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Annular webs and Levi subalgebras

Abel Lacabanne, Daniel Tubbenhauer, and Pedro Vaz

Abstract. For any Levi subalgebra of the form l D gll1
˚ � � � ˚ glld

� gln we construct a
quotient of the category of annular quantum gln webs that is equivalent to the category of
finite-dimensional representations of quantum l generated by exterior powers of the vector
representation. This can be interpreted as an annular version of skew Howe duality, gives a
description of the representation category of l by additive idempotent completion, and a web
version of the generalized blob algebra.

1. Introduction

Throughout fix n; l1; : : : ; ld 2 Z�0 with
Pd
iD1 li D n.

1A. Webs, and Schur–Weyl and Howe duality

The so-called Schur–Weyl duality has played a key role ever since the early days of
representation theory. It relates representations of the symmetric group Sm and the
general linear group GLn D GLn.C/, and has been generalized in many ways. The
representation used to relate these two groups is .Cn/˝m.

Let L D GLl1 � � � � � GLld � GLn, and let us for simplicity stay over C for
now. Two generalizations of Schur–Weyl duality are of crucial importance for this
paper. Firstly, the Schur–Weyl duality of .Z=dZ/ o Sm (that is, type G.d; 1;m/) and L
from [5,19,33] (see also [26] for a nice and self-contained discussion of this duality).
Here the underlying representation is again .Cn/˝m. Secondly, skew (type A) Howe
duality, see [17, 18], relating GLN and GLn via their action on the exterior algebraV�
.CN ˝Cn/.
As explained in [9], a diagrammatic interpretation of skew Howe duality is given

by (exterior GLn) webs. (The same diagrammatics goes under many names, includ-
ing birdtracks [11] or spiders [22].) In some sense, in [9] skew Howe duality relating
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GLN2Z�0
and GLn takes the form of an equivalence between the category of webs

and the category of GLn-representations generated by ¹
VkCn j k 2 ¹1; : : : ; nºº, with

the web category being obtained by using all GLN for N 2 Z�0. After additive
idempotent completion webs even give a diagrammatic interpretation of all finite-
dimensional GLn-representations.

In this paper we show that an explicit quotient of the category of annular (exte-
rior GLn) webs is equivalent to the category of L-representations generated by the set
¹
VkCn j k 2 ¹1; : : : ; nºº. As before, additive idempotent completion gives a descrip-

tion of all finite-dimensional L-representations. This, in some sense, is a form of what
could be called annular skew Howe duality (we avoid the notion affine as its meaning
is context depending) or skew-type G.d; 1;m 2 Z�0/ Howe duality.

1B. The main result and relations to other works

We now give a few details and change to the universal enveloping algebras. We
consider a Levi subalgebra of the form ` D gll1 ˚ � � � ˚ glld � gln (in this paper
we write ` instead of the usual notation l for readability). Let Kq denote a field
containing an element q 2 Kq that is not a root of unity and additional variables
U D ¹u1; : : : ; ud º and their inverses, and let further K1 denote a field of characteristic
zero containing U and their inverses. With these ground fields the category of finite-
dimensional Uq.`/-representations over Kq respectively of finite-dimensional U1.`/-
representations over K1 are semisimple. (We should warn the reader: as explained
in the main body of the text there are some nontrivial quantization issues and we
carefully need to distinguish the two cases over Kq and K1.)

In Section 4 we define a Kq-linear category of annular webs AWebqgln as well
as a quotient AWebq` by evaluating essential circles using the variables U and their
inverses. Similarly over K1, where we write AWeb1gln and AWeb1`. Let Fundq`
respectively Fund1` denote the categories of Uq.`/- and U1.`/-representations gen-
erated by the exterior powers of the vector representation. Our main result is Theo-
rem 6B.3 showing that AWebq` is equivalent to Fundq` and that AWeb1` is pivotally
equivalent to Fund1`. The main ingredients in the proof of Theorem 6B.3 are the
usual diagrammatic ideas, the Schur–Weyl-type dualities from [33] as well as the
explosion trick, which utilizes the semisimplicity.

An almost direct consequence of Theorem 6B.3 is that the endomorphism alge-
bras of annular webs corresponding to tensor products of the vector representation
can be described explicitly. As we will see in Section 6D these are given by certain
row quotients of Ariki–Koike algebras (Ariki–Koike algebras are Hecke algebras of
.Z=dZ/ o Sm; see, for example, [4,7,10]) as studied in [23]. In the special case of two
row quotients, which corresponds to ` D gl1 ˚ � � � ˚ gl1 being the Cartan subalge-
bra, these algebras are Martin–Woodcock’s generalized blob algebras [25]. We thus
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obtain a web description of generalized blob algebras; see Section 6E for details. This
web description allows us to answer two conjectures of Cautis–Kamnitzer [8, Con-
jectures 10.2 and 10.3] affirmatively, up to technicalities as detailed in Remark 6F.5.

Let us also mention that our work is inspired by [30] (which gives another, very
honest, version of annular skew Howe duality), the aforementioned paper [8], as well
as [31] (which proves Theorem 6B.3 for K1 D C and the special case of the Cartan
subalgebra). With respect to [30] and [31], which are partially motivated by skein
theory, we should also warn the reader that the monoidal structure on AWebq` coming
from skein theory and the one on Fundq` coming from the Hopf algebra structure of
Uq.`/ do not seem to be compatible; see Section 6C for a discussion.

2. Notations and conventions

We start by specifying our notations.

Notation 2.1. Recall that we fixed n; l1; : : : ; ld 2 Z�0 with
Pd
iD1 li D n. These will

be used via the general linear Lie algebra gln and a Levi subalgebra ` given by

` D gll1 ˚ � � � ˚ glld � gln:

For l1 D � � � D ld D 1, so that ` D gl1 ˚ � � � ˚ gl1 is the Cartan subalgebra, we will
write h instead of `.

Notation 2.2. We now specify our underlying ground rings.

(a) For essential circles, see Section 4C below, we need extra polynomial ele-
ments (these can be ignored otherwise). We denote by U D ¹u1; : : : ; ud º

variables which will play this role.

(b) Let Zv D ZŒv; v�1;U ;U�1� for some indeterminate v.

(c) We let Kq denote a field containing U and U�1 and an element q which is
not a root of unity. Let also K1 be a field of characteristic zero containing U

and U�1. (Note that char.Kq/ is allowed to be a prime, but we assume that
char.K1/ D 0.)

(d) We also see Kq as the specialization and scalar extension � ˝Zv
Kq given

by v 7! q, and K1 as the specialization and scalar extension � ˝Zv
K1 given

by v 7! 1. We will apply scalar extension to Zv-linear categories, and since
this will play an important role we will indicate the specialization accordingly.
The two important specializations for Kq and K1 are distinguished by using q,
respectively, 1 as a subscript.

(e) If not specified otherwise, then ˝ denotes the tensor product over the ground
ring, which is either Zv , Kq or K1.
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Not everything in this paper is defined over Zv , and statements for Kq are not
strictly related to the ones for K1. If we use Zv , then we can specialize without any
problem. But if we do not work over Zv , then, to not double parts of the text, we use
the following crucial simplification:

Notation 2.3. Throughout (on the diagrammatic and the representation theoretical
sides) we always specify our conventions for Kq and leave the analog conventions
and lemmas for K1 implicit; the ones for K1 are always the q D 1 versions of the ones
for Kq . When lemmas etc. are the same for Kq and K1, then we will use simply q
(e.g., we write Kq and not Kq and K1) to indicate this. We will stress whenever the
statements for Kq and K1 are significantly different.

We will use quantum numbers, factorials and binomials viewed as elements of Zv .
That is, for a 2 Z and b 2 Z�0, we let Œ0�D 0, Œ0�ŠD 1D Œ a0 �, Œa�D�Œ�a� for a < 0,
and otherwise

Œa� D va�1 C va�3 C � � � C v�aC3 C v�aC1; Œb�Š D Œb�Œb � 1� : : : Œ1�;"
a

b

#
D
Œa�Œa � 1� : : : Œa � b C 1�

Œb�Š
:

The following will be used silently throughout.

Lemma 2.4. All quantum binomials are invertible in Kq .

Proof. Easy and omitted.

Notation 2.5. We work with strict pivotal (thus, monoidal) categories, were we stric-
tify categories if necessary (by the usual strictification theorems this restriction is for
convenience only). We have two directions of composition, vertical ıv and horizon-
tal ıh, as well as a duality � operation. The monoidal unit is denoted by 1, and identity
morphisms are denoted by id. We will also distinguish objects and morphisms using
different fonts, e.g., K and f.

As we will see, e.g., in Section 6C below, it will turn out to be important to care-
fully distinguish the monoidal product on the various categories we consider. This will
only play a role on the level of morphisms, and we use various symbols for monoidal
products between morphisms if necessary.

Notation 2.6. We now summarize the diagrammatic conventions that we will use in
this paper.
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(a) The following illustration of the interchange law summarizes our reading con-
ventions:

.id ıh g/ ıv .f ıh id/ D ıv ıv

ıh

ıh

: : :

: : :
: : :

: : :

f

g

D

: : :

: : :: : :

: : :

f g

D ıvıv

ıh

ıh

: : :

: : :
: : :

: : :

g

f

D .f ıh id/ ıv .id ıh g/:

That is, we read diagrams from bottom to top and left to right.

