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Computing fusion products of MV cycles using
the Mirković–Vybornov isomorphism

Roger Bai, Anne Dranowski, and Joel Kamnitzer

Abstract. The fusion of two Mirković–Vilonen cycles is a degeneration of their product, def-
ined using the Beilinson–Drinfeld Grassmannian. In this paper, we put in place a conceptually
elementary approach to computing this product in type A. We do so by transferring the problem
to a fusion of generalized orbital varieties using the Mirković–Vybornov isomorphism. As an
application, we explicitly compute all cluster exchange relations in the coordinate ring of the
upper-triangular subgroup of GL4, confirming that all the cluster variables are contained in the
Mirković–Vilonen basis.

1. Introduction

1.1. Geometric Satake and Mirković–Vilonen cycles

The geometric Satake equivalence of Mirković and Vilonen [24] is an equivalence of
categories between the category of spherical perverse sheaves on the affine Grassman-
nian of a reductive group G and the category of representations of its Langlands dual
group G_. This foundational result provides a powerful tool to study representation
theory using geometry. In particular, under this equivalence, the MV cycles (short for
Mirković–Vilonen) in the affine Grassmannian of G index bases for irreducible rep-
resentations of G_. In this paper we work with G D GLm and identify G_ D GLm
as well.

In [25] (see also the recent sequel [26]), Mirković and Vybornov supply a geo-
metric version of symmetric and skew Howe .GLm;GLN / dualities. They relate
Kazhdan–Lusztig slices in the affine Grassmannian of GLm to slices inN �N nilpo-
tent orbits on the one hand, and to Nakajima quiver varieties on the other hand. The
second author [10] showed that under the Mirković–Vybornov isomorphism, the MV
cycles are identified with certain varieties of matrices, called generalized orbital vari-
eties.
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Essential to the geometric Satake equivalence, the BD Grassmannian (short for
Beilinson–Drinfeld) is used to define a fusion product on the category of spherical
perverse sheaves on the affine Grassmannian. In [1], Anderson used the BD Grass-
mannian to define a fusion of MV cycles. He constructed a family where the general
fibre is a Cartesian product of two MV cycles, and the special fibre, called the fusion,
is a (non-reduced) union of MV cycles. Anderson conjectured that this fusion product
matches the multiplication in the coordinate ring of the unipotent subgroupN �GLm.
This conjecture was proven in [5], where it was also established that the MV cycles
give a basis for CŒN �.

1.2. Fusion using generalized orbital varieties

Computing the fusion product of MV cycles using the BD Grassmannian is quite
difficult, both computationally and conceptually. A few such computations were done
by Anderson and Kogan in [3] in a somewhat ad-hoc fashion. Another perspective
on these computations (using convolution Grassmannians) was recently studied by
Baumann, Gaussent and Littelmann [4].

The purpose of this paper is to give a conceptually elementary way to compute
this product by transferring it to a fusion product of generalized orbital varieties. To
do so, we use that the Mirković–Vybornov isomorphism extends to an isomorphism
between families of slices in the BD Grassmannian and families of slices of matrices
with two eigenvalues. Our main result is the following (see Corollary 6.15 for a more
precise statement).

Theorem 1.1. Let Z0; Z00 be MV cycles. The structure constants for the of the cor-
responding MV basis vectors in CŒN � are equal to the intersection multiplicities of
generalized orbital varieties in the fusion of the generalized orbital varieties corre-
sponding to Z0; Z00.

Since these generalized orbital varieties are subschemes of affine spaces of mat-
rices defined by certain rank conditions, the fusion of generalized orbital varieties can
be computed by elementary commutative algebra.

1.3. Cluster algebras and MV cycles

One motivation for computing products of MV basis elements is to relate the clus-
ter algebra structure on CŒN � to the MV basis. Cluster algebras were introduced by
Fomin and Zelevinsky in [12] and it was shown in [16], using a construction of [6],
that CŒN � has a natural cluster algebra structure.

This structure starts with an initial seed † D .¹x1; : : : ; xrº; B/, where xi 2 CŒN �

are called variables, B is a certain matrix, and r D m.m� 1/=2. We obtain new vari-
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ables through a process called mutation, where for a mutable variable xi , its mutation
is the unique element x�i 2 CŒN � such that

xix
�
i D xC C x�:

This equation is called an exchange relation, and the terms xC and x� are certain
monomials in the xj , j ¤ i , determined by B . It gives us the new cluster

¹x1; : : : ; x
�
i ; : : : ; xrº:

The initial cluster ¹x1; : : : ; xrº as well as all possible variables that are obtained
through successive mutations are known as cluster variables. The cluster monomials
are products of cluster variables that are supported on a single cluster.

For CŒN �, the choice of initial seed† depends on the choice of a reduced word for
the longest element of the Weyl group. The cluster variables x1; : : : ;xr are flag minors
and the exchange matrix B depends on the reduced word, see [6, Definitions 2.2–2.3]
for more details.

There are two well-known bases of CŒN � whose relationship with the cluster
structure has been heavily studied: the dual canonical basis of [22] and the dual semi-
canonical basis of [23]. In [20], Kang, Kashiwara, Kim and Oh showed that the cluster
monomials are contained in the dual canonical basis, while, in [15], Geiß, Leclerc and
Schröer proved that they are all contained in the dual semicanonical basis.

The MV basis, the dual canonical basis, and the dual semicanonical basis are all
examples of biperfect bases of CŒN � (see [5, Section 2]). In particular, they share
a crystal structure. In [5, Appendix], we showed that for GL6, the MV basis differs
from the dual semicanonical basis at the same point in the underlying crystal as where
the dual semicanonical basis differs from the dual canonical basis. The fact that this
point at which each of these bases differ is not a cluster monomial in any of these
bases, gives evidence for the following conjecture of Anderson and Kogan [3, Con-
jecture 5.1].

Conjecture 1.2. The cluster monomials are contained in the MV basis.

The conjecture is true for GLm for m � 4 since in these cases CŒN � has a unique
biperfect basis [5, Section 2.3].1 More generally, cluster variables called flag minors,
coming from initial seeds constructed in [6, Definitions 2.2–2.3], belong to each biper-
fect basis of CŒN � [5, Remark 2.10]. And recently in [4, Proposition 7.2], Baumann–
Gaussent–Littelmann proved that cluster monomials supported on clusters coming
from reduced words satisfying a certain combinatorial condition lie in the MV basis.

1For GL5, the dual canonical and dual semicanonical bases are equal and coincide with
the set of cluster monomials. It is not known if there is a unique biperfect basis, but based on
Conjecture 1.2, we expect that the MV basis coincides with the other two bases.
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Our hope is that each exchange relation can be realized using the fusion of MV
cycles. This would imply that all cluster variables are in the MV basis. In Section 7.2
we verify that this is indeed the case in for GL4 by directly computing each fusion
product corresponding to an exchange relation.

A second step towards proving Conjecture 1.2 would be to prove that cluster
monomials lies in the MV basis. From the fusion perspective, this amounts to proving
that certain fusions of MV cycles are irreducible. Unfortunately, the methods of this
paper do not seem useful toward establishing this irreducibility.

2. Supporting cast

2.1. Rings and discs

Set O DO0DCJtK and K DK0DC..t//. We will also consider Os DCJt � sK and
its fraction field Ks D C..t � s//, for any s 2 C n ¹0º, as well as O1 D CJt�1K and
K1DC..t�1//. For any point s 2P DP1, Os is the completion of the local ring OP ;s

and thus the formal spectrum of Os is the formal neighborhood Ds of s (also called
the formal disc centered at s). Similarly, the formal spectrum of the field Ks is the
deleted formal neighborhood (or punctured disc), denoted D�s .

Note, for s 2 A D A1, we have obvious isomorphisms Os Š O and Ks Š K

taking t � s to t .

2.2. Groups

Let H be an algebraic group over C. We will be interested in H.R/ where R is a
C-algebra, for example R D CŒt �;Os , etc. Note that evaluation at t D s provides a
group homomorphism H.Os/! H . We denote the kernel of this map by H1.Os/,
often called the first congruence subgroup. We will be particularly interested in this
construction in the case s D1, which gives us the group H1.O1/.

Throughout the paper, we fix m 2 N. We let G D GLm and we let T � G be
the maximal torus of diagonal matrices. Let N; N� � G denote the subgroups of
upper and lower triangular matrices with 1s on the diagonal. We identify Zm with
the coweight lattice of G and say that a coweight � D .�1; : : : ; �m/ is dominant if
�1 � � � � � �m and effective if �j � 0 for all j . If � is both effective and dominant,
then it is a partition of size j�j D �1C � � � C �m 2N. LetQC�Zm denote the positive
root cone, explicitly we have

QCD ¹.�1; : : : ; �m/ W �1C � � � C �j � 0 for j D 1; : : : ;m� 1 and �1C � � � C �mD 0º:

We define a partial order on Zm by � � � if and only if � � � 2 QC.



MV Fusion of MV Cycles 87

Given s 2 C, we define .t � s/� to be the diagonal matrix26664
.t � s/�1

.t � s/�2

: : :

.t � s/�m

37775
which we can view in G.K/ for any ringK containing .t � s/�1 and CŒt �. For exam-
ple, .t � s/� 2 G.K/ for K DKs or C.t/.

We will also be interested in the affine spaceMm ofm�mmatrices. Note that for
any C-algebra R, G.R/ consists of those matrices g 2Mm.R/ whose determinant is
invertible in R. Thus, for example, .t � s/� 2Mm.CŒt �/ for all effective � 2 Zm but
.t � s/� 2 G.CŒt �/ if and only if � D 0.

2.3. Lattices

We will use the lattice model for the affine Grassmannian, so it is useful to recall
the following definition. Let R � K be two C-algebras (usually, but not always, K
will be a field). Consider Km as a K-module. By restriction Km can be viewed as an
R-module. AnR-lattice inKm is anR-submoduleL�Km which is a freeR-module
of rankm and satisfies L˝R K DKm. Equivalently, LD SpanR.v1; : : : ; vm/, where
v1; : : : ; vm are free generators of Km.

