹w 2 ¹t�1; tº� j ]t .w/ � ]t�1.w/º

such that for all subword u of w, ]t .u/ � ]t�1.u/ � �2 holds.

A (non-deterministic) pushdown automaton is a 7-tuple MD.� ;X;†;ı;s0;u0;A/,
where � is a finite set whose elements are called states, A is a subset of � whose states
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Figure 1. Finite state automaton accepting the language of Example 2.4.

are called accepting states, s0 2 � is a distinguished element called initial state, X
is a finite set called the input alphabet, † is a finite set called the stack alphabet, u0
is a distinguished word over † called the initial stack, and ı is a non-deterministic
transition function

ıW � �
�
X t ¹�º

�
�
�
† t ¹�º

�
! Finite subsets of .� �†�/:

The pushdown automaton M at each stage of the computation is at a certain state
and contains a certain word over † which we call stack word. At the start stage, the
state is s0 and the stack word is u0. To describe how the stack words change, it is
convenient to extend ı so we allow stack words (and not only stack letters) as inputs.
The behavior of M will depend only on the last letter � of the stack word (if the stack
word is empty we take � D �). Precisely, we extend ı to a function

ıW � �
�
X t ¹�º

�
�†� ! Finite subsets of .� �†�/;

where if we writewDu� with �2†, then ı.s;x;w/D¹.s0;uu0/ j .s0;u0/ 2 ı.s;x;�/º.
Note that ı on input word w D u� 2 †� operates by deleting � and appending u0 to
the end to get the word uu0 as output.

As in the case of finite state automata, we extend ı to a function

ıW � � .X t ¹�º/� �†� ! Finite subsets of .� �†�/

recursively.
A language L is context-free if there is a non-deterministic pushdown automaton

such that

L D jMj WD ¹w 2 X� j 9.s; u/ 2 ı.s0; w; u0/ with s 2 Aº:

We denote by CF the class of all context-free languages.
A language L is one-counter if there is a non-deterministic pushdown automaton

with j†j D 1 and such that L D jMj. The class of one-counter languages will be
denoted by 1C.



Y. Antolín, C. Rivas, and H. L. Su 272

s0

� C

t; �=��

t�1; �=�t; �=�

t; �=�t�1; �=�
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Figure 2. 1-counter pushdown automaton accepting L D ¹w 2 ¹t�1; tº� j ]t .w/ � ]t�1.w/º.

Remark 2.5. In many computer science books, they use a model of pushdown automa-
ton that has access to a tape where they write the stack word and read the last letter
from it. In that model, the stack alphabet must include an extra symbol to denote the
blank space on the tape.

We clearly have
Reg � 1C � CF:

Note that Reg and CF are the simplest complexities in the Chomsky hierarchy [9].

Example 2.6. Consider the language L D ¹w 2 ¹t�1; tº� j ]t .w/ > ]t�1.w/º. This
language is in the class 1C and will appear many times in the paper. For completeness,
we give in Figure 2 a one-counter push-down automaton for L with the graphical
notation found in Hopcroft, Motwani and Ullman [19, Section 6.1.3]. The vertices
of the graph represent the states of the automaton. An arrow from state s to state s0

has label x; ˛=ˇ, where x 2 X D ¹t; t�1º, ˛ 2 † [ ¹�º and ˇ 2 †�, if and only if
.s0; ˇ/ 2 ı.s; x; ˛/. That is, the label tells what input is used and gives the old and new
suffixes of the stack word.

We note that this language is not regular. This follows easily from the pumping
lemma for regular languages (see [19, Theorem 4.1]). However, the reader not familiar
with the pumping lemma will find a proof that L is not regular in Lemma 4.4.

2.2. Closure properties of families of languages

Let X;Y be finite sets. The set X� equipped with concatenation has the structure of a
free monoid over the set X .

Let C be a class of languages. We say that C is closed under concatenation if
for every L;M 2 C the language L �M WD ¹uv j u 2 L; v 2 Lº belongs to C .
Given a language L, we denote by Ln the concatenation of L with itself n times,
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i.e. Ln D L � L � � �L. By L0 we denote the language with just the empty word.
The Kleene closure of L is the language L� WD [n�0L

n. We say that the class C

is closed under homomorphism if for every L � X� with L 2 C and every monoid
homomorphism f WX� ! Y � we have that f .L/ 2 C . Similarly, the class is closed
under inverse homomorphism if for every L � X� with L 2 C and every monoid
homomorphism f W Y � ! X� we have that preimage of L under f , here denoted
f �1.L/, belongs to C . Finally, the reversal or mirror image of L � X� is the lan-
guage LR WD ¹xnxn�1 : : : x1 j x1 : : : xn 2 Lº.

A class of languages is called full abstract family of languages (or full AFL for
short) if it is closed under homomorphisms, inverse homomorphisms, intersections
with regular languages, unions, concatenations and Kleene closure.

Proposition 2.7. We make three claims.

(i) The classes Reg; 1C and CF languages are full AFL.

(ii) The classes Reg and CF languages are closed under reversal.

(iii) The class Reg is closed under complement, but CF is not.

Proof. All the claims are contained in either [29, p. 30] for all classes but 1C. For 1C
the claims are contained in [4, Chapter VII, Theorem 4.4].

We introduce a last type of machines that will play an important role in the paper.

Definition 2.8. A rational transducer is a finite state automaton which can output
a finite number of symbols for each input symbol. Formally, a rational transducer
is a six-tuple T D .� ; X; Y; ı; s0;A/ where � , X , and Y are finite sets called the
states, input alphabet, and output alphabet, respectively. The function ı is a map from
� � .X t ¹�º/! Finite Subsets.� � Y �/. The element s0 2 � is the initial state and
A � � is the subset of accept states. The interpretation of .r;w/ 2 ı.s; x/ is that T in
state s with input symbol x may, as one possible choice of move, enter the state r and
output the string w 2 Y �.

As usual, we extend recursively ı to a function � �X�! Finite Subsets.� � Y �/.
We have that .r; v/ 2 ı.s; ux/ for some x 2 X and u 2 X� if there is .t; v0/ 2 ı.s; u/
and .r; w/ 2 ı.t; x/ such that v D v0w.

Remark 2.9. We will also use a graph representation of a transducer T . This is
the graph associated to the underlying finite state automaton of T , with labels on
the edges indicating the output of reading a certain input. More precisely, if T D

.� ; X; Y; ı; s0;A/ is a rational transducer, we consider a graph with vertices � . There
is a directed edge from s 2 � to s0 2 � if .s0; u/ 2 ı.s; x/ for some x 2 X t ¹�º and
u 2 Y �. In that case, we put a label x=u on that edge. It means that we can move
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along that edge from s to s0 if we have input x and on doing so we output the word u.
An example of a graphical representation can be found in Figure 7.

For u 2 X�, let T .u/ WD ¹v 2 Y � j .a; v/ 2 ı.s0; u/ and a 2 Aº. With this, we
can define the image of L � X� under T as

T .L/ WD ¹T .u/ j u 2 Lº:

Finally, for L � Y �, we can define the inverse image of L under T as the set

T�1.L/ WD ¹u 2 X� j .a; v/ 2 ı.s0; u/ with a 2 A and v 2 Lº:

Proposition 2.10. Full AFL classes are closed under rational transducers and inverse
image under rational transducers.

Proof. The inverse image of a language L under a rational transducer T , is also the
image of the language under some rational transducer T 0 (see [4, Section III.4 and
Chapter III, Theorem 6.1]). Nivat’s theorem (see [4, Chapter III, Theorem 4.1 in view
of Theorem 6.1]) says that if T is a rational transducer with input alphabet X , output
alphabet Y and L � X� is a language, then there is a finite alphabet Z, a regular
language R � Z� and homomorphisms f WZ� ! X� and hWZ� ! Y � such that
T .L/ D h.f �1.L/ \ R/. Now it follows that full AFL classes are closed under
rational transducers.

2.3. Subsets of groups described by languages

LetG be a group. A (monoid) generating set forG is a setX together with a surjective
monoid homomorphism map � WX�! G. If � is known (for example ifX is a subset
of G) we often just say that X is a generating set. We refer to images under � as
evaluations.

We will use `.w/ to denote the length of a word w 2 X�. For an element g 2 G,
we set jgjX D min¹`.w/ j �.w/ D gº. For g; h 2 G, the word distance between g
and h, is equal to jg�1hjX and is denoted by dX .g; h/. We might drop the subscriptX
if the generating set is clear from the context.

The next lemma is standard and the proof is omitted.

Lemma 2.11. Let C be a class of languages closed under homomorphisms and inverse
homomorphism. Let .X; �X / and .Y; �Y / be two finite generating sets of a group G.
Let S � G be any subset.

1. There is a language LX � X
� in the class C such that �X .LX / D S if and

only if there is a language LY � Y
� in the class C such that �Y .LY / D S .
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2. There is a language LX � X
� in the class C such that LX D �

�1
X .S/ if and

only if there is a language LY � Y
� in the class C such that LY D �

�1
Y .S/.

The following observation will be useful.

Lemma 2.12. Let .X;�/ be a finite generating set of G and P � G. Let C be a class
of languages closed by homomorphisms, inverse homomorphisms and reversal. Then

(i) there is a language L 2 C such that �.L/ D P if and only if there is a
language L0 2 C such that �.L0/ D P�1,

(ii) ��1.P / � X� is in the class C if and only if ��1.P�1/ � X� is in the
class C .

Proof. Since C is closed by homomorphisms and inverse homomorphisms, Lem-
ma 2.11 implies that the properties claimed in (i) and (ii) are independent of the
generating set. So we will assume that X � G is a finite generating set closed under
taking inverses.

Let f WX�!X� be the map sending x1 : : :xn 7! x�1n : : :x�11 . Then f is a compo-
sition of the homomorphism map sending x 7! x�1 and the reversal map. Moreover,
f 2 D idWX� ! X�. In particular, L � X� is in C if and only if f .L/ is in C .

Note that we have that P�1 D �.f .L//, and so (i) follows. Also, ��1.P�1/ D
f �1.��1.P //, and (ii) follows.

We will now recall a property that allows us to pass the complexity of sets to
subsets.

Definition 2.13. Let .X; �/ be a finite generating set of G. Let L be a regular lan-
guage over X . A subset H � G is language-convex with respect to L (or L-convex
for short) if there exists an R � 0 such that for each w 2 L with �.w/ 2 H , where
wD x1 : : :xn andwi D x1 : : :xi , all prefixeswi ofw satisfy that d.�.wi /;�.L//�R.

The following result was proved by the second author in [31, Corollary 4.4].

Proposition 2.14. Let L be a regular language, let .X; �/ be a finite generating set
of a group G and let H be a subgroup of G. If H is language-convex with respect
to L, then there exists a regular language L0 � X� that evaluates onto H \ �.L/.

2.4. Left-orders and complexity classes

A left-order � on a group G is a total order on G that is invariant under left G-
multiplication. That is, for all a; b; c 2 G, a � b holds if and only if ca � cb holds.
If a left-order exists on G we say that G is left-orderable. A positive cone of G is
a subsemigroup P of G with the property that G is the disjoint union of P , P�1
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and ¹1Gº. A positive cone P defines a left-order �P on G by a �P b, a�1b 2 P .
Conversely, a left-order � on G defines a positive cone P� D ¹g 2 G j 1G � gº.

A group G is bi-orderable if there is a left-order � on G such that it is also
invariant under right G-multiplication. In that case, � is a bi-order.

We now link positive cones with formal languages.

Definition 2.15. Let C be a class of languages. Let .X; �/ be a generating set of G.
Let � a left-order. We say that � is a C -left-order, or equivalently P� is a C -positive
cone, if there exists a language L � X� in the class C such that �.L/ D P�.