(b) As we will recall below, webs are certain types of labeled (with numbers
a 2 Z�0) and oriented graphs. Some labels and orientations are determined
by others, and we will often omit orientations and labels that can be recovered
from the given data to avoid clutter.

(c) If labels or orientations are omitted altogether, then the displayed webs are a
shorthand for any web of the same shape and legit labels and orientations.

(d) We use webs with edges labeled by a 2 Z, where we use the convention that
edges of label 0 are omitted from the illustrations, and edges with label not
in Z�0 set the web to zero. (We will use negative labels, but for objects and
not for edges in webs.)

(e) We also use strands labeled by objects, i.e., for K D .k1; : : : ; km/

K

K
D

k1

k1

km

km
: : :

to indicate an arbitrary (but finite) number of parallel strings.

3. Web categories in the plane

This section serves as a reminder on web categories and their basic properties. Details
can be found in many books and papers, e.g., [37] for general diagrammatics, and [9]
or, closer to our conventions, [24] and the references therein for web categories. The
proofs of the statements below are easy or can be found in loc. cit.

3A. Preliminaries

Let R be a commutative ring with unit.
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Definition 3A.1. For the purpose of this section, a diagram category Dia is a piv-
otal R-linear category with objects ıh-generated by "k with #kD ."k/� for k 2 Z�0
with 1 being the empty word, and a braid group action on upwards objects, mean-
ing morphisms yRk;l W "k ıh "l!"l ıh "k for each simple braid group generator that
satisfy the braid relations.

We also write KD .k1; : : : ;km/2Zm form2Z�0 for the objects of Dia, where we
use the notations k!"k and �k!#k for k > 0. We illustrate the (co)evaluation
morphisms as

k �k

W "k ıh #k! 1;

k�k

W #k ıh "k! 1;

�k k

W 1!#k ıh "k;
�kk

W 1!"k ıh #k;

and the braid group action as .k; l/-crossings (overcrossings and undercrossings):

over W

l

l

k

k

W "k ıh "l!"l ıh "k; under W

k

k

l

l

W "k ıh "l!"l ıh "k :

Definition 3A.2. The diagrammatic antiinvolution .�/l on a diagram category is def-
ined on objects by

.K ıh L ıh � � � /l D K� ıh L� ıh � � �

and on morphisms as in equation (3A.3) below. The diagrammatic involution .�/$

on a monoidal diagram category is defined on objects by

.K ıh L ıh � � � /$ D � � � ıh L ıh K

and on morphisms as in equation (3A.3) below:�
f
�l
D

f
;

�
f
�$
D f : (3A.3)

Lemma 3A.4. The diagrammatic antiinvolution is an antiinvolution, and the dia-
grammatic involution is an involution.

Proof. Easy and omitted.
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Definition 3A.5. Mating in Dia is the process of applying (co)evaluation morphisms.
For example,

f
mating
���! f ;

l

l

k

k

left mate
�����!

�l

�l k

k

D

�l

�l k

k

:

To be precise, a mate of a morphism f is any morphism obtained from f by applying
(co)evaluation morphisms. A left and right mate of f is a mate that only uses left or
right (co)evaluation morphisms. Finally, the left and right mate of a crossing is as
indicated above.

Note that mating produces many morphisms from a given set of morphisms.

Lemma 3A.6. Suppose that

EndDia.1/ Š EndDia."k/ Š R:

If the left mate of the .k; l/-overcrossing is invertible, then all mates of the .k; l/-over-
crossing and its inverse span a pivotal subcategory equivalent to R-linear (labeled)
tangles. In general, if the left mate of the .k; l/-overcrossing is invertible, then all
mates of the .k; l/-overcrossing and its inverse span a pivotal subcategory equivalent
to R-linear (labeled) framed tangles.

Proof. Note that the assumption EndDia."k/ Š R implies the Reidemeister I relation
up to scalars, which is enough to copy the argument in [21, Theorem X11.2.2]. The
second claim follows similarly.

We say that HomDia.K; L/ is determined by HomDia.K0; L0/ if there exists an iso-
morphism of R-modules between them.

Lemma 3A.7. If the left mates of the .k; l/-overcrossings are invertible, then all hom-
spaces in Dia are determined by upwards hom-spaces.

Proof. By Lemma 3A.6, the assumptions imply that

f 7! f

is an isomorphism. This easily generalizes.
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Definition 3A.8. A left invertible morphism "kCl!"k ıh "l is called explosion.

Up to rescaling, explosion morphisms and their left inverses can be illustrated by

k l

kCl

; respectively,

k l

kCl

:

Lemma 3A.9. If the left mates of the .k; l/-overcrossings are invertible and all explo-
sion morphisms exist, then all hom-spaces in Dia are determined by end-spaces bet-
ween objects of the form

1ıhk D"1 ıh � � � ıh "1

(k factors).

Proof. Turn all strands upwards using Lemma 3A.7, and then explode the strands
inductively.

3B. Exterior gln-webs

We now recall the category of exterior gln webs.

Definition 3B.1. The (exterior gln) web category Webvgln is the diagram category
for R D Zv with ıh-generating objects of categorical dimension Œ nk � and ıv-ıh-
generating morphisms

k l

kCl

W "kCl!"k ıh "l ;

�k �l

�k�l

W #kCl!#k ıh #l ;

k l

kCl

W "k ıh "l!"kCl ;

�k �l

�k�l

W #k ıh #l!#kCl ;

such that the left mates of the .k; l/-overcrossings are invertible. The relations impo-
sed on Webvgln are isotopies (not displayed zigzag and trivalent-slide relations; see,
e.g., [24, Section 2] for details), the exterior relation, associativity, coassociativity,
digon removal, and dumbbell-crossing relation. That is, we take the quotient by the
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ıv-ıh-ideal generated by isotopies and

>n

>n

D 0;

k l m

kClCm

D

k l m

kClCm

;

k l m

kClCm

D

k l m

kClCm

; k l

kCl

kCl

D

"
k C l

k

#
�

kCl

kCl

;

k

r

l

s

D .�1/kl
X

k�rDa�b

.�v/.k�a/.l�b/

ba

k

r

l

s

D .�1/kl
X

k�rDa�b

.�v/�.k�a/.l�b/

a b

k

r

l

s

;

together with their .�/l-duals.

We call morphisms in Webvgln (exterior gln) webs.

Remark 3B.2. The dumbbell-crossing relation is not new and can be deduced from
Green’s book on the Schur algebra [14] via an interpretation of webs as elements in
the Schur algebra. Consequently, this relation is also called the Schur relation.

It follows for example from [24, Sections 2 and 5] that there is a well-defined
functor from the pivotal category of topological webs (where webs are defined as
plane labeled oriented trivalent graphs up to planar isotopy) to Webvgln which we
will use to draw webs in a topological fashion.
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Lemma 3B.3. In Webvgln, we have

l

l

k

k

D .�1/kl
X

b�aDk�l

.�v/k�b

k

l

l

k

b

a

;

k

k

l

l

D .�1/kl
X

b�aDk�l

.�v/�kCb

k

l

l

k

b

a

:

(3B.4)

Proof. This is explained in [24, Section 5].

For completeness, the k D l D 1 case of equation (3B.4) is

1

1

1

1

D v �

1

1

1

1

�

1 1

1 1

;

1

1

1

1

D v�1 �

1

1

1

1

�

1 1

1 1

:

(3B.5)

Lemma 3B.6. The following hold in Webvgln.

(a) The crossings satisfy the Reidemeister II and III relations, and the Reide-
meister I relation holds up to scalars, that is,

k

k

D vk.�kCnC1/ �

k

k

D

k

k

;
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k

k

D vk.k�n�1/ �

k

k

D

k

k

; (3B.7)

together with their .�/l-duals. Various naturality relations hold; see, e.g., [24,
Section 2].

(b) Square switches; see, e.g., [24, Lemma 5.6]. Various other relations that we
do not explicitly use (see, e.g., [24, Section 2]) also hold.

(c) Explosion holds for Webqgln (but not in Webvgln), that is

kCl

kCl

D

"
k C l

k

#�1
� k l

kCl

kCl

;

together with its .�/l-dual. Moreover, the .k; l/-overcrossings satisfy explo-
sion as well, i.e.,

l

l

k

k

D Œk�Š�1Œl �Š�1 �

k

l

l

k

: : :
x

: : :

: : :

: : :

;

x D

l strands

k strands
: : : : : :

: : : : : :

;

(3B.8)

as well as a similar formula for the .k; l/-undercrossings.

Note that thus Lemma 3A.6 applies in Webqgln. Let us also note the following,
partially explaining why explosion works well in practice.

Lemma 3B.9. The additive idempotent completion of Webqgln is semisimple.
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Proof. By Lemma 3A.6 and the existence of certain projectors; see, e.g., [32] or [35,
Section 2.3]. To be precise (and to fix notation for the rest of the paper), the projectors
are

Œk�Š�1 �

1 1

k

1 1

: : :

: : :

;

1 1

k

: : :

D

1 1 1 1

k

: : :

;

where the dots indicate an inductive construction as illustrated on the right (the order
of how these are constructed is irrelevant due to associativity and coassociativity).

4. Annular webs

This section discusses our main diagram categories of this paper. Similar construc-
tions have appeared in many texts, e.g., [8] or [31].

