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Reflection factorizations and quasi-Coxeter elements

Patrick Wegener and Sophiane Yahiatene

Abstract. We investigate the so-called dual Matsumoto property or Hurwitz action in finite,
affine and arbitrary Coxeter groups. In particular, we want to investigate how to reduce reflec-
tion factorizations and how two reflection factorizations of the same element are related to each
other. We are motivated by the dual approach to Coxeter groups proposed by Bessis (2003) and
the question whether there is an analogue of the well-known Matsumoto property for reflec-
tion factorizations. Our aim is a substantial understanding of the Hurwitz action. We therefore
reprove uniformly results of Lewis–Reiner as well as Baumeister–Gobet–Roberts and the first
author on the Hurwitz action in finite and affine Coxeter groups. Further we show that in an
arbitrary Coxeter group all reduced reflection factorizations of the same element appear in the
same Hurwitz orbit after a suitable extension by simple reflections.

As parabolic quasi-Coxeter elements play an outstanding role in the study of the Hurwitz
action, we aim to characterize these elements. We provide a characterization of maximal para-
bolic quasi-Coxeter elements in arbitrary Coxeter groups as well as a characterization of all
parabolic quasi-Coxeter elements in affine Coxeter groups.

1. Introduction

The so-called Matsumoto property states that for a Coxeter system .W; S/ any two
S -reduced factorizations of the same element can be transformed one into the other
by just using the braid relations (see [19]). In the dual approach to Coxeter groups,
as suggested by Bessis in [4], the generating set S is replaced by the set T of all
reflections for .W; S/. It naturally arises the question whether there is an analogue
of the Matsumoto property for the dual approach. Namely, given two T -reduced fac-
torizations of the same element, is there a procedure to transform both factorizations
one into the other? Given an element w 2 W and a factorization w D t1 � � � tm into
reflections (reduced or not reduced), one may transform this factorization as follows
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to obtain new factorizations for w:

.t1; : : : ; tm/ � .t1; : : : ; ti�1; ti tiC1ti ; ti ; tiC2; : : : ; tm/;

.t1; : : : ; tm/ � .t1; : : : ; ti�1; tiC1; tiC1ti tiC1; tiC2; : : : ; tm/:

These transformations are called Hurwitz moves. In fact, the Hurwitz moves extend
to an action of the m-strands braid group, called Hurwitz action (see Section 2.2 for
the precise definitions). It has been shown by Lewis and Reiner [18, Corollary 1.4]
that the Hurwitz action in finite Coxeter groups can be used to reduce reflection fac-
torizations. Their proof is case-based, including large computer calculations for the
exceptional types. In an attempt to better understand the Hurwitz action as well as the
dual approach, as our first main result we provide a uniform proof of the following
result.

Theorem 1.1 (Lewis–Reiner). Let .W; S/ be a finite Coxeter system and w D t1 � � �
tmC2k 2W a reflection factorization with `T .w/Dm and k 2 Z�0. Then there exists
a braid � 2 BmC2k such that

�.t1; : : : ; tmC2k/ D .r1; : : : ; rm; ri1 ; ri1 ; : : : ; rik ; rik /:

The previous theorem fails to be true in arbitrary Coxeter groups. Nevertheless,
we show that in an arbitrary Coxeter group all reduced reflection factorizations of the
same element appear in the same orbit with respect to the Hurwitz action. We therefore
have to extend these reduced reflection factorizations by suitable simple reflections.

Theorem 1.2. Let .W; S/ be a Coxeter group, w D s1 � � � sm a reduced factorization
ofw 2W in simple reflections and .t1; : : : ; tn/ a reduced reflection factorization ofw.
Then there exist q1; : : : ; qm�n 2 S and a braid � 2 Bm such that

�.s1; : : : ; sm/ D .q1; : : : ; qm�n; t1; : : : ; tn/:

Besides the fact that the Hurwitz action preserves the product of the transformed
tuple, there is another natural invariant of the Hurwitz action. Namely, the Hurwitz
action preserves the group generated by the corresponding tuples. Therefore quasi-
Coxeter elements play an important role in the study of the Hurwitz action. An ele-
ment w is called a quasi-Coxeter element (resp. parabolic quasi-Coxeter element)
if there exists a T -reduced factorization of w which generates the group W (resp. a
parabolic subgroup of W ). We call an element a proper parabolic quasi-Coxeter ele-
ment if it is a quasi-Coxeter element in a proper parabolic subgroup. As our next main
result we provide a characterization of “maximal” parabolic quasi-Coxeter elements
for arbitrary Coxeter groups of finite rank by means of the absolute order �T (see
Definition 6.8) and the parabolic closure (see Section 2.3).
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Theorem 1.3. Let .W;S/ be a Coxeter system of rank n2N and x 2W with `T .x/D
n � 1. The element x is a proper parabolic quasi-Coxeter element if and only if there
exists a quasi-Coxeter element w 2W with x �T w and P.x/¤W . In this case, the
parabolic closure P.x/ of x has rank n � 1.

In the case of a finite Coxeter system, Theorem 1.3 is shown in [2, Corollary 6.11].
The importance of parabolic quasi-Coxeter elements in the study of the Hurwitz action
is emphasized by a result of Baumeister, Gobet, Roberts and the first author [2, The-
orem 1.1]. They showed that for finite Coxeter groups the parabolic quasi-Coxeter
elements are precisely those elements with just one orbit for the Hurwitz action. Their
proof is case-based. We are able to give a uniform proof for the “if only” part for Weyl
groups and affine Coxeter groups.

Theorem 1.4. Let W be a Weyl group or an affine Coxeter group and w 2 W be a
parabolic quasi-Coxeter element. Then the Hurwitz action is transitive on the set of
reduced reflection factorizations of w.

Using the previous results, we are able to characterize parabolic quasi-Coxeter
elements in affine Coxeter groups. Note that an element of finite order in an affine
Coxeter group is also called elliptic.

Corollary 1.5. Let .W; S/ be an irreducible affine Coxeter system with set of reflec-
tions T and let x 2 W . Then x is a proper parabolic quasi-Coxeter element if and
only if there exists a quasi-Coxeter elementw 2W such that x �T w and P.x/¤W .

Equivalently, x is a proper parabolic quasi-Coxeter element if and only if there
exists a quasi-Coxeter element w 2 W such that x �T w and x is elliptic.

Note that this result and Theorem 1.3 partially generalize results of Bessis [4,
Lemma 1.4.3] as well as Paolini and Salvetti [20, Theorem 3.22 (i)] on parabolic
Coxeter elements in finite and affine Coxeter groups.

2. Background

2.1. Generalities on Coxeter groups

Recall that a Coxeter group is a group W given by a presentation

W D hS j .st/mst D 1 8s; t 2 Si;

where .mst /s;t2S is a symmetric matrix with entries in Z�1 [ ¹1º. These entries
have to satisfy mss D 1 for all s 2 S and mst � 2 for all s ¤ t in S . If mst D 1,
then there is no relation for st in the above presentation. The pair .W; S/ is called
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a Coxeter system, S is called the set of simple reflections and jS j is called the rank
of .W; S/. Further, if jW j is finite the system is called finite and otherwise it is called
infinite. We assume all Coxeter systems in this paper to be of finite rank.

To each Coxeter system .W;S/ there is an associated labeled graph, called Coxeter
diagram and denoted by �.W; S/. Its vertex set is given by S and there is an edge
between distinct s; t 2 S labeled by mst if mst > 2. The Coxeter system .W; S/ is
called irreducible if �.W; S/ is connected.

Each w 2 W can be written as a product w D s1 � � � sk with si 2 S . The length
`.w/ D `S .w/ is defined to be the smallest integer k for which such an expression
exists. The expression w D s1 � � � sk is called (S -)reduced if k D `.w/.

Let .W; S/ be a Coxeter system and let V be a vector space over R with basis
� D ¹es j s 2 Sº. We equip V with a symmetric bilinear form B by setting

B.es; et / D � cos
�

mst

for all s; t 2 S . This term is understood to be �1 if mst D 1. The group W can be
embedded into GL.V / via its natural representation (or Tits representation)

� WW ! GL.V /

that sends s 2 S to the reflection

�sWV ! V; v 7! v � 2B.es; v/es:

We set w.es/ WD �.w/.es/ and

ˆ D ˆ.W; S/ WD ¹w.es/ j w 2 W; s 2 Sº:

The set ˆ is called the root system for .W; S/ and we refer to � as the simple system
for ˆ. We call a root ˛ D

P
s2S ases positive and write ˛ > 0 if as � 0 for all s 2 S

and negative if as � 0 for all s 2S . LetˆC be the set consisting of the positive roots. It
turns out thatˆ decomposes into positive and negative roots, that is,ˆDˆC P[�ˆC.

If ˛ D w.es/ 2 ˆ for some w 2 W and s 2 S , then wsw�1 acts as a reflection
on V . It sends ˛ to �˛ and fixes pointwise the hyperplane orthogonal to ˛. We set
s˛ D wsw

�1 and call T D ¹wsw�1 j w 2W; s 2 Sº the set of reflections for .W;S/.