Example 2.16. An infinite cyclic group G D ht j i is left-orderable. Consider the
generating set ¹t; t�1º of G. The set ¹tn j n > 0º � G is a positive cone and it is easy
to check that htiC D ¹tn j n > 0º � ¹t; t�1º� is a regular language. Thus Z admits
Reg-left-orders.

In Example 2.6, we saw that ��1.Z�1/D ¹w 2 ¹t; t�1º� j ]t .w/ > ]t�1.w/º is 1C
but not regular. Taking the full preimage of a positive cone under � gives a language
that represents the positive cone but it might not be of minimal language complexity.
This will be discussed in more detail in the appendix.

We now get some applications from the lemmata we proved for the complexity of
subsets in the previous subsection. By Lemma 2.11, we get the following result.

Corollary 2.17. Let C be a class of languages closed under homomorphisms (e.g. C D

Reg or C D CF). Admitting a C -left-order is a group property, independent of the gen-
erating set.

Left-orders restrict to left-orders on subgroups. It is natural to ask if their complex-
ity is preserved. This is a subtle question. For example F2 � Z has a Reg-left-order
(Theorem 1.5 or [31]), however F2 does not have Reg-left-orders [17].

A sufficient condition for a left-order to inherit the complexity class when passing
to a subgroups is given in terms of language-convexity (see Definition 2.13). For
instance, since finite index subgroups of a finitely generated group are always lang-
uage-convex, we get the following consequence of Proposition 2.14 (which was stated
as [31, Theorem 1.1]).

Proposition 2.18. A Reg-left-order on a finitely generated groupG restricts to a Reg-
left-order on any finite index subgroup.

2.5. Relative left-orders

We recall now some properties of relative positive cones. See [3, Definition 4] or [20,
Corollary 5.1.5] for more details.
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Definition 2.19. LetG be a group andH be a subgroup ofG. A subsemigroupP �G
is a positive cone relative to H if G D P tH t P�1.

Suppose that P � G is a positive cone relative to H . Then P � H � P holds.
Indeed, that P �H has a non-trivial intersection with P�1 [H in order to derive a
contradiction. If P �H \P�1 6D ;. Then there exists p1;p2 2 P and h 2H such that
p1h D p

�1
2 , meaning that h D p�11 p�12 , so H is not disjoint from P�1, a contradic-

tion. Similarly, if P �H \H is non-empty, then there exists h1; h2 2 H and p 2 P
such that ph1 D h2, meaning that p D h2h�11 , which implies that P and H are not
disjoint, a contradiction. A similar argument shows that H � P � P .

With the previous remark, we see that if P is a positive cone relative toH then we
can define a total G-invariant order on G=H by setting g1H � g2H , g�11 g2 2 P .
This is well-defined, since if we pick different coset representatives such that g01 D
g1h and g02 D g2h

0 then g�11 g2 2 P implies that h�1g�11 g2h
0 2H � P �H � P . The

fact that � is a total left-invariant order on G=H follows now easily.

Definition 2.20. Let C be a class of languages. Let .X; �/ be a generating set of G.
Let � a left-order. We say that P � G is C -positive cone relative to H 6 G, if P is
a positive cone relative to H and there exists a language L � X� in the class C such
that �.L/ D P�.

The following argument will be used several times.

Lemma 2.21. LetG be a group andH a subgroup. LetPrel be a positive cone relative
to H and PH a positive cone for H . Then P D Prel [ PH is a positive cone for G.

Moreover, if C is a class of languages closed under union, Prel is C -positive cone
relative to H and PH is a C -positive cone for H , then P is a C -positive cone.

Proof. We have that

G D Prel tH t P
�1
rel D .Prel t PH / t ¹1º t .P

�1
H t P

�1
rel / D P t ¹1º t P

�1:

To see that P is a semigroup, note that we have PrelPrel � Prel and PHPH � PH
by assumption, and that we observed previously that PrelH � Prel and HPrel � Prel,
therefore

.Prel [ PH /.Prel [ PH / � .Prel [ PH /:

The moreover part is clear by definition of P .
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3. Lexicographic left-orders of group extensions

In this section we study left-orders on group extensions. Suppose that N and Q are
groups and that G is an extension of N by Q. That is, there is a short exact sequence

1! N ! G
f
! Q! 1:

Fixing a right inverse s of f (i.e. a section of f ), with s.1Q/ D 1G , we obtain the
bijection G ! N �Q, g 7! .gs.f .g//�1; f .g//. In particular, it is natural to try to
order G out of this bijection with N �Q.

Definition 3.1 (Lexicographic order on direct products of totally ordered sets). Let
.N;�N / and .Q;�Q/ be two totally ordered sets.

� The lexicographic order �lex on N �Q with leading factor Q is given by .n; q/
�lex .n

0; q0/ if and only if q �Q q0 or q D q0 and n �N n0.

� The lexicographic order �lex on N �Q with leading factor N is given by .n; q/
�lex .n

0; q0/ if and only if n �N n0 or n D n0 and q �Q q0.

We will see that the lexicographic order onN �Q whereQ leads, always induces
a left-order on the underlying group G (Lemma 3.2). This is not the case for the
lexicographic order where N leads, yet in Section 3.2, we will find conditions on
orders on N and Q (and the structure of G) so that the lexicographic order where N
leads induces a left-order on the group G.

3.1. Lexicographic left-orders where the quotient leads

Lemma 3.2. Let f WG!Q be a group epimorphism with kernelN . Let PQ and PN
be positive cones onQ andN respectively. ThenP�lex WD f

�1.PQ/[PN is a positive
cone of G. The left-order on G induced by P�lex is called lexicographic led by the
quotient Q.

Proof. Clearly f �1.PQ/ is a subsemigroup as it is the preimage of a semigroup under
a homomorphism. Also, as Q D P�1Q t ¹1Qº t PQ we get that

G D f �1.PQ/
�1
tN t f �1.PQ/;

and hence f �1.PQ/ is a positive cone relative to N . The result now follows from
Lemma 2.21.

Let .N;�N / and .Q;�Q/ be left-ordered groups, and let PN and PQ be the
corresponding positive cones. It is easy to check that indeed, the left-order of the
previous lemma on G coincides to the lexicographic order on the set N �Q (which
is naturally in bijection with G) with leading factor Q.
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Proposition 3.3. Let C be a class of languages closed under unions and inverse
homomorphisms. Let N and Q be finitely generated groups and G an extension of N
by Q. Let PN and PQ be C -positive cones for N and Q respectively. Then P�lex ,
constructed as in Lemma 3.2, is a C -positive cone for G.

In particular, C can be any class of full AFL languages as the classes Reg; 1C
or CF.

Proof. Fix finite generating sets .X; �N / and .Y; �Q/ for N and Q. Let PN and PQ
be C -left-positive cones for N and Q, and let LN � X

� and LQ � Y
� be in C such

that �N .LN / D PN and �Q.LQ/ D PQ.
Denote by f the epimorphism of G onto Q, i.e. f WG ! Q. We can define a

generating set .X t Y; �/ for G such that �N .x/ D �.x/ for x 2 X and �Q.y/ D
f .�.y// for y 2 Y .

Let �LQ be the preimage of LQ under the monoid morphism

�XtY!Y W .X t Y /
�
! Y �

that is the identity on Y and sends elements of X to the empty word. Note that
f .�. �LQ// D PQ, and hence �. �LQ/ � f

�1.PQ/.
To see that �. �LQ/� f

�1.PQ/, let g 2G such that f .g/ 2PQ. Then, there exists
w 2 LQ such that

�Q.w/ D f .�.w//:

There is zw 2 �LQ such that �XtY!Y . zw/ D w, and therefore if zg D �. zw/ we get that
f .g/ D f .zg/, and hence g.zg/�1 2 N . There is u 2 X� such that

�.u/ D �N .u/ D g.zg/
�1:

Note that �XtY!Y .u zw/ D w, therefore u zw 2 �LQ and �.u zw/ D g.zg/�1zg D g.
As C is closed under inverse homomorphism and �LQ2C , we get that f �1.PQ/

is C -positive cone relative to N . By Lemma 2.21,

PG D f
�1.PQ/ [ PN

is a C -positive cone.

3.1.1. Polycyclic groups. We use Proposition 3.3 to show that left-orderable virtu-
ally polycyclic groups admit Reg-left-orders. Let us recall some definitions.

Definition 3.4. Let G be a group. A subnormal series for G is a decreasing sequence
of subgroups of G

G D G0 D G1 D � � � D Gn D ¹1º

such that GiC1 is normal in Gi for 0 � i < n. The quotients Gi=GiC1 are called
factors.
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Definition 3.5. A group G is polycyclic (resp. poly-Z) if there is a finite subnormal
series for G with cyclic (resp. infinite cyclic) factors.

As a consequence of Proposition 3.3 we have the following.

Corollary 3.6. Poly-Z groups have Reg-left-orders.

Proof. The corollary follows by induction on the length of the subnormal series. The
base case is Z and Example 2.16 shows that Z has Reg positive cones. Proposition 3.3
allows the inductive argument.

Finally, we use a theorem of Morris [24] to show the following.

Proposition 3.7. Left-orderable virtually polycyclic groups are poly-Z. In particular,
they have Reg-left-orders.

Proof. Recall that if G is polycyclic, the number of Z-factors in a subnormal series
of cyclic factors is well-defined and called the Hirsch length and denoted h.G/. For a
virtually polycyclic group G, we can define h.G/ to be the Hirsch length of any finite
index polycyclic subgroup, and it is still well-defined (see, for example, [30]). More-
over, if H is a normal subgroup in G then both H and G=H are virtually polycyclic
and h.G/ D h.H/C h.G=H/.

We argue by induction on the Hirsch length that a virtually polycyclic left-order-
able group is poly-Z. If h.G/ D 0, then G left-orderable and finite, so G is trivial.
Suppose that h.G/ > 0, and recall that Morris’ theorem says that finitely gener-
ated, left-orderable amenable groups have infinite abelianization [24]. Thus, there is
a normal subgroup N E G such that G=N Š Z. Since N is virtually polycyclic,
left-orderable and h.N / D h.G/ � 1, we get by hypothesis that N is poly-Z, and so
is G.

3.1.2. Solvable Baumslag–Solitar groups. The result about regularity of left-orders
on polycyclic groups cannot be promoted to the case of solvable groups [10]. Here
we give the complete picture for when a solvable Baumslag–Solitar groups BS.1; q/,
q 2 Z admits a regular positive cone. Recall that for q D 0, BS.1; 0/ Š Z and for
q ¤ 0 these groups are defined by the presentation

BS.1; q/ D ha; b j aba�1 D bqi:

For q ¤ 0, it is well known that BS.1; q/ ' ZŒ1=q� Ì Z (see, for instance, [14]).
Under this isomorphism, the element b can be identified with the unity of the ring
ZŒ1=q� (the minimal sub-ring of Q containing Z and 1=q). The element a can be
identified with the generator for the Z-factor which acts on ZŒ1=q� by multiplying
by 1=q. Therefore, an element r=qs 2 ZŒ1=q� where s � 0 and r 2 Z � ¹0º, can be
written as a�sb"ras , where " 2 ¹�1; 1º depends on the parity of s and the sign of r
and q as in Table 1.



Regular left-orders on groups 281

sign.q/ s "

C even/odd sign.r/
� even sign.r/
� odd �sign.r/

Table 1

In particular, for solvable Baumslag–Solitar groups, every group element can be
written in the form an.a�mbkam/ with m � 0, n; k 2 Z.