4A. The annular web category

The following definition does not use any ıh structure.

Definition 4A.1. The (exterior gln) annular web category AWebvgln is the category
obtained from Webvgln by adding extra ıv-generators

�K D

k1

k1

k2

k2

km

km

: : : ; �K
D

k1

k1

k2

k2

km

km

: : : ;

for each K D .k1; : : : ; km/ 2 Zm to Webvgln modulo the ıv-ideal generated by the
relations

: : :

: : :

D : : : ;

: : :

: : :

D : : : ;

(4A.2)



Annular webs and Levi subalgebras 295

K

K

D

K

K

; (4A.3)

K

K

D

K

K

; (4A.4)

together with the .�/l- and .�/$-duals of the bottom two relations.

We call morphisms in AWebvgln annular (exterior gln) webs, and �K and �K are
called coils.

Remark 4A.5. We think of the coils as crossings in front of the annulus, e.g.,

�.1;1/!

1

1

1

1

:

This convention comes because we follow [33] later on for computations. Using the
inverse braiding compared to the definitions in [33, Theorem 3.2] translate to coils
passing behind the annulus.

Remark 4A.6. The name annular webs comes from the interpretation of the pictures
in Definition 4A.1 as embedded in an annulus. For example,

k

k

! k

k

:

The following elements defined via Lagrange interpolation play a crucial role later
on.
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Definition 4A.7. For i 2 ¹1; : : : ; dº, define

prwi D
Y
j¤i

�1 � uj

ui � uj
D

Y
j¤i

� uj

ui � uj
2 EndAWebqgln

.1/;

which we call web block projectors.

4B. Properties of annular webs

We can endow AWebvgln with a monoidal structure ıA
h

as follows. On objects,

K ıh K0 D K ıAh K0

is just the concatenation, i.e., if KD .k1; : : : ; kr/ and K0 D .k01; : : : ; k
0
s/, then K ıh K0 D

.k1; : : : ; kr ; k
0
1; : : : ; k

0
s/. On morphisms ıA

h
, we use

: : :

: : :

f ı
A
h

: : :

: : :

g D

: : :

: : :

: : :

: : :

f

g
; (4B.1)

using the .k; l/-crossings from equation (3B.4) and their mates so that f is in the front
and g is in the back.

Remark 4B.2. Equation (4B.1) is a standard construction in skein theory; see [29].

Lemma 4B.3. The monoidal structure ıA
h

and 1 D ; endow AWebvgln with the
structure of a pivotal category with duality given by cups and caps.

Proof. Easy and omitted.

Lemma 4B.4. The following holds in AWebvgln.

(a) We have an annular digon removal, that is,

kCl

k
l

kCl

l
k

K

K

D

"
k C l

k

#
�

kCl

kCl

K

K

;

together with its .�/l-dual. Various other annular versions of the relations in
Lemma 3B.6 hold as well (but are not stated since we do not use them).
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(b) All half-slides of merges, splits, cups and caps, e.g.,

K

K

D

K

K

:

(c) Annular explosion holds for AWebqgln (but not in AWebvgln), that is,

kCl

kCl

K

K

D

"
k C l

k

#�1
�

kCl

k
l

kCl

l
k

K

K

together with its .�/l-dual.

Proof. We get

k

k

D
1

Œk�Š
�

1

:::

1

1

:::

1

k

k

; (4B.5)

by (plain) explosion and equation (4A.3). The claimed relations can be proven using
this.

The thin coils suffice as ıv-generators:

Lemma 4B.6. The morphisms �.k;K/ and �.k;K/ in AWebqgln (but not in AWebvgln)
can be defined inductively from �.˙1;K/ and �.˙1;K/. Moreover, the morphisms �.�1;K/
and �.�1;K/ in AWebvgln can be defined from �.1;�1;K;�1/ and �.1;�1;K;�1/.
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Proof. The pictures

k

k

K

K

D Œk�Š�1 �

k

1
1

k

1
1

K

K

: : : : : : ;

�1

�1

K

K

D

�1

�1

K

K

;

define the morphisms as claimed. Their inverses are the .�/$-duals of these pictures.

The following lemma compares AWebvgln to the construction in [8].

Lemma 4B.7. The category AWebvgln is equivalent as a diagram category to the
affinization Aff.Webvgln/ (in the sense of, e.g., [27, Definition 2.1]) of Webvgln.

Proof. We only sketch the proof: as often in diagrammatic algebra matching a genera-
tor-relation presentation with a “all diagrams” definition is lengthy and we omit some
details.

First, there is an essentially surjective functor � from AWebvgln to Aff.Webvgln/

that puts a plane web into the annulus. Next, Aff.Webvgln/ is defined by adjoin-
ing more morphisms and relations to AWebvgln, namely one coil and its inverse for
each K and relations [27, equation (2.5)]. But using the coils in Definition 4A.1 one
can define these more general coils following [27, equation (2.5), left] which sat-
isfy [27, equation (2.5), right], showing that � is full. Faithfulness of � can then
be deduced from Theorem 6B.3 below, by showing that the functor therein factors
through Aff.Webvgln/ via � .

Alternatively, one can match the generator-relation presentation of AWebvgln
with the generator-relation presentation from [15], and then the topological presenta-
tion of Aff.Webvgln/ with the topological presentation of [15] and the result follows
via [15, Proposition 10]. (With the caveat that [15] only discusses tangles and the
description therein needs to be extended to webs. That is straightforward, but lengthy.)
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4C. Quotient by essential circles

We now define quotients of AWebvgln.

Definition 4C.1. The left and right essential k-circles are defined to be

c k D
k
D k ; c!k D

k
D k :

We also say essential circles for short.

Note that essential circles are nontrivial endomorphism of 1. We want to evalu-
ate them. To this end, let ek denote the kth elementary symmetric polynomial in n
variables, i.e., ek D ek.Z1; : : : ; Zn/.

Definition 4C.2. The Levi evaluation for ` of the essential circles is defined to be

k
� ek.v

�1u1; v
�3u1; : : : ; v

�2l1C1u1; : : : ; v
�1ud ; v

�3ud ; : : : ; v
�2ldC1ud /

� ;

k
� ek.vu

�1
1 ; v

3u�11 ; : : : ; v
2l1�1u�11 ; : : : ; vu

�1
d ; v

3u�1d ; : : : ; v
2ld�1u�1d /

� ; (4C.3)

which are elements in EndAWebvgln
.1/.

Example 4C.4. As an extreme case, take ` D gln. The formulas in equation (4C.3)
then become

k
� v�knŒ nk �u

k
1 � ;

k
� vknŒ nk �u

�k
1 � :

The appearing scalars are multiples of the categorical dimension of "k , which is the
value of the usual circle in the web calculus. Since we want to eventually evaluate
essential circles to these scalars, this might be a hint of a connection to annular webs
obtained from evaluation representations for the affine Lie algebra; see, e.g., [30, Sec-
tion 3].

The quotient AWebq` of AWebqgln by an ideal 	` defined later in Section 6B
gives a diagrammatic description of quantum `-representations.

For K1 it will turn out that 	` is the two-sided ıv-ıA
h

-ideal generated by the Levi
evaluations equation (4C.3). Being careful with the underlying monoidal structure
(details are given in Theorem 6B.3), the same holds for Kq , hence the name.
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5. Representation theory of Levi subalgebras

This section discusses the representation categories of this paper. The below is (par-
tially) well known and we will be brief whenever appropriate. A lot of details and also
background can be found in texts such as [20].

5A. The general linear representation category

We start with notations regarding the general linear quantum algebra. Let Uv.gln/ be
the divided power quantum enveloping algebra for gln, where we use the conventions,
excluding the Hopf algebra structure, from [1] in the special case of gln (usingK˙1i D
L˙1i L�1iC1). The algebra Uv.gln/ specializes to either the Kq-algebra Uq.gln/, for
which we now recall the relevant formulas, or the K1-algebra U1.gln/.

The algebra Uq.gln/ is generated by L˙1i for i 2 ¹1; : : : ; nº (these are inverses)
and Ei , Fi for i 2 ¹1; : : : ; n � 1º and the Hopf algebra structure used in this paper is

�.Ei / D Ei ˝ LiL
�1
iC1 C 1˝Ei ; ".Ei / D 0; S.Ei / D �EiL

�1
i LiC1;

�.Fi / D Fi ˝ 1C L
�1
i LiC1 ˝ Fi ; ".Fi / D 0; S.Fi / D �LiL

�1
iC1Fi ;

with L˙1i being group like.
The vector representation Vq D Vq.gln/DKq¹v1; : : : ; vnº of Uq.gln/ is the given

Kq-vector space with action

L˙1i ˘ vj D q
˙ıi;j vj ; Ei ˘ vj D ıi;j�1vj�1; Fi ˘ vj D ıi;j vjC1:

Let T Vq be the tensor algebra. The kth quantum exterior power
Vk
qVq is defined as

the degree k part (in the usual sense) of the quantum exterior algebra given byV�
qVq D

M
k2Z�0

Vk
qVq

D T Vq=hvh ˝ vh; vj ˝ vi C q�1vi ˝ vj j i < j itwo-sided˝-ideal: (5A.1)

The exterior powers are Uq.gln/-representations by using the Hopf algebra structure,
and so is 1 D Kq itself and all the duals of the above, denoted by using negative
powers: Vk

qVq D
�V�k

q Vq
�� for k 2 Z<0:

Lemma 5A.2. For k 2 Z�0, the Kq-vector space
Vk
qVq has a basis given by

¹vS D vi1 ˝ � � � ˝ vik j S D .i1 < � � � < ik/ for ij 2 ¹1; : : : ; nºº:

If �k 2 Z�0, then the Kq-vector space
Vk
qVq has a basis given by

¹v�S D vi�k
˝ � � � ˝ vi1 j S D .i1 < � � � < i�k/ for ij 2 ¹1; : : : ; nºº:
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Proof. Easy and omitted.