2.2. Reflection factorizations and the Hurwitz action

Since S � T , we have W D hT i. Therefore each w 2 W can be written as a product
w D t1 � � � tm with ti 2 T . We call this a reflection factorization for w. The reflection
length `T .w/ is defined to be the smallest integer m for which such a factorization
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exists. The factorization w D t1 � � � tm is called (T -)reduced or reduced reflection fac-
torization if m D `T .w/. For w 2 W with m D `T .w/, we further define its set of
reduced reflection factorizations as

RedT .w/ WD ¹.t1; : : : ; tm/ 2 Tm j w D t1 � � � tmº:

Note that we will use the terminology of a reflection factorization for an element
w 2 W synonymously for the product w D t1 � � � tm of reflections as well as the tuple
.t1; : : : ; tm/. There is a nice criterion for finite Coxeter groups to determine whether a
reflection factorization is reduced.

Lemma 2.1 (Carter [6, Lemma 3]). Let .W; S/ be a finite Coxeter system with root
system ˆ. The reflection factorization s˛1

� � � s˛m
(˛i 2 ˆ) is reduced if and only

if ˛1; : : : ; ˛m are linearly independent.

For an element w 2 W with `T .w/ D m, there is a natural action of the braid
group on m strands on the set RedT .w/. More precisely, the braid group Bm is the
group given by the following presentation

Bm D h�1; : : : ; �m�1 j �i�iC1�i D �iC1�i�iC1; �i�j D �j�i for ji � j j > 1i:

This group acts on the set RedT .w/ in terms of its generators (and their inverse ele-
ments) as follows

�i .t1; : : : ; tm/ D .t1; : : : ; ti�1; ti tiC1ti ; ti ; tiC2; : : : ; tm/;

��1i .t1; : : : ; tm/ D .t1; : : : ; ti�1; tiC1; tiC1ti tiC1; tiC2; : : : ; tm/:

It is straightforward to check that this indeed extends to an action of Bm on RedT .w/,
called Hurwitz action. In the same way we can consider the Hurwitz action on arbi-
trary (not necessarily reduced) reflection factorizations of a given fixed length. We
call the action of a generator �i (resp. ��1i ) on the tuple .t1; : : : ; tm/ a Hurwitz move.
Further we use the notation .t1; : : : ; tm/ � .r1; : : : ; rm/ to indicate that both tuples lie
in the same orbit with respect to the Hurwitz action. In this case we also say that both
tuples are Hurwitz equivalent. An orbit with respect to the Hurwitz action is called
Hurwitz orbit. We want to emphasize the following two invariants of the Hurwitz
action.

Remark 2.2. Let .t1; : : : ; tm/ � .r1; : : : ; rm/ be Hurwitz equivalent reflection factor-
izations. Then

(a) ht1; : : : ; tmi D hr1; : : : ; rmi, that is, Hurwitz equivalent factorizations generate
the same subgroup;

(b) the tuples .t1; : : : ; tm/ and .r1; : : : ; rm/ share the same multiset of conjugacy
classes.
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2.3. Parabolic subgroups

For each subset I � S the subgroupWI D hI i is called a standard parabolic subgroup
ofW . A subgroup of the formwWIw

�1 for somew2W and I�S is called a parabol-
ic subgroup. Note that if wWIw�1 is a parabolic subgroup, then .wWIw�1; wIw�1/
is itself a Coxeter system.

Let X � W be a finite set. The parabolic closure of X is defined to be the inter-
section of all parabolic subgroups containing hXi. We denote the parabolic closure
of X by P.X/. By [22, Theorem 1.2], we have that P.X/ is indeed itself a parabolic
subgroup. In particular,P.X/ is the smallest (with respect to inclusion) parabolic sub-
group ofW containingX . IfX D ¹x1; : : : ; xnº, we also write P.X/DP.x1; : : : ; xn/.

2.4. Weyl groups and affine Coxeter groups

Let V be a real vector space with positive definite symmetric bilinear form .� j �/W

V � V ! R. Let ˆ be a crystallographic root system in V (in the sense of [16]) with
simple system �. The set

ˆ_ WD ¹˛_ j ˛ 2 ˆº;

where ˛_ WD 2˛
.˛j˛/

, is again a crystallographic root system in V with simple system
�_ WD ¹˛_ j ˛ 2 �º. The root system ˆ_ is called the dual root system and its ele-
ments are called coroots. For a set of roots R � ˆ, we put WR WD hs˛ j ˛ 2 Ri and
call Wˆ a Weyl group.

For a set of vectors ˆ � V , we set L.ˆ/ WD spanZ.ˆ/. If ˆ is a crystallographic
root system, then L.ˆ/ is an integral lattice, called root lattice. In the latter case we
call L.ˆ_/ the coroot lattice.

Let us fix a crystallographic root system ˆ in V with simple system �. For each
˛ 2 ˆ and each k 2 Z, the setH˛;k WD ¹v 2 V j .v j ˛/D kº defines an affine hyper-
plane. We define the affine reflection s˛;k in V by

s˛;k WV ! V; v 7! v � ..v j ˛/ � k/˛_:

Then s˛;k fixes H˛;k pointwise and sends 0 to k˛_.
The group

Wa;ˆ WD hs˛;k j ˛ 2 ˆ; k 2 Zi

is called affine Weyl group associated to ˆ.
By [16, Proposition 4.2, Theorem 4.6] the group Wa;ˆ is the semidirect product

of the Weyl group Wˆ and the coroot lattice L.ˆ_/. Further, the group Wa;ˆ is a
Coxeter group. If ˆ is irreducible, then .Wa;ˆ; S/ is a Coxeter system, where

S WD ¹s˛ j ˛ 2 �º [ ¹sz̨;1º;
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and z̨ is the highest root of ˆ with respect to �. The set of reflections for .Wa;ˆ; S/
is given by the set of affine reflections, that is, by the set

¹s˛;k j ˛ 2 ˆ; k 2 Zº:

Therefore, we also call the affine Weyl group Wa;ˆ an affine Coxeter group and the
pair .Wa;ˆ;S/ is called affine Coxeter system. Note that there is a canonical projection
from Wa;ˆ to the underlying finite Weyl group, namely

pWWa;ˆ ! Wˆ; s˛;k 7! s˛: (1)

3. Reflection subgroups and the Hurwitz action

In this section we describe the connection between the Hurwitz action and the Bruhat
graph for Coxeter systems of finite rank. We benefit from results of Dyer [9, 10].

Let .W; S/ be a Coxeter system of finite rank and T its set of reflections. A sub-
groupW 0 is called a reflection subgroup if it is generated by the reflections it contains,
that is, W 0 D hW 0 \ T i. The reflection subgroup W 0 is by [10, Theorem 3.3] itself a
Coxeter group with simple system

�.W 0/ D ¹t 2 W 0 \ T j `S .t t
0/ > `S .t/ for all t 0 2 W 0 \ T with t ¤ t 0º:

The set �.W 0/ is called the canonical simple system for W 0. For later purpose we
explicitly describe how to obtain the set �.W 0/ provided the set T 0 D W 0 \ T is
known. The result is due to Dyer.

Lemma 3.1 ([10, Proposition 3.7]). Let T 0� T be a finite set. For i 2N define sets Ti
as follows. Set T0 D T 0. Given Ti , set

TiC1 D Ti

if �.ht; t 0i/D¹t; t 0º for all t; t 0 2Ti . Otherwise, choose t; t 0 2Ti with �.ht; t 0i/¤¹t; t 0º
and set

TiC1 D .Ti n ¹t; t
0
º/ [ �.ht; t 0i/:

Then there exists some i 2 N with Ti D TiC1 and �.hT 0i/ D Ti for this i .

By [10, Theorem 3.3 (i)] the set of reflections for .W 0; �.W 0// is precisely[
w2W 0

w�.W 0/w�1 D W 0 \ T: (2)
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In [10, Lemma 3.2] it is proven that the canonical simple system of a reflection sub-
group W 0 behaves under conjugation with s 2 S as follows

�.sW 0s/ D

´
s�.W 0/s; s … �.W 0/;

�.W 0/; else:
(3)

The Bruhat graph �.W;S/ attached to the Coxeter system .W; S/ is a directed graph
with vertex set W and there is a directed edge from x to y if there exists t 2 T such
that y D xt and `S .x/ < `S .y/. The full subgraph consisting of vertices V � W is
denoted by �.W;S/.V /. Moreover, by [11, Theorem 1.4] for any reflection subgroup
W 0 � W and w 2 W there are isomorphisms of directed graphs

�.W;S/.wW
0/ Š �.W;S/.W

0/ Š �.W 0;�.W 0//: (4)

As a consequence of the definition, for each reflection factorization we have an
associated non-oriented path in the Bruhat graph. The first goal of this section is to
provide a “normal form” for paths in the Bruhat graph attached to certain reflection
factorizations (see Proposition 3.4). Its proof is based on the following two results.

Lemma 3.2. Let .W; S/ be a Coxeter system of finite rank, t1; t2 2 T with t1 ¤ t2.
Then .r; s/ 2 .T \ ht1; t2i/2 and .t1; t2/ lie in the same Hurwitz orbit if and only if
rs D t1t2.

Proof. A direct computation shows for m 2 Z�0 that

�m1 .t1; t2/ D
�
.t1t2/

mt1; t1.t2t1/
m�1

�
; (5)

��m1 .t1; t2/ D
�
t2.t1t2/

m�1; .t2t1/
mt2

�
: (6)

Since r 2 T \ ht1; t2i there existsm 2 Z�0 with r 2 ¹.t1t2/mt1; .t2t1/mt2º. The latter
implies that .r; s/ � .t1; t2/ if and only if rs D t1t2.