The standard lattice is denotedRm. The group GLm.K/ acts transitively on the set
of R-lattices in Km, thus giving a bijection between this set and GLm.K/=GLm.R/,
since GLm.R/ is the stabilizer of the standard lattice.

We will be particularly interested in CŒt �-lattices in C.t/m. Given such a lattice L
and a point a 2 C, the specialization of L at a is the lattice in Km

a defined as L.a/ WD
L˝CŒt� Oa. If L.a/ D Om

a , then L is said to be trivial at a. For example, the lattice
.t � s/�1CŒt � � C.t/ is trivial at any a ¤ s, since t � s is invertible in Oa.

3. Affine Grassmannians

We now define various versions of the affine Grassmannian which will play important
roles in this paper. Each definition is made group-theoretically and then restated as a
moduli space of vector bundles and as a moduli space of lattices. We also sketch how
to pass between descriptions.

In these definitions, Vtriv denotes the trivial rank m vector bundle.

Definition 3.1. The ordinary affine Grassmannian Gr D G.K/=G.O/.
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It is the moduli space of vector bundles with trivializations,

Gr D ¹.V; '/ W V is a rank m vector bundle on D0, 'WV
�
�! Vtriv on D�0 º:

It is also a moduli space of lattices,

Gr D ¹L �Km
W L is a O-latticeº:

We obtain a lattice from a pair .V; '/ by setting L D �.D0; V / which is embedded
into Km D �.D�0 ; Vtriv/ using '. On the other hand, to get a lattice from the group-
theoretic description G.K/=G.O/ we set L D gOm for g 2 G.K/.

Definition 3.2. For any s2C, the ordinary affine Grassmannian GrsDG.Ks/=G.Os/

at s.

As above, we have modular and lattice descriptions:

Grs D ¹.V; '/ W V is a rank m vector bundle on Ds , 'WV
�
�! Vtriv on D�s º;

Grs D ¹L �Km
s W L is a Os-latticeº:

Definition 3.3. The thick affine Grassmannian Gr D G.K1/=G.CŒt �/.

Again, we have the following modular and lattice descriptions:

Gr D ¹.V; '/ W V is a rank m vector bundle on P , 'WV
�
�! Vtriv on D1 º;

Gr D ¹L W L �Km
1 is a CŒt �-latticeº:

Definition 3.4. The two point Beilinson–Drinfeld Grassmannian

� WGr0;A ! A

with one point fixed at 0, and the second point s 2 A varying.

It is described in modular terms by

Gr0;A D ¹.V; '; s/ W V is a rank m vector bundle on P ; 'WV
�
�! Vtriv on P n ¹0; sºº:

The fibre of Gr0;A ! A over s 2 A will be denoted Gr0;s and is given by

G.CŒt; t�1; .t � s/�1�/=G.CŒt �/:

We also have the lattice descriptions:

Gr0;A D ¹.L; s/ W L � C.t/m is a CŒt �-lattice trivial at any a ¤ 0; sº;

Gr0;s D ¹L W L � CŒt; t�1; .t � s/�1�
m

is a CŒt �-latticeº:
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Definition 3.5. The positive part of Gr, resp. Gr, is defined by

GrC D .Mm.O/ \G.K//=G.O/; resp. GrC D .Mm.CŒt �/ \G.K1//=G.CŒt �/:

In modular terms, GrC (resp. GrC) is the set of those .V; '/, where 'WV ! Vtriv

extends to an inclusion of coherent sheaves over D0 (resp. over P ).
In lattice terms, GrC (resp. GrC) contains those lattices L which are contained

in Om (resp. CŒt �m).

3.1. Relations between different affine Grassmannians

These different versions of the affine Grassmannian are related as follows.

Proposition 3.6. There is a map Gr0;A ! Gr defined in the following equivalent
ways:

(1) in modular terms as
.V; '; s/ 7! .V; 'jD1/I

(2) in the fibre over s 2 A as the inclusion

G.CŒt; t�1; .t � s/�1�/=G.CŒt �/! G.K1/=G.CŒt �/I

(3) in terms of lattices as
.L; s/ 7! L;

using the inclusion CŒt; t�1; .t � s/�1�m !Km
1 on ambient spaces.

The following result is the factorization property of the BD Grassmannian (see [27,
Proposition 3.13]).

Proposition 3.7. The fibres Gr0;s of Gr0;A ! A can be described as

Gr0;s Š

´
Gr � Grs s ¤ 0;

Gr s D 0:

In the modular realization, this isomorphism is given by restricting the vector bundle
and trivialization.

Suppose that s ¤ 0. In the lattice realization, this is given by forming the special-
izations

L 7! .L.0/; L.s//:

Note that if L D gCŒt �m for g 2 G.CŒt; t�1; .t � s/�1�/, then

.L.0/; L.s// D .gOm; gOm
s /:

In the s D 0 case, the isomorphism is described in the same way, except that we just
need to form L.0/.
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For s ¤ 0, there is an isomorphism Grs Š Gr coming from the isomorphism
Ks ŠK . Combining with Proposition 3.7, we obtain an isomorphism

�sWGr0;s ! Gr � Gr:

Similarly, we write �0 for the isomorphism Gr0;0
�
�! Gr.

3.2. The fusion construction

The following construction will be very important in this paper.
Let Gr0;A� denote the preimage of A� D A n ¹0º under the map Gr0;A ! A.
The isomorphisms �s defined above glue together to a projection map

� WGr0;A� ! Gr � Gr: (1)

(This � matches the map � of [24], except that we are working over ¹0º �A� instead
of the complement of the diagonal in A �A.)

Let X1; X2 � Gr be two subschemes, and consider the subscheme

X1 �A� X2 WD �
�1.X1 �X2/ � Gr0;A� :

Given a point s 2 A�, we write X1 �s X2 for the fibre of X1 �A� X2 over s. The
map �s identifies X1 �s X2 � Gr0;s with X1 �X2 � Gr � Gr.

We define X1 �A X2 to be the scheme-theoretic closure of X1 �A� X2 in Gr0;A.
By construction, this is a flat family over A.

The fibre X1 �0 X2 of X1 �A X2 over 0 is a subscheme of Gr0;0, but regarded as
a subscheme of Gr using the isomorphism Gr0;0 Š Gr. We call this subscheme the
(geometric) fusion of X1 and X2.

3.3. Some subschemes of affine Grassmannians

Going forward, we fix a pair of arbitrary effective dominant coweights �0; �00 of
sizes N 0; N 00, respectively, and a pair of (not necessarily dominant) effective co-
weights �0; �00 also of sizes N 0; N 00, respectively, such that �0 C �00 is dominant.
Let � D �0 C �00, � D �0 C �00 and N D N 0 CN 00.

In this section we describe some subschemes of the three affine Grassmannians
Gr, Gr, and Gr0;A associated with these data.

Definition 3.8. The spherical Schubert cell Gr� D G.O/t� and its closure Gr
�
DS


�� Gr
 , a spherical Schubert variety.

Definition 3.9. The family of two spherical Schubert varieties Gr
�0;�00

0;A DGr
�0

�A Gr
�00

:
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By a theorem of Zhu, Gr
�0

�0 Gr
�00

is reduced and equal to Gr
�

(see [27, Propo-
sition 3.1.14]). If s ¤ 0, then the fibre Gr

�0;�00

0;s contains the open locus

Gr
�0;�00

0;s D Gr�
0

�s Gr�
00

;

a G.CŒt �/-orbit whose lattice description is given in Lemma 5.1 below. Because we
consider effective dominant �0; �00, the spherical Schubert varieties and their fusions
lie in the positive part of the thick affine Grassmannian.

Lemma 3.10. The map Gr0;A ! Gr restricts to a map Gr
�0;�00

0;A ! GrC.

Proof. Let s¤ 0. Since �0;�00 are effective, t�
0

; .t � s/�
00

2 GrC. Since GrC is closed
and invariant under the action of G.CŒt �/, we have Gr

�0;�00

0;s � GrC.
For the s D 0 fibre, a similar reasoning applies (or we can simply conclude by

taking closure).

Definition 3.11. The Kazhdan–Lusztig slice W� D G1.O1/t
� � Gr.

In modular terms, W� corresponds to the locus of those .V; '/ such that V is
isomorphic to the vector bundle OP .�1/˚ � � � ˚ OP .�m/, and such that ' preserves
the Harder–Narasimhan filtration of V at1. The lattice description of W� \ GrC is
given in Lemma 5.3 below.

Definition 3.12. The semi-infinite orbit S� D N�.K/t� � Gr.

Definition 3.13. The family of two semi-infinite orbits S�
0;�00

0;A � Gr0;A which we
define to have fibres S�

0;�00

0;s WD ��1s .S�
0

� S�
00

/ for s ¤ 0 and fibre ��10 .S�/ over
s D 0.

We can also describe the fibres as orbits

S
�0;�00

0;s D N�.CŒt; t
�1; .t � s/�1�/t�

0

.t � s/�
00

� G.CŒt; t�1; .t � s/�1�/=G.CŒt �/:

See [4, Section 5.2] for further details where this fibre is also described as the attract-
ing locus for a C� action.

In [19, Proposition 2.6], we observed that S� �W� (this uses that � is dominant,
which is the reason why we make this assumption). More generally, we have the
following result.

Lemma 3.14. Under the map Gr0;A ! Gr, the image of S�
0;�00

0;A lands in W�.

Proof. Let L 2 Gr be a lattice in the image of S�
0;�00

0;A . So we can write

L D gt�
0

.t � s/�
00

CŒt �m

for some g 2 N�.CŒt; t�1; .t � s/�1�/.
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Let hD .t � s/�
00

t��
00

. Note that h2 T1.O1/. Moreover,LD h.h�1gh/t�CŒt �m.
Since h�1gh 2 N�.K1/ we can factor h�1gh as n1n2 for some n1 2 .N�/1.O1/
and n2 2 N�.CŒt �/.

As � is dominant, we see that t��n2t� 2 N�.CŒt �/, and so L D hn1t
�CŒt �m.