Notice that the groups Z and ZŒ1=q� admit only two left-orders each. Therefore,
there are only four lexicographic left-orders on BS.1; q/ Š ZŒ1=q� Ì Z where the
quotient leads. These four left-orders have the following positive cones,

P1 D ¹.r=q
s; n/ 2 ZŒ1=q� Ì Z j n > 0 or .n D 0 and r=qs > 0/º;

P2 D ¹.r=q
s; n/ 2 ZŒ1=q� Ì Z j n < 0 or .n D 0 and r=qs > 0/º;

P3 WD P
�1
1 and P4 WD P�12 . We first remark that these are one-counter positive cones.

Proposition 3.8. For each, q ¤ 0 and each i D 1; 2; 3; 4, there is a one-counter
language over ¹a; a�1; b; b�1º� evaluating onto the positive cone Pi of BS.1; q/
described above.

Proof. We only deal with the case q < 1 and i D 1; 2 and we indicate the needed
modifications for q > 1 at the end of the proof. The cases i D 3; 4 are identical. The
following two languages

L1 D ¹a
n.a�mbkam/ j n > 0 or

Œ n D 0 and .m odd and k < 0/ or .m even and k > 0/�º;

L2 D ¹a
n.a�mbkam/ j n < 0 or

Œ n D 0 and .m odd and k < 0/ or .m even and k > 0/�º;

where we assume m � 0 and k 2 Z, evaluate to P1 and P2. This follows easily from
our description of normal forms at the beginning of the subsection.

We see that L1 D ¹aº
C �Lquot [Lker and L2 D ¹a

�1ºC �Lquot [Lker, where

Lquot D ¹a
�mbkam j m � 0; k 2 Zº

Lker D ¹a
�mbkam j m � 0; k 2 Z; .m odd and k < 0/ or .m even and k > 0/º:
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s0

a; �=�
a; �=�� a; �=�

a; �=�

a; �=�

�; �=�

b

b

b�1

b�1

Figure 3. Pushdown automaton accepting Lquot. Here ¹�º is the stack alphabet (i.e. the counter
symbol).

By the closure properties of the class 1C, to see that L1 and L2 are one-counter
languages, it is enough to see that Lquot and Lker are in 1C. Moreover,

Lker D Lquot \
�
¹a�1a�1º� � ¹bº� � ¹aaº�

�
[Lquot \

�
¹a�1º � ¹a�1a�1º� � ¹b�1º� � ¹aaº� � ¹aº

�
:

Again, since the class 1C is closed under union and intersection with regular lan-
guages, we see that it is enough to show that Lquot is one-counter. We illustrate a
pushdown automaton accepting Lquot in Figure 3 and leave the rest of the proof of
this case to the reader.

For the case q > 1, observe that

L01 D ¹a
n.a�mbkam/ j n > 0 or Œn D 0 and k > 0�º;

L02 D ¹a
n.a�mbkam/ j n < 0 or Œn D 0 and k < 0�º;

evaluate to P1 and P2, respectively. An easy modification of the previous automaton
allows to conclude this case.

We are going to show now that the previous proposition is optimal, in the sense
that P1; P2; P3 and P4 cannot be regular. To show this we need to recall some facts.

Definition 3.9. Let .M; d/ be a metric space. A subset Y �M is coarsely connected
if there is R > 0 such that ¹p 2 M j d.p; Y / � Rº, the R-neighborhood of Y , is
connected.

The following is [1, Proposition 7.2], in view of Lemma 2.12.

Lemma 3.10. Let G be a finitely generated group. If P is a Reg-positive cone of G,
then P and P�1 are coarsely connected subsets of the Cayley graph of G.

For Lemma 3.10 recall that given a finitely generated groupG, a non-trivial homo-
morphism �WG ! R belongs to †1.G/, the Bieri–Neumann–Strebel invariant (BNS
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invariant for short), if and only if ��1..0;1// is coarsely connected. Moreover, the
kernel of � is finitely generated if and only if both � and �� belong to †1.G/
(see [5]). Therefore, we have the following.

Lemma 3.11. Suppose thatG is an extension ofN by Z. IfN is not finitely generated,
then no lexicographic order on G where Z leads is Reg.

Proof. Suppose that f WG ! Z is a homomorphism with kernel N . Without loss of
generality, we can assume that a lexicographic order where Z leads has a positive
cone of the form PG WD f

�1.Z�1/ [ PN where PN is a positive cone for N .
Since f .PN / D 0, and there is a group generator mapped under f to a positive

integer, we have that f �1.Z�1/ is coarsely connected if and only if f �1.Z�1/ [ PN
is coarsely connected. Therefore, f 2†1.G/ if and only if f �1.Z�1/[PN is coarse-
ly connected. Similarly, �f 2 †1.G/ if and only if f �1.Z��1/ [ P�1N is coarsely
connected.

Assume thatN is not finitely generated and PG is a Reg-positive cone. From BNS
theory, either PG D f �1.Z�1/ [ PN or P�1G D f �1.Z��1/ [ P�1N is not coarsely
connected. By Lemma 3.10, if the left-order given by PG is Reg, then both cones PG
and P�1G would be coarsely connected. We have a contradiction.

Corollary 3.12. For each, q … ¹�1; 0; 1º and each i D 1; 2; 3; 4, the positive cone Pi
of BS.1; q/ is not regular.

Proof. It follows from Lemma 3.11 and the fact that ZŒ1=q� is not finitely generated,
that P1; P2; P3 and P4 cannot be regular.

Let q > 1. From the point of view of orders, BS.1; q/ and BS.1;�q/ behave
quite differently. On one hand,BS.1;�q/ falls into the classification of groups admit-
ting only finitely many left-orders obtained by Tararin [34] (see also [11, 20], or
Section 4). In fact, B.1;�q/ admits only the four left-orders we described before.)
On the other hand BS.1; q/ admits uncountably many left-orders. Beside the four
left-orders described above, its other left-orders appears as induced orders from the
(order-preserving) affine action of BS.1; q/ on the real line

aW x 7! qx; bW x 7! x C 1:

This classification of left-orders is shown in [27] for the case of BS.1;2/ but the same
proof works for general q > 1.

We next observe that some of these induced orders have regular positive cones.

Lemma 3.13. Let BS.1; q/ D ha; b j aba�1 D bqi with q � 2. Then

P0 D ¹a
n.a�mbkam/ j k > 0;m; n 2 Zº
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s0
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Figure 4. Finite state automaton accepting a positive cone language for BS.1; q/ with q > 1.

is a Reg-positive cone relative to hai. In particular, P D haiC [ P0 is Reg-positive
cone.

Proof. Consider the action of BS.1; q/ on R given by aW x 7! qx and bW x 7! x C 1.
If g 2 BS.1; q/ is an element with normal form g D an.a�mbkam/, then g maps x
to qnx C k=qm, which implies that this affine representation is faithful.

We let P0 D ¹g 2 BS.1; q/ W g.0/ > 0º. Note that an element of the form g D

an.a�mbkam/ belongs to P0 if and only if k > 0. This coincides with the set P0 of the
statement, and therefore P0 is a positive cone relative to StabBS.1;q/.0/ D hai Š Z.
From Lemma 2.21, the set P given by

P D ¹an j n > 0º [ ¹an.a�mbkam/ j k > 0;m; n 2 Zº;

is a positive cone for BS.1; q/.
Viewing the elements of P as words in ¹a; b; a�1; b�1º�, P can be represented as

a language accepted by the automaton of Figure 4. One can construct an automaton
that gives a regular language for P0 from the automaton of Figure 4 by just changing
the state right to s0 to a non-accepting state.

Remark that this is a subgraph of the automaton-graph describing the language of
normal forms in BS.1; q/.

Theorem 3.14. All solvable Baumslag–Solitar groups

BS.1; q/ D ha; b j aba�1 D bqi

admit one-counter left-orders, and BS.1; q/ admits a regular left-order if and only
if �1 � q. Moreover, for q � 2 all Reg-left-orders on BS.1; q/ are induced by affine
actions on R.
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Proof. From Proposition 3.8, all solvable Baumslag–Solitar groups admit a one-coun-
ter left-order.

If q 2 ¹�1; 0; 1º, then BS.1; q/ is poly-Z and then has regular left-orders (our
convention is that BS.1; 0/ D Z).

If q ��2, by Tararin’s classification discussed above and Corollary 3.12, we have
that BS.1; q/ do not admit regular orders.

Finally, suppose that q� 2. From [27], a left-order onG is either one induced from
an affine action on R or a lexicographic order with leading factor Z coming from the
semidirect product ZŒ1=q� Ì Z. We saw in Corollary 3.12 that the lexicographic left-
orders on BS.1; q/ with leading factor Z cannot be regular. We saw in Lemma 3.13
that BS.1; q/ admits regular orders and thus such left-order must be induced by affine
actions (as it is shown in the proof of the lemma).

3.2. Lexicographic left-orders where the kernel leads

In general, if G is an N by Q extension of left-orderable groups, the lexicographic
order on N � Q with leading factor N is not G-left-invariant. However, in some
special situations it is. The following lemma will be used to produce left-orders on
extensions where the kernel leads.

Lemma 3.15. Let G be a semidirect product of the subgroups N E G and Q 6 G.
Let PN and PQ be positive cones of N andQ respectively, and assume that qPN q�1

D PN for all q 2Q. Then, the lexicographic order on the underlying set N �Q with
leading factor N is G-left-invariant. In particular, it is a left-order on G.

Proof. Since G is a semidirect product of N and Q, we have that N \Q D ¹1Gº
and NQ D G. There is a natural bijection between N �Q to G D NQ, and under
this bijection, the subset of elements of N � Q that are lexicographical greater to
.1N ; 1Q/ corresponds to the subset P WD PNQ [ PQ of G. Note that

P�1 D Q�1P�1N [ P
�1
Q ;

and since qPN q�1 D PN for all q 2 Q, we get that

P�1 D P�1N Q [ P�1Q :

Therefore, G D P t P�1 t ¹1Gº.
To show that P is a subsemigroup, let nq;n0q0 2 P , with n;n0 2N and q; q0 2Q.

Recall that n and n0 either are trivial or belong to PN . Then

nqn0q0 D n.qn0q�1/qq0;

and we see that if n¤ 1G or n0¤ 1G , then n.qn0q�1/ 2PN and nqn0q0 2PNQ�P .
If n D 1G D n0, then q; q0 2 PQ and nqn0q0 D qq0 2 PQ � P .
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This lemma will be helpful to construct regular left-orders on extensions when
the kernel is not finitely generated (and thus the kernel alone cannot support a regular
left-order). Our main example are wreath products, however we have already observed
this phenomenon in Baumslag–Solitar groups.

Example 3.16 (Lexicographic left-orders on BS.1; q/ where the kernel leads). For
q > 0 we have already seen that BS.1; q/ has regular orders, constructed through an
affine action on the real line. Viewing

BS.1; q/ D ha; b j aba�1 D bqi Š ZŒ1=q� Ì Z;

the left-order of Figure 4 is lexicographic where the factor ZŒ1=q� leads. Indeed, a
positive cone PZŒ1=q� for ZŒ1=q� is the set of elements greater than 0. Since hai Š Z

acts on ZŒ1=q� by multiplying by q, we have that

anPZŒ1=q�a
�n
D PZŒ1=q�

for all n 2 Z. The previous lemma tell us that hai � PZŒ1=q� [ ¹aº
C is a positive cone

for BS.1; q/. This is exactly the left-order of the automaton of Figure 4.

3.2.1. Wreath products. The wreath product N o Q of groups N and Q is the
semidirect product of N WD ˚q2QN by Q, where the conjugation action of Q on N
is given by the left-multiplication action on the indexes of the copies of N . That is, if
n D .nq/q2Q 2 N and q0 2 Q, we have q0nq0�1 D .nq0q/q2G .