The following statement is part of the proof of [1, Proposition 2.2].

Lemma 3.3. Let .W; S/ be a Coxeter system of finite rank, w 2 W and t1; t2 2 T
with t1 ¤ t2 such that

w �! wt1  � wt1t2

in �.W;S/. Then there exists .t 01; t
0
2/ 2 B2.t1; t2/ such that one of the following cases

hold:

(a) w �! wt 01 �! wt 01t
0
2 D wt1t2,

(b) w  � wt 01  � wt
0
1t
0
2 D wt1t2,

(c) w  � wt 01 �! wt 01t
0
2 D wt1t2.

In particular, in all three cases we have `S .wt 01/ < `S .wt1/.
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Proof. Let W 0 D ht1; t2i and S 0 D �.W 0/, then .W 0; S 0/ is a Coxeter system of rank
two. The isomorphisms (4) map w �! wt1  � wt1t2 in �.W;S/ to

x �! xt1  � xt1t2 in �.W 0;S 0/

for some x 2 W 0. If x D e, we choose an arbitrary t 01 2 S
0. Since t1 ¤ t2, with t 02 D

t 01t1t2 2 T \ ht1; t2i, we get

x �! xt 01 �! xt 01t
0
2:

If x ¤ e, there exists t 01 2 S
0 such that we have either

x  � xt 01  � xt
0
1t
0
2 or x  � xt 01 �! xt 01t

0
2

for t 02 D t
0
1t1t2 2 T \ ht1; t2i. Hence, the isomorphisms (4) yield one of the paths of

�.W;S/.wW
0/ described in (a), (b) or (c). Moreover, Lemma 3.2 implies that .t1; t2/

and .t 01; t
0
2/ lie in the same Hurwitz orbit.

Next we compare the length of wt 01 with the length of wt1. In case (a) we have

`S .wt
0
1/ < `S .wt

0
1t
0
2/ D `S .wt1t2/ < `S .wt1/

while in cases (b) and (c) we have `S .wt 01/ < `S .w/ < `S .wt1/, as desired.

Next we connect the Hurwitz action with the Bruhat graph. It can be interpreted
as some kind of normal form for paths attached to reflection factorizations.

Proposition 3.4. Let .W; S/ be a Coxeter system of finite rank, x; w 2 W and w D
t1 � � � tm a reflection factorization such that each factorization of Bm.t1; : : : ; tm/ con-
sists of pairwise different factors. Then there exists a factorization

.t 01; : : : ; t
0
m/ 2 Bm.t1; : : : ; tm/

such that the corresponding path in the Bruhat graph starting in x and ending in xw
is first decreasing and then increasing. More precisely, we have

x  � xt 01  � � � �  � xt
0
1 � � � t

0
i �! � � � �! xt 01 � � � t

0
m D xw

for a unique 0 � i � m.

Proof. Consider the undirected path in �.W;S/ corresponding to the reflection factor-
ization .t1; : : : ; tm/ of w 2 W :

x xt1 xt1t2 � � � xt1 � � � tm D xw:
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Since every factorization of Bm.t1; : : : ; tm/ contains pairwise different reflections,
Lemma 3.3 then allows us to change parts of the associated directed path of shape
? �! ? � ? to

? �! ? �! ?; ? � ? � ?; or ? � ? �! ?

only using the Hurwitz action. Also by Lemma 3.3 each replacement reduces the sum
of the length of the vertices. Eventually, after finitely many steps we obtain a path that
is first decreasing and then increasing.

In case of reduced reflection factorizations the previous statement yields the fol-
lowing.

Corollary 3.5 ([1, Proposition 2.2]). Let .W; S/ be a Coxeter system of finite rank,
w 2 W and .t1; : : : ; tm/ a reduced reflection factorization of w, then there exists
.t 01; : : : ; t

0
m/ 2 Bm.t1; : : : ; tm/ such that the corresponding path in the Bruhat graph

is strictly increasing, that is,

e �! t 01 �! t 01t
0
2 �! � � � �! t 01t

0
2 � � � t

0
m D w:

Definition 3.6. Let G be a group. For an element g 2 G denote by Œg� the conju-
gacy class in G represented by g. We say that two subsets ¹g1; : : : ; gnº � G and
¹h1; : : : ; hnº � G share the same multiset of conjugacy classes if ¹Œg1�; : : : ; Œgn�º and
¹Œh1�; : : : ; Œhn�º are equal as multisets.

Lemma 3.7. Let .W;S/ be a Coxeter system of finite rank, t; t 0 2 T (t ¤ t 0) andW 0D
ht1; : : : ; tmi a reflection subgroup (ti 2 T , 1 � i � m). The sets ¹t; t 0º and �.ht; t 0i/
share the same multiset of conjugacy classes under conjugation with elements from
ht; t 0i. The set of reflections for .W 0; �.W 0// is

W 0 \ T D
[
w2W 0

w¹t1; : : : ; tmºw
�1:

Proof. Let �.ht; t 0i/ D ¹r; r 0º. Note that the set of reflections for the group W 0 WD
ht; t 0i D hr; r 0i is given by T 0 WD T \ ht; t 0i D T \ hr; r 0i. By equations (5) and (6)
in the proof of Lemma 3.2 we have that

.r; r2/ � .t; t
0/ � .r1; r

0/; and (7)

.t; t2/ � .r; r
0/ � .t1; t

0/ (8)

for certain reflections t1; t2; r1; r2 2 T 0. If t 2 Œt 0�, then we have by (7) that r; r 0 2 Œt 0�
as well, where Œt 0� denotes the conjugacy class in W 0 represented by t 0. Likewise,
if r 2 Œr 0�, then we have by (8) that t; t 0 2 Œr 0� as well. In any case we see that ¹t; t 0º
and �.ht; t 0i/ share the same multiset of conjugacy classes.
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To prove the second part of the lemma we use the algorithm described in Lem-
ma 3.1. Set T0 D ¹t1; : : : ; tmº. In any step i � 0 of the algorithm we exchange ¹t; t 0º �
Ti (t ¤ t 0) by �.ht; t 0i/ until we reach �.W 0/. Since the multisets of conjugacy classes
of Ti and TiC1 coincide for any i 2 Z�0, we have[

w2W 0

wTiw
�1
D

[
w2W 0

wTiC1w
�1:

After finitely many steps the algorithm yields the canonical simple system Tk D

�.W 0/ for k � 0. Hence,[
w2W 0

w�.W 0/w�1 D
[
w2W 0

w¹t1; : : : ; tmºw
�1:

Now the fact (2) yields the assumption[
w2W 0

w¹t1; : : : ; tmºw
�1
D T \W 0:

We close this section with a proposition which investigates the canonical simple
system of reflection subgroups of rank two. It will be useful in our consideration of
quasi-Coxeter elements in Section 6.

Proposition 3.8. Let .W; S/ be a Coxeter system of finite rank and P a standard
parabolic subgroup of W . If t 2 P \ T and t 0 2 T n P , then t 2 �.ht; t 0i/.

Proof. Since P is a standard parabolic subgroup Lemma 3.7 implies

t 2 T \ P D
[
w2P

w.S \ P /w�1:

Letw 2 P such that s0 WDwtw�1 2 S and `S .w/ be minimal among all thosew 2 P .
Therefore, we get

s0 2 �.hs0; wt 0w�1i/ D �.hwtw�1; wt 0w�1i/ D �.wht; t 0iw�1/:

If w D e the previous equation yields the assertion. Thus assume that `S .w/ � 1 and
set t 00 WD wt 0w�1. Let w D s1 � � � sn be a reduced factorization in simple reflections.
Because of the minimality of `S .w/, we have

sisi�1 � � � s1s
0s1 � � � si�1si … S

for all 1 � i � n. The latter can be verified as follows. Assume that

sisi�1 � � � s1s
0s1 � � � si�1si DW s

00
2 S
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for some 1 � i � n. Then

sn � � � siC1s
00siC1 � � � sn D sn � � � siC1si � � � s1s

0s1 � � � sisiC1 � � � sn

D w�1s0w D t;

and thus
siC1 � � � sntsn � � � siC1 D s

00
2 S:

The latter contradicts the minimality of `S .w/.
In the following we will show by induction that

si � � � s1�.hs
0; t 00i/s1 � � � si D �.si � � � s1hs

0; t 00is1 � � � si /

for all 1 � i � n. Consider the situation for i D 1. Since s0 2 S \ P and t 00 … P ,
we have

�.hs0; t 00i/ D ¹s0; rº

for some reflection r … P . Since s1s0s1 … S and r … P , we have

s1 … ¹s
0; rº D �.hs0; t 00i/:

Hence, by the equation (3), we get

s1�.hs
0; t 00i/s1 D �.s1hs

0; t 00is1/:

Assume that i � 2. By induction hypothesis it holds that

�.si�1 � � � s1hs
0; t 00is1 � � � si�1/ D si�1 � � � s1�.hs

0; t 00i/s1 � � � si�1

D si�1 � � � s1¹s
0; rºs1 � � � si�1:

As before, we have that

si … si�1 � � � s1¹s
0; rºs1 � � � si�1 D �.si�1 � � � s1hs

0; t 00is1 � � � si�1/:

Thus equation (3) implies

si�.si�1 � � � s1hs
0; t 00is1 � � � si�1/si D �.si � � � s1hs

0; t 00is1 � � � si /:

The latter yields by the induction hypothesis that

�.si � � � s1hs
0; t 00is1 � � � si / D si � � � s1�.hs

0; t 00i/s1 � � � si :

Altogether, with s0 2 �.hs0; t 00i/, we have

si � � � s1s
0s1 � � � si 2 �.si � � � s1hs

0; t 00is1 � � � si /

for all 1 � i � n. In particular, for i D n, we have

t D w�1s0w 2 �.w�1hs0; t 00iw/ D �.ht; t 0i/:
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4. Reflection factorizations in finite Coxeter groups

The aim of this section is to investigate arbitrary reflection factorizations in finite
Coxeter groups, and to provide a method to reduce these factorizations. We give a
uniform proof of Theorem 1.1. Moreover, we state in Proposition 4.5 a version of this
theorem in a more general setup.