Notation 5A.3. We also use the notation vS from Lemma 5A.2 more generally for
any S D .i1; : : : ; ik/ for ij 2 ¹1; : : : ; nº, and use the usual set operations on them.
Recall that such expressions need to potentially be reordered using equation (5A.1) to
match the basis of Lemma 5A.2.

We now consider so-called Uq.gln/-representations of type 1 which, as usual, is
not a serious restriction; see, e.g., [20, Section 5.2] for details.

Definition 5A.4. Let Repqgln denote the category of finite-dimensional Uq.gln/-
representations of type 1. We view Repqgln as pivotal using the above Hopf algebra
structure on Uq.gln/. Let further Fundqgln denote the full pivotal subcategory with
objects of the form VK

qVq D
Vk1

q Vq ˝ � � � ˝
Vkm

q Vq

for K D .k1; : : : ; km/ 2 Zm and m 2 Z�0.

We call Repqgln the representation category of Uq.gln/ and Fundqgln its funda-
mental category. (We use the same terminology for ` defined below.) The following
is crucial, but well known, and will be used throughout. To state it let XCgln

� Zn

denote the set of dominant integral gln-weight, i.e., tuples �D .�1; : : : ; �n/ such that
�1 � � � � � �n.

Lemma 5A.5. We have the following:

(a) The category Repqgln is semisimple, its simple objects can be indexed by
� 2 XCgln

and their characters are given by Weyl’s character formula.

(b) The additive idempotent completion of Fundqgln is pivotally equivalent to
Repqgln.

We will denote the simple objects in Lemma 5A.5 (a) by L.�/ for � 2 XCgln
. We

do not need them explicitly, but their construction is well known (the L.�/ are often
called Weyl modules).

Proof. (a) See, e.g., [20, Theorems 5.15 and 5.17] or [1, Section 6].
(b) By (a), classical theory applies; see, e.g., [20, Theorems 5.15 and 5.17] or [1,

Section 6] for details.

Let us now list generating Uq.gln/-equivariant morphisms that will be the images
of the generators of Webqgln. The notation is hopefully suggestive.

For tuples S; T as in Notation 5A.3 let jS < T j D j¹.s; t/ 2 S � T js < tºj and
jS;N j D jS <N j � jN <S j forN D .1;2; : : : ;n/. Using such tuples and this notation
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we define (here k; l 2 Z�0):

YkCl
k;l
W
Vk
qVq ˝

Vl
qVq !

VkCl
q Vq; vS ˝ vT 7! ıS\T;;.�q/

�jT<S jvS[T ;

Yk;l
kCl
W
VkCl
q Vq !

Vk
qVq ˝

Vl
qVq; vU 7! .�1/kl

X
StTDU; jS jDk

.�q/jS<T jvS ˝ vT ;

\
 
k W
V�k
q Vq ˝

Vk
qVq ! Kq; v�S ˝ vT 7! ıS;T ;

\
!
k W
Vk
qVq ˝

V�k
q Vq ! Kq; vS ˝ v

�
T 7! qjS;N jıS;T ;

[
 
k WKq !

Vk
qVq ˝

V�k
q Vq; 1 7!

X
jS jDk

vS ˝ v
�
S ;

[
!
k WKq !

V�k
q Vq ˝

Vk
qVq; 1 7!

X
jS jDk

q�jS;N jv�S ˝ vS : (5A.6)

Lemma 5A.7. The morphisms in equation (5A.6) are ıv-˝-generators of Fundqgln.

Proof. A careful check of the relations shows that these maps are Uq.gln/-equiva-
riant. That they generate follows from Lemma 5A.5 and classical theory.

We have an algebraic version of explosion.

Lemma 5A.8. Explosion holds for Fundqgln, that is

idkCl D
�
kCl
k

��1 YkCl
k;l

Yk;l
kCl

:

Proof. A direct computation.

We denote by Y1;:::;1
k

and

Yk
1;:::;1 the successive explosion of k strands.

We also have the following .1; 1/-overcrossings and .1; 1/-undercrossings:

yR1;1 D qid1;1 � Y1;12

Y2
1;1W Vq ˝ Vq ! Vq ˝ Vq;

vi ˝ vj 7!

8̂̂<̂
:̂
qvi ˝ vi if i D j;

vj ˝ vi if i < j;

vj ˝ vi C .q � q
�1/vi ˝ vj if i > j;

yR�11;1 D q
�1id1;1 � Y1;12

Y2
1;1W Vq ˝ Vq ! Vq ˝ Vq;

vi ˝ vj 7!

8̂̂<̂
:̂
q�1vi ˝ vi if i D j;

vj ˝ vi if i > j;

vj ˝ vi C .q
�1 � q/vi ˝ vj if i < j:

We also get crossings

yR˙1k;l W
Vk
qVq ˝

Vl
qVq !

Vl
qVq ˝

Vk
qVq

for all k; l 2 Z by mimicking equation (3B.4) and mating.
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Lemma 5A.9. The crossings satisfy the Reidemeister II and III relations and various
naturality relations, and can be alternatively defined by explosion.

Proof. Well known and omitted (for the statement about the alternative definition
using explosion, see Lemma 3B.6 imported via Theorem 6A.1).

5B. The Levi representation category

Recall that we have fixed ` D gll1 ˚ � � � ˚ glld , which we think of as being

` D

0B@gll1 0 0

0
: : : 0

0 0 glld

1CA � gln; generators in glli W

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Li;1 Ei;1

Fi;1
: : :

: : :

: : :
: : : Ei;li�1

Fi;li�1 Li;li

;

where we reindex the elements L˙i , Ei and Fi as indicated. (Note that all L˙i appear
in this reindexing, but not all Ei and Fi .)

Definition 5B.1. Let Uv.`/ be the Zv-subalgebra of Uv.gln/ generated by theseL˙
i;k

,
Ei;k and Fi;k . We endow Uv.`/ with the structure of a Hopf algebra by restricting the
one for Uv.gln/.

The following lemma gives us a block decomposition and will be used without
further reference.

Lemma 5B.2. We have Uv.`/ Š Uv.gll1/˝ � � � ˝ Uv.glld / as Zv-algebras.

Proof. By definition.

The representation theory of Uq.`/ is easy (knowing the representation theory
for Uq.glm/), but nevertheless we state a few lemmas that we will use. For starters,
note that all Uq.gln/-representations restrict to Uq.`/-representations. Note also that
the vector representation Vq.glli / of Uq.glli / is a Uq.`/-representation with action
inflated to Uq.`/. The same holds for the exterior powers.

Lemma 5B.3. As Uq.`/-representations, we have

Vk
qVq Š

Vk
q

dM
iD1

Vq.glli / Š
M

k1C���CkdDk

Vk1

q Vq.gll1/˝ � � � ˝
Vkd
q Vq.glld /:

We also have

V˝kq Š
M

k1C���CkdDk

Vq.gll1/
˝k1 ˝ � � � ˝ Vq.glld /

˝kd :



A. Lacabanne, D. Tubbenhauer, and P. Vaz 304

Note that Lemma 5B.3 implies that Vq is not simple as a Uq.`/-representation.

Proof. The case k D 1 is clear by, for example, using the usual diagrammatic descrip-
tion of Vq (the actions of the L˙1i are omitted in the following illustration):

v8 v7 v6 v5 v4 v3 v2 v1
E3;1 E6

F3;1

E2;2

F6

E2;1

F2;2

E3

F2;1

E1;2

F3

E1;1

F1;2 F1;1

:

This illustrates the case l1 D 3, l2 D 3, l3 D 2 and n D 8. The case of general k and
the second isomorphism are similar and omitted.

We now reindex the basis of Vq to ¹v1;1; : : : ; v1;l1 ; : : : ; vd;1; : : : ; vd;ld º, which
then induces a reindexing of the basis of

Vk
qVq that we will use below.

Lemma 5B.4. As Uq.`/-representations we have V˝kq Š
Vk
qVq ˚W , and no simple

constituent of
Vk
qVq appears in W .

Proof. By looking at highest weight vectors and classical theory, this follows directly
from the first and the second decomposition in Lemma 5B.3.

Definition 5B.5. Let Repq` denote the category of finite-dimensional Uq.`/-repre-
sentations of type 1. We view Repq` as pivotal using the above Hopf algebra structure
on Uq.gln/. Let further Fundq` denote the full pivotal subcategory with objects of
the form

VK
qVq for K D .k1; : : : ; km/ 2 Zm and m 2 Z�0.

