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A uniform characterisation of the varieties of the second row of
the Freudenthal–Tits magic square over arbitrary fields

Anneleen De Schepper, Jeroen Schillewaert, and Hendrik Van Maldeghem

Abstract. We characterise the projective varieties related to the second row of the Freudenthal–
Tits magic square, for both the split and the non-split form, using a common, simple and short
geometric axiom system. A special case of our result simultaneously captures the analogues
over arbitrary fields of the Severi varieties (comprising the 27-dimensional E6 module and some
of its subvarieties), as well as the Veronese representations of projective planes over composition
division algebras (most notably the Cayley plane). It is the culmination of almost four decades
of work since the original 1984 result by Mazzocca and Melone who characterised the quadric
Veronese variety over a finite field of odd order. The latter result is a finite counterpart to the
characterisation of the complex quadric Veronese surface by Severi from 1901.

1. Introduction

In [21], the second and third author of this paper obtained a classification of the split
varieties corresponding to the second row of the Freudenthal–Tits magic square over
arbitrary fields. The method used starts from an axiomatic geometric approach directly
inspired by common basic properties of these varieties: the existence of an abund-
ance of split quadrics, the smoothness of the varieties and the boundedness of the
dimension (via the tangent space at each point) in terms of the dimension of the afore-
mentioned quadrics (see below for the precise axioms). The lack of any assumption
on the dimension of the whole space implied a slightly longer list in the conclusion;
basically also some specific subvarieties of these split varieties satisfy the axioms.
Over algebraically closed fields of characteristic 0 these split varieties are known as
Severi varieties, and this classification recovers Zak’s classification [28] of Severi
varieties which was proved using different methods (algebraic geometry). Zak’s result
has its origins in Severi’s 1901 characterisation of the complex quadric surface [22].

On the other side of the spectrum, namely when the Witt index is minimal, in [14]
the same axiomatic setup for quadrics without lines was used to characterise the
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Veronese representations of projective planes over quadratic alternative division algeb-
ras. Now, these Veronese representations and the analogues of the Severi varieties over
arbitrary fields are closely related: generically they correspond to non-split and split,
respectively, forms of the same algebraic groups, namely those of types A2 (only the
split form), A2 � A2, A5 and E6. Whence the need to check whether or not other forms
of those groups give rise to varieties with similar behaviour. “Similar” means in a
global setting encompassing the two separate ones.

An obvious way to achieve this global setting is to omit the assumption that the
quadrics are split, or non-ruled, respectively. Intuitively, possible additional examples
are expected to satisfy the property that all quadrics are isomorphic. However, we
here consider the most general situation in which the quadrics not only can be non-
isomorphic, they also need not have the same Witt index (but inherent to the axioms
is the property that all quadrics span a subspace of equal dimension). In this most
general setup, we show that only the aforementioned varieties occur. This yields a
very neat and complete geometric characterisation of the varieties of the second row
of the Freudenthal–Tits magic square. It is also an example of how simple geometric
axioms give rise to a class of more advanced algebraic objects with a large symmetry
group, notably containing (isotropic forms of) algebraic groups of exceptional type.

There are two reasons why we are now able to prove the current Main Theorem
although it was already stated as a conjecture in [21]. The first one is that an approach
to include degenerate quadrics in the picture in [10] generated a new technique, which
seems to work particularly well in our setting. Roughly, it is demonstrated in Lem-
mas 5.1 and 5.2. The second reason is that we now have at our disposal a classification
of parapolar spaces which are so-called 0-lacunary [8, 9], see Definition 4.6. We use
that result in a crucial way.

In Section 3 we illustrate the power of combinatorial methods in algebra by prov-
iding a geometric explanation for the well-known fact that the stabiliser of D5;5.K/ or
E6;1.K/ in P15.K/ or P26.K/, respectively, acts with two or three orbits, respectively,
on the points (and likewise the hyperplanes) of the projective space. This extends work
of Cooperstein and Shult [5]. Although not logically needed for the rest of our paper
these results are highly related and interesting in their own right.

Below we outline the axiomatic setup and we discuss the Main Theorem in some
greater detail.

1.1. Axiomatic setup

Projective quadrics and ovoids. For a (commutative) field K and a non-zero car-
dinal number n, we denote by Pn.K/ the n-dimensional projective space over K. The
subspace generated by a family F of subsets of points is denoted by hS j S 2F i. A
non-degenerate quadric Q in Pn.K/, n finite, is the null set of an irreducible quad-
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ratic homogeneous polynomial in the (homogeneous) coordinates of points of Pn.K/.
The projective index of Q is the (common) dimension of the maximal subspaces of
Pn.K/ entirely contained in Q (in the literature, one finds more commonly the Witt
index, which is the projective index plus one; we prefer to work in a projective set-
ting and hence express all dimensions projectively instead of in the underlying vector
space). A tangent line to Q (at a point x 2 Q) is a line which has either only x or
all its points in Q. The union of the set of tangent lines to Q at one of its points x is
a hyperplane of Pn.K/, denoted by Tx.Q/. An ovoid O of Pn.K/ is a set of points
which behaves like a quadric of projective index 0: each line of Pn.K/ intersects O
in at most two points, and the union of the set of tangent lines (defined as above) at
each point is a hyperplane of Pn.K/.

Axiomatic Veronese varieties. Let .X; „/ be a pair, where X is a spanning point
set of a projective space PN .K/ over some field K and with N 2 N [ ¹1º, and
where „ is a collection of at least two different .d C 1/-dimensional subspaces of
PN .K/, where 1 � d < 1, such that for each � 2 „, the set X.�/ WD X \ � is a
non-degenerate quadric or ovoid generating �. We denote Tx.X.�// also by Tx.�/. A
subspace of PN .K/ is called singular if it has all its points in X ; the set of singular
lines is denoted by L .

The tangent space at x 2 X to X is the subspace Tx generated by the sets

¹Tx.�/ j x 2 � 2 „º; ¹L j x 2 L 2 L º:

Usually only the former set is used to define Tx , as in view of (MM1) below, the latter
set is automatically contained in what is generated by the former set. The reason that
we use both sets is that our inductive approach leads to structures in which (MM1)
holds in a weaker form (see Section 4).

Definition 1.1. We say that the pair .X;„/ is an axiomatic Veronese variety of type d
(or, briefly, an AVV of type d ) if it satisfies the following axioms:

(MM1) any pair of points x1; x2 2 X lies in at least one element of „;

(MM2) if �1; �2 2 „ are distinct, then �1 \ �2 � X ;

(MM3) for each x 2 X , dimTx � 2d .

The letters MM refer to Mazzocca and Melone, as they introduced these axioms in
1984 ([16]) in their most simplified form, i.e., for quadrics which are finite conics, to
characterise the quadric Veronese variety in P5.K/ for finite fields K. We refer to Sec-
tion 2 for an overview of the evolution of a problem in finite geometry to the ultimate
general setting introduced in the current paper. In that section we also provide explicit
descriptions of some of the examples, and explain the context of the Freudenthal–Tits
magic square.



A. De Schepper, J. Schillewaert, and H. Van Maldeghem 4

1.2. Main result

In [14] it has been shown that AVVs of type d such that all members of„ are ovoids,
exist precisely if d is a power of 2; if char.K/ ¤ 2, then d � 8. In these cases we
call the AVV a Veronese cap, since the examples arise as the image of a project-
ive plane over a quadratic alternative division algebra under the standard Veronese
map. Moreover, it is shown in [21] that AVVs of type d such that all members
of „ are split quadrics, that is, quadrics with projective index bd

2
c, exist precisely

for d D 1; 2; 4; 6; 8, and a complete classification is obtained. These AVVs are called
split.

In the present paper, we show that there are no AVVs of type d other than these.

Main Theorem. An axiomatic Veronese variety (AVV) of type d is either split or
a Veronese cap, i.e., either the quadrics are split (of projective index bd

2
c) or the

quadrics are ovoids.

Using the main results of [14] and [21], we can formulate the Main Theorem more
explicitly. For the definitions and descriptions of the varieties we refer to Section 2.

Theorem 1.2. An axiomatic Veronese variety (AVV) of type d in PN .K/ is project-
ively equivalent to one of the following:

d D 1. The quadric Veronese variety V2.K/, and then N D 5;

d D 2. the Segre variety S1;2.K/ (ND5), S1;3.K/ (ND7) or S2;2.K/ (N D8);

d D 4. the line Grassmannian variety G4;1.K/ (N D 9) or G5;1.K/ (N D 14);

d D 6. the half-spin variety D5;5.K/, and then N D 15;

d D 8. the Cartan variety E6;1.K/, and then N D 26;

d D 2`. the Veronese variety V2.K;A/, for some d -dimensional quadratic alt-
ernative division algebra A over K. Moreover, if the characteristic of the
underlying field is not 2, then d 2 ¹1; 2; 4; 8º. Here, N D 3d C 2.

Note that the case d D 1 is also included in the last case, d D 2`. We repeat it
though, as the quadric Veronese variety is both split and a Veronese cap.

1.3. Structure of the proof

Let .X;„/ be an AVV of type d . For each � 2 „, its index w� is the projective index
of X.�/, if X.�/ is a quadric, and 0 if X.�/ is an ovoid. For each point x 2 X , the set

Wx WD ¹w� j x 2 � 2 „º

is called a local index set of .X;„/; the global index setW is the union of all theseWx .
We will distinguish cases depending on these index sets.
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Our main technique uses an inductive argument to reduce both d and the index set,
based on the local structure of the AVVs. Indeed, we derive conditions under which
the point-residue of .X; „/ at a point x 2 X is an AVV (the main problem being
axiom (MM3)), which then necessarily is of type d � 2 and has index set

¹w � 1 j w 2 Wx; w � 1º:

In the cases where this technique fails, we require a totally different and more invent-
ive approach. More precisely, we proceed as follows.

If W D ¹0º, then .X; „/ is a Veronese cap (as was proved in [14]), so we will
assume that there is a point x 2 X contained in at least one member of „ of index at
least 1. Our first aim is to show that there are no points x 2 X contained in exactly
one member of „ of index at least 1 (cf. Section 6), which guarantees that all point-
residues are sufficiently rich in order to deduce properties. Knowing this, we continue
systematically.

Case 1. Suppose first that there is a point x 2 X with max.Wx/ D 1, and so d � 2.
In this case, a rather general argument using normal rational cubic scrolls excludes
values of d exceeding 3. The case d D 3 can be ruled out by relying on a result of
the second and third author ([20]). The case where d D 2 leads to the existing cases
where all quadrics have index 1 are split, and then the main result of [21] says that
.X;„/ is one of the Segre varieties S1;2.K/, S2;2;.K/ and S1;3.K/ (cf. Section 2).

Case 2. Secondly, suppose that there is a point x 2 X with max.Wx/ D 2, and so
d � 4. As in the previous case, a rather general argument rules out the cases d � 6.
The case where d D 5 does not require much additional effort. The case where d D 4
leads to existing cases, this time its quadrics are all split and of projective index 2.
Again, the main result of [21] says that .X; „/ is a line Grassmannian Gn;1.K/ for
n 2 ¹4; 5º (cf. Section 2).

Case 3. Finally, we may assume that for each point x 2X holds that eitherWx D ¹0º
or max.Wx/ � 3 and the latter option occurs at least once, so d � 6. We consider a
point x 2 X such that w� WD max.W / 2 Wx (note that w� � 3). The corresponding
point-residue is a (possibly weak) AVV, and the induction hypothesis then reveals that
all members of „ through x are split and of the same index w�. From this, we will
deduce that each member of „ is either of index w� and split, or has index 0. Our
final task is to get rid of the index 0 members. When this is accomplished, once again
the main result of [21] implies that .X; „/ is either the half spin variety D5;5.K/

(in which case d D 6 and the quadrics have index 3) or the Cartan variety E6;1.K/
(in which case d D 8 and the quadrics have index 4) (cf. Section 2).

Before embarking on the proof, we give an overview of the involved varieties and
provide more motivation and background of the problem in Section 2. Afterwards, in
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Section 4, we fix notation and show some general properties of AVVs. In Section 5
we gather technical properties of some specific varieties that we will encounter later
on.

2. History, motivation and examples

In 1984, Mazzocca and Melone [16] introduced the axioms (MM1), (MM2) and
(MM3) for d D 1, N D 5 and merely in the finite case, that is, for sets of points
in a finite projective space of dimension 5. Using our present terminology, they show
in [16] that finite AVVs of type 1 in Galois spaces of dimension 5 are quadric Ver-
onese varieties. As noted by Hirschfeld and Thas [11], their proof for the case of
even characteristic contains a flaw and this was corrected in [11]. Cooperstein, Thas
and Van Maldeghem [6] introduced Hermitian Veronese caps over finite fields and,
with the current terminology, classified finite AVVs of type 2 which are Veronese
caps. Then the second and third author classified in [17] all AVVs of type 1, for
the first time including in general the infinite case. The same authors also classified
in [18] all Veronese caps of type 2. Thus far only Veronese caps had been classified.
The first paper dealing with ruled quadrics is [19], where the authors classified all
AVVs of type 2, even including a generalisation using degenerate quadrics. Mean-
while Krauss [13] classified Veronese caps of type 4 over fields admitting exactly two
quadratic residue classes, showcasing the hardness of the problem in general. Using
some ideas of Krauss’ thesis, and some additional ones, Krauss, Schillewaert and
Van Maldeghem managed to classify all Veronese caps of arbitrary type (including
the infinite-dimensional case rewording (MM3) slightly). Around the same time, the
second and third author [21] classified all split AVVs, explicitly conjecturing the main
result of the present paper.

One of the main reasons why the split AVVs were considered in the first place
was because it became clear in [19] that this case has a link with the Freudenthal–Tits
Magic Square (FTMS). The split AVVs of type 1 and 2 are exactly the varieties appear-
ing in the first two cells of the second row of Tits’ geometric version of the FTMS,
see [24, p. 142], hinting at the fact that the other varieties of the second row also qual-
ify as split AVVs. The eventual classification [21] revealed that certain subvarieties of
those are also split AVVs. On top of that, the so-called non-split geometric version of
the FTMS contains, in the second row, the Veronese representations of the projective
planes over quadratic alternative division algebras. Since both the split AVVs and Ver-
onese caps are strongly linked to the second row of the FTMS, it is highly desirable
to find a unified form of the axiom systems. This is done in the present paper.

Now we introduce the varieties mentioned in Theorem 1.2. Let K be an arbitrary
field.
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Quadric Veronese varieties. The quadric Veronese variety Vn.K/, for n � 1, is the
set of points in P .

nC2
2 /�1.K/ obtained by taking the images of all points of Pn.K/

under the Veronese mapping, which maps the point .x0; : : : ; xn/ of Pn.K/ to the
point .xixj /0�i�j�n of P .

nC2
2 /�1.K/. If n D 2, then it is an AVV of type 1, and all

AVVs of type 1 arise this way.

Segre varieties. The Segre variety Sk;`.K/ of Pk.K/ and P `.K/ is the set of points
of Pk`CkC`.K/ obtained by taking the images of all pairs of points, one in Pk.K/

and one in P `.K/, under the Segre map

�.h.x0; x1; : : : ; xk/; .y0; y1; : : : ; y`/i/ D .xiyj /0�i�kI0�j�`:

If .k; `/ 2 ¹.1; 2/; .1; 3/; .2; 2/º, then Sk;`.K/ is a split AVV of type 2, and all split
AVVs of type 2 arise this way.

Line Grassmannian varieties. The line Grassmannian variety Gm;1.K/, m � 2,
of Pm.K/ is the set of points of P

m2Cm�2
2 .K/ obtained by taking the images of all

lines of Pm.K/ under the Plücker map

�.h.x0; x1; : : : ; xm/; .y0; y1; : : : ; ym/i/ D

 ˇ̌̌̌
ˇxi xj

yi yj

ˇ̌̌̌
ˇ
!
0�i<j�m

:

If m 2 ¹4; 5º, then Gm;1.K/ is a split AVV of type 4, and every split AVV of type 4
arises this way.

Half-spin varieties. An algebraic description of half-spin varieties in full generality
is due to Chevalley [3], see also the recent reference [15]. A geometric approach was
taken in [27]. Since we only need the case of type D5 it is more convenient to follow
the latter approach.

Let U1 and U2 be two disjoint 7-dimensional subspaces in P15.K/, respectively
containing hyperbolic (projective index 3) quadrics Q1 and Q2. Let � be a triality of
type Iid (with the terminology of [25]) of Q1 and let � be a linear isomorphism from
Q1 toQ2, and set ' D ��. Note that, for each point p 2Q1, the image p' is a 3-space
belonging to one natural system of generators of Q2.

The half-spin variety D5;5.K/ consists of all points of P15.K/ that contained in a
line which intersects U1 in a point p 2 Q1 and U2 in a point q 2 p' . These varieties
are the only split AVVs of type 6.

Half-spin varieties. As we will not need the precise definition of the variety E6;1.K/,
which is the projective version of the well-known 27-dimensional module of the (split)
exceptional group of Lie-type E6, we simply refer to the literature here. Aschbacher [1]
provides an algebraic description, Cohen [4] provides a construction using intersec-
tions of quadrics (with explicit equations).
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The varieties

V2.K/ S2;2.K/ G5;1.K/ E6;1.K/

form the second row of the FTMS, split version.

The Veronese varieties. These varieties will be of little importance in the rest of
the paper. Let us limit ourselves by mentioning that each finite-dimensional quadratic
alternative division algebra A over K, say dimK A D j , defines a unique Veronese
variety V2.K;A/ in P3jC2.K/ using the standard Veronese map. Also, V2.K;K/ D
V2.K/, and if L is a quadratic Galois extension of K, H a quaternion division ring
with centre K containing L, and O a Cayley algebra over K containing H, then the
Veronese varieties

V2.K;K/ V2.K;L/ V2.K;H/ V2.K;O/

form the second row of the FTMS, non-split version.
As can easily been observed, all examples of AVVs of type d in PN .K/ satisfy

N � 3d C 2:

In fact, the parameters of all Veronese caps satisfy the equality N D 3d C 2, as do
most examples in the split case, except for the Segre varieties S1;2.K/ and S1;3.K/,
the line Grassmannian G4;1.K/, and the half-spin variety D5;5.K/. This is related to
the theory of Severi varieties, from which we derive that, if K is algebraically closed,
then the inequalityN < 3d C 2 readily implies that every point of Pn.K/ is contained
in a secant line of the variety (a secant line, in our case, is a line of PN .K/ intersecting
the variety in exactly two points). However, we will need this property for arbitrary
fields. For the most involved variety, namely D5;5.K/, it follows from the fact that the
automorphism group has only two orbits on the projective points, as is shown in [12].
However, we present a more or less unified and purely geometric proof allowing for
an interesting digression afterwards.