We begin with an example that will illustrate the construction we develop in this
section.

Proposition 3.17. The group Z o Z has Reg-left-orders.

Proof. The group Z o Z is isomorphic to ZŒX; X�1� Ì C1 where C1 D hti acts by
multiplying by X on ZŒX;X�1�. An element of Z oZ is therefore uniquely written as

.p D ai0X
i0 C ai1X

i1 C � � � C aikX
ik ; t s/

with i0 > i1 > i2 > � � � > ik 2 Z and s 2 Z. We say that ai0 is the leading coefficient
of p, and define leadcoef.p/ WD ai0 . It is easy to check that

P D ¹.p; t s/ j leadcoef.p/ > 0º [ ¹.0; t s/ j s > 0º

is a positive cone.
The group is generated by the constant polynomial c D 1 and t , since tkcmt�k

represents the polynomial mXk . Therefore a word representing the element given
by .ai0X

i0 C ai1X
i1 C � � � C aikX

ik ; t s/ is

t i0cai0 t i1�i0cai1 t i2�i1 � � � caik t�ik t s:
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s0
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t
t�1

t�1
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c

t�1

c; c�1; t�1
t

t

Figure 5. Finite state automaton accepting a positive cone language for Z o Z.

Since i0 > i1 > i2 > � � � > ik , we have that i1 � i0; i2 � i1; : : : ; ik � ik�1 are all
negative. A language for this positive cone is

¹tncmtn1cm1 tn2cm2 : : : cmk t l j m > 0; ni < 0;mi 2 Z; k � 0; l 2 Zº [ ¹t s j s > 0º:

This language is recognized by the finite state automaton of Figure 5.

The previous strategy also works in the more general case of wreath products
N oQ. Let �N and �Q be left-orders on N and Q respectively, with correspond-
ing positive cones PN and PQ. We can construct a lexicographic order �N on N D
˚q2QN as follows. Given nD .nq/q2Q and n0D .n0q/q2Q 2N we put n� n0 if n¤ n0

and for q0 D max�Q
¹q 2 Q j nq ¤ n

0
qº, we have that nq0 �N n0q0 .

Lemma 3.18. The lexicographic order on N oQ D N ÌQ extending �N and �Q is
an N oQ-left-invariant lexicographic order with leading factor N.

Proof. Observe that PN, the positive cone N associated to �N, is equal to

¹.nq/q2G 2 N n ¹1Nº j nq 2 PN where q0 D max¹q 2 G j nq ¤ 1N ºº:

Now, given N 2 PN and q0 D max¹q 2 Q j nq ¤ 1N º, and given q 2 Q, we set

n0 D qnq�1 D .n0q/q2Q;

and we see that qq0 Dmax�Q
¹p 2Q j n0p ¤ 1N º since�Q is leftQ-invariant. There-

fore n0qq0 D nq0 2 PN , and thus n0 2 PN. We have showed that qPNq
�1 � PN for all

q 2 Q, which implies qPNq
�1 D PN for all q 2 Q. The proof then follows from

Lemma 3.15.
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LetX and Y be generating sets ofN andQ respectively. The setX [ Y generates
N oQ since the q-th copy of N in ˚q2QN is identified with qNq�1 and thus it can
be generated by qXq�1 (the conjugates of X by q) and each element of qXq�1 can
be expressed in terms of X and Y .

An element .n D ¹nqºq2Q; p/ 2 N oQ can be written as .
Q
q2Q qnqq

�1/p, and
we can use the �Q-order to write this element uniquely as

.q1n1q
�1
1 /.q2n2q

�1
2 / � � � .qnnmq

�1
m /p

with the property that q1 �Q q2 �Q q3 �Q � � � �Q qm.
Thus, with this unique way of writing the elements of N oQ, the lexicographic

positive cone of N oQ is

P D
®
.q1n1q

�1
1 /.q2n2q

�1
2 / � � � .qmnmq

�1
m /p j

q1 �Q q2 �Q � � � �Q qm; .n1 2 PN ^ p 2 Q/ _ .m D 0 ^ p 2 PQ/
¯
: (1)

We will now define a positive cone language for wreath products of groups in
terms of the positive (and negative) cone languages for N and Q.

Proposition 3.19. Let LN � X
� and LQ;MQ � Y

� be languages such that

�N .LN / D PN and �Q.LQ/ D PQ

are positive cones for N and Q, respectively, and �Q.MQ/ D P
�1
Q . Then, the lan-

guage
L WD Y �LNMQ.X

�MQ/
�Y � [LQ (2)

evaluates onto the positive cone P of equation (1).

Proof. First observe that

L D
®
vu1w1u2w2 : : : umwmz j v; z 2 Y

�;

u1 2 LN or .m D 0; v D " and z 2 LQ/; ui 2 X
�; wi 2MQ

¯
: (3)

Let P be the positive cone described in (1).
Let us first prove that P � �.L/. Let g 2 P , and assume that

g D .q1n1q
�1
1 /.q2n2q

�1
2 / � � � .qmnmq

�1
m /p

with qi ; ni ; p as in (1). Let z 2 Y � such that �.z/ D p. If m D 0, then g D p 2 PQ.
We can assume that z 2LQ. Ifm> 0, there is v 2 Y � such that �.v/D q1, u1 2LN

such that n1 2 PN , and wi 2MQ such that �.wi /D q�1i qiC1 2 P
�1
Q , ui 2 X�, such

that �.ui / D ni for 2 � i � m. We see that

g D �.vu1w2u2 : : : umwmz/:
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To prove that �.L/�P , let wD vu1w1u2w2 : : :umwmz 2L as in the description
in (3). If m D 0, then w D z and z 2 LQ. Thus, �.w/ 2 P . If m > 0, let q1 D �.v/
and for i > 1, qi D qi�1�.wi /, thus �.wi /D q�1i�1qi . For i D 1; : : : ;m let ni D �.ui /
and p D �.z/. Therefore,

�.w/ D .q1u1q�11 /.q2u2q
�1
2 / � � � .qmumq

�1
m /p:

Note that since wi 2MQ, we have that qi �Q qi�1. It follows that �.w/ 2 P .

We now state a generalization of Proposition 3.17.

Proposition 3.20. Let C be a full AFL closed under reversal. LetN andQ be finitely
generated groups. Suppose that N and Q have a C -left-order represented by LN

and LQ, respectively. Then, the wreath product of N oQ admits a C -left-order.
In particular, admitting Reg-left-orders is closed under wreath products.

Proof. Assume that N is generated by a finite set X and Q is generated by a finite
set Y . We will construct a language over the generating setX t Y . Let MQ DL�1Q be
the negative cone language associated to LQ obtained by reversal and sending each
letter x 7! x�1. Let L be the language of equation (2). By Proposition 3.19, L is a
positive cone language for N oQ. Since a class full AFL is closed by concatenation,
concatenation closure and union, we see that L is in C .

4. Groups where all positive cones are regular

In this section we classify the groups that only admit Reg-left-orders.

4.1. Order-convex subgroups and language-convex subgroups

Definition 4.1. Let .G;�/ be a left-ordered group. A subgroup H 6 G is called �-
convex if for all h1; h2 2 H and g 2 G satisfying h1 � g � h2 we have that g 2 H .

Left-order convexity relates to relative left-orders introduced in Section 2.5 in the
following way.

Lemma 4.2. If H is �-convex for a left-order � on G, then P D ¹g 2 G j H � gº
is a positive cone relative to H .

Proof. First, we observe that for all g 62H and all h 2H , we have that g� h or h� g.
Indeed, otherwise we would have that h� g � h0 for h;h0 2H , which by�-convexity
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ofH implies that g 2H . Therefore, for all g 2G �H either g �H orH � g. Now,
ifH � g, then g�1 � 1 2H . As g�1 …H this means that g�1 �H . This shows that

G D P t P�1 tH:

Finally, to show that P is a semigroup, notice that since 1 2 H , we have that 1 � g1
and 1 � g2 for g1; g2 2 P . This implies that H � g1 � g1g2.

Thanks to the previous lemma and the discussion in Section 2.5, we can conclude
that if H is �-convex, then for every g1 � g2, g1; g2 2 G one has that g1h1 � g2h2
for all h1; h2 2 H . Moreover, if H is �-convex, then � induces a left-order on the
coset space G=H .

The proposition below says that for certain subgroups being �-convex implies
being language-convex.

Proposition 4.3. Let G D H Ì Z be finitely generated by .X; �/. Let � be a lex-
icographical Reg-left-order on G led by Z, with L � X�, a regular positive cone
language. If H is finitely generated, then H is language-convex with respect to L.

In particular, the restriction of � to H is a Reg-left-order.

Recall that we set in Notation 2.3, that given word w 2 X�, and x 2 X , we
use ]x.w/ to denote the number of times the letter x appears in the word w.

Before proving the Proposition 4.3 we need to describe all regular languages over
the alphabet ¹t; t�1ºmapping onto a positive cone of Z. Given a wordwD x1 : : : xn 2
¹t; t�1º�, with xi 2 ¹t; t�1º we define a function fw W ¹0; 1; : : : ; nº ! Z by

fw.i/ D ]t .x1 : : : xi / � ]t�1.x1 : : : xi /:

Lemma 4.4. Let L � ¹w 2 ¹t; t�1º� j ]t .w/� ]t�1.w/ � 0º be a regular language.
Then every fw is coarsely non-decreasing in the following sense: there is a constant
K � 0 such that for allw 2L and for all i; j 2 ¹0;1 : : : ; `.w/º, if j > i then fw.j / >
fw.i/ �K.

Proof. Let M D .� ; X D ¹t; t�1º; ı; s0;A/ be an automaton accepting L. We will
consider M to be without �-moves and the image of transition function ı being sin-
gletons (see Remark 2.1). We will think of this automaton as a directed graph as
explained in Remark 2.2. Every edge has a label from X , and from every vertex there
is at most one outgoing edge with label x 2 X . Hence, every w 2 L labels a unique a
path in M starting at the initial state s0.

Every w 2L can be decomposed as w D xyz, where y is a (possibly trivial) loop
in M. Then, w 2 L implies that xynz 2 L for any n 2 ¹0; 1; 2; : : : º. In other words,
for each word w accepted in the automaton for L, we may remove or insert words y
representing loops in M and still get an accepted word xynz.
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Letw 2L. Let g.w/ WD #t .w/� #t�1.w/. WritewD xyz where y is a (possibly)
trivial loop. Observe that g.y/� 0, for otherwise xyiz 2L for any i , as we may pick i
large enough such that g.xyiz/ < 0, contradicting our assumption about L. In other
words, for any loop y in w D xyz,

g.xz/ � g.xyz/ (4)

and xz 2 L since we have only removed a loop y.
Let n be the number of states of M. For any subword u of w 2 L, decompose

u D x1y1x2y2 : : : xk�1yk�1xk , where the yi are loops and the length of the word
x1x2 : : : xk is minimal. We allow the subwords xi to be empty. Viewing u as a subpath
of w in M, we construct a new path whose label is u0 D x1 : : : xk which consists of
removing all loops from u. In particular, by the pigeonhole principle we have that
`.u0/ � n as otherwise the path associated to u0 would go through the same vertex
in M twice. Thus, we have a factorization of u with a loop such that removing it
produces a word shorter than u0. By (4) we have that g.u/ � g.u0/, and as `.u0/ � n,
this implies that

g.u/ � �n for all subwords u of w 2 L; (5)

since each transition can only contribute one t or t�1 and `.u0/ � n.
Let 1 � i < j � `.w/. We need to show that there is a constant K � 0 such

that fw.j / � fw.i/ � �K. But fw.j / � fw.i/ D g.u/ for u equal to the subword
of w consisting of taking the prefix of w of length j and removing to it the prefix of
length i . Now the result follows from (5) and taking K D n.