We write ı`
h

for the monoidal structure on Repq` and Fundq` on the morphism
level, and ıh on the object level. With contrast to equation (4B.1), a picture for the
monoidal structure on Fundq` is

: : :

: : :

f ı
`
h

: : :

: : :

g D

: : :

: : :

: : :

: : :

f

g
: (5B.6)

Remark 5B.7. Equation (5B.6) is a standard construction in the theory of Hopf alge-
bras; see, e.g., [37].

Lemma 5B.8. We have the following:

(a) The category Repq` is semisimple, and its simple objects are of the form
L.�1/˝ � � � ˝ L.�d / with the factors being simple objects of Repqglli .

(b) Fundqgln is pivotally equivalent to Repqgln upon additive idempotent com-
pletion.

Proof. Lemma 5A.5 applies componentwise.
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We define the Levi .1; 1/-overcrossings and Levi .1; 1/-undercrossing to be

yR`1;1W Vq ˝ Vq ! Vq ˝ Vq; vi;j ˝ vk;l 7!

´
yR1;1.vi;j ˝ vi;l/ if i D k;

vk;l ˝ vi;j else;

.yR`1;1/
�1
W Vq ˝ Vq ! Vq ˝ Vq; vi;j ˝ vk;l 7!

´
.yR1;1/�1.vi;j ˝ vi;l/ if i D k;

vk;l ˝ vi;j else:

In other words, yR`1;1 is the respective glli braiding within one block, and the swap
map otherwise, and similarly for its inverse. Note that these maps are in general not
Uq.gln/-equivariant.

Example 5B.9. In the extreme case that ` D h the Levi .1; 1/-overcrossings equals
the Levi .1; 1/-undercrossings equals the swap map.

Definition 5B.10. For k; l 2 Z�0 define yR`
k;l

as the compositionVk
qVq ˝

Vl
qVq

i
�! V˝.kCl/q

x
�! V˝.kCl/q

p
�!
Vl
qVq ˝

Vk
qVq;

where are i and p are inclusion and projection, respectively, and x is defined as in
equation (3B.8) but with Levi crossings. Define .yR`

k;l
/�1 similarly.

We also get various mates of which we think as rotated versions of the ones in
Definition 5B.10.

Lemma 5B.11. The Levi crossings are Uq.`/-equivariant, satisfy the Reidemeister II
and III relations and various naturality relations.

Proof. This follows from a calculation, Lemma 5B.2 and Lemma 5A.9.

Define now the following coil maps:

r1;KW Vq ˝
VK
qVq !

VK
qVq ˝ Vq; vi;j ˝ w 7! ui yR`1;K.vi;j ˝ w/;

r1;KW
VK
qVq ˝ Vq ! Vq ˝

VK
qVq; v ˝ w 7! u�1i .yR

`
1;K/
�1.w ˝ vi;j /:

(5B.12)

Note that r1;K and r1;K are inverses. The coil maps are not Uq.gln/-equivariant in
general.

Lemma 5B.13. The morphisms in equation (5A.6) and equation (5B.12) are ıv-ı`
h
-

generators of Fundq`.

Proof. The morphisms in equation (5A.6) are Uq.gln/-equivariant, so they are also
Uq.`/-equivariant, and one easily checks that the morphisms in equation (5B.12) are
Uq.`/-equivariant. That these generate follows from Lemmas 5A.7 and 5B.3.
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For K D ;, we will write r1 D r1;;.

Definition 5B.14. For i 2 ¹1; : : : ; dº, define

pr`i D
Y
j¤i

r1 � uj
ui � uj

2 EndFundq`.Vq/;

which we call Levi block projectors.

Lemma 5B.15. We have,

pr`i pr`j D ıi;j pr`i and idVq
D

dX
iD1

pr`i :

These projectors realize the decomposition

Vq Š
dM
iD1

Vq.glli /:

Proof. Note that r1 is given by multiplication by ui on vi;j . Thus, the formula for pr`i
is the usual Lagrange-type interpolation and the claims follow.

5C. Levi crossings

The Levi crossings are not Uq.gln/-equivariant in general, and there is no planar web
picture for it. However, it will be helpful to have the following diagrammatic notation.
For the Levi .k; l/-overcrossings and the Levi .k; l/-undercrossings, we use

over W yR`k;l!

l

l

k

k

; under W .yR`k;l/
�1!

k

k

l

l

:

We also use rotated pictures for their mates.
By Lemma 5B.11, we have the Reidemeister II and III relations, e.g.,

D ; D :

We can use this to define Levi braids associated to any braid word. Of particu-
lar importance will be the (positive) Levi full twist on k strands (denoted by a box
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notation). By definition, this map is the square of the positive lift, using Levi over-
crossings, of the longest word in the symmetric group on ¹1; : : : ; kº. For example,
for k D 4, this full twist is

ft D

0BBBBB@
1CCCCCA
2

:

We also have the usual naturality relations such as

D or D ;

including the various .�/l and .�/$-duals.
However, we need to be careful with the Reidemeister I relation as

Vk
qVq needs

not to be simple as a Uq.`/-representation, see Lemma 5B.3. Nevertheless, we still
have the following lemma.

Lemma 5C.1. The Levi crossings are diagonal matrices in the basis given by the
decomposition of

Vk
qVq from Lemma 5B.3.

Proof. Note that the decomposition of
Vk
qVq from Lemma 5B.3 is multiplicity free,

and Schur’s lemma applies. (We stress that Schur’s lemma in this setting does not
need the underlying field to be algebraically closed; see, e.g., [1, Corollary 7.4] or [3,
Remark 2.29].)

One can check that the diagonal entries mentioned in Lemma 5C.1 are given by
products of the Reidemeister I scalars in equation (3B.7).

6. The equivalence

We now state and prove our main result.

6A. A reminder on the gln story

We first recall the relationship between gln webs and the representation theory of
Uq.gln/. Define a functor

�q D �
ext
q .gln/WWebqgln ! Fundqgln
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sending the object K to
VK
qVq and the generating morphisms of Webqgln to the fol-

lowing maps:

k l

kCl

7! Yk;l
kCl

;

k l

kCl

7!

YkCl
k;l

;

k �k

7! \
!
k ;

k�k

7! \
 
k ;

�k k

7! [
!
k ;

�kk

7! [
 
k ;

and the downwards merges and splits to the respective mates.

Theorem 6A.1. The functor �q is an equivalence of pivotal categories, and it induces
an equivalence of pivotal categories between the additive idempotent completion
of Webqgln and Repqgln.

Proof. That �q is fully faithful is [9, Theorem 3.3.1], and the fact that the relevant
hom-spaces stay of the same dimension when restricting from gln to sln. The second
claim follows from Lemma 5A.5 (b), or [9, Theorem 3.3.1] and flatness of restriction
from gln to sln.

6B. The statement

We now extend the functor �q into a functor

A�q D A�ext
q .`/WAWebqgln ! Fundq`:

On objects and the generators of Webqgln the functor A�q is defined to be �q . We
define A�q on the two coils �K and �K for k1 D 1 by

1

1

k2

k2

km

km

: : : 7! r1;K;

1

1

k2

k2

km

km

: : : 7! r1;K:

We call the kernel of the functor A�q the Levi ideal and denote it by 	`.

Lemma 6B.1. The Levi ideal 	` is a two-sided ıv-ideal in AWebqgln.

Proof. The kernel is a two-sided ıv-ideal.

Thus, we get a well-defined category in the following definition.
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Definition 6B.2. Let AWebq` denote the quotient of AWebqgln by the Levi ideal 	`.

Theorem 6B.3. Let AdId.�/ denote additive idempotent completion.

(a) We have the commuting diagram of categories

AWebqgln AWebq` AdId.AWebq`/

Fundq` Repq`:

A�q

equation (4C.3) AdId.�/

ŠA�`
q AdId.A�`

q/Š

AdId.�/

The Levi ideal 	` is the two-sided ıv-ı`
h
-ideal generated by the Levi eval-

uations. Here ı`
h

is the pullback of the monoidal structure from Fundq` to
AWebqgln.

(b) We have the commuting diagram of pivotal categories

AWeb1gln AWeb1` AdId.AWeb1`/

Fund1` Rep1`:

A�1

equation (4C.3) AdId.�/

ŠA�`
1 AdId.A�`

1
/Š

AdId.�/

The Levi ideal 	` is the two-sided ıv-ıA
h

-ideal generated by the Levi evalua-
tions.

The proof of Theorem 6B.3 is postponed to Section 7, since we want to focus on
applications of this theorem first. For the rest of the section we assume that Theo-
rem 6B.3 holds with the exception of the next subsection where we only assume that
A�q is well defined.

6C. Monoidal behavior of the main functor

The categories AWebqgln and Repq` are endowed with monoidal structures that are
natural from two different perspectives, as explained in Remark 4B.2. However, as we
will elaborate now, these need not to be the same under the equivalence Theorem 6B.3.

Lemma 6C.1. Assume that the functor A�q is well defined.

(a) The functor A�1 is pivotal.

(b) The functor A�q is not monoidal (and thus not pivotal).

Proof. (a) Let us consider q D 1. In this case the braiding on Rep1` is given by per-
mutation. Comparing equations (4B.1) and (5B.6), and observing that coils in Rep1`
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are permutations, up to diagonal entries of the form ui on blocks, shows that the
functor A�1 is monoidal. Pivotality is then clear.