Proposition 2.1. Suppose .X;„/ is one of the following AVVs: S1;2.K/, S1;3.K/,
G4;1.K/, D5;5.K/. Then every point of the ambient projective space P is contained in
a secant, that is, a line of P intersecting X in exactly two points.

Proof. (i) If .X; „/ Š S1;n.K/, then X contains two disjoint singular n-spaces. It
follows immediately that each point of P2nC1.K/ not in X is contained in a unique
line meeting both planes in a point. This holds for all n � 1.

(ii) If .X;„/ŠG4;1.K/, then we can select a member � 2„ and a disjoint singular
3-space †. If we identify G4;1.K/ with the line Grassmannian of the projective space
P4.K/, thenQ WD X.�/ corresponds to all lines in a 3-space U of P4.K/, whereas†
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corresponds to the set of lines through a point p of P4.K/ not in U . Each line L
of P4.K/ not in U and not through p is contained in a unique planar line pencil
with vertex x WD L \ U and containing the lines hx; pi and hp; Li \ U . It follows
that, if q 2 Q corresponds to the line Lq in U , and if M is the singular line in †
corresponding to the planar line pencil in P4.K/ with vertex p in the plane hp; Lqi,
then the plane hq;M i is entirely contained in X .

Now let z be any point of P (and we may assume z …X ). If z 2 hQi, then clearly z
is on a secant ofQ. If z … hQi, then it is contained in a unique lineK intersecting hQi
in a point zQ and † in a point z†. If zQ 2 Q, then we are done. If not, then zQ is
on some secant S of Q; let u; v 2 S \Q, u ¤ v. By the previous paragraph, there
are planes �u and �v containing u; v, respectively, intersecting † in lines Lu; Lv ,
respectively. Note that Lu and Lv do not intersect as u and v are not collinear on Q.
It follows that there exists a line K containing z† and intersecting both Lu and Lv
non-trivially, say in the points pu and pv , respectively. Hence there is a line through z
intersecting the lines hu; pui and hv; pvi non-trivially (as z and these lines are con-
tained in the 3-space spanned by S and K).

(iii) Let .X;„/ŠD5;5.K/. This case is treated similarly to the previous one, now
using the construction above with the quadrics Q1; Q2. Each point x of Q1 defines
a unique 4-space Ux D hx; x'i intersecting Q2 in the singular 3-space hx'i. A point
z … .U1 [U2/ is contained in a line hz1; z2i, with zi 2 hQi i, i D 1; 2. The point z1 is
on a secant hu;vi, with u;v 2Q1 (possibly z 2 ¹u;vº), and z2 is on a secant hpu;pvi,
with pu 2 Uu and pv 2 Uv . The point z is contained in a secant intersecting hu; pui
and hv; pvi non-trivially.

3. Digression: Geometric hyperplanes of D5;5.K/ and E6;1.K/

In general, a (proper) geometric hyperplane of a geometry with non-empty point and
line set is a (proper) subset of the point set such that every line intersects the point set
either in a unique point or is fully contained in it. The main result of [5] states that
every proper geometric hyperplane of the varieties D5;5.K/ and E6;1.K/ in P15.K/

or P26.K/, respectively, arises as the intersection of the variety with a hyperplane of
the projective space. In this section we complement the geometric approach initiated
by Cooperstein and Shult in [5] by giving an intrinsic description of these geometric
hyperplanes, i.e., within the geometry itself and not needing the ambient projective
space. Therefore we will mostly work with abstract geometries of type D5;5.K/ or
of type E6;1.K/ instead of the varieties D5;5.K/ and E6;1.K/ which are embedded in
projective space.

Since we do not need this part in the sequel, we will be brief and skip uninterest-
ing details, only focusing on the beautiful arguments which provide deeper geometric
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insight. We assume the reader is familiar with the basic notions of point-line geomet-
ries (collinearity, singular subspaces, distance) and refer to [4] for the definitions.

3.1. The geometric hyperplanes of D5;5.K/

Let � D .X;L / be a geometry of type D5;5.K/, where X denotes its point set and L
its line set (where each line is viewed as the set of points incident with it). Let ��

denote the associated hyperbolic polar space of rank 5, i.e., �� is of type D5;1.K/.
Denote the two natural families of maximal singular subspaces of �� by ‰1 and ‰2.
Without loss of generality, X corresponds to‰1, and then the set of maximal singular
subspaces of � corresponds to ‰2, and the point set of a line L 2 L corresponds to
the subset of 4-spaces of ‰1 containing a singular plane of ��.

A first type of geometric hyperplane of � . Let U be a maximal singular subspace
of � of dimension 4. Define HU as the set of points which are collinear to at least
one point of U (alternatively, one could picture HU as the union of lines sharing at
least one point with U ). The set HU is a proper geometric hyperplane of � . This can
be proved in an elementary way, for instance by using the correspondence with ��.
We omit the proof but describe the correspondence anyway, for future use: Trans-
lated to ��, where U corresponds to a subspace xU 2 ‰2, the set HU is the set of
4-spaces of ‰1 having a non-empty intersection with xU (that is, intersecting it in
either a line or a singular 3-space). It is easily verified that, if U;U 0 are 4-spaces of � ,
then HU � HU 0 implies U D U 0.

We now prepare for the description of the second type of geometric hyperplane.
To that end, we note that the set of 4-spaces of ‰1 containing a given point of ��

corresponds to a subgeometry of � isomorphic to a polar space of type D4;1.K/, as
can be seen on the diagram. In the language of parapolar spaces, this subgeometry is
called a symp and each symp of � arises in this way (see Definition 4.4 for a general
definition of symp). Let Q1 and Q2 be disjoint symps of � (these correspond to non-
collinear points of ��). Then collinearity induces a map � between the points of Q2
and the 3-spaces of Q1 of one type, preserving incidence (i.e., collinear points go to
3-spaces sharing a line), and the union of all 4-spaces hq2; �.q2/i with q2 2 Q2 is
precisely X (this is the abstract version – and explanation – of the construction of
D5;5.K/ encountered above in Section 2).

A second type of geometric hyperplane of � . LetK2 be a non-degenerate subquad-
ric of Q2 of type B3;1.K/, i.e., a parabolic quadric of rank 3. Then K2 is a geometric
hyperplane of Q2 and K�1 D ¹�.q2/ j q2 2 K2º also has the structure of a quadric of
type B3;1.K/ by triality. Moreover, each point of Q1 is contained in a member of K�1
since it is collinear to a 3-space of Q2 which shares at least a plane with K2. We
define HK�

1
� X as the union of all 4-spaces hq2; �.q2/i with q2 2 K2, or equival-
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ently the union of all 4-spaces meeting Q1 in a member of K1 (each 3-space of �
being contained in a unique 4-space). One can verify that HK�

1
is a proper geometric

hyperplane of � by relying on the correspondence with ��, but to make this con-
ceivable, we note that in D5;5.K/, it follows that hHK�

1
i D hQ1; K2i and the latter

is a hyperplane of PG.15;K/. Finally, we mention that Q1 is the unique symp of �
fully contained in HK�

1
(if Q01 ¤ Q1 would also meet each 4-space hq2; �.q2/i with

q2 2 K2 in a 3-space, then Q1 \Q01 is a 3-space incident with each 3-space of K�1 , a
contradiction). Therefore, the second type of geometric hyperplanes is in one-to-one
correspondence with the subquadrics of type B3;1.K/ on symps of � .

Different behaviour of the hyperplanes with respect to symps. The difference be-
tween these two types of geometric hyperplanes can be seen from the intersection with
symps of �: a hyperplaneHU of type 1 contains all sympsQwithU �Q and shares a
degenerate quadric with a sympQ if U \Q is a unique point p (and thenHU \QD
p? \Q); a hyperplaneHK�

1
of type 2 contains a unique sympQ1 (namely the unique

symp containing K�1 ), meets the symps sharing a 3-space with Q1 in a degenerate
quadric and the symps disjoint from Q1 in a quadric of type B3;1.K/. Note that none
of these geometric hyperplanes contains two disjoint symps (in accordance with the
given construction where two disjoint symps determine �).

Conclusion for the variety D5;5.K/. By the above, the hyperplanes of type 1 of �
are in one-to-one correspondence with the 4-spaces U of � , or equivalently, the mem-
bers of‰2 of ��. So, considering D5;5.K/, we see that the set of hyperplanes hHU i of
P15.K/ with U a 4-space of � form, in the dual of P15.K/, a point set isomorphic to
that of D5;5.K/. Hence, since the stabiliser of D5;5.K/ has two orbits on the points of
P15.K/ (the points on and off the variety), the same holds for the (geometric) hyper-
planes. This geometrically shows that the stabiliser of D5;5.K/ in P15.K/ acts with
two orbits on the hyperplanes of P15.K/, and the two types of (geometric) hyper-
planes are as described above.

3.2. The geometric hyperplanes of E6;1.K/

Now consider the variety E6;1.K/ in P26.K/. We denote its point set by X and its
set of elements of type 6 (each of which is isomorphic to a quadric of type D5;1.K/)
by „, and we refer to the members of „ as symps (cf. Definition 4.4). For each point
p 2 X , we denote the point-residue at p by p? as it is induced by the singular lines
of E6;1.K/ containing p, and we note that p? is isomorphic to D5;5.K/.

Let H be a geometric hyperplane of E6;1.K/ and let � be the corresponding
hyperplane of P26.K/. Using the colourful terminology for geometric hyperplanes
given in [5], below we will arrive at the following intrinsic descriptions for the three
different kinds of hyperplanes.
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– H is the set of points collinear to at least one point of a given symp � 2„ (H is
called a white hyperplane);

– H is the union of a set of symps † through a point p 2 X such that, in p? the
symps corresponding to the members of † is the point set of a quadric of type
B4;1.K/ (recall that a symp in D5;5.K/ corresponds to a point of a quadric of
type D5;1.K/) (H is called a grey hyperplane);

– H arises as the fixed point structure of a symplectic polarity of E6;1.K/ and has
the structure of a geometry of type F4;4.K/ (H is called a black hyperplane).

We study the possibilities for H through its intersections with the symps and
point-residues of E6;1.K/. So let � 2 „ be any symp. Since � only has two types of
proper geometric hyperplanes, the following three situations could occur:

(C) The symp � is contained in H (� has H -type C);

(N) � \H is a non-degenerate quadric of type B4;1.K/ (� has H -type N);

(D) � \H is a degenerate quadric, i.e., Tp.�/ for some point x 2 � \H (� has
H -type D).

For an arbitrary point p 2H , the two types of geometric hyperplanes of the point-
residue p? (see previous subsection) lead to the following possible intersections:

(0) The point residue p? is entirely contained in H (p has H -type 0);

(1) the lines through p inH define a geometric hyperplane of p? of type 1 (p has
H -type 1);

(2) the lines through p inH define a geometric hyperplane of p? of type 2 (p has
H -type 2).

We aim at showing (without going into the details) that only the following possib-
ilities occur, and each form a single orbit under the automorphism group of .X;„/:

Type of H H -types of symps H -types of points

White C, D 0, 1
Grey C, D, N 0, 1, 2
Black D, N 2

We distinguish two cases, the first of which leading to white and grey hyperplanes,
the second leading to black hyperplanes.

Case 1. Suppose first thatH contains a point p ofH -type 0. Let � 2„ be a symp
opposite p (which means that p is not collinear to any point of �). ThenX is the union
of all symps �.p; x/ containing p, with x ranging over the points of � , and hence H
is the union of the symps �.p; x/ where x ranges over H \ � . So � is of H -type D
or N (and any other symp � 0 opposite p has the same H -type as �).
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Case 1 (a). Suppose � hasH -type D. Let q 2 � be such that q? \ � �H . Then q also
has H -type 0 (since q? contains the disjoint symps corresponding to � and �.p; q/).
One verifies that all points of �.p; q/ have H -type 0 and that H is a white geometric
hyperplane.

Note that the white geometric hyperplanes are in one-to-one correspondence with
the symps, and the corresponding hyperplanes of P26.K/ define a variety isomorphic
to E6;1.K/. Like in the previous section, this gives a geometric proof that the num-
ber of point orbits equals the number of hyperplane orbits under the automorphism
group G of E6;1.K/. Also, since G acts transitively on „, the white geometric hyper-
planes form a single orbit under G. It is easy to see that every symp intersecting
�.p; q/ in a maximal singular subspace has H -type C, while every other symp, inter-
secting �.p; q/ in a unique point, hasH -type D. One can verify that every other point
of H not in �.p; q/ has H -type 1 (use the fact that the geometric hyperplane induced
in the residue contains at least two symps).

Case 1 (b). Suppose � has H -type N. Noting that the map taking a symp through p
to the unique intersection point with � is an isomorphism of p? to �, and recalling
that � \H has the structure of a quadric of type B4;1.K/, it follows that H is a grey
geometric hyperplane (and the set † is the set of symps �.p; x/ with x 2 � \H ).

Since G acts transitively on the points, and the stabiliser in G of a point acts
transitively on the above mentioned B4; subquadrics, we see that the grey geometric
hyperplanes form a single orbit. Naturally, every member of † has H -type C, every
symp through p not belonging to † has H -type D, every symp not through p but
not disjoint from p? has H -type D, and every symp disjoint from p? has H -type N.
Moreover, p is the only point that hasH -type 0; every point of p? n ¹pº hasH -type 1
(because the geometric hyperplane induced in the residue contains at least two symps)
and every point of H n p? has H -type 2.

Case 2. Suppose that H contains no points of H -type 0. Let � be any symp.
We first claim that � is of H -type D or N. Suppose for a contradiction that � has
H -type C. Since H is not a white hyperplane, H contains a point p opposite � (i.e.,
with p? \ � D ;). By assumption, p has H -type 1 or 2. The geometric hyperplane
induced in p? contains at least one symp, which extends to a symp � 2 „. Since
� \ � is a point q, and since p? \ � � H , we deduce � � H . However, this implies
that q has H -type 0 (the geometric hyperplane induced in the residue at q contains
two disjoint symps), a contradiction. The claim follows.

Next, we claim that all points are ofH -type 2. Indeed, suppose for a contradiction
that p 2H hasH -type 1. Let � be a symp of„ disjoint from p?. From the definition
of type 1 geometric hyperplane of D5;5.K/ and the fact that the mapping defined
by intersecting a given member of „ through p with � induces an isomorphism of
buildings, we deduce that there is a unique maximal singular subspace U � � such
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that �.p; u/ \ p? � H for all points u 2 U . As in the previous paragraph, a point in
U \H (which is non-empty) is of H -type 0, a contradiction. The claim is proved.

So, to every point p 2H we can associate a unique symp �p 3 p with the property
that p? \ �p �H . Now let q 2X nH . Then q? \H with induced lines is a geometry
isomorphic to D5;5.K/. Consider the set of points x 2 X such that x? \ q? � H
(so x … q? since q …H ). One shows (in general, that is, for every subgeometry of q?

isomorphic to D5;5.K/ having exactly one point on each line through q) that this set
of points forms a symp �q (which is opposite q). If �q had H -type D, then �q would
contain a point r contained in at least two symps (�q and �.q; r/) with the property
that their residue at r belongs to the geometric hyperplane induced in the residue of r ,
so r would have H -type 0, a contradiction. By the first claim, �q had H -type N .

Now it takes some (long but elementary) work to show that the mapping x ! �x ,
x 2 X , defines an isomorphism of E6;1.K/ to its dual, and that it induces a dual-
ity. Since either x 2 �x or x? \ �x D ; (that is, x and �x are opposite), [26, Main
Result 2.1] implies that the duality is a symplectic polarity. Particularly nice is now
that [7] shows in a geometric way that all such polarities are conjugate and hence we
deduce that H , which is called a black geometric hyperplane in [5], defines a sub-
variety of type F4 and all black geometric hyperplanes form a single orbit under the
action of G. They are in one-to-one correspondence with the symplectic polarities or,
equivalently, with the subvarieties of type F4 on .X;„/. The geometric homogeneity
in the points of H (all have H -type 2) translates into the algebraic property of the
stabiliser GH acting transitively on H .

This concludes our geometric approach, proving that only white, grey and black
geometric hyperplanes exist, each of them forming a single orbit under G. A similar,
though simpler, analysis holds for the geometric hyperplanes of the line Grassmann-
ian G5;1.K/.

4. Preliminaries

Let .X; „/ and d be as in the introduction. We start by introducing a more general
version of AVVs by omitting axiom (MM3) and/or considering the following, weaker
version of (MM1):

(MM10) Any pair of non-collinear points x1; x2 2 X lies in at least one element
of „.

Definition 4.1. We say that a pair .X;„/ is a pre-AVV of type d if it satisfies axioms
(MM1) and (MM2); we call it a weak AVV of type d if it satisfies axioms (MM10),
(MM2) and (MM3). A weak pre-AVV of type d is then a pair .X;„/ which satisfies
axioms (MM10) and (MM2).

Henceforth, let .X;„/ be a weak pre-AVV of type d in PN .K/.
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4.1. Collinearity relations

Recall that a subspace of PN .K/ is called singular if it has all its points in X . Two
points x;y ofX are called collinear if they are on a common singular lineL, in which
case we write x ? y and, if x ¤ y, we also write L D xy; moreover, x? denotes the
set of points collinear to x.

Lemma 4.2. Let .X;„/ be a weak pre-AVV of type d . Then each line of PN .K/ con-
taining at least three points of X is singular. Secondly, if x; y 2 X are non-collinear
points then there is a unique member of „ through them, denoted by Œx; y�.

Proof. Let L be a line of P with jL\X j � 3. Let x1; x2 be two points in L\X . If L
is not singular, (MM10) yields a � 2 „ containing x1; x2. Since X.�/ is a quadric, L
has to be singular after all. As for the second statement, (MM10) implies that there is
at least one member of „ containing x and y; uniqueness follows from (MM2).

The next lemma should be compared to [21, Lemmas 4.1 and 4.2].