Since hn1 2 G1.O1/, the result follows.

4. Matrices

We now consider some subvarieties of the space of N �N matrices, again using the
coweights �; �0; �00; �; �0; �00 fixed in the previous section.

4.1. Adjoint orbits and their deformations

Recall that � D .�1; : : : ; �m/ is a partition of N . Given a point s 2 A we write Js;�
for the Jordan form matrix with eigenvalue s and Jordan blocks of sizes �1; : : : ; �m.

Definition 4.1. The nilpotent (adjoint) orbit O� � MN .C/ of matrices conjugate
to J0;�. These matrices and the linear operators they represent will be said to have
Jordan type �.

Definition 4.2. For s 2 A�, the (adjoint) orbit O�0;�00

0;s of matrices conjugate to
J0;�0 ˚ Js;�00 . These matrices and the linear operators they represent will be said to
have Jordan type ..0; �0/; .s; �00//.

We recall that these orbits have closures which are given by rank conditions. More
precisely, we have

xO�
D ¹A 2MN .C/ W rankAc � N � # boxes in first c columns of � for c 2 Nº

and

xO�0;�00

0;s D¹A 2MN .C/ W rankAc�N � # boxes in first c columns of �0 for c 2 N;

rank.A � s/c � N � # boxes in first c columns of �00 for c2Nº: (2)

The following fact seems to be well known, but we could not find this exact state-
ment in the literature.

Proposition 4.3. There exists a flat family xO�0;�00

0;A ! A whose fibre over s 2 A is
reduced and given by xO�0;�00

0;s if s ¤ 0 and xO� if s D 0.

In order to prove this proposition, we will need to recall some results from Eisen-
bud–Saltman [11].
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Let r be a decreasing, non-negative function of N with r.0/ D N , called a rank
function. Let k be maximal such that r.k/¤ 0. LetW be a subspace of Ak . Eisenbud
and Saltman define and study the flat familyXr;W !W whose fibres are reduced and
defined by rank conditions. We will now describe these fibres.

Let z 2Ak be a point. Some of the coordinates of z may be equal, so we introduce
the following data to keep track of these equalities. Let ` denote the number of distinct
coordinates of z. There exist a sequence of integers k D .k0; : : : ; k`/ such that 0 D
k0 < k1 < � � � < k` D k, a point s 2 A`, such that sa ¤ sb for any a ¤ b, and a
permutation p of ¹1; : : : ; kº such that

sa D zp.ka�1C1/ D zp.ka�1C2/ D � � � D zp.ka/

for each a D 1; : : : ; `. Given the choice of s we require that p is of minimal length.
Given z, the data k; s; p is unique up to a permutation of ¹1; : : : ; `º.

Next for a D 1; : : : ; ` and c D 1; : : : ; kaC1 � ka, we define

rz;a.c/ WD N C

cX
dD1

r.p.ka C d// � r.p.ka C d/ � 1/:

By [11, Corollary 2.2], the fibre of the flat family Xr;W over z is given by

Xr;z D ¹A 2MN .C/ W rank.A � sa/c � rz;a.c/ for all c; a as aboveº: (3)

We will now apply these ideas to prove our Proposition 4.3.

Proof. For c 2 N, let

r.c/ D N � # boxes in first c columns of �:

It is easy to see that this is a rank function, with k D �1, the number of columns of �.
Since � D �0 C �00, there exists a permutation p of ¹1; : : : ; kº (the columns of �)

such that p.1/; : : : ; p.k1/ are the columns of �0 and p.k1 C 1/; : : : ; p.k/ are the
columns of �00. Here k1 D �01 the number of columns of �0.

For s 2 A, we define z.s/ 2 Ak by´
z.s/p.c/ D 0; c D 1; : : : ; k1;

z.s/p.c/ D s; c D k1 C 1; : : : ; k:

For s ¤ 0, we see that the equalities in z.s/ give rise to the data of ` D 2, k D
.0; �01/, s D .0; s/ and the permutation p. We also see that

rz.s/;1.c/ D N � # boxes in first c columns of �0;

rz.s/;2.c/ D N � # boxes in first c columns of �00:
(4)
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On the other hand, for z.0/, we get that ` D 1 and that

rz.0/;1.c/ D r.c/ D N � # boxes in first c columns of �: (5)

Let W D ¹z.s/ W s 2 Cº. Combining equations (2) to (5), we see that the Eisenbud–
Saltman family Xr;W ! W gives our family xO�0;�00

0;A .

4.2. The Mirković–Vybornov slice

Recall that � D .�1; : : : ; �m/ is a partition of N . The Mirković–Vybornov slice T�
is the affine space of N � N matrices of the form A D J0;� C X where X is a
� � � block matrix with possibly non-zero entries A1ij ; : : : ; A

min.�i ;�j /
ij in the first

min.�i ; �j / columns of the last row of each �i � �j block.
For example, if � D .3; 2/ then A 2 T� looks like266666666664

0 1 0 0 0

0 0 1 0 0

A111 A
2
11 A

3
11 A

1
12 A

2
12

0 0 0 0 1

A121 A
2
21 0 A122 A

2
22

377777777775
for some Akij 2 C.

To A 2 T� we will associate them�mmatrix of polynomials g.A/ inMm.CŒt �/

whose .i; j /th entry is defined as follows.

g.A/ij D

´
t�i �

P�i
kD1

Akji t
k�1; i D j;

�
P�i
kD1

Akji t
k�1; i ¤ j:

(6)

Continuing with the � D .3; 2/ example,

g.A/ D

"
t3 � A311t

2 � A211t � A
1
11 �A221t � A

1
21

�A212t � A
1
12 t2 � A222t � A

1
22

#
:

In other words, the �i � �j block of A is used to produce a polynomial which is
inserted in the .j; i/ entry of the m �m matrix g.A/.

In T� we will be interested in a certain family of block upper-triangular matrices.

Definition 4.4. The upper-triangular Mirković–Vybornov slice U�0;�00

0;A ! A is def-
ined by

U�0;�00

0;A WD ¹.A; s/ 2 T� �A W g.A/i i D t
�0
i .t � s/�

00
i ; g.A/ij D 0 for j < i º:
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So a matrix in U�0;�00

0;A is weakly block upper-triangular and its diagonal blocks are
given by the companion matrices for the polynomials ¹t�

0
i .t � s/�

00
i W i D 1; : : : ; mº.

For example, elements of U .1;1;0/;.2;1;1/
0;s look like2666666666666664

0 1 0 0 0 0

0 0 1 0 0 0

0 �s2 2s A112 A
2
12 A

1
13

0 0 0 0 1 0

0 0 0 0 s A123

0 0 0 0 0 s

3777777777777775
:

Note that the fibre U�0;�00

0;0 is the same as the intersection T� \ n, where n denotes the
set of strictly upper-triangular matrices.

5. Rising action

Throughout this section, we continue our notation of the previous sections. So �;�0;�00

denote dominant effective coweights, with �0 C �00 D �. Also �;�0; �00 are effective
coweights with � D �0 C �00 and we assume that � is dominant.

5.1. Linear operators from lattices

Lemma 5.1. Let L 2 GrC. Let s 2 A�. The following are equivalent:

(i) L is in the image of the map Gr
�0;�00

0;s ! GrC.

(ii) The linear operator t on CŒt �m=L has Jordan type ..0; �0/; .s; �00//.

(iii) L 2 G.CŒt �/t�
0

.t � s/�
00

.

Proof. First we recall that for L 2 GrC, L 2 Gr� D G.O/t� if and only if t jOm=L
has Jordan type �.

Now assume that .L; s/ 2 Gr
�0;�00

0;s . By definition, L.0/ 2 Gr�
0

and L.s/ 2 Gr�
00

.
This means that t acting on Om=L.0/ has Jordan type �0 and t acting on Om

s =L.s/

has Jordan type �00. For a D 0; s, we see that

CŒt �m=L˝CŒt� Oa Š Om
a =L.a/:

Lemma 5.2 shows that the map CŒt �m=L! Om=L.0/ induces an isomorphism bet-
ween the 0-generalized eigenspace of t and Om=L.0/. The same thing holds for the
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s-generalized eigenspace of t and Om
s =L.s/. This shows that item (i) implies item (ii)

and the logic can be reversed to see that item (ii) implies item (i).
On the other hand, ifLD gt�

0

.t � s/�
00

CŒt �m for some g 2G.CŒt �/, thenL.0/D
gt�
0

Om since .t � s/�
00

2 G.O/. In this way, we see that item (iii) implies item (ii)
and the logic can be reversed to get equivalence.

Lemma 5.2. Let V be a CŒt �-module which is finite-dimensional as a complex vector
space. For any a 2 A, the map

V ! V ˝CŒt� Oa

restricts to an isomorphism between the generalized a-eigenspace of t and V˝CŒt�Oa.

Proof. For any b 2 A, let Eb denote the generalized b-eigenspace of t . Then V DL
b2CEb . Since t � b is invertible in Oa and t � b acts nilpotently onEb , we see that

Eb ˝CŒt� Oa D 0.
So it suffices to show that Ea ! Ea ˝CŒt� Oa is an isomorphism. By the clas-

sification of modules over CŒt �, it suffices to check this when Ea D CŒt �=.t � a/k ,
where it is clearly true.

5.2. Matrices from lattices

Lemma 5.3. Let L 2 GrC. The following are equivalent:

(i) L 2 W�.

(ii) LD SpanCŒt�.v1; : : : ; vm/ for some vi of the form vi D t�i ei C
Pm
jD1pij ej ,

where pij 2 CŒt � has degree less than min.�i ; �j /.

(iii) For all i ,

t�i ei 2 SpanC.¹t
kej W 0 � k < min.�i ; �j /; 1 � j � mº/C L:

Moreover, for such L, we have thatˇ� WD ¹Œtkei � W 0 � k < �i ; 1 � i � mº forms a
basis for CŒt �m=L.