Now we can prove Proposition 4.3.

Proof of Proposition 4.3. Let .X; �H / be a generating set for H and ¹t; t�1º a gen-
erating set for Z. We combine them to make .X 0 D X t ¹t; t�1º; �/ a generating set
for G with evaluation map � . Let L � .X 0/� be a regular language such that �.L/ is
a lexicographic positive cone with the quotient being the leading factor.

Let �W .X 0/� ! ¹t; t�1º� consisting on deleting the letters of X . This is monoid
morphism, and hence �.L/ is regular. Since L is the language of a lexicographic
order, �.L/ is contained in ¹w 2 ¹t; t�1º� j ]t .w/ � ]t�1.w/ � 0º. By Lemma 4.4,
we get that there is aK � 0 such that f�.w/.j / > f�.w/.i/�K for all w 2L and for
all j > i .

To see that H is language-convex with respect to L, let w 2 L, with �.w/ 2 H .
Then, we get that ]t�.w/ � ]t�1�.w/ D 0. Then,

0 D f�.w/.`.w// � max
i
f�.w/.i/ �K;
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so maxi f�.w/.i/ � K. Also, mini f�.w/.i/ > f�.w/.0/ � K D �K. It follows that
for every prefix u of w, j]t�.u/ � ]t�1�.u/j � K. Therefore,

dG.�.u/; �.ut�]t�.u/C]t�1�.u/// � K:

Observe that �.ut�]t�.u/C]t�1�.u// 2 H since the exponent �]t�.u/C ]t�1�.u/

cancels the t ’s in u. This shows that H is language-convex.
By Proposition 2.14, we get that the restriction of the left-order toH is regular.

4.2. Groups whose left-orders are all regular

Now we will characterize the groups whose left-orders are all regular. Since the set of
finite state automatons is countable, a left-orderable group can have at most a count-
able number of regular left-orders. The following result of Linnell [23] implies that if
all the left-orders are regular, then there should be finitely many of them.

Theorem 4.5 ([23]). If a group admits infinitely many left-orders, then it admits
uncountably many.

The case when a group admits finitely many left-orders was classified by Tararin
in [34] (see also [11,20]). Recall that a torsion-free abelian group has rank 1 if for any
two non-identity elements a and b there is a non-trivial relation between them over the
integers: naCmb D 0. Torsion-free abelian groups of rank 1 are, up to isomorphism,
subgroups of Q.

A group G is a Tararin group if it admits a unique subnormal series

G D G0 D G1 D � � � D Gn D ¹1º

such that all the factors are torsion-free abelian groups of rank 1 and such that no
quotient Gi=GiC2 is bi-orderable.

A group admits finitely many left-orders if and only if it is Tararin group (see [11,
Theorem 2.2.13]). Moreover, for any left-order � on a Tararin group with the sub-
normal series as above, the unique proper �-convex subgroups are the subgroups
G1;G2; : : : ;Gn. It follows that there are 2n left-orders onG and each of them is com-
pletely determined by choosing the positivity of a non-trivial element of Gi=GiC1
for i D 1; : : : ; n. More concretely, all left-orders on Gi are lexicographic orders asso-
ciated to the extension GiC1 ! Gi ! Gi=GiC1 where the quotient leads.

Lemma 4.6. Suppose that G is a finitely generated Tararin group with all the left-
orders being regular. Then G is poly-Z.

Proof. Let
G D G0 D G1 D � � � D Gn D ¹1º
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be the unique subnormal series of G where all the factors are torsion-free abelian
groups of rank 1. We have to show that all factors are cyclic. We argue by induction
on the length of the series. If the length is 0, G Š ¹1º.

Suppose that the length is > 0. Since G is finitely generated, we get that G0=G1
is a finitely generated subgroup of Q and hence G0=G1 Š Z. Thus, G D G1 Ì Z.

Suppose that G1 is finitely generated. Then by Proposition 4.3 all the induced
left-orders on G1 are regular. Since G is a Tararin group, all left-orders on G1 are
restrictions of left-orders in G. Therefore, all left-orders in G1 are regular, and by
induction G1 is poly-Z and so is G.

The remaining case is that G1 is not finitely generated. Then, it follows from
Lemma 3.11 that the lexicographic orders cannot be regular.

Conversely we have the following.

Lemma 4.7. All left-orders on a poly-Z Tararin group are regular.

Proof. The proof is by induction on the Hirsch length. If h.G/D 0, thenG Š ¹1º and
the lemma holds.

Now assume that h.G/> 0. LetG1 EG such thatG=G1 is infinite cyclic. SinceG
is a Tararin group G1 is �-convex in G for any left-order �. Thus, any order on G
is a lexicographic order associated to an extension G1-by-Z in which the quotient
group is the leading lexicographic factor. Since G1 is a poly-Z Tararin group with
h.G1/ < h.G/, we get by induction that all the left-orders on G1 are regular. Recall
from Example 2.16 that the two left-orders that Z admits are regular. Therefore, all the
left-orders of G are lexicographic extensions of a regular order on G1 and a regular
order on Z and by Proposition 3.3 all left-orders of G are regular.

Remark 4.8. Although we will not use this, it is worth pointing out that a group G is
poly-Z Tararin if and only if there exists a unique subnormal series

G D G0 D G1 D � � � D Gn D ¹1º

such that for all i ,Gi=GiC1ŠZ andGi=GiC2ŠK whereK D ha;b j aba�1D b�1i
is the Klein bottle group.

Theorem 4.9. A group only admits regular left-orders if and only if it is Tararin
poly-Z.

Proof. By the previous discussion a group that admits only regular left-orders must
admit only a countable number of left-orders and therefore it must be a Tararin group.

To finish the proof, we need to show that a Tararin group only admits regular left-
orders if and only if it is poly-Z. That result follows from Lemma 4.6 and Lemma 4.7.
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5. Ordering quasimorphisms

In this section, we prove one of the main theorems of the paper and discuss some type
of one-counter positive cones. These one-counter positive cones will be constructed
through a quasimorphism, that we will call ordering quasimorphism, that is com-
putable with a transducer. The interesting fact of these one-counter positive cones, is
that if G has one of such cones, then G � Z will have a regular positive cone.

5.1. Ordering quasimorphism

A quasimorphism �WG ! R is a function that is at bounded distance from a group
homomorphism, i.e. there is a constant D such that j�.g/C �.h/ � �.gh/j � D. A
quasimorphism naturally assigns a positivity to elements of G. Dicks and S̆unić [12],
found sufficient conditions on a quasimorphism � so that ��1..0;1// is a positive
cone in the group.

The following is a slight generalization of [12, Lemma 2.3].

Lemma 5.1. Let G be a group and � WG ! Z be a function with the following prop-
erties. For all g; h 2 G,

(i) C D ¹g 2 G j �.g/ D 0º is a subgroup of G,

(ii) �.g/ D ��.g�1/,

(iii) �.g/C �.h/C �..gh/�1/ � 1.

Let P D ¹g 2 G j �.g/ > 0º. Then P is a positive cone relative to C .

Proof. We will first prove that P�1 is disjoint from P .

P�1 D ¹g 2 G j g�1 2 P º D ¹g 2 G j �.g�1/ > 0º

D ¹g 2 G j ��.g/ > 0º D ¹g 2 G j �.g/ < 0º:

Thus, P \ P�1 D ;. Further, since �.g/ D 0 H) g 2 C , we have that G D P t
P�1 t C .

Now we check that P is a semigroup. Let g; h 2 P . Then �.g/ � 1 and �.h/ � 1.
Also, we have that �.g/C �.h/C �..gh/�1/ � 1 � 0, so

�.gh/ � �.gh/C �.g/C �.h/C �..gh/�1/ � 1

D �.g/C �.h/ � 1 � 1:

Thus, gh 2 P .

Definition 5.2. A quasimorphism � WG!Z satisfying (i), (ii) and (iii) of Lemma 5.1,
will be called an ordering quasimorphism. The subgroup C of (i) is called the kernel
of � .
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Example 5.3 (Ordering quasimorphism on free products). Dicks and S̆unić proved
in [12, Proposition 4.2] that if G D �i2IGi is a free product of left-ordered groups
.Gi ;�i /, then one can define an ordering quasimorphism on G as follows.

Let �I be a total order on the index set I . Given g 2 G, the normal form of g is
an expression g D g1g2 : : : gk , where each gi (called syllable) is in some Gj n ¹1º
and two consecutive syllables gi ; giC1 lie in different free factors. The normal form
of an element g 2 G is unique. For a syllable gi , write factor.gi /D j , to indicate that
gi 2 Gj . A syllable gi is positive if 1 �factor.gi / gi and negative if 1 �factor.gi / gi . An
index jump in a normal form g1 : : : gk is a pair of consecutive syllables gigiC1 such
that factor.gi / �I factor.giC1/. Similarly, an index drop in a normal form g1 : : : gk
is a pair of consecutive syllables gigiC1 such that factor.gi / �I factor.giC1/. Define

�.g/ D ].positive syllables in g/ � ].negative syllables in g/

C ].index jumps in g/ � ].index drops in g/:

Then [12, Proposition 4.2] shows that the previous function is an ordering quasimor-
phism on G with trivial kernel.

Example 5.4 (Ordering quasimorphism on amalgamated free products). In [3, Theo-
rem 17], the first author together with Dicks and S̆unić described how to generalize the
previous ordering quasimorphism to more general groups acting on trees. We describe
here the case of amalgamated free products. Suppose for example that G is the free
product of Gi , i 2 I amalgamated along a common subgroup C 6 Gi for all i . For
each i , assume that Pi is a positive cone relative to C (i.e.Gi DPi tC tP�1i and Pi
is a sub-semigroup of Gi ). Then, any element g 2 G can be written (uniquely fixing
transversals) as g D g1g2 : : : gkc with c 2 C and gi 2 Pji

[ P�1ji
for i � 0. Define

�.g/ D �.g1 : : : gk/

D ].positive syllables in g1 : : : gk/ � ].negative syllables in g1 : : : gk/

C ].index jumps in g1 : : : gk/ � ].index drops in g1 : : : gk/:

Thus, from [3, Theorem 17], � is an ordering-quasimorphism on the free product of
the Gi amalgamated over C with kernel C .

5.2. Ordering quasimorphism computable through rational transducers

We are interested in the situation when an ordering quasimorphism can be computed
through a rational transducer.

Definition 5.5. Let G be a group finitely generated by .X; �/. Let Z be generated by
.¹t�1; tº; �Z/. Let � WG ! Z be an ordering quasimorphism.
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A � -transducer is a rational transducer T with input alphabetX and output alpha-
bet ¹t�1; tº such that

1. G D �.T�1.¹t�1; tº�//,

2. for every w 2 T�1.¹t�1; tº�/, one has that �.�.w// D �Z.T .w//.

In the following proposition we show that groups admitting a � -transducer for an
ordering quasimorphism � have one-counter positive cones.

Proposition 5.6. Let G be a group finitely generated by .X; �/ and � WG ! Z an
ordering quasimorphism with kernel C . If a � -transducer exists, then

P� D ¹g 2 G j �.g/ > 0º

is a 1C-positive cone relative to C .
In particular, if there is a 1C language LC such that �.LC / D PC is a positive

cone for C , then P� [ PC is a 1C positive cone for G.

Proof. By Lemma 5.1, P� is a positive cone relative to C . The language

L D ¹w 2 ¹t�1; tº j ]t .w/ � ]t�1.w/ > 0º

is a one-counter language (see Example 2.6). Let T be a � -transducer. Since the class
of one-counter languages is closed under inverse image of rational transducers (Propo-
sition 2.10 in view of Proposition 2.7), we have that zL D T�1.L/ is a one-counter
language. Now, observe that from the Definition 5.5, we get that �. zL/ D P� .