We start with the following well-known lemma.

Lemma 4.1. Let .W; S/ be a finite Coxeter system and w D t1 � � � tm 2 W a reduced
reflection factorization of w. Then the group W 0 D ht1; : : : ; tmi is a Coxeter group
of rank m and its rank coincides with the rank of the parabolic closure P.t1; : : : ; tm/
of ¹t1; : : : ; tmº.

Proof. By [10, Corollary 3.11] the group W 0 is a Coxeter group of rank at most m.
Since the factorization t1 � � � tm is reduced, Carter’s Lemma 2.1 implies that the rank
is at least m. By [8, Lemma 2.1] the rank of the parabolic closure of ¹t1; : : : ; tmº
coincides with the rank of W 0.

We are now in the position to prove Theorem 1.1. This proof describes a procedure
that allows to simplify reflection factorizations in finite Coxeter groups. It was first
proven by Lewis and Reiner [18, Corollary 1.4] by a case-based analysis of the finite
irreducible Coxeter groups. We provide a uniform proof here.

Proof of Theorem 1.1. We proceed by induction on k. If k D 0 there is nothing to
prove. Assume that k > 0 and let 1� l �mC 2k � 1maximal such thatw0 WD t1 � � � tl
is a reduced reflection factorization. Since `T .w0tlC1/ D l � 1 there exists a factor-
ization w0 D x�1tlC1 with x�1 2W and `T .w0/D `T .x�1/C 1. By Lemma 4.1, the
rank of the reflection subgroup W 0 D ht 01; : : : ; t

0
l�1
i is l � 1 and coincides with the

rank of P.x�1/ D P.x/. Without loss of generality, we can assume that P.x/ is a
standard parabolic subgroup of W .

Consider the (non-directed) path in the Bruhat graph starting in x and ending in e
corresponding to the non-reduced factorization .t1; : : : ; tlC1/, that is, the path

x xt1 xt1t2 � � � xt1t2 � � � tl D tlC1 e:

If there exists a factorization in BlC1.t1; : : : ; tlC1/ with two identical factors, then we
can shift them to the end of the factorization by using the Hurwitz action and apply the
induction hypothesis. Hence let us assume to the contrary that each factorization in
BlC1.t1; : : : ; tlC1/ consists of pairwise different factors. Then Proposition 3.4 yields
the existence of a braid � 2 BlC1 such that the factorization

�.t1; : : : ; tlC1/ D .xt1; : : : ;xtlC1/



P. Wegener and S. Yahiatene 140

induces the following directed path in the Bruhat graph

x  � xxt1  � xxt1xt2  � � � �  � xxt1 � � � xtl D xtlC1  � e:

The strong exchange condition yields that xt1; : : : ; xtlC1 2 P.x/, and therefore also
t1; : : : ; tlC1 2 P.x/. In particular, w0 2 P.x/ and

l D `T .w
0/ � `T\P.x/.w

0/:

But by Carter’s Lemma 2.1 the length `T\P.x/ is bounded by the rank of P.x/, that
is, by l � 1. Hence, we arrive at a contradiction and there exists a braid � 2 BmC2k

such that
�.t1; : : : ; tmC2k/ D .t

0
1; : : : ; t

0
mC2.k�1/; rik ; rik /:

The induction hypothesis yields the assertion.

Remark 4.2. The braid � in Theorem 1.1 can be calculated explicitly. As in the proof
of Theorem 1.1 described, we have to transform the path

x xt1 xt1t2 � � � xt1t2 � � � tl D tlC1 e

into a directed path. This can be done successively by using Lemma 3.3 and its proof.

Remark 4.3. The uniform proof of Theorem 1.1 also yields a uniform proof of a
result by Lewis–McCammond–Petersen–Schwer [17, Theorem B] about translation-
elliptic factorizations in affine Coxeter groups.

The following calculation shows that Theorem 1.1 does not hold for arbitrary
Coxeter groups.

Example 4.4. We use the notation of Humphreys’ textbook on Coxeter groups [16,
Chapter 4]. Consider the affine Coxeter group of type zB2. Further consider the roots
˛1 D e1 � e2, z̨ D e1 C e2, ˛2 D e1 of the finite root system B2 � R2, where e1; e2
are the canonical unit vectors. We have

s˛1;1s˛1
sz̨;1sz̨ D s˛2;1s˛2

:

Since ˛1 is orthogonal to z̨, every factorization of B4.s˛1;1; s˛1
; sz̨;1; sz̨/ consists of

pairwise different factors.

The following result is a modification of Theorem 1.1 that holds for arbitrary
Coxeter systems of finite rank. Its short proof is based on Proposition 3.4 and can be
found in [25].
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Proposition 4.5 ([25, Lemma 2.3]). Let .W; S/ be a Coxeter system of finite rank,
w D t1 � � � tmC2k 2W a reflection factorization, k 2 Z�0 and `S .w/Dm. Then there
exists a braid � 2 BmC2k such that

�.t1; : : : ; tmC2k/ D .r1; : : : ; rm; ri1 ; ri1 ; : : : ; rik ; rik /:

5. Extension of reduced reflection factorizations in arbitrary Coxeter
groups

In this section we show how to extend reduced reflection factorizations in arbitrary
Coxeter systems of finite rank such that they all lie in the same Hurwitz orbit. As a
consequence we get that all reduced reflection factorizations are subwords of a factor-
ization that lies in the Hurwitz orbit of a reduced factorization in simple reflections.

Definition 5.1. Let .W; S/ be a Coxeter system with set of reflections T . For w 2 W
we define the set N.w/ WD ¹t 2 T j `.wt/ < `.w/º.

Lemma 5.2. Let .W; S/ be a Coxeter system of finite rank, w 2 W and .t1; : : : ; tn/
be a reduced reflection factorization of w. Further let w D s1 � � � sm be a reduced
factorization in simple reflections. Then there exist .r1; : : : ; rn/ 2 Bn.t1; : : : ; tn/ and
1 � in < in�1 < � � � < i1 � m such that

(a) wrn � � � rk D s1 � � �csin � � �csik � � � sm for 1 � k � n;

(b) rk D sm � � � sik � � � sm 2 N.w/ for 1 � k � n.

Proof. Corollary 3.5 implies the existence of a factorization

.q1; : : : ; qn/ 2 Bn.t1; : : : ; tn/

such that `.wqn � � �qk/ < `.wqn � � �qkC1/ for 1� k � n. Thus by the strong exchange
condition [16, Theorem 5.8], multiplying w by qn induces the deletion of a simple
reflection in the reduced factorization s1 � � � sm. Denote this simple reflection by sin ,
that is,

wqn D s1 � � � smqn D s1 � � �csin � � � sm:
As before, multiplying wqn by qn�1 induces the deletion of a simple reflection sin�1

,
that is,

wqnqn�1 D s1 � � �csin � � � bsin�1
� � � sm or wqnqn�1 D s1 � � � bsin�1

� � �csin � � � sm:
Proceeding in this way, we obtain simple reflections sin ; : : : ; si1 such that multiplying
wqn � � �qkC1 by qk will cause the deletion of the simple reflection sik . Choose k such
that

ik D min¹ij j 1 � j � nº:
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We consider the following Hurwitz move

��1n�1 � � � �
�1
k .q1; : : : ; qn/ D .q1; : : : ; bqk; : : : ; qn; qn � � � qkC1qkqkC1 � � � qn/

and define rn WD qn � � � qkC1qkqkC1 � � � qn. By our construction we obtain

wrn D w.qn � � � qkC1qk/.qkC1 � � � qn/ D s1 � � �csik � � � sm:
Note that multiplyingw by qn � � �qkC1qk will delete the simple reflections sik ; : : : ; sin
from the reduced factorization s1 � � � sm. But multiplying this expression afterwards by
qkC1 � � �qn will reinsert the simple reflections sikC1

; : : : ; sin to their initial spots in the
reduced factorization s1 � � � sm.