Proof. Let L 2 W�. Then L D SpanCŒt�.v1; : : : ; vm/ for some vi with

vi D t
�i ei C

X
jD1

qij t
�i ej and qij 2 t

�1O1:

Since L 2 GrC, we see that vi 2 CŒt �m which means that pij WD qij t�i lies in CŒt �.
By construction, the polynomial pij has degree less than �i .
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Fix i and suppose that for some j , �j < �i . In this case, we can alter our basis to
v0i D vi � qvj for some polynomial q 2 CŒt �. This gives us new polynomials

p0ij D pij � q.t
�j C pjj /:

In this way, we can ensure that pij has degree less than min.�i ; �j /. Thus item (i)
implies item (ii).

Suppose that L D SpanCŒt�.v1; : : : ; vm/ as in item (ii). Then

t�i ei � vi 2 SpanC.¹t
kej W k < min.�i ; �j /; 1 � j � mº/:

Hence, item (ii) implies item (iii).
Finally, given item (iii), then we can see vi WD t�i ei �

Pm
jD1 pij ej 2 L for some

pij 2CŒt � of degree less than min.�i ;�j /. It is easy to see thatLDSpanO.v1; : : : ;vm/

and so L 2 W�. To show that ˇ� forms a basis for CŒt �m=L, it suffices to show that
for each i ,

t�i ei 2 SpanC.t
kei W 0 � k < �i ; 1 � i � m/C L:

This follows immediately from item (iii).

Given A 2 T�, recall the definition of g.A/ given in equation (6). Note that
g.A/t�� 2 G1.O1/. Since g.A/ 2Mm.CŒt �/ \G1.O1/t�, we will regard g.A/ as
giving an element of GrC \W�. (Alternatively, we can see that g.A/CŒt �m satisfies
the condition of item (ii) from Lemma 5.3.)

The following result is called the Mirković–Vybornov isomorphism [25]. In its
present form, it can be found in [8, Theorem 3.2], except that we have tweaked both
maps with a matrix transpose Œ �tr.

Theorem 5.4. The map T� ! GrC \W� given by A 7! g.A/CŒt �m is an isomor-
phism with inverse given by

L 7! Œt jCŒt�m=L�
tr
ˇ�
:

5.3. Upper-triangularity and the Mirković–Vybornov isomorphism

For the next result, we will consider the “intersection” of Gr
�0;�00

0;A with W�. As Gr
�0;�00

0;A

is not a subscheme of Gr, by this intersection, we really mean the preimage of W�

under the composition

Gr
�0;�00

0;A ,! Gr0;A ! Gr:

This is not a very serious abuse of notation, since the map Gr0;A ! Gr is almost
injective. In a similar way, we will write xO�0;�00

0;A \ T� using the “almost injective”
map

xO�0;�00

0;A !MN .C/:
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The following refinement of the Mirković–Vybornov isomorphism is a special
case of [25, Theorem 5.3].

Theorem 5.5. There is an isomorphism

xO�0;�00

0;A \ T� Š Gr
�0;�00

0;A \W�

given by .A; s/ 7! .g.A/CŒt �m; s/.

Proof. Since we already have the isomorphism from Theorem 5.4, it suffices to show
that for any A 2 T�,

.A; s/ 2 xO�0;�00

0;A \ T� if and only if .g.A/CŒt �m; s/ 2 Gr
�0;�00

0;A \W�:

This follows immediately from Lemma 5.1.

Theorem 5.6. The isomorphism from Theorem 5.5 restricts to an isomorphism

xO�0;�00

0;A \U�0;�00

0;A Š Gr
�0;�00

0;A \ S
�0;�00

0;A :

Proof. We could prove this by observing that both sides are the attracting locus of an
appropriate C� action. However, we will give the following more algebraic proof.

Let A 2 T� and s 2 C. We must show that .A; s/ 2 U�0;�00

0;A if and only if

.g.A/CŒt �m; s/ 2 S�
0;�00

0;A :

On the one hand, if .A; s/ 2 U�0;�00

0;A , then g.A/ is lower-triangular with diagonal
t�
0

.t � s/�
00

, and so

g.A/ 2 N�Œt; t
�1; .t � s/�1�t�

0

.t � s/�
00

:

On the other hand, if .g.A/CŒt �m; s/ 2 S�
0;�00

0;A , then we can write

gt�r D nt�
0

.t � s/�
00

for some r 2 G.CŒt �/ and n 2 N�.CŒt; t�1; .t � s/�1�/ and g D g.A/t��. Next let
h D .t � s/�

00

t��
00

, which lies in T1.O1/. Note that h�1nh 2 N�.K1/, so we can
factor it as h�1nhD n1n2, where n1 2N�;1.O1/;n2 2N�.CŒt �/. So then after doing
a bit of algebra, we reach

t�r.t��n�12 t
�/t�� D g�1hn1:

Since g; h; n1 2 G1.O1/, the right hand side g�1hn1 lies in G1.O1/. Since � is
dominant, t��n2t� 2 N�.CŒt �/, and so the left hand side lies in t�G.CŒt �/t��.
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Moreover, since � is dominant, we know that

t�G.CŒt �/t�� \G1.O1/ D N�;1.O1/:

Thus, we deduce that g�1hn1 2N�;1.O1/ and hence g.A/2 t�
0

.t � s/�
00

N�;1.O1/.
Since A 2 T�, this implies that .A; s/ 2 U�0;�00

0;A as desired.

Restricting to the zero fibre and applying �0 together with Proposition 4.3, we
recover a result of the second author.

Corollary 5.7 ([10, Corollary 5.2.2]). The map A 7! g.A/Om gives an isomorphism

xO�
\ T� \ n Š Gr

�
\ S�� :

6. Climax

6.1. MV cycles and tableaux

Continuing now with the notation of the previous sections, we add the assumption
that � � � and forget the assumption that � is dominant.

Definition 6.1. An irreducible component of Gr�\S� is called an Mirković–Vilonen

cycle in Gr
�

of coweight �.

By [24, Theorem 3.2 (b)], each MV cycle in Gr
�

of coweight � has dimension
�.� � �/ where � D .m;m � 1; : : : ; 1/ and we use the ordinary dot product on Zm.

We denote by Z.�/ the collection of all MV cycles in Gr
�

.
In [18], the third author gave a combinatorial description of MV cycles for any

reductive group, using Mirković–Vilonen polytopes, or, equivalently, Lusztig data,
which are sequences in Nr that depend on a choice of reduced word for the longest
element of the Weyl group of G. (For any G, we use r for the number of positive
roots; in the case of GLm, r D m.m � 1/=2.) We will now explain how to use these
results to index MV cycles for GLm using Young tableaux. Throughout the paper we
fix the reduced word that it is convenient in this setting, the standard reduced word
.1; 2; : : : ; m � 1; : : : ; 1; 2; 1/.

Denote by Œa; b� the interval ¹a; a C 1; : : : ; b � 1; bº � N. We begin with the
following definitions.

Definition 6.2. LetL�Om be a point in GrC. We define the relative dimension ofL
by

rdimL WD dimC Om=L:
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If 
 � Œ1;m�, we define two lattices L
 ; L
 in O
 WD SpanO.ei W i 2 
/ by

L
 WD L \O
 ; L
 WD L=L

c ;

where 
c WD Œ1;m� n 
 .

We will also need the analogous definitions when O is replaced by CŒt � and
L 2 GrC. We record the following easy observations.

Lemma 6.3. Let L 2 GrC or GrC.

(1) For any 
 � Œm�, we have

rdimL
 C rdimL

c

D rdimL:

(2) For any 
1 � 
2 � Œm�, we have

.L
2/
1 D L
1 :

For anyL2GrC and 
 � Œm�, we defineD
 .L/ WD rdimL
 D rdimL� rdimL
c .
(By [18, Proposition 9.3], this coincides with the general definition ofD
 given in that
paper; in loc. cit. these functions are used to compute the hyperplanes of the associated
MV polytopes.)

From now on, we will write S�� D N�.K/t� (with a subscript), because we will
also need the opposite semi-infinite cell S�C WD N.K/t�.

Lemma 6.4. Let L 2 GrC. The following are equivalent:

(1) L 2 S�C.

(2) rdimLŒ1;i� D �1 C � � � C �i for all i D 1; : : : ; m.

(3) rdimLŒiC1;m� D �iC1 C � � � C �m for i D 1; : : : ; m.

Similarly, the following are equivalent:

(10) L 2 S�� .

(20) rdimLŒiC1;m� D �iC1 C � � � C �m for all i D 1; : : : ; m.

(30) rdimLŒ1;i� D �1 C � � � C �i for i D 1; : : : ; m.

Proof. We prove the first statement as the second is similar. Let L D nt�CŒt �m for
some n 2 NC.K/ and let v1; : : : ; vm denote the columns of the matrix nt�. Then
L D SpanO.v1; : : : ; vm/. Fix i � m. Then LŒ1;i� D SpanO.w1; : : : ; wi /, where wj
denotes the first i entries of vj (by upper-triangularity, the rest of the entries are 0, in
any case).

Assume that L � Om. Then LŒ1;i� � Oi and rdimLŒ1;i� is the valuation of the
determinant of the matrix whose columns are w1; : : : ; wi . Since this matrix is upper-
triangular with diagonal entries t�1 ; : : : ; t�i , this determinant is t�1C���C�i and hence
rdimLŒ1;i� D �1 C � � � C �i .
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Thus item (1) implies item (2). The converse follows from the fact that everyL lies
in some S�C and by the above reasoning, � is determined by the values of dimLŒ1;i�.

The equivalence of item (2) and item (3) follows from Lemma 6.3.

We now introduce some notation related to Young tableaux. Denote by Y T .�/
the set of (possibly semi-standard) Young tableaux of shape � and by Y T .�/� the
subset of Y T .�/ of tableaux having weight �. Let Y T D

S
� Y T .�/ and denote by

Y TC � Y T the subset of those tableaux having dominant weight.
Given � 2 Y T .�/� and i 2 ¹1; : : : ; mº, denote by �.i/ (resp. �.i/) the shape

(resp. the weight) of �.i/, the tableau got from � by discarding all boxes of weight
exceeding i . (Note that �.i/ only depends on �, while �.i/ depends on the tableau � .)
We will regard �.i/ (resp. �.i/) as an effective dominant coweight (resp. effective
coweight) for GLi .