Lemma 4.3. Let .X; „/ be a weak pre-AVV of type d . Let L1 and L2 be singular
lines, meeting each other in a point x. Then either L1 and L2 are contained in a
singular plane, or there is a unique � 2 „ (which we denote by ŒL1; L2�) containing
L1 [L2. Consequently, if x 2X and � 2„ with x …„, then x? \X.�/ is a singular
subspace (possibly empty).

Proof. Let x1; x2 be points on L1 n ¹xº and L2 n ¹xº, respectively, and suppose that
they are not collinear. Let x01; x

0
2 be points on L1 n ¹x; x1º and L2 n ¹x; x2º. Then the

line hx01;x
0
2imeets the line hx1;x2i in a point z not onL1[L2. By Lemma 4.2, z …X ,

and by the same lemma x01 and x02 are not collinear. By (MM10) Œx1; x2�; Œx01; x
0
2� 2 „

and since they both contain z, (MM2) implies that they are equal. So if L1 [ L2
contains a pair .x1; x2/ of non-collinear points, then L1 [ L2 � Œx1; x2�. If not, then
clearly, the plane hL1; L2i is singular.

Now consider x 2 X and � 2 „ with x … � . Suppose for a contradiction that x is
collinear to two non-collinear points x1; x2 in � . Set Li D hx; xi i, i D 1; 2. The pre-
vious paragraph implies that Œx1; x2� contains L1 [ L2, in particular x2 Œx1; x2�D� ,
a contradiction.

4.2. The point-line geometry associated to .X;„/

The set of singular lines of X is denoted by L . In case L is non-empty (which is
not necessarily the case, for instance if „ has only quadrics of index 0), then the pair
.X;L /, equipped with containment as incidence, is the natural point-line geometry
associated to .X;„/. Considering this point-line geometry carries a lot of information
on .X;„/, especially when we can invoke the theory of parapolar spaces.
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In general a point-line geometry � is a pair � D .Y;M / where Y is a set of points
and M a non-empty set of lines, each of which is a subset of X . A subspace S is a
subset with the property that each line not contained in S intersects S in at most one
point. Collinearity between points again corresponds to being contained in a common
line (not necessarily unique), and we also denote this by the symbol?. The collinear-
ity graph of � is the graph on Y with collinearity as adjacency relation. The distance
ı.x; y/ between two points x; y 2 Y is the distance between x and y in the collinear-
ity graph (possibly ı.x; y/ D 1 if there is no path between them). A path between
x and y of length ı.x; y/ is called a shortest path. The diameter of � is the diameter
of its collinearity graph. We say that � is connected if for every two points x; y of Y ,
ı.x; y/ <1. A subspace S � Y is called convex if all shortest paths between points
x; y 2 S are contained in S . The convex subspace closure of a set S � Y is the inter-
section of all convex subspaces containing S (this is well defined since Y is a convex
subspace itself).

Before moving on to the viewpoint of parapolar spaces, we need to consider each
member of „ of index at least 1 as a convex subspace of .X;L / isomorphic to a
so-called polar space (for a precise definition and background, see [2, Section 7.4]).
Indeed, for each � 2 „ with w� � 1, X.�/ is an instance of a polar space, that is, a
point-line geometry .X 0;L 0/ in which, apart from three non-degeneracy axioms, the
one-or-all axiom holds: Each point x 2 X 0 is collinear to either exactly one or all
points of any given line. Still assuming w� � 1, we also have that X.�/ is a convex
subspace: Obviously, for any pair of distinct collinear points x;x0 2X.�/, the line xx0

belongs to X.�/, and for any pair of non-collinear points x; x0 2 X.�/, Lemma 4.3
implies that x? \ x0? belongs to X.�/ and hence so do the shortest paths between x
and x0 in the collinearity graph of .X;L /. Observe that X.�/ is the convex subspace
closure of any pair of non-collinear points x;x0 2X.�/, sinceX.�/ contains no convex
subspaces other than singular subspaces and itself.

Definition 4.4. A connected point-line geometry � D .X;L / is a parapolar space if
for every pair of non-collinear points p and q in P , with jp? \ q?j > 1, the convex
subspace closure of ¹p; qº is a polar space, called a symplecton (a symp for short);
moreover, each line of L has to be contained in a symplecton and no symplecton
contains all points of X .

The parapolar space is called strong if there are no pairs of points p; q with
jp? \ q?j D 1.

Lemma 4.5. Suppose .X;„/ is a weak pre-AVV of type d . Then each connected com-
ponent of the point-line geometry .X;L / associated to .X;„/ is one of the following:

(i) A singular subspace of dimension at least 0 (no point of which is contained
in member of „ of index � 1);
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(ii) a quadric � 2 „ of index at least 1 (and all members of „ meeting � non-
trivially have index 0);

(iii) a strong parapolar space (which moreover has diameter 2 if min.W / � 1).

Proof. Suppose x belongs to the connected component C . If all points of C are col-
linear with x, then all points of C are mutually collinear since otherwise part (1) of
Lemma 4.3 yields a member of „ through x of projective index � 1, which contains
points (automatically in C ) not collinear to x. Hence we are in case (i). If there is a
point y in C not collinear with x, then by Lemma 4.3 there is a member � 2 „ of
index at least 1 containing x. If C D � then we are in case (ii).

If C strictly contains � , then we wish to show that C is a strong parapolar space.
Let p; q be points of C at distance 2, i.e., there are lines Lp and Lq through p; q,
respectively, meeting each other in a point. From Lemma 4.3, it follows that Lp [Lq
is contained in a unique member of „, which, as noted before Definition 4.4, is the
convex closure of p and q. In particular, jp? \ q?j ¤ 1, showing strongness. Finally,
supposeL is a line in C . IfL belongs to � there is nothing to prove; ifL intersects � in
a point, then by Lemma 4.3,L is contained in a member of„ together with a line of � .
By connectivity we can repeat this argument to conclude that each line is contained
in a member of „. By assumption, C does not coincide with a member of „. We
conclude that C is a strong parapolar space indeed. The claim about the diameter is
obvious.

Definition 4.6. Let k 2 Z��1. A parapolar space is called k-lacunary if k-dimen-
sional singular subspaces never occur as the intersection of two symplecta, and all
symplecta do possess k-dimensional singular subspaces.

In [9] and [8], k-lacunary parapolar spaces have been classified for k D �1 and
k � 0, respectively. At several points in the proof we will use the classification of
0-lacunary parapolar spaces, and also once that of .�1/-lacunary parapolar spaces.
We extract from the main result of [8] the results that we will need, restricting our
attention to strong parapolar spaces embedded in a projective space over a field K.

Fact 4.7. Let � D .X;L / be a strong .�1/-lacunary parapolar space whose points
are points of a projective space P over a field K, whose lines are lines of P and
whose symplecta are all isomorphic to each other. Then � D .X;L / is, as a point-
line geometry, isomorphic to either a Segre variety Sn;2.K/ with n 2 ¹1; 2º, a line
Grassmannian variety Gn;1.K/ with n 2 ¹4; 5º, or to the Cartan variety E6;1.K/. In
particular, the symps of � are all hyperbolic quadrics.

Fact 4.8. Let � D .X;L / be a strong 0-lacunary parapolar space whose points are
points of a projective space P over a field K, whose lines are lines of P and whose
symplecta are all isomorphic to each other. Then the symps of � are all hyperbolic
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quadrics. Moreover, if these quadrics all have projective index 1, then � D .X;L /

is, as a point-line geometry, isomorphic to a Segre variety S1;n.K/, for some n 2 N

with n � 2, or the direct product of a line and a hyperbolic quadric of projective
index n, for some n 2 N with n � 2.

4.3. Point-residues of .X;„/

Our main technique involves the use of local information coming from the point-
residues, which are defined as follows.

Definition 4.9. Suppose .X; „/ is an AVV. Let x 2 X be arbitrary and consider a
subspace Cx of Tx of dimension dim Tx � 1 not containing x. Consider the set Xx
of points of Cx which are contained in a singular line of X with x. Let „x be the
collection of subspaces of Cx obtained by intersecting Cx with all Tx.�/, with � run-
ning through all members � of„ containing x together with at least two points ofXx .
Note that the members of „x correspond precisely to the members of „ through x of
index at least 1.

The next lemma is the counterpart of [21, Lemma 4.6].

Lemma 4.10. Suppose .X; „/ is an AVV of type d , d > 2, and with global index
set W . Then for each x 2 X , the pair .Xx; „x/, with Xx � Cx as above, is a weak
pre-AVV of type d � 2 and with global index set ¹w � 1 j w 2Wx;w � 1º, in the sub-
space Cx of dimension Nx � 2d � 1 whose isomorphism type is independent of Cx .

Proof. By construction, a member � of„x has dimension d � 1 and the quadricX.�/
has index w� � 1.

Let p1 and p2 be two non-collinear points of Xx . In X , they correspond to two
non-collinear lines L1 and L2 through x, which are contained in a member of „
through x by Lemma 4.3, hence (MM10) holds.

For (MM2), let � and � 0 in„x and suppose that y 2 � \ � 0. Then y is contained in
Tx.�/\ Tx.�

0/, where � and � 0 are two members of „ containing x together with at
least two points of Xx . Hence in particular y 2 � \ � 0, and so by (MM2) for .X;„/,
we obtain y 2 Xx . Hence (MM2) holds in .Xx; „x/.

If C 0x is another hyperplane of Tx , and if we denote by X 0x the set of points of C 0x
on a singular line with x, then the projection from x of Cx onto C 0x yields an iso-
morphism from .Xx;„x/ to .X 0x;„

0
x/, where„0x is the collection of subspaces of C 0x

obtained by intersecting C 0x with all Tx.�/, with � running through all quads � of „
containing x together with at least two points of Xx .



The second row of the Freudenthal–Tits magic square 19

Henceforth, we denote by W 0x the index set ¹w � 1 j w 2 Wx; w � 1º. In case x
satisfies min.Wx n ¹0º/ � 2, we can prove that (MM1) holds. This relies on the fol-
lowing lemma.

Lemma 4.11. Let .X; „/ be a weak pre-AVV of type d and let y 2 X be arbit-
rary. Then the local index set Wy is non-empty (and hence max.Wy/ is well defined).
Moreover, if 1 … Wy and max.Wy/ � 2, then each singular plane that contains y is
contained in a member of „.

Proof. We have to show that there is at least one member of„ containing y. Suppose
the contrary. By assumption, we can pick � 2 „. Lemma 4.3 yields a point y0 2 � not
collinear to y, and then (MM10) yields � 0 2 „ containing y and y0.

Next, suppose 1 … Wy and max.Wy/ � 2 and let � be a singular plane through y.
Let � be any member of „ through y, with w� � 2. If � � X.�/ we are done, so
suppose there is a point z 2 � n � . We applying Lemma 4.3 several times. Firstly,
it implies that there is a point z0 2 X.�/ not collinear to z, but collinear to y. Then
(MM10) yields Œz; z0�, which contains the line L D hy; zi. Note that our assumptions
imply that wŒz;z0� � 2. Let u be a point in � n L. Then u is collinear to a singular
subspace of Œz; z0�, so there is a plane � 0 in X.Œz; z0�/ through L not all points of
which are collinear to u. For a point u0 2 � 0 n L, we then have � [ � 0 � Œu; u0�.

Corollary 4.12. Suppose that .X;„/ is an AVV of type d . Then for each x 2 X with
min.Wx n ¹0º/ � 2, the pair .Xx; „x/ is a pre-AVV of type d � 2 with global index
set W 0x in the projective space Cx of dimension Nx � 2d � 1.

Proof. Suppose x is a point with dimWx � 2. Note that this implies that d � 5. By
Lemma 4.10, we only still need that each pair of collinear points of Xx is contained
in a member of „x . By Lemma 4.11 and min.Wx/ � 2, this is the case.

4.4. Basic general properties of weak pre-AVVs

Many of the following properties are similar to the split case in [21]. However, since
we want to include weak pre-AVVs (which were not defined in [21]), some proofs
must be modified. Hence we provide detailed proofs of all statements for complete-
ness.

The next lemma generalises [21, Lemmas 4.9 and 4.10] from split quadrics to
arbitrary ones.

Lemma 4.13. LetQ be a non-degenerate quadric in PdC1.K/ of projective index w.
Consider a subspace D of PdC1.K/, with dimD D d C 1 � w. Then the following
hold.

(i) The subspace D contains at least two non-collinear points of Q.
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(ii) The intersectionD \Q spansD. Equivalently, for each hyperplaneH ofD,
the complement D nH contains a point of Q.

Proof. (i) We prove this by induction on w, the result for w D 0 being trivial, sinceD
coincides with PdC1.K/ in this case. Suppose now thatw>0. Notice thatQ\D¤;
since a dimension argument implies that D intersects every singular w-space of Q
non-trivially. Select x 2D \Q. If some line inD through x has exactly two points in
common withQ, then we find a pair of non-collinear points ofQ inD. So assume that
any line in D through x either intersects Q in a unique point or is entirely contained
in Q. Then D belongs to the tangent space Tx.Q/ at x to Q. In the residue at x
we obtain a quadric Q0 in Pd�1.K/ of projective index w � 1 and a subspace D0

of D with dimD0 D d � w D .d � 1/ � .w � 1/ which, by induction, contains two
non-collinear points y0; z0 of Q0. These points correspond to two singular lines of Q
through x and in D, not contained in a singular plane of Q. This shows the assertion.

(ii) This follows from the fact that quadrics containing two non-collinear points
span the ambient projective space of their corresponding quadratic form. An explicit
geometric proof goes as follows. Let H be a hyperplane of D and suppose that D \
Q � H . By (i), H contains two non-collinear points y and z of Q. Let ˛ be a plane
in D through y and z with ˛ ª H . Then Tz.Q/ \ ˛ is precisely one line L, as y is
not collinear to z. Then each line L0 in ˛ through z distinct from L contains a second
point of Q. Taking L0 ¤ hy; zi, this yields a point in .D \Q/ nH .

The following lemma generalises [21, Lemma 4.12].

Lemma 4.14. Suppose .X; „/ is an AVV of type d . If (distinct) �1; �2 2 „ share a
point x 2 X , then hTx.�1/; Tx.�2/i \X � x?.

Proof. Suppose for a contradiction that there are (distinct) �1; �2 through x such that
hTx.�1/; Tx.�2/i contains a point y 2 X n x?. A dimension argument yields points
ai 2 Tx.�i /, i 2 ¹1; 2º, such that y 2 ha1; a2i. If a1 2 X , then there exists a member
of „ through y and a1, hence by (MM2) a2 2 X too, and so the plane hx; a1; a2i –
containing two singular lines and an extra point y 2 X – must be singular, contradict-
ing the fact that y is not collinear to x. Hence we may assume a1; a2 … X . We claim
that we can (re)choose the points y and a1 in such a way that a1 2 X .

Put wi WD w�i for i D 1; 2. Without loss of generality, w1 � w2. If w2 D 0, a
dimension argument implies that �2 \ Œx; y� contains a line through x, which has to
be singular by (MM2), a contradiction. So we may assume w2 � 1. Put U WD �1 \ �2
and ` WD dimU . Then 0� `�w2. Since hTx.�1/;Tx.�2/i and Tx.Œx;y�/ are subspaces
of respective dimensions 2d � ` and d in the 2d -space Tx , we get that

dim.Tx.Œx; y�/ \ hTx.�1/; Tx.�2/i/ � d � `:
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Note that, for i D 1;2, Tx.Œx;y�/\ Tx.�i / has dimension at mostw1 (recallw1 �w2),
so there is a (not necessarily singular) subspace Z in hTx.�1/; Tx.�2/i of dimension
d � `�w1 through x in Tx.Œx; y�/ that intersects Tx.�1/[ Tx.�2/ exactly in ¹xº. We
consider the subspace Z� D hZ; yi, and since y … Z we have

dimZ� D d � ` � w1 C 1:

Every line inZ��Œx;y� through x outsideZ contains a unique point of .Tx\X/nx?.
Together withZ \ �i D ¹xº, it then follows by (MM2) thatZ� \ �i D ¹xº, i 2 ¹1; 2º.
A dimension argument yields unique .d � w1 C 1/-spaces Ui � Tx.�i / containing
U , i D 1; 2 such that Z� � hU1; U2i. Let U 01 be the .d � w1/-space obtained by
intersecting hU2; Zi with U1. By Lemma 4.13 (2), there exists a point

a1 2 .X.�1/ \ U1/ n U
0
1 � .X \ U1/ n U

0
1:

Since U2 and Z� meet in only x, and a1 2 hU2; Z�i, there is a unique plane � con-
taining x; a1 and intersecting both Z� and U2 in (distinct) lines. By our choice of a1
outside U 01, the line � \ Z� is not contained in Z and intersects Œx; y� in a point y0

not collinear to x. Hence, y0 2 hTx.�1/; Tx.�2/i \ .X n x?/ and the claim follows.
The lemma is proved.

The following lemma should be compared with [21, Lemma 4.13].

Lemma 4.15. Suppose .X; „/ is an AVV of type d and with global index set W .
Suppose x 2 X is such that min.Wx/ � 1. Then Tx \X � x?.

Proof. Suppose for a contradiction that there exists z 2 .Tx \ X/ n x?. We claim
that we can find �1; �2 in„ through x such that hTx.�1/; Tx.�2/i \X contains a point
non-collinear to X , which contradicts Lemma 4.14 and proves the assertion.

Suppose first that min.Wx/D 0. Consider an element �1 2„ through x of index 0,
and an element �2 2 „ containing x. Then by (MM2) and (MM3), we obtain

z 2 Tx D hTx.�1/; Tx.�2/i;

showing the claim in this case. So suppose that min.Wx/D 1. Note that in this case Tx
is generated by all singular lines through x.

Let x 2 �1 2 „ with w�1 D 1. Put �� WD Œx; z� and note that

�� D hTx.�
�/; zi � Tx :

Since dimTx � 2d , the intersection Tx.�1/ \ �� is at least a line. By axiom (MM2),
Tx.�1/ \ �

� is singular and as �1 has index 1, it is a line L (through x). In particular,

dimTx D 2d and hTx.�1/; Tx.�
�/i D 2d � 1:
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This means that there is a point u 2 .Tx \X/ n hTx.�1/; Tx.��/i with hx;ui singular.
As dimh��; ui D d C 2, we obtain that h��; ui \ Tx.�1/ is a plane � through L.
Let v 2 � nL be a point. Inside the .d C 2/-space h��; ui, the line hu; vi meets �� in
a point y0. Since u … hTx.�1/; Tx.��/i we have y0 2 �� n Tx.��/, and hence the line
hx; y0i contains a unique point y on X.��/ n ¹xº. Clearly, y 2 X \ hTx.�1/; hx; uii.
Hence, for an arbitrary member �2 through hx; ui holds y 2 hTx.�1/; Tx.�2/i and
y … x?. The lemma is proved.

