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On additive bases in infinite abelian semigroups

Pierre-Yves Bienvenu, Benjamin Girard, and Thái Hoàng Lê

Abstract. Building on previous work by Lambert, Plagne and the third author, we study various
aspects of the behavior of additive bases in infinite abelian groups and semigroups. We show
that, for every infinite abelian group T , the number of essential subsets of any additive basis
is finite, and also that the number of essential subsets of cardinality k contained in an additive
basis of order at most h can be bounded in terms of h and k alone. These results extend the reach
of two theorems, one due to Deschamps and Farhi and the other to Hegarty, bearing upon N.
Also, using invariant means, we address a classical problem, initiated by Erdős and Graham and
then generalized by Nash and Nathanson both in the case of N, of estimating the maximal order
XT .h; k/ that a basis of cocardinality k contained in an additive basis of order at most h can
have. Among other results, we prove that XT .h; k/ D O.h

2kC1/ for every integer k � 1. This
result is new even in the case where k D 1. Besides the maximal order XT .h; k/, the typical
order ST .h; k/ is also studied. Our methods actually apply to a wider class of infinite abelian
semigroups, thus unifying in a single axiomatic frame the theory of additive bases in N and in
abelian groups.

1. Introduction

Let .T;C/ be an abelian semigroup. If A; B are two subsets of T whose symmetric
difference is finite, we write A � B . Also if A nB is finite, we write A �

�
B . Further,

the Minkowski sum of A and B is defined as ¹a C b W .a; b/ 2 A � Bº and denoted
by AC B . For every integer h � 1, the Minkowski sum of h copies of A is denoted
by hA. By Œh�, we mean ¹1; 2; : : : ; hº.

A subset A of T is called an additive basis of T , or just a basis of T for brevity,
whenever there exists an integer h � 1 for which all but finitely many elements of T
can be represented as the sum of exactly h (not necessarily distinct) elements of A.
In other words, A is a basis of T if and only if hA � T for some h � 1. Further we
define k � A to be the set ¹kx W x 2 Aº � kA. Thus .2 � N/C 3 is not a basis of N,
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but .2 �N/[ ¹3º is. The smallest possible integer h � 1 in the definition above is then
denoted by ord�T .A/ and is called the order of A over T . If A is not a basis of T , then
we set ord�T .A/ D 1. Note that what we call a basis is sometimes referred to as a
“basis with an exact order” (and our order as the exact order).

The study of additive bases already has a rich history, especially in the special case
where T is the semigroup N of nonnegative integers; it originated in additive number
theory, motivated by Goldbach-type problems, and became a topic of research in its
own right; the reader is referred to the surveys [12, 23]. Some of the most natural and
widely open problems in the area happen to deal with the “robustness" of this notion,
an active area of research at least since Erdős and Graham [8, 9]: what happens when
one removes a finite subset from a basis? Does it remain a basis, and if so what
happens to the order of the basis? Lambert, Plagne and the third author [19] initiated
the systematic study of these questions in general infinite abelian groups, when the
removed subset is a singleton, and obtained partial results. The present paper expands
on these results, and generalizes them to arbitrary finite subsets. Note that when A is
a basis of order h of an infinite abelian group G and x 2 A, letting B D A n ¹xº, the
set B 0 D B � x is a weak basis in the sense that

Sh
iD0 iB

0 � G. This property, which
was systematically used in [19] to derive properties of B , vanishes when one removes
more than one element.

We now proceed to describe our results.

1.1. Essential subsets and the function ET .h; k/

Let A be an additive basis of T . A subset F � A such that A n F is no longer an
additive basis of T is called an exceptional subset of A. Observe that any subset of A
containing an exceptional subset of A is exceptional itself. This last observation moti-
vates the following definition. An exceptional subset which is minimal with respect to
inclusion will be called an essentiality of A. A finite essentiality is called an essential
subset. For instance A D ¹1; 2; 3º [ .6 � N/ is a basis of order 3 of N, where ¹1; 2; 6º
is exceptional but not essential, the essential subsets are ¹1; 3º and ¹1; 2º, whereas ¹2º
is not exceptional (but its removal increases the order).

This notion was introduced by Deschamps and Farhi and, in the special case where
T D N, they showed that the number of essential subsets in any given basis must be
finite [6, Théorème 10]. Lambert, Plagne and the third author proved that this holds in
any infinite abelian group for essential subsets of cardinality one (also called excep-
tional elements) [19]. We generalize this latter result to arbitrary essential subsets,
thus proving a Deschamps–Farhi theorem in infinite abelian groups.

Theorem 1. Every basis of an infinite abelian group G has finitely many essential
subsets.
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Deschamps–Farhi’s method is specific to N, so we develop a new argument using
the quotients of the group. To put the theorem above into perspective, we recall that,
as proved by Lambert, Plagne and the third author, additive bases abound in infinite
abelian groups, since every such group admits at least one additive basis of every
possible order h � 1 (see [19, Theorem 1]).

Going back to the special case where T D N, Deschamps and Farhi observed
that, for every integer h � 2, additive bases of order at most h can have an arbitrarily
large number of essential subsets. However, the situation changes drastically when we
restrict our attention to the number of essential subsets of cardinality k that a basis of
order at most h can have. Indeed, for any infinite abelian semigroup .T;C/ and any
integers h; k � 1, let us define

ET .h; k/ D max
A�T
hA�T

j¹F � A W F is essential and jF j D kºj;

and set ET .h/ D ET .h; 1/. We also introduce the variant ET .h;� k/, defined identi-
cally except that the condition jF j D k is relaxed into jF j � k, so

ET .h; k/ � ET .h;� k/:

The function EN.h/ was introduced and first studied by Grekos [10] who proved
that EN.h/ � h � 1, which was later refined in [7]. For their part, Deschamps and
Farhi asked if the function EN took only finite values [6, Problème 1]. This was later
confirmed by Hegarty [16, Theorem 2.2], who went on and obtained several asymp-
totic results such as

EN.h; k/ � .h � 1/
log k

log log k
(1)

for any fixed h � 1 as k tends to infinity, and

EN.h; k/ �k

�
hk

log h

� 1
kC1

(2)

for any fixed k � 1 as h tends to infinity [17, Theorems 1.1 and 1.2]. His results actu-
ally also hold forEN.h;� k/. However, it is still an open problem to know whether, for
all k � 1, there exists a constant cN;k > 0 such thatEN.h;k/� cN;k.h

k= logh/1=.kC1/

as h tends to infinity; so far it is only known for k D 1 thanks to Plagne [24].
In the framework of infinite abelian semigroups, far less is known concerning the

function ET .h; k/. In [19, Theorem 2], Lambert, Plagne and the third author proved
that EG.h/ � h � 1 for every infinite abelian group G and every integer h � 1, and
also that, as far as infinite abelian groups are concerned, this inequality is best possible
for all h � 1. However, beyond this result and the fact that EG.1; k/ D 0 holds by
definition, even the finiteness of EG.h; k/ when h; k � 2 was left to be established.
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We do so in this paper, even bounding EG.h; k/ uniformly in G. We actually give
three bounds, corresponding to the two asymptotic regimes where h or k is large, and
the special case h D 2.

Theorem 2. Let G be an infinite abelian group.

(i) For any fixed k � 1, for any h � 2 the bound EG.h; k/�k h
k holds.

(ii) For any fixed h � 2, for any k � 2 we have EG.h; k/�h .k log k/h�1.

(iii) For h D 2, we have EG.2; k/ � 2k � 1.

We will actually bound EG.h;� k/ which is at least as large as EG.h; k/. Our
proof reveals the intimate link between the function EG and the set of finite quotients
of G. Thus our methods rely on the theory of finite abelian groups, including duality.
As our next theorem shows, there are no nontrivial universal lower bounds for EG ;
thus, notwithstanding the just stated universal upper bounds, the functionEG depends
greatly on the structure of G, more precisely on its finite quotients.

Theorem 3. Let G be an infinite abelian group.

(i) The function EG is trivial (i.e., EG.h; k/ D 0 for all h; k) if, and only if, G
contains no proper finite index subgroups.

(ii) If G admits .Z=2Z/d as quotient for any d � 1, then we have EG.h; k/ �
.h � 1/.2k � 1/ for any h and infinitely many k.

Therefore, EG D 0 whenever G is a divisible group such as R or Q (i.e., for any
x 2 G; n 2 N>0 there exists y 2 G such that x D ny), whereas EG grows at least
linearly in h and in k when G is (the additive group of) ZN or F2Œt � for instance.
This contrasts sharply with EN in view of the estimates (1) and (2). Also note that,
when paired with Theorem 2 (iii), item (ii) yields a good understanding of EG.2; k/.
Finally, the method we used to prove item (ii) still applies when .Z=2Z/d is replaced
by any finite abelian group (see Propositions 23 and 24), even though the quality of
the bound may no longer be close to optimal (see Proposition 25).

1.2. Regular subsets and the function XT .h; k/

Let T be an infinite abelian semigroup. Let A be an additive basis of T such that
ord�T .A/ � h. What can be said about ord�T .A n F / for those subsets F � A such that
A n F remains an additive basis of T ? Such an F � A is called a regular subset of A.
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To tackle this problem, we define the function1

XT .h; k/ D max
A�T
hA�T

¹ord�T .A n F / W F � A;F is regular and jF j D kº;

and set XT .h/ D XT .h; 1/.
In other words,XT .h;k/ is the maximum order of a basis of T obtained by remov-

ing a regular subset of cardinality k from a basis of order at most h of T .
The function XN.h/ was introduced by Erdős and Graham in [9] under another

name and under this name by Grekos [10, 11]. It is known that

XN.h/ � h
2; (3)

see [22] for the best currently known bounds. A conjecture of Erdős and Graham [8]
asserting that XN.h/ � dNh

2 for some absolute constant dN > 0 as h tends to infinity
still stands to this day.

The function XN.h; k/ was first introduced by Nathanson [21]. For fixed k � 1
and h!1, Nash and Nathanson [20, Theorem 4] proved that

XN.h; k/ �k h
kC1: (4)

Their proof also yields XN.h; k/�h k
h for any fixed h � 1 and k !1. For a more

detailed account and more precise estimates of XN.h; k/, we refer the reader to the
survey [18].

In the context of infinite abelian groups, Lambert, Plagne and the third author [19,
Theorem 3] proved that, for a rather large class of infinite abelian groups G (includ-
ing Zd , any divisible group and the group Zp of p-adic integers), one has

XG.h/ D OG.h
2/: (5)

However, the techniques do not carry over from these particular groups to arbitrary
infinite abelian groups and, until now, it was not even known whether XG.h/ is finite
for all infinite abelian groupsG and integers h� 1. We now confirm that this is indeed
the case and prove a Nash–Nathanson theorem in groups.

Theorem 4. For any infinite abelian group G and integer k � 1, we have

XG.h; k/ �
h2kC1

kŠ2
.1C ok.1//

as h tends to infinity.

1In N, this function is also denoted by Gk.h/ in the literature. Our notation accommodates
the fact that we will be working with an infinite abelian group denoted by G, and also unifies
different notations for the cases k D 1 and k > 1.
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This bound may well not be optimal. In fact, if A is a basis of order h of G and
B � A a basis of cocardinality k, we find that B � B is a basis of order O.hkC1/,
which is optimal. In the regime where h is fixed and k tends to infinity, we find that
XG.h; k/ �

hk2h

hŠ2
.1C oh.1// holds.