The Lusztig datum n�.�/ of the tableau � is a list of r D m.m � 1/=2 non-
negative integers defined from its Gelfand–Tsetlin pattern (see [7, Section 4]) gt.�/D
.�.i/j /1�j�i�m by the formula

n�.�/.a;b/ D �.b/a � �.b � 1/a D # of boxes on row a of � of weight b;

.a; b/ D .1; 2/; : : : ; .1;m/; .2; 3/; : : : ; .2;m/; : : : ; .m � 1;m/:

Note that
� � � D

X
1�a<b�m

n�.�/.a;b/ˇa;b;

where ˇa;b denotes the positive root of G with a 1 in the a slot and a �1 in the b
slot. We record the pattern gt.�/ as a lower-triangular matrix (the array of shapes
of subtableaux �.i/) and the datum n�.�/ is recorded as a sequence, unless noted
otherwise.

Below is an example with � D .4; 2; 0/ and � D .3; 2; 1/:

� D
1 1 1 2
2 3

; gt.�/ D
3

4 1

4 2 0

; n�.�/ D .1; 0; 1/:

We can associate to � the locus

VZ.�/ D ¹L 2 S�� W LŒ1;i� 2 Gr�.i/ for i D 1; : : : ; mº:

Remark 6.5. [9, Theorem 4.2] shows that the map Y T .�/! Nr is the canonical
crystal embedding B.�/! B.1/.

The following result is closely related to [10, Theorem 5.4.3]. It is also closely
related to the description of MV cycles in terms of Kostant data obtained by Anderson–
Kogan [2] (see [18, Section 9]). We remark that a different map from Young tableaux
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to MV cycles was obtained by Gaussent, Littelmann and Nguyen [14, Theorem 2];
we are not certain of the relation with our construction.

Proposition 6.6. The locus VZ.�/ has a unique irreducible component of dimension
�.�� �/. Let Z.�/ denote the closure of this component. Then, Z.�/ is the MV cycle
whose Lusztig datum (with respect to the standard reduced word) is n�.�/.

Remark 6.7. We believe that VZ.�/ is irreducible, so that in fact Z.�/ D VZ.�/.

Proof. The proof of this proposition follows the same strategy as in [10]. First, we
consider

VZ.�/1 WD ¹L 2 S
�
� \ GrC W LŒ1;i� 2 S

�.i/
C for i D 1; : : : ; mº:

Using Lemma 6.3 (2) and Lemma 6.4, we see that

VZ.�/1 D ¹L 2 GrC W rdimLŒa;b� D �.b/a C � � � C �.b/b for all 1 � a � b � mº;

where note that �.b/a C � � � C �.b/b is the number of boxes on rows a; : : : ; b of
weight 1; : : : ; b.

From the proof of [18, Proposition 9.6], we see that VZ.�/1 is equal to t�A.n�.�//,
where A.n�/ is defined in [18, Section 4.3]. In particular, it is irreducible and of
dimension �.� � �/. Moreover, its closure is the MV cycle whose Lusztig datum
is n�.�/. (The reader is warned that in [18] the third author worked withG.O/nG.K/,
which we identify with Gr using the map G.O/g 7! g�1G.O/.) Now, by results
of [17] (see especially the proof of [17, Theorem 1.4]), we note that VZ.�/1 \ Gr�

is dense in VZ.�/1. (This can also be deduced by combining Remark 6.5 with [1,
Proposition 6].)

Fix i 2 ¹1; : : : ; mº. If L 2 S�� , then LŒ1;i� 2 S�.i/� so we get a map

fi W VZ.�/1 ! S�.i/� \ S
�.i/
C :

From the definition of VZ.�/1, we see that fi . VZ.�/1/ D VZ.�.i//1. From above, we
have thatfi . VZ.�.i//1/ \ Gr�.i/ is a dense constructible subset of VZ.�.i//1. Since
VZ.�/1 is irreducible, this implies that f �1i .S�.i/� \ S

�.i/
C \ Gr�.i// is a dense con-

structible subset of VZ.�/1.
Working with all i at once, we conclude that

VZ.�/2 WD

m\
iD1

f �1i .S�.i/� \ S
�.i/
C \ Gr�.i//

is a dense constructible subset of VZ.�/1. Thus VZ.�/2 D VZ.�/1.
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On the other hand, by definition

VZ.�/2 � VZ.�/:

Since dim VZ.�/2 D �.� � �/, we see that VZ.�/ must have at least one component of
the maximal dimension. To see that it cannot have any other components of maximal
dimension, we note that G

�2Y T.�/�

VZ.�/ � Gr� \ S��

and the number of irreducible components of the right hand side equals jY T .�/�j,
thus on the left hand side, each VZ.�/ can only have one irreducible component of
dimension �.� � �/.

6.2. Fusion of MV cycles via fusion of generalized orbital varieties

Given A 2 MN .C/ we denote by AjCp the restriction of A to the subspace spanned
by the first p standard basis vectors of CN . If AjCp .Cp/ � Cp then we identify it
with the p � p upper-left submatrix of A.

Let � 2 Y T .�/� with � dominant. We define

VX.�/ D ¹A 2 T� \ n W AjCj�.i/j 2 O�.i/ for each i D 1; : : : ; mº:

Lemma 6.8. Under the Mirković–Vybornov isomorphism VX.�/ is mapped isomor-
phically onto VZ.�/.

Proof. Fix A 2 VX.�/ and i 2 ¹1; : : : ;mº. Let Oi � Om denote the submodule gener-
ated by the first i standard basis vectors. Let l D g.AjCj�.i/j/O

i andLD g.A/Om. By
definition of the map A 7! g.A/, since A is upper-triangular we have that l D LŒ1;i�.
Moreover, since elements of T� \ n are upper triangular AjCj�.i/j 2 T�.i/ \ ni ,
where ni denotes the subalgebra of upper-triangular matrices in Mj�.i/j.C/. By def-
inition of VX.�/ this principal submatrix has Jordan type �.i/. It follows that l D
LŒ1;i� 2 Gr�.i/ \ S�.i/ for each i D 1; : : : ; m so that L 2 VZ.�/.

Conversely, let L 2 VZ.�/. By Corollary 5.7, LD g.A/Om for some A 2 T� \ n.
Running the above argument in reverse, we see that A 2 VX.�/.

By [10, Proposition 4.5.4] (or Proposition 6.6 above), VX.�/ has a unique irre-
ducible component of dimension �.� � �/. We write X.�/ for the closure of this
component. It is an irreducible component of xO� \ T� \ n and will be called a gen-
eralized orbital variety of type �. The collection of all possible generalized orbital
varieties of type � will be denoted X.�/.
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Theorem 6.9 ([10, Theorem 4.8.2]). ¹X.�/ W � 2 Y T .�/�º is a complete set of irre-
ducible components of xO� \ T� \ n.

Our next goal is to describe the fusion of two MV cycles using a “fusion” of
generalized orbital varieties, which we will now define. Let �;�0; �00 and �;�0; �00 be
as in previous sections, once again assuming that � is dominant.

Given a point s 2 A� and a pair of tableaux � 0 2 Y T .�0/�0 and � 00 2 Y T .�00/�00 ,
we define

VX.� 0; � 00/0;s D ¹A 2 U�0;�00

0;s W AjCj�.i/j has Jordan type ..�0.i/; 0/; .�00.i/; s//

for i D 1; : : : ; mº

and
VX.� 0; � 00/0;A� D ¹.A; s/ 2MN �A� W A 2 VX.� 0; � 00/0;sº:

Note that elements A 2 VX.� 0; � 00/ do not in general correspond to pairs .A0; A00/ 2
VX.� 0/ � X.� 00/ because if �0 (resp. �00) is not dominant then X.� 0/ (resp. X.� 00/) is

not well defined.

Proposition 6.10. The image of VX.� 0; � 00/0;A� under the isomorphism of Theorem 5.6
is VZ.� 0/ �A� VZ.�

00/.

Proof. Fix A 2 VX.� 0; � 00/0;s and i 2 ¹1; : : : ; mº. Let CŒt �i � CŒt �m D Cm ˝C CŒt �

denote the CŒt �-submodule generated by the first i standard basis vectors.
The lattices l D g.AjCj�.i/j/CŒt �

i and LD g.A/CŒt �m are related by the equation

l D LŒ1;i�;

where we recall that

LŒ1;i� D
�
LCCŒt �ŒiC1;m�

�
=CŒt �ŒiC1;m� � CŒt �m=CŒt �ŒiC1;m� D CŒt �i :

By definition of U�0;�00

0;A , we have AjCj�.i/j 2 U�0.i/;�00.i/
0;s , and by definition of

VX.� 0; � 00/0;s , the Jordan type of AjCj�.i/j is ..�0.i/; 0/; .�00.i/; s//. So,

l 2 Gr
�0.i/;�00.i/
0;s

by Theorem 5.6. On the other hand, since L 2 S�
0;�00

0;s , we have l 2 S�
0.i/;�00.i/

0;s .
Therefore, as i varies, we see that the pair .L.0/; L.s// 2 S�

0

� S�
00

is such that

.LŒ1;i�.0/; LŒ1;i�.s// D .L.0/Œ1;i�; L.s/Œ1;i�/ 2 Gr�
0.i/
� Gr�

00.i/

and so .L.0/; L.s// 2 VZ.� 0/ � VZ.� 00/.
Conversely, given L 2 VZ.� 0/ �s VZ.� 00/, we can write L D g.A/CŒt �m by Theo-

rem 5.5. Then reversing the above logic, we conclude that A 2 VX.� 0; � 00/0;s .
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Now, in analogy with the fusion of Section 3.2 we define X.� 0; � 00/0;A to be
the Zariski closure of the unique top-dimensional component of VX.� 0; � 00/0;A� in
MN � A. (As noted in Remark 6.7, we expect that all these varieties VX.�/ Š VZ.�/
are irreducible, which would mean that taking this “top-dimensional component”
irrelevant.) Then we define the fusion of generalized orbital varieties to be the scheme-
theoretic intersection

X.� 0; � 00/0;0 D X.�
0; � 00/0;A \MN � ¹0º in MN �A:

By Proposition 4.3, it is contained in xO� \ T� \ n.
We quickly recall the definition of intersection multiplicity that we will need fol-

lowing [13, Example 2.6.5]. We consider a fibre square of C-schemes

W V

D Y

with D an effective Cartier divisor and V an irreducible variety of dimension k. We
assume that V is not contained in the support ofD. LetZ be an irreducible component
ofW ; it is a subvariety of V of codimension 1. The multiplicity ofZ in the intersection
D \ V is defined to be the length of the module OV;Z=.f / over the local ring OV;Z

of V alongZ, where f is a local equation ofDjV on an affine open subset of V which
meets Z. Following [13, Chapter 7], this multiplicity is denoted by i.Z;D � V /.