4.5. Projections of .X;„/ from a member � 2 „

Projection from a member of „ is a successful tool in the proof of the classification
of the case W D ¹0º, see [14]. Here, we extend its use to members with index � 1.

Definition 4.16. If .X;„/ is a (possibly weak) pre-AVV, we can consider the projec-
tion �� from some � 2 „ onto a subspace … of PN .K/ complementary to � , i.e.,

�� WP
N .K/ n � ! …W z 7! h�; zi \…:

For any set Z � PN .K/, we write Z�� instead of .Z n �/�� for ease of notation.

Lemma 4.17. Suppose .X; „/ is a (possibly weak) pre-AVV and � 2 „ arbitrary.
If p; q 2 X n � have the same image under �� , then hp; qi is a singular line meeting
X.�/ in a point.

Proof. Put � D �� . Then p� D q� implies that � is a hyperplane of the subspace
h�; p; qi. If hp; qi is singular, then clearly it intersects � in a point of X . Suppose p
and q are not collinear. Then, by (MM10) and (MM2), hp; qi \ � is a point of X ,
which by Lemma 4.2 implies that hp; qi is singular after all.

The following properties of �� will be used several times, mainly for s 2 ¹0; 1º.

Lemma 4.18. Suppose .X; „/ is a (possibly weak) pre-AVV and � 2 „ arbitrary.
Suppose � 0 2 „ meets � in a singular subspace S of dimension s � 0. Then:

(i) the image of � 0 under �� is a .d � s/-space …�0 , in which TS .� 0/�� is a
subspace H�0 of dimension d � 2s � 1;

(ii) for any point q inX.� 0/�� , there is a point p onX.� 0/ n S such that ��1
�
.q/\

X.� 0/ D hp; p? \ Si n S , and p 2 S? if and only if q 2 H�0;

(iii) for any point q 2 …�0 n X.�
0/�� , the set ��1

�
.q/ \ � 0 is an .s C 1/-space

through S inside TS .� 0/ which only has S in X (in particular, …�0 nH�0 �

X.� 0/�� );

(iv) if s D 0 and L is any line in…�0 containing a unique point z inH�0 , then the
union of ��1

�
.L/ \X.� 0/ with S is one of the following:
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(a) A conic C through S if z … X.� 0/�� . The image under �� of the tangent
line TS .C / is z;

(b) The union of two intersecting non-collinear singular lines if z 2X.� 0/�� .
Exactly one of these lines contains S and is projected by �� onto z.

Proof. (i) Since dim.� 0/D d C 1 and dim.� \ � 0/D s, we get that…�0 has dimension

.d C 1/ � s � 1 D d � s

indeed. The dimension of the tangent space TS .� 0/ is d � s, and TS .� 0/ \ � D S , so
likewise H�0 has dimension

.d � s/ � s � 1 D d � 2s � 1:

(ii) Let q 2 X.� 0/�� and let p be a point in X.� 0/ with ��.p/ D q. By definition
of �� and the choice of p, we have

��1� .q/ \X.� 0/ D hp; �i \X.� 0/:

Looking inside X.� 0/, it follows that the latter set coincides with hp; p? \ Si. More-
over, p 2 S? if and only if p 2 TS .� 0/ if and only if q 2 H�0 .

(iii) This follows from the fact that an .s C 1/-space of � 0 through S contains a
point of X.� 0/ n S if and only if it does not belong to TS .� 0/. In particular, we obtain
that each point of …�0 nH�0 is the image of some point of X.� 0/ n S?.

(iv) Now let s D 0 and take a line L in …�0 containing a unique point z in H�0 .
Then ��1

�
.L/ \ � 0 is a plane � through S , and by the above, each point q 2 L n ¹zº

corresponds to a point p in .� \X/ n S not collinear to the point S . Hence the inter-
section of � with the quadric X.� 0/ contains at least three points not on a line, and
therefore it is either a conic or the union of two intersecting singular lines. Note that
in the latter case, each point of L belongs to X.� 0/�� , i.e., z 2 X.� 0/ too. Conversely,
z 2X.� 0/ implies by (ii) that ��1

�
.z/\X.� 0/ is a singular line through S . So z 2 X.� 0/

corresponds to case (b) indeed. Now, if z … X.� 0/, then .��1
�
.L/ \ X.� 0// [ S is a

conic C through S , and the tangent line TS .C / is mapped onto z by �� (cf. asser-
tion (iii)).

5. Technical lemmas concerning specific situations

Some rather technical work needed for the later sections is done here. The main
common goal is often to construct additional singular lines joining members of „
(Lemmas 5.1, 5.2 and 5.4) or, in one case, even prove that there are members with
large enough index (Lemma 5.5). We put this in a separate section since all of these



A. De Schepper, J. Schillewaert, and H. Van Maldeghem 24

results will be used in quite different situations. However, the reader may wish to skip
this section during a first reading as it is very technical and will seemingly be out of
context. It is probably easier to refer back to the results here when they are used in
subsequent sections.

In order to state the first lemma, we need the following concept. In P4.K/, con-
sider a lineL and a conic C in a plane complementary toL, and suppose 'WL! C is
a bijection preserving the cross-ratio. Then the union of the transversal lines hx;'.x/i,
with x 2 L is called a normal rational cubic scroll, denoted N1;2.K/, and L is called
the axis. Then for each two points not on L which are on distinct transversal lines
of N1;2.K/, there is a unique conic through them intersecting all transversal lines
(also in points not on L). Every pair C1; C2 of such conics intersect in precisely one
point p and hC1i \ hC2i D ¹pº. Conversely, given two arbitrary conics C1 and C2
in P4.K/ intersecting in a unique point p, with hC1i \ hC2i D ¹pº, and given a bijec-
tion  WC1 ! C2 fixing p and preserving the cross-ratio, there is a unique normal
rational cubic scroll N containing all transversal lines hx; .x/i, with x 2 C1 n ¹pº.
In particular, there exists a unique line L intersecting all said transversal lines. Natur-
ally, the line L and the conic C1 determine N , and the latter is defined by the map
'WC1 ! L taking a point x 2 C1 n ¹pº to hx; .x/i \ L, and taking p to the unique
‘remaining’ point of L.

Lemma 5.1. Let .X; „/ be a weak pre-AVV of type d . Suppose �1 and �2 are two
members of „ of index 0, meeting each other in a point p and meeting some � 2 „
not through p in distinct points p1 and p2. If there is a singular lineK meeting �1, �2
and � in three distinct points, then for i 2 ¹1; 2º, there is a conic Ci on X.�i / through
p and pi such that C1 and C2 are on a normal rational cubic scroll, and if jKj > 4,
all transversal lines except possibly the one through p are singular, as is the axis of
the scroll.

Proof. We consider the projection � D �� of .X; „/ from � onto a complementary
subspace …. By assumption, the respective images of �1 and �2 under � share at least
two points: p� and K� (which are distinct by Lemma 4.17). Let L be the projective
line hp�; K�i. Then L contains exactly one point ti contained in Tpi .�i /

�, i D 1; 2,
which does not belong to X.�i /� since �i has index 0. According to Lemma 4.18 (iv),
L corresponds to a conic Ci on X.�i / through the points pi and p, for i D 1; 2.

For i D 1; 2, let S .pi / denote the planar line pencil through pi in hCi i and
let �i be the projectivity taking a line M 2 S .pi / to pi if M is tangent to Ci , and
to the unique point of M on Ci n ¹pº if M is a secant of Ci . Each line of S .pi /

corresponds to a unique point of L via � and hence we can consider the bijection �
taking a line of S .p1/ to the unique line of S .p2/ with the same image under �.
Since hS .pi /i \ � D ¹piº, � is a projectivity. As such, �2 ı � ı ��11 is a projectivity
too, i.e., it preserves the cross-ratio.
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We conclude that C1 and C2 are on a normal rational cubic scroll indeed. Let R
denote the unique line intersecting all its transversal lines. Since the transversal lines
z1z2, with zi 2 Ci n ¹pi ; pº for i D 1; 2, are such that �.z1/ D �.z2/, Lemma 4.17
implies that hz1; z2i is singular. Note that this excludes at most three of the transversal
lines, namely the ones through p; p1; p2, say T; T1; T2 (possibly T1 D T2). Hence,
if jKj > 4, we obtain at least three singular transversals that meet R in three distinct
points. Consequently, R is singular. But then both T1 and T2 contain at least three
points of X and are also singular.

The previous lemma assumes the existence of a singular line meeting three mem-
bers of „. The next lemma creates a possibility of finding such a line.

Lemma 5.2. Let .X;„/ be a weak pre-AVV of type d with d � 2 and, if d D 2, we
also require jKj> 2. Let �; �1; �2 be three distinct members of„ with dim h�; �1; �2i �
2d C 3, �1 \ �2 D ¹pº and � \ �i D ¹piº, i D 1; 2, where p1; p2; p are three distinct
points of X with p … p?1 [ p

?
2 . Then there exists a singular line meeting �; �1; �2 in

three distinct points z; z1; z2, respectively, with zi and pi non-collinear, for i D 1; 2.

Proof. We again consider the projection � D �� of .X;„/ from � onto a subspace …
in h�; �1; �2i complementary to �. By Lemma 4.18, the respective images …�1 and
…�2 of �1 and �2 under � are d -spaces of …, which share the point p�. Since

dimh�; �1; �2i � 2d C 3;

we have dim… � d C 1, and hence …�1 \…�2 has dimension at least d � 1 � 1.
Recall that Tpi .�i /

� is a hyperplane of …�i and that p� is not contained in it since
p … p?i , i D 1; 2. This means that any line L in …�1 \…�2 through p� contains at
most one point ti of Tpi .�i /

� for i D 1; 2. Since Tp1.�1/
� \ Tp2.�2/

� has dimension
at least d � 3, we can chooseL in such a way that t1 D t2 if d � 3. Note that, if d D 2
and jKj D 2, it might be that t1; t2; p� are the only points of L.

Let q be a point in L n ¹p�; t1; t2º (which is non-empty by our assumptions on d
and jKj). Lemma 4.18 (ii) yields points z1; z2 on X.�1/; X.�2/, respectively, which
are not collinear to p1 and p2, respectively (recall q … ¹t1; t2º) and with z�1 D z

�
2 D q.

By Lemma 4.17, the latter implies that hz1; z2i is a singular line meeting X.�/ in a
point z.

Here is an example of how Lemma 5.2 can be used to make an application of
Lemma 5.1 possible.

Lemma 5.3. Let .X;„/ be an AVV of type 2 containing a connected component C of
.X;L / isomorphic as a point-line geometry to S1;1;1.K/. Then, for any two points
x; y 2 C at distance 3 in .X;L /, the member Œx; y� 2 „ is not contained in the
subspace hC i.
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Proof. First note that, if a; b 2 C are at distance 2 in C , then Œa; b� 2 „ has index 1
and X.Œa; b�/ � C is a hyperbolic quadric of rank 2 which we will refer to as a grid.
Also, C , being isomorphic to S1;1;1.K/, contains disjoint grids, and so, by (MM2),
dimhC i D 7.

Now let x; y 2 C be points at distance 3. Then � WD Œx; y� 2 „ has index 0.
Suppose for a contradiction that Œx; y� belongs to hC i. Consider any grid G of C
through x. Then by (MM3),

Tx D hTx.�/; Tx.G/i � hC i:

Suppose first that jKj D q <1. Let G0 � C be a grid not through x. Then G0 con-
tains q2 points at distance 3 from x, and for each such point z, we have that Œx; z� 2„
has index 0. Noting that Œx; z� \ G0 D ¹zº by (MM2), each point of G0 at distance 3
from x determines a different member of „, which results in q2 tangent planes that
pairwise intersect each other in x. In addition, there are the three tangent planes of
the grids of C through x (which intersect each other pairwise in a line and the other
tangent planes in only x). This yields q3 C q2 C 3q > q3 C q2 C q C 1 distinct lines
through x in the 4-space Tx , a contradiction.

So suppose that jKj D 1. Let z be a point of C n � at distance 3 from both x
and y. Then �1 WD Œx; z� and �2 WD Œy; z� are members of„ of index 0. Recalling that
Tx � hC i, we get �1 D hTx.�1/; zi � hC i; likewise for �2, from which it follows that

dimh�; �1; �2i � 7:

Therefore, .X;„/ and the triple �; �1; �2 meet the conditions of Lemma 5.2, and hence
also those of Lemma 5.1. The latter lemma implies that there are conics C1 and C2
on �1 through x; z and on �2 through y; z, respectively, such that C1 and C2 are on a
normal rational cubic scroll, and each transversal line joining a point C1 n ¹zº with its
image on C2 is singular. The line R meeting all these transversal lines, containing at
least three points in X , is also singular (cf. Lemma 4.2). As a consequence all points
of C1 belong to the same connected component as x, hence to C . We now show that
this is not possible.

Let p1; p2; p3; p4 be four distinct points of C1, which are pairwise at distance 3.
Take grids Gi through pi , i D 1; 2; 3, with G1; G2; G3 pairwise intersecting in a
line. Then G1 \ G2 \ G3 is a unique point p. We claim that hG1; G2; G3; p4i D
hC i. Indeed, clearly any line of C through p4 intersects one of G1; G2; G3 and so
is contained in hG1; G2; G3; p4i. By connectivity of C n .G1 [G2 [G3/, the claim
follows. However,

dimhG1; G2; G3; p4i D 6

as p4 2 hp1; p2; p3i, contradicting dimhC i D 7.
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We collect a further application of Lemma 5.2.

Lemma 5.4. Let .X;„/ be a pre-AVV of type d with d � 2. If d D 2, we also require
jKj > 2. Suppose hXi � P2dC3.K/. If �; �1 are two members of „ intersecting each
other in precisely a point p1, then there is a point z1 in X.�1/ n p?1 collinear to a
point z of X.�/ n p?1 .

Proof. Suppose that there are no such points z; z1. Let p be any point in X.�1/ n p?1 ,
and p2 any point inX.�/ n p?1 . By our assumption, p and p2 are non-collinear points.
Moreover, �2 WD Œp; p2� meets X.�/ in p2 only: if �2 \ � is at least a line, then p is
collinear with at least a point p0 of it, and p0 2 p?1 by our assumption, but then p0 2 �1,
a contradiction. Likewise, �2 meets X.�1/ in p only. Lemma 5.2 yields a singular line
meeting �; �1; �2 in three distinct points z; z1; z2, respectively, with zi and pi non-
collinear for i D 1; 2. If z would be collinear to p1, then z 2 �1, which is not the
case as � \ �1 D ¹p1º ¤ ¹zº. Hence, we found a pair of points as described in the
statement of the lemma after all, a contradiction.

Lemma 5.5. Let .X; „/ be a pre-AVV with d � 3 and hXi � P2dC3.K/. Suppose
that �; �1; �2 2 „ are such that w� D 1, w�1 � 1; � \ �1 is a point p1, � \ �2 is a
line L2 and �1 \ �2 contains a point p with p … p?1 \L

?
2 . If either d � 4, or d D 3,

jKj > 2 and �1 \ �2 D ¹pº, then w�2 � 2 and not all members of„ of index at least 2
contain a common point.

Proof. Again let � WD �� be the projection operator from � onto a complementary
.d C 1/-space …. We claim that there exists a point q in U WD ��1 \ �

�
2 neither con-

tained in .�1 \ �2/� nor in Tp1.�1/
� [ TL2.�2/

�.
Indeed, by Lemma 4.18 (i), ��1 is a d -space and ��2 is a .d � 1/-space. Hence,

dimU � d � 2 � 1. Obviously, U contains .�1 \ �2/� and

0 � dim.�1 \ �2/ � w�1 � 1:

Since p … p?1 [ L
?
2 , we have p� … Tp1.�1/

� [ TL2.�2/
�, and hence

H WD U \ .Tp1.�1/
�
[ TL2.�2/

�/

is contained in the union of two hyperplanes of U . Now, we can find a point q in the
complement of H 0 WD H [ .�1 \ �2/

�, since if jKj > 2, the set H 0 is contained in
the union of three hyperplanes of ��1 \ �

�
2 , and otherwise our conditions imply either

that H 0 is the union of H and a subspace of codimension at least 2 – and the claim
follows – or d D 4. In the latter case the only situation in which no such point q can
be found is when U is a plane and .�1 \ �2/�, U \ Tp1.�1/

� and U \ TL2.�2/
� are

three distinct lines in U through a common point u. But then, if u0 2 X.�1/ \ X.�2/
is such that u0� D u, then u0 2 p?1 \ L

?
2 , contradicting u0 … � . The claim is proved.



A. De Schepper, J. Schillewaert, and H. Van Maldeghem 28

Now, Lemma 4.18 (ii) yields a point q1 2X.�1/ n .�1\�2/ with q�1 D q and q1 not
collinear to q, and a lineL inX.�2/ intersectingL2 in a unique point p2, not collinear
to L2 and disjoint from �1 \ �2, with L� D q. By Lemma 4.17, hq1; Li is a singular
plane. Let q2 be a point on L\ p?. Then q2 2 q?1 \ p

?, from which we deduce that
q1 ? p (otherwise q2 2 �1, a contradiction). Now let q02 be any point of L n ¹q2º.
Then, likewise, p ? q02, for otherwise q1 2 p? \ q0?2 2 �2, contradicting our choice
of q. We conclude that hp;Li is a singular plane � in �2, collinear to q1. This already
implies that �2 has index at least 2.

Finally, suppose for a contradiction that all members of „ of index � 2 contain a
certain point x (which hence belongs to �2). Let q01 be a point in X.�2/ which is not
contained in the singular subspace q0?1 \ X.�2/ and not collinear to x. Then Œq1; q01�
does not contain x and has index at least 2 since q0?1 \ X.�2/ contains � , the sought
contradiction.