Nash–Nathanson’s proof of (4) uses Kneser’s theorem2 on the lower asymptotic
density of sumsets in N. Now such a theorem is not available in every infinite abelian
semigroup T . Our main tool in proving Theorem 4 will be invariant means, that is,
translation-invariant nonnegative functionals of norm 1 on l1.T / (see Section 2.4 for
a precise definition). When restricted to indicator functions on T , an invariant mean
gives rise to a “density” which is some sort of probability measure, albeit being only
finitely additive. This notion of density is similar in many ways to the asymptotic
density, but it is defined abstractly and it is less straightforward to infer properties of a
set from its density. In [19, Theorem 7], invariant means were already used, but their
use in the study ofXT is new. We believe that invariant means will become part of the
standard toolbox to study additive problems in abelian semigroups.

Imposing specific conditions on the semigroup T allows one to control the func-
tion XT .h; k/ more finely. We found a class of abelian groups for which a bound of
the shape (4) may be achieved. We say that a group G is � -finite if there exists a
nondecreasing sequence .Gn/n2N of subgroups such that G D

S
n�0 Gn. Examples

include .C Œx�;C/ for any finite abelian group C or
S
n�1 Udn

where Uk is the group
of k-th roots of unity and .dn/n�1 is a sequence of integers satisfying dn j dnC1 for
any n� 1; the latter example includes the so-called Prüfer p-groups Up1 . Combining
a result of Hamidoune and Rødseth [15] on this class of groups with the argument of
Nash and Nathanson, we will prove the following bound.

Theorem 5. Let G be an infinite � -finite abelian group. Then

XG.h; k/ � 2
hkC1

kŠ
CO.hk/:

In [19, Theorem 5], it was shown that for infinite abelian groups G having a fixed
exponent p, where p is prime, XG.h/ is in fact linear in h:

2hCOp.1/ � XG.h/ � phCOp.1/:

We now extend this to all infinite abelian groups having a prime power as an exponent,
and show the same phenomenon for XG.h; k/.

Theorem 6. Let G be an infinite abelian group of finite exponent `. Then the follow-
ing two statements hold:

2This is not the same as, but related to, Kneser’s well known theorem on the cardinality of
the sumset of two finite sets in an abelian group (see for instance [25, Theorem 5.5]).



On additive bases in infinite abelian semigroups 7

(1) XG.h; k/ � `2k.hC 1/ � `k C h.

(2) If ` is a prime power, then XG.h/ � `hC `2 � `.

Finally, we discuss lower bounds. Again, they depend on the finite quotients of
the group. In contrast to the function EG , and unsurprisingly in view of Theorem 6,
it is large cyclic quotients rather than large quotients having small exponent which
cause XG to be large.

Theorem 7. Whenever G admits arbitrarily large cyclic quotients, we have for each
fixed k and infinitely many h the bound XG.h; k/�k h

kC1 and for each fixed h and
infinitely many k the other bound XG.h; k/�h k

h.

Beyond Z and groups which admit Z as quotients, this property is satisfied by Zp
for any prime p and G D

S
n�1

Q
m�n Z=mZ, the latter being � -finite. Combining

with Theorem 5 and equation (5), we therefore have XG.h; k/�k hkC1 for this latter
group and XZp

.h/ � XZd .h/ � h2.

1.3. Semigroups

The results announced so far reproduce in the frame of infinite abelian groups some
results known in the semigroup N (at least qualitatively). It turns out that our proofs do
not entirely use the group structure, and are naturally valid in a wider class of semi-
groups which comprises N and infinite abelian groups, which we term translatable
and which we will now describe. Therefore, another aspect of our work is to unify the
treatment of additive bases in N and in abelian groups. But since our results are new
and interesting mostly in the case of groups, we decided to defer the introduction of
translatable semigroups until now.

An abelian semigroup T is cancellative if whenever a; b; c 2 T satisfy a C c D
b C c, the relation a D b holds. It is well known that such a semigroup is naturally
embedded in a group GT called its Grothendieck group that satisfies GT D T � T

(see Section 2.1).
A translatable semigroup is an infinite cancellative abelian semigroup .T;C/

such that for any x 2 T , the set T n .x C T / is finite; in other words, T � x C T .
Every infinite abelian group is a translatable semigroup. Other examples of translat-
able semigroups include N, numerical semigroups (i.e., cofinite subsemigroups of N)
and also C �N for any finite abelian group C . These examples, in a sense, classify all
translatable semigroups (see Proposition 32). In contrast, neither .Nd ;C/ for d � 2
nor .N�;�/ are translatable.

Note that such a semigroup has the convenient property that whenever A � T is a
basis and x 2 T , then x C A is still a basis, of the same order. This property actually
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characterizes translatable semigroups, since A D T is a basis of order 1, and bases of
order 1 are precisely the cofinite subsets of T .

Having introduced translatable semigroups, we can now state our results in a more
general setting.

Proposition. Theorems 1, 2 and 4 are also valid when the group G is replaced by a
translatable semigroup T .

The following identity says that the functions E defined over T and over its
Grothendieck group are the same.

Theorem 8. Let T be a translatable semigroup and G its Grothendieck group. Then
for any h; k � 1 we have ET .h; k/ D EG.h; k/:

In particular, EN D EZ, which is already new. It also follows from Theorems 8
and 2 (iii) thatET .2;k/� 2k � 1 for all translatable semigroups T . It is an interesting
problem to determine if we also have XT .h; k/ D XG.h; k/.

To conclude this subsection, observe that for general infinite abelian semigroups,
even cancellative ones, the finiteness of the set of essential subsets (Theorem 1) fails
dramatically. Indeed, let T D .N�;�/. Let A D ¹2k W k 2 Nº [ ¹2j C 1 W j 2 Nº.
Then the decomposition of any positive integer as a product of a power of 2 and an
odd integer shows that A is a basis of order 2. However, every prime is essential.
Indeed, h.A n ¹2º/ does not meet ¹n 2 N W n � 2 mod 4º for any h � 1. If p is an
odd prime, the set h.A n ¹pº/ does not meet ¹2kp W k 2 Nº. Hence, if one wants to
keep this finiteness result, one needs to specify appropriate axioms. We stress that
translatability is a joint generalization of N and infinite abelian groups. However, it
may well be the case that the finiteness of ET .h; k/ and XT .h; k/ holds in an even
more general class of semigroups. Indeed, one can show that ENd .h; k/ is finite for
any h;k and d , though .Nd ;C/ is not translatable when d � 2. This is not obvious; in
fact, even the fact that ord�Nd is well-defined (i.e., if hA � Nd , then .hC 1/A � Nd )
is not obvious. We plan to investigate this finiteness phenomenon beyond translatable
semigroups in the future.

1.4. The “typical order” and the function ST .h; k/

Define ST .h/ to be the minimum s such that for any basis A with ord�T .A/ � h, there
are only finitely many elements a 2 A such that ord�T .A n ¹aº/ > s: In particular,
ST .h/ � XT .h/. Grekos [11] introduced the function S D SN and conjectured that
SN.h/ < XN.h/. In [2], Cassaigne and Plagne settled Grekos’ conjecture and proved
that

hC 1 � SN.h/ � 2h:
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In [19, Theorem 7], using invariant means, it is shown that we also have hC 1 �
SG.h/ � 2h for every infinite abelian group G. It is an open problem to find the
exact asymptotic of SN.h/, or ST .h/ for any fixed translatable semigroup T . The
proof of [19, Theorem 7] also gives a bound for the number of “bad" elements, that
is, elements a of a basis A of order at most h such that SG.h/ < ord�G.A n ¹aº/.
Further, it implies that the number of such elements is at most h2. We now give a
slight generalization of this fact to translatable semigroups, while showing that in the
case of groups we do have a sharper bound.

Theorem 9. Let T be a translatable semigroup, and let h � 2 be an integer. Then

ST .h/ � 2h:

In fact, if A is a basis of T of order at most h, then there are at most h.h � 1/
elements a of A such that ord�T .A n ¹aº/ > 2h. If T is a group then the number of
such elements is at most 2.h � 1/.

While we do not know if 2.h� 1/ is best possible, it is nearly so because certainly
EG.h/ is a lower bound for the maximal number of bad elements, and it was observed
in [19, Theorem 2] that for the groupGD F2Œt �, one hasEG.h/D h� 1 for any h� 1.

As a generalization, define ST .h;k/ to be the minimum value of s such that for any
basisAwith ord�T .A/� h, there are only finitely many regular subsetsF �A; jF j D k
with the property that s < ord�T .A n F /. Thus ST .h; 1/ D ST .h/. We have the trivial
bound

ST .h; k/ � XT .h; k/;

and it is interesting to know if this inequality is strict. We have a partial positive
answer.

Theorem 10. Let T be a translatable semigroup, and let h � 1 be an integer. Then

ST .h; 2/ � 2XT .h/: (6)

Furthermore, if A is a basis of T of order at most h, there are at most O.h2XT .h/2/
regular pairs F � A such that ord�T .A n F / > 2XT .h/. If T is a group, then the
number of such pairs is at most 4h.XT .h/ � 1/.

We underline that already in the semigroups T D N or Z, the bound (6) is non-
trivial because XT .h/ is much smaller than XT .h; 2/. Indeed, XT .h; 2/� h3 by (4)
and Theorem 7, while XT .h/ D O.h2/ by (3) and (5). Thus

ST .h; 2/ D O.XT .h; 2/=h/ D o.XT .h; 2//

as h tends to infinity.
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The organization of the paper is as follows. In Section 2 we introduce some tools
used in our proofs, including a generalization of the Erdős–Graham criterion for finite
exceptional subsets. In Sections 3, 4 and 5, we prove results on the functions ET ,XT ,
and ST , respectively.

2. Preliminary results

2.1. Translatable semigroups and their Grothendieck groups

Let T be a cancellative abelian semigroup. We let GT be the quotient of the product
semigroup T � T (with coordinate-wise addition) by the equivalence relation R def-
ined by .a1;a2/R.b1;b2/ if a1C b2D a2C b1. It is clear that the equivalence relation
is compatible with the addition, so that the quotient is again an abelian semigroup.
Further the class of .x; x/ is a neutral element which we denote by 0 and .a1; a2/C
.a2; a1/ D 0, so that GT is an abelian group. Also T is embedded in GT via the map
x 7! .x C t; t / (for any t 2 T ). This group is called the Grothendieck group of T .

By identifying x 2 T with .x; 0/ 2 GT , we have T � GT , and we observe that
GT D T � T . We will often omit the index and let G D GT .

Recall that a translatable semigroup is an infinite cancellative abelian semigroup
with the property that for any x 2 T , the set T n .x C T / is finite, or equivalently
T � x C T . We now list some immediate consequences of this property that we will
use frequently.

Lemma 11. Let T be a translatable semigroup, G D GT , and H be a subgroup of
finite index of G. Then:

(1) For any x 2 G, we have T � x C T .

(2) If A is a subset ofG, then for any x 2G, we have T \ .xCA/� xC T \A.

(3) If F is a finite subset of G, then there is t 2 T such that t C F � T .

(4) For any x 2 G, T \ .x CH/ is infinite.

(5) T \H is also a translatable semigroup. Furthermore,H D T \H � T \H .

(6) If R contains a system of representatives of G=H and S � G satisfies T \H
�
�
S , then T �

�
RC S .