Finally, suppose that LC is a 1C language such that �.LC / is a positive cone
for C . Since one-counter languages are closed under union, we get that zL [LC is a
one-counter language representing P� [ PC .

Let � be an ordering quasimorphism on a free product constructed as in Exam-
ple 5.4. Our objective now is to construct � -transducer when the free factors have
regular positive cones relative to C . The next lemma will be useful for this construc-
tion.

Lemma 5.7. Let .X; �/ be a finite generating set of G. Suppose that P is a Reg-
positive cone relative to C 6 G.

Then, there exists a non-deterministic finite state automaton MD .� ;X; ı; s0;A/

without �-moves where the set of accepting states A is a disjoint union ADA� tAC

such that the language L� accepted by M�D .� ;X;ı; s0;A�/, and the language LC

accepted by MC D .� ; X; ı; s0;AC/ satisfies that �.L�/ D P�1 and �.LC/ D P .

Proof. By hypothesis, there is a regular language LC DL � X� that evaluates to P .
Moreover, by Lemma 2.12, there is a regular language L��X� that evaluates toP�1.
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s0
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a

a�1

a�1

M� MC

Figure 6. Example of the construction of Lemma 5.7 for Z, which gives an automaton that have
states for recognizing the positive cone and states for recognizing the negative cone.

Now there are non-deterministic finite state automata M� and MC without �-moves
accepting L� and LC, respectively (Remark 2.1). Viewing this automata as directed
graphs, we obtain the desired automaton by identifying the start vertex of M� with
the start vertex of MC and designing that vertex to be s0, the start vertex of M. In
Figure 6 we see an example of this construction.

Proposition 5.8. Let I be a finite set. For each i 2 I , letGi be a group finitely gener-
ated by .Xi ;�i / and assume that allGi have a common finitely generated subgroupC .
Let G denote the free product of the Gi amalgamated over C .

Let .Y; �C / be a finite generating set for C and .X D Y t
F
Xi ; �/ be a gener-

ating set for G where for x 2 Xi we have that �.x/ D �i .x/ and for y 2 Y we have
that �.y/ D �C .y/.

For each i 2 I , assume that Pi is a positive cone relative to C . Suppose that there
is a regular language Li � X

�
i such that �i .Li / D Pi .

Then G has an ordering quasimorphism � WG ! 2Z C 1 [ ¹0º with kernel C
admitting a � -transducer T . Moreover, the following language

T�1
�
¹w 2 ¹t; t�1º� W ]t .w/ � ]t�1.w/ > 0º

�
evaluates onto a positive cone relative to C and it is equal to®

w D wi1 : : : wimz 2 X
�
j it 2 ¹1; : : : ; nº; ij 6D ijC1;

wij 2 LCij [L�ij ; z 2 Y
�; �.�.w// > 0

¯
:

Proof. By the previous Lemma 5.7, there are finite state automata

Mi D
�
�i ; Xi ; ıi ; s0i ;A

�
i tACi

�
for i D 1; : : : ; n, such that the words accepted by Mi on a state from ACi form a
regular language LCi evaluating onto Pi and the words accepted by Mi on a state
from A�i form a regular language L�i evaluating onto P�1i :
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We first construct a non-deterministic finite state automaton M accepting the lan-
guage

L WD
®
w D wi1 : : : wimz 2 X

�
j it 2 ¹1; : : : ; nº; ij 6D ijC1;

wij 2 LCij [L�ij ; z 2 Y
�
¯
:

Then, we will modify this automaton M to produce a � -transducer. An example of this
construction can be found in Figure 7 and might help the reader check the example as
they read the proof.

Note that G � C , the complement of C in G, is equal to �.L/. Note also that by
Example 5.4, ¹w 2L � Y � j �.�.w// > 0º evaluates onto a positive cone relative to C
of G.

We construct M taking the union of the automata Mi , i D 1; 2; : : : ; n with their
transitions and we add an extra start state s0 and a final state f and the following
�-moves:

(I) there is an �-move from s0 to every start state each Mi ;

(II) there is an �-move from each accepting states of Mi to the start state of Mj

with i ¤ j ;

(III) there is an �-move from each accepting states of Mi to f .

The state f is the only accepting state of M. We add loops on f with label y, for
each y 2 Y . It is easy to see that L is accepted by M.

Now we construct a � -transducer T from M by adding some outputs on T D
¹t�1; tº to the �-moves. It will be clear from the construction that the output is a word
in t and t�1 that evaluates into an odd number, unless the input is a word in Y in
which case the output evaluates to 0.

The �-moves of type I do not output any word.
The �-moves of type II output t t if they start on some ACi , i D 1; : : : ; j and go

to the start state of Mj with i <I j . The �-moves of type II output t�1t�1 if they
start on some A�i , i D 1; : : : ; j and go to the start state of Mj with i >I j . The other
�-moves of type II do not output any word. Note that these encode the contributions
of index jumps and drops, and positive syllables and negative syllable as defined in
Example 5.4.

The �-moves of type III output a t if they start on some vertex of ACi and outputs
a t�1 if they start on some vertex of M�i .

It is easy to see that this gives a � -transducer.

From Propositions 5.6 and 5.8, we get the following corollary.

Corollary 5.9. Let A; B be groups admitting Reg-left-orders. Then A � B admits a
1C-left-order.
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a�1

�

s0
� �

��=t�2
a�1

�=t2

�=t �=t

b�1

b�1

a

a b

b

�=t�1 �=t�1

M1 M2

Figure 7. The � -transducer T for F2 D hai � hbi constructed following the proof of Proposi-
tion 5.8. Observe that the three vertices on the left, and the three vertices of the right are copies
of the automaton of Figure 6. Observe also that T�1.¹t; t�1º�/ consists of all reduced words
in ¹a; b; a�1; b�1º.

This corollary is optimal in the view of a result of Hermiller and S̆unić [17] that
says that free products do not admit regular positive cones. We also note that the first
and second authors, together with J. Alonso and J. Brum [1, Theorem 1.6], proved
that certain free products with amalgamation also do not admit regular positive cones.

To introduce an interesting example1 of an amalgamated free product allowing a
1C positive cone, let n;m be two positive integers and consider the group

BS.1;mI 1; n/ WD ha; b; c j aba�1 D bm; aca�1 D cni

Š ha; b j aba�1 D bmi �hai ha; c j aca
�1
D cni:

By Lemma 3.13, BS.1; n/ has Reg-positive cones relative to hai. Therefore by
Proposition 5.8,BS.1;mI1;n/ admits a 1C-positive cone relative to hai and by Propo-
sition 5.6 we get the following.

Corollary 5.10. For n;m � 1, the group BS.1;mI 1; n/ has a 1C-positive cone.

1Actions of BS.1;mI 1; n/ on the closed interval Œ0; 1� have been studied in [7], where it is
showed that BS.1;mI 1; n/ has no faithful action on Œ0; 1� by diffeomorphisms.
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5.3. Embedding theorem

The main result of this section is a construction of a regular left-order on G � Z

starting from an ordering quasimorphism � WG ! Z. We begin describing a positive
cone for G � Z, and then show that it is regular (Theorem 5.12).

Proposition 5.11. Let G be group, C be a subgroup of G, and � WG! 2ZC 1[ ¹0º

be an ordering quasimorphism with kernel C . Let

P D ¹.g; n/ 2 G � Z j �.g/C 2n > 0º:

Then, the set P is a positive cone relative to C � ¹0º for G � Z.

Proof. We define a map � 0WG � Z! Z as � 0..g; n// D �.g/C 2n and show that it
satisfies the conditions of Lemma 5.1. For (i), since �.g/ is odd for every g 2 G � C ,
we get that � 0..g; n// D 0 if and only if g 2 C and n D 0. For (ii), observe that

�� 0..g; n// D ��.g/ � 2n D �.g�1/ � 2n D � 0..g�1;�n//

for all .g; n/ 2 G � Z. Finally, for (iii), observe that

� 0..g; n//C � 0..h;m// � � 0..g�1h�1;�n �m// D �.g/C �.h/ � �.g�1h�1/ � 1

for all .g; n/; .h;m/ 2 G � Z.

Our main theorem is the following.

Theorem 5.12. Let G and � be as in Proposition 5.11. If a � -transducer exists, then
the set P D ¹.g; n/ 2 G � Z j �.g/C 2n > 0º can be represented by a regular lan-
guage.

Note that it is implicit in the hypothesis of the existence of a � -transducer that G
is finitely generated.

Remark 5.13. In the proof of Theorem 5.12 we will make use of the graph descrip-
tions of finite state automata (Remark 2.2) and transducers (Remark 2.9). In the case
of finite state automata we will allow ourselves to label edges by words in the input
alphabet and not just letters. To get a proper automaton, one has to change the edges
labeled by a word w by a path of the length `.w/ whose label is w. This will allow us
to simplify the presentation of the proof.

Proof of Theorem 5.12. Let � 0WG �Z! Z be defined by � 0..g; n//D �.g/C 2n, so
that

P D ¹.g; n/ j � 0..g; n// > 0º:
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Let .X;�/ be a finite generating set forG, and extend it to a generating set .X tZ;�/
ofG �Z, where the elements ofZD¹z;z�1º evaluate to 1 and�1 on Z, respectively.
Let

T D .� ; X; T D ¹t; t�1º; ıT ; s0;A/

be a � -transducer. We will modify T to construct a finite state automaton M accepting
a language L that will evaluate onto P .

We will construct M to have a key property, called the balancing property. To
make the proof easier to follow, we have divided the steps of construction so that
we will first define the features of the automaton unrelated to the balancing property.
Then, we will define the balancing property and show why this property is important.
Finally, we will finish the construction of the automaton such that the balancing prop-
erty is respected. As a visual aid, we remark that Figure 8 exemplifies our construction
starting from the transducer of Figure 7. The reader might find helpful to check these
examples while following the construction.

We construct M as follows. The alphabet of the finite state automaton M isX tZ.
The set of states �M of M is equal to ¹f º [ .� � ¹0; 1º/ where � are the states of T

and f is a new state. The initial state of M is .s0; 0/. The accepting states of M are
the states ¹.˛; 1/ j ˛ 2 Aº [ ¹f º.

The transition function of M is denoted by ıM. The transitions that go to f
are as follows. First, ıM.f; z/ D f (i.e. if a word is accepted, we can keep read-
ing z’s). Second ıM..s0; 0/; z/ D f (i.e. all words of ¹zºC are accepted). We have
that ıM..˛; �/; z/ D f for all � 2 ¹0; 1º and ˛ 2 A.

There are no more transitions from the state f or going to the state f .
We will complete the construction of M such that the following property holds.

Balancing property. For w 2 .X tZ/�, s 2 � and � 2 ¹0; 1º, we have that .s; �/ 2
ıM..s0; 0/; w/ implies that � 0.�.w// D �.

Assuming the Balancing property we see that M only accepts words that represent
elements ofP . Indeed, if a wordw is accepted at the accepting state .˛;1/with ˛ 2A,
then by the Balancing property we have that � 0.�.w//D 1, so �.w/ 2P . On the other
hand, if w is accepted at the accepting state ¹f º, then, since all the edges in M that
end in the accepting state ¹f º have label z, we can assume that w is of the form w0zn

where w0 does not end with z. Now, by the construction of transitions to ¹f º, we see
that f … ıM..s0; 0/;w

0/. Suppose that .s; �/ 2 ıM..s0; 0/;w
0/ for some s 2 � . By the

Balancing property we have that � 0.�.w0// D � 2 ¹0; 1º, so

� 0.�.w// D � 0.�.w0zn// D � 0.�.w0//C 2n > 0:

This implies that �.w/ 2 P as well, and therefore that �.L/ � P .
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We now define the other transitions so that the Balancing property is satisfied.
Recall that ıT , the transition function of T , is of the form

ıT W � �X ! Finite Subsets.� � T �/:

We use �T to denote the evaluation from T � D ¹t; t�1º� to Z. Recall our convention
of Remark 5.13 as we will define the new transitions of M as edges labeled by words.
For each � 2 ¹0; 1º, s 2 � and x 2 X [ ¹�º, and each edge in T from s to r with
label x=u we now define a corresponding edge in M starting from .s; �/ and ending
in .r; �0/with label xv. The number �0 2 ¹0;1º and the word v 2Z� are defined below
depending on the values of �T .u/ and �.