For our purposes, the zero fibre in Gr0;A is an effective divisor D. For Z0; Z00

subvarieties of Gr, V D Z0 �A Z
00 � Gr0;A is a variety not contained in the support

of D. Then we choose an irreducible component Z of W WD D \ V D Z0 �0 Z
00.

Thus, we may consider the intersection multiplicity

i.Z;Z0 �0 Z
00/ WD i.Z;D � V /:

We will be particularly interested in the case when Z;Z0; Z00 are MV cycles.
In a similar way, we may consider the intersection multiplicities of generalized

orbital varieties in X.� 0; � 00/0;0 DMN � ¹0º \X.�
0; � 00/0;A.

Corollary 6.11. We have i.X.�/; X.� 0; � 00/0;0/ D i.Z.�/; Z.� 0/ �0 Z.� 00//.

Proof. By the isomorphism of Lemma 6.8, X.�/ is a dense constructible subset
ofZ.�/. On the other hand, Proposition 6.10 gives us an identification of VX.� 0; � 00/0;A�
and VZ.� 0/ �A� Z.�

00/; the schemes X.� 0; � 00/0;A and Z.� 0/ �A Z.�
00/ are constructed

from these by taking the top-dimensional irreducible component and then closure.
Thus, we conclude thatX.� 0; � 00/0;A is a dense constructible subset ofZ.� 0/�AZ.�

00/.
From the definition of intersection multiplicity, it is clear that the multiplicity can be
computed locally and so the result follows.
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6.3. Multiplying MV basis elements in CŒN�

In this section we will need to recall that representations of the Langlands dual
group G_ of an arbitrary complex reductive group G can be constructed from the
affine Grassmannian of G, and studied in CŒN_�, the ring of functions on the maxi-
mal unipotent subgroup N_ of G_.

We use the convenient fact that GL_m D GLm (so also N_ D N ) and ignore the
distinction between weights and coweights.

Let N � G be the unipotent subgroup of upper-triangular matrices with 1s on
the diagonal. In [5], the third author along with Baumann and Knutson show that the
MV cycles yield a basis of the coordinate ring CŒN � called the MV basis. Note that
with respect to the action of the maximal torus T of G by conjugation on N , CŒN �

acquires a homogeneous grading by QC.
Given weights �� � with � dominant, denote by V.�/ the irreducible representa-

tion of G of highest weight � and by V.�/� its �-weight space. There is an injective
map

‰�WV.�/! CŒN �

realizing V.�/ as a subspace of CŒN � and sending V.�/� to CŒN ����.
The geometric Satake correspondence says that

V.�/� D H2�.���/.Gr� \ S�� /:

In particular, the set ¹ŒZ� W Z 2 Z.�/º gives a basis of V.�/ with ŒZ� denoting the
class of Z in the appropriate homology group.

By a theorem of Anderson, MV cycles in Gr� \ S�C�� consist of those irreducible
components of S�C \ S�C�� that are contained in Gr

�
(see [1, Proposition 3]). The

stable MV cycles of coweight � 2 QC are defined to be irreducible components
of S0C \ S��. Multiplication by t� defines an isomorphism

S0C \ S
�
� Š S

�
C \ S

�C�
� :

We denote the set of all stable MV cycles Z.1/. By a theorem of the third author,
given a choice a reduced word for w0, there is a bijection Z.1/! Nr called the
Lusztig datum.

One can string together the maps ‰� and the geometric Satake isomoprhisms to
show that the stable MV cycles yield a basis of CŒN �.

Theorem 6.12 ([5, Proposition 6.1]). For each Z 2 Z.1/, there is a unique element
bZ 2CŒN � such that for any dominant weight �, if t�Z 2Z.�/ then‰�.Œt�Z�/D bZ .

The set ¹bZ W Z 2 Z.1/º is called the MV basis of CŒN �. The structure constants
of multiplication in CŒN � with respect to the MV basis are given by intersection
multiplicities.
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Theorem 6.13 ([5, Theorem 7.11]). Given Z0; Z00 2 Z.1/,

bZ0 � bZ00 D
X

Z2Z.1/

i.Z;Z0 �0 Z
00/bZ (7)

in CŒN �.

Our next goal is to show that these structure constants can be computed using
generalized orbital varieties. Consider the following commutative diagram:

Y TC
S

X.�/

Y T
S

Z.�/
L
V.�/

Nr Z.1/ CŒN �:

� 7!X.�/

Lemma 6.8

� 7!Z.�/

n� t�� ‰�
�

The sequence �0 D .�01; : : : ; �
0
m�1/ keeping track of the number of boxes of

weight i in row i of a given tableau is called its padding. Two tableaux have equal
Lusztig data if and only if they are related by padding, which is to say that we can
change the padding of one (removing or adding boxes) to recreate the other. Moreover,
a tableau is completely determined by its Lusztig datum and padding.

For example

x� D
2
4

and � D
1 1 2
2 4
3

have equal Lusztig data, since we can increase the padding of x� (by adding to it the
padding of � ) to get � , or forget the padding of � to get x� .

We call a tableau stable if its padding cannot be decreased. The following lemma
shows that stable tableaux are in bijection with Lusztig data.

Lemma 6.14. Let n� D .n.a;b// be a Lusztig datum and let �0 D .�0i / be a padding.
If � D .

P
b n.a;b/ C �

0
a/a then the smallest �0 such that � is dominant effective

(and � is effective) is

�0m; �
0
m�1 D 0;

�0i D max¹0; �0iC1 C
X
a

n.a;iC1/ �
X
a

n.a;i/º; i D 1; : : : ; m � 2:

This choice of �0 defines a section � WNr ! Y T .

Proof sketch. To produce a tableau with Lusztig datum n� of smallest possible shape
and weight:
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• we can always take the number of m’s in row m, and the number of m � 1’s in
row m � 1 to be zero;

• we can take the number of m� 2’s in row m� 2 to be zero, unless n� tells us that
there are more boxes in row m � 1 than there are in row m � 2, and then we take
�0m�2 to offset the difference;

and iterate the last step up to �01.

Corollary 6.15. Given two stable MV cycles Z0; Z00 with Lusztig data n0�; n
00
� resp.

there exists a pair of tableaux .� 0; � 00/ 2 Y T .�0/�0 � Y T .�00/�00 for some �0; �00 dom-
inant effective and some �0; �00 effective, such that � D �0 C �00 � � D �0 C �00 are
partitions and

bZ0 � bZ00 D
X

�2Y T.�/

i.X.�/; X.� 0; � 00/0;0/bt��Z.�/: (8)

Proof. Choose � 0 D �.n0�/, �
00 D �.n00�/ and suppose � 0 2 Y T .�0/�0 , � 00 2 Y T .�00/�00 .

Note that Z0 D t��
0

Z.� 0/ and Z00 D t��
00

Z.� 00/, so the intersection multiplicity of
a stable MV cycle Z in Z0 �0 Z00 can be computed as the intersection multiplicity
of an MV cycle Z.�/ in Z.� 0/ �0 Z.� 00/ for some � 2 Y T .�/�, because these two
situations isomorphic by translation by t�.

In case � is not dominant, increase the padding of the larger of the two tableaux
by

.max.0; �2 � �1/;max.0; �3 � �2/; : : : ;max.0; �m � �m�1//:

Now, by Corollary 6.11, the intersection multiplicity of Z.�/ in Z.� 0/ �0 Z.� 00/
can in turn be computed as the intersection multiplicity of the generalized orbital
variety X.�/ in X.� 0; � 00/0;0. (We have ensured � is dominant, so that X.�/ will be
defined.)

7. Examples

In this section, we will compute some examples of multiplication of MV basis ele-
ments using the method provided by Corollary 6.15.

We use the section defined by Lemma 6.14 to abbreviate MV basis elements to
tableaux and view CŒN � as an algebra in these, rewriting equation (7) as an equation
in tableaux. The coefficients are found using generalized orbital varieties. Suppose
we have two tableaux � 0 and � 00, with respective weights �0, �0 and �00, �00, and we
wish to form their (geometric) fusion product. Once we have applied any necessary
padding (as in the proof of Corollary 6.15) so that � D �0 C �00 is dominant, we take
a generic matrix A 2 X.� 0; � 00/0;s .
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The requirement that Ai WD AjCj�.i/j 2 O�0.i/;�00.i/
0;s for each i imposes rank con-

ditions on A in the form of vanishing and non-vanishing minors. We form the ideal

I � CŒAkij ; s
˙� D CŒU�0;�00

0;A� �

generated by these relations. The ideal of the fusion X.� 0; � 00/0;0 is

J D .I \CŒAkij ; s�/C .s/:

Taking the primary decomposition (to account for possible multiplicities) of J gives
us ideals J1; : : : ; Jn, each corresponding to a generalized orbital variety occurring
in the fusion. We use Theorem 6.9 to find a tableau for each Ji and then forget all
unnecessary padding to get the corresponding stable MV cycle. Each Ji also tells us
the multiplicity of each MV cycle in the fusion product, where we have multiplicity 1
if and only if Ji D

p
Ji .

7.1. Type A2

We begin with an example to showcase a product where some terms may have higher
multiplicity. This is not a cluster exchange relation.