Proof. Since G D T � T , we may write x D a � b, where .a; b/ 2 T 2. Then

x C T D .T C a/ � b � T � b � .T C b/ � b D T

so that x C T � T because the relation � is transitive.
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If A � G, then

T \ .x C A/ D x C .T � x/ \ A � x C T \ A

since T � T � x.
For part (3), for each x 2 F we write x D ax � bx , where ax; bx 2 T . Thus

t D
P
x2F bx satisfies t 2 T and t C x 2 T for all x 2 F .

If H has finite index, there exists a finite set F such that G D
S
x2F .x CH/.

By the pigeonhole principle, one of the sets .x CH/\ T for x 2 F must be infinite.
Hence all of them are infinite by part (2).

For part (5), the translatability of T \ H follows from part (2), since for any
x 2 T \H , we have

x C T \H � T \ .x CH/ D T \H:

Now let x be any element of H . Then there exist a; b 2 T such that x D a � b. By
part (4), there exists c 2 T such that aC c 2H . We also have b C c 2H . Therefore,

x D .aC c/ � .b C c/ 2 T \H � T \H:

For part (6), notice that we may assume that R is finite, and in this case,

T D
[
r2R

.r CH/ \ T �
[
r2R

.r CH \ T / �
�

[
r2R

.r C S/ D RC S:

We have a good understanding of the structure of translatable semigroups. Since
we will not use this result, its proof is given in Appendix.

Proposition (Proposition 32). Let T be a translatable semigroup. Then either T is
a group (i.e., T equals its Grothendieck group GT ), or T � C ˚ xN, where x 2 T
and C is a finite subgroup of GT .

As a consequence of this structure result, any translatable semigroup T admits
a basis of any order h � 2 (Proposition 33). This shows that our theorems are not
vacuous in any translatable semigroup.

In proving our results, we will often have to translate a basis by an element ofGT ,
and the translated set is not necessarily a subset of T . It is therefore advantageous to
introduce a slightly more general notion of basis. For A � GT , we say that A is an
additiveGT -basis (or simply aGT -basis) of T if there exists h� 1 such that T �

�
hA.

Again the order ord�T .A/ of the basis A over T is then the minimal such h. Note that
any basis of T is automatically also a GT -basis of T of the same order. We can then
speak about regular, exceptional and essential subsets of GT -bases in the same way
as for bases.
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2.2. A generalization of the Erdős–Graham criterion

In the early eighties, Erdős and Graham proved [9, Theorem 1] that ifA is a basis of N
and a 2 A, then A n ¹aº is a basis of N if and only if gcd.A n ¹aº �A n ¹aº/D 1. This
criterion was generalized to groups in [19, Lemma 7], as we now recall. Let T be a
translatable semigroup and GT be its Grothendieck group. For B � GT (in particu-
lar, for B � T ), let hBi be the subgroup of G D GT generated by B . The criterion
states that if A is a basis of G and a 2 A, then A n ¹aº is a basis of G if and only
if hA n ¹aº � A n ¹aºi D G. We now generalize further this criterion to translatable
semigroups and exceptional subsets instead of exceptional elements.

We first prove the following more general form of [19, Lemma 7].

Lemma 12. Let T be a translatable semigroup and G be its Grothendieck group.
Let s; t; h � 1. Suppose B � G and a 2 G satisfy

T �
�

h[
iDh�tC1

.iB C .h � i/a/:

Suppose .sB C a/ \ .s C 1/B ¤ ; (in particular, this is the case if sB � sB D G).
Then T �

�
h0B , where h0 D .t � 1/s C h.

Proof. Suppose c 2 .sB C a/ \ .s C 1/B . Then

2c 2 .2sB C 2a/ \ ..2s C 1/B C a/ \ .2s C 2/B:

Continuing in this way yields

.t � 1/c 2

t�1\
iD0

�
..t � 1/.s C 1/ � i/B C ia

�
:

For all but finitely many x 2 T , we have x 2 .t � 1/cC T , and the hypothesis implies
that for all but finitely many of them,

x 2 .t � 1/c C

t�1[
iD0

..i C h � t C 1/B C .t � 1 � i/a/:

It follows that for all but finitely many x 2 T , we have

x D .x � .t � 1/c/C .t � 1/c

2 ..t � 1/.s C 1/C h � t C 1/B C .t � 1/a D h0B C .t � 1/a:

Since T � T C .t � 1/a, this implies that T �
�
h0B , as desired.
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We can now state our generalization of the Erdős–Graham criterion.

Lemma 13. Let T be a translatable semigroup and G be its Grothendieck group.
Let A be a G-basis of T . Let F be a finite subset of A. Then A n F is a G-basis of T
if and only if hA n F � A n F i D G.

In the case of N, this was proved by Nash and Nathanson in [20, Theorem 3]. Their
proof uses the fact that, in N, any set of positive Schnirelmann density is a basis. Our
argument is different from theirs.

Proof. Let B D A n F . To prove the “only if” direction, let us suppose that H D
hB � Bi ¨ G. Let us prove that T 6�

�
`B for any ` � 1. Let ` � 1. We may suppose

that `B \ T is infinite, since otherwise we are done. Note that `B lies in a coset
x CH for some x 2 G. In particular, .x CH/\ T is infinite. Let y 2 G n .x CH/;
by Lemma 11 part (2), we have

.y CH/ \ T � y � x C .x CH/ \ T;

so .y C H/ \ T is an infinite subset of T that does not meet `B . In other words,
T 6�
�
`B , as desired.

We now prove the “if” direction. First, note that there exists s � 1 such that

sB \ .s C 1/B ¤ ;:

Indeed, let b 2 B . Since b 2G D hB �Bi, there exists s � 1 such that b 2 s.B �B/.
Therefore, there exists .x; y/ 2 .sB/2 such that b D y � x. Now,

y D x C b 2 sB \ .s C 1/B

yields the desired nonempty intersection. According to Lemma 12 (with a D 0), it
now suffices to show that T �

�

S`
iD1 iB for some ` � 1. Since hB � Bi D G, each

element x 2 F has a representation of the form

x D

sxX
iD1

.ai .x/ � bi .x//; (7)

where sx 2 N and ai .x/; bi .x/ 2 B . Since A is a G-basis of T , let h � 1 satisfy
T �
�
hA. All but finitely many elements g 2 T can be written as

g D
X
x2F

mx.g/x C y;

wheremx.g/ � 0 and
P
x2F mx.g/ � h whereas y 2 .h�

P
x2F mx.g//B . Replac-

ing each occurrence of x 2 F with (7) and translating by

g0 D h
X
x2F

sxX
iD1

bi .x/ 2 T;
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we find that

g C g0 D
X
x2F

sxX
iD1

�
mx.g/ai .x/C .h �mx.g//bi .x/

�
C y;

where the right-hand side is a sum of

h
X
x2F

sx C h �
X
x2F

mx.g/

elements in B . Let ` D h
P
x2F sx C h. This shows that g0 C T ��

S`
iD1 iB and by

translatability, we conclude.

As pointed out by Nash and Nathanson [20], the conclusion of Lemma 13 is no
longer true for the semigroups T D N or T D Z if F � A is allowed to be infi-
nite. For example, consider A D ¹1º [ ¹2n W n 2 T º, a basis of order 2 of T , and
F D ¹n 2 T W 8k � 1; n ¤ 6kº.

More generally, let T be a translatable semigroup and h � 2. We invoke the
construction of a basis A of order h in Proposition 33. With the notation of that con-
struction, let B D

S1
iD0ƒi � A and F D A nB . Then hB �Bi D GT . However, for

any ` � 1, the sumset `B misses all elements whose support has cardinality strictly
larger than `, so B is not a basis. This means that in any translatable semigroup, the
finiteness of F is crucial for Lemma 13.

2.3. Characterizations of exceptional and essential subsets

As demonstrated by Lemma 13, the subgroups hA n F � A n F i, where F is a finite
subset of a given basis A, play an important role. We now prove some preliminary
results on these subgroups. The next lemma states that whenever F is a finite subset
of A, the subgroup hA n F � A n F i cannot be too small.

Lemma 14. Let T be a translatable semigroup and G its Grothendieck group. Let A
be a subset ofG such that T �

�
hA for some h� 2 and let F be a finite subset ofA. Let

H D hA nF �A nF i. Then for any x 2A nF , we have .h� 1/.F [ ¹xº/CH DG.
Consequently,

ŒG W H� �

�
hC jF j � 1

h � 1

�
:

Proof. By the definition of H , we have A n F � x CH , so that A � .x CH/ [ F
and A meets a finite number of cosets of H . This fact and the finiteness of T n hA
imply that the projection of T in G=H is finite. However, T � T D G, so G=H is
finite.
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Let g 2 G=H . We may write g D t CH for some t 2 T . Now

hA � hF [

h�1[
iD0

.iF C .h � i/x CH/:

Note that hF [ .T n hA/ is finite and .t CH/ \ T is infinite by Lemma 11. This
implies that g D t 0 CH for some t 0 2

Sh�1
iD0.iF C .h � i/x/. Finally,

G � H C

h�1[
iD0

.iF C .h � i/x/ D H C x C .h � 1/.F [ ¹xº/

as desired. This implies that ŒG W H� � j.h � 1/F 0j, where F 0 D F [ ¹xº has cardi-
nality jF j C 1. The bound follows from counting the number of .h� 1/-combinations
of elements from F 0 with repetition allowed.

We are now ready to prove the first part of Theorem 3.

Proof of Theorem 3 (i). Lemma 14 implies that if G does not have proper subgroups
of index at most

�
hCk�1
h�1

�
, then a basis A of order at most h cannot contain an excep-

tional (and in particular essential) subset F of cardinality at most k. This yields the
first implication of Theorem 3 (i). For the second one, let G be an infinite abelian
group and H a proper subgroup of finite index. Let R be a (finite) set of distinct
representatives modulo H . Then A D R [ H is a basis of order 2 of G and R is
an exceptional set, which contains an essential subset. Therefore, EG.2; k/ > 0 for
some k. (We will encounter similar arguments in Section 3.4.)

Lemma 13 gives the following characterization of essential subsets of a basis.

Corollary 15. Let T be a translatable semigroup, G its Grothendieck group and A a
G-basis of T and E � A be a finite subset. Then E is an essential subset of A if and
only if the following two statements hold:

(1) H D hA nE � A nEi is a proper subgroup of G.

(2) G=H is generated by x � a, where x is any element ofE and a is any element
of A nE.

In particular, if E is essential then G=H is a finite cyclic group.

Proof. Lemma 13 implies that E is essential precisely when G ¤ H , but

G D h.A nE/ [ ¹xº � .A nE/ [ ¹xºi for any x 2 E.

The claimed characterization follows by noting that h.A nE/[ ¹xº � .A nE/[ ¹xºi
is generated by H [ ¹x � aº for any a 2 A nE.

The second claim follows from the fact that G=H is finite, by Lemma 14.
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The next lemma gives a correspondence between essential subsets and proper sub-
groups.

Lemma 16. Let T be a translatable semigroup, G its Grothendieck group and A be
a G-basis of T . Let E be an essential subset of the basis A and F be any subset of A
such that E 6� F . Then hA n .E [ F / � A n .E [ F /i ¨ hA n F � A n F i.