(b) For q ¤ 1, one can check that the images under A�q of equation (4B.1) is
not the same as equation (5B.6). Explicitly, taking K D L D .1/, f D �K and g D idL

verifies that A�q is not monoidal.

Remark 6C.2. We note that Lemma 6C.1 shows that the choice which side goes over
or under in equation (4B.1) matters and gives different results on the representation
theoretical side. This indicates that one might need to use the notion of module cate-
gories rather than monoidal categories to describe the representation theory associated
to AWebqgln. This is similar to, for example, [34] or [12] (via [26, Remark 12]), so
coideal subalgebras might play a role.

The quantization issue that we are facing in Lemma 6C.1 is also potentially related
to the classification of K-matrices as, for example, in [28] where all nondegener-
ate solutions to the reflection equation in the quantum case have satisfy a minimal
polynomial of order � 2. Diagrammatically K-matrices correspond to coils, but for
`D gll1 ˚ � � � ˚ glld � gln these coils need to have a minimal polynomial of order d .

Remark 6C.3. One could use the equivalence in Theorem 6B.3 to pullback the mon-
oidal structure of Repq`, resulting in a monoidal structure on AWebq` that is distinct
from the one we give in Lemma 4B.3 above. This pullback monoidal structure would
not satisfy the conditions in [27, (2.11)], which are necessary for it to be unique,
see [27, Proposition 2.5]. Conversely, one could push the monoidal structure from
AWebq` to Repq`, resulting in a monoidal structure on Repq` satisfying [27, (2.11)].

6D. Ariki–Koike algebras and annular webs

The Ariki–Koike algebra H
m;d
q from [4,7,10], using different conventions, is defined

as follows.

Definition 6D.1. Fix m 2 Z�0, the number of strands, and let H
m;d
v denote the

Zv-algebra with algebra generators T0;T1; : : : ;Tm�1 modulo the two-sided ideal gen-
erated by

dY
kD1

.T0 � uk/; T0T1T0T1 � T1T0T1T0;

.Ti � q/.Ti C q�1/ if i > 0;

TiTjTi � TjTiTj if ji � j j D 1;

TiTj � TjTi if ji � j j > 1;

where i; j 2 ¹1; : : : ; m � 1º.
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The Ariki–Koike algebra acts on 1ıhm.

Proposition 6D.2. We have a surjective Kq-algebra homomorphism

�m;d WH
m;d
q � EndAWebq`.1

ıhm/; T0 7!

1 1ıh.m�1/

1ıh.m�1/1

; Ti 7!

1

1

1

1

:

Here the bottom left strand of the image of Ti is the i th strand from the left.

Proof. By Theorem 6B.3, this follows from [33, Theorem 4.2] after adjustment of
conventions.

We define the usual Jucys–Murphy elements as follows.

Definition 6D.3. Define elements of H
m;d
v by X1 D T0 and for i 2 Z�1 recursively,

Xi D TiXi�1Ti .

Let P.m; d/ denote the set of d -partitions of m (which we identify with d -tuples
of Young diagrams in the English convention), and for � 2 P.m;d/ let Std.�/ denote
the set of all standard d -tableaux of shape �.

Lemma 6D.4. For all � 2 P.m; d/ there exists a simple H
m;d
q -representation V�,

and these form a complete and nonredundant set of simple H
m;d
q -representations.

Moreover, we have an Kq-algebra isomorphism

Hm;d
q Š

M
�2P.m;d/

EndKq
.V�/:

Finally, V� can be given a Kq-basis ¹vT j T 2 Std.�/º such that Xi acts by

Xi ˘ vT D uaq2b�2cvT ; (6D.5)

where a is the component of the entry i in T , b is the column number where i appears
and c is the row number of i .

Proof. Our assumptions on the involved parameters imply that H
m;d
q is semisimple

and the lemma follows from [4, Theorem 3.7] and results in the same section, e.g., [4,
Proposition 3.16].

Let 	>l1;:::;>ld �H
m;d
q denote the two-sided ideal generated by the idempotents,

realizing the Artin–Wedderburn decomposition in Lemma 6D.4, for d -partitions ofm
with strictly more than li rows in the i th entry.
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Example 6D.6. An important special case is 	>1;:::;>1 � H
m;d
q . In this case the

d -partitions indexing the idempotents not in 	>1;:::;>1 are of the form�
. . .„ ƒ‚ …
k1

; : : : ; . . .„ ƒ‚ …
kd

�
for .k1; : : : ; kd / 2 Zd�0. These are so-called one row d -partitions.

Remark 6D.7. The image of 	>l1;:::;>ld �H
m;d
q under �m;d from Proposition 6D.2

is forcing a condition on the minimal polynomial of coils.

The following definition appears in [23, Section 2C].

Definition 6D.8. Let B`
q be the algebra quotient of H

m;d
q by 	>l1;:::;>ld .

Proposition 6D.9. The map �m;d from Proposition 6D.2 induces a Kq-algebra iso-
morphism

x�`WB
`
q

Š
�! EndAWebq`.1

ıhm/:

Thus, the kernel of �m;d is ker.�m;d / D 	>l1;:::;>ld .

Proof. As in the proof of Proposition 6D.2.

6E. Cartan subalgebras and generalized blob algebras

We now consider the case of the Cartan subalgebra in detail.

Proposition 6E.1. The functor A�q descends to an equivalence of categories

A�h
q WAWebqh! Fundqh;

and it induces an equivalence of categories between the additive idempotent comple-
tion of AWebqh and Repqh.

Proof. Directly from Theorem 6B.3 and Lemma 6C.1.

Remark 6E.2. Proposition 6E.1 should be compared with [31, Corollary 43], and
can be seen as a quantum version of that corollary.

Now recall the so-called generalized blob algebra B
m;d
q in the sense of [25]

(which is a special case of Definition 6D.8).

Definition 6E.3. Let B
m;d
q be the algebra quotient of H

m;d
q by 	>1;:::;>1.
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Proposition 6E.4. The map �m;d from Proposition 6D.2 induces a Kq-algebra iso-
morphism

x�m;d WB
m;d
q

Š
�! EndAWebqh.1

ıhm/:

Thus, the kernel of �m;d is ker.�m;d / D 	>1;:::;>1.

Proof. By Proposition 6E.1, this follows from [5, Theorem 3.1].

6F. On two conjectures about end-spaces in annular webs

Recall from Section 4C that ek denotes the kth elementary symmetric polynomial
in d variables. In the special case of the Cartan subalgebra we have d D n, and we let
ek D ek.u1; : : : ; ud /.

Definition 6F.1. Define e.1/
k
D ek and for i 2 Z�1 recursively,

e
.i/

k
D e

.i�1/

k
C .q2 � 1/

�
Xi�1e

.i�1/

k�1
� X2i�1e

.i�1/

k�2
C � � � ˙ Xki�1

�
;

and let J>1 � H
m;d
q denote the two-sided ideal generated by

Ri D Xdi � e
.i/
1 Xd�1i C � � � ˙ e

.i/

d
:

Let J2 � H
m;d
q denote the two-sided ideal generated by R2.

Proposition 6F.2. The kernel of �m;d is alternatively given by

ker.�m;d / D J2 D J>1:

The same holds for q D 1.

Proof. We start by making two claims.

Claim 1. R2 acts on V� as zero if and only if the d -partition � has at most one row
per component.

Proof of Claim 1. The case where � has one node is easy, so assume that � has at
least two nodes. We use that V� has a Kq-basis given by vT for T a standard d -
tableaux of shape � on which Xi acts by equation (6D.5). Using equation (6D.5), we
can calculate the action of R2 on the Kq-basis given by the vT . There are three cases
depending on the positions of 1 and 2 in T one needs to check:

(i)
�
: : : ; 1 ; : : : ; 2 ; : : :

�
or vice versa,

(ii)
�
: : : ; 1 2 ; : : :

�
,
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(iii)
�
: : : ;

1
2 ; : : :

�
.

All of these are annoying but straightforward calculations, and details are omitted.

Claim 2. J2 D J>1.

Proof of Claim 2. To see this, we note that on vT 2 V� for � a one row d -partition
and T a standard d -tableau of shape �, we have

e
.i/

k
˘ vT D ek.q2˛1u1; : : : ; q

2˛dud /vT ;

where ˛r D j¹s < i j s is in the r th component of T ºj. Using this formula and equa-
tion (6D.5) one can recursively check that the above claim holds for Ri for i � 2,
which implies that J>1 � J2, and the proof of the claim is complete.

The first claim implies that J2 D 	2, and this together with the second claim and
Proposition 6E.4 proves the lemma.

Recall Aff.Webqgln/ from Lemma 4B.7. Mimicking the construction of AWebq`
from AWebqgln as in Definition 6B.2, we denote by Aff.Webqgln/=LI (LI stands for
Levi ideal) the quotient of Aff.Webqgln/ by essential circles. The following will be
compared with [8, Conjectures 10.2 and 10.3] in Proposition 6F.4 below.

Proposition 6F.3. We have Kq-algebra isomorphisms

Hm;d
q =J2 D Hm;d

q =J>1
Š
�! EndAWebq`.1

ıhm/
Š
�! EndAff.Webqgln/=LI.1

ıhm/;

with the first map being induced by Proposition 6D.2 and the second being induced
by Lemma 4B.7.

Proof. Combine Lemma 4B.7 and Proposition 6F.2.