Next, we considerwrnDs1 � � �csik � � �sm instead ofw as well as .q1; : : : ; bqk; : : : ;qn/
instead of .q1; : : : ; qn/ and proceed as before. We exhibit this step explicitly. Choose l
such that

il D min¹ij j 1 � j � n; j ¤ kº:

We consider the following Hurwitz move

��1n�2 � � � �
�1
l .q1; : : : ; bqk; : : : ; qn/

D

8̂<̂
:
.q1; : : : ; bql ; : : : ; bqk; : : : ; qn;

qn � � � qkC1qk�1 � � � qlC1qlqlC1 � � � qk�1qkC1 � � � qn/ if l < k;

.q1; : : : ; bqk; : : : ; bql ; : : : ; qn; qn � � � qlC1qlqlC1 � � � qn/ if l > k;

and define

rn�1 WD

´
qn � � � qkC1qk�1 � � � qlC1qlqlC1 � � � qk�1qkC1 � � � qn if l < k;

qn � � � qlC1qlqlC1 � � � qn if l > k:

We obtain
wrnrn�1 D s1 � � � bsk � � �bsl � � � sm:

Proceeding in this way (and after a possible renumbering of i1; : : : ; in), we obtain a
factorization .r1; : : : ; rn/ 2 Bn.t1; : : : ; tn/ as in assertion (a).

By [16, Proposition 5.6], we have

N.w/ D ¹sm; smsm�1sm; : : : ; sm � � � s2s1s2 � � � smº;

which is independent of the initial reduced factorization. This yields assertion (b).

Proof of Theorem 1.2. By Lemma 5.2, we can assume that

tk D sm � � � sik � � � sm

for 1 � k � n and 1 � in < in�1 < : : : < i1 � m.
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Let .q1; : : : ; qm�n/D .s1; : : : ;csin ; : : : ;csi1 ; : : : ; sm/, that is, the .m� n/-tuple that
is obtained by deleting the entries of .s1; : : : ; sm/with indices i1; : : : ; in. Forw;x 2W
we put wx WD xwx�1. We have

.q1; : : : ; qm�n; t1; : : : ; tn/

D .s1; : : : ;csin ; : : : ;csi1 ; : : : ; sm; t1; : : : ; tn/
� .s1; : : : ;csin ; : : : ;csi1 ; : : : ; sm�1; t sm1 ; sm; t2; : : : ; tn/

� .s1; : : : ;csin ; : : : ;csi1 ; : : : ; sm�2; t sm�1sm
1 ; sm�1; sm; t2; : : : ; tn/

� � � �

� .s1; : : : ;csin ; : : : ;csi1 ; t si1C1���sm�1sm

1 ; si1C1; : : : ; sm�1; sm; t2; : : : ; tn/

D .s1; : : : ;csin ; : : : ;csi2 ; : : : ; si1 ; si1C1; : : : ; sm�1; sm; t2; : : : ; tn/;
where we used in the last step that t1D sm � � �si1 � � �sm, and hence t

si1C1���sm�1sm

1 D si1 .
We proceed as before to obtain

.s1; : : : ;csin ; : : : ;csi2 ; : : : ; si1 ; si1C1; : : : ; sm�1; sm; t2; : : : ; tn/
� .s1; : : : ;csin ; : : : ;csi2 ; t si2C1���si1 ���sm

2 ; si2C1; : : : ; si1 ; si1C1; : : : ; sm�1; sm; t3; : : : ; tn/

D .s1; : : : ;csin ; : : : ;csi3 ; : : : ; si2 ; si2C1; : : : ; si1 ; si1C1; : : : ; sm�1; sm; t3; : : : ; tn/:
Proceeding in this way yields the assumption.

Corollary 5.3. Let .W; S/ be a Coxeter system of finite rank and w D s1 : : : sm a
reduced factorization of w 2 W . Every reduced reflection factorization of w is a
suffix of an element of Bm.s1; : : : ; sm/. Moreover, given two reduced reflection fac-
torizations .r1; : : : ; rn/; .t1; : : : ; tn/ of w there exist q1; : : : ; qm�n; p1; : : : ; pm�n 2 S
with

q1 � � � qm�n D e D p1 � � �pm�n

such that .q1; : : : ; qm�n; t1; : : : ; tn/ and .p1; : : : ; pm�n; r1; : : : ; rn/ lie in the same
Hurwitz orbit.

6. Quasi-Coxeter elements in Weyl groups

In this section we investigate uniformly the so-called quasi-Coxeter elements, which
are a generalization of Coxeter elements. We deduce a case-free proof of [18, Theo-
rem 6.1] for Weyl groups which determines the Hurwitz orbits of arbitrary reflection
factorizations of quasi-Coxeter elements. It is already proven for Coxeter elements in
arbitrary Coxeter groups of finite rank in [25]. Most results of this section hold for
quasi-Coxeter elements in arbitrary Coxeter systems of finite rank. We start with the
definition of a (parabolic) quasi-Coxeter element.
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Definition 6.1. Let .W; S/ be a Coxeter system of rank n 2 N. An element c 2 W is
called Coxeter element if it is conjugated to an element that admits a factorization c D
si1 � � � sik in pairwise different simple reflections with k D n, and it is called parabolic
Coxeter element if k � n. An element w 2 W is called quasi-Coxeter element if
it admits a reduced reflection factorization with n factors which generate W and it is
called parabolic quasi-Coxeter element if it is a quasi-Coxeter element for a parabolic
subgroup. It is called a proper parabolic quasi-Coxeter element if it is a quasi-Coxeter
element for a proper parabolic subgroup.

Example 6.2. Every conjugate of a (parabolic) quasi-Coxeter element is a (parabolic)
quasi-Coxeter element. Parabolic Coxeter elements are by definition parabolic quasi-
Coxeter elements, but there exist quasi-Coxeter elements which are not conjugated to
Coxeter elements, for instance see [2, Example 2.4].

Remark 6.3. Let Wˆ be an irreducible simply laced Weyl group, that is, ˆ is of
type An, Dn (n 2 N) or E6; E7; E8. Quasi-Coxeter elements were first defined by
Voigt [23] in a slightly different way. He defines an element w D s˛1

� � � s˛n
2 W to

be quasi-Coxeter if the Z�span of the roots ˛1; : : : ; ˛n equals the root lattice of ˆ.
By [2, Lemma 5.12] the two notions of quasi-Coxeter elements coincide.

The next results are the first approach towards a uniform proof of the transitive
Hurwitz action on the set of reduced reflection factorizations of quasi-Coxeter ele-
ments in Weyl groups and affine Coxeter groups. Nevertheless, if possible, we state
and prove these results in a more general setting.

Lemma 6.4. Let .W; S/ be a Coxeter system of rank n 2 N and t1; : : : ; tn 2 T such
that ht1; : : : ; tni D W . Then S and ¹t1; : : : ; tnº share the same multiset of conjugacy
classes.

Proof. If n D 1 the assumption is obviously satisfied. Thus assume that n � 2. In the
following we will use the algorithm described in Lemma 3.1. Set T0 D ¹t1; : : : ; tnº.
In the first step of the algorithm we exchange two different reflections ti ; tj 2 T0
for i < j by �.hti ; tj i/ to get T1. By Lemma 3.7, the multisets of the conjugacy
classes of ¹ti ; tj º and �.hti ; tj i/ coincide. Thus the multisets of conjugacy classes
of T0 and T1 coincide. Inductively we get that the multisets of conjugacy classes of
all the Ti for i � 0 are the same. Since hT0i D W the algorithm terminates in S after
finitely many steps, i.e., there exists a m 2 Z�0 such that Tm D S . The latter implies
the assumption.

The following theorem can be deduced from Proposition 3.4 by using the strong
exchange condition for Coxeter groups.
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Theorem 6.5 ([1, Theorem 1.4]). Let .W; S/ be a Coxeter system of finite rank, P a
parabolic subgroup and w D t1 : : : tm 2 P a reduced reflection factorization. Then
t1; : : : ; tm 2 P .

As a consequence of the previous theorem we get the following result.

Lemma 6.6 ([13, Proposition 2.5]). Let .W; S/ be a Coxeter system of finite rank,
.t1; : : : ; tm/ a reduced reflection factorization of w 2 W . Then the parabolic clo-
sure P.w/ of w coincides with the parabolic closure P.t1; : : : ; tm/ of t1; : : : ; tm.

Another common property of Coxeter elements and quasi-Coxeter elements is the
following connection between the order of a quasi-Coxeter element and the order of
the ambient Coxeter group. Since Coxeter elements are quasi-Coxeter elements the
following result is a new proof of the classical fact proven in [14].

Corollary 6.7. Let .W;S/ be an irreducible Coxeter system of finite rank and w 2W
a quasi-Coxeter element. The order of w is finite if and only if W is finite.

Proof. By Lemma 6.6 it holds that P.w/ D W . Elements with the previous property
are called essential. Assume thatW is infinite. By [21, Corollary 2.5], we have thatwp

is essential for all p 2 N. In particular, wp ¤ e for all p 2 N.

Definition 6.8. Let .W; S/ be a Coxeter system with set of reflections T . We define
a partial order �T on W , called absolute order, by setting for u; v 2 W :

u �T v ” `T .u/C `T .u
�1v/ D `T .v/:

Equivalently, we have u �T v if and only if there exists .t1; : : : ; tm/ 2 RedT .v/
and some k � m such that .t1; : : : ; tk/ 2 RedT .u/.

Theorem 1.3 provides a characterization of maximal parabolic quasi-Coxeter ele-
ments in Coxeter systems of finite rank n, that is, parabolic quasi-Coxeter elements
of reflection length n � 1. We state its proof.

Proof of Theorem 1.3. For the only if direction note that by assumption there exists a
reduced reflection factorization .r1; : : : ; rn�1/2RedT .x/ such thatP WDhr1; : : : ; rn�1i
is parabolic. In particular, P.x/�P ¨W , where the latter inclusion is proper sinceW
cannot be generated by less than n reflections (see [2, Proposition 2.1]). Furthermore,
sinceP is parabolic, there exists rn 2 T with hP;rni DW . If we setwD r1 � � �rn�1rn,
we have that w is a quasi-Coxeter element and x �T w as desired.