Proof. We have hA n .E [F /�A n .E [F /i� hA nE �A nEi \ hA nF �A nF i.
Further, since A n .E \ F / D .A nE/ [ .A n F /, we have

hA nE � A nEi C hA n F � A n F i D hA n .E \ F / � A n .E \ F /i:

Since E \ F ¨ E, it follows from the essentiality of E and Lemma 13 that the right-
hand side is G ¤ hA nE � A nEi. So hA n F � A n F i 6� hA nE � A nEi, which
finally yields the desired result.

2.4. Invariant means

Let .T;C/ be an abelian semigroup. Let `1.T / denote the set of all bounded functions
from T to R. An invariant mean on T is a linear functionalƒ W `1.T /!R satisfying
the following conditions.

(M1) ƒ is nonnegative: if f � 0 on T , then ƒ.f / � 0.

(M2) ƒ has norm 1: ƒ.1T / D 1, where 1T is the characteristic function of T .

(M3) ƒ is translation-invariant:ƒ.�xf /Dƒ.f / for any f 2 `1.T / and x 2 T ,
where �x is the translation by x: �xf .t/ D f .x C t /.

Note that by restricting ƒ to indicator functions of subsets of T , we induce a
function d WP .T /! Œ0; 1�, that we will usually call density satisfying the following
three properties:

(D1) d is finitely additive, i.e., if A1; : : : ; An � T are disjoint, then

d

� n[
iD1

Ai

�
D

nX
iD1

d.Ai /:

(D2) d is translation-invariant, i.e., for allA�T and x 2T , we have d.xCA/D
d.A/.

(D3) d has total mass 1, i.e., d.T / D 1.

Note that the axiom (D1) implies that for any A1; : : : ; An � T , we have

d

� n[
iD1

Ai

�
�

nX
iD1

d.Ai /:

Also, if A is finite, then d.A/ D 0.
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If there exists an invariant mean on T , then T is said to be amenable. It is known
that all abelian semigroups are amenable (for a proof, see [4, Theorem 6.2.12]). How-
ever, even in N, all known proofs of the existence of invariant means are nonconstruc-
tive3, and require the axiom of choice in one way or another (e.g. the Hahn–Banach
theorem or ultrafilters).

In Sections 4 and 5, we will use the existence of invariant means as a blackbox
and make crucial use of their properties to prove our results. For now, we record the
following simple fact, which is an immediate extension of the so-called prehistorical
lemma to invariant means.

Lemma 17. Let T be a cancellative abelian semigroup, G be its Grothendieck group
and d be a density on T . If A;B � T and d.A/C d.B/ > 1 then T � A � B � G.
In particular, if T is a group, then T D A � B .

Proof. Let t 2 T . By (D2),

d.A/C d.t C B/ D d.A/C d.B/ > 1:

By axioms (D1) and (D3), we infer that A \ .t C B/ ¤ ;. Let

a D t C b 2 A \ .t C B/;

then t D a � b 2 A � B .

We will also make use of the following observation, which says that if T is trans-
latable, then any invariant mean on T can be extended to all of G in a trivial way.

Lemma 18. Let T be a translatable semigroup, G be its Grothendieck group and ƒ
be an invariant mean on T . For f 2 `1.G/, define ƒ0.f / D ƒ.f jT /, where f jT is
the restriction of f on T . Then ƒ0 is an invariant mean on G.

Proof. Since G D T � T , it suffices to verify (M3) for any f 2 `1.G/ and x 2 T .
We have

ƒ0.�xf / D ƒ..�xf /jT / D ƒ.�x.f jT�x//

D ƒ.�x.f jT //Cƒ.�x.f j.T�x/nT //

D ƒ.f jT /Cƒ.f jT n.TCx//

D ƒ0.f /

since T n .T C x/ is finite and f is bounded.

3Observe that popular densities such as the lower asymptotic one do not satisfy the equality
of (D1): only an inequality is true in general.
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When T is a group, in proving Theorem 9, we will require the following additional
property of d :

(D4) d is invariant with respect to inversion, i.e., d.A/ D d.�A/ for all A � T .

This property may not be satisfied by all invariant means, but invariant means having
this property abound (see for instance [5, Theorem 1]).

3. Essential subsets of an additive basis

3.1. Finiteness of the set of essential subsets

We first prove Theorem 1.

Proof of Theorem 1. Let T be a translatable semigroup and G be its Grothendieck
group. Let also A be an additive G-basis of order h � 1 over T . To obtain a contra-
diction, we assume that the set FA of all essential subsets of A is infinite. It follows
that h � 2 and there exists an infinite sequence .Fi /i�1 of pairwise distinct elements
of FA. In addition, extracting an appropriate infinite subsequence of .Fi /i�1 if need
be, we may assume that FiC1 6�

Si
jD1 Fj for all i � 1.

Let us set

Hi D
D
A n

i[
jD1

Fj � A n

i[
jD1

Fj

E
for all i � 1. On the one hand, it follows from Lemma 16 that .Hi /i�1 is a decreasing
sequence of proper subgroups of G, and from Lemma 14 that, for every i � 1, the
quotient group Gi D G=Hi is finite (in particular, Hi is infinite). On the other hand,
for every i � 1, there is a unique cosetKi ofHi such thatA nKi is finite. In particular,
one has Kj � Ki for any j � i .

Now, for each i � 1, let us define

di D min¹` � 1 W j.`A/ \X j D 1; 8X 2 Giº:

In other words, di is the smallest integer ` � 1 such that every coset of Hi has an
infinite intersection with `A. Alternatively, one also has

di D min¹` � 1 W Gi � Ki C .` � 1/�i .A/º

where, for every i � 1, �i denotes the canonical epimorphism from G to Gi .
It is easily noticed that by definition, the sequence .di /i�1 is nondecreasing. Also,

since Hi is a proper subgroup of G and Ki is the only coset of Hi having an infi-
nite intersection with A, one has 2 � di for all i . Finally, since T n hA is finite by
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assumption and each coset of Hi has an infinite intersection with T , one has di � h
for all i .

At this stage, observe that by translatability, any translation of the original additive
G-basis A by an element a 2 G results in a new additive G-basis A0 D a C A of
order h itself over T . The sequence .F 0i /i�1 obtained by translating each Fi by a
is then an infinite sequence of essential subsets of A0 satisfying F 0iC1 6�

Si
jD1 F

0
j

for all i � 1, and starting from which the previous definitions yield the very same
sequences .Hi /i�1 and .di /i�1 as for A itself.

Since the sequence .di /i�1 is nondecreasing and bounded, we infer that it is sta-
tionary. Thus, we may fix some i � 1 so that dj D di for all j � i . Let xi 2G be such
that Ki D xi CHi . Now, using the just described translation-invariance of .Hi /i�1
and .di /i�1, we can assume from now on that xi D 0 and Ki D Hi . In particular,

di D min¹` � 1 W Gi � .` � 1/�i .A/º:

It follows from the minimality of di � 2 that Gi � .di � 1/�i .A/, while Gi 6�
.di � 2/�i .A/. In other words, there exists at least one coset Ci of Hi belonging to
.di � 1/�i .A/ n .di � 2/�i .A/. Now, pick an integer j � i . Recall that dj D di and
let L be any coset of Hj such that L � Ci .

Since dj D di , one has

L 2 Kj C .dj � 1/�j .A/ D Kj C .di � 1/�j .A/:

Let L2; : : : ; Ldi
be any di � 1 elements of �j .A/ such that in Gj , one has

L D Kj C L2 C � � � C Ldi
:

For every j � i , let f ij WGj ! Gi be the group homomorphism sending every coset L
of Hj to the unique coset of Hi containing L. Note also that by definition, one has

f ij ı �j D �i :

Since f ij .Kj / D Ki D Hi , applying f ij to both sides of the equality above in Gj
results in the following relation in Gi :

Ci D f
i
j .L2/C � � � C f

i
j .Ldi

/:

For every 2 � k � di , there exists by definition an element ak 2 A such that Lk D
�j .ak/. However, ak 2 Ki would imply

f ij .Lk/ D .f
i
j ı �j /.ak/ D �i .ak/ D Ki D Hi

and readily give Ci 2 .di � 2/�i .A/, which is a contradiction. As a result, we have
that Lk 2 �j .A nKi / for every 2 � k � di . We now have all we need to complete
our proof.
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On the one hand, each Lk can take at most j�j .A n Ki /j � jA n Ki j values, so
that the number of possible sums of the form L2 C � � � C Ldi

in Gj is at most�
jA nKi j C di � 1

di

�
;

which is independent of j .
On the other hand, there are ŒHi W Hj � cosets of Hj that are contained in Ci , and

in order for each of them to be an element of Kj C .di � 1/�j .A/, we must have

ŒHi W Hj � �

�
jA nKi j C di � 1

di

�
:

However, since ŒHi WHj � tends to infinity when j does so, the previous inequality can
only hold for finitely many integers j � i . Therefore, the initial assumption that FA

is infinite leads to a contradiction indeed.

3.2. Bounding the number of essential subsets

We now prove parts (i) and (ii) of Theorem 2. Let T be a translatable semigroup and
G D GT be its Grothendieck group. Let h � 2; k � 1 be integers. The case k D 1 is
already covered in [19, Theorem 2] when T is a group, and by Theorem 8, which we
prove in the next section without using the current section, we conclude that

ET .h; 1/ D EG.h; 1/ � h � 1:

Henceforth, we shall assume k � 2. Let A be a GT -basis of order at most h over T .
It readily follows from Theorem 1 that the set F of essential subsets of cardinality k
ofA is finite. Our aim is to boundN D jF j in terms of h and k alone. We will actually
prove the following precise bounds:

N � .30h log k/k (8)

and
N � .32k log k/h�1: (9)

We first prove the following lemma.

Lemma 19. Take a minimal sequence F1; : : : ; Fn of elements of F with the property
that [

i�n

Fi D
[
F 2F

F:

Then n � .h� 1/.log2.ek log2 k/C "k/, where "k 2 Œ0; 5� tends to zero as k tends to
infinity and does not depend on h. In particular, n � 11.h � 1/ log k.
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Thus n � .h � 1/.1C ok!1.1// log2 k. We will show later (Remark 2) that this
bound is sharp, up to the error term. This is why we decided to state it as an indepen-
dent lemma.

Proof. By minimality, note that Fi 6�
S
1�j<i Fj for any i 2 Œn�. Also,ˇ̌̌ [

F 2F

F
ˇ̌̌
� nk:

Let Hi D hA n
Si
jD1 Fj � A n

Si
jD1 Fj i. By Lemma 16, one has

Hn ¨ Hn�1 ¨ � � � ¨ H1 ¨ G:

Therefore,
ŒG W Hn� � 2

n: (10)

On the other hand, it follows from Lemma 14 that

ŒG W Hn� �

�
hC nk � 1

h � 1

�
(11)

since j
Sn
jD1 Fj j � kn. Combining (10) and (11), one has 2n �

�
hCnk�1
h�1

�
. Using the

elementary bound
�
a
b

�
� . ea

b
/b , we have

2n �

�
e.h � 1C nk/

h � 1

�h�1
:

Denoting t D n
h�1

, this implies that t � log2.e.1C kt//. Consider the real function
f W x 7! x � log2.e.1C xk//. Observe that

f .log2.ek log2 k// D log2.ek log2 k/ � log2.e.1C k log2.ek log2 k///

D log2.ek log2 k/ � log2

�
ek log2 k

�
1C

1

k log2 k
C

log2.e log2 k/
log2 k

��
D � log2

�
1C

1

k log2 k
C

log2.e log2 k/
log2 k

�
� �

1

k log2 k
�

log2.e log2 k/
log2 k

> �1:35
log2.e log2 k/

log2 k
:

Further, f 0.x/ � 1 � 1=.x log 2/. In particular,

f 0.x/ � 1 � 1= log.2e/ � 2=5
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for all x � log2.ek log2 k/� log2.2e/ (here we use k � 2). Hence, f .x/> 0whenever

x > log2.ek log2 k/C 3:4
log2.e log2 k/

log2 k
:

Since f .t/ � 0, this yields the desired bound, with "k D 3:4
log2.e log2 k/

log2 k
� 5.