The previous lemmas assume the existence of certain members of „ intersecting
precisely in one point. In order to meet this condition, the next lemma, applied in a
residue, will be helpful. It will also be crucial in proving Proposition 6.2 below.

Lemma 5.6. Let .X; „/ be a weak pre-AVV of type d and suppose „ contains a
unique member �� of index at least 1. Then there exist two disjoint members of „
intersecting �� non-trivially.

Proof. Suppose for a contradiction that every pair of members of „ intersecting ��

non-trivially mutually intersect non-trivially. We will use the observation that no sin-
gular line in X intersects �� in a point, for this would yield a second member of „
with index > 0.

If K D Fq is finite, then d D 2 since quadrics of projective index 0 only exist
in dimensions d C 1 D 2 and d C 1 D 3, and quadrics of projective index at least 1
require d � 2. Hence, �� has exactly .q C 1/2 points, and every other member of „
has exactly q2 C 1 points. Now pick � 2 „ intersecting �� in a point x and let
p 2 X n .� [ ��/. Note that p? \ �� D ; by the above observation. Hence the map-
ping

X.��/ n ¹xº ! X.�/ n ¹xº

taking z to Œp; z� \ � is well defined and clearly injective. But

jX.��/ n ¹xºj D q2 C 2q > q2 D jX.�/ n ¹xºj;

a contradiction.
So suppose K is infinite. Let L be a singular line of ��. Using the above obser-

vation and our assumption, it is easy to see that there are three members �; �1; �2 of
„ n ¹��º intersecting L in three distinct points and pairwise intersecting in distinct
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points. Then Lemma 5.1 and K being infinite yield the existence of a singular line
intersecting �� in a point – either the axis of the normal rational cubic scroll guaran-
teed by Lemma 5.1, or if the axis were contained in ��, any singular transversal of the
scroll distinct from L – contradicting our observation above.

6. Connectivity

In this section we generate some arguments that will be crucial to show that certain
geometries are connected, or certain connected components are large enough. In par-
ticular, they will enable us to conclude that appropriate point-residues are connected
when a member of index at least 2 exists in „. When the maximal index is 1, they
will imply that there are connected components of .X;L / that are induced by at least
two members of index 1 of „. Recall that we assume that the global index set W of
.X;„/ is not ¹0º.

The first result will be used in point-residues and creates members of index at
least 1 therein.

Lemma 6.1. Let .X;„/ be a weak pre-AVV of type d , with d � 2. Suppose hXi �
P2dC3.K/. Let � be a member of „ of index at least 1 and suppose that z 2 X n �
is such that Tz \ X.�/ D ; and dim.Tz/ � 2d C 1. Then there is a member of „ of
index at least 1 containing z and intersecting � non-trivially.

Proof. Suppose for a contradiction that �p WD Œz;p�2„ has index 0 for each p 2X.�/
(note that p … z? indeed since Tz \ X.�/ D ;). Let p 2 X.�/, and let � WD ��p be
the projection from �p onto a subspace … complementary to �p in P2dC3.K/; so

dim… D d C 1:

Moreover, dimT �z 2 ¹d � 1; dº (because 0 2Wz implies dimTz � 2d ) and dim �� D
dim��u D d for all u2X.�/ n ¹pº (cf. Lemma 4.18). For each u2X.�/ n ¹pº, we have
that ��u is determined by the .d � 1/-space Tz.�u/� � T

�
z and the point u� 2 X.�/�.

Claim 1. T �z is disjoint from .p? \ �/�. By way of contradiction, let r be a point in
.p? \ �/� \ T

�
z . Then r corresponds to a singular line L of � through p (cf. Lem-

ma 4.18 (ii)) and L � hTz; �i. However, Tz is at least a hyperplane of hTz; �i and
hence contains at least a point of L � X , contradicting Tz \ X.�/ D ;. This shows
the claim.

Claim 2. For each point u 2 X.�/ n ¹pº, the subspace ��u contains no points of
.p? \ �/� n ¹u�º. Let u 2 X.�/ n ¹pº be arbitrary and suppose that ��u contains a
point r 2 .p? \ �/� with r ¤ u�. By Claim 1, r … T �z , so Lemma 4.18 (ii) implies
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that there is a point ru on X.�u/ n ¹z; uº with r�u D r . By the same token, there is
a point r 0 on X.�/ collinear to p with r 0� D r . By Lemma 4.16, the line hru; r 0i is
singular and meets X.�p/ in a point, say p0. Observe that ru ¤ u because r ¤ u�; in
particular, ru … � and hence p ¤ p0. This however means that r 0 is collinear to both
p and p0, contradicting w�p D 0. The claim follows.

Claim 3. For each point u 2X.�/ n ¹pº, the subspace Tz.�u/� is disjoint fromX.�/� n
¹u�º. Let u 2 X.�/ n ¹pº be arbitrary and suppose that Tz.�u/� contains a point
r 2 X.�/� with r ¤ u�. Then, on the one hand, r corresponds to a line L through z
in Tz.�u/ (cf. Lemma 4.18 (iii); note L \ X D ¹zº since w�u D 0), and on the other
hand, r corresponds to a point r 0 on X.�/ n ¹pº (cf. Lemma 4.18 (ii)). Since

L� D r 0� D r;

the plane hL; r 0i meets �p in a line M through z. If M � Tz.�p/, then we obtain

r 0 2 hM;Li � Tz;

contradicting the assumption Tz \ X.�/ D ;; if M ª Tz.�p/, then M contains a
point z0 in X other than z, and using (MM2) we deduce that the point hz0; r 0i \ L
belongs to X , contradicting L � Tz.�r 0/. This shows the claim.

Now let u be a point of X.�/ collinear to p. Then, since dim… D d C 1, the
.d � 1/-space Tz.�u/� has a subspace T of dimension at least d � 2 in common
with ��. By Claim 3, T contains no points ofX.�/�, which by Lemma 4.18 (iii) means
that T � Tp.�/�. Moreover, since u ? p, we have u� 2 Tp.�/� as well, so

U WD hT; u�i D Tp.�/
�;

where the equality follows from dimU D dimTp.�/
� D d � 1 (cf. Lemma 4.18 (i)).

Consequently, U � ��u contains points of .p? \ �/� n ¹u�º, violating Claim 2. This
contradiction shows the lemma.

The next proposition will be used globally, but also locally, in residues. It shows
that we may often assume that there are at least two members of index at least 1, be it
in .X;„/ or in a residue.

Proposition 6.2. Let .X;„/ be a weak AVV of type d . Then each point of X is con-
tained in either zero or at least two members of „ having index greater than 0.

We will show this proposition in a series of lemmas. Suppose for a contradiction
that .X;„/ is a weak AVV of type d such that there exists a point x 2 X contained
in a unique member �� 2 „ of index w > 0.

Lemma 6.3. No singular line meets �� in a unique point, and consequently for any
point p in X.��/, �� is the unique member of „ of index w > 0 containing p.
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Proof. If there were a singular line Lx through x not in ��, then by Lemma 4.3,
there exists a singular line L0x of �� through x such that the plane spanned by Lx
and L0x is not singular. The same lemma then implies that Lx and L0x are contained
in a unique member of „ n ¹��º through x, which is of index at least 1, contradicting
our assumption on x. Now let z be a point inX.��/ collinear to x and suppose thatLz
is a singular line meeting �� in precisely z. Again by Lemma 4.3, we either have that
the lines Lz and hx; zi determine a member of „ (which is of index at least 1) or a
singular plane. Both options yield a singular line through x not in ��, a possibility we
already ruled out. Hence no lines through z outside �� exists; consequently �� is the
unique member of „ through z. Now a connectivity argument completes the proof of
the lemma.

We first get rid of the finite case.

Lemma 6.4. The field K is infinite.

Proof. Suppose for a contradiction that K is finite and has order q. As in the proof of
Lemma 5.6, this implies d D 2 and jX.��/j D .q C 1/2. Let p be a point of X n ��.
By Lemma 6.3, for each point z of X.��/, the points p and z determine a unique
member of „, which has index 0. This yields .q C 1/2 tangent planes at p which
intersect each other pairwise in p (by (MM2)). Hence, they account for

.q C 1/2.q2 C q/C 1 > q4 C q3 C q2 C q C 1

points of the 4-dimensional subspace Tp , a contradiction.

The next three lemmas and corollary are generalisations of three lemmas and a
proposition in [14] (there, all members of „ had index 0).

Lemma 6.5. For each point p 2X with p … ��, the subspaces Tp and �� are disjoint.

Proof. Suppose for a contradiction that some point z belongs to both Tp and ��. Pick
two distinct points r; q 2 X.��/ (and we can assume that dimhr; q; zi D 2). Then
Œr; p� and Œq; p� have index 0 by Lemma 6.3 and so they intersect only in p, implying
by (MM3) that

Tp D hTp.Œr; p�/; Tp.Œq; p�/i:

Hence, there is a line L through z intersecting Tp.Œr; p�/ in a point u and intersecting
Tp.Œq; p�/ in a point v. The line hu; pi intersects Tr.Œr; p�/ in a point a and the line
hv; pi intersects Tq.Œq; p�/ in a point b. By Lemma 6.4, jKj > 2, so we find two
points a0 2 hu; pi and b0 2 hv; pi such that z 2 ha0; b0i and a0 ¤ a, b0 ¤ b. Since
a0 … Tr.Œr; p�/, there is a point a00 2 X n ¹rº on hr; a0i and a point b00 2 X n ¹qº
on hq; b0i. The line ha00; b00i belongs to the 3-space hr; q; z; a0i, hence it intersects the
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plane hr; q; zi in some point z0, which consequently belongs to ��. The line ha00; b00i
is not singular by Lemma 6.3. Then (MM10) and (MM2) yield

z0 2 �� \ Œa00; b00� � X;

implying that ha00; b00i is singular after all, a contradiction.

For the rest of this section, set � WD ��� (see Definition 4.16).

Corollary 6.6. The projection � is injective on X n ��.

Proof. Suppose for a contradiction that x; y 2 X n �� have the same image under �.
Then, by Lemma 4.17, the line hx; yi is singular and intersects X.��/ non-trivially,
contradicting Lemma 6.3.

Lemma 6.7. Let z 2X.��/ be arbitrary. Then the subspace h��; Tzi does not contain
any point of X n ��.

Proof. Put S D h��; Tzi. Then suppose for a contradiction that there is a point u 2
.S \X/ n ��. Since u is not collinear with z by Lemma 6.3, we see that

Œz; u� D hTzŒz; u�; ui � S:

By (MM3), dimS�2d C 1, so Œz;u�\�� contains a line. This contradicts Lemma 6.3.

Lemma 6.8. The geometry .X;„/ is a projective plane and all members of „ n ¹��º
have index 0.

Proof. Take any � 2 „ n ¹��º meeting �� non-trivially. By Lemma 6.3, � has index 0
and intersects �� in a unique point z 2 X . We will use the following notation. By
Lemma 4.18, X.�/� is an affine d -space ˛� . By (MM3), its .d � 1/-space at infinity
only depends on z, and we denote it by …z . Finally, we set …� WD ˛� […z .

Now let z1 and z2 be two non-collinear points of X.��/ and fix an arbitrary point
p 2X n ��. For i D 1;2, set �i WD Œp;zi �. By Lemma 6.5, we may assume that Tp �…,
the target space of �. Then the subspace…�i coincides with Tp.�i /. By Corollary 6.6,
˛�1 \ ˛�2 D ¹pº, in particular

…z1 \…z2 D ;:

We denote † D h…z1 ; …z2i and note that this is a hyperplane in the subspace Tp .
Also, …z1 and …�2 are complementary subspaces in Tp .

Let q be an arbitrary point of Tp n .…�1 [ …�2 [ †/, which is indeed always
non-empty. Then the subspace hq; …z1i intersects …�2 in a point q2 2 ˛�2 n ¹pº.
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Let u2 2 X be the inverse image under � of q2 (cf. Lemma 6.6). Then the projec-
tion of Œz1; u2� clearly coincides with h…z1 ; q2i, and so q can be written as u� with
u 2 X.Œz1; u2�/. We claim that Œp; u� intersects �� non-trivially. Indeed, suppose for
a contradiction that

Œp; u� \ �� D ;:

Then � induces an isomorphism between Œp; u� and Œp; u��, and hence

Œp; u�� D hTp.Œp; u�/; ui
�
D hTp.Œp; u�/

�; u�i D hTp.Œp; u�/; qi � Tp:

This implies that Œp; u�� and …�1 intersect in a line L containing p. This line is
not contained in Tp.Œp; u�/, as Tp.Œp; u�/ and …�1 D Tp.�1/ intersect precisely in p
by (MM2). Hence, L contains a second point y of X.Œp; u�/�, y ¤ p. By Corol-
lary 6.6, ¹yº D L\…z1 . This, however, contradicts Lemma 6.7. The claim is proved.

It follows that q is contained in Tp.Œp; u�/ D Œp; u��, and therefore every point of
Tp n .…�1 […�2 [†/, and hence every point of Tp n†, is contained in a tangent sub-
space at p to some member of „ containing p and intersecting �� in a point. Axioms
(MM2) and (MM3) imply that there is no room for additional tangent spaces. We con-
clude that every member of„ through p meets �� non-trivially. Since p 2 X n �� was
arbitrary, this shows that every member of „ n ¹��º intersects �� in a point. This also
implies that every point of X n �� is projected into Tp and so Tp coincides with ….
From that we then deduce, by a dimension argument, that also each pair of members
of „ n ¹��º has a non-trivial intersection. The proposition follows.

Proof of Proposition 6.2. By Lemma 6.8, .X;„/ is a projective plane in which �� is
the unique member of„ having index greater than 0. This contradicts Lemma 5.6.

7. Case 1. There is an x 2 X with max.Wx/ D 1

Suppose .X; „/ is an AVV of type d and with global index set W in PN .K/, with
max.Wx/ D 1 for some x 2 X . Our aim is to show the following proposition.

Proposition 7.1. Let .X;„/ be an AVV of type d with global index setW in PN .K/,
containing a point x 2 X with max.Wx/ D 1. Then d D 2 and W D ¹1º, and hence
.X;„/ is isomorphic to S1;2.K/, S2;2.K/ or S1;3.K/.

Note that the existence of � 2 „ through x with w� D 1 implies d � 2. If d > 2,
we can consider the residue .Xx; „x/ (cf. Lemma 4.10); if d D 2, this makes no
sense (a member � 2 „ with w� D 1 would correspond to two points in the residue).
Our technique for general d will work for d � 4, so we treat the cases d D 2 and
d D 3 separately. The case d D 2 takes quite some effort, compared to the other
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cases; however, it is precisely this case that leads to the actual examples, so we begin
with it.

7.1. The case d D 2

Note that d D 2 implies that W � ¹0; 1º. If W D ¹1º we are in the split case and
we reach our desired conclusion, so assume that W D ¹0; 1º. Hence, we may assume
that Wx D ¹0; 1º. By Proposition 6.2, there are at least two members of „ through x
of index 1. Henceforth, Cx is the connected component in .X;L / containing x.

The approach we take is inspired by [21], where the case in which all members
of „ are split quadrics was treated.

Our first goal is to show that there are no singular planes in Cx .

Lemma 7.2. Suppose � is a singular plane in Cx and let z 2 � . If there are three
singular lines L1; L2; L3 through z not in � , then a pair of them is contained in
a singular plane � 0. Moreover, either L1 [ L2 [ L3 � � 0, or h�; � 0i is a singular
3-space.

Proof. Set † WD hL1; L2; L3i. If † is a plane, then, by Lemma 4.2, it is a singu-
lar plane and the assertion is proved. So we assume henceforth that dim† D 3. By
(MM3), dim Tz � 4 and hence the 3-space † has a line L4 in common with � .
The planes hL1; L2i and hL3; L4i are distinct and hence meet in a line L5. Using
Lemma 4.3 and (MM2), we deduce that L5 is singular. If L5 … ¹L1; L2º, then the
plane hL1;L2i is singular. Else, hL3;L5i is singular and we may renumber subscripts
so that hL1; L2i is singular again. Set � 0 WD hL1; L2i.

Now suppose that � \ � 0 D ¹zº. We claim that L3 � � 0. Indeed, if not, then L3
is contained in a unique plane �3 intersecting � and � 0 in respective lines L and L0

through z. The plane �3, containing three singular lines, is singular too. But then
h�;�3i is a singular 3-space…: If not, then (MM1) and Lemma 4.3 imply that � [ �3
is contained in a member of„, which violates the assumption max.W /� 1. Likewise,
h� 0; �3i is a singular 3-space …0 and, again likewise, h…;…0i is a singular 4-space.
Since h…;…0i D Tz , this is not possible (no tangent plane to a member of „ is sin-
gular). We conclude that � \ � 0 is a line, and as before, this means that h�; � 0i is a
singular 3-space.

Lemma 7.3. The connected component Cx contains no singular planes.

Proof. Suppose first for a contradiction that � is a singular plane through x. For any
line L of � through x, let � 0 be a member of „ through it (which exists by (MM1)).
Denote by M the unique singular line of � 0 through x distinct from L. Inside Tx
(which has dimension 4 by (MM3) and since 0 2 Wx), a dimension argument implies
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that there is a plane � 0 through M meeting both planes � and Tx.�/ in respective
lines. Lemma 4.3 (1) implies that � 0 \ Tx.�/ is a singular line, contradicting w� D 0.
We conclude that x is not contained in a singular plane.

Now let y be an arbitrary point collinear to x and suppose for a contradiction that
there is a singular plane � through y. Denote by L the line hx; yi. We establish three
singular lines through y not in � . To that end, take three points y1; y2; y3 on a lineM
in � with y … M . By the above, there are no singular planes through x, so we can
consider �i WD Œx; yi � 2 „, i D 1; 2; 3. Note that �i contains the lines L and hy; yi i.
Let Li be the unique singular line of �i through yi distinct from hy; yi i; let L0i be the
unique singular line of �i through x distinct from L, i D 1; 2; 3. For each i 2 ¹1; 2; 3º,
Lemma 4.3 (2) implies that hM;Li i is not singular. So we can put � 0i WD ŒLi ;M �. Since
there are no singular planes through x, no pair of lines in ¹L01;L

0
2;L
0
3º spans a singular

plane. In particular, the points p1 WD L1 \ L01 and p2 WD L2 \ L02 are not collinear.
So, if � 01 coincided with � 02, then M � � 01 D Œp1; p2� 3 x, a contradiction, since x
is then collinear to some point of M , yielding a singular plane through x. Similarly,
� 02 ¤ �

0
3 ¤ �

0
1. Let M 0i be the unique singular line in � 0i through y1 distinct from M ,

i D 1; 2; 3. Then M 01 D L1;M
0
2;M

0
3 are three distinct singular lines through y1, not

any belonging to � . If y were collinear to M 0i , then y 2 � 0i and hence � 0i contains the
singular plane � , a contradiction to w�0

i
D 1. So we can consider � 00i WD Œyy1; M

0
i �,

which yields three distinct members of „. For each i 2 ¹1; 2; 3º, we now take the
unique singular lineMi in � 00i through y distinct from hy;y2i. We obtain three distinct
singular lines M1;M2;M3 through y not in � .