Suppose that �T .u/D 2kC � with � 2 ¹0; 1º. We would like to have the property
that �0 D �T .u/C �C 2�Z.v/: To do so, we define �0 and v as follows:

� if � D 0 then �0 D � and v D z�k ,

� if � D 1 and � D 0 then �0 D 1 and v D z�k ,

� if � D 1 and � D 1 then �0 D 0 and v D z�k�1.

Note that when we write z�k , we mean the word inZ which is either a k-repetition
of z or z�1.

There are no more states or transitions (i.e. the transitions not described go to the
empty set) and this completes the description of M.

We now check that the Balancing property holds. Let w 2 .X tZ/� and .˛; �/ 2
ıM ..s0; 0/;w/. Then w is the label of a path in M from .s0; 0/ to .˛; �/. As each label
of each edge of M is of the form xv with x 2 X [ ¹�º and v 2 ¹z; z�1º�, we can
write w as x1v1x2v2 : : : x`v` 2 L such that xi 2 X [ ¹�º, vi 2 Z�, and the sequence
.xivi /i is the sequence of the labels of the edges in the path in M defined by w. We
check the Balancing property by induction on `.

For ` D 1, we have that x1v1 labels an edge of M starting at .s0; 0/ and ends
in some .s; �/. Such edge comes from an edge in T from s0 with label x1=u to s.
Moreover, we have that if �T .u/ D 2k C � with � 2 ¹0; 1º then v1 D z�k and � D �.
Observe that

� 0.�.w// D � 0.�.x1v1// D �.�.x1// � 2k D 2k C � � 2k D �:

We now show that the case ` implies the case ` C 1. By induction hypothesis
.s; �/ 2 ıM..s0; 0/; x1v1 : : : x`v`/ and � 0.�.x1v1 : : : x`v`// D �. Then, x`C1v`C1
labels and edge of M starting at .s; �/ and ends in some .s0; �0/. Such edge comes
from an edge in T from s with label x`C1=u to s0. If �T .u/D 2k C � with � 2 ¹0; 1º,
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then v`C1 and �0 are determined by �, � and k. We have

� 0.�.w// D �.�.x1x2 : : : x`x`C1//C 2�Z.v1 : : : v`C1/

D �.�.x1x2 : : : x`//C �T .u/C 2�Z.v1 : : : v`/C 2�Z.v`C1/

D �C �T .u/C 2�Z.v`C1/ D �
0:

Therefore, the balancing property holds.
Let L be the language accepted by M. It was observed in the paragraph after

defining the Balancing property that �.L/ � P .
On the other hand, to see that P � �.L/, observe first that given .g; n/ 2 P there

is some w 2 T�1.T �/ such that �X .w/ D g. Suppose that a possible way for T to
process w D x1 : : : x` is a sequence of states of T with outputs in T � as follows

s0; .s1; u1/ 2 ıT .s0; x1/; .s2; u2/ 2 ıT .s1; x2/; : : : ; .s`; u`/ 2 ıT .s`�1; x`/

with si 2 � . Consider the word

w0 D x1z
�1x2z

�2 : : : x`z
�`

and the sequence
�0 D 0; �1; : : : ; �` in ¹0; 1º;

where the �i ’s and �i ’s are determined by

�iC1 D �.�.x1 : : : xi //C �i C 2.�1 C � � � C �i /:

Then, by the definition of the transitions of M we see that, .siC1; �iC1/ is the end
point of an edge of M from .si ; �i / with label xiC1z�iC1.

Let now m D n �
P
�i . Observe first that �.w0zm/ D .g; n/. Indeed,

�.w0zm/ D �.x1 : : : x`/�.z
�1 : : : z�`zm/ D

�
g;mC

X
�i

�
D .g; n/:

Finally, observe that w0zm 2L. By the Balancing property and construction of w0 we
have that .s`; �`/ 2 ıM..s0; 0/; w

0/ with � 0.�.w0// D �` 2 ¹0; 1º. As .g; n/ 2 P and

� 0..g; n// D � 0.�.w0//C 2m D �` C 2m > 0;

we have that m � 0 if �` D 1 and m > 1 if �` D 0. We have that if m D 0, .s`; �`/ is
an accepting state and if m > 0, then ıM..s`; �`/; z

m/ D f . In either case,

ıM..s`; �`/; z
m/ � ıM..s0; 0/; w

0zm/

contains an accepting state and w0zm 2 L.
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Figure 8. A finite state automaton for F2 � Z. It looks similar to Figure 7, with each state
doubled and extra arrows added. The state .s0; 1/ could have been deleted as it has no incoming
arrow, but we have chosen to keep it in the picture as it is an state and arrows that appear from
the construction.

Theorem 5.14. Let G1;G2; : : : ;Gn be finitely generated groups with a common sub-
group C such that each Gi admits a Reg-positive cone relative to C and C admits a
Reg-positive cone. Let G be the free product of the Gi ’s amalgamated over C . Then
G � Z admits a Reg-left-order.

Proof. By Proposition 5.8, G admits a � -transducer where � is an ordering quasi-
morphism � WG ! 2ZC 1 [ ¹0º with kernel C . Now by Theorem 5.12, G � Z has
Reg-positive relative to C � ¹0º. Finally, since C Š C � ¹0º has Reg-positive cones,
we get from Lemma 2.21 that G � Z has relative positive cones.

Corollary 5.15. Let A; B be groups admitting Reg-left-orders. Then .A � B/ � Z

admits Reg-left-orders.

Also from the previous theorem, and by the discussion prior to Corollary 5.10, we
have the following.

Corollary 5.16. For n;m � 1, the group BS.1;mI1; n/�Z has a Reg-positive cone.
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Another interesting application of the results of this paper, is the following.

Theorem 5.17. Suppose thatG is a (non-abelian finitely generated free)-by-Z group.
Then, no lexicographic left-order � on G where Z leads is regular. However, there
is a lexicographic left-order on G where Z leads that is one-counter and extends to
regular left-order on G � Z.

Proof. From Proposition 4.3, if G admits a regular lexicographic left-order where Z

leads, then there will be a regular order on a finitely generated free group, contradict-
ing the theorem of Hermiller and S̆unić [17] that says that non-abelian free groups do
not admit regular positive cones.

Suppose that f WG ! Z is a surjective homomorphism with kernel Fn, a free
group of rank n. By Proposition 5.8 (see also [32,33]), there is an ordering-quasimor-
phism � WFn ! 2ZC 1 [ ¹0º with trivial kernel admitting a � -transducer. By Propo-
sition 5.6, Fn admits a one-counter positive cone, and by Proposition 3.3, since Z has
regular orders, G has a one-counter positive cone.

By Theorem 5.14, we see thatFn �Z has a regular positive cone. Note thatFn �Z

is the kernel of zf WG � Z! Z given by .g; n/ 7! f .g/. As Z has regular positive
cones, Proposition 3.3 guaranties thatG �Z has regular positive that is lexicographic
with leading factor the quotient, when viewing G � Z as a (Fn � Z)-by-Z extension.
The restriction of this order on G is still lexicographic.

Some families of groups that are known to be (finitely-generated free)-by-cyclic
are provided in the next corollary. We first recall the notion of Artin group.

Definition 5.18 (Artin groups and defining graphs). Let � be a finite simplicial graph
with edges labeled by integers greater or equal to two. We associate to � a groupA.�/
whose presentation has generators corresponding to the vertices of � and the relations
are of the form

aba : : :„ ƒ‚ …
n letters

D bab : : :„ ƒ‚ …
n letters

;

where ¹a; bº is an edge of � labeled with n. The graph � is called the defining graph
of the Artin group A.�/.

Corollary 5.19. LetA.�/ be an Artin group whose defining graph � is a tree. ThenG
has one-counter left-orders and G � Z has regular left-orders.

Proof. By a result of Hermiller and Meier [16], A.�/ admits a short exact sequence
of the form

1! Fm ! A.�/! Z! 1

(and in fact, m D
P
ei2�

.ni � 1/, where ni is the label of the edge ei ). Hence, A.�/
falls into the hypothesis of Theorem 5.17 and the conclusion follows.



Y. Antolín, C. Rivas, and H. L. Su 306

Definition 5.20. A right-angled Artin group is an Artin group whose defining graph
only has edges with label 2.

Corollary 5.21. Let G be a right-angled Artin group based on a connected graph
with no induced subgraph isomorphic to C4 (the cycle with 4 edges) or L3 (the line
with 3 edges). Then G has regular left-orders.

Proof. The proof is by induction on the size of the defining graph � . If the graph has
one vertex, thenGŠZ and we know that Z only has regular left-orders. Now suppose
that the defining graph has more than one vertex. Droms [13, Lemma] observed that
in that case there is a vertex connected to all other vertex of the graph � . That is
G Š Z �H where H is right-angled Artin group based on a graph � 0 that contains
no induced subgraph isomorphic to C4 or L3. Note that � 0 has fewer vertices that � .
Then, by induction, each connected component of � 0 defines a subgroup ofH that has
regular left-orders. If � 0 is connected, then H has regular left-orders and so does G.
If � 0 is not connected, then H D A.� 0/ is a free product of groups having regular
left-orders. By Proposition 5.8 and Theorem 5.12 we get that H � Z has regular left-
orders.

Remark 5.22. It follows from [17, Theorem 4], that there is no positive cone P on
a right-angled Artin group defined over a graph of diameter � 3 such the set of all
geodesic words in the standard generating set that represent elements of P form a
regular language.

We remark that all the defining graphs of considered in Corollary 5.21 have diam-
eter at most two. We also point out that the words of the regular left-orders constructed
for F2 � Z do not induce (uniformly quasi)-geodesic paths.

A. preimages of positive cones

In this appendix, we explore the following definition.

Definition A.1. Let C be a class of languages. Let G be a group finitely generated
by .X; �/ and � a left-order on G. We say that � is a C -preimage left-order if the
language ��1.P�/ 2 C .

Note that the difference between a C -left-order and a C -preimage left-order is that
given an element g 2 P�, a C -left-order does not contain all words which map to g,
but has at least one. For a given class C , a left-order might be a C -left-order but not
a C -preimage left-order. In fact, for the lower classes in the Chomsky hierarchy such
as Reg and CF, we will see that there are few examples of C -preimage left-orders.
On the other hand, for the class of recursively enumerable languages, the highest in
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the Chomsky hierarchy, we will see that admitting a C -left-order and is equivalent to
admitting C -preimage left-orders if G is finitely presented.

The first observation follows from Lemma 2.11.

Lemma A.2. If C is class of languages closed under inverse homomorphisms, then
having a C -preimage left-order is independent of generating set.

One of the advantages of studying C -preimage left-orders compared to C -left-
orders is that being a C -preimage left-order is preserved when passing to subgroups.

Lemma A.3. Let C a class of languages closed under inverse homomorphism and
intersection with regular languages. LetH be a finitely generated subgroup ofG. If�
is a C -preimage left-order on G then the induced order on H is also a C -preimage
left-order.