To obtain n � 11.h� 1/ logk, it suffices to note that e log2 k � k
3=2 for all k � 2

and "k � 5, so that

log2.ek log2 k/C "k � 7:5 log2 k � 11 log k:

We return to the proof of Theorem 2. We start with the first item of that theorem.
Using again the bound

�
a
b

�
� . ea

b
/b , we have

N �

�
nk

k

�
� .en/k : (12)

Injecting Lemma 19 above yields N � .30h log k/k �k h
k , as desired.

We now prove the second item of Theorem 2. Let

H D
D
A n

[
F 2F

F � A n
[
F 2F

F
E
:

Then we prove the following lemma.

Lemma 20. There exists an injection from F to the set of cyclic subgroups of G=H .

Proof. First consider the map E 7!HE D hA nE �A nEi defined on F . It is injec-
tive because of Lemma 16. Note that H � HE for any E 2 F . Further the map
HE 7! HE=H is also an injection (as a restriction of the classical bijection between
subgroups of G containing H and subgroups of G=H ). Let Q D G=H . This is a
finite abelian group. The theory of characters of finite abelian groups implies that
there exists an involution f of the set of subgroups ofQ such that for anyK �Q, the
groups K and Q=f .K/ are isomorphic; cf [14]. Consider the map E 7! f .HE=H/,
which is injective as a composition of three injective maps. Finally,

f .HE=H/ ' .G=H/=.HE=H/ ' G=HE ;

which is cyclic by Corollary 15.

In particular, we have N � ŒG W H�. Because of Lemma 14, we infer

N �

�
h � 1C nk

h � 1

�
�

�
e.h � 1C nk/

h � 1

�h�1
and injecting again Lemma 19, we conclude

N � .e.1C 11k log k//h�1 � .32k log k/h�1:
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Remark 1. Note that these proofs also show that

ET .h;� k/�k h
k and ET .h;� k/�h .k log k/h�1:

One must simply replace (12) by N � k
�
nk
k

�
by unimodularity of the binomial coef-

ficients and the assumption that n � 2 (otherwise n D N D 1).

Remark 2. We point out that Lemma 19 is optimal up to the second order terms, for
any h and k D 2r�1 for some r � 1. Indeed, let G D

Lh
iD1Gi , where Gi Š Fr2 for

i D 1; : : : ; h� 1 and Gh is an infinite group. Then A D
Sh
iD1Gi is a basis of order h

of G. Using Lemma 13, one can show that F � A is an essential subset if, and only
if, for some i 2 Œh � 1�, F � Gi and Gi n F is a maximal subgroup of Gi . In other
words, F is the complement of a hyperplane of Gi and has cardinality k D 2r�1. For
each 1 � i � h� 1, in order to cover all complements of hyperplanes of Gi , we need
at least r of them. Hence, in order to satisfy the hypothesis of Lemma 19, we need

n � .h � 1/r D .h � 1/.log2 k C 1/:

What may not be optimal in the bounds (8) and (9) is how we infer an upper bound
for the total number N of essential subsets from the upper bound on n.

3.3. Comparing ET and EGT

In this section we prove Theorem 8. We first need the following generalization of
Lemma 13.

Lemma 21. Let T be a translatable semigroup and G its Grothendieck group. Let A
be aG-basis of T and F �A be any finite subset. PutB DA nF andH D hB � Bi.
Let b be an arbitrary element of B . Then T \ H is a translatable semigroup of
Grothendieck group H and B � b is an H -basis of T \H .

Clearly, Lemma 13 is a special case of Lemma 21 whenH D G. In N, Lemma 21
was proved by Nash–Nathanson [20, Theorem 1]. Again, Nash–Nathanson’s proof is
very specific to N (it uses Schnirelmann density and Schnirelmann’s theorem). Our
proof is different from theirs and works for any translatable semigroup. In fact, we
use Lemma 13 to prove Lemma 21, while Nash and Nathanson proceeded the other
way round.

Proof. The fact that T \H is a translatable semigroup of Grothendieck group H is
Lemma 11 (5). For h large enough, and by translatability, we have

T � T � hb �
�
h.A � b/ D

h[
iD0

.i.F � b/C .h � i/.B � b//
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�

h[
iD0

.i.F � b/C h.B � b// since 0 2 B � b:

In particular,

T \H �
�

h[
iD0

.i.F � b/C h.B � b//:

Since F is finite, this means that there are finitely many translates a1C h.B � b/; : : : ;
ak C h.B � b/ of h.B � b/ such that

T \H �
�

k[
iD1

.ai C h.B � b//:

A priori a1; : : : ;ak 2G. But a translate ai C h.B � b/ can have nonempty intersection
with H only if ai 2 H . Thus we may assume that a1; : : : ; ak 2 H . Let

A0 D h.B � b/ [ ¹a1; : : : ; akº � H;

then the equation above shows that T \ H �
�
2A0. Clearly hhB � hBi D H . We

now invoke Lemma 13 with the set A0 and the translatable semigroup T \H (whose
Grothendieck group is H ), and conclude that for some k � 1, T \H �

�
kh.B � b/,

as desired.

Next we need the following lemma of independent interest, which is reminiscent
of Hegarty’s reduction [17] of the study of EN.h; k/ to the postage stamp problem.

Lemma 22. Let T be a translatable semigroup and G its Grothendieck group. LetH
be a subgroup of G of finite index. Let B be a subset of G satisfying hB � Bi D H
and b be an arbitrary element of B . Let F be a finite subset of G disjoint from B and
A D F [ B . Then the following assertions are equivalent:

(1) A is a G-basis of T .

(2) (a) B � b is an H -basis of T \H , and

(b) hF � b CH i D G (i.e., F � b generates G=H ).

Further, if h1 is minimal such that

h1..F � b/ [ ¹0º/CH D G; h2 D ord�T\H .B � b/; and h D ord�T .A/;

then we have h1 C 1 � h � h1 C h2.

Proof. If (1) holds, then (2a) follows from Lemma 21 and (2b) follows from Lem-
ma 14.
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Now suppose (2) holds. Let h1 be minimal such that

h1..F � b/ [ ¹0º/CH D G and h2 D ord�T\H .B � b/:

If T �
�
hA, then by Lemma 14, we have .h� 1/..F � b/[ ¹0º/CH D G and there-

fore h � h1 C 1. We will now prove that T �
�
.h1 C h2/A. We have

.h1 C h2/.A � b/ D

h1Ch2[
iD0

.i.F � b/C .h1 C h2 � i/.B � b//

�

h1[
iD0

.i.F � b/C h2.B � b// since 0 2 B � b

D h2.B � b/C h1..F � b/ [ ¹0º/:

Since h2.B � b/misses only finitely many elements of T \H and h1..F � b/[ ¹0º/
meets every coset of H , by Lemma 11 (6) we know that T �

�
.h1 C h2/.A � b/, and

T �
�
.h1 C h2/A by translatability.

We are now ready to prove Theorem 8.

Proof of Theorem 8. Fix h � 2; k � 1. In order to show that ET .h; k/ D EG.h; k/,
we will show that

ET .h; k/ � EG.h; k/ and EG.h; k/ � ET .h; k/:

Let us first prove that ET .h; k/ � EG.h; k/. Let A be a basis of T of order at
most h. Our aim is to prove that A has at most EG.h; k/ essential subsets of cardinal-
ity k.

By Theorem 1, we already know that A has finitely many essential subsets. Let F
be the union of all essential subsets of A. From now on, and since the desired inequal-
ity readily holds true otherwise, we assume that F is nonempty. Let B D A n F and
H D hB �Bi. By definition, A D F [B and taking an arbitrary element b 2 B , we
have B � H C b.

By Lemma 14, H is a subgroup of finite index of G so that Lemma 22 applies to
the partition AD F [B . It follows that, since A is a G-basis of T , the condition (2a)
of Lemma 22 is satisfied, that is to say B � b is an H -basis of T \H .

Also, let us prove that F \ .H C b/ D ;. Assume on the contrary that there is an
element x 2 F \ .H C b/. Then, there exists an essential subset E 0 of A such that
x 2 E 0. Since E 0 � F , we obtain b 2 A n F � A nE 0. Letting

HE 0 D hA nE
0
� A nE 0i;
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we have H � HE 0 , that is H C b � HE 0 C b. By Corollary 15, G is generated by
HE 0 [ ¹x � bº. Yet x � b 2 HE 0 which yields G D HE 0 , a contradiction.

By Lemma 14,
.h � 1/.F [ ¹bº/CH D G:

Let A0 D F [ .H C b/ � G. Then A0 is a basis of G of order at most h. Also,
hA0 n F � A0 n F i D H is a subgroup of finite index of G so that Lemma 22 applies
to the partitionA0DF [ .H C b/. Finally, the condition (2a) of Lemma 22 is trivially
satisfied in this case.

Now let E � F be any subset. We know that B �H C b and E \ .H C b/ D ;.
Since H is a subgroup of finite index of G, it follows that

A nE D .F nE/ [ B and A0 nE D .F nE/ [ .H C b/

are two partitions to which Lemma 22 applies. Note also that the condition (2a) of
that lemma has already been proved to hold in both cases. This gives

A nE is a G-basis of T ” hF nE � b CH i D G ” A0 nE is a basis of G:

Consequently, each essential subset of A (all of which are subsets of F ) is an essen-
tial subset of A0. Now A0 has at most EG.h; k/ essential subsets of cardinality k by
definition, whence ET .h; k/ � EG.h; k/.

To prove that EG � ET , we argue similarly; thus let A be a basis of G of order
at most h and let F be the union of its essential subsets. From now on, and since the
desired inequality readily holds true otherwise, we assume that F is nonempty. Using
Lemma 11 (3), by translating A by some t 2 T , and since translations preserve bases
and the number of essential subsets, we may assume that F � T . By Lemma 13, the
subgroup H D hA n F � A n F i of G is proper and of finite index, and A D F [ B
whereB DA nF � xCH for some x 2G. We may assume x 2 T by Lemma 11 (4).
We have again

.h � 1/.F [ ¹xº/CH D G

by Lemma 14. Let A0 D F [ .x C T \H/ � T . Then

hA0 � .h � 1/.F [ ¹xº/C T \H � T

by Lemma 11 (6). Using Lemma 22 in the same way as before, we see that if E � F
then

A nE is a basis of G ” hF nE � x CH i D G ” A0 nE is a basis of T:

This shows that all essential subsets of A are essential subsets of A0, so A has at most
ET .h;k/ essential subsets of size k, and finallyEG.h;k/�ET .h;k/. This concludes
the proof.
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3.4. Discussion of finite quotients and lower bounds

In this section we exhibit a connection between the function EG.h; k/ and finite quo-
tients of G, which we use to prove parts (ii) of Theorem 3 and (iii) of Theorem 2.