Renumbering if necessary, we may assume that L … ¹M1; M2º. Applying then
Lemma 7.2 to the triple ¹L;M1;M2º and using that L is not contained in a singular
plane, we obtain that hM1;M2; �i is a singular 3-space. This however contradicts the
fact that M1 and M2 are not collinear with y1. We conclude that there is no singular
plane through y.

Now by connectivity, the lemma follows.

The following proposition, which we will prove in a series of lemmas, is slightly
more general, for it allows Wx D ¹1º (this will be useful in the next section). It
assumes that there are no singular planes, which is something we have already proved
in case Wx D ¹0; 1º.

Proposition 7.4. Let .X;„/ be an AVV of type 2 with global index set W and such
that max .W / D 1. Then each connected component of .X;L / not containing sin-
gular planes, is either a point (if there are only members of index 0 through it) or
isomorphic to S1;1;1.K/.

We will prove this proposition in a series of lemmas. From now on, we let .X;„/
be an AVV of type 2 with max .W /D 1. We select an arbitrary point x 2 X , consider
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its connected component Cx , and assume that it does not contain singular planes. If
all members of „ through x have index 0, then Cx D ¹xº. By Proposition 6.2, we
may henceforth assume that there are at least two members of„ through x of index 1
(and every such member intersects X in a non-thick quadrangle).

Lemma 7.5. If every pair of members of„ of index 1, inside Cx , which share a point,
have a line in common, then Cx Š S1;1;1.K/.

Proof. Our assumption implies that Cx is a 0-lacunary parapolar space whose symps
are quadrics of projective index 1 (see Definition 4.6). Since the symps of Cx are all
hyperbolic quadrics in dimension 3, Fact 4.8 implies that Cx Š S1;1;1.K/.

Henceforth, we may assume that Cx contains a pair of members of „ of index 1
sharing exactly a point.

Lemma 7.6. Let y be a point of Cx . Then there are four singular lines through y.
Moreover, any four singular lines through y span a 4-space, which coincides with Ty .

Proof. Let z 2Cx be a point contained in two members �1; �2 of„ intersecting in pre-
cisely ¹zº. This yields four singular lines L1; L2; L3; L4 through z. If y D z, the first
assertion is proved. Now suppose that y is collinear to z, and put LD hy; zi. Renum-
bering if necessary, we may assume that L … ¹L1; L2; L3º. As there are no singular
planes, ŒL; Li � 2 „ for i 2 ¹1; 2; 3º. Considering the singular lines Mi in ŒL; Li �
through y distinct from L, i D 1; 2; 3, we obtain four singular lines through y, too.
By connectivity, the first assertion follows.

Next letK1;K2;K3;K4 be four singular lines through y. The absence of singular
planes implies that ŒK1;K2� and ŒK3;K4� belong to„, and hence (MM2) implies that

hK1; K2i \ hK3; K4i � ŒK1; K2� \ ŒK3; K4� D ¹yº:

So dimhK1; K2; K3; K4i D 4. According to (MM3), Ty D hK1; K2; K3; K4i.

Henceforth, we fix an index 1 member � of „ contained in Cx .
The following lemmas will be helpful to study the projection �� of X n � from �

onto a complementary subspace.

Lemma 7.7. Let L1 and L2 be two distinct singular lines of X meeting � exactly in
(not necessarily distinct) points x1; x2, respectively. Then dimh�; L1; L2i D 5.

Proof. If x1 D x2, then this follows from Lemma 7.6. So assume x1 ¤ x2. Suppose
for a contradiction that dimh�; L1; L2i D 4. Then we claim that L1 and L2 do not
intersect. Indeed, if they do, say in a point p, then, if x1 and x2 are collinear then we
get a singular plane hp;x1; x2i, contradicting our assumption; if not, then � D Œx1; x2�
contains L1 and L2 by Lemma 4.3, a contradiction. This shows the claim. Hence
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hL1; L2i is a 3-space, which hence intersects � in a plane � . Let y be a point on
� n hx1; x2i not in X . Then y lies on a line M meeting both L1 and L2 in points,
say z1; z2, respectively. Since y … hx1; x2i, we have hz1; z2i ª � . This means that
y 2 Œz1; z2� \ � , with Œz1; z2� ¤ �, contradicting (MM2).

Lemma 7.8. Suppose �1; �2 are distinct members of „ n ¹�º with �1 \ �2 \ � a sin-
gular line L. Then W WD h�; �1; �2i has dimension 7.

Proof. Since �; �1; �2 share L, we already have dimW � 7. Suppose for a contradic-
tion that dimW � 6. For i D 1; 2, put Wi WD h�; �i i and note that dimWi D 5. So
either W D W1 D W2 or W1 \ W2 has dimension 4. In the first case, we take any
4-space U in W through �; in the second case we put U D W1 \W2. In both cases,
U is a hyperplane in Wi . We now take any singular line Mi on �i disjoint from L. By
choice of U , the line Mi has exactly one point mi in common with U . For i 2 ¹1; 2º,
we denote by Ri the unique singular line of �i through mi distinct from Mi , and
note that Ri intersects L, and hence � , in a point. Lemma 7.7 implies that R1 D R2.
However, then

�1 D ŒL;R1� D ŒL;R2� D �2;

a contradiction.

Lemma 7.9. Let x1 and x2 be two distinct collinear points on X.�/. Then the 5-
spacesU1D h�;Tx1i andU2D h�;Tx2imeet exactly in � , hence dimh�;Tx1 ;Tx2i D 7.

Proof. Let L1 and L01 be two singular lines through x1 not in � . By Lemma 7.6,
Tx1 is generated by L1; L01 and the two singular lines of � passing through x1. Set
L WD hx1; x2i. As there are no singular planes, �1 WD ŒL;L1� and � 01 WD ŒL;L

0
1� belong

to „. Let L2 and L02 be the respective singular lines of �1 and � 01 through x2 distinct
from L. Then Tx2 is generated by L2; L02 and the two singular lines of � through x2.
As such,

h�; �1; �
0
1i D hU1; U2i:

By Lemma 7.8, the latter is 7-dimensional, from which it follows that U1 \ U2 is
3-dimensional, and hence coincides with � .

Lemma 7.10. Let p 2 X.�/ be arbitrary. Then each point of h�; Tpi \ X either
belongs to � , or is on a singular line together with p.

Proof. Suppose by way of contradiction that some point y not collinear to p is con-
tained in h�; Tpi n � . Put � 0 WD Œp; y�. Then

� 0 D hTp.�
0/; yi � h�; Tpi:
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Since the latter has dimension 5, (MM2) implies that � \ � 0 is a singular line L
through p. Let M be the singular line of � 0 through y meeting L in a point, say z. By
assumption, z ¤ p. So, recalling y 2 h�; Tpi, we get

M � h�; Txi \ Tz � h�; Txi \ h�; Tzi;

and as M ª � , this contradicts Lemma 7.9.

We are now ready to use to projection �� from � onto some subspace … comple-
mentary to � in the subspace S generated by the points of Cx .

Lemma 7.11. The subspace S generated by the points of Cx is 8-dimensional.

Proof. Let x1; x2 be distinct points on a singular line L of � . Let i D 1; 2. By Lem-
ma 7.6, there are two singular lines Li ; L0i through xi outside � . Recalling that there
are no singular planes, �i WD ŒLi ; L0i � is well defined. By Lemma 4.18, the image of
X.�i / n .Li [ L

0
i / under �� is an affine plane ��i in … with projective extension �i .

By the same lemma, Ti WD �i n ��i is the image of Txi .�i /, which coincides with T ��xi
by (MM3). According to Lemma 7.9, W WD h�; Tx1 ; Tx2i is 7-dimensional, so T1
and T2 are skew lines and dim… � 3.

First suppose for a contradiction that dim… D 3. In this case, the plane �1 has
a point z in common with the line T2, and z … T1 by the above (so z 2 ��1 ). Let y
be the unique inverse image in �1 of z in X ; then y 2 X.�1/ n x?1 and y 2 h�; Tx2i.
By Lemma 7.10, y ? x2, implying that x2 2 Œx1; y� D �1, a contradiction. Hence,
dim… � 4. We need to show that dim…D 4, so suppose now for a contradiction that
dim… > 4 (this means that there are projective lines in hCxi skew to W ).

We distinguish two cases. First we assume that there is some singular line R dis-
joint from W . In particular, R is disjoint from Txi , and so no point of R is collinear
to xi , i D 1; 2. We claim that R contains a point v with v? \ L D ;. Indeed, if not
then let y1; y2 be two distinct points of R and let zi ? yi , with zi 2 L, i D 1; 2.
Since there are no singular planes zi is unique, i D 1; 2, and z1 ¤ z2. Hence, Œy1; z2�
contains L and R and so x1 is collinear to some point of R after all. This shows the
claim.

So let v 2 R be such that v? \ L D ;. The members Œv; x1� and Œv; x2� of „ do
not contain L. Let Mi denote the line Tv.Œv; xi �/ \ Txi .Œv; xi �/, i D 1; 2. Then

M1 \M2 � Tx1 \ Tx2 ;

and Lemma 7.9 implies M1 \M2 � L. Since v is not collinear to any point of L, we
deduce that M1 and M2 are disjoint. This implies that Tv contains a 3-dimensional
subspace ofW , namely hM1;M2i. Since, by (MM3), dimTv � 4,R�Tv intersectsW
non-trivially, a contradiction.
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Secondly, assume that no singular line is disjoint from W . Let x�1 ; x
�
2 2 X be

such that hx�1 ; x
�
2 i is disjoint from W . Put �� WD Œx�1 ; x

�
2 �. If �� has index 1, then,

as R is skew to W we see that �� meets W in at most a line, and hence we find a
singular line R� on �� skew toW , a contradiction. So �� has index 0. Since x�i … W ,
and in particular x�i is not collinear to xi , we can consider � 0i WD Œxi ; x

�
i � 2 „. Then

Tx�
1
.� 01/ \ Tx�2

.� 02/ is empty, for if it contained a point z, then by (MM2), z 2 X , and
hence hx�1 ; zi [ hx

�
2 ; zi would be two singular lines in �� by Lemma 4.3, a contradic-

tion tow�� D 0. By Lemma 7.6, there are four singular lines through x�i spanning Tx�
i

,
and by assumption, each of these lines has a point in common with W . This implies
that Tx�

i
is a singular 4-space sharing a 3-space Wx�

i
with W , i D 1; 2. Clearly, Wx�

1

andWx�
2

share the line Tx�
1
.��/\Tx�

2
.��/, so using Tx�

1
.� 01/\Tx�2

.� 02/D;, we obtain
dimhWx�

1
; Wx�

2
i D 5. This means that

W � WD hTx�
1
; Tx�

2
; ��i D hWx�

1
; Wx�

2
; x�1 ; x

�
2 i

has dimension 7; and hence hTx�
1
; ��i \ hTx�

2
; ��i D ��.

In what follows we interchange the roles of �; xi ,W and ��; x�i ,W �, respectively.
Since � and �� have different index, the arguments are not entirely identical, hence
we present them in detail.

Let R� be a singular line of � disjoint from L. Let v� be an arbitrary point on R�

and note that v� … y?i since v� … Tyi , i D 1; 2. Let M �i denote the line

Tv�.Œv
�; x�i �/ \ Tx�i

.Œv�; x�i �/; i D 1; 2:

There are two cases: Suppose first thatM �1 \M
�
2 ¤;. ThenM �1 \M

�
2 � Tx�1

\ Tx�
2

,
and since by the previous paragraph hTx�

1
; ��i \ hTx�

2
; ��i D ��, we obtain

M �1 \M
�
2 � �

�:

By (MM2), the intersection M �1 \M
�
2 belongs to X and hence to x�1

?
\ x�2

?, con-
tradicting w�� D 0. Suppose now thatM �1 \M

�
2 D ;. This implies that Tv� contains

a 3-dimensional subspace ofW �, namely hM �1 ;M
�
2 i. Since, by (MM3), dimTv� � 4,

R� � Tv� intersects W � non-trivially, a contradiction.

We are now ready to prove Proposition 7.4.

Proof of Proposition 7.4. Again, let x1; x2 be two points on � on a common singular
line L. Let L1; L01 be two distinct singular lines through x1, not inside � . Put x� WD
ŒL; L1� (recall that there are no singular planes) and let L2 be the singular line of x�
through x2 distinct from L. Finally, let L02 be an arbitrary singular line through x2,
distinct from L2 and not in � . Put � 0i WD ŒLi ; L

0
i � for i D 1; 2.

By Lemma 7.11, there is a 4-dimensional subspace … in hCxi complementary
to �. Then the image of X.� 0i / n .Li [ L

0
i / under �� is the set of points of an affine



A. De Schepper, J. Schillewaert, and H. Van Maldeghem 40

plane ��i in …, with projective completion �i , and the line Ti WD �i n ��i is the pro-
jection of Txi , i D 1; 2. The projective planes �1 and �2 meet non-trivially by a
dimension argument. According to Lemma 7.9, the lines T1 and T2 are skew; also,
the arguments of the second paragraph of the proof of Lemma 7.11 imply that T1
does not meet �2, and T2 does not meet �1. Hence the affine planes ��1 and ��2
meet in a unique point z and so we have points z1 in X.� 01/ n .L1 [ L

0
1/ and z2

inX.� 02/ n .L2 [L
0
2/ lying in a common 4-space U with � . We claim that z1 D z2, so

suppose for a contradiction that z1 ¤ z2. Let �� be a member of „ containing z1; z2.
Considering �� \ � and (MM2), we see that hz1; z2i is a singular line meeting �

in some point u 2 X . Note that u … L because otherwise L � � 01 by Lemma 4.3,
a contradiction. So, possibly interchanging the roles of x1 and x2, we may assume
that hu; x2i is not a singular line; let ¹vº D u? \M2, with M2 the singular line
of � through x2 distinct from L. Recall that z1 … Tx2 , as z … T2, so we can consider
�12 WD Œz1; x2�. Then we show �12 \ � D ¹x2º. Indeed, if L � �12, then x1 2 �12 and
hence �12 D � 01, a contradiction; ifM2 belongs to �12, then u 2 v? \ z?1 (note v … z?1
by absence of singular planes), and then �12 D � , a contradiction. Thus we obtain that
the image under �� of X.�12/ n x?2 coincides with the plane ��2 (for the projection
is determined by z��1 D z and Tx2.�12/

�� D T
��
x2 D T2). Noting that Tz1.�

0
1/
�� D �1

and Tz1.�12/
�� D �2, and recalling that h�1; �2i D…, we obtain that Tz1 is a 4-space

disjoint from � . However, u 2 Tz1 \ � , a contradiction. The claim follows.
Now let Mi be the singular line in � 0i through zi meeting Li , i D 1; 2. Let mi

denote the point Mi \ Li . Remember that L1; L;L2 are contained in x�; let L0 be the
singular line of x� throughm1. Note thatM1¤M2, for otherwiseM1 D L

0 DM2 and
hence � 01 D x� D �

0
2, a contradiction. Moreover,m1 andm2 are not collinear, for other-

wise hz1;m1;m2iwould be a singular plane, a possibility we excluded by assumption.
However, this means that z1 2 m?1 \m

?
2 �
x� , a contradiction, recalling � 01 \ x� D L1

and z1 … L1.
We conclude that our initial assumption that Cx contains a pair of members of „

of index 1 sharing exactly one point is false. Hence by Lemma 7.5, Cx is isomorphic
to S1;1;1.K/.

As a final step, we rule out the existence of connected components isomorphic
to S1;1;1.K/.

Proof of Proposition 7.1 in case d D 2. Suppose for a contradiction thatW D ¹0; 1º.
By assumption, there is a � 2„ through x of index 1, so the connected component Cx
of x in .X;L / is more than a point. By Lemma 7.3, Cx does not contain singular
planes and hence Proposition 7.4 then implies that Cx is isomorphic to S1;1;1.K/.
Pick two points x and y at distance 3 in Cx and let†D hCxi. Then Œx;y� is a member
of „ of index 0. Note that the presence of Œx; y� implies (by (MM3)) that dim Tx D
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dim Ty D 4. Inside Œx; y�, we see that the tangent planes Tx.Œx; y�/ and Ty.Œx; y�/
intersect each other in a lineL. On the other hand, inside Cx ŠS1;1;1.K/, the tangent
spaces of x and y are disjoint 3-spaces (as indeed they span the 7-space, which follows
from (P1) in [23, Section 17.2]), which consequently both contain a unique point ofL.
Thus L belongs to †, and hence so does Œx; y� D hx; y;Li. However, this contradicts
Lemma 5.3. We conclude that W D ¹1º. The main results from [21] then reveal that
.X;L / is isomorphic to one of S1;2.K/, S2;2.K/, S1;3.K/ indeed.

7.2. The case d D 3

Proof of Proposition 7.1 in case d D 3. Let x be a point with max .Wx/ D 1. Then
let „.Cx/ be the set of members � 2 „ of index 1 contained in Cx , and let L .Cx/
be the set of singular lines of Cx . Due to Proposition 6.2, j„.Cx/j � 2. Now we
observe that .Cx;„.Cx// is a so-called Lagrangian Grassmannian set, as introduced
in [20]. Indeed, the members of „.Cx/ are projective 4-spaces intersecting Cx in a
non-singular parabolic quadric (and all such quadrics are isomorphic). Moreover, two
points x; y at distance at most 2 in the point-line geometry .Cx;L .Cx// are con-
tained in at least one member of „.Cx/; indeed, by (MM1) there is a member � of „
containing x and y, which obviously belongs to „.Cx/ if x ? y. If x is at distance 2
from y, then ; ¤ x? \ y? � X.�/, so � has index 1. Furthermore, axioms (MM2)
and (MM3) hold in .Cx; „.Cx//. This now implies, by [20, Main Result 2], that
.Cx;„.Cx// is isomorphic to the Lagrangian Grassmannian LG.3; 6/.K/, which, as a
point-line geometry, is isomorphic to the dual polar space C3;3.K/, and which lives in
projective 13-space (hence, dimhCxi D 13).