Proposition 6F.4. Proposition 6F.3 answers [8, Conjectures 10.2 and 10.3] affirma-
tively (up to different ground rings; we address that in Remark 6F.5 below).

Proof. The common object of interest when comparing [8] to this paper is the annular
web category and its various flavors:

(i) First, we have AWebqgln and AWebq` and these are the main objects of study
in this paper.

(ii) We also have Aff.Webqgln/ and Aff.Webqgln/=LI, the versions defined by
affinization. These are studied in [8] for sln instead of gln.
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We first note that the difference between sln instead of gln plays no key role in the
sense that the relevant hom-spaces are of the same dimension and all maps are defined
verbatim. On the representation theoretical side this is well known, for the webs see,
e.g., [35, Remark 1.1].

In [8, Section 10] Cautis–Kamnitzer define a map from the affine Hecke algebra
H aff
q to the category Aff.Webqgln/. In [8, Conjecture 10.3] they conjecture what the

kernel of this map is. In Proposition 6F.3 we identify the kernel of the respective
map from the Ariki–Koike algebra H

m;d
q to AWebq`. Thus, we get the following

comparison diagram:

H aff
q Aff.Webvgln/ AWebqgln

H
m;d
q Aff.Webqgln/=LI AWebq`:

map in [8, Section 10] Š

Proposition 6F.3

map in Proposition 6D.2

via the right equivalence

Proposition 6F.3

Š

Comparison of definitions shows that this diagram commutes. Similarly for [8, Con-
jecture 10.2] which follows from the q D 1 version of the above.

Remark 6F.5. Recall from Notation 2.2 that we work over a field containing vari-
ables U D ¹u1; : : : ; ud º as well as U�1. We use this crucially in equation (4C.3)
where we evaluate essential circles to elementary symmetric polynomials ek in these
variables and their inverses.

On the other hand, the ground ring used in [8, Section 10] is

E D C.q/Œze1; : : : ; zen�;

where zek is the kth elementary symmetric function (not the polynomial), and these
elementary symmetric function compare to our variables U .

Note that [8, Section 10] does not have U�1 and in this sense Proposition 6F.3
and [8, Conjectures 10.2 and 10.3] are strictly speaking not comparable.

6G. Working integrally

Note that our main result Theorem 6B.3 is not stated or proven over Zv , and we work
over Kq in which case AWebq` and Repq` are semisimple. Working integrally, that
is, over Zv or even ZŒv; v�1;U � needs some nontrivial extra steps:

(i) Theorem 6A.1 works over Zv , see [13, Theorem 2.58], which uses the light
ladder strategy from that paper and [2, Theorem 3.1]. Passing to an appropriate field
(e.g., xFp for a prime p) one gets an equivalence of pivotal categories between the addi-
tive idempotent completion of Webqgln and the category of tilting modules Tiltvgln.
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(ii) The relation from diagram categories to tilting modules is a folk observation
in the field; see, e.g., [13, Theorem 2.58], [2, Section 5A], [36, Proposition 2.28]
or [6, Theorem 1.1] for some examples.

(iii) Thus, it is tempting to conjecture that integral versions of Theorem 6B.3 and
its consequences involve Tiltv`, e.g., under appropriate assumptions on the under-
lying field the additive idempotent completion of AWebv` should be equivalent to
Tiltv`. However, there is a nontrivial catch: the quantization does not behave very
well; see, e.g., Section 6C or [8, Section 10]. As sketched in Remark 6C.2, this might
indicate that quantum groups are not the correct objects to use in this setting.

(iv) Note that the blob algebra is not defined integrally, and it is also not clear
from the definition how to work integrally. Let us however point out that the descrip-
tion of B

m;d
q from [23, Theorem 2.15] works integrally and might play a role in the

integral story.

We decided not to pursue these points further in this work.

7. Proof of the main theorem

7A. Well-definedness

Recall that the images of the coils are defined by explosion, that is, we mimic equa-
tion (4B.5) on the side of the representation theory. We define uW V˝kq ! V˝kq as the
map sending vi1;j1

˝ � � � ˝ vik ;jk
to ui1 � � � uikvi1;j1

˝ � � � ˝ vik ;jk
. We use a box to

denote this map in illustrations.

Lemma 7A.1. We have

A�q.�.k;K// D Œk�Š�1 �

Kk

: : :

ft
u

: : :
:

Proof. Using the Levi crossings introduced in Section 5C, we easily check that A�q
sends the coil �.k;K/ to the claimed picture.
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Lemma 7A.2. In Fundq`, we have

Œk�Š�1Œl �Š�1 �

k C l

k l

ft
: : :

: : : : : :

D Œk C l �Š�1 �

k C l

k l

ft
: : :

: : :

:

Proof. We first suppose that the strands are oriented upward. The image of Y1;:::;1
kCl

is an Uq.`/-subrepresentation of V˝kClq . The Levi full twist ft is Uq.`/-invariant, so
this subrepresentation remains invariant. But this subrepresentation is isomorphic toVkCl
q Vq and since the weight spaces of

VkCl
q Vq are of dimension one, we deduce that

the image of a vector vS by ft ıY1;:::;1
kCl

is a multiple of Y1;:::;1
kCl

.vS /, say sSY1;:::;1
kCl

.vS /.

Hence, Yk;l
kCl
ı

YkCl
1;:::;1 ı ft ı Y1;:::;1

kCl
sends vS to

sSYk;l
kCl
ı

YkCl
1;:::;1 ı Y1;:::;1

kCl
.vS / D sS ŒkCl �ŠY

k;l
kCl

.vS /

and .

Yk
1;:::;1 ˝

Yl
1;:::;1/ ı ft ı Y1;:::;1

kCl
sends vS to

sS .
Yk

1;:::;1 ˝
Yl

1;:::;1/ ı Y1;:::;1
kCl

.vS / D sS Œk�ŠŒl �ŠY
k;l
kCl

.vS /:

The same arguments shows that the equality also holds with strands oriented
downward.

Lemma 7A.3. The relation (4A.2) is satisfied after applying the functor A�q .

Proof. Clear.

Lemma 7A.4. The relation (4A.3) is satisfied after applying the functor A�q .

Proof. Using the associativity of splits and merges and the fact that Levi crossings
satisfy the Reidemeister III relation, it remains to prove

ŒkCl �Š�1 �

KkCl

K k l

: : :
ft
: : : D Œk�Š�1Œl �Š�1 �

K

K

k C l

k l

ft
: : :

: : : : : : ;

which follows immediately from Lemma 7A.2.
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We can show similarly that merges slide through coils.

Lemma 7A.5. The relation (4A.4) is satisfied after applying the functor A�q .

Proof. The image of the right-hand side of equation (4A.4) is given, up to the multi-
plication by elements of U that cancel out, by

Œk�Š�2 �

k �k K

K

: : :
ft
: : :

: : :

ft�1
: : :: : :

:::

: : :

: : :

:::
: : :

:

Using Reidemeister II relations and the fact that mates of merges are splits and
vice versa, it remains to prove the following equality:

Œk�Š�2 �

k �k

: : :
ft
: : :

: : :
ft�1
: : :

:::

: : :

D

k �k
:

In order to get rid of the explosions between the Levi full twists, we apply repeatedly
Lemma 7A.2 with l D 1 and use the fact that the Levi full twist on k strands can be
obtain from the Levi full twist on k � 1 strands and some extra crossings. We can
conclude using explosion as in Lemma 3B.6.

The argument for the leftward oriented cap is similar and omitted.
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We can show similarly that cups slide through coils.

Lemma 7A.6. The relations in equation (4C.3) are in the kernel of A�q .

Proof. The image of the leftward oriented essential circle with a strand of thickness k
through A�q is given by

Œk�Š�1 �

: : :
u
ft
: : :

D Œk�Š�2 �

: : :
u
ft
: : : D Œk�Š�1 �

: : :
u
ft

: : : : : :

:::

: : : : : :

:

In this calculation the first equality is obtained from explosion of strands, and the last
equality is obtained from Lemma 7A.2.

Now, since

: : : : : :

:::

: : : : : :
D

: : :

ft�1
: : : : : :

:::

;

it remains to compute the following scalar:

Œk�Š�1 �

: : :
u

: : :
:
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We easily check that the twist sends vi;j to q�nC2.l1C���Cld /vi;j , and therefore the
previous scalar is equal toX

k1C���CkdDk

X
1�j1;1<���<j1;k1

�l1;
���

1�jd;1<���<jd;kd
�ld

u
k1

1 � � �u
kd

d

�

dY
iD1

q�nC2.l1C���Cld /kiC
Pki

rD1
.nC1�2.l1C���Cli�1Cji;r //

D

X
k1C���CkdDk

X
1�j1;1<���<j1;k1

�l1;
���

1�jd;1<���<jd;kd
�ld

u
k1

1 � � �u
kd

d

dY
iD1

qki�
Pki

rD1
2ji;r

D ek.q
�1u1; q

�3u1; : : : ; q
�2l1C1u1; : : : ; q

�1ud ; q
�3ud ; : : : ; q

�2ldC1ud /;

which is what we needed to show.

Lemma 7A.7. The functor A�q is well defined and descends to the functor A�`q .
Moreover, for q ¤ 1 the Levi ideal 	` contains the two-sided ıv-ideal and right
ıA
h

-ideal generated by the Levi evaluations, while for q D 1 the Levi ideal 	` con-
tains the two-sided ıv-ıA

h
-ideal generated by the Levi evaluations.