We show the if direction. Let .t1; : : : ; tn/ be a reduced reflection factorization
of w such that ht1; : : : ; tni D W , w D tx with `T .w/ D `T .x/C 1. Without loss of
generality, we can assume that P.x/ is a standard parabolic subgroup of W . Assume
that each factorization in the orbit

BnC1.t; t1; : : : ; tn/ � FacT;nC1.x/ WD ¹.r1; : : : ; rnC1/ 2 T nC1 j r1 � � � rnC1 D xº
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contains pairwise different factors. By Corollary 3.5 there exists a reflection factor-
ization .t 0; t 01; : : : ; t

0
n/ 2 BnC1.t; t1; : : : ; tn/ that corresponds to the following directed

path in the Bruhat graph

x  � xt 0n  � xt
0
nt
0
n�1  � � � �  � xt

0
nt
0
n�1 � � � t

0
1 D t

0
 � e:

Since P.x/ is a proper standard parabolic subgroup, the strong exchange condition
yieldsW D ht; t1; : : : ; tni D ht 0; t 01; : : : ; t

0
ni �P.x/, a contradiction. Thus there exists a

reflection factorization .t 01; : : : ; t
0
n�1; t

0; t 0/ 2BnC1.t; t1; : : : ; tn/ with .t 01; : : : ; t
0
n�1/ 2

RedT .x/. In particular, we have ht 01; : : : ; t
0
n�1; t

0i D W and thus

�.ht 01; : : : ; t
0
n�1; t

0
i/ D �.W / D S:

We use the algorithm described in Lemma 3.1. We start with the set

T0 WD �.ht
0
1; : : : ; t

0
n�1i/ [ ¹t

0
º:

Since �.ht 01; : : : ; t
0
n�1; t

0i/ D S it terminates in Tk D �.W / D S for k � 0. In each
step i 2 Z�0 it exchanges ¹r1; r2º � Ti (r1 ¤ r2) by �.hr1; r2i/. Since t 0 … P.x/ and
h�.ht 01; : : : ; t

0
n�1i/i D ht

0
1; : : : ; t

0
n�1i � P.x/, Proposition 3.8 yields that

�.ht 01; : : : ; t
0
n�1i/ � Ti

for all i � 0. In particular,

S D Tk D �.ht
0
1; : : : ; t

0
n�1i/ [ ¹sº

with s 2 T and k � 0. Thus we get that

�.ht 01; : : : ; t
0
n�1i/ � ht

0
1; : : : ; t

0
n�1i \ P.x/ \ S

and j�.ht 01; : : : ; t
0
n�1i/j D n� 1. Since P.x/ is a proper standard parabolic subgroup,

we have
P.x/ \ S D �.ht 01; : : : ; t

0
n�1i/;

and therefore P.x/ D ht 01; : : : ; t
0
n�1i.

Question 6.9. Is Theorem 1.3 still true if only considering (parabolic) Coxeter ele-
ments? More precisely, is the following statement true:

Let .W; S/ be a Coxeter system of rank n 2 N and x 2 W with `T .x/ D n � 1.
Then the element x is a parabolic Coxeter element if and only if there exists a Coxeter
element c 2 W with x �T c and P.x/ ¤ W .

Remark 6.10. In the general case, the assumption P.x/ ¤ W in Theorem 1.3 is
necessary as shown for instance in [15, Example 5.7] while for finite Coxeter groups
it is redundant (see Corollary 6.16 below).
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Lemma 6.11 ([7, Theorem 12.3.4 (i)]). Let .W;S/ be a Coxeter system of finite rank.
Then any finite subgroup of W is contained in a finite parabolic subgroup.

Remark 6.12. Let .W; S/ be an affine Coxeter system, c 2 W a Coxeter element
and x �T c. By Lemma 6.11, the element x is elliptic if and only if P.x/ is a
proper parabolic subgroup. In this case, by [20, Theorem 3.22 (i)], the element x is
a parabolic Coxeter element and is therefore in particular a parabolic quasi-Coxeter
element. The latter is also covered by Corollary 1.5.

The next lemma shows that a reduced reflection factorization that generates an
affine Coxeter group can be transformed by using the Hurwitz action such that the
prerequisite of Theorem 1.3 is satisfied.

Lemma 6.13. Let .W; S/ be a finite or affine Coxeter system of rank n 2 N and
w D t1 � � � tn 2 W a reflection factorization of a quasi-Coxeter element such that
ht1; : : : ; tni D W . Then there exists .r1; : : : ; rn/ 2 Bn.t1; : : : ; tn/ such that

P.r1 � � � rn�1/ ¤ W:

Proof. If .W; S/ is finite, Lemmata 4.1 and 6.6 imply that P.t1 � � � tn�1/ ¤ W . Thus
assume that .W; S/ is affine and let pWW �! Wˆ the canonical projection to the
corresponding finite Weyl group Wˆ (see (1)). Since there exists S 0 � S such that
.Wˆ; p.S

0// is a finite Coxeter system of rank n � 1 with set of reflections p.T /,
the factorization .p.t1/; : : : ; p.tn// cannot be a reduced reflection factorization by
Carter’s Lemma 2.1. By Theorem 1.1 there exists a factorization

.r1; : : : ; rn/ 2 Bn.t1; : : : ; tn/

such that p.rn�1/ D p.rn/. Since

Wˆ D p.ht1; : : : ; tni/ D hp.t1/; : : : ; p.tn/i

we get that Wˆ D hp.r1/; : : : ; p.rn�1/i, and therefore .p.r1/; : : : ; p.rn�1// is a
reduced reflection factorization. Thus Carter’s Lemma 2.1 implies that the corre-
sponding roots of ˆ are linearly independent and by [17, Lemma 1.26] the element
r1 � � � rn�1 is elliptic. Thus it has finite order, and therefore P.r1 � � � rn�1/ is finite by
Lemma 6.11. In particular, we get that P.r1 � � � rn�1/ ¤ W .

Remark 6.14. Note that under the assumptions of Lemma 6.13, the reflection factor-
ization t1 � � � tn is indeed reduced by [24, Proposition 5.1].

We state two direct consequences of Theorem 1.3 for finite Coxeter groups. Both
of which already appear in [2]. Again we provide uniform proofs.
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Corollary 6.15. Let .W; S/ be a finite Coxeter system of rank n and t1; : : : ; tn 2 T
with ht1; : : : ; tni DW . Then ht1; : : : ; tn�1i is a parabolic subgroup ofW of rank n� 1.

Proof. By Lemma 4.1 we have P.t1; : : : ; tn�1/ ¤ W , hence t1 � � � tn�1 is a parabolic
quasi-Coxeter element.

Theorem 1.3 is a generalization of [2, Corollary 6.11], which characterizes para-
bolic quasi-Coxeter elements in finite Coxeter groups. We show that this characteri-
zation is a direct consequence of Theorem 1.3.

Corollary 6.16. Let .W; S/ be a finite Coxeter system with set of reflections T and
let x 2 W . Then x is a parabolic quasi-Coxeter element if and only if there exists a
quasi-Coxeter element w 2 W such that x �T w.

Proof. The only if direction is clear by the definition of a parabolic quasi-Coxeter
element. The if direction follows inductively by Corollary 6.15.

The next result is a generalization of [2, Corollary 6.10].

Corollary 6.17. Let .W; S/ be a Coxeter system of rank n and W 0 a reflection sub-
group of W of rank n� 1. Then W 0 is a parabolic subgroup if and only if there exists
t 2 T such that hW 0; ti D W and P.W 0/ ¤ W . In particular, if W is finite, then W 0

is a parabolic subgroup if and only if there exists t 2 T such that hW 0; ti D W .

Proof. The first part of the statement follows obviously from Theorem 1.3. The second
part is a consequence of Corollary 6.15 and Lemma 4.1.

In case of a Weyl group, the proof of the following is essentially the proof of [3,
Theorem 1.5]. We add a different argument to show that it also holds for affine Coxeter
groups.

Proposition 6.18. Let W be a Weyl group or an affine Coxeter group with simple
system S of rank n, P a proper parabolic subgroup and t 2 T such that hP; ti D W .
Then there exist r1; : : : ; rn�1 2 P \ T such that .W; ¹r1; : : : ; rn�1; tº/ is a Coxeter
system with set of reflections T .

Proof. First we will show that beside the trivial case n D 1 we have that the rank
of P is n � 1. Thus let n > 1 and P be a proper parabolic subgroup. Assume that the
rank of P is at most n � 2. Then the algorithm described in Lemma 3.1 with starting
set T0 D �.P / [ ¹tº and terminal set Tk D S for k � 0 implies the contradictive
statement

jS j D jTkj � j�.P / [ ¹tºj < n:

Hence, we can assume that the rank of P is n� 1. Moreover, after a suitable conjuga-
tion we assume thatP is a standard parabolic subgroup ofW . LetW ,!GL.V / be the
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geometric representation of the Coxeter system .W;S/,ˆ the corresponding root sys-
tem with associated symmetric bilinear form .�;�/,�P D ¹˛1; : : : ; ˛n�1º � ˆC the
canonical simple system forP in the sense of [12, Section 4.1] and sˇ D t for ˇ 2ˆC.
From now on we distinguish between Weyl groups and affine Coxeter groups.