Let G be a (possibly finite) abelian group. We say that A � G is a nice basis of G
if hAD G and a nice weak basis if

Sh
iD0 iAD G for some h 2 N. Also if G is finite,

note that A � G is a nice basis if and only if hA � Ai D G, and a nice weak basis if
and only if hAi D G.

A finite subset F of a nice basis A is said to be nicely exceptional if A n F is no
longer a nice basis, and nicely essential if it is minimal for this property. Similarly, a
finite subset F of a nice weak basis A is called nice-weakly exceptional if A n F is
no longer a nice weak basis, and nice-weakly essential if it is additionally minimal for
this property.

We define E�G.h; k/ (resp. E�G.h;� k/) as the maximal number of nice-weakly
essential sets of cardinality k (resp. at most k) a nice weak basis A of order at most h
of G may have.

Proposition 23. Let G be an infinite abelian group and h � 2; k � 1 integers. Then

EG.h; k/ � max
ŒGWH�<1

E�G=H .h � 1; k/

and
EG.h;� k/ D max

ŒGWH�<1
E�G=H .h � 1;� k/:

Note that by Theorem 3 (i), we already know that if G does not have subgroups of
finite index, then EG.h; k/ D EG.h;� k/ D 0.

Proof. Let H be a finite index subgroup of G. Let A � G=H be a nice-weak basis
of order at most h � 1, which has E�

G=H
.h � 1; k/ essential subsets of cardinality k.

We may suppose that 0 … A. Let zA � G be a set of representatives of A; in particular,
zA \H D ;. Let B D zA [H . It is a basis of order at most h of G. For any subset
F � A of cardinality k, let zF � zA be the set of representatives of the elements of F
inside zA. Applying Lemma 22 (with the roles of B;F;A in that lemma played by H ,
zA n zF , . zA n zF /[H , respectively), we see that F is nice-weakly exceptional in A,
hA n F i ¤ G=H , zF is exceptional in B . In particular, F is nice-weakly essential
in A if and only if zF is essential in B . Thus

EG.h; k/ � E
�
G=H .h � 1; k/:

The proof of EG.h;� k/ � E�G=H .h � 1;� k/ runs along the same lines.
We will now prove thatEG.h;� k/�E�G=H .h� 1;� k/ for some subgroupH of

finite index of G. Suppose A � G is a basis of order at most h which has EG.h;� k/
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essential subsets of cardinality at most k. Let F be the union of these essential subsets
and H D hA n F � A n F i, a subgroup of finite index by Lemma 14. Thus

A � F [ .x CH/

for some x 2 G. Upon translating, we may assume that x D 0. For any subset X � A
let xX � G=H denote the projection of X on H . Then the projection xA D xF � G=H
is a nice weak basis of order at most h � 1 of G=H . Let E be any essential subset
of A.

Claim 1. A nE \ xE D ;. Equivalently, .A nE/ \ .E CH/ D ;.

Proof of Claim 1. We have A � E [HE , where HE D hA nE �A nEi is a proper
subgroup of G containing H . Thus E � A nHE and by minimality E D A nHE .
Consequently, E CHE D .A nHE /CHE � G nHE . Thus

.A nE/ \ .E CH/ � .A nE/ \ .E CHE / � HE \ .G nHE / D ;

and Claim 1 is proved.

Claim 2. xE is a nice-weakly essential subset of xA.

Proof of Claim 2. Observe that by Claim 1,

xA n xE D A nE � HE=H;

so h xA n xEi ¤ G=H and xE is a nice-weakly exceptional subset of xA. Let us now
show that for any x 2 E, the subset xE n ¹ xXº of xA is not nice-weakly exceptional,
i.e., h. xA n xE/[ ¹xºi D G=H . But this follows from the facts that hA nEi DHE=H ,
and the projection of x on HE generates G=HE by Corollary 15. Thus Claim 2 is
proved.

Further, if E1 ¤ E2 are two distinct essential subsets of A, then xE1 and xE2 are
distinct since A \ .E1 CH/ D E1 and A \ .E2 CH/ D E2 by Claim 1. Since the
cardinality of xE does not exceed that of E, Claim 2 implies that

EG.h;� k/ � E
�
G=H .h � 1;� k/;

and we are done.

Remark 3. We note two points.

• Note that the cardinality of an essential subset may decrease upon projection. This
is why the equality statement in Proposition 23 applies to the functionEG.h;� k/
rather than EG.h; k/.
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• This proposition reveals that for each h and k, the invariant EG.h;� k/ of G is
entirely determined by the set of finite quotients of G; thus, for instance,

EF2Œt�.h;� k/ D EFN
2
.h;� k/:

We now exhibit a simple way of bounding E�
G=H

.h � 1; k/ from below. Let
M.G; k/ (resp. M.G;� k/) be the number of maximal subgroups of cocardinality k
(resp. at most k) of a finite group G.

Proposition 24. Let G be a finite abelian group which admits a decomposition G DLh
iD1Gi as a direct sum of h � 1 subgroups. Then

E�G.h; k/ �

hX
iD1

M.Gi ; k/ and E�G.h;� k/ �

hX
iD1

M.Gi ;� k/:

Both inequalities are equalities when h D 1.

It would be interesting to know whether equality always holds for some decom-
position G D

Lh
iD1Gi of G.

Proof. The hypothesis implies that A D
Sh
iD1 Gi is a basis of order h. We claim

that its nice-weakly essential subsets are precisely the sets of the form Gi nK, where
i 2 Œh� and K is a maximal proper subgroup of Gi . First, let i 2 Œh� and K a proper
subgroup of Gi . Let F D Gi nK. Then

hA n F i D
M
j¤i

Gj ˚K ¤ G;

so F is nice-weakly exceptional. If F is additionally maximal, then F is essen-
tial. Conversely, let F � A be nice-weakly exceptional, and let Fi D F \ Gi , so
F D

Sh
iD1 Fi . Then

A n F D

h[
iD1

Gi n Fi and hA n F i D

hM
iD1

hGi n Fi i:

Therefore at least one i 2 Œh� must satisfy hGi n Fi i ¤ Gi . Now suppose F is nice-
weakly essential, so by minimality exactly one i 2 Œh� must satisfy hGi n Fi i ¤ Gi ,
and finallyF DGi nK for some i and some maximal subgroupK ofGi . Therefore,A
has

Ph
iD1M.Gi ; k/ essential subsets of cardinality k and

Ph
iD1M.Gi ;� k/ essential

subsets of cardinality at most k. This proves both inequalities.
Since a nice weak basis of order 1 of G is precisely G or G n ¹0º, we obtain the

equality when h D 1.
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The two propositions above imply that

EG.2;� k/ D max
ŒGWH�<1

M.G=H;� k/:

So there remains to understand M.G;� k/ for finite abelian groups.

Proposition 25. For any finite abelian group and integer k � 1, we have

M.G;� k/ � 2k � 1

and equality holds if, and only if, G D Fd2 and k D 2d�1 for some d � 1, in which
case we even have M.G; k/ D 2k � 1.

Proof. The basic theory of finite abelian groups indicates that a subgroup is max-
imal if, and only if, it has cardinality jGj=p for some prime p dividing jGj, thus
jGj=p � jGj � k. In particular, M.G; k/ D 0 unless jGj � 2k, which we henceforth
suppose. Further, the number of subgroups of index p equals the number of subgroups
of cardinality p. For each prime p � jGj=.jGj � k/, let Gp D ¹x 2 G W px D 0º; the
number of subgroups of order p of G is .jGpj � 1/=.p � 1/. Therefore,

M.G;� k/ D
X

p� jGj
jGj�k

jGpj � 1

p � 1
�

X
p� jGj
jGj�k

.jGpj � 1/:

Now we invoke the simple inequality

nX
iD1

.ai � 1/ �

nY
iD1

ai � 1;

valid for any n-tuple of real numbers satisfying ai � 1, where equality holds if and
only if ai D 1 for all but at most one i 2 Œn�. Finally, we apply the fact that

Q
pjGpj �

jGj, which follows from the fact that the subgroups Gp of G are in direct sum, the
already derived condition jGj � 2k, and conclude that M.G;� k/ � 2k � 1. The
equality case follows readily from the conjunction of all four inequalities used in the
proof.

The proof also reveals that if G has no nontrivial element of order less than p, we
have M.G;� k/ � kp=.p � 1/ � 1, where equality holds if, and only if, jGj D Fdp
and k D pd � pd�1.

We now prove Theorem 3 (ii) and Theorem 2 (iii).

Proof of Theorem 3 (ii) and Theorem 2 (iii). For Theorem 3 (ii), we consider kD2r�1

for some r � 1. By hypothesis, there is a subgroupH ofG such thatG=H Š F.h�1/r2 .
By Proposition 23,

EG.h; k/ � E
�
G=H .h � 1; k/:
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We write

F.h�1/r2 D

h�1M
iD1

Gi ;

where Gi Š Fr2. By Propositions 24 and 25, we have

E�G=H .h � 1; k/ � .h � 1/M.F
r
2; 2

r�1/ D .h � 1/.2k � 1/:

For Theorem 2 (iii), Propositions 23 and 24 imply that

E.2;� k/ D max
ŒGWH�<1

E�G=H .1;� k/ D max
ŒGWH�<1

M.G=H;� k/:

The last quantity is � 2k � 1 by Proposition 25.

4. The function XT .h; k/

4.1. Upper bounds

We fix a translatable semigroup T of Grothendieck group G D GT and an invariant
mean ƒ on T . By Lemma 18, we extend it to an invariant mean on G by letting
ƒ.f / D ƒ.f jT / for any f 2 `1.G/, where f jT is the restriction of f to T . For a
set A � G, we refer to d.A/ D ƒ.1A/ as the “density” of A. Note that d.T / D 1. We
first prove some lemmas on the densities of certain sumsets.

Lemma 26. Let B;C � G. Then either d.B C C/ � 2d.C / or B � B � C � C .

Proof. Suppose there are two distinct elements b; b0 of B such that bCC and b0CC
are disjoint. Then

d.B C C/ � d..b C C/ [ .b0 C C// D 2d.C /:

Otherwise, for any b ¤ b0 of B we have .bC C/\ .b0 C C/¤ ;, which implies that
b � b0 2 C � C , so that B � B � C � C .

We shall deduce by iteration the following corollary.

Corollary 27. LetA�G. Let r � 1 be an integer. For any i � 0, let si D 2ir C 2i � 1.
Then either d.siA/ � 2id.rA/ or i � 1 and si�1.A � A/ D hA � Ai.

Proof. We argue by induction. For i D 0 the claim is trivial.
Fix some i � 0 and let us show that either

d.siC1A/ � 2
iC1d.rA/ or si .A � A/ D hA � Ai:
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We apply Lemma 26, to C D siA and B D .si C 1/A. Then B C C D siC1A. If
B � B � C � C , we have for any s � si the inclusion

s.A � A/ � si .A � A/:

Since hA � Ai D
S1
jD1 j.A � A/, this implies that si .A � A/ D hA � Ai.

Otherwise, we must have

d.siC1A/ D d.B C C/ � 2d.siA/:

Further, note that si .A � A/ ¤ hA � Ai, and therefore for any s � si , we know that
s.A�A/¤ hA�Ai. If i D 0we are done. Otherwise, applying the induction hypoth-
esis, we see that

d.sj / � 2d.sj�1A/

for any j � i . By a straightforward induction, we conclude that d.siC1A/� 2id.rA/.