This also implies that .Cx;L .Cx// has diameter 3. Hence, there exist two points
y; z 2 Cx at distance 3. Then Œy; z� is a member of „ of index 0. It is clear that
Ty.Œy; z�/ \ Tz.Œy; z�/ is a plane. However, in LG.3; 6/.K/, the (6-dimensional) tan-
gent spaces of points at distance 3 are disjoint (due to the fact that they span the
13-space hCxi, which follows from [23, Section 17.2 (P1)]), so Ty \ Tz D ;, a con-
tradiction.

7.3. The case d � 4

We now aim to show Proposition 7.1 for d�4. Let x2X be a point with max.Wx/D1.
By Corollary 4.10, .Xx; „x/ is a weak pre-AVV (use also Proposition 6.2 to see that
j„xj � 2).

Lemma 7.12. The maximal singular subspaces of .Xx; „x/ are pairwise disjoint.

Proof. Suppose for a contradiction that two distinct maximal singular subspaces M1

and M2 of .Xx; „x/ have a point p in common. Note that this implies dim Mi � 1,
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for i D 1;2. LetL1 andL2 be lines in M1 and M2, respectively, through p. In .X;„/,
this corresponds to planes �1 and �2 intersecting each other in a line M through x.
Let pi be a point of �i nM , for i D 1; 2. If p1 were not collinear with p2, then
axiom (MM10) together with Lemma 4.3 would imply that there is a member of „
containing �1 [ �2, contradicting max.Wx/D1. Hence p1 ? p2, which means that
L1 and L2 span a singular plane. Varying L1 and L2 yields the singular subspace
hM1;M2i, contradicting the maximality of Mi , i D 1; 2.

It is now convenient to distinguish between the finite and infinite case, noting that
in the infinite case, we really only need the field K to have at least 5 elements, but the
counting arguments for jKj � 4 are uniform and hold for all finite fields.

7.3.1. The infinite case.

Proof of Proposition 7.1 for d � 4 and K infinite. Take � 2 „x to be arbitrary. Since
j„xj � 2, there exists p 2 Xx n � . By Lemma 4.3, p? \ � is a singular subspace,
and hence there are distinct points p1; p2 2 X.�/ not collinear to p. Set �i WD Œp; pi �,
i D 1; 2. By Lemma 5.2 (applied to .Xx; „x/, recalling dim Tx � 2d and jKj > 2),
there is a singular line meeting �1; �2 and � in three distinct points. Lemma 5.1 then
yields conics C1 � X.�1/ and C2 � X.�2/ through p on a common normal rational
cubic scroll. Moreover, since jKj > 4, all its transversal lines, except possibly the one
through p, are singular; and so is the unique lineM meeting all these transversal lines.
Let L1 and L2 be two such singular transversal lines. Since both of them intersect M
in a point, Lemma 7.12 implies that they are collinear with M and, repeating this
argument, hL1; L2i is a singular 3-space. This however contradicts the fact that the
points L1 \ C1 and L2 \ C1 are not collinear.

7.3.2. Finite case. In this subsection, we assume that K is the finite field Fq . Since
over a finite field quadrics of index 0 only exist in dimensions 2 and 3, we deduce
d D 4. Hence, by (MM3), Nx WD dimhXxi � 7.

Lemma 7.13. The maximal singular subspaces of .Xx;„x/ have dimension at most 1,
and at least one singular line in Xx exists.

Proof. Let M be a maximal singular subspace of .Xx; „x/. Let p 2 Xx be a point
outside M (which exists, as there are non-collinear points in .Xx;Lx/). For each
point z of M , it follows from Lemma 7.12 that the points p and z are non-collinear,
and hence they define a unique member �z of „x . Let � be the projection of Xx
fromM onto a complementary subspace… in hXxi. This projection is injective, since
points with the same image are necessarily collinear to a point of M , contradicting
Lemma 7.12. For each member �z of „x , z 2M , the projection of X.�z/ n ¹zº is an
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affine plane ��z 3 p
� with projective completion �z , and we have

Lz WD �z n �
�
z D Tz.�z/

�:

We claim that, for z1; z2 2 M , z1 ¤ z2, �z1 \ �z2 D ¹p
�º. Indeed, suppose for a

contradiction that p� ¤ u 2 �z1 \ �z2 . By possibly considering hp�; ui \ Lz1 , we
may assume u 2 Lz1 . If u 2 Lz2 , then there exists a point v 2 hp�; ui, with p� ¤
v 2 ��z1 \ �

�
z2

, contradicting injectivity of �. So u … Lz2 , and hence there exists
u2 2 X.�z2/with u�2D u. Since u 2Lz1 , there exists a lineU1 in Tz1.�z1/ through z1
with U �1 D u. This implies that the plane hU1; u2i contains a point u0 2 M n ¹z1º.
Then Œu0; u2� exists and intersects �z1 in a point of U1 n ¹z1º not belonging to Xx ,
contradicting (MM2). The claim is proved.

Suppose for a contradiction that dim.M/ � 2. Then dim.…/ � 4 (recall Nx � 7).
Then the number of points in the union of the n WD jM j planes �z , z 2M , is at least
n.q2 C q/ C 1. Since n � q2 C q C 1 by assumption, this exceeds the number of
points of …. Hence dim.M/ � 1.

The first assertion follows.
For the second assertion, suppose for a contradiction that there are no singular

lines in Xx . Let � 2 „x and let � WD �� be the projection onto … (recall that Nx � 7
so dim.…/ � 3). For any � 0 2 „x meeting � in a point p 2 Xx , the q2 points of
Xx.�

0/ n ¹pº determine distinct members of„x with any point p0 2Xx.�/ n ¹pº. The
number of points ofXx on these q2 members of„x distinct from p0 is q4, whereas…
contains at most q3C q2C qC 1 points. By Lemma 4.17, this gives rise to a singular
line in .Xx; „x/ after all, a contradiction.

Lemma 7.14. Each point of Xx is contained in precisely one singular line and in at
least q2 C q members of „x . Also, jXxj � q4 C q3 C q C 1.

Proof. Suppose for a contradiction that there is a point p of Xx through which there
are no singular lines. By Lemmas 7.12 and 7.13, there is a point r 2 Xx contained in
a unique singular line. Let p̨ and ˛r be the respective numbers of members of „x
through p and r . Note that members of „x have q2 C 1 points. Then,

jXxj D p̨q
2
C 1 D ˛rq

2
C .q C 1/:

It follows that . p̨ � ˛r/q D 1, a contradiction.
Hence, each point p 2 Xx is contained in a unique singular line. This means

that jXxj D jLxj � .q C 1/. Since jXxj D p̨q
2 C q C 1, it then follows that q C 1

divides p̨ . Taking a member of „x not through p, we also see that p̨ � q
2. Com-

bined, this implies p̨ � q
2 C q. It now also follows that

jXxj D p̨q
2
C q C 1 � q4 C q3 C q C 1:
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Proof of Proposition 7.1 for d � 4 and K finite. We consider the projection � WD ��
from any � 2„x onto a complementary subspace… (which has dimension at most 3).
By Lemma 4.17, two points of Xx n � have the same image under � precisely if they
are on a singular line meeting X.�/. Hence, the number of points in �.Xx/ is, by
Lemma 7.14, at least

.q4 C q3 C q C 1/ � .q2 C 1/q D q4 C 1:

This is strictly more than the number of points in … however, a contradiction.

8. Case 2. There is a point x 2 X with max .Wx/ D 2

Suppose .X; „/ is an AVV of type d with global index set W in PN .K/ and with
max.Wx/D 2 for some x 2X . The existence of � 2„ through x withw� D 2 implies
d � 4. We show the following proposition.

Proposition 8.1. Let .X;„/ be an AVV of type d with global index set W in PN .K/

containing a point x 2X with max.Wx/D 2. ThenW D¹2º, d D 4, and hence .X;„/
is isomorphic to Gn;1.K/ for n 2 ¹4; 5º.

As in the previous case, we need a different approach for the case d D 4. We start
with the generic case d � 5. Henceforth, let x 2 X be such that max.Wx/ D 2.

8.1. The case d � 5

Lemma 8.2. Suppose � and �1 are members of „ of index 2 and index at most 2,
respectively, intersecting each other in precisely a line L 3 x. Then d D 5 and �1 has
index 2.

Proof. In the residue .Xx;„x/, the members �;�1 2„ correspond to members � 0; � 01 2
„x of index 1 and index at most 1, respectively, intersecting each other in precisely a
point p1. By Lemma 5.4 (note that d � 2 � 3), we may assume that there is a singular
line hz1; zi with z1 2 X.� 01/ n p

?
1 and z 2 X.� 0/ n p?1 . As � 0 has index 1, we can take

a singular lineM through z in � 0 that is not collinear to z1. ThenM and z1 determine
a unique member � 02 of „x .

Suppose first d � 6. Then Lemma 5.5 implies that � 02 has index at least 2, and
hence the corresponding member �2 of „ has index at least 3, which contradicts
max.Wx/ � 2. Next suppose d D 5, jKj > 2 and the index of � 01 is equal to 0 (the
latter implies � 01 \ �

0
2 is exactly z1). Then Lemma 5.5 yields the same contradiction

as just above.
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Finally, suppose d D 5 and jKj D 2. Then W D ¹2º, as the only non-degenerate
quadrics in finite 6-dimensional projective space are split. This possibility is excluded
by the main result of [21].

This has the following corollary.

Corollary 8.3. We have 2 2 Wx � ¹0; 2º.

Proof. Suppose for a contradiction that„x has a member �0 of index 0. Recall that by
assumption max.Wx/ D 2, and hence „x has at least one member �1 of index 1 too.
By Lemma 8.2, �0 \ �1 is empty. We take a pair of non-collinear points p0 2 X.�0/
and p1 2X.�1/ and obtain Œp0; p1� 2„x with �0 \ Œp0; p1�D ¹p0º. By Lemma 8.2,
the index of Œp0;p1� is 0. But then �1\ Œp0;p1�D¹p1º, contradicting Lemma 8.2.

Proof of Proposition 8.1 in the case d D 5. We proceed by showing some claims.

Claim 1. The residue .Xx; „x/ is a pre-AVV of type 3 and global index set ¹1º.
Indeed, by Corollary 8.3, „x only contains members of index 1. By Proposition 6.2,
j„xj � 2. The claim now follows from Corollary 4.12.

Claim 2. For each point p ? x, we have Tp \ X � p?. Indeed, this follows imme-
diately from Lemma 4.14 if there exist two members of „ which intersect each other
precisely in p, in particular if 0 2 Wp . So we may assume that .Xp;Lp/ is a .�1/-
lacunary parapolar space. By Fact 4.7, all members of „p are split, a contradiction.
This shows the claim.

Claim 3. For each point p ? x, there exists � 2 „ with x 2 � , p … � and w� D 2.
Indeed, by Claim 1, there exist two members �1; �2 2 X of index 2 containing x.
Suppose they both contain p. In �1 we select a singular lineL1 through x not collinear
to p. In �2 n �1, we select a singular line L2 through x not in a plane with L1. Then
the unique member of„ determined by L1 and L2 has index 2 (by Claim 1) and does
not contain p, showing the claim.

Claim 4. For each point p ? x, we have dim.Tx \ Tp/ � 8. The following argument
is inspired by the proof of [21, Corollary 4.15]. By Claim 3, there exists � 2 „ of
index 2 with p … „ 3 x. Set Wp WD Tp \ � . By Claim 2, Wp \ X.�/ D p? \ � , so
Wp � Tx.�/ and also dimWp � 3. As such there exists a line L in Tx.�/ disjoint
from Wp . Noting that Tp and Tx are at most 10-dimensional, and that L � Tx n Tp ,
the claim follows.

Now, the content of [21, Section 6.1] is to prove non-existence of pre-AVVs of
type 3with global index set ¹1º for which each tangent space has dimension at most 7.
By Claims 1 and 4, this completes the proof of Proposition 8.1 in the case d D 5.
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Proof of Proposition 8.1 in the case d �6. By Corollary 8.3, all members of„x have
index 1 and, by Lemma 8.2 and d � 6, no two of them share precisely a point. Note
that j„xj � 2, according to Proposition 6.2, and the absence of members of index 0
in „x implies that .Xx; „x/ is connected. We conclude that .Xx;Lx/ is a strong
0-lacunary parapolar space of diameter 2 whose symps are quadrics of projective
index 1. By Fact 4.8, .Xx;Lx/ is the direct product of a line and a projective n-
space. This however implies that the members of „x are hyperbolic quadrics in three
dimensions, i.e., that d � 1 D 3, a contradiction.

8.2. The case d D 4

Recall that d D 4 implies that max.W / � 2. If W D ¹2º then the main result of [21]
proves Proposition 8.1, hence we assume for a contradiction thatW ¤ ¹2º. Let z 2 X
be a point with max.Wz/ D 2. If Wz D ¹2º, then our assumption W ¤ ¹2º implies
that there exists y 2X n ¹zº with minWy < 2. Using (MM1) on the pair y; z, we have
2 2 Wy , and so by d D 4 we obtain max.Wy/ D 2. We may hence assume that there
are points x 2 X with mx WD min.Wx/ < max.Wx/ D 2.

Lemma 8.4. For each x 2X withmx <max.Wx/D 2, the residue .Xx;„x/ contains
no singular subspaces of dimension 2Cmx .

Proof. Let �1 and �2 be two members of„ through x of indexmx and 2, respectively.
Suppose for a contradiction that there is a singular subspace S of dimension 3Cmx
through x. Since S \ �2 is contained in a plane of �2 and �1 \ �2 is contained in a
line of �2, we can select a singular plane � � �2 through x which intersects S and �1
in precisely x. Inside Tx (which has dimension at most 8 by (MM3)), the subspace
h�; Si has dimension 5Cmx and therefore it intersects the 4-space Tx.�1/ in a sub-
space S 0 of dimension at least 1Cmx . Since each point of S 0 n ¹xº is on a line meeting
both S and � , (MM2) implies that S 0 is singular. However, dimS 0 D 1Cmx > w�1 ,
a contradiction.

Lemma 8.5. Let x 2X be a point withmx <max.Wx/D 2. Then the point-line geo-
metry .Xx;Lx/ is a strong parapolar space whose symps are quadrics of projective
index 1.

Proof. By assumption on x, there is at least one member �� 2„ of index 2 through x.
In .Xx;Lx/, �� corresponds to a member � of „x of index 1. Observe that Xx
contains a point z … Xx.�/, because either there is a second member of index 2 con-
taining x, or, if not, then Proposition 6.2 yields at least one member of „ of index 1
containing x.

We show that z belongs to the connected component C� of � in .Xx;Lx/. Suppose
not. Then z? \ � D ; and Œz; p� 2„x has index 0 for each p 2 Xx.�/. Moreover, we
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claim that z satisfies the following two conditions: Tz \Xx.�/ D ; and dimTz � 5.
To that end, we consider the situation in .X;„/, where � corresponds to �� and z to a
singular line L containing x, on which we select a point z0 ¤ x. Then, since 1 2 Wz0
by the above, Lemma 4.15 implies that Tz0 \X � z0

?, and hence

Tz0 \X.�
�/ � z0

?
\X.��/ D ¹xº:

This shows the first part of the claim. It also implies that Tz0 \ � is contained in Tx.�/
and is at most 2-dimensional for it contains no points of X other than x. Hence, there
is a singular line in Tx.�/ disjoint from Tz0 , which means that

dim.Tz0 \ Tx/ � 2d � 2 D 6:

The claim follows.
Lemma 6.1 now implies that there is a member of„x of index at least 1 through z

meeting � non-trivially, and hence z 2 C� after all, a contradiction. We conclude that
.Xx;Lx/ is connected and non-trivial (i.e., not a single point or a single member
of „x). The lemma now follows from Lemma 4.5.

Lemma 8.6. Let x 2 X be a point with mx < max.Wx/ D 2 . Then either .Xx;Lx/

is isomorphic to S1;1;1.K/ or each point p 2 Xx is contained in four singular lines
L1; L2; L3; L4 of Lx not in a common singular plane. In the latter case, either

(i) dimhL1; L2; L3; L4i D 4 and ¹L1; L2; L3; L4º contains at most two (neces-
sarily disjoint) pairs of collinear lines; or

(ii) dimhL1;L2;L3;L4i D 3 and three lines of ¹L1;L2;L3;L4º lie in a common
singular plane.

Proof. By Lemma 8.5, .Xx;Lx/ is a strong parapolar space whose symps are quadrics
of projective index 1. Suppose first that .Xx;Lx/ is 0-lacunary. By Fact 4.8, and the
fact that Xx does not contain singular 3-spaces by Lemma 8.4, .Xx;Lx/ is then
isomorphic to either the direct product S1;1;1.K/, or to S1;2.K/. In the latter case,
each point p 2 Xx is contained in four singular lines L1; L2; L3; L4 satisfying (ii).

So next, we suppose that there is a point p 2Xx contained in two index 1 members
of„x that intersect each other in p only. Hence, there are four singular lines through p
not all in one singular plane. Let q be a point of Xx collinear to p. Let L1; L2; L3 be
three singular lines through p distinct from pq. For each i 2 ¹1; 2; 3º, the lines pq
and Li determine either a member of „x in Xx or a singular plane. Hence it is clear
that there are at least four singular lines, not in a common plane, through q as well. By
connectivity, there are four singular lines not in a common plane through each point
of Xx .

Now assume that p 2 Xx is contained in four singular lines L1; L2; L3; L4, not
in one singular plane. First suppose that dimhL1; L2; L3; L4i D 3. Then the planes
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hL1;L2i and hL3;L4i have a line in common. By (MM2), at least one of these planes,
say hL1; L2i is singular, and one of L3; L4 is contained in hL1; L2i. Hence, (ii)
holds. Next, suppose dimhL1; L2; L3; L4i D 4. Then L1 is collinear with at most
one member of ¹L2; L3; L4º, as otherwise we obtain two singular planes sharing a
line, and by absence of quadrics of index higher than 1, this yields a singular 3-space,
violating Lemma 8.4. Hence, (i) holds.