Case 1: W is a Weyl group. Consider the cone

E D ¹x 2 V j .x; ˛/ > 0 for all ˛ 2 �P [ ¹ˇºº:

Assume that . j̨ ; ˇ/ > 0 for some 1 � j � n � 1. Then

. j̨ ; s j̨
.ˇ// D .s

j̨
. j̨ /; ˇ/ D �. j̨ ; ˇ/ < 0:

Then the next calculation shows that the cone

E1 D ¹x 2 V j .x; ˛/ > 0 for all ˛ 2 �P [ ¹s j̨
.ˇ/ºº

is contained in E. For x 2 E1, we have

.x; ˇ/ D .x; s
j̨
.s

j̨
.ˇ/// D .x; s

j̨
.ˇ// �

2.s
j̨
.ˇ/; j̨ /

. j̨ ; j̨ /
> 0:

Moreover, this containment is proper. By Lemma 3.7, we get directly that

T D
[
v2W

v¹s˛1
; : : : ; s˛n�1

; sˇ ºv
�1;

thus
spanZ.˛1; : : : ; ˛n�1; ˇ/ D spanZ.ˆ/;

because ˆ is crystallographic. Hence ¹˛1; : : : ; ˛n�1; ˇº is linear independent, and
thus

M WD ¹x 2 V j .x; ˛i / > 0 for 1 � i � n � 1º \Hˇ ¤ ;;

where Hˇ is the hyperplane perpendicular to ˇ. For y 2M , we have that

.y; s
j̨
.ˇ// D .s

j̨
.y/; ˇ/ D .y; ˇ/ �

2.y; j̨ /. j̨ ; ˇ/

. j̨ ; j̨ /
< 0:

Thus y is in the closure of E, but not in the closure of E1, which implies E1 ¨ E.
Recursively we get a strictly descending sequence of cones

E � E1 � E2 � � � �

Since P is finite, the number of cones constructed above is also finite, and therefore
this process will stop after finitely many steps. Let 
 D w.ˇ/ with w 2 P be the
root that is obtained in the previous way. Then the pairwise dihedral angles between



P. Wegener and S. Yahiatene 150

the roots of �P [ ¹
º are obtuse. Hence [12, Lemma 3 (a)] yields that �P [ 
 is a
simple system for ˆ, and thus the pair .W; ¹r1; : : : ; rn�1; tº/ is a Coxeter system with
ri D sw�1.˛i /

for 1 � i � n � 1. Moreover, Lemma 3.7 implies directly that

T D
[
w2W

w¹r1; : : : ; rn�1; tºw
�1:

Case 2: W is an affine Coxeter group. Hence we can assume that n > 1. Furthermore,
we can assume that .W;S/ is irreducible. Note that P is therefore finite. We have that

V D spanR.ˆ/ D spanR.�P /˚ spanR.a/;

where a is a generator of the radical of .� j�/. Write ˇDˇC�awith ˇ2spanR.�P /

and � 2 R. In the following, we will show that there exists an element w 2 P D
hs˛1

; : : : ; s˛n�1
i such that

w.ˇ/ 2 D� WD ¹v 2 V j .v j ˛i / � 0 for 1 � i � n � 1º

D ¹v 2 V j .v j �˛i / � 0 for 1 � i � n � 1º:

As �P is a simple system for P , we have that ��P D ¹�˛1; : : : ; �˛n�1º is a
simple system for P as well. The set D� is a fundamental domain for P by [16,
Theorem 1.12]. In particular, there exists w 2 P such that w.ˇ/ 2 D� (see [16,
Lemma 1.12]). The latter is equivalent to

.w.ˇ/; ˛i / D .w.ˇ/; ˛i / � 0 for 1 � i � n � 1:

By [12, Lemma 3 (a)], we obtain that ¹˛1; : : : ; ˛n�1;w.ˇ/º is a simple system forW .
If we set ri WD w�1.˛i / 2 P for 1 � i � n � 1, we see that ¹r1; : : : ; rn�1; tº is a
simple system as in the assertion.

Although Proposition 6.18 also holds for all dihedral groups, it fails to be true for
all finite Coxeter groups.

Example 6.19. Let .W; ¹s1; s2; s3º/ be a Coxeter system of type H3 such that the
order of s1s2 is five and the order of s2s3 is three. Set P D hs1; s3i and t D s2s1s2.
An easy calculation shows that hP; tiDW . ButP \T D¹s1; s3º and the set ¹s1; s3; tº
is not a simple system for W .

Corollary 6.20. Let W be a Weyl group or an affine Coxeter group with simple sys-
tem S of rank n and P a parabolic subgroup of rank n � 1. All the reflections t 2 T
such that hP; ti D W form a single orbit under conjugation by P .

Proof. In the following we adopt the notation that is used in the proof of Proposi-
tion 6.18, namely P is a standard parabolic subgroup with canonical simple system

�P D ¹˛1; : : : ; ˛n�1º � ˆ
C
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in the sense of [12, Section 4.1], sˇ D t for ˇ 2ˆC andw 2P such that�D�P[¹
º
with 
 Dw.ˇ/ is a simple system ofˆ. Moreover, let�P [ ¹˛nº � ˆC be the canon-
ical simple system of W . By [16, Proposition 5.7], we have that 
 D w.ˇ/ 2 �ˆC if
and only if `S .wsˇ / < `S .w/. The latter implies due to the strong exchange condi-
tion [16, Theorem 5.8] that t D sˇ 2 P . But since P is a proper parabolic subgroup
with hP; ti D W we arrive at a contradiction. Hence, 
 D w.ˇ/ 2 ˆC, and thus
� � ˆC. By [12, Lemma 3 (b)], � is the canonical simple system, i.e., we have

� D �P [ ¹˛nº:

In particular, we found an element w 2 P with wtw�1 D s˛n
.

Now we prove Theorem 1.4 which investigates uniformly the Hurwitz action on
the set of reduced reflection factorizations of parabolic quasi-Coxeter elements in
Weyl groups and affine Coxeter groups. It is already proven case-based in [2] for
finite Coxeter groups as well as partially for simply laced Weyl groups in [23] and
also case-based for affine Coxeter groups in [24].

Proof of Theorem 1.4. We proceed by induction on the rank n. Letw 2W be a quasi-
Coxeter element and .t1; : : : ; tn/; .t 01; : : : ; t

0
n/ 2 RedT .w/ such that ht1; : : : ; tni D W .

We need to show that .t1; : : : ; tn/ and .t 01; : : : ; t
0
n/ lie in the same Hurwitz orbit. If

n D 1 the statement is trivially satisfied. Thus assume that n > 1. By Lemma 6.13,
we can assume that P WD P.t1 � � � tn�1/ ¤ W , and thus P is a parabolic subgroup of
rank n � 1. Hence, by Proposition 6.18, there exist s1; : : : ; sn�1 2 P such that

xS WD ¹s1; : : : ; sn�1; tnº

is a simple system forW . Let x�1 D t1 � � � tn�1 and consider the following path in the
Bruhat graph in terms of the simple system xS

x xt 01 � � � xt 01 � � � t
0
n D tn:

Note that each factorization in Bn.t
0
1; : : : ; t

0
n/ consists of pairwise different factors,

because .t 01; : : : ; t
0
n/ is a reduced reflection factorization. Hence, by Proposition 3.4,

there exists � 2Bn such that the factorization .r1; : : : ; rn/ WD �.t 01; : : : ; t
0
n/ is attached

to the following path in the Bruhat graph

x  � xr1  � � � �  � xr1 � � � ri �! � � � �! xr1 � � � rn D tn

for 0 � i � n. If i D n, we have the decreasing path

x  � xr1  � � � �  � xr1 � � � rn D tn:
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Since x 2 P and P is a proper standard parabolic subgroup, the strong exchange
condition yields that tn D xr1 � � � rn 2 P , and thus we arrive at the contradiction

P D hP; tni D ht1; : : : ; tni D W:

Therefore, we have i < n, and hence

1 D ` xS .tn/ > ` xS .xr1 � � � rn�1/:

The latter implies directly xr1 � � � rn�1 D e, which is equivalent to rn D tn. Therefore,
.t 01; : : : ; t

0
n/ and .r1; : : : ; rn�1; tn/ lie in the same Hurwitz orbit.

Now it suffices to show that .r1; : : : ; rn�1/ and .t1; : : : ; tn�1/ lie in the same
Hurwitz orbit. By Theorem 6.5, we have that

r1; : : : ; rn�1 2 ht1; : : : ; tn�1i D P;

that is, .r1; : : : ; rn�1/ is a reduced reflection factorization of t1 � � � tn�1 in P . Hence,
t1 � � � tn�1 D r1 � � � rn�1 is a parabolic quasi-Coxeter element by Theorem 1.3. Since P
is a (not necessary irreducible) Weyl group of rank n � 1, the induction hypothesis
yields that .r1; : : : ; rn�1/ and .t1; : : : ; tn�1/ lie in the same Hurwitz orbit. Altogether,
.t 01; : : : ; t

0
n/ and .t1; : : : ; tn/ lie in the same Hurwitz orbit.