Proof. By the previous lemma, we can assume that we have a finite generating set
.X; �/ of G, and that there is a subset of Y of X such that .Y; �Y D �jY �/ is a
generating set for H . Thus, if P is a positive cone of G with ��1.P / in the class C ,
we get that ��1Y .H \ P / D ��1.P / \ Y � is in C .

Now we will see that the classes of Reg-preimage left-orders and CF-preimage
orders are quite limited.

Let .X; �/ be a finite generating set of a group G. Recall that the set

WP.G;X/ D ¹w 2 X� W �.w/ D 1º D ��1
�
¹1º
�

is called the the word problem of G (with respect to X ). A classic result due to
Anisimov [2] states that WP.G;X/ is regular if and only if G is finite.

Proposition A.4. A finitely generated group G has a Reg-preimage left-order if and
only if it is trivial.

Proof. Let .X;�/ be finite generating set forG. IfG is trivial, the positive cone is the
empty set.

Suppose that P is a Reg-preimage positive cone. That is, ��1.P / is a regular
language. By Lemma 2.12, we have that ��1.P�1/ is also a regular language. Since
WP.G; X/ D X� n .��1.P�1/ [ ��1.P //, we get that WP.G; X/ is regular, and
by Anisimov’s theorem G must be finite. Finally, a finite left-orderable groups must
be trivial.

We now move on to the case of CF-preimage left-orders. We start showing that
this class contains free groups.

Proposition A.5. Finitely generated free groups have a CF-preimage left-orders.
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Proof. Let F be a finitely generated free group with generating set X . From Corol-
lary 5.9 there exists a 1C-language L � X� representing the positive cone P of F . In
fact, L can be taken to be a sublanguage of reduced words overX (see Proposition 5.8
or Figure 7 for the rank 2 free group case).

Let e be a symbol disjoint from X . Define �W .X [ ¹eº/�! X� to be the monoid
homomorphism sending e to the empty word. Then ��1.L/ is the language of words
in w 2 L with arbitrary insertions of symbols e in between its letters. Let s be a
substitution (in the sense of Hopcroft, Motwani, and Ullman [19]) such that s.e/ D
WP.F /, meaning we replace the symbol e with a word over X which is equal to the
identity in F , and s.x/ D x for x 2 X otherwise.

We claim that s.��1.L// is a context-free language which is the preimage of P
under �X . The language is context-free by closure properties of context-free lan-
guages under substitution and inverse homomorphism (see, for example, [19, The-
orems 7.23 and 7.30]). Moreover, �X .s.��1.L/// D �X .L/ by construction, as each
e-substitution is a word which is equal to the identity. Therefore,

s.��1.L// � ��1X .P /:

For the converse, observe that for every positive element g 2 P , there is a reduced
word in w 2 L such that �.w/ D g. The preimage of g under the evaluation map �X
is w with arbitrarily many insertion of words which are equal to the identity. There-
fore, ��1X .g/ 2 s.��1.L//, so

��1.P / � s.��1.L//:

However, the class of CF-preimage left-orders is still very limited. Indeed, all
finitely generated abelian subgroups of a group admitting a CF-preimage positive cone
must be cyclic.

Proposition A.6. Z2 does not have CF-preimage left-orders. In particular, if G has a
CF-preimage left-order, then it does not contain Z2 as a subgroup.

Proof. Positive cones of Z2 are very well understood. See for example [11, Sec-
tion 1.2.1] and references therein. We view Z2 as subspace of R2. A positive cone
in Z2 is determined by a line in R2 through the origin, and then selecting one of the
half-space (excluding the origin) delimited by the line. If the slope of the line is ratio-
nal, causing some elements of Z2 to lie on the line, then one has to choose half of the
line (starting from but excluding the origin) to be in the positive cone as well.

By Lemma A.2 we may choose any generating set of Z2 for this proof. Take a
and b to be standard basis vectors, in the x and y direction respectively. We use A
and B to denote a�1 and b�1, respectively.
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Figure 9. Z2 with rational line and choices of orientation.

Suppose that the half-space defining the positive cone is y > �x, where � 2 R.
The case y< �x is analogous. If � 2Q, we choose yD �x, x> 0 to be in the positive
cone. Again, the case x < 0 is analogous.

Therefore, we can assume that words evaluating to the positive cone consists on®
w 2 ¹a; b; A;Bº� j either .]b.w/ � ]B.w// > �.]a.w/ � ]A.w//

or ..]b.w/ � ]B.w// D �.]a.w/ � ]A.w// and .]a.w/ � ]A.w// > 0/
¯
:

Suppose the previous set is a CF language. Then if we take the intersection with
the regular language a�b�A�B�, we get that

L D
®
a˛bˇA
Bı j .ˇ � ı/ > �.˛ � 
/ or ..ˇ � ı/ D �.˛ � 
/ and .˛ � 
/ > 0/

¯
is CF. We now use the pumping lemma for CF-languages (see [19] for example) to
derive a contradiction. Suppose that the pumping length is p and take a word s D
acbdAeBf 2L with c;d;e;f > p. The pumping lemma says that s can be factorized
as s D uvwxy (i.e. u; v; w; x; y are all subwords of s), with `.vwx/ � p, and with
at least v or x is non-empty, such that for all i � 0, uviwxiy belongs to L. Let
v D �.v/C �.x/ be a vector in Z2. Let p D �.s/ a point of Z2. Note that the points
�.uviwxiy/ for i � 0 lie on the line L D ¹pC �v W � 2 Rº that goes through �.s/
and there are points �.uviwxiy/ on both sides of L n ¹�.s/º, for instance �.uwy/
and �.uv2wx2y/. Remark that the line L has rational slope.

Now take s D acbdAeBf with c; d; e; f > p and such that �.s/ is very close to
the line yD �x (or on the line if � is rational) and with the property that for any lineL
going through �.s/ there is a half-line of L n ¹�.s/º such that all rational points on
this half-line are outside of P . If � is not rational, then we can find such point �.s/
by taking a rational approximation of �. If � is rational, we take �.s/ to be the first
point with integer coordinates on the set ¹.x; y/ j y D �x; x > 0º.

Then for that s, some choice of i on the pumping lemma will give an element not
in L. Indeed, evaluating pumped words with i D 0 and i D 2, we get two different
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points on Z2 that lie on a line going through �.s/, and moreover these points lie in
different components of the line minus �.s/, thus some of them are in the negative
cone. This gives the desired contradiction.

From Lemma A.3 we get that no group with CF-preimage left-orders can con-
tain Z2.

The celebrated result of Muller and Schupp [25] states that the word problem of a
group is context-free if and only if G is virtually free. Unfortunately, the argument of
Lemma A.4, does not generalize directly to context-free languages, since this class is
not closed under complement. Thus, it is natural to ask the following.

Problem A.7. Is there a non-free group admitting a CF-preimage left-order?

A simpler, but related question is the following.

Problem A.8. Is there a non-cyclic group admitting a 1C-preimage left-order?

Recall that the class of languages that are complements of a context-free languages
are called co-context-free and we denote it by co-CF. The class of groups for which
WP.G;X/ is co-CFwas first studied by Holt, Rees, Röver, and Thomas [18]. We have
the following easy observation.

Proposition A.9. Let G be finitely generated group with CF-preimage left-orders.
Then the word problem of G is in the class co-CF .

Proof. Since CF is closed under reversal and homomorphisms, we get that the full
language of�-negative words is CF. Since the class CF is closed under union,WP.G/
is co-CF .

The class of groups of co-CF word problem is closed by taking finite direct prod-
ucts, taking restricted standard wreath products˚H ÌQ withQ having context-free
word problem, passing to finitely generated subgroups, and passing to finite index
overgroups [18]. In [18, Theorem 13] it is also shown that a Baumslag–Solitar group
has a co-CF word problem if and only if it is virtually abelian. Thus, we obtain the
following.

Corollary A.10. Baumslag–Solitar groups do not admit CF-preimage left-orders.

Note that Z2 embeds into every Baumslag–Solitar group, except BS.1; n/ with
n ¤ ˙1 [22, Proposition 7.11]. Thus, Corollary A.10 does not follow from Proposi-
tion A.6 on the solvable case.

Lehnert and Schweitzer [21] showed that Thompson’s group V has co-CF word
problem, and a conjecture of Lehnert can be formulated as all groups with co-CF word
problem are finitely generated subgroups of V [6]. Thus, a potential place to look for
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examples of groups with CF-preimage left-orders are left-orderable subgroups of V
that do not contain Z2.

Positive cones whose preimage is recursively enumerable. We now recall some
definitions and results that we will need.

Definition A.11. A recursively enumerable language is a formal language for which
there exists a Turing machine which enumerates all accepted strings of the language.
We denote the family of recursively enumerable languages by RE.

We will not give a formal definition of a Turing machine. It can be found in [19],
for example. We will use that if L is RE is recursively enumerable, then there is an
algorithm that lists all elements of L. On the other hand, if there is an algorithm that
decides if a given word w is in L, then L is in RE. Note that for such algorithm, on an
input w 2 L always halts and decides correctly, where for w 62 L it never says that w
lies in L but it might not halt (thus we cannot deduce that w does not belong to L in
that case).

The following is well known; see [19].

Proposition A.12. The class RE is a full AFL and it is closed under reversal.

Recall that a group is recursively presented if it admits a presentation hX j Ri,
where X is finite and R is a recursively enumerable language over X�.

We now observe the following.

Lemma A.13. Let G be a recursively presentable group. Then G admits RE-left-
orders if and only if it admits RE-preimage left-orders.

Proof. Let .X; �X / be a finite generating set of a group G. If � is a RE-preimage
left-order, then � is a RE left-order.

Assume that � is a RE left-order and let P be the corresponding positive cone.
Let L � X� be in RE so that �.L/ D P . Since G is recursively presented, the word
problem WP.G;X/ WD ��1.¹1º/, is in RE.

Let w 2 X� such that �.w/ 2 P . Then there is u 2L such that �.w/D �.u/ and
therefore, wu�1 2 WP.G; X/. This implies that w DF.X/ vu with v 2 WP.G; X/
and u 2 L, where the equality is as group elements of the free group, not as words.

Since WP.G; X/ � L is recursively enumerable, and freely reducing words can
be computed by a Turing machine, we can decide if w 2 ��1.P / by checking if the
freely reduced version of w is equal to a freely reduced version of some word in
WP.G;X/ �L whose elements can be listed by an algorithm.

We note the following special case.

Corollary A.14. If G is recursively presented and has a RE-left-order, then G has
solvable word problem.
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Proof. Recall that having solvable word problem is independent of generating sets.
Fix .X; �/ a generating set for G. We need to show that if L � X is a RE language
representing a positive cone, andG is recursively presented, then there is an algorithm
that decides if given a word in the generators, this word represents the trivial element
or not.

For a recursively presented group, WP.G;X/ D ��1.¹1º/ is RE.
Since the class of recursively enumerable languages are closed under reversal and

homomorphism and union (see Proposition 2.7), using Lemma 2.12, it is easy to see
that there is a recursively enumerable language over X , such that ��1.P t P�1/
is RE.

Thus, given a word, we can check if it belongs to ��1.¹1º/ or to ��1.G n ¹1º/
since both are recursively enumerable languages, and hence the word problem is solv-
able.

We note that the converse of Corollary A.14 is false. First, not all left-orderable
groups admit RE-left-orders. This has been recently proved by Harrison–Trainor [15]
for left-orderable groups and, in the bi-orderable case by Darbinyan [10]. More-
over, the lack of RE-left-orders is not related to the solvability of the word problem
since [10, Corollary 2] says that there exists a finitely presentable left-orderable group
with solvable word problem and without RE-left-orders.
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