Lemma 8.7. Let x 2 X be a point with mx < max.Wx/ D 2. Then .Xx;Lx/ is iso-
morphic to S1;1;1.K/.

Proof. Recall that, by Lemma 4.10, .Xx; „x/ is a weak pre-AVV of type 2 with
global index setW 0x in PN .K/ withN � 7. We claim that axioms (MM1) and (MM3)
hold in .Xx;„x/. Indeed, (MM10) holds, and the same argument that we used to show
axiom (PPS3) in the proof of Lemma 4.5 (iii), completes the proof of (MM1). Suppose
now for a contradiction that there is a point p 2 Xx with

dimhTp.�/ j p 2 � 2 „xi � 5:

Claim. There exist � 2 „x containing p, and three singular lines of Lx , also con-
taining p and generating a 3-space S , such that S \ � D ¹pº. We may assume that
.Xx;Lx/ is not isomorphic to S1;1;1.K/, and hence Lemma 8.6 implies there are
four singular lines L1; L2; L3; L4 2Lx through p. Set… WD hL1; L2; L3; L4i. Also
by Lemma 8.6, either dim.…/ D 4 and, up to renumbering, ŒL1; L2�; ŒL3; L4� 2 „x
(case (i)); or dim.…/D 3 and, up to renumbering,L2;L3;L4 are in a singular plane �
(case (ii)). By assumption on p, there exists �� 2 „x through p such that Tp.��/ has
at most a line in common with …. We distinguish two cases.

Case 1. Suppose that �� has index 1. Then we obtain that Tp.��/ contains a sin-
gular line L5 with L5 ª …. In case (ii), the lines L1; L2; L3; L5 span a 4-space
and as max.Wx/ � 2 and there are no singular 3-spaces by Lemma 8.4, we deduce
that ŒL1; L2�; ŒL3; L5� 2 „x , which brings us to case (i). So let us consider case (i)
now, where we assume that ŒL1; L2�; ŒL3; L4� 2 „x . Since L5 ª …, the lines L1,
L2, L3, L4, L5 generate a 5-space. We consider the 3-space S WD hL3; L4; L5i and
� WD ŒL1; L2� 2 „x . Clearly,

dimh�; Si � dimhL1; : : : ; L5i D 5:

If dimh�;SiD6, then .L3;L4;L5/ and � are as required by the claim. If dimh�; SiD5,
then � \ S is a line L. Since L does not belong to hL1; L2i D Tp.�/, it contains
a unique point p0 2 Xx.�/ n ¹pº (note that in particular, L … ¹L3; L4; L5º). Since
p … p0?, there is a point p5 2 L5 n ¹pº with p5 … p0?. Using (MM1) and (MM2), we
deduce that hp0; p5i meets hL3; L4i in a point of Xx . This however implies that the
line hp0; p5i is singular, contradicting our choice of p5 … p0?. This concludes Case 1.
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Case 2. Suppose now that �� has index 0. In case (ii), we immediately obtain that ��

cannot share a (necessarily non-singular) line L with …, for hL1; Li \ � would be
a singular line L0 through p and hence L � � \ ŒL1; L0�, contradicting (MM2). As
such, L1; L2; L3 and �� are as required by the claim. So we may assume case (i). If
�� \… D ¹pº, we are done, so suppose

dim.�� \…/ � 1:

If ��\… is exactly a lineL, then renumbering if necessary, we haveLª hL1;L2;L3i
and then the pair .L1; L2; L3/, �� does the trick. So finally, suppose �� \… is a
plane ˛. Note that, by assumption on ��, ˛ contains precisely one line T of Tp.��/.
By (MM2) andw�� D 0, ˛ meets hL1;L2i and hL3;L4i in p only. A dimension argu-
ment then implies that there is a unique plane ˛i through Li that meets both hL3; L4i
and ˛ in respective lines Mi and M 0i , for i D 1; 2. Clearly, M 01 ¤ M 02, so we may
assume that M 01 ¤ T . Since M 01 ª Tp.�

�/, it contains a unique point p0 2 Xx n ¹pº.
Let p1 be a point on L1 n ¹pº and considering the line hp0; p1i and its intersection
withM1, we deduce as in the previous paragraph, that the plane hL1;M1i is singular,
contradicting the fact that M 01 is not. This concludes Case 2 and the claim follows.

Henceforth, let L1; L2; L3 2 Lx be three lines containing p such that the gener-
ated subspace S WD hL1; L2; L3i has dimension 3 and such that there exists � 2 „x
with S \ � D ¹pº. Since max.Wx/� 2 and by absence of singular 3-spaces, we obtain
that, up to renumbering, �1 WD ŒL1;L2� and �3 WD ŒL2;L3� are members of„x . Since
S \ � D ¹pº, also � \ �i D ¹pº for i D 1; 3. Consequently, the subspaces h�; �1i and
h�; �3i are 6-dimensional, and recalling that dimhXxi � 7, they share a 5-space †
containing h�; L2i. It follows that † meets �i in a plane �i containing L2 and hence
at least one other singular line Ri of �i , for i D 1; 3.

Suppose first that hR1;R3i is a 3-space (equivalently,R1 \L2 ¤R3 \L2). Then
hR1;R3imeets � in a line R containing p. Let r be any point of R n ¹pº and consider
the unique line R0 through r meeting R1 and R3 non-trivially, say in points r1 and r3,
respectively. By (MM2), R0 is singular. Note that r ¤ p implies that r1; r3 … L2.
However, r3 is now collinear to the non-collinear points L2 \ R3 and r1 of X.�1/,
so r3 2 �1 \ �3 D L2, a contradiction.

Therefore, R1 \ L2 D R3 \ L2 DW y. Note that y ¤ p, for otherwise R1 D L1
and R3 D L3, violating the fact that

hR1; L2; R3; �i D 5:

Then the plane hR1;R3imeets � in a point z. Clearly, z¤p (otherwiseR32hR1;pi �
�1) and z … R1 [ R3 (since � \ �i D ¹pº and p … Ri for i D 1; 3). Using (MM2) if
hR1; R3i is non-singular, we obtain that z 2 X.�/, and hence hR1; R3i is singular
anyway. If p and z are not collinear, then y, being collinear to both p and z, belongs
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to � , a contradiction. Hence, hp; zi is singular and as a consequence, hL2; zi is a
singular plane intersecting the singular plane hR1; R3i in line. Since max.Wx/ � 2
this yields a singular 3-space hR1; L2; R3i, contradicting Lemma 8.4.

We conclude that .Xx; „x/ is an AVV of type 2 whose global index set W 0

has max.W 0/ D 1. Proposition 7.1 yields W 0 D ¹1º and hence Wx D ¹0; 2º. By
Lemma 8.4, there are no singular planes in Xx . Recalling that .Xx;Lx/ is connected
by Lemma 8.5, it now follows from Proposition 7.4 that .Xx;Lx/ is isomorphic to
S1;1;1.K/ after all.

Proof of Proposition 8.1 in the case d D 4. We already noted that, if W D ¹2º, then
the proposition follows from the main result of [21], and that we therefore may assume
that there is a point x 2 X with min¹Wxº < max¹Wxº D 2. By Lemma 8.7, .Xx;Lx/

is isomorphic to S1;1;1.K/. Noting that, for any y; z 2 Xx at distance 3 from each
other measured in .Xx;Lx/, we have Œy;z�2„x is contained in hXxi, this contradicts
Lemma 5.3.

9. Case 3. For each x 2 X , eitherWx D ¹0º or max.Wx/ � 3

Proposition 9.1. Let .X;„/ be an AVV of type d with global index set W such that,
for each x 2 X , either Wx D ¹0º or max.Wx/ � 3. Then W is a singleton ¹w�º and
one of the following occurs:

(i) w� D 0, d 2 ¹2a j a 2 Nº [ ¹1º and .X;„/ is the standard Veronese rep-
resentation of a projective plane over a quadratic alternative division ring;

(ii) w� D 3, d D 6 and .X;„/ is the half spin variety D5;5.K/;

(iii) w� D 4, d D 8 and .X;„/ is the Cartan variety E6;1.K/.

Again, we show this in a series of lemmas. Throughout, let w� be the maximum
of W , which is well defined as jW j is bounded above by ddC1

2
e. If w� D 0, then by

the main result of [14], part (i) of Proposition 9.1 holds. So we assume from now on
that w� � 3 (and hence d � 6).

Lemma 9.2. Let x 2 X be a point with max.Wx/ � 3 and let p 2 X be a point
collinear to x. Then there exists � 2 „ of index at least 3 going through p and not
through x.

Proof. Suppose for a contradiction that all members of„ through p of index at least 3
also contain x. First note that (MM1) assures that there is at least one member of „,
necessarily of index at least 1, through the singular line hp;xi; hence our assumptions
imply max.Wp/ � 3 and so there is at least one member of „ of index at least 3
through p.
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By Corollary 4.12 and Lemma 6.2, .Xp; „p/ is a pre-AVV. The line hp; xi cor-
responds to a point q 2 Xp which, by the previous paragraph, has the property that it
is contained in all members of „p of index at least 2.

We claim that there is a pair �1 and �2 in „p of index at most 1 and index 1,
respectively, intersecting each other in exactly one point. Let �� be a member of „p
of index at least 2 containing q (which exists by the above). Let p1 be a point inX.��/
not collinear to q. Then all members of „p through p1, except for �� D Œp1; q�, have
index at most 1. There are three cases:

(1) There are �1; �2 in„p n ¹��º through p1 of index 0 and 1, respectively. In this
case, it is clear that �1 \ �2 D ¹p1º.

(2) All members of „p n ¹��º through p1 have index 1. By Lemma 5.6 applied
in .Xpp1 ; „pp1/, we find a pair of members of „p with index 1 intersecting in pre-
cisely p1.

(3) All members of„p n ¹��º through p1 have index 0. Let �1 be any such quadric,
and let r 2 X.�1/ n ¹p1º be a point not collinear to q. Let p2 be a point in X.��/
collinear to q but not contained in Œr; q� (in particular, r and p2 are not collinear). By
(MM1), there is a �2 2 „p through r and p2, which does not contain q by the choice
of p2, and hence has index at most 1. If �2 has index 1, then �1 and �2 satisfy our
requirements, so suppose �2 has index 0. Applying Lemma 5.2 (note that d � 2 � 4)
on the triple ��; �1; �2 yields a singular line L meeting these three quadrics in three
distinct points z; z1 and z2, respectively, with z2 and p2 non-collinear. This implies
that z ¤ q: otherwise, p2 ? q D z ? z2, and hence q 2 �2, a contradiction. Hence
we can take a line L0 through z in X.��/ collinear to neither q, nor z1. The unique
member � 02 of „p through L and L0 then does not contain q; hence it has index at
most 1. As it contains the singular line L, it has precisely index 1. The pair �1; � 02
qualifies.

This shows the claim. Let �1; �2 be such members of „p , intersecting in a unique
point p0. By Lemma 5.4, we may assume that there is a singular line hz1; z2i with
z1 2 X.�1/ n p

0? and z2 2 X.�2/ n p0?.
As �2 has index 1, there exists a line L through z2 in �2 that is not collinear to z1.

Then L and z1 determine a unique member � of „p . According to Lemma 5.5, there
would be members of„p of index at least 2 not going through q, a contradiction. The
lemma follows.

Lemma 9.3. Suppose x2X has max.Wx/� 3. Then either Tx\X � x? or .Xx;Lx/

is isomorphic to one of the following: Gn;1.K/ for n 2 ¹4; 5º or E6;1.K/.

Proof. Suppose that Tx \ X contains a point y not contained in x?. Then, by Lem-
ma 4.15, min.Wx/ � 2, in which case .Xx;Lx/ is a strong parapolar space of dia-
meter 2 (cf. Corollary 4.12 and Lemma 4.5). If there are two members �1; �2 2 „
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intersecting in x only, then Tx D hTx.�1/; Tx.�2/i by (MM3) and Lemma 4.14 leads
to a contradiction. So .Xx;Lx/ is .�1/-lacunary. Since max.Wx/ � 3, the only pos-
sibilities are, according to Fact 4.7, Gn;1.K/ for n 2 ¹4; 5º or E6;1.K/.

Lemma 9.4. Let x be a point of X with max.Wx/ � 3. Then .Xx; „x/ is an AVV of
type d � 2 with global index set W 0x and dimhXxi � 2d � 1.

Proof. By Lemma 9.3, we may assume that Tx \X � x?, as otherwise .Xx;Lx/ is
isomorphic to Gn;1.K/ for n 2 ¹4; 5º or to E6;1.K/, which are AVVs indeed.

Claim 1. For each z 2 Xx , dimTz � 2d � 4. We consider the situation in .X;„/, in
which z corresponds to a singular line L containing x. Let p be a point of L n ¹xº.
Since max.Wx/ � 3, Lemma 9.2 yields a member � 2 „ of index at least 3 contain-
ing p and not containing x. The fact that Tx \ X � x? implies that Tx \ X.�/ is a
singular subspace S of X.�/. Then S � Tx \ � � Tp.�/ and

dim.Tx \ �/ � d � w�

by Lemma 4.13. Consequently, there is a subspace S 0 in Tp.�/ n Tx of dimension
w� � 1 � 2. Since S 0 is not contained in Tx , we obtain that

dim.Tp \ Tx/ � 2d � 3:

The claim follows.

Claim 2. .Xx;Lx/ is connected. Let � be a member of „ through x with w� � 3.
Suppose for a contradiction that there is a point z 2Xx not contained in the connected
component C� of � in .Xx;Lx/. Then z? \ � D ; and Œz; p� 2 „x has index 0
for each p 2 Xx.�/. In exactly the same manner as in the proof of Lemma 8.5, we
obtain Tz \ Xx.�/ D ; and, by Lemma 6.1, this implies that z 2 C� after all. This
contradiction shows the claim.

By Lemma 4.10 and Claim 1, .Xx;„x/ is a weak AVV of type d � 2 with global
index set W 0x and dimhXxi � 2d � 1. We show that .Xx; „x/ satisfies (MM1). Let
� 2„x be of index at least 2. Let L be a line of Lx intersecting � in a unique point p.
Let M be a singular line in � n L?, then we obtain that ŒL;M� is a member of „x
containing L. Claim 2 now implies that (MM1) holds in .Xx; „x/. Proposition 6.2
implies that j„xj � 2. The lemma follows.

We are ready to show that W has to be a singleton.

Proof of Proposition 9.1. We show this by induction on w�. If w� D 0, then clearly,
W D ¹0º and the main result of [14] leads us to possibility (i) of Proposition 9.1. So
assume w� � 0 and take an arbitrary x 2 X with w� D maxWx . By Lemma 9.4,
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the residue .Xx; „x/ is an AVV of type d � 2 with global index set W 0x and with
dimhXxi � 2d � 1.

First, suppose that w� D 3. Then .Xx;„x/ contains a point z with max.W 0z/ D 2
and hence, by Proposition 8.1, .Xx; „x/ is isomorphic to Gn;1.K/ for n 2 ¹4; 5º; in
particular, d D 6. Since

dimhXxi � 2d � 1 D 11 and dimhG5;1.K/i D 14;

we deduce that .Xx; „x/ is isomorphic to G4;1.K/ (which lives in dimension 9).
Since the latter’s diameter is 2, all members of „x have index 2 and consequently,
Wx � ¹0; 3º. Suppose for a contradiction that there exists � 2 „ with x 2 � and
w� D 0. Then Tx.�/ is a 6-space in Tx which has at least a 3-space … in common
with hXxi � Tx n ¹xº. Proposition 2.1 (ii) implies that there are points x1; x2 2 Xx
such that hx1; x2i intersects… non-trivially, and hence Œx1; x2�\ Tx.�/ is non-empty,
contradicting (MM2). We conclude that Wx D ¹3º. Now let y 2 X n ¹xº be arbitrary.
By (MM1), there is a member of„ containing x and y, which necessarily has index 3
as Wx D ¹3º. Therefore, max.Wy/ D 3 and we may apply the above arguments to y
as well to obtain Wy D ¹3º. We conclude that W D ¹w�º D ¹3º indeed. It follows
from the main result of [21] that .X;„/ is isomorphic to D5;5.K/.

Next, suppose that w� � 4. By induction, all members of „x have index

w� � 1 � 3;

i.e., Wx � ¹0; w�º. In particular, the main result of [21] implies that .Xx; „x/ is
isomorphic to either D5;5.K/ or E6;1.K/; in particular, d D 8 and w� D 4. Since

dimhXxi � 2d � 1 D 1 and dimhE6;1.K/i D 26;

we conclude that .Xx; „x/ is isomorphic to D5;5.K/ (and dim.D5;5.K// D 15).
We show that 0 … Wx . Indeed, suppose that there is a member � 2 „ with x 2 �

and w� D 0. Then Tx.�/ is an 8-space in Tx sharing a 7-space … with the 15-space
hXxi � Tx . As above, Proposition 2.1 (iii) leads to a contradiction. We conclude
that Wx D ¹w�º. Just like in the previous case, we deduce that Wy D ¹w�º for any
y 2 X n ¹xº as well, and hence

W D ¹w�º D ¹4º:

The main result of [21] now yields that .X;„/ is isomorphic to E6;1.K/.

10. Conclusion

Proof of the Main Theorem. Let .X;„/ be an AVV of type d with index set W .
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.1/ If for some x 2 X , max.Wx/ D 1, then Proposition 7.1 implies that .X;„/ is
split, and we have the case d D 2 of Theorem 1.2.

.2/ If for some X 2 X , max.Wx/ D 2, then Proposition 8.1 implies that .X;„/
is split, and we have the case d D 4 of Theorem 1.2.

.0;� 3/ If for all x 2 X , max.Wx/ � 3 or Wx D ¹0º, then by Proposition 9.1,
either:

.0/ W D ¹0º (and we have a Veronese cap), and we have the case d D 2`

(including ` D 0 giving rise to the case d D 1) of Theorem 1.2, or

.3/ W D ¹3º, .X;„/ is split and we have the case d D 6 of Theorem 1.2, or

.4/ W D ¹4º, .X;„/ is split and we have the case d D 8 of Theorem 1.2.

This covers all cases and proves Theorem 1.2, in particular the Main Theorem.
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