Example 7.1.

2 2 �
1 1
3 3

D 3 3 C
2 2
3 3

C 2
2 3
3

D 3
2
C
2
3
2
C 2

2
3
� 3 (9)

The requirement that

A D

266666666666664

0 1

�s2 2s A112 A
2
12 A

1
13 A

2
13

0 1

0 A123 A
2
23

0 1

�s2 2s

377777777777775
is contained in 2 2 �A�

1 1
3 3

imposes the following non-trivial relations on A:

2A212A
2
23s C 3A

2
13s

2
C A212A

1
23 C A

1
12A

2
23 C 2A

1
13s;

A213s
3
� A212A

1
23s � A

1
12A

2
23s � 2A

1
12A

1
23;

A212A
2
13A

1
23s

2
C A112A

2
13A

2
23s

2
� .A212A

1
23/

2
C 2A112A

2
12A

1
23A

2
23 � .A

1
12A

2
23/

2

C 6A112A
2
13A

1
23s C 4A

1
12A

1
13A

1
23;
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A112A
2
13.A

2
23/

2s2 � .A212A
1
23/

2A223 C 2A
1
12A

2
12A

1
23.A

2
23/

2
� .A112/

2.A223/
3

� 2A212A
2
13.A

1
23/

2s C 4A112A
2
13A

1
23A

2
23s � A

1
13A

2
13A

1
23s

2

� 3A112A
2
13.A

1
23/

2
C 4A112A

1
13A

1
23A

2
23;

.A212/
3.A123/

2A223 � 2A
1
12A

1
23.A

2
12A

2
23/

2
C A212.A

1
12/

2.A223/
3
C 2A213.A

2
12A

1
23/

2s

C 2A213.A
1
12A

2
23/

2s C 3A112.A
2
13/

2A123s
2
C A113.A

2
12A

1
23/

2

C 4A112A
2
12A

2
13.A

1
23/

2
� 6A112A

2
12A

1
13A

1
23A

2
23

C 4.A112/
2A213A

1
23A

2
23 � 4A

1
12A

1
13A

2
13A

1
23s � 4A

1
12.A

1
13/

2A123

C A113.A
1
12A

2
23/

2:

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties, where the last component occurs with multi-
plicity 2:

Ideal of X.�/ �

.A112; A
2
12; s/

1 1 3 3
2 2

.A123; A
2
23; s/

1 1 2 2
3 3q

..A123/
2; A212A

1
23 C A

1
12A

2
23; A

1
12A

1
23; .A

1
12/

2; s/
1 1 2 3
2 3

Note that the tableaux � appearing in this table are the same as those in (equation (9))
after removing the padding.

The following products of MV basis elements (used in equation (9)) are easily
verified, since the fusions of the corresponding MV cycles are irreducible:

3 � 3 D 3 3
2
3
�
2
3
D

2 2
3 3

2
3
� 3 D

2 3
3

7.2. Type A3

There is a cluster structure on CŒN �ŠCŒAij W 1� i < j � 4� consisting of 12 cluster
variables. The initial cluster (coming from the standard reduced word) is

x1 D A12; x2 D A13;

x3 D A12A23 � A13; x4 D A12A23A34 � A12A24 � A13A34 C A14;

x5 D A13A24 � A14A23; x6 D A14:
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n� � Coordinate ring of X.�/ Z Cluster variable

.1; 0; 0; 0; 0; 0/ 2 CŒA112� P1 x1

.0; 0; 0; 1; 0; 0/
1
3

CŒA1
12
;A1
13
;A1
23
�

.A1
12
;A1
13
/

P1 x2Cx3
x1

.0; 0; 0; 0; 0; 1/
1
2
4

CŒA1
12
;A2
12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
12
;A2
12
;A1
13
;A1
14
;A1
23
;A1
24
/

P1 x2x4Cx3x6Cx1x5
x2x3

.1; 0; 0; 1; 0; 0/
2
3

CŒA1
12
;A1
13
;A1
23
�

.A1
23
/

P2 x2

.0; 1; 0; 0; 0; 0/ 3
CŒA1

12
;A1
13
;A1
23
�

.A1
12
/

P2 x3

.0; 0; 0; 1; 0; 1/
1
3
4

CŒA1
12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
12
;A1
13
;A1
14
;A1
34
/

P2 x1x5Cx6.x2Cx3/
x1x2

.0; 0; 0; 0; 1; 0/
1
4

CŒA1
12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
12
;A1
13
;A1
23
;A1
34
/

P2 x1x5Cx4.x2Cx3/
x1x3

.0; 1; 0; 0; 0; 1/
1 3
2
4

CŒA1
12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
12
;A1
34
;A1
13
A1
24
�A1

23
A1
14
/

S.2;4/ x3x6Cx1x5
x2

.1; 0; 0; 0; 1; 0/
2
4

CŒA1
12
;A2
12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
12
;A1
13
;A1
23
;A1
24
/

S.2;4/ x2x4Cx1x5
x3

.0; 0; 1; 0; 0; 0/ 4
CŒA1

12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
12
;A1
13
;A1
23
/

P3 x4

.0; 1; 0; 0; 1; 0/
3
4

CŒA1
12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
12
;A1
34
/

Gr.2;4/ x5

.1; 0; 0; 1; 0; 1/
2
3
4

CŒA1
12
;A1
13
;A1
14
;A1
23
;A1
24
;A1
34
�

.A1
23
;A1
24
;A1
34
/

P3 x6

Table 1. The cluster variables and the corresponding MV cycles and generalized orbital vari-
eties. We write S.2;4/ to denote the non-smooth Schubert divisor inGr.2;4/ the Grassmannian
of planes in C4.
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We summarize our findings in Table 1, listing each cluster variable along with its
stable tableau, the coordinate ring of its generalized orbital variety, and the geometry
of its MV cycle.

Remark 7.2. The MV polytopes corresponding to these MV cycles in Table 1 are
the prime MV polytopes, which were found by Anderson [1, 3.4]. Unfortunately,
the bijection between prime MV polytopes and cluster variables does not hold in all
types, since in general there are finitely many prime MV polytopes and infinitely many
cluster variables.

In what follows we check that the exchange relations satisfied by the above cluster
variables in CŒN � are corroborated by the fusion of the corresponding MV cycles.

Example 7.3.

2 �
1
3
D 3 C

2
3

The requirement that

A D

26664
s A112 A

1
13

0 A123

s

37775 is contained in 2 �A�
1
3

imposes the relation A112A
1
23 C sA

1
13 on A and at s D 0 the ideal generated by this

relation decomposes as a union of the following generalized orbital varieties:

Ideal of X.�/ �

.A112; s/
1 3
2

.A123; s/
1 2
3

Example 7.4.

1
3
�

1
2
4

D
1
4
C

1
3
4
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The requirement that

A D

266666666664

0 1

s A112 A
1
13 A

1
14

s A123 A
1
24

0 A134

s

377777777775
is contained in 1

3
�A�

1
2
4

results in the following relations on submatrices:

Submatrix Relations

A2 A112
A3 A113
A4 A114, A123A

1
34 C sA

1
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
1
13; A

1
23; A

1
14; s/

1 1
2 4
3

.A112; A
1
13; A

1
14; A

1
34; s/

1 1
2 3
4

Example 7.5.

2 �
1
3
4

D

2
3
4

C

1 3
2
4

The requirement that

A D

266666664
s A112 A

1
13 A

1
14

0 A123 A
1
24

s A134

s

377777775 is contained in 2 �A�

1
3
4
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results in the following relations on submatrices:

Submatrix Relations

A3 A112A
1
23 C sA

1
13

A4 A134, A112A
1
24 C sA

1
14, A123A

1
14 � A

1
13A

1
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A123; A
1
24; A

1
34; s/

1 2
3
4

.A112; A
1
34; A

1
23A

1
14 � A

1
13A

1
24; s/

1 3
2
4

Example 7.6.

2 �
1 1
2 4
3

D 4 C
2
4

The requirement that

A D

266666666666664

0 1

�s2 2s A112 A
2
12 A

1
13 A

1
14

0 1

s A123 A
1
24

s A134

s

377777777777775
is contained in 2 �A�

1 1
2 4
3

results in the following relations on submatrices:

Submatrix Relations

A2 A112 C sA
2
12

A3 A113, A123
A4 A212A

1
24 C sA

1
14, A112A

1
24 � s

2A114
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At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
2
12, A113; A

1
23; s/

1 1 4
2 2
3

.A112; A
1
13, A123; A

1
24; s/

1 1 2
2 4
3

Example 7.7.
1 1
2
4

�
2
3
D

2
4
C

2
3
4

The requirement that

A D

266666666666664

0 1

0 A112 A
2
12 A

1
13 A

1
14

0 1

s A123 A
1
24

s A134

0

377777777777775
is contained in

1 1
2
4

�A�
2
3

results in the following relations on submatrices:

Submatrix Relations

A2 A112
A3 A123
A4 A124, A113A

1
34 � sA

1
14
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At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
1
13; A

1
23; A

1
24; s/

1 1 2
2 4
3

.A112; A
1
23; A

1
24; A

1
34; s/

1 1 2
2 3
4

Example 7.8.
1
2
4

� 3 D 4 C
1 3
2
4

The requirement that

A D

266666664
0 A112 A

1
13 A

1
14

0 A123 A
1
24

s A134

0

377777775 is contained in
1
2
4

�A� 3

results in the following relations on submatrices:

Submatrix Relations

A2 A112
A4 A123A

1
34 � sA

1
24, A113A

1
34 � sA

1
14, A113A

1
24 � A

1
23A

1
14

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
1
13; A

1
23; s/

1 4
2
3

.A112; A
1
34; A

1
13A

1
24 � A

1
23A

1
14; s/

1 3
2
4
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Example 7.9.
1 1
2 4

� 3 D
1
3
� 4 C

3
4

The requirement that

A D

266666666664

0 1

0 A112 A
1
13 A

1
14

0 A123 A
1
24

s A134

0

377777777775
is contained in 1 1

2 4
�A� 3

results in the following relations on submatrices:

Submatrix Relations

A2 A112
A4 A113A

1
34 � sA

1
14

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
1
13; s/

1 1 4
2 3

.A112; A
1
34; s/

1 1 3
2 4

Example 7.10.
1 1
2 3
4

�
2
3
D

3
4
C

2
3
4

�
1
3
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The requirement that

A D

266666666666666664

0 1

0 A112 A
2
12 A

1
13 A

2
13 A

1
14

0 1

s A123 A
2
23 A

1
24

0 1

s A134

0

377777777777777775
is contained in

1 1
2 3
4

�A�
2
3

results in the following relations on submatrices:

Submatrix Relations

A2 A112
A3 A212A

1
23 � sA

1
13, A123 C sA

2
23, A212A

2
23 C A

1
13

A4 A134, A212A
1
24 � sA

1
14, A114A

1
23 � A

1
13A

1
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
2
12; A

1
13; A

1
23; A

1
34; s/

1 1 3
2 2 4
3

.A112; A
1
23; A

1
24; A

1
34; A

2
12A

2
23 C A

1
13; s/

1 1 2
2 3 3
4

Example 7.11.
1 1 3
2 2
4

�
1
3
D

3
4
C

1
3
4

� 3
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The requirement that

A D

266666666666666666664

0 1

0 1

s A112 A
2
12 A

1
13 A

2
13 A

1
14

0 1

0 A123 A
2
23 A

1
24

0 1

s A134

0

377777777777777777775

is contained in
1 1 3
2 2
4

�A�
1
3

results in the following relations on submatrices:

Submatrix Relations

A2 A112, A212
A3 A113 C sA

2
13

A4 A134, A114A
1
23 � A

1
13A

1
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
2
12; A

1
13; A

1
23; A

1
34; s/

1 1 1 3
2 2 4
3

.A112; A
2
12; A

1
13; A

1
14; A

1
34; s/

1 1 1 3
2 2 3
4

Example 7.12.
1
3
�
2
4
D

3
4
C
1
4
�
2
3

The requirement that

A D

266666664
0 A112 A

1
13 A

1
14

s A123 A
1
24

0 A134

s

377777775 is contained in 1
3
�A�

2
4
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results in the following relations on submatrices:

Submatrix Relations

A3 A112A
1
23 � sA

1
13

A4 A123A
1
34 C sA

1
24, A112A

1
24 C A

1
13A

1
34

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
1
34; s/

1 3
2 4

.A123; A
1
12A

1
24 C A

1
13A

1
34; s/

1 2
3 4

Example 7.13.
1 1 3
2
4

�
2
3
D

3
4
� 2 C

2
3
4

� 3

The requirement that

A D

266666666666666664

0 1

0 A112 A
2
12 A

1
13 A

2
13 A

1
14

0 1

s A123 A
2
23 A

1
24

0 1

s A134

0

377777777777777775
is contained in

1 1 3
2
4

�A�
2
3

results in the following relations on submatrices:

Submatrix Relations

A2 A112
A3 A123 C sA

2
23

A4 A134, A113A
1
24 � A

1
23A

1
14
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At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
1
13; A

1
23; A

1
34; s/

1 1 2 3
2 4
3

.A112; A
1
23; A

1
24; A

1
34; s/

1 1 2 3
2 3
4

Example 7.14.
2
4
� 1 3 D

2
3
� 4 C

3
4
� 2

The requirement that

A D

266666664
s A112 A

1
13 A

1
14

0 A123 A
1
24

s A134

0

377777775 is contained in 2
4
�A� 1 3

results in the following relations on submatrices:

Submatrix Relations

A4 A123A
1
34 � sA

1
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A123; s/
1 2 4
3

.A134; s/
1 2 3
4

Example 7.15.
1 1 3
2 2
3 4

�
1
4
D

1
3
4

� 4 C
1
2
4

�
3
4
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The requirement that

A D

266666666666666666666664

0 1

0 1

s A112 A
2
12 A

1
13 A

2
13 A

1
14 A

2
14

0 1

0 A123 A
2
23 A

1
24 A

2
24

0 1

0 A134 A
2
34

0 1

s

377777777777777777777775
is contained in

1 1 3
2 2
3 4

�A�
1
4

results in the following relations on submatrices:

Submatrix Relations

A2 A112, A212
A3 A113, A123
A4 A134, A213A

2
34 C A

1
14 C sA

2
14; A

1
14A

2
23 � A

2
13A

1
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
2
12; A

1
13; A

2
13; A

1
23; A

1
14; A

1
34; s/

1 1 1 4
2 2 3
3 4

.A112; A
2
12; A

1
13; A

1
23; A

1
34; A

2
23A

2
34 C A

1
24;

A213A
2
34 C A

1
14; A

2
13A

1
24 � A

2
23A

1
14; s/

1 1 1 3
2 2 4
3 4

Example 7.16.
1 1
2 3
3 4

�
2
4
D

1
2
4

�
3
4
C

2
3
4

�
1
4
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The requirement that

A D

266666666666666666664

0 1

0 A112 A
2
12 A

1
13 A

2
13 A

1
14 A

2
14

0 1

s A123 A
2
23 A

1
24 A

2
24

0 1

0 A134 A
2
34

0 1

s

377777777777777777775

is contained in
1 1
2 3
3 4

�A�
2
4

results in the following relations on submatrices:

Submatrix Relations

A2 A112
A3 A113, A123, A212A

2
23 C sA

2
13

A4 A134, A223A
2
34 C A

1
24 C sA

2
24, A212A

2
24 C A

2
13A

2
34 C A

1
14,

A212A
1
24 � sA

1
14, A114A

2
23 � A

2
13A

1
24, A213A

1
24A

2
34 C A

1
14A

1
24 C sA

1
14A

2
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
2
12; A

1
13; A

1
23; A

1
34; A

2
23A

2
34 C A

1
24;

A213A
2
34 C A

1
14; A

2
13A

1
24 � A

2
23A

1
14; s/

1 1 3
2 2 4
3 4

.A112; A
1
13; A

1
23; A

2
23; A

1
24; A

1
34; A

2
12A

2
24 C A

2
13A

2
34 C A

1
14; s/

1 1 2
2 3 4
3 4

Example 7.17.
1 1 1 3
2 2
3 4

�
2
4
D

2
3
4

� 4 C
1
2
4

�
3
4
� 2
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The requirement that

A D

2666666666666666666666666664

0 1

0 1

0 A112 A
2
12 A

3
12 A

1
13 A

2
13 A

1
14 A

2
14

0 1

0 1

s A123 A
2
23 A

1
24 A

2
24

0 1

0 A134 A
2
34

0 1

s

3777777777777777777777777775
is contained in

1 1 1 3
2 2
3 4

�A�
2
4

results in the following relations on submatrices:

Submatrix Relations

A2 A112, A212
A3 A113, A123
A4 A134, A223A

2
34 C A

1
24 C sA

2
24, A114A

2
23 � A

2
13A

1
24,

A213A
1
24A

2
34 C A

1
14A

1
24 C sA

1
14A

2
24

At s D 0 the ideal generated by the above relations decomposes as a union of the
following generalized orbital varieties:

Ideal of X.�/ �

.A112; A
2
12; A

1
13; A

1
23; A

2
23; A

1
24; A

1
34; s/

1 1 1 2 4
2 2 3
3 4

.A112; A
2
12; A

1
13; A

1
23; A

1
34; A

2
23A

2
34 C A

1
24;

A213A
2
34 C A

1
14; A

2
13A

1
24 � A

2
23A

1
14; s/

1 1 1 2 3
2 2 4
3 4

We note that the tableaux and mutation equations we have obtained match those
predicted by [21] for corresponding dual canonical basis elements.
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Heckman measures. Acta Math. 227 (2021), no. 1, 1–101 Zbl 1495.22011 MR 4346265

[6] A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras. III. Upper bounds and dou-
ble Bruhat cells. Duke Math. J. 126 (2005), no. 1, 1–52 Zbl 1135.16013 MR 2110627

[7] A. Berenstein and A. V. Zelevinsky, Tensor product multiplicities and convex polytopes in
partition space. J. Geom. Phys. 5 (1988), no. 3, 453–472 Zbl 0712.17006 MR 1048510

[8] S. Cautis and J. Kamnitzer, Categorical geometric symmetric Howe duality. Selecta Math.
(N.S.) 24 (2018), no. 2, 1593–1631 Zbl 1423.14119 MR 3782430

[9] J. Claxton and P. Tingley, Young tableaux, multisegments, and PBW bases. Sém. Lothar.
Combin. 73 (2014–2016), article no. B73c Zbl 1328.17015 MR 3383156

[10] A. Dranowski, Comparing two perfect bases. 2021, arXiv:2105.14420
[11] D. Eisenbud and D. Saltman, Rank varieties of matrices. In Commutative algebra (Berke-

ley, CA, 1987), pp. 173–212, Math. Sci. Res. Inst. Publ. 15, Springer, New York, 1989
Zbl 0736.14023 MR 1015518

[12] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15
(2002), no. 2, 497–529 Zbl 1021.16017 MR 1887642

[13] W. Fulton, Intersection theory. Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984
Zbl 0541.14005 MR 732620

[14] S. Gaussent, P. Littelmann, and A. H. Nguyen, Knuth relations, tableaux and MV-cycles.
J. Ramanujan Math. Soc. 28A (2013), 191–219 Zbl 1364.14039 MR 3115193

[15] C. Geiß, B. Leclerc, and J. Schröer, Rigid modules over preprojective algebras. Invent.
Math. 165 (2006), no. 3, 589–632 Zbl 1167.16009 MR 2242628

[16] C. Geiß, B. Leclerc, and J. Schröer, Auslander algebras and initial seeds for cluster alge-
bras. J. Lond. Math. Soc. (2) 75 (2007), no. 3, 718–740 Zbl 1135.17007 MR 2352732

[17] J. Kamnitzer, Hives and the fibres of the convolution morphism. Selecta Math. (N.S.) 13
(2007), no. 3, 483–496 Zbl 1189.20040 MR 2383603
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