We now show that if d.hA/ > 0, then A � A must be a basis of bounded order of
the group it generates.

Lemma 28. Suppose A � G, h � 1 and d.hA/ D ˛ > 0. Then there exists

s �
1

˛
.hC 1/ � 1

such that sA � sA D hA � Ai.

Proof. We apply Corollary 27 to the set hA, the integer r D h and i D i0 the smallest
integer such that 2i0˛ > 1. Since the density cannot exceed 1, we have si .A � A/ D
hA � Ai, where

si D 2
i0�1hC 2i0�1 � 1 �

1

˛
.hC 1/ � 1

(since 1
˛
� 2i0�1). This yields the desired conclusion.

The following lemma can be regarded as an analogue of [20, Lemma 3].

Lemma 29. Let B � G satisfy hB � Bi D G. Suppose there exist h; m � 1 and
x1; : : : ; xm in T such that

T �
�

m[
iD1

.xi C hB/:

Then B is a G-basis of T of order at most hCm2.hC 1/ �m.

The termm2 (whereas one could hope form instead) is what is ultimately causing
our bounds for XG.h; k/ to be large; we do not know whether it is optimal.
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Proof. The hypothesis and axioms of a density imply d.hB/ � 1=m. By Lemma 28,
we infer that there exists s �m.hC 1/� 1 such that sB � sB D hB �Bi DG. Thus,
for each 1 � i � m we may write xi D ai � bi , where ai 2 sB and bi 2 sB . Hence,

T �
�

m[
iD1

.hB C ai � bi /:

By adding
Pm
iD1 bi to both sides and using translatability, we have

T �
�

m[
iD1

�
hB C ai C

X
j¤i

bj

�
;

which shows that all except finitely many elements of T can be expressed as a sum of
hCms elements of B . Since hCms � hCm2.hC 1/ �m, we are done.

We may now deal with the effect of removing a regular subset from a basis.

Proof of Theorem 4. Let A be a G-basis of order at most h and F � A be a regular
subset of cardinality k. Let B D A n F . Since F is regular, by Lemma 13, we have
hB � Bi D G. We observe that

T �
�
hB [ ..h � 1/B C F / [ � � � [ .B C .h � 1/F /: (13)

Let b 2 B . Since iB � hB � .h � i/b, we have iB C hb � hB C ib and by trans-
latability

T �
�
.hB C hb/ [ .hB C F C .h � 1/b/ [ � � � [ .hB C .h � 1/F C b/:

Therefore, we may apply Lemma 29 with

m D

ˇ̌̌̌h�1[
jD1

.jF C .h � j /b/

ˇ̌̌̌

�

ˇ̌̌̌²
.t1; : : : ; tk/ 2 Nk W

kX
iD1

ti � h � 1

³ˇ̌̌̌
D

�
hC k � 1

k

�
: (14)

We infer that B is a G-basis of order at most

.hC 1/

�
hC k � 1

k

�2
�

�
hC k � 1

k

�
C h D

h2kC1

kŠ2
.1C ok.1//;

which is the desired result.

Remark 4. In the case k D 1, the proof gives the bound XT .h/ � .h C 1/h2. By
bounding d.iB/ in terms of d.hB/ using Corollary 27 for each i � h, one can prove
a better bound XT .h/ � .23 C o.1//h

3.
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Remark 5. For fixed k and h ! 1, we do not know if the estimate ord�T .B/ D
Ok.h

2kC1/ is best possible. On the other hand, we see that

ord�G.B � B/ � .hC 1/
�
hC k � 1

k

�
� 1 D Ok.h

kC1/

(by Lemma 28 and the fact d.B/� 1=
�
hCk�1
k

�
). This estimate is best possible in terms

of h, as shown by the following example. Let A D ¹0; 1; b; : : : ; bkº [ bkC1N. Then
A is a basis of order h D .b � 1/.k C 1/ of N. Let F D ¹b; : : : ; bkº, then

B D A n F D ¹0; 1º [ bkC1N and B � B D ¹0;˙1º [ bkC1Z:

Then B �B is a basis of Z of order � bkC1

2
D Ok.h

kC1/. We will use this idea again
to prove Theorem 7.

In the case of � -finite groups, we can do better.

Proof of Theorem 5. Let T be a � -finite infinite abelian group. Let .Gn/n�0 be a non-
decreasing sequence of subgroups such that T D

S
n�0Gn. For C � T , let

xd.C / D lim sup
n!1

jC \Gnj

jGnj

be its upper asymptotic density. Let A be a basis of G of order at most h � 2. Let F
be a regular subset of A of cardinality k and B D A n F . Upon translating we may
assume that 0 2 B . Note that hBi D hB � Bi D T by Lemma 13. By equation (13),
we have

xd.hB C
h�1[
jD0

jF / D xd.T / D 1:

Note that for any two subsets X; Y of T , for any " > 0, we have

j.X [ Y / \Gnj

jGnj
�
jX \Gnj C jY \Gnj

jGnj
� xd.X/C xd.Y /C ":

Taking the upper limit, we find that xd.X [ Y / � xd.X/C xd.Y /C ". Finally, letting "
tend to 0, we see that xd.X [ Y / � xd.X/C xd.Y /.

Because of the translation-invariance of the density, the just obtained inequal-
ity and equation (14), we infer that xd.hB/

�
hCk�1
k

�
� 1. We are now in position to

apply [15, Theorem 1], which yields that hB is a basis of hhBi D G of order at most

1C 2=xd.hB/ � 1C 2
�
hC k � 1

k

�
D
hk

kŠ
CO.hk�1/:

Therefore, B itself is a basis of order at most h ord�G.hB/ � 2
hkC1

kŠ
CO.hk/.
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Remark 6. Instead of appealing to [15, Theorem 1], we could have used Kneser’s
theorem for the lower asymptotic density [1] and the fact that any set A of lower
asymptotic density larger than 1/2 satisfies A C A � G and argued like Nash and
Nathanson in the integers.

Note that a Kneser-type theorem is available in any countable abelian group G
for the upper Banach density [13]. However, that density has the drawback that a set
A�G satisfying d�.A/ > 1=2, even d�.A/D 1, may not be a basis of any order of the
group it generates. For instance, take B D

S
i�1Œ2

i ; 2i C i/ � Z and AD B [ .�B/;
it generates Z but is far too sparse to be a basis of Z, of any order. Yet its upper Banach
density is 1.

We conclude the section with the case of infinite abelian groups of finite exponent.

Proof of Theorem 6. Let G be an infinite abelian group of exponent `. For part (1),
we proceed identically to the proof of Theorem 4 with the group G in the place of T .
The difference is that, since G has exponent `,

m D

ˇ̌̌̌h�1[
jD1

jF

ˇ̌̌̌
�

ˇ̌̌̌²
.t1; : : : ; tk/ 2 Nk W ti � ` � 1;

kX
iD1

ti � h � 1

³ˇ̌̌̌
� `k :

Thus by Lemma 29, B is a basis of order at most .hC 1/`2k � `k C h as desired.
As for part (2), we will generalize the argument in [19, Theorem 5]. Suppose

F D ¹aº. By translating A by �a if necessary, we may assume that a D 0. Since G
has exponent `, we have sB � .s C `/B for any s. Therefore,

G �

h[
iD1

iB �

h[
iDh�`C1

iB: (15)

For any x 2G, sinceB is infinite, .x �B/\
Sh
iDh�`C1 iB is nonempty and therefore

G D

hC1[
iDh�`C2

iB:

We now claim that there are u; v such that h C 2 � u < u C v � h C ` C 1,
uB \ .uC v/B ¤ ; and gcd.v; `/ D 1. Suppose for a contradiction that this is not
true. Then we have disjoint unions

G D
[

i2I1C`

iB t
[

i2I2C`

iB and G D
[
i2I1

iB t
[
i2I2

iB;

where

I1 WD ¹j 2 Œh � `C 2; hC 1� W p j j º; I2 WD ¹j 2 Œh � `C 2; hC 1� W p − j º;
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where p is the unique prime divisor of `. It follows that
S
i2I1

iB D
S
i2I1C`

iB . By
repeatedly adding `B to both sides, we have[

i2I1

iB D
[

i2I1Cs`

iB

for any s � 1. For s sufficiently large, this implies that
S
i2I1

iB D G (since we
already know that B is a basis). This is a contradiction and the claim is proved.

We now proceed similarly to the proof of Lemma 12. If c 2 uB \ .uC v/B , then

.` � 1/c 2 .` � 1/uB \ ..` � 1/uC v/B \ � � � \ .` � 1/.uC v/B:

Let yi D .` � 1/uC iv. For each i 2 Œ0; ` � 1�, there exists

xi 2 Œ.` � 1/.uC v � 1/; .` � 1/.uC v/�

satisfying xi � yi mod ` and xi > yi . Further, since gcd.v; `/ D 1, we have

¹x0; : : : ; x`�1º D Œ.` � 1/.uC v � 1/; .` � 1/.uC v/�:

Therefore,

.` � 1/c 2

.`�1/.uCv/\
iD.`�1/.uCv�1/

iB: (16)

For all but finitely many x 2 G, from (15) and (16), we have

x D .x � .` � 1/c/C .` � 1/c 2 ..` � 1/.uC v/C h � `C 1/B:

Therefore, B is a basis of order at most

.` � 1/.uC v/C h � `C 1 � .` � 1/.hC `C 1/C h � `C 1

D h`C `2 � `:

Remark 7. What we need about ` in the proof is that whenever gcd.a; `/ D 1 and
gcd.b; `/ ¤ 1, then gcd.a � b; `/ D 1. Obviously, prime powers are the only integers
having this property.

4.2. Lower bounds

We will again modify constructions from quotients, but in a different way than in
Section 3.4. Let X�G.h; k/ be the maximal order of a nice basis which is included and
has cocardinality k in a nice basis of order at most h. Nice bases are defined at the
beginning of Section 3.4.
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Proposition 30. Let G be an infinite abelian group andH an infinite subgroup of G.
Then XG.h; k/ � X�G=H .h; k/.

Proof. Let A be a nice basis of order (at most) h of G=H which contains a subset F
of cardinality k such that A n F is a nice basis of order X�

G=H
.h; k/ of G=H .

Let � be the projectionG!G=H and let zF be a set of representatives of F inG.
Then letBD zF [��1.A nF /. Note thatA nF is not empty since it is a basis. ThenB
is a basis of order (at most) h of G and for any h0 � 1, we have h0��1.A n F / � G if
and only if h0.A nF /DG=H , which by hypothesis is equivalent to h0 � X�

G=H
.h; k/.

So B n zF is a basis of order X�
G=H

.h; k/ of G, which concludes.

Now we prove Theorem 7.