Proof. We need to check that the relations in Definition 4A.1 are satisfied and that
the Levi evaluations from equation (4C.3) are in the kernel of A�q . This follows as a
combination of Lemma 7A.5 and Lemma 7A.6. By Lemma 6C.1, the statement about
the Levi ideal for q D 1 follows from that. To verify the claim for q ¤ 1, we recall
from Remark 4A.5 that the coils pass in front of the annulus. Now we observe that,
for example, (the! refers to Remark 4A.5)

right ıAh -ideal: ı
A
h D ! ;

left ıAh -ideal: ı
A
h D ! :

(7A.8)

In the top picture the essential circle is not pierced by the identity morphism, while
in the bottom it is. More generally, multiplying essential circles from the right (but
not from the left) by any morphism f produces a picture with f not interfering with
the essential circles and the essential circles are on the outside. Thus, by our con-
vention from Remark 4A.5, the essentially circle evaluations will not change by right
multiplication.
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For the remainder of the paper, we assume Lemma 7A.7.

7B. Proof for q D 1

Recall that a colored permutation on ¹1; : : : ; dºk is a permutation on ¹1; : : : ; kº that
preserves the labels. In terms of classical permutation diagrams these are permutations
with colored strands such that crossings preserve the colors, e.g.,

j

j

i

i

; where i; j 2 ¹1; : : : ; dº:

Recall also the web block projectors prwi from Definition 4A.7, respectively, the Levi
block projectors pr`i from Definition 5B.14. We use these to define a certain basis in
the following definition, where Sk is the symmetric group on ¹1; : : : ; kº.

Definition 7B.1. Fix k 2 Z�0. Let s D .s1; : : : ; sk/; t 2 ¹1; : : : ; dºk and let � be a
colored permutation from s to t such that the longest word of SliC1 � Sk does not
appear in the permutation of color i . (This condition is vacuous for li � k or if the
color i does not appear strictly more than li times.) Define

�1s;t;� D � ıv .prws1 ı
A
h : : : ı

A
h prwsd /; n1s;t;� D � ıv .pr`s1 ı

`
h : : : ı

`
h pr`sd /;

where we view � as an element of AWeb1` and Fund1`, respectively. The respective
sets (collecting these elements for all k 2 Z�0) of these are denoted by B.AWeb1`/
and B.Fund1`/.

Lemma 7B.2. We have A�`1.B.AWeb1`// D B.Fund1`/ and this set is a K1-linear
independent set in

`
k EndFund1`.V

˝k
1 /.

Proof. We get A�`1.B.AWeb1`// D B.Fund1`/ directly from Lemma 6C.1 and the
definition.

To prove faithfulness, let pr`s D prws1 ı
A
h
: : : ıA

h
prwsd . By Lemma 5B.15 and con-

struction, we have

n1s;t;� ıv pr`s D pr`t ıv n1s;t;� D n1s;t;� and n1s;t;� ıv pr`q D pr`r ıv n1s;t;� D 0

for q ¤ s and r ¤ t . Thus, it suffices to show that .n1s;t;� /� is K1-linear independent
(that is, we can fix s and t ). After sorting the colors of s and t , it remains to verify
faithfulness within a block, i.e., for glli . Thus, classical theory applies: for glli and Sk
it is known that Schur–Weyl duality gives the generalized Temperley–Lieb algebra as
the endomorphism algebra. This algebra admits a description in terms of a quotient
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of Sk by the longest word of SliC1; see, e.g., [16, Section 3], and the elements of
B.Fund1`/ describe the associated standard-type basis within each block.

Lemma 7B.3. The set B.AWeb1`/ K1-linearly spans
`
k EndAWeb1`.1

ıhk/. More-
over, the set B.Fund1`/ is a K1-linear spanning set of

`
k EndFund1`.V

˝k
1 /.

Proof. We first recall that the full antisymmetrizer is zero in Fund1`; see, e.g., [26,
Lemma 11]. Thus, the same holds in AWeb1` by Lemma 7B.2. That is, in formulas
we have� X

�2SliC1

.�1/l.�/�.pr`i /
ı`

h
.liC1/ D 0

�
)

� X
�2SliC1

.�1/l.�/�.prwi /
ıA

h
.liC1/ D 0

�
;

and both hold.
To address the first statement of the lemma, observe that

`
k EndAWeb1`.1

ıhk/ is
generated as a K1-algebra by crossings and coils since we can remove essential circles
by Lemma 7A.7. Moreover, the sliding relations (4A.3) and (4A.4) imply that we have
the usual K1-linear spanning set given by first coils and then crossings. Observe next
that the web block projectors K1-linear span the subalgebra generated by coils, so it
remains to see that the symmetric group part is K1-linear spanned by � such that the
longest word of SliC1 does not appear in the permutation of color i . This however is
a consequence of the vanishing of the antisymmetrizer.

For the second statement of the lemma we use Lemmas 5B.3, 5B.15 and Schur’s
lemma. (As explained in the proof of Lemma 5C.1, Schur’s lemma still holds in this
setting although K1 is not necessary algebraically closed.)

Lemma 7B.4. The set B.AWeb1`/ is a K1-basis of
`
k EndAWeb1`.1

ıhk/. Further-
more, the set B.Fund1`/ is a K1-basis of

`
k EndFund1`.V

˝k
1 /.

Proof. Combine Lemma 7B.2 and Lemma 7B.3. (Note that Lemma 7B.2 also proves
that B.AWeb1`/ is a K1-linear independent set.)

Proposition 7B.5. The functor A�`1 is fully faithful and the Levi ideal 	` is the two-
sided ıv-ıA

h
-ideal generated by the Levi evaluations.

Proof. Lemma 3A.9 implies that we only need to show that
`
k EndAWeb1`.1

ıhk/ and`
k EndFund1`.V

˝k
1 / are isomorphic K1-vector spaces with A�`1 inducing an isomor-

phism, and this follows from Lemma 7B.2 and Lemma 7B.4. The proof is complete.

Proof of Theorem 6B.3 (b). Lemma 7A.7 shows that the functors A�1 and A�`1 are
well defined and Lemma 6C.1 shows the statements involving the pivotal structure.
Fully faithfulness follows from Proposition 7B.5, and Lemma 5B.8 ensures that we
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have that AdId.Fund1`/ is equivalent to Rep1`. These statements taken together
complete the proof using the usual properties of the additive idempotent comple-
tion.

7C. Proof for q ¤ 1

We start with the following lemma.

Lemma 7C.1. The functor A�q is full.

Proof. It is clear that the image of the crossings and the coils span. (Note that there is
no issue with essential circles in Fundq`.)

For q ¤ 1, we note that we can mimic Definition 7B.1 on the Levi side (the only
difference is that we use a positive lift, in Levi crossings, of � instead of � itself)
to define nqs;t;� as well as B.Fundq`/. Now we use that and Lemma 7C.1 to define
�
q
s;t;� as well as B.AWebq`/ by pulling back the elements from nqs;t;� by choosing a

preimage.

Lemma 7C.2. The set B.AWebq`/ �
`
k EndAWebq`.1

ıhk/ is Kq-linearly indepen-
dent. Moreover, the setB.Fundq`/ is Kq-linearly independent in

`
kEndFundq`.V

˝k
q /.

Proof. The claim on the Levi side can be proven verbatim as in Lemma 7B.2, so our
focus is on the web side. However, by construction, the set B.AWebq`/ is then sent to
B.Fundq`/, so B.AWebq`/ is Kq-linearly independent because B.Fundq`/ is.

Lemma 7C.3. The set B.AWebq`/ Kq-linearly spans
`
k EndAWebq`.1

ıhk/. More-
over, the set B.Fundq`/ is a Kq-linear spanning set of

`
k EndFundq`.V

˝k
q /.

Proof. We can remove essential circles in front of the cylinder by definition of the
monoidal product, see also equation (7A.8), and the Levi ideal. The essential circles
in the back of the cylinder labeled by 1 can then be inductively removed by using

1

1

1

1

�

1

1

1

1

D .q � q�1/ �

1

1

1

1

;

which is the classical skein relation (that holds in our setting by using equation (3B.5)).
Using explosion, the rest of the argument is the same as in the proof of Lemma 7B.3
by using that the q ¤ 1 basis agrees with B.AWeb1`/ on the associated graded by
filtration by number of crossings (using the skein relations).
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Lemma 7C.4. The set B.AWebq`/ is a Kq-basis of
`
k EndAWebq`.1

ıhk/. Further-
more, the set B.Fundq`/ is a Kq-basis of

`
k EndFundq`.V

˝k
q /.

Proof. By Lemma 7C.2 and Lemma 7C.3.

Remark 7C.5. We do not have or need any explicit description of the elements of
B.AWebq`/ in terms of webs.

Proposition 7C.6. The functor A�`q is fully faithful and the Levi ideal 	` is the two-
sided ıv-ı`

h
-ideal generated by the Levi evaluations. Here ı`

h
is the pullback of the

monoidal structure from Fundq` to AWebqgln.

Proof. As in the proof of Proposition 7B.5.

Proof of Theorem 6B.3 (a). Using the above statements, this can be proven verbatim
as Theorem 6B.3 (b).
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