Now let w be a parabolic quasi-Coxeter element such that P.w/ ¤ W . Then by
Theorem 6.5, we have that

RedT .w/ D RedT\P.w/.w/:

Thus we can restrict the investigation to the Weyl group P.w/, and hence w is a
quasi-Coxeter element of P.w/. By restricting to P.w/ we are in the situation that
has already been investigated previously.

For finite Coxeter groups we also have the following converse statement.

Proposition 6.21 ([2, Proposition 4.3]). Let .W; S/ be a finite Coxeter system and
w 2 W such that the Hurwitz action is transitive on its set of reduced reflection fac-
torizations. Then w is a parabolic quasi-Coxeter element.

Corollary 6.22. Let W be a Weyl group or an affine Coxeter group and w 2 W a
quasi-Coxeter element. The factors of any reduced reflection factorization of w gen-
erate the group W.

Note that Proposition 6.21 is proven uniformly in [2]. Therefore the combination
of this proposition and Theorem 1.4 completes uniformly the picture for Weyl groups,
that is, we obtain a uniform proof for the following result.
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Theorem 6.23 ([2, Theorem 1.1]). Let W be a Weyl group and w 2 W . Then the
Hurwitz action is transitive on the set of reduced reflection factorizations of w if and
only if w is a parabolic quasi-Coxeter element.

Remark 6.24. The example [15, Example 5.7] shows that in affine Coxeter groups
there exist elements with just one Hurwitz orbit which are not parabolic quasi-Coxeter
elements. Therefore it would be desirable to determine all those elements of affine
Weyl groups with just one Hurwitz orbit.

Based on Theorems 1.1 and 1.4 we uniformly obtain conditions on reflection fac-
torizations in Weyl groups to determine whether two reflection factorizations of an
element lie in the same Hurwitz orbit.

Theorem 6.25 ([18, Theorem 6.1]). Let W be a Weyl group and w 2 W a quasi-
Coxeter element. Two reflection factorizations of w lie in the same Hurwitz orbit if
and only if they share the same multiset of conjugacy classes.

Using the results of [2] it remains valid for all finite Coxeter groups.

Corollary 6.26. LetW be a finite Coxeter group with simple system S . If the Coxeter
graph of .W;S/ is connected and has a spanning tree with odd labels on all its edges,
then two reflection factorizations of the same length of a quasi-Coxeter element in W
lie in the same Hurwitz orbit.

7. Characterization of parabolic quasi-Coxeter elements in affine
Coxeter groups

As in Corollary 6.16 for finite Coxeter groups, we aim to characterize parabolic quasi-
Coxeter elements in affine Coxeter groups as well. Before we give another direct
consequence of Theorem 1.3 for affine Coxeter groups.

Corollary 7.1. Let .W; S/ be an irreducible affine Coxeter system of rank n and
t1; : : : ; tn 2 T with ht1; : : : ; tni D W and P.t1 � � � tn�1/ ¤ W . Then ht1; : : : ; tn�1i is
a finite parabolic subgroup of rank n � 1.

Proof. By Theorem 1.3, we have that t1 � � � tn�1 is a proper parabolic quasi-Coxeter
element, that is, ht1; : : : ; tn�1i is a proper parabolic subgroup. Since all proper parabol-
ic subgroups of an irreducible affine Coxeter system are finite, the claim follows.

Proposition 7.2. Let .W; S/ be an irreducible affine Coxeter system of rank n � 3
with set of reflections T . Let t1; : : : ; tn 2 T such thatW D ht1; : : : ; tni. If ht1; : : : ; tn�ki
is finite for some k with 2 � k < n, then there exists t 2 ¹tn�kC1; : : : ; tnº such that
ht1; : : : ; tn�k; ti is finite as well.
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Proof. Write the reflection ti for 1� i � n as ti D s˛i ;`i
with ˛i 2ˆ and `i 2Z. First

observe that, since ht1; : : : ; tn�ki is finite, the set of roots ¹˛1; : : : ; ˛n�kº is linearly
independent. For n D 3, this is clear. To see this for n > 3 let us assume, to the
contrary, that ¹˛1; : : : ; ˛n�kº is not linearly independent. Hence, Carter’s Lemma 2.1
implies that s˛1

� � �s˛n�k
is not reduced. By Theorem 1.1 there exists a braid � 2Bn�k

such that
�.s˛1

; : : : ; s˛n�k
/ D .sˇ1

; : : : ; sˇn�k�2
; sˇ ; sˇ /:

We can apply this braid to the factorization in the affine group as well. We obtain

�.t1; : : : ; tn�k/ D .?; : : : ; ?; sˇ;k1
; sˇ;k2

/

for integers k1; k2 2 Z. If k1 D k2, then the factorization t1 � � � tn�k is not reduced.
If k1 ¤ k2, then the infinite rank 2 reflection subgroup hsˇ;k1

; sˇ;k2
i is contained in

the finite subgroup ht1; : : : ; tn�ki. In both cases we arrive at a contradiction. Hence,
we have shown that ¹˛1; : : : ; ˛n�kº is linearly independent. We distinguish two cases.

Case 1: There exists j2¹n� kC 1; : : : ;nº such that the set of roots ¹˛1; : : : ;˛n�k; j̨ º

is linearly independent. By [5, Proposition 5.1] the product x WD t1 � � � tn�ktj is there-
fore elliptic, that is, x is of finite order. By Lemma 6.11 the element x is contained in
a finite parabolic subgroup. In particular, the reflections t1; : : : ; tn�k; tj are contained
in this finite parabolic subgroup (see [4, Section 1.4]). We conclude that

hs˛1;`1
; : : : ; s˛n�k ;`n�k

; s
j̨ ; j̀
i D ht1; : : : ; tn�k; tj i

is finite.

Case 2: For all j 2 ¹n � k C 1; : : : ; nº the set of roots ¹˛1; : : : ; ˛n�k; j̨ º is not
linearly independent. But then

dimR spanR.˛1; : : : ; ˛n/ D n � k � n � 2I

a contradiction, because hs˛1
; : : : ; s˛n

i is a finite Coxeter group of rank n � 1 (since
ht1; : : : ; tni is irreducible and affine of rank n). Hence, this case does not occur.

Corollary 7.3. Let .W;S/ be an irreducible affine Coxeter system of rank n � 3 with
set of reflections T . Let t1; : : : ; tn 2 T such that W D ht1; : : : ; tni. If ht1; : : : ; tn�ki is
finite for some k with 2 � k < n, then there exist reflections rn�kC1; : : : ; rn with

.tn�kC1; : : : ; tn/ � .rn�kC1; : : : ; rn/

such that ht1; : : : ; tn�k; rn�kC1; : : : ; rn�1i is finite.



Reflection factorizations and quasi-Coxeter elements 155

Proof. By Proposition 7.2, there exists i 2 ¹1; : : : ; kº such that ht1; : : : ; tn�k; tn�kCi i
is finite. Applying the Hurwitz action, we obtain

.t1; : : : ; tn/ � .t1; : : : ; tn�k; tn�kCi ; tn�kCi tn�kC1tn�kCi ; : : : ;

tn�kCi tn�kCi�1tn�kCi ; tn�kCiC1; : : : ; tn/:

Note that

W D ht1; : : : ; tn�k; tn�kCi ; tn�kCi tn�kC1tn�kCi ; : : : ;

tn�kCi tn�kCi�1tn�kCi ; tn�kCiC1; : : : ; tni:

Since ht1; : : : ; tn�k; tn�kCi i is finite and if k � 1 � 2, we can apply Proposition 7.2 as
before. Proceeding in this manner, we eventually obtain after k � 1 steps the claimed
finite reflection subgroup.

We are now able to prove Corollary 1.5.

Proof of Corollary 1.5. We only have to prove the if direction. If `T .x/D n� 1, this
is precisely Theorem 1.3. Let us therefore assume that `T .x/ D n � k for some k
with 2 � k < n. Let w be a quasi-Coxeter element and .t1; : : : ; tn/ 2 RedT .w/ such
that x D t1 � � � tn�k . By [24, Theorem 1.1], we have W D ht1; : : : ; tni. Hence, we can
apply Corollary 7.3 to find reflections rn�kC1; : : : ; rn with

.t1; : : : ; tn�k; tn�kC1; : : : ; tn/ � .t1; : : : ; tn�k; rn�kC1; : : : ; rn/

such thatP WD ht1; : : : ; tn�k; rn�kC1; : : : ; rn�1i is finite. By Lemma 6.11 the parabolic
closure

P.t1; : : : ; tn�k; rn�kC1; : : : ; rn�1/

is finite as well. In particular, we have P.t1; : : : ; tn�k; rn�kC1; : : : ; rn�1/¤W . There-
fore P is parabolic by Corollary 7.1. Since

x D t1 � � � tn�k �T t1 � � � tn�krn�kC1 � � � rn�1;

the element x is a parabolic quasi-Coxeter element in P by Corollary 6.16. As P is
parabolic in W , the element x is a parabolic quasi-Coxeter element in W as well.

The remaining assertion is now a direct consequence of Corollary 6.7.

Remark 7.4. We make use of [24, Theorem 1.1] in the proof of Corollary 1.5. The
proof given in [24] includes results of [2] and [18], both of which are proved by
a case-based analysis. But for both results, namely Theorem 1.1 and Theorem 1.4,
we provide uniform proofs in this paper. In particular, this provides a uniform proof
of [24, Theorem 1.1], making all proofs in this paper uniform.

Acknowledgments. The authors thank an anonymous referee for helpful comments
and corrections.
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