Proof of Theorem 7. Fix some integer k. By hypothesis, there is an infinite set I such
that for any N 2 I , G has a quotient isomorphic to Z=NZ. Let N 2 I and b satisfy

.b � 1/kC1 < N � bkC1:

If N is sufficiently large, then so is b, and bk < .b � 1/kC1 < N . Consider the nice
basis A D ¹0; 1; b; : : : ; bkº of order at most h WD .b � 1/.k C 1/ of Z=NZ. Then
F D ¹b; : : : ; bkº has the property that A n F D ¹0; 1º is a nice basis of order

N � 1 � .b � 1/kC1 �k h
kC1:

Proposition 30 then implies that

XG.h; k/ � XZ=NZ.h; k/�k h
kC1;

proving the first part of the theorem.
In the regime where h is fixed and k tends to infinity, we use the following fact:

there exists a constant ch > 0 such that for any large x, there exists a set A � Œ0; x/
of integers such that Œ0; x/ � hA and jAj � chx1=h. Such a set is referred to as a thin
basis in the literature and was first constructed by Cassels [3]. In particular, 0 and 1
lie in A. Now consider A as a nice basis of Z=xZ of order h. Consider F D A n ¹0; 1º
of cardinality k � chx1=h, so A n F is a nice basis of order x�h k

h. One last appeal
to Proposition 30 concludes then the proof of Theorem 7.

5. The function ST .h; k/

Again, in this section we fix a translatable semigroup T and an invariant meanƒ on T .
Recall that ƒ extends to an invariant mean on G D GT by setting ƒ.f / D ƒ.f jT /
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for all f 2 `1.G/, where f jT is the restriction of f to T . For A � G, we write
d.A/ D ƒ.1A/.

We first prove the following observation already used in [19, Section 6].

Lemma 31. SupposeA�G, a 2A satisfy T �
�
hA and d.T n h.A n ¹aº// < 1

h
. Then

T �
�
2h.A n ¹aº/.

Proof. Let a0 be an element in A n ¹aº. Let B D T n h.A n ¹aº/, then d.B/ < 1=h.
Since d is translation-invariant, we have

h�1X
iD0

d.B C .h � i/aC ia0/ < 1

and consequently there are infinitely many x 2 T such that

x C h.aC a0/ 62 B C .h � i/aC ia0

for all i D 0; 1; : : : ; h � 1. In other words,

x C iaC .h � i/a0 2 h.A n ¹aº/ and x C i.a � a0/ 2 h.A n ¹aº � a0/

for all i D 0; 1; : : : ; h � 1.
Now for all but finitely many t 2 T , we have t � x 2 h.A � a0/ and t � x ¤

h.a � a0/. If i is the number of occurrences of a � a0 in some representation of t � x
as a sum of h elements of A � a0, then 0 � i � h � 1 and

t � x � i.a � a0/ 2 .h � i/.A n ¹aº � a0/:

Thus

t D .t � x � i.a � a0//C .x C i.a � a0//

2 .2h � i/.A n ¹aº � a0/ � 2h.A n ¹aº � a0/;

and the lemma is proved.

Proof of Theorem 9. We first strengthen slightly an observation already used in [19,
Section 6].

Claim 1. For any finite subset I � A, for all but finitely many x 2 T , there are at
most h � 1 elements a 2 I such that x 2 T n h.A n ¹aº/.

Proof of Claim 1. Since T n hA is finite, we may assume x 2 hA. Fix a representation

x D a1 C � � � C ah;
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where ai 2A for i D 1; : : : ; h. If x 2 T n h.A n ¹aº/, then amust be one of a1; : : : ; ah.
This implies that there are at most h elements a 2 I such that x 2 T n h.A n ¹aº/.
Furthermore, if x 2 T n h.A n ¹aº/ for h elements a 2 I , then necessarily x 2 hI .
Since hI is finite, this proves the claim.

Let I be an arbitrary finite subset of A. Let f .x/ D
P
a2I 1T nh.An¹aº/.x/. Then

for all but finitely many x, we have f .x/ � h � 1. By evaluating ƒ.f / and the fact
that finite sets have density 0, we have the following:

Claim 2. For any finite set I � A, we have
P
a2I d.T n h.A n ¹aº// � h � 1.

Suppose now T is a group. We may assume that ƒ satisfies property (D4) in
Section 2.4. We have

Claim 3. If B � T and d.B/ > 1=2, then 2B D T .

This immediately follows from Lemma 17.
Let J be the set of all a 2 A such that ord�T .A n ¹aº/ > 2h. For all a 2 J , we have

d.h.A n ¹aº// � 1=2

(if not, we will have 2h.A n ¹aº/D T ), and therefore d
�
T n h.A n ¹aº/

�
� 1=2. SinceX

a2I

d
�
T n h.A n ¹aº/

�
� h � 1

for any finite subset I of J , this shows that J is finite and jJ j � 2.h � 1/, and the
second part of Theorem 9 is proved.

For general translatable semigroups, we use Lemma 31 instead of Claim 3. For all
a 2 J , we have d.h.A n ¹aº// � 1=h, and therefore jJ j � h.h � 1/.

We now generalize these ideas to prove Theorem 10.

Proof of Theorem 10. Let R be the set of all regular pairs ¹a; bº � A such that

ord�T .A n ¹a; bº/ > 2XT .h/:

Also, let U be the set of all regular elements a 2 A such that ord�T .A n ¹aº/ > ST .h/.
By Theorem 9 we know that jU j D O.h2/.

Claim 1. For all but finitely many x 2 T , there are at most hXT .h/.XT .h/� 1/ pairs
F 2 R such that x 2 T n h.A n F /. If T is a group then the number of such pairs is
at most 2h.XT .h/ � 1/.
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Proof of Claim 1. Since T n hA is finite, we may assume x 2 hA. Fix a representation

x D a1 C � � � C ah;

where ai 2 A for i D 1; : : : ; h. If x 2 T n h.A n F /, then ai 2 F for some i . Let
F D ¹ai ; bº, then b is a regular element of the basis A n ¹aiº (note that ai has to be
regular in the first place). By the definition of XT .h/, we have

ord�T .A n ¹ai ; bº/ > 2XT .h/ � 2ord�T .A n ¹aiº/:

By Theorem 9, there are at most XT .h/.XT .h/ � 1/ choices for b, and this number
can be replaced by 2.XT .h/ � 1/ if T is a group. Thus Claim 1 is proved.

Let I be a finite subset of R. Let f .x/ D
P
F 2I 1T nh.AnF /.x/: Again evaluating

ƒ.f / yields the following bound.

Claim 2. For any finite subset I � R, we have

X
F 2I

d
�
T n h.A n F /

�
�

´
hXT .h/.XT .h/ � 1/ for any T ;

2h.XT .h/ � 1/ when T is a group:

We are now able to conclude the proof when T is a group. For all F 2 R, we have

d
�
T n h.A n F /

�
� 1=2:

If not, we will have ord�T .h.A n F // � 2 and ord�T .A n F / � 2h � 2XT .h/, which
contradicts the definition of R. This implies that R is finite and furthermore,

jRj � 4h.XG.h/ � 1/:

If T is an arbitrary translatable semigroup, then we apply Lemma 31 to the basis
A n ¹aº and get:

Claim 3. If F D ¹a; bº is regular, ord�T .A n ¹aº/ D k, d.T n k.A n F // < 1
k

, then
ord�T .A n F / � 2k. Consequently, if F 2 R and a 62 U , then

d.T n h.A n F // � d.T n 2h.A n F // �
1

2h
:

From Claims 2 and 3, the number of pairs F 2 R, at least one of whose elements
is not in U , is at most

hXT .h/.XT .h/ � 1/ � 2h D O.h
2XT .h/

2/:

Clearly the number of pairs F 2 R, both of whose elements are in U , is O.h4/. This
concludes the proof of Theorem 10.
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We point out that the argument used in the proof of Theorem 10 may be applied to
bound ST .h; k/ for k � 3, but it seems to yield bounds which are worse than trivial.

Theorem 9 prompts the following question.

Question. If T �
�
hA, then we know that there are at most h � 1 elements a 2 A

such that ord�T .A n ¹aº/ D 1, and these are characterized by the Erdős–Graham cri-
terion, i.e., hA n ¹aº � A n ¹aºi ¤ G. Can one find a nice algebraic characterization
for elements a for which ord�T .A n ¹aº/ > 2h?

Appendix A. The structure of translatable semigroups

In this appendix we prove the structure result for translatable semigroups.

Proposition 32. Let T be a translatable semigroup. Then either T is a group (i.e., T
equals its Grothendieck group GT ), or there exists x 2 T and T � C ˚ xN, where C
is a finite subgroup of GT .

Proof. Suppose that T is not a group. Let G D GT be its Grothendieck group. Since
T ¤ G, we have T 6� �T . Let x 2 T n .�T /. Then the order of x in T is neces-
sarily infinite, since if kx D mx for some k > m then �x D .k � m � 1/x 2 T , a
contradiction. Therefore, x generates an infinite subgroup xZ of G and also a sub-
semigroup xN� (isomorphic to N�) of T .

Let R D T n .x C T /, a finite set. Let u 2 T be arbitrary. If u � kx 2 T for
infinitely many positive integers k, then since T � uC T , we have u � kx 2 uC T
and �kx 2 T for some positive integer k. Therefore,

�x D �kx C .k � 1/x 2 T;

which contradicts our hypothesis on x. So we let u0Du� kx where k is the maximum
nonnegative integer such that u� kx 2 T ; then u0 … xC T . As a result, every element
of T may be uniquely decomposed as a sum of an element ofR and an element of xN,
so T D RC xN and G D T � T D R �RC xZ. Consequently, xZ has finite index
in G.

By the classification theorem of finitely generated abelian groups, there exists a
finite subgroup C ofG such thatG D C ˚ xZ. By Lemma 11 (4), T \ .cC xZ/¤ ;
for any c 2 C . On the other hand, we have T \ .c C xZ�/ D ;. If not, then since c
has finite order, we have �`x 2 T for some ` 2 ZC, so

�x D .�`x/C .` � 1/x 2 T;

a contradiction. Thus for every c2C , there exists a minimal k2N such that cCkx2T.
We conclude that T � C ˚ xN.
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As a consequence, this structure result implies that any translatable semigroup T
admits a basis of any order h � 2.

Proposition 33. For every translatable semigroup T and every integer h � 2, there
exists a basis of T of order h.

When T is a group, this was proved by Lambert, Plagne and the third author [19,
Theorem 1]. Our proof makes use of their result.

Proof. We may assume that T has a neutral element 0. Indeed, supposing that T does
not have a neutral element, there exists x 2 T n .�T /; then A is a basis of T [ ¹0º if
and only if AC x � T is a basis of T , and

ord�T .AC x/ D ord�T[¹0º.A/:

We shall construct an infinite sequenceƒD.ƒi /i�0 of subsets of T such that ¹0º¨ƒi
for every i � 0 and for any x 2 T , there exists a unique sequence �.x/D .�i .x//i�0 of
finite support such that xD

P1
iD0�i .x/, where �i .x/ 2ƒi . (The support supp.s/ of a

sequence sD .si /i�0 2 T N is the set ¹j 2N W sj ¤ 0º.) As shown in [19, Proposition 1]
(the arguments there do not use the group structure, only the semigroup structure),
such a sequence ƒ gives rise to a basis of order exactly h.

Either T is a group, in which case we can use [19, Theorem 1]; or there is a
finite subset ¹0º � R � T and x 2 T such that any t 2 T may be uniquely written
as t D r C kx for some .r; k/ 2 R � N. Let n D

P1
iD0 ai .n/2

i be the unique binary
decomposition of any integer n2N, where ai .n/2 ¹0;1º; then we setƒi D¹0;2i�1xº
for any i � 1, and ƒ0 D R if R ¤ ¹0º, and ƒi D ¹0; 2ixº for any i � 0 otherwise.
The sequence ƒ has then the desired property.
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